
A Weak Convergence Criterion for

Constructing Changes of Measure∗

Jose Blanchet†

Department of IEOR and Department of Statistics
Columbia University

Johannes Ruf‡

Department of Mathematics
University College London

October 16, 2015

Abstract

Based on a weak convergence argument, we provide a necessary and sufficient condition that guar-
antees that a nonnegative local martingale is indeed a martingale. Typically, conditions of this sort are
expressed in terms of integrability conditions (such as the well-known Novikov condition). The weak
convergence approach that we propose allows to replace integrability conditions by a suitable tightness
condition. We then provide several applications of this approach ranging from simplified proofs of classical
results to characterizations of processes conditioned on first passage time events and changes of measures
for jump processes.

1 Introduction

Changing the probability measure is a powerful tool in modern probability. Changes of measure arise in areas
of wide applicability such as in mathematical finance, in the setting of so-called equivalent pricing measures.
A change of probability measure often relies on the specification of a nonnegative martingale process which
in turn yields the underlying Radon-Nikodym derivative behind the change of measure. The key step in the
typical construction of changes of measure involves showing the martingale property of a process of putative
Radon-Nikodym derivatives. In order to verify this martingale property one often starts by defining a process
that easily can be seen to be a local martingale via Itô’s formula. The difficult part then involves ensuring
that the local martingale is actually a martingale.

Since the distinction between local martingales and martingales involves verification of integrability prop-
erties (the ones behind the strict definition of a martingale), it is most natural to search for a criterion based
on integrability of the underlying local martingale. This is the basis, for instance, of the so-called Novikov
condition, which is a well-known criterion used to verify the martingale property of an exponential local
martingale in the diffusion setting. Nevertheless, if ultimately one has the existence of a new probability
measure, then one has a martingale defined by the corresponding change of measure. Thus, it appears that
lifting the local martingale property for a nonnegative stochastic process to a bona-fide martingale property
has more to do with the fact that the induced probability measure is indeed well-defined.

Our contribution in this note consists in putting into focus the aspect of tightness when proving the
martingale property of a nonnegative local martingale. Connecting tightness with the verification of the
martingale property is an almost trivial exercise, formulated in Theorem 1.1 below. Although only a very
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simple observation, this point of view is powerful as the applications in Section 3 illustrate. In particular, we
illustrate our result in the context of the following four applications:

1. We provide a new proof of the result by Beneš (1971) on the existence of weak solutions to certain
stochastic differential equations. (Subsection 3.1)

2. We prove the equivalence of weak solutions to stochastic differential equations that involve compound
Poisson processes, whose intensity may depend on the current state of the system. (Subsection 3.2)

3. We weaken the assumptions of Giesecke and Zhu (2013) that yield the martingale property of certain
local martingales involving counting processes. (Subsection 3.3)

4. We provide a new representation for conditional expectations of an Ornstein-Uhlenbeck process condi-
tioned to hit a large level before hitting zero. (Subsection 3.4)

In all of these applications we avoid direct estimates of expectations and instead apply sample path
arguments or weak convergence techniques under a sequence of approximating changes of measure.

For the sake of clear notation, for a sequence of random variables {Yn}n∈N, each defined on a probability
space (Ωn,Fn, Pn), and a random variable Y , defined on a probability space (Ω,F , P ), we write

(Pn, Yn)
w

=⇒ (P, Y ) (n ↑ ∞) if lim
n↑∞

Pn (Yn ≤ x) = P (Y ≤ x) for each continuity point x of P (Y ≤ ·).

Throughout we denote the corresponding expectation operators by E and En, respectively.
The proof of the following theorem is very simple and only relies on the definition of tightness; it is given

in Section 2.

Theorem 1.1. The following two statements hold:

1. Let M denote a nonnegative sub- or supermartingale on a filtered probability space (Ω,F ,F, P ), and
let {Mn}n∈N denote a sequence of nonnegative martingales, each defined on a filtered probability space
(Ωn,Fn,Fn, Pn) such that Mn(0) = 1. Fix any sequence of (deterministic) times {tm}m∈N with t1 = 0

and limm↑∞ tm =∞ and assume that (Pn,Mn(tm))
w

=⇒ (P,M(tm)) (n ↑ ∞) for each m ∈ N. Define a
family {Qmn }n,m∈N of probability measures via dQmn = Mn(tm)dPn. Then M is a true martingale with
M(0) = 1 if and only if

sup
n∈N

Qmn (Mn(tm) > κ)→ 0 (κ ↑ ∞) (1)

for each m ∈ N. That is, M is a true martingale if and only if {Mn(tm)}n∈N is tight under the sequence
of measures {Qmn }n∈N for each m ∈ N.

2. Let M(∞) denote a nonnegative random variable on a probability space (Ω,F , P ) and let {Mn(∞)}n∈N
denote a sequence of nonnegative random variables, each defined on a probability space (Ωn,Fn, Pn)

such that limn↑∞En[Mn(∞)] = 1. Assume that (Pn,Mn(∞))
w

=⇒ (P,M(∞)) (n ↑ ∞). Define a family
{Qn}n∈N of probability measures via dQn = Mn(∞)dPn. Then E[M(∞)] = 1 holds if and only if

sup
n∈N

Qn(Mn(∞) > κ)→ 0 (κ ↑ ∞).

It is important to note that showing the martingale property of the underlying nonnegative local mar-
tingale becomes an exercise in tightness in a very weak topology. Given the enormous literature on weak
convergence analysis of stochastic processes, we feel that our test of the martingale property would be a
useful one. For example, in order to show tightness of a sequence of random variables {An}n∈N of the form
An = exp(Bn + Cn) it is sufficient to show tightness for the sequences of random variables {Bn}n∈N and
{Cn}n∈N separately; a task that is often easy, as we shall illustrate in Section 3.
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Relevant literature

The standard way to show the martingale property of a nonnegative local martingale is to check some
standard integrability condition; see for example Novikov (1972), Kazamaki and Sekiguchi (1983), or Ruf
(2013). If the local martingale dynamics include jumps, a case that we explicitly allow here, then integrability
conditions exist but they might not be trivial to check; see Lépingle and Mémin (1978), Protter and Shimbo
(2008), Sokol (2013), Larsson and Ruf (2014), and Ruf (2015b) for such conditions and related literature.

Under additional assumptions on the local martingale, such as the assumption that it is constructed via
an underlying Markovian process, further sufficient (and sometimes also necessary) criteria can be derived.
Here we only provide the reader with some pointers to this vast literature. The following papers develop
conditions different from Novikov-type conditions by utilizing the (assumed) Markovian structure of some
underlying stochastic process, and contain a far more complete list of references: Cheridito et al. (2005),
Cheridito et al. (2007), Blei and Engelbert (2009), Mijatović and Urusov (2012), and Ruf (2015a). Kallsen
and Muhle-Karbe (2010) study the martingale property of stochastic exponentials of affine processes; their
approach via the explicit construction of a candidate measure and the use of a simple lemma in Jacod and
Shiryaev (2003) is close in spirit to our approach.

The weak existence of solutions to stochastic differential equations is often proven by means of changing
the probability measure, see for example Portenko (1975), Engelbert and Schmidt (1984), Yan (1988), or
Stummer (1993). This strategy for proving the weak existence of solutions requires the true martingale
property of the putative Radon-Nikodym density. Our approach to prove the martingale property of such a
density is in the spirit of the reverse direction: The tightness condition that implies the martingale property
of a putative Radon-Nikodym density by Theorem 1.1 corresponds basically to the asserted existence of a
certain probability measure — often corresponding to the existence of a solution to a stochastic differential
equation.

2 Martingale property and tightness

In this section, we prove Theorem 1.1 and make some related observations.

Proof of Theorem 1.1. We start by showing the second statement. To simplify notation, we set Y = M(∞)
and Yn = Mn(∞) for all n ∈ N. Assume first that E[Y ] = 1. Then, for fixed κ > 1 and for a continuous
function f : [0,∞] → [0, κ] with f(x) ≤ x for all x ≥ 0, f(x) = x for all x ∈ [0, κ − 1] and f(x) = 0 for all
x ∈ [κ,∞), we compute that

Qn(Yn > κ) = En[Yn1{Yn>κ}] = En[Yn]− En[Yn1{Yn≤κ}] ≤ En[Yn]− En[f(Yn)]

→ 1− E[f(Y )] ≤ 1− E[Y 1{Y≤κ−1}] = E[Y 1{Y >κ−1}] (n ↑ ∞).

Since Y is integrable, limκ↑∞E[Y 1{Y >κ−1}] = 0, we obtain one direction of the statement.
For the other direction, fix ε > 0 and the continuous, bounded function f : [0,∞]→ R with f(x) = x∧ κ

for all x ≥ 0. Then

E[Y ] ≥ E[f(Y )] = lim
n↑∞

En[f(Yn)] ≥ lim inf
n↑∞

En[Yn1{Yn≤κ}] = lim inf
n↑∞

(
En[Yn]− En[Yn1{Yn>κ}]

)
≥ 1− ε

for κ large enough. This yields E[Y ] ≥ 1. Similarly, we have

E[f(Y )] = lim
n↑∞

En[f(Yn)] ≤ lim
n↑∞

En[Yn] = 1

and letting κ tend to ∞, monotone convergence yields E[Y ] ≤ 1. This concludes the proof of the second
statement in the theorem.

For the first statement, note that [0,∞) 3 t 7→ E[M(t)] is monotone thanks to the sub- or supermartingale
property of M , respectively. The statement then follows exactly as above, by using Y = M(tm) and Yn =
Mn(tm), for all m,n ∈ N.

Remark 2.1. We now make a few comments concerning Theorem 1.1 and its proof.
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• The first statement of Theorem 1.1 can be further generalized since, for each tm, a different approxi-
mating sequence of martingales might be used.

• Theorem 1.1 can also be proven by embedding all random variables in a common probability space,
via Skorohod’s representation theorem; see Billingsley (1999). The result then follows from a charac-
terization of uniform integrability.

• An alternative way1 to prove the second statement in Theorem 1.1 might proceed by using directly
the fact that E[M(∞)] = 1 if and only if the nondecreasing function G : [0,∞) → [0, 1], z 7→
E[min{M(∞), z}] is a distribution function, that is, satisfies limz↑∞G(z) = 1. This approach, it

turns out, yields that the condition that (Pn,Mn(∞))
w

=⇒ (P,M(∞)) (n ↑ ∞) can be replaced by

lim
n↑∞

∫ z

0

Pn (Mn(∞) ≤ x) dx =

∫ z

0

P (M(∞) ≤ x) dx for each z ∈ [0,∞), (2)

which appears to be weaker. Nevertheless, it is not difficult to see that (Pn,Mn(∞))
w

=⇒ (P,M(∞))
(n ↑ ∞) if and only if (2) holds. The necessity follows from dominated convergence. Sufficiency
follows from the fact that if a sequence of convex functions {Gn}n∈N satisfies limn↑∞Gn(z) = G(z)
for some convex function G, for all z ∈ R, then the corresponding right derivatives D+Gn(x) converge
to the derivative DG(x), at any point x ∈ R at which G is differentiable. To see this , fix x ∈
R such that the derivative DG(x) exists. Then, for all ε > 0, there exists an h > 0 such that
(G(x + h) − G(x))/h < DG(x) + ε. Moreover, there exists N ∈ N such that for all n ≥ N we have
D+Gn(x) ≤ (Gn(x+h)−Gn(x))/h < DG(x)+ε; thus limn↑∞D+Gn(x) ≤ DG(x). The other inequality
follows from similar computations for the left derivatives which yields limn↑∞D−Gn(x) ≥ DG(x).

The following corollary can be interpreted as a generalization of Theorem 1.3.5 in Stroock and Varadhan
(2006) to processes with jumps. See also Lemma III.3.3 in Jacod and Shiryaev (2003) for a similar statement
where a certain candidate measure Q is assumed to exist. We remark that the sequence of stopping times
in the statement could, but need not, be a localization sequence of a local martingale. For example, suppose
that the underlying local martingale M is continuous at its first hitting time τ of zero; then it suffices that
the sequence of stopping times in Corollary 2.2 converge to τ .

Corollary 2.2. Let {τn}n∈N be a sequence of stopping times and Mn = Mτn the stopped versions of a
nonnegative local martingale M with M(0) = 1. Assume that limn↑∞Mn(t) = M(t) P–almost surely for
each t ≥ 0 and that, for each fixed n, Mn is a martingale. Further, for each t ≥ 0, define dQtn = Mn(t)dP .
Then M is a martingale if limn↑∞Qtn(τn ≤ t) = 0 for all t > 0. Further, under the additional assumption that
limn↑∞ τn =∞ P–almost surely, the converse also holds; that is, if M is a martingale then limn↑∞Qtn(τn ≤
t) = 0 for all t > 0.

Proof. Fix t ≥ 0 and κ > 0 and observe that (P,Mn(t))
w

=⇒ (P,M(t)) (n ↑ ∞). Also note that for each
n ∈ N,

Qtn (Mn (t) > κ) ≤ Qtn (τn ≤ t) + E
[
Mn(t)1{τn>t}

⋂
{Mn(t)>κ}

]
≤ Qtn (τn ≤ t) + E

[
M(t)1{M(t)>κ}

]
because Mn(t)1{τn>t} = M(t)1{τn>t}. Since by assumption we can make the first term on the right-hand side
arbitrarily small by increasing n, the martingale property of M follows directly from dominated convergence
and Theorem 1.1. For the reverse direction, assume that M is a martingale and that limn↑∞ τn =∞ P–almost
surely. Then,

lim
n↑∞

Qtn(τn ≤ t) = lim
n↑∞

E[Mn(t)1{τn≤t}] = lim
n↑∞

E[M(t)1{τn≤t}] = 0

by optional sampling and dominated convergence.

The next result is of course well-known and only a very special case of, for instance, the theory of BMO
martingales; see for example Kazamaki (1994). However, as we shall use the result below and as we would
like to make this note self-contained, we provide a proof based on the observations we have made here before:

1We thank one of the referees for pointing us to this alternative proof technique.
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Corollary 2.3. Let L denote a continuous local martingale with L(0) = 0. Assume there exists some
nondecreasing (deterministic) function c : [0,∞)→ R such that min{L(t), 〈L〉(t)} ≤ c(t) for all t ≥ 0 almost
surely. Then, M = E(L) = exp(L− 〈L〉/2) is a martingale.

Proof. For each n ∈ N let τn denote the crossing time of level n by M and fix t > 0. Obviously, Mn = Mτn

satisfies limn↑∞Mn(t) = M(t) P–almost surely. Define the probability measures {Qtn}n∈N as in Corollary 2.2
and observe that {Qtn(τn ≤ t)}n∈N is a decreasing sequence since

Qtn+1(τn+1 ≤ t) ≤ Qtn+1(τn ≤ t) = Qtn(τn ≤ t)

for all n ∈ N.
Now, fix ε ∈ (0, 1) and some n ∈ N with n > exp(c(t))/ε and observe that

{Mτn(t) ≥ n} ⊂ {Lτn(t) > c(t)} ⊂ {〈L〉(t ∧ τn) ≤ c(t)}

holds P–almost surely. Therefore, we have

{τn ≤ t} = {Mτn(t) ≥ n} = {Mτn(t) ≥ n} ∩ {〈L〉(t ∧ τn) ≤ c(t)} ⊂
{
M̃τn(t) >

1

ε

}
P–almost surely and thus Qtm–almost surely, where M̃(·) = Mτn(·)/ exp(〈L〉(· ∧ t ∧ τn)) is a bounded,
nonnegative Qtn–martingale by Girsanov’s theorem. Markov’s inequality then implies that Qtn(τn ≤ t) ≤ ε
and an application of Corollary 2.2 concludes.

The next observation is useful when applying Theorem 1.1 in a continuous setup:

Lemma 2.4. Let {Ln}n∈N denote a sequence of continuous local martingales, each defined on a filtered
probability space (Ωn,Fn,Fn, Qn) such that Ln(0) = 0. Assume that the sequence {〈Ln〉(t)}n∈N is tight along
the sequence {Qn}n∈N of probability measures for some t ∈ [0,∞]. Then also the sequence {Ln(t)}n∈N is
tight along {Qn}n∈N.

Proof. Fix n ∈ N, let ρκ denote the first time that 〈Ln〉 crosses some level κ > 0 and observe that

Qn (Ln(t) > κ) ≤ Qn (Ln(t ∧ ρκ) > κ) +Qn (ρκ < t) ≤
En
[
L2
n(t ∧ ρκ)

]
κ2

+Qn (ρκ < t)

≤ 1

κ
+Qn (〈Ln〉(t) > κ)

by Chebyshev’s inequality and the fact that En[L2
n(t ∧ ρκ)] ≤ En[〈Ln〉(t ∧ ρκ)] ≤ κ; those last inequalities

follow from the observation that the process L2
n(· ∧ ρκ) − 〈Ln〉(· ∧ ρκ) is a local martingale, bounded from

below by −κ.

3 Applications

Our goal here is to show that our approach could have advantages in terms of its relative simplicity. We
shall write ‖ · ‖ for the Euclidean L2–norm on Rd for some d ∈ N. We denote the space of cadlag paths
ω : [0, t)→ Rd for some d ∈ N and t ∈ (0,∞], endowed with the standard Skorokhod topology, by D[0,t)(Rd).
For sake of brevity, we shall use D[0,∞) = D[0,∞)(R1).

3.1 Continuous processes: linear growth of drift

We begin by proving an extension of the well-known result by Beneš (1971) on the existence of weak solutions
to a certain stochastic differential equation.



6

Theorem 3.1. Let W be a d-dimensional Brownian motion and W ∗ the running maximum of its vector
norm; to wit, W ∗(t) = maxs∈[0,t]{‖W (s)‖}. Let Y be a nonnegative supermartingale (under the same filtra-
tion) with cadlag paths such that [Y,Wi] = 0 for all i ∈ {1, . . . , d}. Furthermore, let Y ∗ denote its maximum
process, that is, Y ∗(t) = maxs∈[0,t]{Y (s)} for each t ≥ 0. Moreover, suppose that µ is a progressively
measurable process satisfying

‖µ(t)‖ ≤ c(t, Y ∗(t)) (1 +W ∗(t))

for all t ≥ 0 and some function c : [0,∞) × [0,∞) → [0,∞) that is nondecreasing in both arguments. Then
the local martingale M , defined as

M(·) = exp

(∫ ·
0

µ(s)dW (s)− 1

2

∫ ·
0

‖µ(s)‖2 ds

)
is a martingale.

Proof. First, since the function c is nondecreasing in both arguments and thus∫ t

0

‖µ(s)‖2 ds ≤ tc(t, Y ∗(t))2(1 +W ∗(t))2 <∞

for all t ≥ 0, the stochastic integral
∫ ·

0
µ(s)dW (s) exists and M is well-defined.

Let us now define the sequence {µn}n∈N of progressively measurable processes by µn(·) = (µ(·)∧n)∨(−n),
where the minimum and maximum are taken coordinate-wise. It follows easily, for example by applying the
definition of the stochastic integral, that the sequence of local martingales Mn, defined as

Mn(·) = exp

(∫ ·
0

µn(s)dW (s)− 1

2

∫ ·
0

‖µn(s)‖2 ds

)
satisfies (P,Mn (t))

w
=⇒ (P,M (t)) (n ↑ ∞) for all t ≥ 0. By Corollary 2.3, the local martingale Mn is a true

martingale since µn is bounded. Now, observe that

Bn(·) = W (·)−
∫ ·∧T

0

µn(s)ds

is a Brownian motion under the probability measure Qn, induced by Mn via dQn = Mn(T )dP for some
T ≥ 0, and that

Mn(t) = exp

(∫ t

0

µn(s)dBn(s) +
1

2

∫ t

0

‖µn(s)‖2 ds

)
, 0 ≤ t ≤ T.

Moreover, Y is a nonnegative Qn–supermartingale since [Y,Wi] = 0 for all i ∈ {1, . . . , d} by assumption.
We now note that

‖W (t)‖ ≤ ‖Bn(t)‖+

∫ t

0

c(s, Y ∗(s)) (1 +W ∗(s)) ds ≤ B∗n(t) + c(t, Y ∗(t))t+ c(t, Y ∗(t))

∫ t

0

W ∗(s)ds

for all t ≥ 0, where B∗n is defined in the same way as W ∗. An application of Gronwall’s inequality then yields

W ∗(t) ≤ (B∗n(t) + c(t, Y ∗(t))t) exp(c(t, Y ∗(t))t)

for all t ≥ 0. Since {B∗n(t)}n∈N and {Y ∗(t)}n∈N are tight along {Qn}n∈N, the later as the maximum
process of a nonnnegative supermartingale, we also obtain that {W ∗(t)}n∈N is tight along {Qn}n∈N, for all

t ≥ 0. This guarantees that {
∫ t

0
‖µn(s)‖2 ds}n∈N is tight as well and Lemma 2.4 then yields the tightness of

{
∫ t

0
µn(s)dBn(s)}n∈N for all t ≥ 0. Thus, {Mn(t)}n∈N is tight along {Qn}n∈N for each t ≥ 0 and M is a true

P–martingale by Theorem 1.1.
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To recover the result by Beneš (1971), suppose that µ̃ : [0,∞)× Rd → R is measurable and satisfies

‖µ̃ (t, x)‖ ≤ c̃(t) (1 + ‖x‖)

for all t ≥ 0, x ∈ Rd, and some nondecreasing function c̃ : [0,∞) → [0,∞). Then, for any T > 0, with
µ(t) = µ̃(t,W (t)) in the last proposition, the above computations show the weak existence of a solution to
the stochastic differential equation

X(t) =

∫ t

0

µ̃ (s,X(s)) ds+B(t), 0 ≤ t ≤ T,

where B denotes a Brownian motion. For an alternative proof of this statement, using the Novikov condition
along with “salami tactics,” see Proposition 5.3.6 in Karatzas and Shreve (1991).

The more general assertion of Theorem 3.1 cannot be proven via this “salami tactics.” For example,
if Y is a nonnegative pure-jump supermartingale, then the quadratic covariation processes of Y and the
components of W are zero, even if the jump sizes of Y depend, in a nonanticipative way, on the paths of W .

3.2 Compound Poisson processes

We continue with an application of Theorem 1.1 to a class of stochastic differential equations (SDEs) involving
jumps. Towards this end, for any ω ∈ D[0,∞)(Rd), we shall write ∆ω(t) = ω(t)−ω(t−) for all t > 0. We call

a function g with domain [0,∞) × D[0,∞)(Rd) predictable if g is measurable and satisfies g(s, ω) = g(s,$)

for all s ≤ t and for all ω,$ ∈ D[0,∞)(Rd) with ω(r) = $(r) for all r < t, for all t ≥ 0.

Let F denote the distribution of an Rd\{0}–valued random variable for some d ∈ N and fix x0 ∈ Rd and a

predictable function g : [0,∞)×D → [0,∞). Define Ψg(t, ω) =
∫ t

0
g(s, ω)ds for all t ≥ 0 and ω ∈ D[0,∞)(Rd).

We say that a filtered probability space (Ω,F ,F, P ) along with an adapted process X with cadlag paths in
Rd is a weak solution to the SDE

X(·) = x0 +

Ng(·)∑
j=1

ZFj , (3)

if X(0) = x0, the jumps {∆X | ∆X 6= 0} of X are independent and identically distributed according to
F , and Lg (·) = Ng (·) − Ψg(·, X) is a P–local martingale up to the first hitting time of infinity by Ng,
where Ng (·) =

∑
s≤· 1{∆X(s)6=0} is the sum of jumps. Theorem 3.6 in Jacod (1975) yields the existence and

uniqueness of a weak solution to (3); however, such solution might be explosive in the sense that Ng (t) =∞
for some t ∈ (0,∞) with positive probability. Below, in Lemma 3.2, we will provide sufficient conditions to
ensure a non-explosive solution.

Any non-explosive solution (Ω,F ,F, P ), X of (3) corresponds to a compound Poisson process with jumps
distributed according to F such that its instantaneous intensity to jump at time t equals g(t,X); more
precisely ∑

s≤·

1{∆X(s)6=0} = N (Ψg(·, X))

for some Poisson process N with unit rate.
Such a non-explosive solution exists, for example, if g(t,X) = g(t) only depends on time and

∫ t
0
g(s)ds <

∞ for all t ≥ 0. The following lemma yields another existence result:

Lemma 3.2. Fix x0 ∈ Rd and let F denote the distribution of an Rd \ {0}–valued random variable whose
components have finite expected value. Let g : Rd → R be measurable, such that there exists c > 0 with
g(y) ≤ c(1+‖y‖) for all y ∈ Rd. Then there exists a non-explosive weak solution to (3) with g(t, ω) = g(ω(t−))
for all (t, ω) ∈ [0,∞)×D.

Proof. Let N denote a Poisson process with unit rate and Z = {ZFj }j≥1 a sequence of independent F–
distributed random variables independent of N . First observe that the process

J (·) = x0 +

N(·)∑
j=1

ZFj
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always exists and that the process

Γ(·) =

∫ ·
0

1

g(J(s))
ds ≥ 1

c

∫ ·
0

1

1 + ‖J(s)‖
ds

is strictly increasing (before hitting infinity) and satisfies limt↑∞ Γ(t) = ∞ since there exists K(ω) ∈ (0,∞)
such that ‖J(t)‖ ≤ K(ω)(1 + t) by the strong law of large numbers, for each t ≥ 0. Thus, Γ yields a
valid time change. Now, consider the non-explosive process X(·) = J(Γ−1(·)) and observe that DΓ−1(·) =
1/DΓ(Γ−1(·)), which implies

Γ−1(·) =

∫ ·
0

DΓ−1(s)ds =

∫ ·
0

g(J(Γ−1(s)))ds =

∫ ·
0

g(X(s))ds = ψg(·, X),

which in turn verifies that X is a non-explosive solution to (3).

The next theorem provides a sufficient condition that guarantees that the intensity in Poisson processes
can be changed without changing the nullsets of the underlying probability measure. For example, any
compound Poisson process whose jump intensity is strictly positive, can be changed, via an equivalent
change of measure, to a compound Poisson process with unit intensity (set g2 = 1 below).

Theorem 3.3. Fix x0 ∈ Rd and let F denote the distribution of an Rd \ {0}–valued random variable.
Moreover, let g1, g2 : [0,∞) ×D[0,∞)(Rd) → (0,∞) be strictly positive, predictable functions and denote the
corresponding weak solutions of (3) with g = g1 and g = g2 by X1, and X2. Assume that X2 is non-explosive.
Then, the process M , defined by

M(·) = exp

(∫ ·
0

(log g2(s,X1)− log g1(s,X1))dLg1 (s)−
∫ ·

0

(g2(s,X1)− g1(s,X1))ds

)
,

is a true martingale. Furthermore, for each t ≥ 0, the distribution of Xt
1 under Qt, defined by dQt = M(t)dP ,

equals the distribution of Xt
2.

Proof. Theorem VI.2 in Brémaud (1981) yields that M is a local martingale. If M is a true martingale,
then Theorem VI.3 in Brémaud (1981) yields the assertion on the distribution of Xt

1 under the probability
measure Qt, for each t ≥ 0. Define the approximating sequence {τn}n∈N of stopping times via

τn = inf

{
t ≥ 0 : M(t) > n or M(t) <

1

n

}
and note that we can write those stopping times as functions of the jump process X1; to wit, τn = τn(X1).
We have included the lower bound to deal with the case in which X1 is explosive; in such case, M will hit
zero at the time of the explosion. Note that such explosion, if it ever occurs, cannot occur at the time of a
jump; thus the local martingale Mn = Mτn is strictly positive.

Next, fix t > 0. By Theorem 1.1 it is now sufficient to show that {Mn(t)}n∈N is tight along the sequence
of probability measures {Qn}n∈N, defined via dQn = Mn(t)dP to obtain the martingale property of M . For
i = 1, 2, we shall see that{∫ τn∧t

0

|log gi(s,X1)|dLg1 (s)

}
n∈N

and

{∫ τn∧t

0

gi(s,X1)ds

}
n∈N

are tight along {Qn}n∈N, which then proves the statement. Towards this end, Theorem VI.3 in Brémaud
(1981) again yields that under Qn the process X1(· ∧ τn) solves the martingale problem induced by (3)
with g(s, ω) = g2(s, ω)1{τn(ω)>s}. On the other hand, it is immediate that X2 (· ∧ τn) also satisfies (3) with
g(s, ω) = g2(s, ω)1{τn(ω)>s}. By the uniqueness of solutions implied by Theorem 3.6 in Jacod (1975) we
have that up to the stopping time τn, the Qn–dynamics of X1 coincide with the dynamics of X2. Thus, it is
sufficient to observe that

Qn

(∫ τn∧t

0

|log gi(s,X1)|dLg1 (s) > κ

)
= P

(∫ τn∧t

0

|log gi(s,X2)|dLg2 (s) > κ

)
≤ P

(∫ t

0

|log gi(s,X2)|dLg2 (s) > κ

)
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for all κ > 0 and i = 1, 2, where the right-hand side does not depend on n and tends to zero as κ increases
(because X2 is assumed to be non-explosive). The same observations hold for the other terms of the local
martingale M .

3.3 Counting processes

In this application of Theorem 1.1, we generalize a result by Giesecke and Zhu (2013) concerning the mar-
tingale property of a local martingale involving a counting process.

Theorem 3.4. Let L denote a non-explosive counting process with compensator A and assume that A
is continuous, that is, the jumps of L are totally inaccessible. Fix a measurable, deterministic function
u : [0,∞)→ [−c, c] for some c > 0. Then the process M , given by

M(·) = exp

(
−
∫ ·

0

u(s)dL(s)−
∫ ·

0

(exp(−u(s))− 1) dA(s)

)
,

is a martingale.

Before we provide the proof of this result we note that Theorem 3.4 generalizes Proposition 3.1 in Giesecke
and Zhu (2013) in two ways. First, it does not assume that the function u is constant. Second, no integrability
assumption on A is made, such as E[exp(At)] <∞ for some t > 0. However, for sake of simplicity, we consider
here only the one-dimensional setup with unit jumps.

Proof of Theorem 3.4. First, observe that there exists a counting process L̂, possible on an extension of the
probability space, with compensator ĉA, where ĉ is the smallest integer greater than or equal to exp(c). For

example, the process L̂ can by constructed by adding ĉ independent versions of L, exploiting the fact that the
jumps of L are totally inaccessible. A standard thinning argument implies that there also exists a counting
process Lu with compensator Au(·) =

∫ ·
0

exp(−u(s))dA(s). Moreover, by Jacod (1975) and by using the

minimal filtration, if two counting processes Lu and L̂u have the same compensator then they follow the
same probability law.

Simple computations yield that M is a local martingale. Let {τn}n∈N denote a localization sequence, set
Mn = Mτn , fix t > 0, and define the probability measures Qn by dQn = Mn(t)dP . It is sufficient to prove
that {Mn(t)}n∈N is tight along the sequence {Qn}n∈N. First, observe that

Qn

(
exp

(
−
∫ τn

0

u(s)dL(s)

)
> κ

)
≤ Qn (exp (cL(τn)) > κ) ≤ P

(
exp(cL̂(t)) > κ

)
for all n ∈ N and κ > 0. For later use, note from the second inequality in the previous display that
{Lτn(t)}n∈N is tight along {Qn}n∈N. Tightness of {Mn(t)}n∈N now follows as soon as we have shown the
tightness of {Aτn(t)}n∈N; that is, supn∈NQn(Aτn(t) > κ)→ 0 as κ ↑ ∞. However, we can write

Aτn(t) =

∫ t∧τn

0

exp(u(s))dAu(s) ≤ exp(c)Au,τn(t)

and thus, with κc = exp(−c)κ and N = Au,τn − Lτn ,

Qn (Aτn(t) > κ) ≤ Qn (Au,τn(t) > κc) = Qn (N(t) + Lτn(t) > κc)

≤ Qn (Lτn(t) > [
√
κc]) +Qn (N(t ∧ ρ) + [

√
κc] + 1 > κc + 1) ,

where ρ is the first crossing time of [
√
κc] by L. The tightness of {Lτn(t)}n∈N and Markov’s inequality

applied to the nonnegative Qn–supermartingale Nρ + [
√
κc] + 1 then yield the tightness of {Aτn(t)}n∈N and

Theorem 1.1 yields the statement.
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3.4 Ornstein-Uhlenbeck process conditioned on first passage time events

In this application, we are given an Ornstein-Uhlenbeck process X, started at X(0) = 1 and mean-reverting
to the origin. We are interested in finding a representation for conditional expectations that can be used
to design simulation estimators involving the rare event that X hits a large level N ∈ N before hitting
0. We achieve such a representation by relating the Ornstein-Uhlenbeck process to the time-reversal of a
three-dimensional Bessel process. Although the probability of the conditioning event that X hits N before
0 decreases exponentially in the threshold parameter N , the representation provided here can be used to
design estimators that run in linear time as a function of N . To obtain this representation, we approximate
X by a sequence of irreducible and positive recurrent discrete-time Markov chains, apply a result in Blanchet
(2013), and then use the second part of Theorem 1.1 to conclude.

Our goal in this section is to use Theorem 1.1 in order to obtain a suitable analogue of Proposition A.1
in the appendix for continuous processes. We will not provide full details of an extension in general, but will
focusing on proving a tractable representation for an Ornstein-Uhlenbeck process conditioned on reaching
a high level before returning to the origin. Tractable means that the representation should be directly
applicable for the purposes of sampling.

Theorem 3.5. Fix N ∈ N with N > 1, a filtered probability space (Ω,F ,F, P ) supporting four independent
Brownian motions Bi for i = 0, . . . , 3. Let X denote an Ornstein-Uhlenbeck process of the form

X(·) = 1−
∫ ·

0

X (s) ds+B0(·),

and X ′ be given by

X ′(·) = N −
(
B2

1(·) +B2
2(·) +B2

3(·)
)1/2

.

For all x ∈ R, let Tx = inf{t ≥ 0 : X(t) = x} and define T ′x similarly. Define a random variable M ′(∞) by

M ′ (∞) = exp

(
1

2

(
N2 + T ′0 −

∫ T ′0

0

X ′ (s)
2

ds

))
(4)

Then the random variable M ′(∞) has finite expectation under P and

E [f (X (s) : 0 ≤ s ≤ TN ) |{TN < T0}] = E

[
f (X ′ (ξ′1 − s) : 0 ≤ s ≤ ξ′1)

M ′ (∞)

E[M ′ (∞)]

]
,

where ξ′1 = max{0 ≤ t ≤ T0 : X ′(t) = 1}, for all continuous and bounded functions f : D[0,∞) → R.

Remark 3.6. The previous result can be used to efficiently estimate conditional expectations involving
Ornstein-Uhlenbeck processes, conditioned on {TN < T0} when N is large in a way that is analogous to
the methods described in Blanchet (2013). This then leads to algorithms that have linear running time
uniformly as N ↑ ∞. This approach will be studied in future work.

Remark 3.7. It is well known that X ′, the modified three-dimensional Bessel process in Theorem 3.5, satisfies
the stochastic differential equation

X ′(·) = N −
∫ ·

0

1

N −X ′(t)
dt+B(·) (5)

for some Brownian motion B.
Also, note that

M ′ (∞) = exp

(
−
∫ T ′0

0

X ′(s)dX ′(s)− 1

2

∫ T ′0

0

X ′ (s)
2

ds

)

= exp

(
−
∫ T ′0

0

X ′(s)dB(s)− 1

2

∫ T ′0

0

X ′ (s)
2

ds

)
exp

(∫ T ′0

0

X ′(s)

N −X ′(s)
ds

)
,

where the first equality follows from an application of Itô’s lemma and the last equality from (5).
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Proof of Theorem 3.5. We will consider a suitably defined class of discrete processes that approximate X
and then apply Proposition A.1. We proceed in several steps.

Step 1: We start by constructing a sequence of stochastic processes {Xn}n∈N, each taking values in the

state space Sn = {k∆
1/2
n }k∈N0

, where ∆n = 2−2n. For the moment, we fix n ∈ N. We now let Xn evolve as

a pure jump process, which jumps only at times {k∆n}k∈N with jump size ∆Xk
n ∈ {−∆

1/2
n , 0,∆

1/2
n }. That

is, using the notation Xk
n = Xn(k∆n), for all k ∈ N, we assume that

∆Xk
n = Xk

n −Xk−1
n ∈ {−∆1/2

n , 0,∆1/2
n }, on {Xk−1

n > 0};
∆Xk

n = Xk
n −Xk−1

n ∈ {0,∆1/2
n }, on {Xk−1

n = 0}

for all k ∈ N. We also introduce the stopping times

Tn0 = inf{t ≥ ∆n : Xn(t) = 0}; TnN = inf{t ≥ ∆n : Xn(t) = N},

both taking values in {k∆n}k∈N. We note that we assumed, in particular, that those stopping times cannot
take the value zero.

Step 2: We now introduce two probability measures Pn and P̂n, on the canonical path space such that

Xn is Markov under both measures. We start by defining, on {Xk−1
n > 0},

Pn(∆Xk
n = −∆1/2

n |Xk−1
n ) =

1 + ∆
1/2
n (Xk−1

n ∧ n)

2
; Pn(∆Xk

n = ∆1/2
n |Xk−1

n ) =
1−∆

1/2
n (Xk−1

n ∧ n)

2
;

P̂n(∆Xk
n = −∆1/2

n |Xk−1
n ) =

1

2
; P̂n(∆Xk

n = ∆1/2
n |Xk−1

n ) =
1

2
;

whereas,
Pn(∆Xk

n = ∆1/2
n |{Xk−1

n = 0}) = P̂n(∆Xk
n = ∆1/2

n |{Xk−1
n = 0}) = 1

for all k ∈ N.
Next, let us introduce the random variable

M ′n (∞) =

Tn
0 /∆n∏
k=1

(
1−∆Xk

n(Xk−1
n ∧ n)

)
.

It is clear that
Ên
[
1−∆Xk

n(Xk−1
n ∧ n) | Xk−1

n

]
= 1

on {Xk−1
n > 0} for all k ∈ N and that P̂n(Tn0 < ∞) = Pn(Tn0 < ∞) = 1. Let us now fix a random variable

H = f(X), where f : D[0,∞) → [0,∞) satisfies f(X) = f(XTn
0 ). Observe that the two measures Pn and P̂n

satisfy

Ên
[
M ′n (∞)H|X0

n

]
=

∞∑
j=1

Ên

 j/∆n∏
k=1

(
1−∆Xk

n(Xk−1
n ∧ n)

)
H1{Tn

0 =j}

∣∣∣∣∣∣X0
n

 =

∞∑
j=1

En
[
H1{Tn

0 =j}|X0
n

]
= En[H|X0

n]. (6)

Step 3: Next, we consider the measure P̂hn = P̂n(·|{X0
n = N}∩{Tn0 < TnN}). To compute the corresponding

transition probabilities, we note that P̂hn is Doob’s h–transform of P̂n (up to time Tn0 ) for the function hn :

[0, N ]∩Sn → [0, 1], given by hn(x) = 1− x/N and satisfying hn(X0
n) = P̂n(Tn0 < TnN |X0

n) on {X0
n ∈ (0, N)}.
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Thus, we get, on {Xk−1
n ∈ (0, N)} ∩ {Tn0 ≥ k},

P̂hn (∆Xk
n = −∆1/2

n |Xk−1
n ) =

hn(Xk−1
n −∆

1/2
n )

2hn(Xk−1
n )

=
1

2

(
1 +

∆
1/2
n

N −Xk−1
n

)
;

P̂hn (∆Xk
n = ∆1/2

n |Xk−1
n ) =

hn(Xk−1
n + ∆

1/2
n )

2hn(Xk−1
n )

=
1

2

(
1− ∆

1/2
n

N −Xk−1
n

)
;

and, on {Xk−1
n = N} ∩ {Tn0 ≥ k}, P̂hn (∆Xk

n = −∆
1/2
n |Xk−1

n ) = 1 for all k ∈ N.
As above, we fix again a random variable H = f(X), where f : D[0,∞) → [0,∞) satisfies f(X) = f(XTn

0 ).
Now, (6) yields

En
[
H|{Tn0 < TnN} ∩ {X0

n = N}
]

=
En

[
H1{Tn

0 <T
n
N}|{X

0
n = N}

]
Pn(Tn0 < TnN |{X0

n = N})
=
Ên

[
H1{Tn

0 <T
n
N}M

′
n(∞)|{X0

n = N}
]

Ên

[
1{Tn

0 <T
n
N}M

′
n(∞)|{X0

n = N}
]

= Êhn [HMn(∞)] , (7)

where Mn(∞) = M ′n(∞)/Êhn[M ′n(∞)].

Step 4: We now study the random variableM ′n(∞). The Taylor series expanision 1−x = exp
(
−x− x2/2 +O

(
x3
))

as x ↓ 0 implies that

M ′n (∞) =

Tn
0 /∆n∏
k=1

exp

(
−∆Xk

n(Xk−1
n ∧ n)− (∆Xk

n)2(Xk−1
n ∧ n))2

2
+O(∆3/2

n )

)

as n ↑ ∞, where the term O(∆
3/2
n ) is actually uniform in Xk−1

n for all k ≤ TnN on {X0
n ≤ N}. Note that, if

n > N , on the event {X0
n = N} ∩ {Tn0 < TnN},

1

2
N2 =

1

2

(
X
Tn
0

n −X0
n

)2

=
1

2

Tn
0 /∆n∑
k=1

(∆Xk
n)2 +

Tn
0 /∆n∑
k=1

k−1∑
j=1

∆Xk
n∆Xj

n =
1

2
Tn0 +

Tn
0 /∆n∑
k=1

∆Xk
n(Xk−1

n −N)

=
1

2
Tn0 +N2 +

Tn
0 /∆n∑
k=1

∆Xk
nX

k−1
n .

Therefore, if n > N , on the event {X0
n = N} ∩ {Tn0 < TnN},

M ′n (∞) = exp

N2

2
+
Tn0
2
− ∆n

2

Tn
0 /∆n∑
k=1

(Xk−1
n )2 + Tn0 O(∆1/2

n )

 . (8)

Step 5: We now apply Proposition A.1. Towards this end, we introduce

ξn1 = max{0 ≤ t ≤ Tn0 : Xn (t) = 1} ∈ {k∆n}k∈N0
.

We note that the process Xn (or, more precisely, a rescaled version) satisfies the assumption of Proposi-
tion A.1, which yields, for each continuous bounded function f : D[0,∞) → [0,∞), that

En
[
f(Xn(s) : 0 ≤ s ≤ TN )|{X0

n = 1} ∩ {TnN < Tn0 }
]

= En
[
f (Xn(ξn1 − s) : 0 ≤ s ≤ ξn1 ) |{X0

n = N} ∩ {Tn0 < TnN}
]

= Êhn [f (Xn(ξn1 − s) : 0 ≤ s ≤ ξn1 )Mn(∞)] ,

where the last equality is an application of (7).
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Step 6: We now link the Markov chains {Xn}n∈N with the Ornstein-Uhlenbeck process X and the three-
dimensional Bessel process X ′ of the statement. Towards this end, it is not difficult to verify using the
method of weak convergence of generators in Ethier and Kurtz (1986) that(

Pn(·|{X0
n = 1}), Xn(· ∧ TnN ∧ Tn0 )

) w
=⇒ (P,X(· ∧ TN ∧ T0)) (n ↑ ∞) (9)

on D[0,∞). Proposition 5.33 in Pitman (1975) implies that(
P̂hn , Xn(· ∧ Tn0 )

)
w

=⇒ (P,X ′ (· ∧ T0)) (n ↑ ∞)

on D[0,∞). The continuous mapping principle, applied with a standard extension to handle the stopping
times {Tn0 }n∈N to the representation in (8), yields the weak convergence result(

P̂hn ,M
′
n(∞)

)
w

=⇒ (P,M ′(∞)) (n ↑ ∞),

where M ′(∞) is defined in (4).

Step 7: We next argue that for any subsequence {nm}m∈N there exist some C ∈ (0,∞] and a subsubse-
quence {nmk

}m∈N such that (
P̂hnmk

,Mnmk
(∞)

)
w

=⇒
(
P,
M ′(∞)

C

)
(k ↑ ∞). (10)

This follows from the Bolzano-Weierstrass property, which yields the existence of a subsubsequence {nmk
}m∈N

such that C = limk↑∞ Êhnmk
[M ′nmk

(∞)] ∈ [0,∞]. Moreover, an application of Fatou’s lemma, in conjunction

with a Skorokhod embedding argument also yields that C > 0.

Step 8: It remains to be argued that {M ′n(∞)}n∈N is uniformly integrable. Towards this end, let {nmk
}k∈N

be a subsequence satisfying (10). Assume that we have argued that {Mnmk
(∞)}k∈N is uniformly integrable.

Then C in (10) must satisfy C = E[M ′(∞)]. Consequently, since {nm} was arbitrary, limn↑∞ Êhn[M ′n(∞)] =
E[M ′(∞)]. This in conjunction with the weak convergence (and nonnegativity) of {M ′n(∞)}n∈N yields its
uniform integrability.

Finally to argue that {Mnmk
(∞)}k∈N is uniformly integrable, let us write j = nmk

for sake of notation.
Thanks to Theorem 1.1, it suffices to show that {Mj(∞)}j , given in (7), is tight along the sequence {Qj}j
of probability measures, defined by dQj = Mj(∞)dP̂hj . Thanks to (8), it is sufficient to show the tightness

of {T j0 }j under {Qj}j . We have

Qj(T
j
0 > κ) = Êhj

[
1{T j

0>κ}
Mj(∞)

]
= Pj

(
T j0 > κ|{X0

j = N} ∩ {T j0 < T jN}
)

(11)

≤
Pj

(
T j0 > κ|{X0

j = 1}
)
Pj

(
T j1 < T jN |{X0

j = N}
)

Pj

(
T j0 < T jN |{X0

j = N}
) =

Pj

(
T j0 > κ|{X0

j = 1}
)

Pj

(
T j0 < T jN |{X0

j = 1}
) , (12)

where the second equality in (11) comes from (7). Recall (9); therefore

lim
j
Pj

(
T j0 < T jN |{X

0
j = 1}

)
= P (T0 < TN ) > 0,

and {T j0 } is tight along {Pj}j ; thus, κ > 0 can be chosen so that the right hand side of (12) can be made as
small as desired as j ↑ ∞. This concludes the proof.

Remark 3.8. We end our discussion by noting that the previous result illustrates the convenience of The-
orem 1.1. A standard approach would involve verifying directly the uniform integrability of the process
{M ′n(∞)}n∈N under {P̂hn }n∈N, and the expectation of the term exp (Tn0 /2) is difficult to handle. An appli-
cation of Theorem 1.1 bypasses the need for this by a simple application of the strong Markov property as
shown in (12).
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A Proposition 1 in Blanchet (2013)

We recall here a simplified version of a result in Blanchet (2013) that is used in the proof of Theorem 3.5.

Proposition A.1. Let X = {X(k)}k∈N0
denote an irreducible and positive recurrent discrete time Markov

chain taking values in N0 with X(k) − X(k − 1) ∈ {−1, 0, 1} for all k ∈ N. For each x ∈ N0, let P x be
the probability measure in the path space associated with X, conditioned on the event {X(0) = x}. For any
y ∈ N0 define Ty = inf{k ∈ N : X(k) = y}. Fix x,N ∈ N0 with x < N . Then

P x ( (X(0), . . . , X(TN )) ∈ ·| {TN < T0}) = PN ( (X(ξx)), . . . , X(0)) ∈ ·| {T0 < TN}) ,

where ξx = max{0 ≤ k ≤ T0 : X(k) = x}.

Proposition A.1 states that we can sample {X(k)}0≤k≤TN
conditioned on the event {X(0) = x} ∩ {TN <

T0} by sampling {X(k)}0≤k≤T0
conditioned on the event {X(0) = N} ∩ {T0 < TN}, thereby obtaining

{X(k)}0≤k≤ξx , and finally letting X(k) = X(ξx − k) for all k ∈ {0, ..., ξx}.
We do not provide a proof of Proposition A.1 here, but instead refer to Blanchet (2013). However, to

provide some intuition, we give some computations here for the case x = 0, which indicate the validity of the
result. In this case, we also have ξ0 = T0. Towards this end, let {K(y, z)}y,z∈N0

denote the transition matrix
of X. Recall, since X is time-reversible, that

K(z, y) =
π(y)

π(z)
K(y, z),

where π is the stationary distribution of X. Then, if N ≥ 2, note that

π(0)P 0 (TN < T0) =
∑
k∈N

∑
x1,...,xk∈N0

π(0)K (0, x1)K (x1, x2) · · ·K (xk, N)10<x1<N,...,0<xk<N

=
∑
k∈N

∑
x1,...,xk∈N

K (x1, 0)π (x1)K (x1, x2) · · ·K (xk, N)1x1<N,...,xk<N

· · ·

=
∑
k∈N

∑
x1,...,xk∈N

π(N)K(N, xk−1) · · ·K(x2, x1)K(x1, 0)1xk−1<N,...,x1<N

= π(N)PN (T0 < TN ).

The previous identities provide a representation for P 0(TN < T0) (which is small when N is large) in terms
of PN (T0 < TN ). Blanchet (2013) shows that the contribution of PN (T0 < TN ) remains bounded away
from zero as N increases to ∞ for a significant class of processes of interest. Therefore, approximating
probabilities for rare events of the form {TN < T0} (which involve the whole sample path) can be reduced to
approximating probabilities of rare events of the form {X(0) = N} (which only involve the random variable
X(0) following the stationary distribution).
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Mijatović, A. and Urusov, M. (2012). On the martingale property of certain local martingales. Probab.
Theory Related Fields, 152(1-2):1–30.

Novikov, A. (1972). On an identity for stochastic integrals. Theory of Probability and its Applications,
17(4):717–720.

Pitman, J. W. (1975). One-dimensional Brownian motion and the three-dimensional Bessel process. Advances
in Applied Probability, 7(3):511–526.

Portenko, N. (1975). Diffusion processes with unbounded drift coefficient. Theory of Probability and its
Applications, 20:27–37.

Protter, P. and Shimbo, K. (2008). No arbitrage and general semimartingales. In Ethier, S. N., Feng, J., and
Stockbridge, R. H., editors, Markov Processes and Related Topics: A Festschrift for Thomas G. Kurtz,
pages 267–283. Institute of Mathematical Statistics.

Ruf, J. (2013). A new proof for the conditions of Novikov and Kazamaki. Stochastic Process. Appl.,
123(2):404–421.

Ruf, J. (2015a). The martingale property in the context of stochastic differential equations. Electronic
Communications in Probability, 20(34):1–10.

Ruf, J. (2015b). The uniform integrability of martingales. On a question by Alexander Cherny. Stochastic
Processes and their Applications, 125(10):3657–3662.

Sokol, A. (2013). Optimal Novikov-type criteria for local martingales with jumps. Electronic Communications
in Probability, 18:1–8.

Stroock, D. W. and Varadhan, S. R. S. (2006). Multidimensional Diffusion Processes. Classics in Mathemat-
ics. Springer-Verlag, Berlin. Reprint of the 1997 edition.

Stummer, W. (1993). The Novikov and entropy conditions of multidimensional diffusion processes with
singular drift. Probab. Theory Related Fields, 97(4):515–542.

Yan, J.-A. (1988). On the existence of diffusions with singular drift coefficient. Acta Mathematicae Applicatae
Sinica. English Series, 4(1):23–29.


