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Abstract

We present a new dynamical modelling code, called primal, designed to re-

veal the structure of the Galactic disc from the upcoming observational data

of the European Space Agency’s Gaia mission. primal is based on the Made-

to-Measure method, where a particle based galaxy model is adjusted to match

observational constraints. In primal, observables of the target system are

compared with those of an N -body model at the position of the target stars.

The masses of the N -body model particles are changed to reproduce the ob-

servables of the target system and the gravitational potential is adjusted self-

consistently. First, we show that the algorithm can recreate an axisymmetric

disc system created by N -body simulations in a known dark matter halo with

no error in the observables. We then adapt the algorithm to include likelihood

based velocity constraints, which can take into account observational error of

individual stars, and demonstrate that primal can recreate disc systems with

a bar, including recovery of the pattern speed of the bar. Finally, we apply

primal to mock observational data generated from an N -body barred disc

simulation by replacing each N -body particle with a single M0 giant star and

applying the dust extinction and expected Gaia errors. We show that primal

can reproduce the structure and kinematics of the target system, despite the

Galactic extinction and the observational errors in the mock target data. In

addition, we present a population synthesis code, called snapdragons, which

can generate a Gaia-like mock star catalogue from N -body simulations, taking

into account stellar populations, dust extinction and Gaia errors. By exam-

ining Gaia mock data generated from our N -body simulation, we find that

the peculiar kinematics around the co-rotating spiral arms commonly seen in

N -body simulations is visible in the mock Gaia data.
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Chapter 1

Introduction

1.1 Historical mapping of the Milky Way

1.1.1 The Great Debate

Almost a century has passed since the ‘great debate’ of Harlow Shapley and

Heber Curtis (e.g. Shapley & Curtis 1921), when it was still uncertain whether

the Milky Way was the entire extent of our physical Universe, or merely one of

many such galaxies. Shapley argued that the structures which we now know

to be galaxies outside the Milky Way were in fact nebulae within the confines

of the Milky Way, which itself was the total extent of the universe. Curtis

argued that these ‘Spiral Nebulae’ were actually ‘Island Universes’ similar to

our own Galaxy, observed at vast distances. Although the answer to this has

been clear to us for many decades, the data which they had available to them

back in 1921 made it very difficult to determine the truth at the time.

Shapley’s argument consisted of three key points. Firstly, he discusses the

relative size-distance of the Milky Way compared to the external galaxies. For

example, if Andromeda (M31) was a similar size as the Milky Way, then its

distance must be of the order of 105−107 light years to appear with its observed

diameter in the sky. This was considered by many to be an infeasibly large

distance. Secondly, van Maanen (1916) claims to observe the Pinwheel Galaxy

(M101) rotating. This put a firm constraint on the distance to M101, because if

it was an external galaxy the rotation would violate the speed of light. Curtis

responded by saying that if these observations were correct, then he would

be wrong about these Spiral Nebulae being Island Universes. Thirdly, there
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was the observation of a nova in M31 which outshone the galactic nucleus

(Beesley 1985) and would have to be substantially brighter than any other

known novae to place M31 as an extragalactic object. This was later revealed

to be a supernova, a phenomenon which was unknown at the time. It is also

the first observed extra-galactic supernova and the only one to date in M31.

Curtis’ argument also contained novae as one of its components. However,

instead of citing a specific nova, he showed that there were more novae in M31

than in the rest of the Milky Way, with no apparent cause. He also showed

that these novae were substantially dimmer than would be expected if M31

were a spiral nebula within the confines of the Milky Way. Curtis also states

that the spectrum of the spiral matches the expectation of the spectrum of

a galaxy of stars, and that the ‘dust lanes’ observed in M31 appear similar

to those found in the Milky Way. The doppler shifts of these ‘spiral nebulae’

give large velocities (∼ 1, 200 km s−1) which are different from other known

galactic objects and are easier explained for extra-galactic objects.

Hubble finally settled the debate (e.g. Hubble 1926) by observing Cepheid

variable stars (which can be used as standard candles) in M31 and other spirals.

This discovery changed our view of the Universe and paved the way for later

work in galactic astronomy and cosmology, including Hubble’s own theory of

an expanding Universe. Although Curtis was right about the spirals being

extragalactic, Shapley was closer on where we are within the Milky Way and

the currently estimated mass of the Milky Way is in between their estimates.

The ‘great debate’ highlights the importance of measuring the size and

mass distribution of the Milky Way, which is a fundamental theme of astron-

omy. This thesis describes the development of a method to help constrain the

structure of the Milky Way. It takes advantage of the unprecedented volume

and accuracy of upcoming observational data as well as the powerful compu-

tational facilities and algorithms we will have access to.

1.1.2 Mapping the Milky Way

Humanity has always been enticed by the stars, and the practice of attempting

to map their positions and motions can be traced back to at least ∼ 300 BC (for

a review, see Newton 1974), although we will never know who tried it first.



1.1. Historical mapping of the Milky Way 3

Regardless of where the practice truly originated, Hipparchus (c. 190−120

B.C.) assembled the first recorded star catalogue from a combination of his

predecessors work and his own observations. He is often credited with the

discovery of the Earth’s precession, although other candidates for this include

Eratosthenes (276−194 B.C.) and Aristarcus (c. 310−230 B.C.). Ptolemy

(c. 90−168 A.D.) carried on Hipparchus’ work and expanded his catalogue

into what is known as Ptolemy’s Almagest, which still survives today (e.g.

Ptolemy & Manitius 1995).

After Ptolemy, many observers have continued to make additions and

improvements to the catalogue of known stars. A few catalogues stand out

above the others as providing notable increases in either size or accuracy, e.g.

Ulugh Beg’s (1394−1449), Tycho Brahe’s (1546−1601), Johannes Hevelius’

(1611−1687) and John Flamsteed’s (1646−1719) catalogues (for a review, see

Perryman 2012). As well as the positions on the sky, right-ascension (α) and

declination (δ), the distance to the star is needed to complete the positional

information for a star. The first distance to a star is generally considered to

have been measured in 1838 (for a review, see Perryman 2012). This was a

parallax measurement of 10.3 light years to the star 61 Cygni, performed by

Friedrich Bessel.

Parallax is a technique used to determine distances to nearby stars based

upon simple triangulation. This is possible because of the Earth’s orbit around

the Sun. The difference in perspective provided by the difference in position

every half year means that nearby stars appear to move around in the sky,

compared to ‘fixed’ background stars, over an annual cycle. The left panel

of Fig. 1.1 (Figure 1 in Perryman 2012) demonstrates this, although with

drastically exaggerated angles. Unfortunately, in reality the change in angle

is tiny. For example, Alpha and Proxima Centauri (the closest stars) have a

parallax shift of ∼ 1 arcsecond, and the further the star the smaller the angle.

There is a limit on how far we can measure distances with parallax because of

the dependence on the accuracy of the measurements of positions on the sky.

The ‘fixed’ background stars, which can also be external galaxies or quasars,

are of course not really fixed but merely have a change in angle too small to



1.1. Historical mapping of the Milky Way 4

Fig. 1.1: Diagram of parallax determination (left). The angles in this diagram are greatly

exaggerated. Path on the sky of a star from the Hipparcos catalogue (right), the lines

represent the measurements, and the curve is fitted to them. The dots represent the inferred

positions, with the short line joining it to the line being the residual (from Perryman 2012).

be detected.

However, despite continuing improvements in observing technology, from

the naked eye, to telescopes, to photographic plates, to Charge-Coupled De-

vice (CCD)s, atmospheric effects were always present. Finally, during the 20th

century, this started to enforce strict limits on the accuracy of the measure-

ments that we could make from the ground at the wavelength of visible light.

This heralded the advance of surveys using different parts of the electromag-

netic spectrum (see Section 1.2). In 1989 the European Space Agency (ESA)

overcame the atmospheric problem by launching the first space based astrom-

etry mission, Hipparcos (see Section 1.2.1), named as both an acronym for

HIgh Precision PARallax COllecting Satellite and a tribute to Hipparchus. A

comparison of a limited selection of star catalogues by time, size and accuracy

of the measurements can be seen in Fig. 1.2.

As well as the oscillations in a star’s position owing to the change in

perspective, the stars also move across the sky. The right panel of Fig. 1.1

shows the path on the sky of one of the stars from the Hipparcos catalogue
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Fig. 1.2: Improvements in astrometric accuracy from Hipparchus to Gaia (From the Gaia

Astrometric Accuracy Assessment, ESA).

across three years of observations. The curve is fitted to the measurements

and the amplitude of the oscillations is used to calculate the parallax, π. The

arrow indicates the linear component of movement, representing the star’s

proper motion, which is often described with the change in the position along

the direction of right-ascension, µα, and declination, µδ, over time.

The proper motions only provide velocities in two dimensions. The final

piece of the puzzle is the radial velocity of the stars, vr, which is a measurement

of the speed of the stars moving towards or away from us. In 1842, Christian

Doppler theorised that light should be ‘blue shifted’ when moving towards us

and ‘red shifted’ when moving away, just like the pitch of sound. In 1848,

Hippolyte Louis Fizeau theorised that the spectral lines of different elements

in an observed star would be shifted to different wavelengths. Twenty years

later Sir William Huggins used this technique to obtain the first radial velocity

measurements for a number of bright stars (Menzel 1972).

Combining the kinematic information with the positional informa-
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tion gives us the full 6 dimensional phase space information of the stars

(α, δ, π, µα, µδ, vr), which are the fundamental building blocks of a living view

of the Milky Way.

1.2 Milky Way Surveys

1.2.1 Hipparcos

For the last two decades Galactic astronomy has been relying on Hipparcos

data. Hipparcos was a major ESA mission (1989−1993) which returned par-

allaxes and proper motions for approximately 118,000 stars up to a magnitude

of Hp = 12.4 mag (where Hp is the apparent magnitude in the Hipparcos pho-

tometric system) consisting of two main sample groups, reaching accuracies of

about one milli-arcsecond. The first sample is a whole sky survey of 52,000

stars brighter than V ≤ 7.9+1.1sin(b) mag for blue stars with B−V <0.8, and

brighter than V ≤ 7.3 + 1.1sin(b) mag for red stars with B−V ≥ 0.8 (where b

is the galactic latitude). The second sample is 66,000 objects selected for sci-

entific interest, e.g. systems of multiple stars, fainter than the brightness limit

for the main catalogue (e.g. Eyer et al. 2012; Dommanget & Lampens 1993).

The results from Hipparcos were formed into an extensive online catalogue

(Perryman & ESA 1997) which has undergone more reduction by van Leeuwen

(2007) to reduce the systematic errors for bright stars.

Along with the main Hipparcos catalogue, the Tycho catalogue was com-

piled from the satellite’s star mapper system. Although this comes with a lower

accuracy in the astrometry, it includes 2 colour photometry and contains ∼ 106

stars (ESA 1997). Although the Hipparcos survey observed known stars, the

Tycho catalogue covered the whole sky. The Tycho catalogue was superseded

by the Tycho-2 catalogue. This was constructed using end-of-mission satellite

attitude and calibration data to allow measurements down to a fainter signal

to noise level. The Tycho-2 catalogue contains ∼ 2.5 × 106 stars and is 99%

complete to V ≤ 11 mag (Perryman 2011).

Hipparcos made great improvements in multiple astronomical fields (for

a review, see Perryman 2011). For example, Hipparcos provided a drastic

increase in the accuracy of distance estimates of stars, which in turn helped
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determine absolute magnitudes. Hipparcos also improved the measurements

of stellar proper motions, which, when coupled with the improvements in dis-

tance measurements, has provided substantial increases in our understanding

of the kinematic and dynamical structure of the solar neighbourhood. The

Hipparcos data provides a reference frame which has allowed re-reduction

of older astrometric measurements, such as Schmidt plate surveys (e.g. Reid

1990), and provided a common reference system for contemporary surveys

such as the Sloan Digital Sky Survey (see Section 1.2.3).

Galactic astronomy is now entering a golden age. Despite Hipparcos’

significant improvement over prior catalogues, todays technology is more than

capable of improving this once more. The successor to Hipparcos, Gaia, is

currently collecting data, but ground based surveys are also a vital source of

information about our Galaxy. We shall discuss some of them in the next

section. However, this is not an exhaustive listing.

1.2.2 Past ground based surveys

The Two Micron All Sky Survey (2MASS, Skrutskie et al. 2006) was a near

infra-red survey performed on two 1.3-m telescopes, one at Mount Hopkins,

Arizona, USA, and the other one at the Cerro Tololo Inter-American Obser-

vatory (CTIO), Chile. 2MASS observed simultaneously in the J , H and Ks

bands (1.25, 1.65 and 2.16 µm respectively). 2MASS provided ∼ 4.1 × 106

images of the sky, a catalogue of ∼ 1.6× 106 extended sources, and positional

and photometric information for ∼ 4.7 × 108 point sources with 99.5% sky

coverage down to J < 15.8 mag, H < 15.1 mag and Ks < 14.3 mag at signal

to noise ratio S/N = 10.

The Geneva-Copenhagen Survey (GCS, Nordström et al. 2004) was a

spectroscopic survey which observed 16,682 nearby F and G dwarfs and mea-

sured metallicities and radial velocities. The GCS provided radial velocities for

around 13,500 stars within a few hundred parsecs, which, when combined with

Hipparcos parallaxes and Tycho-2 proper motions, completed the 6 dimen-

sional phase space information (α, δ, π, µα, µδ, vr) for these stars. The majority

of the radial velocity measurements were performed by the photoelectric cross-

correlation spectrometers, CORAVEL (e.g. Baranne et al. 1979), operated at
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the Swiss 1-m telescope at Observatoire de Haute-Provence, France and the

Danish 1.5-m telescope at ESO, La Silla, which cover the whole sky between

them. Several hundred stars rotating too rapidly for CORAVEL were ob-

served with digital spectrographs from the Harvard-Smithsonian Center for

Astrophysics.

1.2.3 Ongoing ground based surveys

The Sloan Digital Sky Survey (SDSS, York et al. 2000) was a photometric

and spectroscopic survey performed on a 2.5-m telescope at the Apache Point

Observatory (APO), Sunspot, New Mexico, USA. The photometric survey

operated in the magnitude range 15 ≤ g ≤ 23 mag, and the spectroscopic

survey obtained spectra for around 106 galaxies and 105 quasars which were

identified in the photometric survey. This photometric view of faint objects

has helped build a global picture of the stellar distribution (Jurić et al. 2008)

and has been particularly useful in identifying stellar streams in the Milky

Way’s halo (Belokurov et al. 2006) and ultra-faint satellite galaxies. Although

the original SDSS finished in 2005, the success of SDSS led to an extension

of the survey, SDSS-II, containing three subprojects. One subproject is the

SDSS Legacy Survey, a well calibrated photometric and spectroscopic map

of 7,500 degrees in the north and three stripes in the south, one with ultra-

deep imaging. Another subproject is the SDSS Supernova survey, a repeated

survey of the same stripe of sky, which detected ∼ 500 type Ia and 80 type

Ib/c supernovae over three years. A third subproject is the Sloan Extension for

Galactic Understanding and Exploration (SEGUE), which will be discussed in

more detail below.

SEGUE (Yanny et al. 2009) was a spectroscopic survey of ∼ 230, 000 stars

with 14 ≤ g ≤ 20.3 mag, at spectral resolution of R ∼ 2, 000. SEGUE has

proved useful for isolating stellar substructure, for example, identifying the

stellar halo. SEGUE’s success led to a follow-up survey, SEGUE-2, which is

part of SDSS-III. Using the existing SDSS spectrographs, SEGUE-2 obtained

spectra with R = 2, 000 of an additional ∼ 119, 000 stars in selected fields,

up to a magnitude of ∼19.5 (Rockosi et al. 2009). Combining SEGUE and

SEGUE-2 provides a sample of ∼ 350, 000 stars beyond the solar neighbour-
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hood.

SDSS-III also contains the Baryon Oscillation Spectroscopic Survey

(BOSS), the Multi-object APO Radial Velocity Exoplanet Large-area Sur-

vey (MARVELS) and the Apache Point Galactic Evolution Experiment

(APOGEE). BOSS is designed to detect the imprint of baryon acoustic os-

cillations in the early universe by mapping luminous red galaxies and quasars.

MARVELS is designed to detect exoplanets by measuring the radial velocity

of ∼ 11, 000 stars.

APOGEE (Allende Prieto et al. 2008) is a high resolution (R = 23, 500)

near infra-red spectroscopic survey of ∼ 150, 000 giant stars in the Milky Way.

APOGEE operates in the H band (1.51 µm < λ < 1.70 µm), which experi-

ences around one-sixth of the extinction in the V band, allowing APOGEE

to penetrate the dust that obscures the inner galaxy down to H = 12.2 mag.

The majority of spectra are taken in the range | b |< 10o surveying giant stars

within the Galactic bulge, bar, disc and halo. APOGEE measures radial ve-

locities to an accuracy of . 100 m s−1, atmospheric parameters and individual

elemental abundances to an accuracy of ∼ 0.1 dex. Together, SEGUE-2 and

APOGEE provide a new level of detail to the current picture of the Milky

Way.

SDSS-III finished in June 2014, and SDSS-IV is now in progress1. Like

its predecessors, SDSS-IV contains multiple surveys. Firstly, APOGEE-2 is

a stellar survey of the Milky Way with two major components, a northern

survey at APO, and a complementary southern survey at the 2.5-m du Pont

Telescope at Las Campanas observatory. This southern component increases

APOGEE-2’s potential observable coverage to all sky (although only certain

fields are selected), and will include more bulge fields and the Magellanic

Clouds. APOGEE-2 will survey around 3 × 105 stars with radial velocity ac-

curacies of . 100 m s−1 and an accuracy of abundance measurements to ∼ 0.1

dex for 15 elements. Secondly, Mapping Nearby Galaxies at APO (MaNGA),

which is an Integral Field Unit (IFU) spectroscopic survey across the face of

∼ 10, 000 galaxies. Thirdly, the extended Baryon Oscillation Spectroscopic

1http://www.sdss3.org/future/
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Survey (eBOSS) is a cosmological survey of quasars and galaxies, which itself

contains two subprograms. The Time-Domain Spectroscopic Survey (TDSS)

is a spectroscopic survey of variable sources, and the SPectroscopic IDentifi-

cation of ERosita Sources (SPIDERS) is a survey of X-ray sources detected

by eROSITA, the primary instrument on the Spectrum-Roentgen-Gamma

satellite due to be launched in 2016.

The Panoramic Survey Telescope And Rapid Response System (Pan-

STARRS, Kaiser et al. 2010) is a wide-field time-domain imaging survey cov-

ering around 75% of the sky (δ > −30o) down to V ≤ 24 mag. Pan-STARRS

operates in the wavelength range of 400−1,000 nm, and is operated on a 4-m

telecope on Halekala, Maui. There are two Pan-STARRS telescopes, PS1 and

PS2. PS1 has been active for over 3 years and it has observed the full visible

area multiple times in 5 bands (grizy). PS1 has performed 4 different surveys.

One survey is the 3π survey covering 3π steradians of the sky. Another survey

is the medium-deep survey (MDS), which covers 10 selected regions and is de-

signed to observe supernovae. Another survey is designed to detect potential

Earth-impacting asteroids, and observes near the ecliptic plane. Finally, the

PAndromeda survey is designed to look for variable stars in the Andromeda

galaxy and microlensing events in its halo. PS2 has been commissioned and

has recently started operations (e.g. Morgan et al. 2014).

The VISTA Variables in the Via Lactea survey2 (VVV, Minniti et al.

2010) is a public ESO near infra-red variability survey on the 4-m Visible and

Infrared Survey Telescope for Astronomy (VISTA) at ESO’s Cerro Paranal

Observatory in Chile. VVV has a survey area of 562 square degrees, and

operates in the wavelength range of 0.9−2.5 µm. The survey will run from

2010−2016 covering 109 point sources in the Milky Way. VVV will produce

a catalogue of over 106 variable sources in two regions. The first one is the

region of the bulge, with −10o < l < 10o and −10o < b < 5o. The second one

is the region of the disc plane with −65o < l < −10o and −2o < b < 2o.

The RAdial Velocity Experiment (RAVE, Steinmetz et al. 2006) is a

multi-fibre spectroscopic survey covering the southern hemisphere. RAVE

2http://vvvsurvey.drupalgardens.com/
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measures radial velocities with an accuracy of ≤ 2 km s−1, effective tempera-

ture with an accuracy of ∼ 200 K, metallicity with an accuracy of 0.5 dex and

surface gravity with an accuracy of 0.3 dex, for 483, 330 stars using the Six

Degree Field spectrograph on the 1.2-m UK Schmidt Telescope of the Anglo-

Australian Observatory. RAVE operates between 8,400−8,800 Å and observes

stars whose magnitude range is 9 . I . 12 mag.

The GALactic Archaeology with HERMES (GALAH, De Silva et al.

2015) survey is a spectroscopic survey on the Anglo-Australian Telescope us-

ing the High Efficiency and Resolution Multi-Element Spectrograph (HER-

MES, Wylie-de Boer & Freeman 2010). HERMES provides high resolution

(R ∼ 28, 000) spectra for ∼ 400 stars simultaneously within a 2 square degree

field of view, covering four passbands, 4, 713 ≤ λ ≤ 4, 903 Å to B ≤ 14.2 mag,

5, 643 ≤ λ ≤ 5, 873 Å to V ≤ 13.8 mag, 6, 478 ≤ λ ≤ 6, 737 Å to R ≤ 14.0

mag and 7, 585 ≤ λ ≤ 7, 887 Å to I ≤ 14.2 mag. The GALAH survey covers

| b |> 10o and −80o < δ < 10o and will collect spectra for ∼ 106 stars with

absorption lines from 29 elements. GALAH will survey dwarfs and giants in

the Milky Way’s thin and thick discs and the halo, and giant stars in the bulge,

helping to study the Milky Way’s formation history.

The LAMOST Experiment for Galactic Understanding and Exploration

(LEGUE, Deng et al. 2012) is a spectroscopic survey on The Large sky Area

Multi-Object fibre Spectroscopic Telescope (LAMOST), which is a Chinese

national scientific research facility. LEGUE will survey 2.5 × 106 stars with

r < 19 mag, and an additional 5 × 106 stars with r < 17 mag. LEGUE

is divided into three parts, the spheroid, the disc and the anticentre. The

spheroid survey covers | b |> 20o, the disc survey covers as much of | b |< 20o

as is visible from LAMOST (the direction of the Galactic centre is only visible

during summer and will be poorly sampled) and the anticentre survey covers

| b |< 30o for 150o ≤ l ≤ 210o. A single pointing has a field of view of ∼ 20

square degrees and can take 4,000 spectra in a single exposure. Most stars will

be observed with a resolution of R = 1, 800. A higher resolution (R = 5, 000)

grating will be added during the survey.

The Bar and Spiral Structure Legacy (BeSSeL, Brunthaler et al. 2011)
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survey is a Very Long Baseline Interferometry (VLBI) survey observing mi-

crowave amplifications by stimulated emission of radiation (maser) sources.

The survey will help map the spiral structure of our galaxy and measure fun-

damental parameters of the Milky Way structure, such as the distance to the

Galactic centre, R0, and the circular speed at the Solar radius, Θ0. The survey

has an accuracy of ∼ 0.03 mas, which is relative positional accuracy between

the maser sources and background objects. The BeSSeL survey has found

evidence that the IAU recommended values of R0 and Θ0 are likely to need

some revision, with R0 = 8.34±0.16 kpc and Θ0 = 240±8 km s−1 (Reid et al.

2014). Due to the rarity of these masers the BeSSeL survey has quite a small

sample set and over the course of the mission it will measure ∼ 400 sources.

The Gaia-ESO (European Southern Observatory) public spectrographic

survey (Gilmore et al. 2012) is an ongoing survey that uses the Very Large

Telescope (VLT)’s Fibre Large Array Multi Element Spectrograph (FLAMES)

which feeds the GIRAFFE and UVES spectrographs. Gaia-ESO will collect

high resolution (R ∼ 20, 000) spectra for ∼ 105 stars down to V < 19 mag

and R ∼ 47, 000 spectra for ∼ 5, 000 F, G and K stars with J ≤ 14 mag. The

scientific goals are to study the formation, evolution and disruption of open

clusters, the calibration of complex physics that affects stellar evolution, to

study the halo substructure, dark matter and rare stars, to study the nature

of the bulge, the origin of the thick disc and the formation, evolution and

structure of the thin disc, along with the kinematics in the Solar neighbour-

hood.

1.2.4 Upcoming ground based surveys

The Large Synoptic Survey Telescope (LSST, Ivezic et al. 2008) is planned to

be an 8.4-m telescope facility on Cerre Pachón in Chile. LSST will have a 9.6

square degree field of view contained with a total observable area of 30,000

square degrees with δ < 34.5o. LSST will operate in six bands (ugrizy) within

the wavelength range 320−1,050 nm. The main survey (90% of observing

time) will cover ∼ 18, 000 square degrees over 10 years and is expected to

detect ∼ 2 × 1010 stars and ∼ 2 × 1010 galaxies. The remaining 10% of the

observing time will be used for special projects, such as a Very Deep and Fast
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time domain survey (Ivezic et al. 2008). The LSST database, which will be

public, will contain ∼ 32 × 1012 observations of ∼ 4 × 1010 objects. LSST will

generate ∼ 15 TB of information per night (which is roughly equivalent to the

total amount of data collected with SDSS) and for the first time will create a

catalogue with more objects than people on Earth.

The Subaru Measurement of Images and Redshifts (SuMIRe, Sugai et al.

2012) project, using the Prime Focus Spectrograph (PFS, e.g. Takada et al.

2014) on the 8.2-m SUBARU telescope, will target cosmology with galaxy

surveys, Galactic archaeology, and studies of galaxy/AGN evolution. The

PFS is an optical/NIR multi-fibre spectrograph and will be one of the main

instruments when added to the Subaru telescope. It will cover the wavelength

range of 380−1,260 nm in three passbands (380−650 nm, 630−970 nm and

940−1,260 nm).

The WHT Enhanced Area Velocity Explorer (WEAVE, e.g. Dalton et al.

2014) is a wide field spectrograph on the 4.2-m William Herschel Telescope

(WHT) at the Observatorio de Roque de los Muchachos, La Palma. WEAVE

can position up to 150 fibres individually, with each fibre observing an indi-

vidual star or galaxy. WEAVE is planned to begin operations in 2017, with

low and high resolution surveys. The low resolution (R ∼ 5, 000) survey will

provide radial velocities for more then 106 stars with 17 < V < 20 mag, with

an accuracy of . 5 km s−1. The high resolution (R ∼ 20, 000) survey will

provide elemental abundances for ∼ 50, 000 giant stars with V < 17 mag to

an accuracy of ∼ 0.1 dex.

The 4-metre Multi-Object Spectroscopic Telescope (4MOST, e.g.

de Jong et al. 2014) is a wide field spectroscopic survey facility under de-

velopment for the VISTA telescope with operations expected to start by the

end of 2020. 4MOST has a 2.5 square degree field of view with 2, 400 fibres.

1, 600 of which go to two spectrographs with resolution R & 5, 000 in the

wavelength range 390−950 nm, and 800 of which go to a spectrograph with

resolution R & 20, 000 with wavelength range 390−457 nm and 595−950 nm

(e.g. Depagne 2015). 4MOST will take spectra for ∼ 2.5 × 107 objects in the

southern sky.
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The Multi-Object Optical and Near-infrared Spectrograph (MOONS,

Cirasuolo et al. 2014) is a spectroscopic instrument for the VLT. MOONS

contains ∼ 1, 000 fibres which can be arranged over a field of view of ∼ 500

square arcmin. MOONS will observe ∼ 1 − 2 × 106 galaxies at redshift z > 1,

and will provide high resolution spectra for ∼ 3 × 106 stars in the galaxy.

MOONS has a medium resolution mode (R ∼ 4, 000 − 6, 000) which covers

the wavelength range of 0.8 − 1.8 µm and a high resolution mode which will

cover three selected sub-regions of the wavelength range, with R ∼ 9, 000 at

0.765 − 0.895 µm and R ∼ 20, 000 at 1.177 − 1.268 and 1.521 − 1.635 µm.

As well as the upcoming ground based surveys, Gaia, a space-based suc-

cessor to Hipparcos has recently completed its commissioning phase. We are

especially interested in Gaia, as it will provide us with detailed positional and

kinematic data for around one billion stars (Robin et al. 2012). Gaia will sur-

vey the whole sky several times and each object will be observed between tens

and hundreds of times depending on its position on the sky (Cacciari 2009).

1.3 Gaia

ESA’s Gaia satellite was launched on 19th December 2013. It has an opera-

tional lifetime of 5 years, with provisions made for a possible 12−18 month

extension. The start of routine operations occurred in early 2014, with the

first preliminary data release scheduled for summer 2016. The data processing

will be performed by numerous parts of the European scientific community,

centring around the Gaia Data Processing and Analysis Consortium (DPAC).

This includes production of the final astronomical catalogues. A large amount

of preparatory software development and scenario modelling has already been

occurring over the past few years (e.g. Seabroke et al. 2011; Liu et al. 2012;

Allende Prieto et al. 2013).

1.3.1 Science objectives

While following on from the success of Hipparcos, Gaia has a different scien-

tific goal. While Hipparcos was mainly concerned with stellar studies, Gaia

is mainly focused on the structure, dynamics, evolution and formation history

of the Milky Way. However, in addition to this, Gaia will also provide a large
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Fig. 1.3: Expected end of mission sky coverage map for Gaia, colour coded by the number

of times Gaia will observe each field of view (Berry Holl 2008).

amount of data for other fields of study. These include asteroid studies (e.g.

Delbo’ et al. 2012), stellar astrophysics (e.g. Plez 2011), exoplanet discovery

(e.g. Busonero 2011), external galaxies (e.g. Krone-Martins et al. 2013), the

reference frame (e.g. Taris et al. 2013), the distance scale (e.g. Turon et al.

2012), open clusters (e.g. Alfaro Navarro et al. 2011), globular clusters (e.g

Pancino et al. 2013), the transient universe (e.g Wyrzykowski et al. 2012) and

fundamental physics (e.g. Eyer et al. 2012). Gaia will also provide alerts for

transient events. It discovered its first supernova in October 20143 and contin-

ues to find more (e.g. Wyrzykowski et al. 2015). Gaia will collect astrometric

and photometric data for over a billion objects up to G . 20 mag, along

with spectroscopic data for about 150 million objects with magnitudes up to

G . 16 mag (e.g. Katz et al. 2004; Wilkinson et al. 2005).

The sky coverage pattern for Gaia (see Fig. 1.3) is designed to allow

homogeneous sky coverage, with all positions scanned from different angles.

This is balanced against the need from an engineering standpoint to maintain

a 45o angle to the Sun to maintain thermal balance (Prusti 2012). With this

3http://sci.esa.int/gaia/54630-gaia-discovers-its-first-supernova/
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scanning law, each object will be sampled on average around 70 times across

the operational period.

1.3.2 Instrumentation

The Gaia spacecraft contains three major modules, the payload module, the

mechanical service module and the electrical service module4. The payload

module contains the optical instruments and the electronics which are needed

to manage and process the data. To facilitate this, it includes the Video Pro-

cessing Unit, the Clock distribution Unit, and the Payload Data Handling

Unit. The mechanical service module contains the mechanical, structural and

thermal components which support the instruments and the spacecraft elec-

tronics. It also contains the micro-propulsion system, the deployable sunshield,

the payload thermal tent and the Solar array and Harness. The electrical ser-

vice module controls the pointing, electrical power distribution, central data

management and radio communication with the Earth.

The payload module contains the two telescopes, which point in two differ-

ent directions, separated by 106.5o. The light collected by the two telescopes is

focused into a common focal plane and read by the three scientific instruments.

Fig. 1.4 shows the arrangement of CCDs on Gaia′s focal plane. The observed

star’s light crosses the plane from left to right, passing the sky mapper CCDs,

the astrometric field CCDs, the Blue Photometer (BP) CCDs, the Red Pho-

tometer (RP) CCDs and the Radial Velocity Spectrometer (RVS) CCDs in

that order.

The sky mapper detects objects with G . 20 mag which enter Gaia’s field

of view. The data from the 14 sky mapper CCDs are used by Gaia’s onboard

computer to identify the objects to be observed by the main astrometric and

spectroscopic CCDs.

The astrometric instrument, which uses the global astrometry concept

from Hipparcos, measures the relative separation of potentially thousands of

stars present in the field of view. It operates in the G band (wavelength range

330−1,050 nm, see Fig. 1.5). It samples the field of view with 62 CCDs

(light blue in Fig. 1.4) which are each read out in a time-delayed integration

4http://www.cosmos.esa.int/web/gaia/spacecraft-instruments
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Fig. 1.4: CCD arrangement on the Gaia focal plane (Short & de Bruijne, ESA). This

includes the basic angle monitor CCDs (orange), the wave front sensor CCDs (purple),

the sky mapper CCDs (medium blue), the astrometric field CCDs (light blue), the blue

photometer CCDs (dark blue), the red photometer CCDs (red) and the radial velocity

spectrometer CCDs (green).

(TDI) procedure which is synchronised to the scanning law of the satellite. By

combining the measurements for each star over the course of the mission, it is

possible to calculate its parallax and proper motion.

The spectrophotometric instrument consists of a blue and a red photome-

ter. The BP (dark blue in Fig. 1.4) operates in the wavelength range of

330−680 nm, and the RP (red in Fig. 1.4) operates in the wavelength range

of 640−1,050 nm (see Fig. 1.5). The photometers are prisms located just

before the focal plane which disperse the light entering the field of view. The

prisms disperse the light onto the photometric CCDs which provide the spec-

tral energy distribution (SED) of each star, allowing measurements of the

effective temperature, surface gravity, metallicity and reddening of the stars

(e.g. Jordi et al. 2010).

The RVS, which measures the radial velocity of the stars with G . 16 mag,

is a near-infrared integral field spectrograph. The RVS operates in the wave-

length range of 845−872 nm (see Fig. 1.5), with a resolution of R ∼ 11, 500.

The RVS is integrated with the astrometric and photometric instruments and

light coming from both viewing directions are superimposed on to the RVS
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Fig. 1.5: Gaia G (solid black), GBP (blue dotted), GRP (red dashed) and GRVS (green

dash-dotted) normalised passbands (Figure 3. in Jordi et al. 2010).

CCDs which are located in the Gaia focal plane (3 CCD strips and 4 CCD

rows, green in Fig. 1.4).

1.3.3 Pre-launch science performance

Despite the significant increase in accuracy of Gaia compared to Hipparcos,

the Gaia survey will of course still be subject to error, due to both noise and

calibration. In this section, we discuss the pre-launch science performance

estimates and then in Section 1.3.4 we will discuss the updated estimates after

the commissioning.

Fig. 1.6 shows the pre-launch estimated parallax error by G magnitude.

The parallax will carry the heaviest error out of the astrometry, photometry
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Fig. 1.6: Pre-launch expected end of mission parallax error by magnitude (Figure 10 in

de Bruijne 2012).

and spectroscopy. The accuracy between G = 12 mag and G = 20 mag is

limited by photon noise and background noise. Between G = 6 mag and G =

12 mag the CCDs are operating close to the saturation limit. Therefore, they

are only partially exposed to avoid completely saturating the detector. Fig.

1.7 shows the pre-launch estimated photometric accuracy. The photometric

accuracy is calibration dominated for sources with G . 12 mag. Fig. 1.8

shows the radial velocity error, which is dependent on magnitude and spectral

type. With red stars, similarly to the photometric error, the error will become

calibration dominated to a limit of 1 km s−1 for stars with G . 14 mag (Prusti

2012).

1.3.4 Post-launch revised science performance estimates

The Gaia science performance estimates have changed post launch. There are

three significant issues as listed by de Bruijne et al. (2015). Firstly, the basic

angle between the lines of sight of the two telescopes is more unstable than

expected. Secondly, the transmission of the optics slowly degrades with time.

Thirdly, there are significant levels of stray light, which periodically vary with

time.

The first issue will be dealt with by using the Basic-Angle-Monitor



1.3. Gaia 20

Fig. 1.7: Pre-launch expected end of mission photometric error by magnitude and color

(Figure 11 in de Bruijne 2012).

Fig. 1.8: Pre-launch expected end of mission radial velocity error by magnitude and spectral

type (Figure 12 in de Bruijne 2012).
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(Mora et al. 2014), which allows the measurement of the variations in the

angle. Knowing the variation allows its inclusion in the astrometric global

iterative solution (Lindegren et al. 2012). The second issue is considered to be

caused by contamination by water ice on the mirrors in the payload module.

This can be addressed by periodically heating the payload to decontaminate

the optics. However, this affects the end-of-life performance by ∼ 10%. The

third issue leads to increased noise levels, and thus has a non-trivial effect on

the end-of-mission astrometric, photometric and spectroscopic standard errors

(de Bruijne et al. 2015).

1.3.5 Data release scenario

The Gaia data will be available to the public upon release. It will be released

in five major sections, with photometric science alerts and near Earth aster-

oid data being continually released at short notice. This section provides a

summary of the current timeline for the major data releases, although this is

subject to change based upon the ongoing commissioning phase. The infor-

mation presented in this section is available online5 as of 6th April 2015.

The first release is scheduled for summer 2016. It consist of positions

(α, δ) and G mag for single-star systems with acceptable errors. This data

release will also include the Hundred Thousand Proper Motion (HTPM,

de Bruijne & Eilers 2012) project catalogue, which will provide proper mo-

tions for the stars in the Hipparcos catalogue. Using the 23 year baseline since

the Hipparcos measurements, the HTPM project proper motion errors will be

14−134 µas yr−1 and the parallax errors will be ∼ 43-295 µas (Michalik et al.

2014).

The second data release is scheduled for early 2017. It will consist of

five parameter astrometry (α, δ, π, µα, µδ) for single-star systems. It will also

include BP/RP photometry with standard errors for sources where the astro-

physical parameter estimation has been verified, and mean radial velocities for

sources showing no variation.

The third data release is scheduled for 2017/18. It will consist of orbital

solutions, with the system radial velocity and five parameter astrometry for

5http://www.cosmos.esa.int/web/gaia/release
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many binary systems. It will also contain a classification of the object and

its stellar parameters, with BP/RP spectra and/or RVS spectra. Mean radial

velocities will also be released for objects not showing variability and with

available atmospheric parameter estimates.

The fourth data release is scheduled for 2018/19. It will consist of variable

star classifications, released together with the epoch photometry used for the

stars. It will also include solar-system results and non-single star catalogues.

The fifth and final data release is scheduled for 2022, and will consist of

full astrometric, photometric and radial velocity catalogues. It will contain all

available variable star and non-single star solutions and source classifications.

It will also contain astrophysical parameters for stars, unresolved binaries,

galaxies and quasars. Additionally, a list of exo-planets, epoch and transit

data for all sources and all ground based observations will be released.

This full data set will provide an unprecedentedly large amount of data

about the Galaxy we live in, and will be an ideal opportunity to improve

upon our knowledge of the structure of the Milky Way and its fundamental

parameters. However, despite the amount of objects which Gaia will detect,

this is still only a fraction of the objects present in the Milky Way. Fig. 1.9

shows a face-on artist’s impression of the Milky Way (upper, Churchwell et al.

2009) constrained by available data, including stellar data from the Galactic

Legacy Mid-Plane Survey Extraordinaire (GLIMPSE) and an image of the

Milky Way on the sky from the ESO ‘GigaGalaxy Zoom’ project6 (lower).

The images are overlaid with the predicted density of the stars observed by

Gaia7. Fig. 1.9 shows that even with Gaia′s impressive capabilities it will still

be a long way short of observing the entirety of our Galaxy, and the structure

on the far side of the Galactic centre will remain comparatively uncertain.

This highlights the challenge of constructing a global picture of the Milky

Way directly from the Gaia data.

6http://videos.spacetelescope.org/gigagalaxyzoom/B.html
7http://www.cosmos.esa.int/web/gaia/iow 20110810



1.3. Gaia 23

Fig. 1.9: Face-on artists impression (upper, Churchwell et al. 2009) and image on the sky

(lower) of the Milky Way overlaid with colour contours of the number density of stars which

Gaia is predicted to observe in the Milky Way. The overlay is colour coded to represent

the density of stars Gaia will detect, with higher density regions shown in blue, and lower

density regions shown in pink (credit to X. Luri & A. Robin for the overlaid image of the

distribution of stars expected to be observed with Gaia.)
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1.4 The structure of the Milky Way

Data from modern surveys have helped us to learn an enormous amount about

the Milky Way, and our understanding of the Galaxy that is our home in the

Universe is vastly superior than in the days of Hipparchus and Ptolemy. The

Milky Way is known to be a barred spiral galaxy (e.g. Spergel & Blitz 1990;

Weinberg 1992; Binney et al. 1997) which is made up of three components,

the disc, the halo and the bulge/bar. This thesis focuses on the disc and the

bar.

This section gives a short summary of a few of the estimated values for

some of the fundamental parameters of the Milky Way. We focus on the angle

between the bar and the line-of-sight to the Galactic centre, henceforth bar

angle, the pattern speed of the bar, the distance from the Sun to the Galactic

centre, the circular velocity at the solar radius, and the debate regarding the

thin and thick disc.

1.4.1 Structure of the bar

While it is known that there is a bar in the inner region of the Milky Way,

there is disagreement over whether the bar is formed of a single structure, or if

it is also comprised of a short bar and a separate long flat bar with a different

bar angle from that of the short bar.

The short bar, which is thick in the z direction, is visible in the data

from the Cosmic Background Explorer (COBE, Boggess et al. 1992). For

example, Dwek et al. (1995) recover an angle between the bar and the line-of-

sight to the Galactic centre of 20o ± 10o from data from the Diffuse Infrared

Background Experiment (DIRBE) on the COBE satellite. The long bar,

which is thin in the z direction, was observed later. Hammersley et al. (2000)

present evidence for the long bar from Infra-red observations in the galactic

plane for 0o ≤ l ≤ 37o. They obtain a bar angle of 43o ± 7o, noting that it is

geometrically distinct from the short thick bar. Cabrera-Lavers et al. (2007)

analyse the distribution of red clump stars from the TCS-CAIN Near Infrared

(NIR) survey (González-Fernández et al. 2007) at different lines of sight in the

inner Galaxy. They also find two distinct bar structures. Cabrera-Lavers et al.

(2007) find a short thick bar with an angle of 12.6o±3.2o, and a long thin bar
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with an angle of 43o±1.8o. Cabrera-Lavers et al. (2008) also find two distinct

bars in the UKIRT Infrared Deep Sky Survey (UKIDSS, Lawrence et al. 2007)

Galactic Plane Survey data, again using red clump tracers. The short thick

bar is found to have an angle of 23.6o ± 2.19o, and the long thin bar is found

to have an angle of 42.44o ± 2.14o.

However, as stated in Athanassoula (2013), although around 20 − 25%

of barred galaxies have two bars, the ratio of the lengths of the bars mea-

sured for the Milky Way is incompatible with observations of external galax-

ies. The average ratio of length between the short and long (or primary and

secondary) bar in external galaxies is ∼ 0.12. However, the ratio of the short

and long bar in the Milky Way is ∼ 0.8 (Romero-Gómez et al. 2011). Thus,

they conclude that it is highly unlikely that the long and short bar are sepa-

rate structures. It is proposed (e.g. Romero-Gómez et al. 2011; Athanassoula

2013) that these two bars are components of a single bar with the short bar

being the boxy/peanut component and the long bar being the thin outer com-

ponent. Martinez-Valpuesta & Gerhard (2011) corroborate this interpretation

by calculating ‘observed’ star counts from an N -body model with a single boxy

bar. They show that observations of two separate bars with different bar an-

gles can be reproduced from a single boxy bar, owing to interactions between

spiral structure and the ends of the boxy bar.

However, the difference in estimated angles is still at odds with this in-

terpretation. Athanassoula (2013) state that new measurements of the angle

of the long bar are lower (e.g. 35o, Zasowski et al. 2012) than the initial esti-

mations, and the shape of the bar may cause the measurements of the angles

to be artificially high for the thin component. Wegg et al. (2015) analyse

the distribution of red clump giant stars from UKIDSS, 2MASS, VVV and

GLIMPSE. They find a continuous transition in the scale heights of the red

clump giants between the thick boxy/bulge and the long bar, concluding that

it is a single structure as seen in external galaxies and N -body simulations,

with a bar angle of 28 − 33o.
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1.4.2 Pattern speed of the bar

There is also still discussion of the pattern speed of the bar, Ωp, which is a mea-

sure of the speed with which the bar rotates. For example, Binney et al. (1997)

calculate a value of Ωp = 60 − 70 km s−1 kpc−1 from a model constructed to

match the COBE/DIRBE surface brightness map of the inner galaxy. Dehnen

(2000) performs simulations of a barred disc galaxy, and analyses the velocity

distribution around the Outer Lindblad Resonance (OLR). He finds that, if

the OLR of the bar is close to the Solar radius and the bar angle is 10 − 70o

(which easily encompasses the estimations of the bar angle of the Milky Way,

see Section 1.4.1), there is a bi-modality in the radial-tangential, (U − V ),

velocity distribution of Solar neighbourhood stars. Dehnen (2000) shows that

this bi-modality is present in the Hipparcos data, and infers that the OLR in

the Milky Way is slightly smaller than the radius of the Sun. He shows that

the pattern speed of the bar in the simulations is 1.85 ± 0.15 times the local

circular frequency, Ω0. Thus, Dehnen (2000) predicts a pattern speed of the

Milky Way’s bar of Ωp = 53 ± 3 km s−1kpc−1 using the value of Ω0 ∼ 28.5

(Reid et al. 1999; Backer & Sramek 1999). This is of course providing that

the bi-modality (one component of which is the Hercules stream) is caused by

the OLR of the bar. However, another interpretation is that it is induced by

spiral structure (e.g. Quillen et al. 2011). Debattista et al. (2002) adapt the

Tremaine-Weinberg method (Tremaine & Weinberg 1984) with OH/IR stars

(hydroxyl masers which are bright in IR) from the Australia Telescope Com-

pact Array and Very Large Array (ATCA/VLA) OH 1,612 MHz survey (e.g.

Sevenster et al. 1997). Assuming that the radial velocity component of the

local standard of rest, ULSR = 0, R0 = 8 kpc and the tangential component of

the local standard of rest, VLSR = 220 km s−1, they calculate Ωp = 59±5(±10

systematic) km s−1kpc−1.

Gerhard (2011) provides a review of previous work, concluding a likely

pattern speed for the bar of Ωp ∼ 50 − 60 km s−1kpc−1. However, the debate

is ongoing, with more recent work finding both high and low values of Ωp. For

example, Antoja et al. (2014) analyse the kinematics of the Hercules stream-

like feature in the U − V velocity distribution at different Galactic radii using
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the RAVE data, building on the work in Dehnen (2000). They calculate

Ωp = 56 ± 2 km s−1kpc−1, a similar value to Dehnen (2000). Long et al.

(2013) found Ωp ∼ 40 km s−1kpc−1 and Portail et al. (2015) found Ωp ∼ 25−
29 km s−1kpc−1, both using data from BRAVA as constraints for Made-to-

Measure (M2M) modelling (see Section 1.6).

1.4.3 Position of the Sun

The distance from the Sun to the Galactic centre, R0, also contains uncer-

tainty, and estimations of other parameters, for example, the circular motion

at R0 and the solar proper motion, are affected by an assumed R0. Some

examples of estimations of R0 are as follows. McMillan (2011) uses Bayesian

statistics to find the probability density function (pdf) for multiple Galactic

parameters, using observational kinematic data and prior parameter estima-

tions from existing literature. He finds a best fitting value of R0 = 8.29± 0.16

kpc. Schönrich (2012) analyses Data Release 7 and 8 (DR7, DR8) of SDSS.

He finds a value of R0 = 8.27± 0.29 kpc, which is in excellent agreement with

the value of McMillan (2011).

Maser data can be used to constrain R0, and the galactic spiral structure

(see Section 1.4.6). Maser emission is associated with high mass star forming

regions, and provide tracers for the Galactic structure. VLBI techniques can

provide parallaxes and proper motions for the masers. By fitting a model

of the Galaxy to data from 20 masers in 18 star forming regions, Reid et al.

(2009a) find R0 = 8.4 ± 0.6 kpc. Reid et al. (2009b) calculate the parallax

for masers in Sgr B2, a high mass star forming region in the Galactic centre.

They find a value of R0 = 7.9+0.8
−0.7 kpc. Reid et al. (2014) repeat the analysis

of Reid et al. (2009a) on a sample of 103 masers, and finds R0 = 8.34 ± 0.16

kpc. Fig. 1.10 shows the parallax derived positions for the sample of masers

in Reid et al. (2014), overlaid on the artists impression of the Milky Way in

Churchwell et al. (2009) also seen in Fig. 1.9.

1.4.4 Circular velocity at the solar radius

Coupled with R0, estimation of the circular velocity at R0, vcirc(R0), remains

uncertain. While the IAU recommended value of the local circular veloc-
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Fig. 1.10: Figure 1 of Reid et al. (2014) showing parallax derived positions for their sample

of masers, overlaid on the artists impression of the Milky Way in Churchwell et al. (2009)

also seen in Fig. 1.9. The different coloured points are masers associated with different spiral

arms. These include the Outer arm (red triangles), Perseus arm (black squares), Local or

Orion arm (blue pentagons), Sagittarius arm (pink hexagons) and Scutum-Centaurus arm

(cyan octagons). The yellow circles are inner galaxy sources, and the open circles are masers

for which the assignment to an arm was not clear. The solid lines show the centre of the

spiral arms calculated in Reid et al. (2014).
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ity remains at vcirc(R0) = 220 km s−1 (Kerr & Lynden-Bell 1986), there are

many different estimates. For example, Reid & Brunthaler (2004) estimate

vcirc(R0) by considering the motion of the Galactic centre. They calculate the

angular motion of Sgr A⋆ in the Galactic plane as −241 ± 15 km s−1. Then,

removing the Solar motion of V⊙ = 5.25 ± 0.62 km s−1 (Dehnen & Binney

1998) gives a value of vcirc(R0) = 236 ± 15 km s−1 (assuming R0 = 8.0 ± 0.5

kpc). However, assuming a different value of the Solar motion will change

the measurement of vcirc. For example, using the value of the Solar motion of

V⊙ = 12 km s−1 (Cox 2000) reduces the measurement to vcirc(R0) = 229 km

s−1. Reid et al. (2014) find a value of vcirc(R0) = 240 ± 8 km s−1 (assuming

R0 = 8.34 ± 0.16 kpc) for their model fit to the maser data as described in

Section 1.4.3. Again, this estimate is dependent on the Solar motion, which

is estimated at V⊙ = 14.6 ± 5.0 km s−1. McMillan (2011) finds a best fit-

ting value of vcirc(R0) = 239.2 ± 4.8 km s−1 (assuming R0 = 8.29 ± 0.16 kpc).

Schönrich (2012) finds vcirc(R0) = 238± 9 km s−1 (assuming R0 = 8.27± 0.29

kpc) using the method described in Section 1.4.3, assuming a solar motion of

V⊙ = 12.24±0.47(±2 systematic) km s−1 (Schönrich et al. 2010). Bovy et al.

(2012a) analyse APOGEE data in the Galactocentric range of 4 < R < 14 kpc.

They fit an axisymmetric kinematic model to the observed line-of-sight veloc-

ities making no prior assumption of R0 or V⊙. Bovy et al. (2012a) estimate

vcirc(R0) = 218 ± 6 km s−1 and vg,
⊙(R0) = 242+10

−3 km s−1 from the model,

resulting in a Solar motion of V⊙ = 26 ± 3 km s−1. Bovy et al. (2012a) state

that they can strongly rule out a value of vcirc(R0) > 235 km s−1.

1.4.5 Thin and thick disc

While we call the disc one of the three components of the Milky Way, it is

often classified as having ‘thin’ and ‘thick’ components. In this section, we

will discuss the discovery, structure, and formation theories of the thin and

thick disc.

Gilmore & Reid (1983) show for the first time the separate components

in our Galaxy’s disc, which were previously observed in external galaxies (e.g.

Tsikoudi 1979; Burstein 1979), by analysing a sample of 12,500 stars complete

to I ≤ 18 mag and V ≤ 19 mag, from UK Schmidt Telescope plates in 18.24
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Fig. 1.11: From Figure 6a in Gilmore & Reid (1983) showing star counts against distance

from the galactic plane for stars with 4 ≤ MV ≤ 5 (circles) which are fit by two exponentials

for the ‘thin’ (solid) and ‘thick’ (dashed) disc components.

square degrees in the direction of the South Galactic Pole. They calculate

photometric distances using an absolute magnitude-colour relation for dwarf

stars. By calculating the number density distribution for different magnitude

ranges, they find an ‘old thin disc’ which can be fit with an exponential profile

with scale height zd = 0.3 kpc and a ‘thick disc’ which can be fit with an

exponential profile with zd = 1.45 kpc. Fig. 1.11 (Figure 6a in Gilmore & Reid

1983) shows the number density of stars as a function of distance from the

galactic plane for stars with 4 ≤ MV ≤ 5 mag (circles) which are fit by two

exponentials for the ‘thin’ (solid) and ‘thick’ (dashed) disc components.

Table 1 in Siegel et al. (2002) provides a summary of previous estimations

of the scale length and height of the thin and thick discs (2.25 ≤ Rd,thin ≤ 4.0

kpc, 0.2 ≤ zd,thin ≤ 0.475 kpc, 2.8 ≤ Rd,thick ≤ 4.3 kpc, 0.58 ≤ zd,thick ≤
2.39 kpc). Jurić et al. (2008) shows strong evidence for a two component

Galactic disc in their analysis of SDSS data. They show the 3D number

density distribution in the solar neighbourhood is fit well by two exponential

components with Rd,thin = 2.6 kpc, zd,thin = 0.3 kpc, Rd,thick = 3.6 kpc and

zd,thick = 0.9 kpc.

However, the formation scenario for the two disc components is not known.
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Mikolaitis et al. (2014) summarise the four main categories of theory as: 1) the

heating of an existing thin disc by a violent merger (e.g. Quinn et al. 1993),

2) the merger of small satellites which deposit stars into the thick disc (e.g.

Abadi et al. 2003), 3) the formation of a thick disc in situ following a strong

accretion of gas (e.g. Brook et al. 2004), and 4) the radial rearrangement of

the disc via radial mixing (e.g. Schönrich & Binney 2009).

Sales et al. (2009) study the orbital properties of stars in a simulation

based upon each of these four possible scenarios, with a view to constrain the

formation mechanism based upon orbital eccentricity. They find that there

are differences in eccentricity in each simulation, and the level of eccentricity

of thick disc stars should help determine between formation scenarios based on

in situ formation scenarios (e.g. Brook et al. 2004) which have stars with low

eccentricities, and mergers (e.g. Abadi et al. 2003) which have stars with high

eccentricities. However, merger driven accretion may also have stars with low

eccentricities if the accretion is similar to the rotation of the disc. Sales et al.

(2009) state that with the current level of kinematic data available they are

unable to make a definitive distinction based on orbital eccentricities.

Bovy et al. (2012b) make the claim that the Milky Way has no distinct

thick disc (see also Bovy et al. 2012c,d). They analyse the distribution of

∼ 24, 000 G-type dwarfs from SDSS/SEGUE in the [Fe/H] versus [α/Fe] dis-

tribution, and find that when weighting by mass and correcting for the uneven

sampling of the underlying stellar populations, the bi-modality of the thin and

thick disc populations seen in the raw data disappears. However, because of

the low resolution spectroscopy of the SEGUE data, combined with the typi-

cally large uncertainties in the chemical abundance measurements, 0.1 dex for

[α/Fe] and 0.2 dex for [Fe/H] (Lee et al. 2011), the small separation between

thin and thick disc populations can be smoothed out.

Bensby et al. (2011) analyse a sample of 26 microlensed dwarf and sub-

giant stars in the Galactic bulge, with detailed stellar abundances and ages.

They find a bi-modality in [Fe/H] for the microlensed stars, with peaks at

[Fe/H]∼ −0.6 and [Fe/H]∼ 0.3. There is a distinct gap at solar metallicity.

This is in contrast with a sample of 204 red giant stars in the bulge from
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FLAMES-GIRAFFE spectra (Zoccali et al. 2008), which peaks around Solar

metallicity. The low metallicity dwarfs are found to be old stars, with 〈Age〉 =

11.7 ± 1.7 Gyr (mean age ± dispersion), while the high metallicity dwarfs are

found to have a large range of ages, with 〈Age〉 = 7.6± 3.9 Gyr. They cannot

give a conclusive reason for the different metallicity distribution functions for

the dwarf and giant stars. However, the metal poor dwarfs show similar ages,

metallicities and abundances to stars in the thick disc and they speculate

that the metal rich dwarfs could be from the thin disc. This is evidence that

the Milky Way contains no distinct bulge component, as suggested by results

from the BRAVA survey (e.g. Shen et al. 2010) and corroborated by results

from the ARGOS survey (e.g. Ness et al. 2013) and N -body simulations (e.g.

Di Matteo et al. 2015).

Bensby et al. (2014) analyse high resolution spectra from a sample of 714

F and G dwarfs in the solar neighbourhood. This sample of stars was chosen to

cover a wide range of metallicities and are shown to be a good representation

of the stars in the GCS, i.e. an unbiased sample, in terms of the metallicity-

velocity relation. Bensby et al. (2014) show a chemically distinct bi-modal

distribution in the sample. The bi-modality is seen in multiple abundance

relations. Most abundances have an accuracy of . 0.2 dex. Mikolaitis et al.

(2014) analyse a sample of ∼ 2, 000 F, G and K dwarfs from the Gaia-ESO

survey and also find a clear bi-modality, with the most distinct separation

in [Mg I/Fe]. Mikolaitis et al. (2014) find no radial metallicity gradient in

the thick disc, which is consistent with other studies (e.g. Bensby et al. 2011;

Cheng et al. 2012). This is in agreement with the predictions of a gas rich

disc at high redshift, e.g. scenario 3, but can also be consistent with the other

scenarios if mixing in the radial direction is strong (Cheng et al. 2012).

Nidever et al. (2014) analyse the metallicity and α-element abundances

of ∼ 10, 000 red clump stars from APOGEE with ∼ 5% distance errors

(Bovy et al. 2014). There is a distinct bi-modality in the [α/Fe] versus [Fe/H]

distribution for −0.9 < [Fe/H] < −0.2. However, at higher metallicities

([Fe/H]∼0.2) the two clear populations merge. The shape of the high [α/Fe]

population in the [α/Fe] versus [Fe/H] distribution remains similar across the
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observed area of the Galaxy. The low [α/Fe] population is substantially more

dominant closer to the disc plane. This is a strong bi-modality, with a clear

gap at intermediate levels of [α/Fe], which can be taken as a strong indication

that the thin and thick discs are distinct populations.

There is currently no definitive observational evidence to determine defini-

tively between the differing scenarios of the origin of the thick disc. It is likely

that multiple mechanisms play a part in the formation of the thick and thin

disc. However, it is currently not clear which mechanism is primarily respon-

sible. Upcoming surveys, both Gaia and spectroscopic ground based surveys

(see Section 1.2), will provide the next level of dynamical and chemical infor-

mation about the stars in our Galaxy, and will help to place more constraints

upon the formation history of the thin and thick discs.

1.4.6 Spiral structure

The spiral structure in the Milky Way also suffers from uncertainties, both in

terms of the properties of our Galaxy’s spiral structure, and also the origin from

which spiral structure forms. This section will first discuss briefly the theories

of spiral arms (for a comprehensive review, see Dobbs & Baba 2014) and then

provide a few examples of estimates of the Milky Way’s spiral structure.

It is known from observations of the almost flat rotation curve of disc

galaxies that the stars in the inner region have a higher angular velocity, Ω =

vrot/R, than those in the outer region. Therefore the spiral structure should

‘wind up’ relatively quickly if the spiral arms rotate at the mean rotation

velocity of the stars (e.g. Wilczynski 1896), which is contrary to observations of

many ‘grand design’ spiral galaxies. This is called the ‘winding dilemma’, and

is one of the classic problems with spiral arm theories. A proposed solution to

the winding dilemma is given by spiral density wave theory (Lin & Shu 1964).

This theory treats the spiral structure as a density wave which can rotate

rigidly as a feature, irrespective of the rotation of the stars, with a constant

pattern speed and thus be long lived.

However, no N -body simulations (see Section 1.5.6) have yet been able

to reproduce these long lived stable spiral arms, despite the increase in

computational power and resolution which has occurred in recent years
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(e.g. Sellwood 2011; Dobbs & Baba 2014). Recent work has shown spi-

ral modes and waves which appear to survive over multiple rotations

(Quillen et al. 2011; Roškar et al. 2013; Sellwood & Carlberg 2014) when

analysing spectrograms (see Grand et al. 2012a, for a caution on this tech-

nique). However, the spiral arm features in the stellar mass are short-lived

but recurrent (e.g. Sellwood & Carlberg 1984; Carlberg & Freedman 1985;

Bottema 2003; Fujii et al. 2011; Grand et al. 2012a,b, 2013; Baba et al. 2013;

Roca-Fàbrega et al. 2013; D’Onghia et al. 2013), including in galaxies with a

central bar (e.g. Grand et al. 2012b; Roca-Fàbrega et al. 2013). These results

imply that the large spiral arms visible in external galaxies may only appear

to be rigid structures extending over the disc, while in fact they are transient

and reforming features.

Observationally, the number and nature of the spiral arms in the Milky

Way remains unclear. Vallée (2014b) gives a summary of recent (late 2013 to

mid 2014) studies of the spiral arm structure in the Milky Way, with the major-

ity of recent studies favouring a four armed logarithmic spiral (e.g. Reid et al.

2014). However, approximately one sixth of the studies (Vallée 2014b) favour a

more tightly wound two arm spiral (e.g. Francis 2013). Benjamin et al. (2005)

show results from GLIMPSE, which is a catalogue of ∼ 3×107 sources within

| b |≤ 1o. They show three regions (26o ≤ l ≤ 28o, 31.5o ≤ l ≤ 34o, 306o ≤ l ≤
309o) where stellar counts are ∼ 20% higher than what is expected from the

exponential fitting function. The l = 26o − 28o region may be related to the

bar. The l = 31.5o − 34o region may also be associated with the bar, or the

inner part of the Scutum-Centaurus arm. The l = 306o − 309o region could

be the tangent of the Centaurus arm. No enhancement in the stellar counts is

found in the direction of the Sagittarius arm.

Reid et al. (2014) use the maser data described in Section 1.4.3 to identify

the location of the spiral arms. The high mass star forming regions which

contain the masers can be assigned to a spiral arm by association with CO

and HI emission features in the longitude-line-of-sight velocity (l − v) map.

Fig. 1.10 shows the parallax derived positions for the sample of masers (Figure

1 in Reid et al. 2014). It is overlaid on the artists impression of the Milky
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Way’s bar and spiral structure in Churchwell et al. (2009) constrained by the

GLIMPSE data and HI 21 cm Galactic Plane Surveys and CO surveys. The

different coloured points are masers associated with different spiral arms. The

solid lines show the centre of the spiral arm calculated in Reid et al. (2014).

Fig. 1.10 shows that the maser data of Reid et al. (2014) are in reasonable

agreement with the view of Churchwell et al. (2009). However, the maser data

favours a lower pitch angle for the Perseus (Black), Sagittarius (pink), Outer

(red) and Orion (or local, blue) arms, and a larger pitch angle for the Scutum

(cyan) arm.

Vallée (2014a) provides a catalogue of spiral arm tracers published since

the 1980s. Fig. 1.12, which is Figure 3 in Vallée (2014a), shows an estimation

of the distribution of spiral arms in the Milky Way constructed from the various

sets of tracers. Fig. 1.12 shows the stellar (yellow), 12CO (and H2) (blue), hot

dust (red), thermal and relativistic electrons and HI atoms (green), and cold

dust (orange) components of the arms. Fig. 1.12 shows an offset between the

stellar and gaseous components of the Galaxy’s spiral arms, which is predicted

by density wave theory (Roberts 1969). However, Baba et al. (2010), find that

the l − v map of the Milky Way is more easily fit with a simulation with

dynamic spiral arms seen in N -body simulations (see above). Pettitt et al.

(2014) use Smoothed Particle Hydrodynamics (SPH) simulations to study the

interstellar medium (ISM) in the Milky Way. They construct synthetic l − v

emission maps and compare them with observed emissions. They find that

neither the two arm or four arm model fits perfectly. The two armed models

cannot reproduce all the observed arm features, and the four armed models

produce too high emissions in the inner galaxy.

No firm conclusion can be drawn from the current observational data.

The data from Gaia, amongst other current and upcoming surveys, will help

further constrain the nature of the Milky Way spiral structure. We will discuss

this further in Chapter 5. Of course, the uncertainty in the measurements

of both the spiral structure and the more general parameters of the Milky

Way’s structure, comes primarily from interstellar extinction. Unlike surveys

of external galaxies, where the extinction can be corrected for with a function
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Fig. 1.12: Figure 3 in Vallée (2014a) showing the estimated spiral arm structure of the

Milky Way constructed from various tracer data. The figure shows the stellar (yellow), 12CO

(and H2) (blue), hot dust (red), thermal and relativistic electrons and HI atoms (green) and

cold dust (orange) components of the arms.

of Galactic longitude and latitude, Aλ(l, b) (e.g. Schlegel et al. 1998), we need

three dimensional extinction maps, i.e. a function of l, b and distance, d,

Aλ(l, b, d). Galactic dust extinction of the Milky Way is discussed in more

detail in Section 4.6 and Section 5.3.1.

Even with increasingly large surveys and increasingly accurate data, we

will still need to infer the properties of the Milky Way from data which do not

uniformly cover the Galaxy, and comes with varying levels of observational

errors and a complicated observational selection function. Creating computa-

tional models of the complex structures within the Galaxy, such as the bar and
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spiral arms, will enable us to compare theory with observations, and reveal

the structures of the Galactic disc.

1.5 Galaxy Modelling

There are three different types of galaxy model, mass models, kinematic mod-

els and dynamical models. Mass models only describe the density distribution

and the galactic potential (e.g. Klypin et al. 2002). Kinematic models specify

the density and velocity distributions, but lack the constraint that the model

must be in a steady state in the galactic potential. A model which also sat-

isfies this criteria is known as a dynamical model (e.g. Widrow et al. 2008).

This section will give brief examples of mass and kinematic galaxy models,

and then focus on dynamical modelling methods.

One classical example of a mass model of the Milky Way is in

Bahcall & Soneira (1980), who construct a mass model for the Milky Way

based upon the priors of observations of the density/luminosity structure of

external galaxies. For their standard model, they use an exponential disc

with a de Vaucouleurs spheroidal bulge (e.g. de Vaucouleurs 1959). They use

the analytical stellar luminosity function for the disc of Tremaine et al. (1975)

which is fit to the data of McCuskey (1966), Luyten (1968) and Wielen (1974).

They compare their ‘standard’ model and observed star counts and find that

at lower latitudes there is an offset between star counts in the model and the

observed counts of Seares et al. (1925) by approximately 0.3 mag. However,

there is good agreement at high latitudes up to apparent magnitude V ≤ 22

mag. There is an excess of stars fainter than V = 22 mag in the data of

Tyson & Jarvis (1979) compared to the model, which they suggest may be

due to stars in a separate stellar halo component, which is not included in the

model. Additionally, Bahcall & Soneira (1980) show that the rotation curve

of their standard model is not consistent with observations, and requires a

massive dark halo component to reproduce the flat rotation curve.

Robin et al. (2003) present a kinematic Milky Way model, known as the

Besançon model. Robin et al. (2003) use measurements of the luminosity func-

tion (Jahreiß & Wielen 1997), age-velocity dispersion (Gomez et al. 1997) and
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local density and potential (Creze et al. 1998) from the Hipparcos data to con-

strain the model. The Besançon model contains a stellar halo, where both the

Initial Mass Function (IMF) and density law are constrained by star counts at

high and medium latitudes (Robin et al. 2000). Robin et al. (2012) provide a

view of the Besançon galaxy model as seen by Gaia, taking into account dust

extinction using a 3D dust distribution model of Drimmel et al. (2003). How-

ever, there is no inclusion of Gaia-like observational error. The Gaia Object

Generator (gog, Luri et al. 2014) is used to create simulated Gaia catalogue

data from the Besançon model, adding observational errors based upon Gaia′s

science performance estimates.

Czekaj et al. (2014) present a revised version of the Besançon galaxy

model with updated methodology, which treats the IMF, Star Formation Rate

(SFR) and stellar evolutionary tracks as free parameters. They compare the

old and new models with Tycho-2 data and find that the new model better re-

produces the Tycho-2 observations. The best fit to the Tycho-2 data is found

when using a decreasing SFR (Aumer & Binney 2009) and either the Kroupa-

Haywood v6 (Czekaj et al. 2014) or Haywood-Robin (Robin et al. 2003) IMF.

However, while the Besançon model reproduces star counts to an excellent

degree, it is not guaranteed to be in a steady state within its own potential,

meaning it is not a dynamical model.

There are arguably six different types of dynamical galaxy model, although

sometimes where the line of distinction is drawn can be ambiguous. These

are moment based models, distribution function based models, Schwarzchild

models, torus models, action-angle models and N -body models.

1.5.1 Moment based methods

Moment based methods find solutions of the Jeans equation (or higher order

velocity moments of the collisionless Boltzmann equation) that best fit the

observed moments and minimise χ2 (e.g. Young 1980;  Lokas 2002; Cappellari

2008; Williams et al. 2009; Cappellari et al. 2009). The main drawback of this

method is that there is no guarantee that there will be a distribution function

with the required velocity moments. It is also usually restricted to spherically

symmetric models as the symmetry allows simplifying assumptions to be made,
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but may be extended to axisymmetic models under certain circumstances.

1.5.2 Distribution function based methods

Distribution function based methods fit the distribution function to the

data. These methods are used in three stages of complexity. Firstly, there

are methods which can be applied to only spherical, or integrable systems

(e.g. Dejonghe 1984, 1986; Bishop 1987; Dejonghe & de Zeeuw 1988; Gerhard

1991; Hunter & de Zeeuw 1992; Merritt & Tremblay 1994; Carollo et al. 1995;

De Bruyne et al. 2000; Kronawitter et al. 2000). Secondly, perturbation the-

ory can be used to extend the method to near integrable potentials (e.g.

Saaf 1968; Dehnen & Gerhard 1993; Matthias & Gerhard 1999). Thirdly, the

method can be applied to axisymmetric models by assuming that the distri-

bution function is only dependent on the energy, E, and the angular momen-

tum, Lz (e.g. Hunter & Qian 1993; Dehnen & Gerhard 1994; Kuijken 1995;

Qian et al. 1995; Merritt 1996). They can be more general than the moment

based methods, and in principle there is no reason why they cannot be ex-

tended to the third integral of motion.

1.5.3 Schwarzschild methods

Schwarzschild’s methods, also known as orbit based methods, work by com-

puting a large number of orbits evolved over many orbital periods in a fixed

potential. The orbit information is then collected into an orbit library, which

is weighted to produce the best fit to the target model (e.g. Schwarzschild

1979; Richstone & Tremaine 1985; Schwarzschild 1993; van der Marel et al.

1998; Cretton et al. 1999; Gebhardt et al. 2000; Cappellari et al. 2002;

Valluri et al. 2004; Thomas et al. 2005; Cappellari et al. 2006; Shapiro et al.

2006; Thomas et al. 2009; van den Bosch & de Zeeuw 2010). This method has

the advantage of not requiring the distribution function or the other integrals

of motion, and in certain rare circumstances, the distribution function may

even be recovered (Häfner et al. 2000). Schwarzschild’s method is normally

considered to be the most powerful of the methods discussed so far, and in

principle is not restricted by symmetry. However, due to the complexity of

applying the method to complex phase space structure, it is usually only used
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for axisymmetric models.

1.5.4 Torus methods

Torus methods are similar to orbit based methods (e.g. McGill & Binney 1990;

Binney & Kumar 1993; Kaasalainen & Binney 1994; Binney & McMillan

2011; McMillan & Binney 2012). The key difference between torus mod-

elling and orbit based modelling is that while in orbit based modelling the

orbits are time series of phase-space points, in torus modelling these phase-

space points are replaced by orbital tori. The star’s position on this torus is

defined by its action and angle variables. Binney & McMillan (2011) list the

advantages of torus modelling over Schwarzschild modelling. For example,

once the phase-space density of the orbits becomes known, it is easier to relate

the weights of individual tori to the distribution function than in orbit based

modelling. Torus modelling is a method to provide orbits, (x,v), from the

action variable, J .

1.5.5 Action based methods

Action based models are similar to torus modelling, but performed in the oppo-

site direction. While torus modelling takes the action, J , and outputs an orbit,

(x,v), action based modelling takes the orbit, (x,v), and outputs an action,

J (e.g. McMillan & Binney 2008; Sanders 2012; Binney 2012a,b; Bovy & Rix

2013; Bovy 2014, 2015; Sanders & Binney 2015). McMillan & Binney (2008)

propose an iterative procedure for finding actions from orbits, starting from

an estimate of the action and moving towards a solution. However, this is a

slow process and a solution is not guaranteed. Later works suggest using a

Stäckel potential (Stäckel 1890) as an approximation either for each individual

orbit (Sanders 2012) or the Galactic potential (Binney 2012a). However, the

methods in Sanders (2012) and Binney (2012a) break down when the radial

and/or vertical actions of an orbit are of a similar magnitude to the angular

momentum (Bovy 2014).

1.5.6 N-body modelling

N -body models are based on the gravitational attraction between a collection

of ‘N ’ bodies. These form the basis for the work in this thesis and will be
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discussed in more detail.

The first N -body simulation is shown in Holmberg (1941), who simulates

an encounter between two galaxies using light bulbs instead of computers

to simulate the gravitational attraction between N -bodies. Holmberg (1941)

observes tidal features when the galaxies interact (although describing them

as spiral arms), which are later explored in more depth by Toomre & Toomre

(1972). The first computational N -body model is described in von Hoerner

(1960), who models a star cluster with N ≤ 16, where N is the number of

stars. Aarseth (1963, 1966) then examines galaxy clusters using 25 ≤ N ≤ 100.

White (1976) expands upon the work of Aarseth, using a N=700 body system.

In White (1976), the total mass of the model is chosen to be equivalent to the

total luminosity of the Coma cluster. He finds that the luminosity profile of

the model matches well the luminosity profile for the Coma cluster in Oemler

(1974), implying strong levels of mass segregation. However, White (1977)

shows that mass segregation in the Coma cluster is in fact weak, and thus

a large fraction of the mass of the Coma cluster is not contained within the

galaxies, in agreement with Rood (1965).

As shown in Dehnen & Read (2011), the increase in N has roughly dou-

bled every two years following Moore’s Law (e.g. Moore 1965), until the last

decade when the development of parallel computing has sparked a rapid in-

crease in N . Sellwood & Carlberg (1984) use 20,000 particles to model a

spiral galaxy, and show the spiral arms arise and then disappear as the disc

evolves. However, Fujii et al. (2011) show that N -body simulations of pure

stellar discs, i.e. without gas, with low numbers of particles experience high

shot noise which leads to rapid growth of spiral structure, which in turn leads

to rapid heating of the disc and disrupts the spiral arms. Fujii et al. (2011)

give a limit of N & 3 × 106 over which this numerical heating is avoided.

Recent simulations easily reach this limit, for example Baba et al. (2010) use

3× 106 star particles and 106 gas particles and D’Onghia et al. (2013) use 108

star particles.

N -body modelling can be collisional, or collisionless, with the collisional

simulations being useful to model star clusters and galactic centres, and the
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collisionless simulations being useful to model galaxies and large scale struc-

ture (for a review, see Dehnen & Read 2011). The key assumption of stellar

dynamics in galaxies is that the stellar systems are collisionless (e.g. Binney

2013). Therefore the collisionless N -body models are good approximations for

galactic dynamics, where the number densities are too small and the dynam-

ical time is too long for stellar encounters to be important (Dehnen & Read

2011). This thesis presents a novel method to construct an N -body model of

the Milky Way disc, and thus we will focus on collisionless N -body modelling.

Unlike collisional N -body systems, two body interactions in collisionless

systems must be numerically suppressed in order to maintain the collisionless

nature of the system. This is achieved by the introduction of softening, which

reduces the gravitational force experienced when particles are very near to

each other. The minimum softening length required to suppress large angle

deflections in two body interactions is given by (Dehnen & Read 2011)

ǫ ∼ Gm/σ2, (1.1)

where m is the particle mass and σ is the typical velocity dispersion. Softening

may be fixed, with the same value of the softening length parameter, ǫ, for

each particle, or adaptive, where ǫi is based upon the local density around the

ith particle (e.g. Dehnen & Read 2011).

With or without the introduction of softening, calculating the gravita-

tional force acting on an N -body particle by summing up the force acting

on it from every other particle requires N2 calculations. This becomes pro-

hibitively expensive for large values of N . N -body codes using direct summa-

tion are useful for the modelling of star clusters, although larger systems such

as galaxies require a different method of force calculation to perform high-

resolution simulations in a reasonable length of time. Barnes & Hut (1986)

propose a tree algorithm, which reduces the computational cost to the order

of N log(N), while introducing some small errors. The tree code approximates

the force of distant groups of particles using a multipole expansion around the

groups centre of mass. These groups are determined by a ‘tree’ of cubic cells,

which, if they contain more than one particle, are split into eight daughter
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cells half the size of the parent cell (in a standard ‘oct-tree’). These are split

until no cells contain more than a single particle. Which level of these hier-

archical cells the force acting on a particle is calculated from depends on the

distance between the cell and the particle and the size of the cell. When the

cell contains one particle, the force from that particle is calculated directly

(e.g. Dehnen & Read 2011).

As an alternative, the gravitational force can be calculated using a

particle-mesh based method. Particle-mesh codes calculate the potential over

a grid, starting from calculating the density field and solving the associated

Poisson equation (Hockney & Eastwood 1981). The computational time is of

the order Nglog(Ng), where Ng is the number of grid points. However, the

method is inaccurate for inhomogeneous particle distributions when the reso-

lution of the grid is insufficient to calculate forces for regions of high particle

density. Adaptive mesh codes (e.g. Berger & Oliger 1984) address this issue

by constructing a finer grid in areas of higher density.

The primary issue with N -body modelling is how to tailor the model to

match observational data or theoretical constraints. Owing to the chaotic

nature of the evolution, it is not trivial to set up the initial conditions for an

N -body simulation such that the simulated galaxy evolves into the desired

form. We summarise a few examples, although a comprehensive review of

N -body galaxy models will not be included here.

Fux (1997) creates 13 N -body barred models of the Milky Way by evolv-

ing bar unstable axisymmetric models containing disc, spheroid and dark

halo components. He evolves the models using the particle-mesh code of

Pfenniger & Friedli (1993). He then scales the models to match the line-of-

sight velocity dispersion of M giants in Baade’s window, (l, b) ∼ (1o,−4o),

in Sharples et al. (1990). The location of the observer in the models is con-

strained by COBE/DIRBE data, resulting in a best fitting angle of the bar

of ∼ 28o ± 7o. The bars in the best fitting models have a pattern speed in the

range of Ωp = 45 − 55 km s−1 kpc−1.

Widrow et al. (2008) uses a Markov chain Monte Carlo (MCMC) method

to construct a series of axisymmetric Milky Way models consisting of a disc,
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bulge and halo, which are fit to nine observational data sets including estimates

of the rotation curves and total mass at large radii in Dehnen & Binney (1998).

They compare the range of disc and bulge masses from their MCMC analysis

with models from the literature and find good agreement with Bahcall et al.

(1983), Kent (1992) and Klypin et al. (2002), but find significantly different

values than Johnston et al. (1999), who favour a higher mass for the bulge

and disc. However, the models do not well reproduce the line-of-sight velocity

dispersion in the bulge found in Tremaine et al. (2002). Widrow et al. (2008)

choose 25 of these models with a range of structural parameters and evolve

them for 5 Gyr using the N -body tree code of Dubinski (1996). The models

have 8×105 disc particles, 2×105 bulge particles and 106 halo particles. They

find that all the N -body models produce bars, with the time of formation

dependent on the parameters of the model. Widrow et al. (2008) find that

the pattern speeds of the bars are initially around Ωp = 50 km s−1 kpc−1, and

decline over a few Gyr to values of around Ωp ∼ 20−30 km s−1 kpc−1, owing to

momentum transfer to the halo. By comparing with values from the literature,

for example Ωp = 60 − 70 km s−1 kpc−1 (Binney et al. 1997) and Ωp = 53 ±
3 km s−1 kpc−1 (Dehnen 1999), Widrow et al. (2008) conclude that if their

models are reasonable approximations to the Milky Way, then the Galaxy’s

bar has formed within the last 1-2 Gyr. However, as discussed in Section

1.4, the pattern speed of the Galaxy’s bar is not well constrained, and lower

pattern speeds are found in different studies, e.g. Ωp = 25 − 30 km s−1 kpc−1

(Portail et al. 2015), which, by this argument, would imply an older bar. Using

these axisymmetric models which match observations as initial conditions for

N -body simulations allows construction of Milky Way-like dynamical models.

However, the bar formation leads to the models reproducing the observations

less well (Debattista 2009).

Shen et al. (2010) construct a N -body model of the Milky Way. The

model of Shen et al. (2010) contains a boxy bar which forms self-consistently as

the simulation evolves. The bar is formed as the disc buckles, which results in

the bar thickening vertically. The bar resembles the peanut structure observed

in the Milky Way (e.g. Wegg & Gerhard 2013, see Section 1.4.1) and external
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galaxies (e.g. Burbidge & Burbidge 1959). The model is then scaled to match

the radial velocity data from BRAVA. They find that the boxy bar, seen almost

edge-on in the model, can reproduce the BRAVA data, and is also consistent

with the radial velocities in Rangwala et al. (2009), without the need for a

classical bulge formed by mergers. They find a best fitting bar angle of ∼ 20o.

The Made-to-Measure method (Syer & Tremaine 1996) provides another

way to construct N -body models of a desired form, which can reproduce ob-

servational data and galactic structure. These form the basis for the work in

this thesis and will be discussed in more detail in the next section.

1.6 The Made-to-Measure method

1.6.1 Theory and development

The Made-to-Measure (M2M) method, pioneered by Syer & Tremaine (1996),

is a procedure for tailoring existing galaxy models to match some target data.

The existing galaxy model can be a test particle simulation, or an N -body

simulation, and the target data can be in the form of a distribution function,

another galaxy model, or real observational data. Syer & Tremaine (1996)

show that the M2M method is capable of constructing equilibrium systems

similar to the target system, by changing the weights of the model particles

so that the differences between the model and target data are minimised and

the observable properties of the target system are reproduced. We give a brief

summary of the method of Syer & Tremaine (1996) here, and a more detailed

description in Chapter 2.

The M2M method is built around the prescription to change the par-

ticle weights over time. Syer & Tremaine (1996) compare some ‘observable’

quantity of the target,

Yj =

∫

Kj(z)f(z)d6z, (1.2)

with the corresponding observable of the model,

yj(t) =

N
∑

i=1

wiKj[zi(t)], (1.3)

where z=(r,v), N is the total number of model particles, i is the ith model

particle, wi is the weight of the ith model particle, j is the jth observable, and
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Kj is a known kernel. They then calculate the difference between the model

observable and the target observable,

∆j(t) =
yj(t) − Yj

Yj
. (1.4)

If ∆j < 0, they increase the weight of the ith particle, wi, and if ∆j > 0, they

decrease wi. The change in weight is controlled with the equation

dwi(t)

dt
= −ǫwi(t)

J
∑

j=1

Kj [zi(t)]

Zj
∆j(t), (1.5)

where ǫ is a small positive constant to control the rate of change, and Z is so

far arbitrary. The kernel Kj ensures that the particle weights are only altered

if the ith particle contributes to the jth observable, and the inclusion of wi on

the right-hand side scales the rate of change with the particle’s weight.

Syer & Tremaine (1996) employ a temporal smoothing scheme (see Chap-

ter 2), which effectively increases the resolution of the model, to help reduce

statistical fluctuations in ∆j for low resolution models. Additionally, if the

number of particles is greater than the number of observables, equation (1.5)

is ill conditioned. If this is the case, while the system as a whole will converge

rapidly to a solution, the individual particle weights will continue to fluctuate.

To address this issue, Syer & Tremaine (1996) introduce a regularisation term

into equation (1.5) to remove the ill conditioning. The regularisation term

forces the weights towards some prior set of values. This transforms equation

(1.5) into

dwi(t)

dt
= ǫwi(t)

[

µ
δS

δwi
−

J
∑

j=1

Kj [zi(t)]

Yj
∆̃j(t)

]

, (1.6)

where µ is a parameter controlling the strength of the regularisation term, ∆̃j

denotes the temporally smoothed version of ∆j , and S is the entropy, given

by

S = −
∑

i

wilog(wi/ŵi), (1.7)

where ŵi is a pre-determined set of weights which we will call the prior. The

prior is set as ŵi = 1/N in Syer & Tremaine (1996).

Syer & Tremaine (1996) show results for five one dimensional simulations

in a fixed potential, demonstrating the importance of the temporal smoothing
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and the regularisation term. Syer & Tremaine (1996) use three target mass

models, one spherical and two triaxial, and test their M2M algorithm’s ability

to reproduce each target system. For each system they start from three dif-

ferent initial conditions and use both a fixed analytical gravitational potential

and a fixed gravitational potential calculated numerically in a grid at the be-

ginning of the simulation. By exploring each combination, they perform twelve

models, of which all except one are successful. The successful models converge

to a solution which is suitably similar to the target. The unsuccessful model

fails to reproduce a sufficient number of tube orbits of the target, because the

initial condition is set up to be dominated by box orbits. Syer & Tremaine

(1996) demonstrate the potential of the M2M method, although it has seen

little use until recently.

nmagic, developed by de Lorenzi et al. (2007), is the first major imple-

mentation of the M2M algorithm. In Syer & Tremaine (1996), only density

observables are used to constrain the model. nmagic improves upon the ini-

tial M2M algorithm of Syer & Tremaine (1996) by adding the ability to use

velocity constraints. nmagic was also the first M2M algorithm to include

observational errors in the constraints by replacing equation (1.4) with

∆j(t) =
yj(t) − Yj

σ(Yj)
, (1.8)

and equation (1.6) with

dwi(t)

dt
= ǫwi(t)

[

µ
δS

δwi
−

J
∑

j=1

Kj [zi(t)]

σ(Yj)
∆̃j(t)

]

, (1.9)

where σ(Yj) is the error in the target observable Yj. This was an important

step forward, as it allowed real observational data to be used as constraints.

nmagic has been applied to observational data of external galaxies. For

example, de Lorenzi et al. (2008) introduce the likelihood equation to enable

the use of discrete Planetary Nebula (PN) velocity measurements as con-

straints, and apply nmagic to NGC 4697. They construct models with a

variety of dark matter haloes which are consistent with the observations, and

they state that more PN velocities at a higher distance from the centre of

the Galaxy would be needed to further constrain the halo with this method.
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nmagic has also been applied to NGC 3379 in de Lorenzi et al. (2009), where

they conclude that the kinematics of NGC 3379 are consistent with a number

of dark matter halo profiles, and do not well constrain the mass distribution in

the galaxy. Das et al. (2011) apply nmagic to surface-brightness data, long-

slit kinematics and PN velocities to create a dynamical model of the massive

elliptical galaxy NGC 4649. They find that they cannot constrain well the

circular velocity curve, when they fit only surface brightness and long-slit

kinematic constraints. However, when they include PN kinematics, they find

a rotation curve that is flat outside 12 kpc and which is consistent with the

X-ray observations of Nagino & Matsushita (2009). de Lorenzi et al. (2013)

apply nmagic to NGC 4244 and create initial conditions of N -body models

of the galaxy to test whether the nuclear star cluster in the centre of NGC

4244 could have formed via accretion of star clusters. They find that accretion

of a star cluster of more than 13 percent of the mass of the nuclear cluster is

inconsistent with the vertical anisotropy.

nmagic has been improved recently by Morganti & Gerhard (2012), who

propose a new regularisation scheme based upon a flexible prior. The Global

Weight entropy Regularisation (GWR) scheme in Syer & Tremaine (1996) en-

courages a structure whose particle weights are similar to the global prior,

typically ŵi = 1/N , where N is the total number of particles. This makes it

difficult to recover highly anisotropic structure and strong phase space gradi-

ents unless they are already in place in the initial conditions. This was previ-

ously noticed by de Lorenzi et al. (2008) and de Lorenzi et al. (2009) who use

low levels of regularisation in their models to recover strong radial anisotropies.

Morganti & Gerhard (2012) suggest that instead of constant priors, the pri-

ors are modified such that particles on nearby orbits have similar priors, and

particles on very different orbits have different priors. They call this Moving

Prior Regularisation (MPR). Morganti & Gerhard (2012) show that MPR is

beneficial to accuracy of the model when it is used in nmagic. They also

show that the system can converge to a unique solution, independent of the

choice of initial model. Morganti & Gerhard (2012) apply nmagic with MPR

to NGC 4697 and NGC 3379, which are the galaxies previously modelled in
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de Lorenzi et al. (2008) and de Lorenzi et al. (2009), respectively. For both

galaxies, the models using MPR are smoother and are less dependent upon

the initial particle model than the models using GWR. Morganti et al. (2013)

apply the updated version of nmagic to NGC 4494, and find a higher dark

matter fraction but less radial anisotropy in this galaxy than in NGC 4697

and NGC 3379, and a strong central concentration of baryons.

Dehnen (2009) proposes a number of improvements to the M2M method-

ology of Syer & Tremaine (1996), and demonstrates its application to the gen-

eration of N -body initial conditions. For example, Dehnen (2009) addresses

the issue of total weight conservation, which is not guaranteed in the original

algorithm. Dehnen (2009) suggests that the simplest method to achieve total

weight conservation is to re-normalise the particle weights after each iteration

such that their total weights equal one. He also proposes to use total weight

conservation itself as a constraint. However, if the total mass of the system

is unknown, e.g. in the case of the Milky Way, the total weight needs to be

allowed to evolve freely according to the constraints. He also describes a parti-

cle re-sampling scheme, which is suggested in Syer & Tremaine (1996) but not

implemented. A large range of weights within the model effectively reduces

the resolution of the N -body model, and thus at least periodic resampling of

particles is desirable.

Malvido & Sellwood (2015) also make use of the M2M method to con-

struct self-similar Einasto N -body dark matter halos (Einasto & Haud 1989).

The M2M adaptation in Malvido & Sellwood (2015) is most similar to

the methodology of de Lorenzi et al. (2007), who also created triaxial ha-

los (see also de Lorenzi et al. 2009). However, the main difference is that

Malvido & Sellwood (2015) do not employ temporal smoothing, which they

argue is unnecessary and counterproductive for sufficiently large values of N .

Malvido & Sellwood (2015) show that the generated halo models are stable

after the model has converged to its solution, which is tested by evolving the

model self-consistently without the M2M algorithm. They renormalise the

particle masses to conserve the total mass but do not resample the particles,

which results in an uneven spread of particle masses in the final model.
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It is also worth mentioning the iterative method as described in

Rodionov et al. (2009), which bears some similarities to M2M, and has been

used to create equilibrium N -body systems matching certain constraints. The

iterative method starts with an existing dynamical model. Then, it is evolved

freely for a set amount of time via a standard N -body code. Then, the param-

eters of the model are altered to better reproduce the desired target system.

These last two steps are repeated iteratively until the model agrees with the

constraints. For example, the initial model satisfies a known mass distribution

but the velocities are not dynamically consistent. The model is evolved using

an N -body code. The resulting velocity distribution is mapped onto the ini-

tial model, preserving the original mass distribution, but the evolved velocity

distribution. After many iterations, the model is an equilibrium dynamical

model with the desired mass distribution. Unfortunately, the method cannot

be used when the mass distribution is not known. Because of this, it is un-

suitable to be applied to the case of the Milky Way which we are interested

in.

1.6.2 Application to the the Milky Way

As well as external galaxies, the M2M method has also been applied

to the Milky Way. Bissantz et al. (2004) apply the M2M algorithm of

Syer & Tremaine (1996) to the Milky Way for the first time, and create a

stellar dynamical model of the Milky Way’s barred bulge and disc. They

start with a barred galaxy generated by an N -body simulation, whose initial

condition is an axisymmetric bar-unstable system used in Debattista (2003).

For density constraints, Bissantz et al. (2004) use the previously constructed

mass model of the Milky Way of Bissantz & Gerhard (2002) based upon the

COBE/DIRBE map in Spergel et al. (1996). They do not include kinematic

constraints. However, the kinematics of the model agree well with kinematic

observations towards Baade’s Window ((l, b) = (1o,−4o), Sharples et al. 1990;

Spaenhauer et al. 1992) and the field (l, b) = (8o, 7o) (Minniti et al. 1992),

which are lines-of-sight with low extinction. Their dynamical model is also

consistent with the microlensing event timescale distribution in Alcock et al.

(2000).
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The model in Bissantz et al. (2004) is an encouraging first attempt at

M2M modelling of the Milky Way. However, the M2M algorithm has un-

dergone significant improvements since Bissantz et al. (2004), for example the

implementation of kinematic constraints in de Lorenzi et al. (2007), and much

more observational data has become available, which leaves substantial room

for improvement.

The next application of M2M to the Milky Way is in Long et al. (2013),

the third in a series of three papers. In the first paper, Long & Mao (2010)

present their adaptation of the M2M algorithm, and apply it to the dwarf

spheroidal galaxy, Draco. Then, in Long & Mao (2012), they perform a di-

rect comparison between M2M and the Schwarzchild method with regard to

calculating the mass to light ratios and anisotropy of 24 elliptical and lenticu-

lar galaxies. Long & Mao (2012) find that M2M and Schwarzschild’s method

give similar mass to light ratios, although there is a small difference. However,

there is less agreement between the methods on the anisotropy.

Long et al. (2013) apply their M2M algorithm in Long & Mao (2010,

2012) to observed radial velocity data from the Bulge RAdial Velocity Assay

(BRAVA) survey (e.g. Rich et al. 2007; Kunder et al. 2012). They use density

constraints from the particle mass distribution of the N -body boxy/barred

Milky Way galaxy model of Shen et al. (2010) (see Section 1.5.6), which

matches BRAVA data after suitable mass scaling. Then, Long et al. (2013)

rotate the gravitational potential calculated from the N -body model of

Shen et al. (2010) with the assumed pattern speed of the bar. They run multi-

ple models altering the pattern speed and angle of the bar, and explore which

models best fit their observables. They find that their best model recovers the

bar angle and pattern speed of the Shen et al. (2010) N -body model, θ = 30o

and Ωp = 40 km s−1 kpc−1 respectively, and reproduces the mean radial ve-

locity and radial velocity dispersion of the BRAVA data well.

The most recent work of the M2M method, also applied to the Milky

Way, is Portail et al. (2015), who also make use of the BRAVA data as kine-

matic constraints. For the density constraints, they use the three dimen-

sional number density distribution of red clump giants in the Galactic bul-
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ge/bar, determined from the VISTA variables in the V́ıa Láctea survey (VVV,

e.g. Saito et al. 2012) in Wegg & Gerhard (2013). Portail et al. (2015) apply

nmagic to five different initial models. The models differ in the degree of max-

imality of the disc, which is the proportion of the stellar disc’s contribution

to the rotation velocity curve. Portail et al. (2015) find a similar total mass

of the bulge/bar for the different models, although the stellar fraction shows

significant difference dependent on the degree of maximality. They obtain bar

pattern speeds of Ωp = 24.7 − 29.0 km s−1 kpc−1, which is a little lower than

the best fit bar pattern speed determined by Long et al. (2013) of Ωp = 40

km s−1 kpc−1 who also use the BRAVA data. Portail et al. (2015) also com-

pare the mass to light ratios from their models with predictions from different

IMFs. This is important because the conversion between the number density

of red clump giants and the stellar mass density is not known. The conver-

sion requires the assumption of the ratio between the number of red clump

giants and the total stellar mass integrated over the masses of all types of star,

which depends on their age and metallicity, and the IMF. They effectively rule

out the Salpeter IMF (Salpeter 1955) for a bulge population with Age ≥ 10

Gyr, while the Kroupa (Kroupa 2001), Chabrier (Chabrier 2003) and Zoccali

(Zoccali et al. 2000) IMFs are consistent with the red clump/mass ratio which

is required to reproduce the observations with nmagic. Portail et al. (2015)

find that the X-shape of the bulge is off-centre, which is common in exter-

nal galaxies (e.g. Bureau et al. 2006). This application of M2M to the Milky

Way’s bulge is an up to date example of the power of the M2M method to

dynamically model our Galaxy, and is encouraging for future M2M modelling

of the Milky Way.

1.7 The work of this thesis

The aim of this thesis is to develop a novel M2M method for reconstruct-

ing the mass and kinematic structure of the Milky Way, in particular the

disc component, from the data returned by ESA’s Gaia mission. Previous

M2M algorithms use target data in the form of a distribution function or a

binned density distribution. However, the data that Gaia will return will be
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the position and velocity of individual stars. Therefore, we have designed a

particle-by-particle M2M algorithm, primal, that compares the observables

at the location of each star (or the target stellar particle) with the model

observables at the same locations, and adjusts the model particle masses in

the same fashion as the original algorithm of Syer & Tremaine (1996). The

gravitational potential of the Milky Way is not well known. Thus, in primal

we calculate the model potential self-consistently from the changing particle

masses, which enables us in theory to simultaneously recover the potential of

the galactic disc.

Part of the challenge of constructing a realistic model of the Milky Way

disc is due to our position within it. Even Gaia will not see the majority

of the stars in our own Galaxy, owing to the magnitude limit and complex

observational selection effects such as dust extinction. In this thesis, we show

that primal can construct a dynamical model of a disc galaxy similar to the

Milky Way, from mock observational data with a Gaia-like selection function

and Gaia level errors. Although there will be no Gaia data releases before

summer 2016, we can develop, calibrate and test primal with mock Gaia

data from systems whose full structural information is known, to improve the

resulting dynamical model. The goal of this thesis is to develop a dynamical

model based on M2M, ready to be applied to the Gaia data.

It is an open question whether N -body models, or other dynamical mod-

els, can truly represent the Milky Way or other galaxies. However, accurate

models of the Milky Way are important for allowing us to understand and

compensate for observational bias, which are present in all Galactic surveys

owing to complicated observational selection effects such as dust extinction.

This thesis is organised as follows. Chapter 2 describes our M2M method.

Section 2.2 describes the traditional M2M method, and Section 2.3 describes

our particle based adaptation. We then show our initial success recreating

an axisymmetric target disc galaxy model in Section 2.4. Chapter 3 shows

our recovery of structured discs. Section 3.2.1 shows the adaptations to the

method since Chapter 2, and Section 3.3 shows our success recovering three

disc galaxy models with non-axisymmetric structure. Chapter 4 describes the
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application of primal to mock data in equatorial co-ordinates, with the er-

rors expected in the Gaia data, taking into account Galactic dust extinction.

Section 4.3 describes the construction of single population mock Gaia data

and Section 4.5 shows our success in recovering the boxy-disc structure of

the target galaxy from mock Gaia tracer data created from an N -body simu-

lated barred disc galaxy taking into account extinction and Gaia-like errors.

Chapter 5 describes the construction of more realistic mock Gaia data and an

example of its use. In Section 5.3.2, we describe my population synthesis tool,

snapdragons. In Section 5.4, we use it to make predictions about the visi-

bility in the Gaia-like observational data of peculiar velocity structure around

spiral arms seen in our N -body simulations. In Chapter 6 we summarise our

conclusions and discuss possible avenues for future work. Chapter 2 is pub-

lished in Hunt & Kawata (2013), Chapter 3 is published in Hunt et al. (2013),

Chapter 4 is published in Hunt & Kawata (2014b) and Chapter 5 is published

in (Hunt et al. 2015).
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Chapter 2

Disc galaxy modelling with a

particle-by-particle method

This chapter is based on Hunt & Kawata (2013)

In this chapter, we describe the initial version of a new particle-by-particle

adaptation of the made-to-measure (M2M) method, aiming to model the

Galactic disc from upcoming Galactic stellar survey data. In our new particle-

by-particle M2M method, the observables of the target system are compared

with those of the model galaxy at the position of the target stars (i.e. par-

ticles). The masses of the model particles are changed to reproduce the ob-

servables of the target system, and the gravitational potential is automatically

adjusted by changing the masses of the particles. This chapter demonstrates,

as the initial work, that the particle-by-particle M2M can recreate a target

disc system created by an N -body simulation in a known dark matter po-

tential, with no error in the observables. The radial profiles of the surface

density, velocity dispersion in the radial and perpendicular directions, and the

rotational velocity of the target disc are all well reproduced from the initial

disc model, whose scale length is different from that of the target disc. We

also demonstrate that our M2M algorithm can be applied to an incomplete

data set and recreate the target disc reasonably well, when the observables

are restricted to a part of the disc. We discuss our calibration of the model

parameters and the importance of regularisation.



2.1. Introduction 56

2.1 Introduction

The previous M2M algorithms discussed in Section 1.6 use a distribution func-

tion or binned density distribution. However, the data that Gaia and the

related surveys return will be in the form of individual stellar data. There-

fore, we have designed a particle-by-particle M2M algorithm that compares

the observables at the location of each star (or the target particle) with the

model observables at the same locations, and adjusts the weights in the same

fashion as the original algorithm of Syer & Tremaine (1996). In this chap-

ter, we present proof of concept of the particle-by-particle M2M by recreating

disc galaxies, generated with a Tree N -Body code, gcd+ (Kawata & Gibson

2003). Our algorithm uses a self-consistent gravitational potential of the model

galactic disc, which evolves over time along with the particle weights. We also

show a model constructed from a partial target data set, demonstrating that

the observables of the target galaxy do not have to cover the whole galaxy for

M2M to work. This is the first step towards the real observational data from

Galactic surveys, where the information will be provided for a limited region

of the sky, with a more complicated selection function due to the dust extinc-

tion, crowding and stellar populations. This chapter is organised as follows.

Section 2.2 describes the traditional M2M method and Section 2.3 describes

the methods behind our particle based adaptation. Section 2.4 shows the per-

formance of the particle-by-particle M2M for recreating the target disc system.

In Section 2.5, we discuss the accomplishments of this chapter, and describe

the next stages of our work.

2.2 The M2M algorithm

In this section, we will give a brief description of the M2M algorithm as de-

tailed, for example, in Syer & Tremaine (1996), de Lorenzi et al. (2007) and

Long & Mao (2010), which forms the base for our work. The M2M algorithm

works by calculating observable properties (observables hereafter) from the

model and the target, and then adapting particle weights such that the prop-

erties of the model reproduce those of the target. The target can be in the

form of a distribution function, an existing simulation, or real observational
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data. The model can be a test particle simulation in an assumed fixed or

adaptive potential, or a self-gravity N -body model.

As stated in Chapter 1, the observables of the target system are described

by

Yj =

∫

Kj(z)f(z)d6z, (2.1)

where j represents each individual observable, z = (r,v) are the phase space

coordinates, f(z) is the distribution function of the target galaxy and Kj is

a known kernel. Observables can come in many forms, including surface or

volume densities, surface brightness and line-of-sight kinematics. The corre-

sponding observable for the model takes the form

yj =
N
∑

i=1

wiKj [zi(t)], (2.2)

where wi are the particle weights and zi are the phase space coordinates of

the model’s ith particle. We then calculate the difference in the observables of

the target and the model,

∆j =
yj(t) − Yj

Yj
. (2.3)

We then use this ∆j to determine the so called force of change with the equa-

tion
d

dt
wi(t) = −ǫwi(t)

∑

j

Kj [zi(t)]

Zj
∆j(t), (2.4)

where Zj so far is an arbitrary constant, and the factor Ki/Zj can be thought

of as the degree to which the ith particle contributes to the jth observable. ǫ is

a parameter enabling us to control the rate of change. The linear dependence

of equation (2.4) upon wi, coupled with the provision that a small enough ǫ

is used, ensures that the weights do not become negative. Syer & Tremaine

(1996) show a proof of convergence for equation (2.4) providing that the system

starts close to the target.

If N>J , i.e. the number of the model particles, N , greatly exceeds

the quantity of available constraints, J , the differential equation (2.4) is ill-

conditioned. Syer & Tremaine (1996) suggest removing this ill conditioning

by introducing entropy, by maximising the function

F = µS − 1

2
χ2, (2.5)
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where

χ2 =
∑

j

∆2
j , (2.6)

and µ is a parameter to control the regularisation. The entropy is given by

S = −
∑

i

wi ln

(

wi

ŵi

)

, (2.7)

where ŵi are the priors, a predetermined set of weights, normally identi-

cal to each other such that ŵi = 1/N . The system can be normalised

(de Lorenzi et al. 2007) such that

N
∑

i=1

wi = 1. (2.8)

This is useful if the total mass of the target system is one of the constraints.

We do not impose this restriction as we wish to be able to create a system

with a different total mass from the initial model.

Once the new entropy term is introduced to the force of change, equation

(2.4) is replaced by

d

dt
wi(t) = −ǫwi(t)

[

∑

j

Kj[zi(t)]

Yj

∆j(t) − µ
δS

δwi

(t)

]

, (2.9)

or

d

dt
wi(t) = − ǫwi(t)

[

∑

j

Kj[zi(t)]

Yj

∆j(t)

+ µ

(

ln

(

wi(t)

ŵi

)

+ 1

)

]

, (2.10)

for the most complete form. Note that Zj has been replaced by Yj due to the

maximisation of equation (2.5).

It is shown in Syer & Tremaine (1996) and de Lorenzi et al. (2007) that

fluctuations in equation (2.3) may be reduced by employing temporal smooth-

ing, effectively boosting N without drastically increasing computation time.

This is achieved by replacing ∆j(t) in equation (2.4) with ∆̃j(t), where

∆̃j(t) = α

∫

∞

0

∆j(t− τ)e−ατdτ, (2.11)
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with α being small and positive. This ∆̃j(t) can be calculated from the differ-

ential equation

d∆̃(t)

dt
= α(∆ − ∆̃). (2.12)

This temporal smoothing effectively increases the number of particles from N

to

Neff = N
t 1

2

∆t
, (2.13)

where ∆t is the length of the time step and t 1

2

= (ln 2)/α is the half life

of the ghost particles. Syer & Tremaine (1996) show that excessive temporal

smoothing is undesirable, and should be limited to α ≥ 2ǫ.

The parameters ǫ, µ and α must be determined via parameter search. We

will discuss our choice of these parameters in Section 2.3.4.

2.3 Particle-by-particle M2M

This section describes our original adaptation to the M2M algorithm. The

majority of the methodology remains the same as described in Section 2.2,

with the most substantial difference involving the Smoothed Particle Hydro-

dynamics (SPH) kernel (e.g. Lucy 1977; Gingold & Monaghan 1977), which

will be described in Section 2.3.1. Syer & Tremaine (1996) used a kernel where

they divide the coordinate space into bins. For example, for the density at the

jth bin with volume Vj , the kernel, Kj(ri), is set to be Mj/Vj if ri is within

the jth bin, where Mj is the mass in the jth bin and equation (2.8) is satisfied.

If ri is outside the jth bin, Kj(ri) = 0. Because Kj(r1) and Kj(r2) are the

same if r1 and r2 are in the same bin, this limits the resolution to the bin

size. However, as mentioned in Section 1.7, our ultimate target is the Milky

Way, and the observables are not binned data, but the position and velocity

of the individual stars which are distributed rather randomly. To maximise

the available constraints, we evaluate the observables at the position of each

star and compare them with the N -body model, i.e. in a particle-by-particle

fashion. To this end we introduce a kernel often used in SPH, W (r, h), which

is a spherically symmetric spline function given by
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W (r, h) = 8
πh3 ×



















1 − 6(r/h)2 + 6(r/h)3 if 0 ≤ r/h ≤ 1/2,

2[1 − (r/h)]3 if 1/2 ≤ r/h ≤ 1,

0 otherwise.

(2.14)

as shown in Monaghan & Lattanzio (1985), where r =| ri − rj |. Note that in

our particle-by-particle M2M the kernel, W (r, h), does not explicitly include

the total mass, Mtot, because we wish to eventually apply it to the Milky Way,

whose mass is unknown. Therefore, the SPH kernel in equation (2.14) is not

equivalent to the M2M kernel, Kj , in Section 2.2.

Below, we describe our particle-by-particle M2M, considering that the

target system is an N -body system whose particle position and velocity are

known without any error. Of course in the real data of the Galaxy, there are

complicated observational errors and selection functions, which often depend

on stellar population and dust extinction. In this chapter, we ignore these and

consider an idealised system for a target. As described in Section 1.7, the aim

of this chapter is to demonstrate how our new M2M works and the potential

of future application to the Galactic disc. We below assume that the target

system consists of a single population, which we shall refer to as particles, and

whose position and velocity are known without errors.

2.3.1 Method

We use the kernel of equation (2.14) to calculate the density at the target

particle locations, rj, of both the target and the M2M model. Hereafter, we

replace the particle weights, wi, with their masses, mi, due to our adoption of

self-gravity in the particle-by-particle M2M. For example, the density of the

target at rj is evaluated by

ρt,j =
N
∑

k=1

mt,kW (rkj, hj), (2.15)

where mt,k is the mass of the target particle, rkj =| rk − rj |, and hj is the

smoothing length determined by

hj = η

(

mt,j

ρt,j

)1/3

, (2.16)
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where η is a parameter and we have set η = 3. In SPH simulations, a value of

η between 2 and 3 are often used, and we employ the relatively higher value to

maximise the smoothness. This results in ∼ 113 neighbouring particles being

included in the smoothing, when the particles are distributed homogeneously

in three-dimensional space. The solution of equation (2.16) is calculated iter-

atively until the relative change between two iterations is smaller than 10−3

(Price & Monaghan 2007). Similarly,

ρj =

N
∑

i=1

miW (rij , hj), (2.17)

from the model particles. The target density, ρt,j, is calculated only once at the

beginning of the M2M simulation, and the model density, ρj , is recalculated

at every timestep.

For velocity constraints, we define the following form of the observables,

using the same kernel. For example for radial velocity

δvt,r,j =

N
∑

k=1

(vt,r,k − vt,r,j)mt,kW (rkj, hj), (2.18)

where vt,r,k is the radial velocity of the kth target particle and vt,r,j = (vt,x,jxt,j+

vt,y,jyt,j)/(x2
t,j + y2t,j)

1

2 is the radial velocity of the target system. Equation

(2.18) represents the weighted mean of the relative velocities of the target

particles within hj of the target particle j.

δvr,j =

N
∑

i=1

(vr,i − vt,r,j)miW (rij, hj) (2.19)

is similarly calculated from the model particles. The same format is applied

for the vertical and rotational velocities.

We then describe the difference in the observables, i.e. equation (2.3). For

density

∆ρj =
ρj(t) − ρt,j

ρt,j
. (2.20)

For velocity, we normalised them by the target density because of the density

dependence introduced in equations (2.18) and (2.19), and therefore for the

radial case

∆v =
δvr,j(t) − δvt,r,j

σvrρt,j
. (2.21)



2.3. Particle-by-particle M2M 62

Note that σ is not an observational error, but just a normalisation constant

which we have arbitrarily set to σvr = σvz = σvrot = 10 km s−1 in our demon-

stration in Section 2.4.

Because ∆ρj and ∆vj are normalised differently, we modified their con-

tribution to the force of change by introducing a new parameter ζ such that

for our simulations, equation (2.10) becomes, with smoothed ∆̃ by equation

(2.12),

d
dt
mi(t) = −ǫmi(t)

[

M
∑

j

W (rij, hj)

ρt,j
∆̃j,ρ(t)

+ ζM

(

ξr
∑

j

W (rij, hj)

σvrρt,j
(vr,i − vt,r,j)∆̃vr,j (t)

+ ξz
∑

j

W (rij, hj)

σvzρt,j
(vz,i − vt,z,j)∆̃vz,j (t)

+ ξrot
∑

j

W (rij, hj)

σvrotρt,j
(vrot,i − vt,rot,j)∆̃vrot,j (t)

)

+ µ

(

ln

(

mi(t)

m̂i

)

+ 1

)

]

, (2.22)

where M is an arbitrary constant mass, which we set as M = 1012 M⊙ for

this chapter. Note that in equation (2.22) the corresponding M2M kernel is

Kj = MW (r, hj), e.g. for density, which is inconsistent with the one used

to obtain the observables in equation (2.17), where Kj = Mm,totW (r, hj) and

Mm,tot is the total mass of the model particles. However, we accept this

inconsistency to apply the method to a system whose total mass is unknown,

and we allow Mm,tot(t) =
∑

imi(t) to freely evolve. Therefore, we introduce

the arbitrary constant M in equation (2.22), and as a result the parameters,

such as ǫ, µ and ζ , must be calibrated for the specific system. Fortunately,

our ultimate target is only one system, the Milky Way. We hope that we

can calibrate the parameters by modelling simulated data before applying the

method to the real data. Hence, note that the parameters presented in this

chapter are specific to the target system in this chapter. In future works, we

will calibrate the parameters and refine the methods by applying more realistic

simulation data.
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We use the additional individual parameters ξr, ξz, ξrot for the different

velocity observables, to allow us to fine tune their contributions to the force

of change even further. Similar in spirit to de Lorenzi et al. (2007), we write

ǫ as ǫ = ǫ′ǫ′′ where ǫ′′ is given by

ǫ′′ =
10

maxi

(

M
∑

j
W (rij ,hj)

ρt,j
∆̃ρj (t)

) , (2.23)

for the density observable only.

In the previous works (e.g. Syer & Tremaine 1996; Dehnen 2009;

Long & Mao 2010; Morganti & Gerhard 2012), the M2M method is applied to

a system in a known fixed potential, i.e. using test particles. de Lorenzi et al.

(2007) demonstrate that M2M works with a partially self-consistent potential,

in that the potential is calculated every 25 time steps, setting the particle

mass mi = wiMtot, where wi is in their definition, i.e. wi = 1/N . However,

this repeated sudden change of the potential could come with some problems

that will be discussed later.

We intend to apply our algorithm to the Milky Way, whose mass distribu-

tion is poorly known (e.g. McMillan 2011), and one of the aims of applying the

dynamical model is to reconstruct the mass distribution. Therefore we use a

self-consistent disc potential, setting the particle weight, wi, to the mass, mi,

allowing the disc potential to change along with the model observables and

allowing us to recover simultaneously the disc potential along with the mass

and velocity profiles. In this chapter, we focus on the disc. We ignore the bul-

ge/bar and halo stars, and assume that the dark matter potential is known for

this initial demonstration. Note that the previous studies are mainly focused

on elliptical galaxies, i.e. systems dominated by velocity dispersion, but not

strongly rotation supported. Recreating a disc galaxy with a self-consistent

potential has been attempted once before by Deg (2010), who highlights some

difficulties with an M2M method that employs self-gravity. He uses a grid to

calculate the observables, which makes his method different from ours.

One of the problems arising from using a self-consistent potential as men-

tioned by Deg (2010) is that the temporal smoothing, which worked well in

fixed potential M2M methods, is problematic when used with self-gravity. The
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temporal smoothing reduces shot noise by averaging the ∆j back along their

orbits, which is fine with test particles in a fixed potential because the orbits

are fixed. However, in a self-consistent potential, the potential and therefore

particle orbits change with time, and thus the temporal smoothing breaks the

self-consistency. Therefore, we should be aware that self-gravity M2M models

are very sensitive to instabilities, and we see substantial disruption when the

smoothing is first turned on. A way to mitigate this damage due to the tempo-

ral smoothing is described in Section 2.3.2. In light of this, we investigated the

possibility of running models without temporal smoothing. However, all mod-

els had to be substantially under-regularised to recover the velocity profiles

shown in Section 2.4, which leads to the continuous fluctuation of the weights,

similar to the problems of the under-regularisation discussed in Section 2.4.2.

We use a standard Euler method for the integration of the weight change

equation and a leapfrog time integrator for advancing the particles. We also use

individual time steps for the particles, and only update the masses of particles

whose position and velocity are updated within the individual timestep. The

timestep for each particle is determined by

dti = Cdyn

(

0.5hi

|dvi/dt|

)
1

2

, (2.24)

with Cdyn = 0.2.

2.3.2 Target system setup

Our simulated target galaxy consists of a pure stellar disc with no bulge and

a static dark matter halo, set up using the method described in Grand et al.

(2012a). The dark matter halo density profile is taken from a truncated NFW

profile (Navarro et al. 1997; Rodionov et al. 2009) and given by

ρdm =
3H2

0

8πG

δc
cx(1 + cx)2

e−x2

, (2.25)

where δc is the characteristic density described by Navarro et al. (1997). The

truncation term, e−x2

, is introduced in our initial condition generator for a live

halo simulation. Although we use a static dark matter halo in this chapter,

we used the profile of equation (2.25). Note that the truncation term leads to

very little change in the dark matter density profile in the inner region focused
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on in this chapter. The concentration parameter c = r200/rs and x = r/r200,

where r200 is the radius inside which the mean density of the dark matter

sphere is equal to 200ρcrit and given by

r200 = 1.63 × 10−2

(

M200

h−1M⊙

)
1

3

h−1kpc. (2.26)

We use M200 = 1.75 × 1012 M⊙, c = 20 and H0 = 71 km s−1Mpc−1.

The stellar disc is assumed to follow an exponential surface density profile

ρd =
Md

4πzdR
2
d

sech2

(

z

zd

)

e−R/Rd , (2.27)

where zd is the scale height of the disc and Rd is the scale length. Our

target disc has zd = 0.35 kpc and Rd = 3.0 kpc. The disc has a mass of

Md = 3.0 × 1010 M⊙ and consists of 105 particles, with each particle hav-

ing a mass of 3.0 × 105 M⊙. We use the kernel softening suggested by

Price & Monaghan (2007). Although Price & Monaghan (2007) suggest us-

ing an adaptive softening length, we use a fixed softening for these simulations

for simplicity. Our definition of the softening length ε = 1.05 kpc is about

three times larger than the equivalent Plummer softening length. We also

use this for the M2M modelling runs. The velocity dispersion for each three

dimensional position of the disc is computed following Springel et al. (2005a)

to construct an almost equilibrium condition. We use a high value of the free

parameter fR = σR/σz = 3, which controls the ratio between the radial and

vertical velocity dispersions, to deliberately suppress structure formation and

create a smooth, almost axisymmetric disc for this initial test. Our target

system is a relatively smooth disc galaxy evolved over 2 Gyr, as shown in Fig.

2.1, and it is used for all models in Section 2.4.

We set up the initial conditions of the model disc with the same parameters

and method, but use a different scale length from that of the target galaxy.

2.3.3 Procedure

The sudden change in potential caused by the changing particle masses induces

instabilities and potentially unwanted structure formation. This effect can be

reduced by dividing the modelling process into a series of stages, each with a

slightly different level of M2M algorithm. This reduces the magnitude of the
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Fig. 2.1: The end result (t = 2 Gyr) of an N -body disc galaxy simulation. It had a scale

length of 3 kpc initially. This will be used as the target system as shown in the Section 2.4.

The left and right panels show the face-on and edge-on views, respectively, in a 12 kpc by

12 kpc area.

change in potential at any one time. We also set a limit on the maximum

change in mass any particle can experience in one time step. We set this limit

to ten percent of that particle’s mass.

Initially, the model is allowed to relax in a pure self-gravity environment

with no M2M constraints for 0.471 Gyr (our N -body code time unit). This

relaxation period is important, as applying the M2M algorithm before the

model has settled generates the aforementioned instabilities. Although our

M2M algorithm was still capable of recovering the desired profile, the time

scale needed was drastically increased if we turned on the M2M without the

relaxation period, because the model had to smooth out again before conver-

gence took place.

After this period of relaxation, the M2M algorithm is activated and runs

without temporal smoothing for a further 1.413 Gyr, which allows the density

and velocity profiles to converge quickly. During this time, the contribution of

the velocity constraint is increased linearly from 0 up until our desired ζ . This

allows the density profile to converge first. We found this slow increase in the

velocity constraints to be important, because if the velocity constraints were

introduced simultaneously at full strength, we find the large weight changes
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induce the sudden potential change mentioned earlier, which is strong enough

to disrupt the disc.

Then, after 1.884 Gyr, the temporal smoothing is turned on. When the

M2M modelling was run with temporal smoothing from the beginning, the

mass profile experienced large oscillations. The modelling then continues in

this state for as long as is desired. Our M2M models are run for a period of

10 Gyr.

2.3.4 Parameter calibration

As discussed in e.g. Syer & Tremaine (1996), de Lorenzi et al. (2007),

Long & Mao (2010) and Morganti & Gerhard (2012), the choice of parameters

are crucial for the success of M2M modelling. In this section, we will discuss

our choice of the parameters, ǫ, α, ζ and µ, and how we calibrate these values.

Note that these parameters are calibrated for this specific target system. It is

likely that we need different calibration for different targets. However, what

we learned from the parameter search should be useful for future applications

and developments of the improved version.

ǫ provides the balance between the speed of convergence, and the smooth-

ness of the process. Note that ǫ = ǫ′ǫ′′ and ǫ′′ is defined by equation (2.23). In

this case, we find that when ǫ′ > 0.1, the weights change too rapidly, which

induces the sudden potential changes and therefore more instabilities. This

leads to a general decrease in the final level of accuracy of both density and

velocity profiles. If ǫ′ ≤ 0.1, convergence can be achieved and the particle

weights experience a much smoother evolution. However, if ǫ′ is too small,

the oscillations generated by the temporal smoothing take too long to damp

down, which drastically increases the length of the simulation. In the end,

we have chosen ǫ′ = 0.1 as a balance between accuracy and simulation time.

With more computing power available to us we would consider running a lower

value of ǫ. However, if ǫ′ ≪ 0.1, it is possible that the model will not show

any signs of convergence as the weight change is too slow.

The choice of α, which controls the strength of the temporal smoothing,

should depend upon the choice of ǫ (α ≥ 2ǫ). We find that our modelling is

not sensitive to α and we set α = 0.2 in this chapter.
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ζ (and individual ξ) controls the level of the velocity constraints. It is

important to strike a balance between the density and velocity constraints,

because if the level of constraints are unbalanced, one will dominate in the

change of weight and the other observables will not converge. We can choose

a suitable ζ (and/or ξr, ξz and ξrot) by comparing the magnitudes of the indi-

vidual terms of the right-hand-side of equation (2.22). We set ζ such that the

contribution of the velocity constraint to the force of change equation is the

same magnitude as, or slightly less than, the density constraints. The individ-

ual velocity components may then be fine tuned with ξx. For our simulations,

we find that the following parameter set works well, ζ = 0.05, ξr = 1, ξz = 10

and ξrot = 1.

µ controls the strength of the regularisation. We discuss the importance

of µ in greater detail in Section 2.4.2. In our fiducial model shown in Section

2.4, we adopt µ = 5 × 105.

2.4 Particle-by-particle M2M results

In this section, we present the results from our modelling of a target disc

galaxy. We will first show the results for our fiducial model, and then compare

it with a model using only density constraints. We ran multiple M2M models

with different parameters, which can be seen in Table 2.1, where Rd,ini is the

initial scale length of the model disc. We only use the observables within the

radius of 10 kpc.

2.4.1 Fiducial model

In this section, we present Model A, our fiducial model constructed with the

parameters described in Section 2.3.4, and shown in Table 1. We start from

an N -body disc with a scale length of 2 kpc, recreating the target disc (Rd =

3 kpc) with our particle-by-particle M2M, evolving the model for 10 Gyr. The

left panel of Fig. 2.2 shows the radial profiles of the surface density, radial

and tangential velocity dispersion, and the mean rotational velocity. The final

profiles of Model A reproduce the profiles of the target system remarkably

well. Note that these radial profiles are not direct constraints of the particle-

by-particle M2M. Especially, it is rather surprising that the velocity dispersion
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Table 2.1: M2M model parameters

Model Rd,ini (kpc) ǫ′ µ α ζ χ2
ρ χ2

vr χ2
vz χ2

vrot

A 2.0 0.1 5× 105 0.2 0.05 0.0846 7.291 0.918 6.502

B 2.0 0.1 104 0.2 0 0.0831 9.599 1.074 10.873

C 2.0 0.1 104 0.2 0.05 0.0912 8.275 1.069 7.464

D 2.0 0.1 105 0.2 0.05 0.0875 7.914 1.005 7.087

E 2.0 0.1 106 0.2 0.05 0.0894 7.099 0.893 6.440

F 2.0 0.1 107 0.2 0.05 0.223 9.395 1.130 9.960

G 2.0 0.1 108 0.2 0.05 0.407 17.291 2.107 17.701

H 5.0 0.1 5× 105 0.2 0.05 0.100 10.839 1.414 10.394

I 6.0 0.1 5× 105 0.2 0.05 0.111 12.381 1.604 12.094

J 1.5 0.1 5× 105 0.2 0.05 0.101 7.849 0.972 6.896

K 2.0 0.1 5× 105 0.2 0.05 0.0924 7.309 0.911 6.509

profiles are recovered. We think that this is because the particle-by-particle

M2M forces the model particles to follow the velocity distribution of the target

particles. We also have no constraints on the total mass of the disc. Note also

that the assumed velocity constant is 10 km s−1 in equation (2.21) yet the

velocity profiles are reproduced at a level much less than 10 km s−1. This is

not surprising however, because we have different normalisations for density

and velocity, and adjust ζ and ξ to balance their contributions in equation

(2.22) making the choice of σ arbitrary. Therefore, σvr,t is not indicating an

error, but is merely a constant value for normalisation. In this chapter, we do

not include any error. The left panel of Fig. 2.3 shows the weight evolution

for a selection of particles from Model A. Weight convergence is adequate,

although it is not as smooth as desired. We find that the particle weight

evolution is less smooth for the case where velocity observables have been

added. The right panel of Fig. 2.2 shows the χ2 evolution for each of the

observables. For all observables we use

χ2
X =

∑

∆2
X

Nr
, (2.28)
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Fig. 2.2: Initial (red dotted), final (green dashed) and target (black solid), density profile

(upper), radial velocity dispersion (upper middle), vertical velocity dispersion (lower mid-

dle) and rotational velocity (lower) for Model A (left). The initial model has a scale length

of 2 kpc and the target model has a scale length of 3 kpc. Time evolution of χ2 for den-

sity (upper), radial velocity (upper middle), vertical velocity (lower middle) and rotational

velocity (lower) for Model A (right).

where ∆X is equivalent to equations (2.20), i.e. X = ρ, and (2.21), i.e. X = v.

This is a slightly unusual definition of χ2 for the velocity observables. Note

that we include only particles within 10 kpc and Nr is the number of target

particles satisfying this criteria. In Model A, χ2 values rapidly decrease until

2 Gyr, from which point there is almost no improvement. The final values of

χ2 are also shown in Table 1.

For comparison we show Model B, with the same initial conditions and

target with the velocity constraints turned off. We find that µ = 5×105 cause

over-regularisation for this case, and has to be reduced in compensation to

µ = 104. Fig. 2.4 shows the density and velocity profiles for Model B. The
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Fig. 2.3: The weight evolution for a selection of particles from Model A (left) and Model

C (right).

Fig. 2.4: Same as the left panel of Fig. 2.2, but for Model B which uses only the density

observable as a constraint.
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Fig. 2.5: Accuracy of our final M2M model dependent on µ as determined by χ2 for den-

sity (upper), radial velocity (upper middle), vertical velocity (lower middle) and rotational

velocity (lower) (left). Same as right panel of Fig. 2.2, but for Model C, with µ = 104

(right).

final model-density profile resembles the target. Due to the lack of velocity

constraints, while the velocity profiles do improve, they do not resemble the

target. A comparison between Fig. 2.4 and the left panel of Fig. 2.2 demon-

strates how the velocity constraints improve our reproduction of the dynamical

properties of the target.

2.4.2 Effect of regularisation

Similar to the previous studies (e.g. Syer & Tremaine 1996; de Lorenzi et al.

2007; Long & Mao 2010), we also find that careful choice of the value of µ is key

to obtain convergence to a good model, and reproduce the given observables.

Therefore we discuss in this section how µ affects the modelling. We performed

multiple models with the same initial conditions and parameters as Model A,

except the value of µ (see Models C-G in Table 2.1). The left panel of Fig.
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2.5 shows the χ2 for the density and velocity at the final time (t = 10 Gyr).

The figure demonstrates a slow improvement for the three velocity observables

with an increasing µ up until a value of approximately µ = 106, above which

goodness of fit drops off again. The density observable benefits from a slightly

lower value of µ.

Although there is not a vast difference between the final values of χ2 for

µ = 104, 105 and 106, Model C with µ = 104 is found to be an inappropriate

model because of its poor convergence. The right panel of Fig 2.5 displays the

time evolution of χ2 in Model C which shows oscillatory behaviour. The right

panel of Fig. 2.3 (Model C) shows the time evolution of the weight for the

same particles selected in the left panel of Fig. 2.3 (Model A). Comparison

between panels in Fig. 2.3 demonstrates that µ = 104 is too low to suppress

the large amplitude of the fluctuations in the particle weights. The weights

of the particles keep changing and do not converge. Therefore, we judge that

µ = 104 is unacceptable for recreating the target system.

Fig. 2.6 displays the distribution of particle weights at the final time for

Models A and C. The histogram shows a wider tail, and lower peak for the

under-regularised Model C compared to our fiducial Model A. This is expected

because a higher µ restricts particles from moving far from the initial mass

used as a prior. As a result, Model A shows a narrower distribution and thus

a higher peak close to the initial value of wi. Fig. 2.6 also demonstrates that

µ = 104 is less favourable.

If we examine substantial over-regularisation, i.e. a higher value of µ, it

is easy to see the damaging effect on the density and velocity profiles. The

left panel of Fig. 2.7 shows the profiles from Model G, with µ = 108, which

shows the significant discrepancy in the density and rotational velocity profiles

between the final profiles and the target profiles. The discrepancy in the other

two velocity observables is not as substantial. However, it is clearly worse

when compared with the left panel of Fig. 2.2.

In summary, we found that we required regularisation of around µ =

105− 106 as a compromise between the goodness of fit, and the smoothness of

the χ2 and particle weight evolution. Both µ = 107 and µ = 108 show over-



2.4. Particle-by-particle M2M results 74

Fig. 2.6: Distribution of particle weights for Model A (solid) and Model C (dotted) at the

final time, t = 10 Gyr. w0 indicates the initial particle weights.

regularisation and the density profiles associated with those values converge

to an incorrect profile. µ = 104 shows large oscillations in both χ2 and particle

weights, and convergence is not reached. Anything in the range of µ = 105−106

appears appropriate and hence our fiducial model adopts µ = 5 × 105. As

can be seen from Table 2.1, we find under-regularisation is preferable to over-

regularisation. This is also the case in previous literature (e.g. de Lorenzi et al.

2008; Morganti & Gerhard 2012) implying that this is a generic feature of

M2M and not intrinsic to any specific algorithm.

2.4.3 Different initial conditions

We also tested the algorithm on the same target, using initial discs with a

different scale length, but with the same parameters as Model A. We have

already discussed the benefits of tailoring µ to the model. Thus, we were not

expecting that these models (Models H-I in Table 2.1) would recreate their

target systems to the same level as Model A. However, for demonstration

purposes, we show how the parameter set in Model A works if the initial
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Fig. 2.7: Same as the left panel of Fig. 2.2 but for Model G, with µ = 108 (left), and

Model H (right), where Rd,ini = 5.0 kpc

conditions are different. When we started from a higher initial scale length

(Model H with Rd,ini = 5 kpc and Model I with Rd,ini = 6 kpc), we attained a

reasonable reproduction of the target. However, the final χ2 is systematically

higher than Model A (see Table 1). The right panel of Fig. 2.7 shows the

profiles from Model H, which slightly disagree with the targets. This seems

to be due to over-regularisation, and we would need to adjust µ in order to

obtain a better model. On the other hand, when we started from a lower

initial scale length (Model J with Rd,ini = 1.5 kpc, the profiles are shown in

the left panel of Fig. 2.8), χ2 was only fractionally worse than the fiducial case

Model A (see Table 2.1). This demonstrates that it is better to set the initial

disc with a smaller scale length. In the application to the real observational

data of the Milky Way, we do not know the right shape of ‘the target model’.

However, we hope that further studies with these target galaxies would help

us to understand more about how the M2M modelling behaves in different



2.4. Particle-by-particle M2M results 76

Fig. 2.8: Same as the left panel of Fig. 2.2, but for Model J , where Rd,ini = 1.5 kpc (left),

and Model K (right), where the observables are calculated only in a sphere of 10 kpc around

a point in the plane and at 8 kpc from the galactic centre.

cases, and how we should calibrate the parameters.

2.4.4 The partial data case

Because our goal is to eventually use our method with Gaia data, and Gaia will

only survey a section of the Galactic disc, it is important to test our algorithm

on an incomplete data set (Model K in Table 2.1). In this chapter, a simple

selection function is applied for the purpose of demonstration. Remember

that our models in the previous sections have used only the data within the

radius of 10 kpc from the centre. In this section, we additionally restricted

the observables within a 10 kpc sphere around a point in the plane, and at 8

kpc away from the Galactic centre.

The right panel of Fig. 2.8 shows the final profiles for Model K, which

reproduces the target profiles reasonably well. Compared with the left panel

of Fig. 2.2, the right panel of Fig. 2.8 shows only a minor discrepancy to the
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target profiles, mainly in the outer region. Worse performance in the outer

region is unsurprising, as the larger the radii, the smaller percentage of the

particles orbits are spent within the sampled area. Table 2.1 displays a better

value of χ2 for Model K than for over-regularised models, and similar levels

of the goodness of fit to under-regularised ones, without the excessive weight

oscillations. Model K demonstrates that it is possible to apply our particle-

by-particle M2M to a disc galaxy with only a limited selection of data.

2.5 Chapter summary

We have developed the initial version of our new particle-by-particle M2M,

where the observables are compared at the position of the target particles,

and the gravitational potential is automatically adjusted by the weight change

of the particles. This chapter demonstrates that the particle-by-particle M2M

can recreate a target disc system in a known dark matter potential. The radial

profiles of the surface density, velocity dispersion in the radial and perpendic-

ular directions, and the mean rotational velocity of the target disc are all well

reproduced from the initial disc model whose scale length is different from

that of the target disc. We find that the regularisation parameter, µ, is key to

obtaining a reasonable convergence to a satisfactory model. We also demon-

strate that our M2M can be applied to an incomplete data set and recreate

the target disc reasonably well when the observables are restricted to within

a sphere of radius 10 kpc around a point in the disc plane and at 8 kpc from

the centre.

Admittedly, these applications are simplified cases. Our ultimate goal is

to develop the M2M to be applicable to the observational data that Gaia and

other related Galactic surveys will provide. As discussed in Section 1.3, Gaia

will produce an unprecedentedly large amount of data for the order of a billion

stars, with many dimensions of information. The accuracy of each dimension

of information could be quite inhomogeneous, depending on distance, stel-

lar population, and location in the sky due to dust extinction, crowding etc.

meaning that the observational selection function is quite complex. There are

many challenges before us to develop the M2M for Gaia type data.
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We believe that as shown in this chapter, it is a good practice for galaxy

modelling to attempt to reconstruct galaxy models created by N -body simu-

lations, where the full dimensions of the properties are known. We hope that

many exercises with these mock galaxy targets created by N -body simulations

will be useful to identify the uniqueness of the obtained dynamical model and

possible systematic biases. Although as an initial attempt we have taken a

disc without any non-axisymmetric structure, in the next chapter we will ap-

ply the method to N -body discs with spiral arms and a bar. In Chapter 4,

we will add more realistic errors and selection functions, to account for dust

extinction and crowding.
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Chapter 3

Investigating bar structure of disc

galaxies via primal: A

particle-by-particle M2M algorithm

This chapter is based on Hunt et al. (2013)

We have modified our particle-by-particle adaptation of the M2M method

described in Chapter 2, with the aim of modelling the Galactic disc from

upcoming Galactic stellar survey data. In our new particle-by-particle M2M

algorithm, primal, the observables of the target system are compared with

those of the model galaxy at the position of the target stars, i.e. particles.

The mass of the model particles are adjusted to reproduce the observables of

the target system, and the gravitational potential is automatically adjusted

by the changing mass of the particles. This chapter builds upon the initial

development of the particle-by-particle M2M method described in Chapter 2,

introducing likelihood-based velocity constraints in primal. In this chapter,

we apply primal to barred disc galaxies created by an N -body simulation in

a known dark matter potential, with no error in the observables. This chapter

demonstrates that primal can recover the radial profiles of the surface density,

velocity dispersion in the radial and perpendicular directions, and the mean

rotational velocity of the target discs, along with the apparent bar structure

and pattern speed of the bar, especially when the reference frame is adjusted
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so that the bar angle of the target galaxy is aligned to that of the model galaxy

at every timestep.

3.1 Introduction

In Chapter 2, we discussed the development of a particle-by-particle M2M

algorithm now called primal. We apply primal to the target system of a

smooth axisymmetric disc created by N -body simulations, and demonstrate

that primal can reproduce the density and velocity profiles of the target

system well, even when starting from a disc whose scale length is different

from the target system.

In this chapter, we apply primal to barred disc galaxies again generated

by N -body simulations with gcd+ (Kawata & Gibson 2003; Kawata et al.

2013). We introduce a new form of velocity observable constraints as de-

scribed in de Lorenzi et al. (2008), based on the likelihood function as de-

scribed in Romanowsky & Kochanek (2001). We also introduce a rotating

reference frame in a similar, although not identical fashion to Long et al.

(2013). We use target systems whose information is known without any er-

ror. Ultimately, we wish to apply primal to real observational data, where

the information will be provided for a limited region of the sky, with a more

complicated selection and error function due to the dust extinction, crowding

and stellar populations. However, in the development stages it is important

to test the algorithm against an ideal target. In this chapter, we demonstrate

the successful application of primal to the barred galaxy targets, and this is

a significant step forward to modelling the Milky Way with M2M.

This chapter is organised as follows. Sections 3.2.1 and 3.2.2 contain

the alterations applied to primal from Chapter 2. Section 3.3 shows the

performance of our updated method for recreating the target disc systems. In

Section 3.4, we provide a summary of this work.

3.2 The M2M algorithm: primal

3.2.1 Likelihood adaptation for velocity constraints

As discussed in Chapters 1 and 2, the M2M algorithm works by calculating

observable properties (observables hereafter) from the model and the target,
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and then adapting particle masses such that the properties of the model re-

produce those of the target. The target can be in the form of a distribution

function, an existing simulation, or real observational data. The model can

be a test particle simulation in an assumed fixed or adaptive potential, or a

self-gravity N -body model.

In Chapter 2, we use velocity observables in the form of mean local velocity

field, calculated around the target particle positions, with the kernel described

in equation (2.14). However, as the Galactic stellar surveys will provide us

velocity information for individual particles, instead of smoothing the velocity,

we can evaluate likelihood of the actual velocity of the particle. Thus, we have

converted the velocity section of our algorithm to maximise the likelihood of

the velocity of the target particles as shown in de Lorenzi et al. (2008). The

likelihood is calculated with the equation

L =
∑

j

ln(Lj), (3.1)

where Lj is the likelihood function for a single discrete velocity. Following

Romanowsky & Kochanek (2001), we calculate the likelihood for individual

velocity observables, vj , at the target particle positions, rj , with

Lj(vj , rj) =
1√
2π

∫
(

dL

dv

)

j

e−(vj−v)2/2σ2

j dv, (3.2)

where σj is the velocity error, which we have set as σj = 2.5 km s−1 for this

chapter, and dL/dv is a velocity distribution for the model. Although we fix

the velocity error, and do not discuss the effects of the errors in this chapter,

an advantage of the likelihood-based velocity constraints is that we can set

individual errors for each velocity component of each particle. Instead of

the kernel chosen in de Lorenzi et al. (2008) we use our kernel from equation

(2.14), allowing us to write dL/dv for target particle j, from model particle i,

as
(

dL

dv

)

j

=
1

lj

∑

i

Wijmiδ(v − vi), (3.3)

where δ(x) is the delta function and

lj =
∑

i

Wijmi, (3.4)
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which is the same as equation (2.17). We can express Lj in equation (3.2) as

Lj =
L̂j

lj
, (3.5)

where

L̂j =
1√
2π

∑

i

Wijmie
−(vj−vi)2/2σ2

j , (3.6)

and
dL̂j

dmi
=

1√
2π

Wije
−(vj−vi)

2/2σ2

j . (3.7)

This leads us to the modified term in the particle mass change equation. Fol-

lowing the M2M algorithm, we maximise the likelihood of equation (3.1), using

dmi

dt
= ǫmiM

dLj

dmi
, (3.8)

where

dLj

dmi
=

d

dmi

∑

j

ln

(

L̂j

lj

)

=
∑

j

[

d

dmi
ln(L̂j) −

d

dmi
ln(lj)

]

=
∑

j

[

1

L̂j

d

dmi
L̂j −

1

lj
Wij

]

. (3.9)

The particle mass change equation from the velocity based likelihood con-

straints is calculated with

dmi

dt
= ǫmiM

∑

j

Wij

[

1√
2π

e−(vj−vi)2/2σ2

j

L̂j

− 1

lj

]

, (3.10)

and equation (2.22) becomes

d

dt
mi(t) = −ǫmi(t)

{

M
∑

j

W (rij, hj)

ρt,j
∆̃j(t)

− ζM

[

∑

j

Wij

(

1√
2π

e−(vr,j−vr,i)
2/2σ2

r,j

L̂r,j

− 1

lj

)

+
∑

j

Wij

(

1√
2π

e−(vz,j−vz,i)
2/2σ2

z,j

L̂z,j

− 1

lj

)

+
∑

j

Wij

(

1√
2π

e−(vrot,j−vrot,i)2/2σ2

rot,j

L̂rot,j

− 1

lj

)]

+ µ

(

ln

(

mi(t)

m̂i

)

+ 1

)

}

, (3.11)
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where vr, vz and vrot are the radial, vertical and rotational velocity compo-

nents. The parameter, ζ , is an optional adjustable parameter for changing the

significance of the velocity constraints, although we set ζ = 1 in this chapter.

Following de Lorenzi et al. (2008), we use temporally smoothed versions (c.f.

equation 2.12) of L̂ and l.

Alongside this new mass change equation, we have also altered the time

when the constraints are applied from the description in Chapter 2. We found

that when using the likelihood-based velocity constraints the model requires

a lower level of temporal smoothing, and thus we are able to use temporal

smoothing as soon as the mass change equation is enabled. Thus, we now use

the following series of stages. From t = 0 to 0.471 Gyr (one simulation time

unit), we allow the initial model to experience relaxation, following a standard

self-gravity N -body calculation without any mass change. From t = 0.471 Gyr

to 0.942 Gyr, we used temporally smoothed density constraints only, and at

t = 0.942 Gyr, we engage the velocity constraints as well. This sequence is

substantially shorter than the method used in Chapter 2, allowing the solution

to converge faster, and the overall simulation length to be halved to ∼ 5 Gyr.

We continue to use individual timesteps for the particles, and only update

the masses of particles whose position and velocity are updated within the

individual timestep. The timestep for each particle is determined by

dti = Cdyn

(

0.5hi

|dvi/dt|

)
1

2

, (3.12)

with Cdyn = 0.2. We also retain the limit on the maximum mass change which

any particle can experience in one timestep. We set this limit to 10% of that

particles mass.

We have again performed a parameter search to determine differences in

the likelihood-based velocity constraints, as we did in Chapter 2. There are

four important parameters, ǫ, α, ζ and µ, which must be calibrated for M2M.

ǫ provides the balance between the speed of convergence, and the smoothness

of the process. Note that ǫ = ǫ′ǫ′′, where ǫ′′ is defined by equation (2.23).

We have chosen ǫ′ = 0.1 as an appropriate balance between accuracy and

simulation time. The choice of α, which controls the strength of the temporal
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smoothing, should depend upon the choice of ǫ (α ≥ 2ǫ). We find that our

modelling is not overly sensitive to α as long as the condition α ≥ 2ǫ is met and

we set α = 2.0 in this chapter. We set ζ = 1 as mentioned before. µ controls

the strength of the regularisation and is essential in reducing the oscillation in

particle masses and ensuring smooth convergence. We discuss the importance

of µ in much greater detail in Chapter 2. In this chapter, we adopt µ = 105.

All different models presented in Section 3.3 use this same parameter set, and

have not been individually tailored to the target or model in question. This

demonstrates the robustness of the method.

3.2.2 Rotating reference frames

In Chapter 2, it was sufficient to use a fixed reference frame as we were in-

vestigating smooth axisymmetric discs. However, if the target has some non-

axisymmetric structure, such as a bar, the target bar angle is fixed, but the

bar of the model rotates in the fixed reference frame. For example, if there is a

bar, we expect the density and kinematics to be very different at the different

azimuth angles at a fixed radius. Then, if the bar of the model is not aligned

with the target bar, the observables of the model are evaluated in the different

dynamical states from the target observables. Hence, if the bar of the model

keeps rotating in the fixed frame, the model particles receive the different con-

straints from the target depending on the bar angle at each timestep, and the

model never settles to the solution. This is discussed in Section 3.3.

Long et al. (2013) have proposed using a reference frame with a fixed bar

angle, and comparing multiple simulations with different bar angles to find the

best fit. This was trivial for their model, because they used a fixed shape of

the bar potential and rotating with a fixed bar pattern speed, Ωp. However, we

have not assumed any pattern speed prior to the beginning of our simulations,

nor have we placed any explicit constraints on it. Instead, we start with a

smooth disc as the initial condition, allowing the pattern speed to evolve with

the model galaxy due to self-gravity, and compare Ωp for the model and target

galaxies at the end of the run.

Therefore, we calculate the angle of the bar in our target, and the angle of

the bar in the model at each step. Then, we rotate the model to match the bar
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Table 3.1: N -body target parameters. M200 is the mass of the halo, Md is the mass of

the disc, c is the concentration parameter, zd is the scale height, σ2
r /σ

2
z is the ratio between

radial and tangential velocity dispersion and Ωt,p is the pattern speed of the bar, measured

at 2 Gyr.

Target M200 (M⊙) Md (M⊙) c zd (kpc) σ2
r /σ

2
z Ωt,p (km s−1kpc−1)

I 1.75× 1012 3.0×1010 20.0 0.35 9.0 N/A

II 2.0 × 1012 5.0×1010 9.0 0.3 2.0 27.5

III 1.5 × 1012 5.0×1010 7.0 0.3 2.0 31.7

IV 1.75× 1012 5.0×1010 9.0 0.3 2.0 28.9

angle of the target for the purposes of calculating the observables in the same

reference frame. It is our hope that this method will allow the pattern speed

to be recovered along with the density and velocity profiles. When applying

this to the Milky Way we will not know the exact bar angle. However, we here

assume that the bar angle is known for our first step of modelling the bar.

We call this reference frame change the ‘rotating reference frame’ hereafter.

In Section 3.3, we present a comparison of our method with and without this

rotating reference frame, and also present the results from cases where we have

chosen an incorrect bar angle.

3.2.3 Target system setup

Similar to Chapter 2, our simulated target galaxies consist of a pure stellar

disc with bar structure and a static dark matter halo, set up using the method

described in Grand et al. (2012a).

We have constructed four different target galaxies whose initial conditions

are listed in Table 1. The scale length of the target discs are initially set as

Rt,d = 3 kpc. We run N -body simulations with these initial conditions, with

106 particles, for 2 Gyr using a tree N -body code, gcd+ (Kawata & Gibson

2003; Kawata et al. 2013), and adopt the final output as a target. We use

the kernel softening suggested by Price & Monaghan (2007). Although these

authors suggest using an adaptive softening length, we use a fixed softening for

these simulations for simplicity. Our softening length ε = 0.577 kpc is about

three times larger than the equivalent Plummer softening length. We also use



3.3. primal results 86

Table 3.2: M2M model results at the final timestep. Ωt,p is the target pattern speed,

Ωp is the model pattern speed, χ2
ρ is a measure of accuracy of the density, Lr,z,rot are the

likelihood values for the radial, tangential and rotational velocity, a lower value means a

more accurate model.

Model Target Ωp (km s−1kpc−1) χ2
ρ −Lr/10

6 −Lz/10
6 −Lrot/10

6

A I N/A 0.123 6.06 3.61 5.27

B II 27.9 0.254 4.72 3.62 4.43

C III 30.4 0.235 4.96 4.40 5.28

D IV 28.3 0.189 5.14 5.15 5.02

E II 27.3 0.230 4.77 3.65 4.47

F II 23.6 0.276 5.77 3.91 5.21

G II 28.0 0.250 4.87 3.67 4.55

H II 24.3 0.21-0.49 6.82-9.99 4.59-5.48 6.63-8.77

this softening for the M2M modelling runs.

As mentioned above, in this initial stage of development, we assume that

the dark matter halo potential is known and there is no other external potential

such as the bulge or stellar halo. We use the same number of particles, 106,

and the same dark matter halo and initial disc parameters for the model and

target galaxies, except for the disc scale length of Rd = 2 kpc for the models

and Rt,d = 3 kpc for the targets.

3.3 primal results

In this section, we present the results from our eight models using primal.

We will first show the results for the smooth featureless target disc previously

explored in Chapter 2. Then, we apply primal to three different barred

targets. We also examine how primal can reproduce the target galaxy with

a partial data set of the observables, or an incorrect bar angle, or without

the rotating reference frame using one of the targets. Table 3.2 shows which

target the model is recreating, the bar pattern speeds, the likelihood values

for radial, tangential and rotation velocity, L, in equation (3.1) and the χ2
ρ

from equation (2.28). Note that we include only particles within 10 kpc, and
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Nr in equation (2.28) is the number of particles satisfying this criterion. Note

also that in the likelihood case, although we seek to maximise likelihood, the

values of −L are shown in Table 3.2, and hence smaller values in Table 3.2

mean higher likelihood. The absolute values of L are not important. We

cannot compare these values between models for different targets. However,

the relative differences in χ2
ρ and in L between models for the same target

observables are meaningful and are used in Section 3.3.4.

3.3.1 Smooth disc

First, we demonstrate that the newly introduced likelihood velocity constraints

can reproduce the smooth featureless disc target used in Chapter 2. Model A

applies primal to Target I, which was the target used in Chapter 2, but using

a larger number of particles. Note that the high value of σ2
r /σ

2
z of Target I

in Table 3.1 was used to deliberately suppress structure formation. The left

panel of Fig. 3.1 shows that the radial profiles of the density, the radial veloc-

ity dispersion, the vertical velocity dispersion and the mean rotation velocity

for the target galaxy, the initial galaxy and the final output after primal is

applied. The figure demonstrates that primal with the likelihood-based veloc-

ity constraints equally or even more accurately reproduces the target galaxies

compared to our old version of the particle-by-particle M2M in Chapter 2.

However, a quantitative comparison between the old and new version is not

the main focus of this thesis. As discussed above, we introduced the likelihood-

based velocity constraints, because we can compare the velocity more directly

and also introduce different errors for individual velocity components and in-

dividual particles. Therefore, the likelihood-based velocity constraints are a

necessary update, and a comparison with the old version is not an important

issue. Note that the properties shown in the left panel of Fig. 3.1 are not

explicitly constrained by primal. As discussed previously in Chapter 2, it is

interesting to note that although our particle-by-particle M2M uses only the

first moment of the velocity components as observables, because primal tries

to reproduce the velocity of individual particles, the velocity distribution be-

comes close to the target. Therefore, the velocity dispersion can be reproduced

as well.
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Fig. 3.1: Initial (red dotted), final (green dashed) and target (black solid) density profile

(upper), radial velocity dispersion (upper middle), vertical velocity dispersion (lower middle)

and rotation velocity (lower) for Model A with Target I (left), and Model B with Target II

(right).

3.3.2 Barred disc models

In this section, we present the results of Models B, C and D, where we apply the

same parameter set for primal to model three different target barred galaxies.

Target II is a barred disc galaxy showing faint spiral structure. Fig. 3.2 shows

the face-on and edge-on views of Target II (top left) and the final state of

Model B (top right). The final model reproduces the bar feature very well.

The observables are only constrained within 10 kpc of the galactocentric radius

and hence the areas outside this radius are reproduced with less accuracy.

The right panel of Fig. 3.1 shows the radial profiles of the surface density,

radial and tangential velocity dispersion, and the mean rotation velocity for

the target and the final model compared to the initial model. As in Chapter

2 and Model A, these radial profiles are not directly constrained by primal,
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Fig. 3.2: Face-on and edge-on density maps of, Target II (top left), Model B (top right),

Model E (middle left), Model F (middle right), Model G (lower left) and Model H (lower

right), in a 12 kpc by 12 kpc area, plotted for comparison. The white line indicates the

angle of the bar, rotated for comparison. The density scale is the same for all panels.

but are reproduced remarkably well. The right panel of Fig. 3.1 shows a

substantial increase in radial velocity dispersion and a corresponding decrease

in mean rotational velocity from the initial to the final model. We believe that

this is due to heating from the bar which leads to an excellent agreement with

the velocity dispersion of the target.

The pattern speed of the bar, Ωp, is also reproduced very well, as shown

in Tables 3.1 and 3.2. We calculate the pattern speed of the bar, Ωp, by

calculating the change in the angle of the bar between timesteps, divided by

the difference in time between the steps. We take Ωp to be the mean value

from the final 10 steps. We found that the bar pattern speed of the model is

Ωp = 27.9 km s−1 which is close to that of the target, Ωt,p = 27.5 km s−1. This

is probably due to our self-consistent calculation of the gravitational potential,

because once the mass distribution and kinematic properties of the target disc

are reproduced, a bar with a similar shape and pattern speed to those of the
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target is expected to develop. This is certainly helped by our use of a known,

fixed dark matter halo potential. We are pleased to see a spiral arm developing

in the model, which looks similar to the one seen in the target.

Model C applies primal to Target III, which is also a barred disc galaxy,

but with a smaller bar than Target II, and a boxy and peanut shaped bulge

(e.g. Pfenniger 1984; Athanassoula & Misiriotis 2002; Debattista et al. 2005;

Bureau et al. 2006; Saito et al. 2011), as can be seen in the top left panel of

Fig. 3.3. Rather surprisingly primal reproduces the boxy structure of the

target as shown in the bottom left panel of Fig. 3.3. The left panel of Fig.

3.4 shows the radial profiles for Model C. We see a slight inaccuracy in the

inner 2 kpc of the radial velocity dispersion, and also in the rotational velocity

in the inner 4 kpc, which corresponds roughly with the length of the bar. In

addition, σz is systematically higher than the target at all radii. As such the

bar pattern speed is not as well reproduced as with Model B, with Ωp = 30.4

km s−1 compared to Ωt,p = 31.7 km s−1. However, we still think that this

is a reasonably good recovery of the target, and it is encouraging for further

development of primal for its application to more complicated observational

data.

Model D takes Target IV which is morphologically similar to Target III,

with a small bar and boxy peanut feature, as can be seen in the top right panel

of Fig. 3.3. We see a slightly larger bar in the model than in the target. The

right panel of Fig. 3.4 shows slight inaccuracies in the recovery of the radial

and vertical velocity dispersion and mean rotational velocity in the inner 3

kpc roughly consistent with the radius of the bar. However, the pattern speed

is still recovered well with Ωp = 28.3 km s−1 for the final model compared to

the target of Ωt,p = 28.9 km s−1.

3.3.3 Working with partial data

Even with the huge amount of data returned by Gaia and related stellar

surveys, due to our position within the Milky Way’s disc, we will not even

come close to having a complete data set of the disc stars. Therefore, it is

important to make sure our method is still applicable when we do not have

access to the complete picture of the disc. Our previous models have used all
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Fig. 3.3: Same as Fig. 3.2, but for Target III (upper left), Model C (lower left), Target IV

(upper right) and Model D (lower right).

Fig. 3.4: Same as Fig. 3.1, but for Model C with Target III (left), and Model D with

Target IV (right).
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Fig. 3.5: Same as Fig. 3.1 but for Model E with Target II (left), performed with a partial

data set, and Model F with Target II (right), performed with the assumed angle of the bar

offset from 30o compared to the real value.

data within 10 kpc from the galactic centre. However, Model E was performed

with a simple selection function restricting the observable volume to a 10 kpc

sphere around a point in the plane and at 8 kpc from the galactic centre, i.e.

at (x, y, z) = (8, 0, 0) in Fig. 3.2, roughly emulating Gaia′s observable area,

while ignoring effects such as extinction and errors. This is merely the first

step towards using primal with realistic data.

The middle left of Fig. 3.2 shows the face-on and edge-on view of Model

E, which has a similar bar to the target (top left panel), with a hint of a spiral

arm in the lower left quadrant matching the one visible in the target. The

left panel of Fig. 3.5 shows that an excellent agreement of the final model

with the target radial profiles is still obtained with the restricted data set.

This is an improvement on Chapter 2, where we saw loss of accuracy when

the observable field was restricted. We believe that this is helped by both the
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likelihood form of velocity observable and the higher resolution with which the

simulations have been carried out. The bar pattern speed is recovered very

well with Ωp = 27.3 km s−1 compared to the target of Ωt,p = 27.5 km s−1.

This shows the ability of primal to produce reasonable results when supplied

with a partial data set of the disc particles. However, we are aware that this

selection function is crude and the next stage of our work will deal with more

realistic selection functions and expected observational errors.

3.3.4 Working with an incorrect bar angle

As mentioned in Section 1.4.1, the bar angle of the Milky Way is still debated.

Ultimately, we aim to recover the dynamical state of the Milky Way with

primal from the future stellar survey data, and recovering the bar angle is

also one of our targets. In the previous sections, we assumed that the bar

angle of the target is known and we align the bar of the model galaxy to that

of the target at every timestep to evaluate the observables. If we do not know

the bar angle of the target, like with the Milky Way, we could try different

bar angles and hope that the models with the lowest χ2
ρ and/or the maximum

likelihood values recover the bar angle of the target, which is the strategy

taken by Long et al. (2013). In this section, we examine the effects of running

primal with an incorrect bar angle. Models F and G are performed with the

bar angles deliberately set to be incorrect by 30o and 10o, respectively. In this

section, we again use all data within 10 kpc from the galactic centre.

Model F has been performed while assuming that the bar angle is 30o

less than the real angle of the target. The middle right panel of Fig. 3.2

shows a poor reproduction of the target bar morphology in Model F, which is

significantly shorter than that of the target (top left panel). We also see no

evidence of the spiral structure seen in other cases. The right panel of Fig.

3.5 shows the radial profiles for Model F. There is a discrepancy in the inner

4 kpc of the model compared to the target in both the density profile and the

radial velocity dispersion. This is in agreement with the weaker bar shown in

the middle right panel of Fig. 3.2. The average rotational velocity is also lower

across the disc. This is also reflected in the final pattern speed of Ωp = 23.6

km s−1 compared to the target of Ωt,p = 27.5 km s−1. However, in the real
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Fig. 3.6: Same as Fig. 3.1 but for Model G with Target II (left), performed with the

assumed angle of the bar offset from 10o compared to the real value, and Model H with

Target II (right), which is performed without the rotating reference frame.

Milky Way case, we cannot know the correct profiles or the bar pattern speed

in advance. On the other hand, we can evaluate the goodness of fit by χ2
ρ

or the values of the likelihood, Lv. In Table 3.2, Model F shows significantly

worse values of χ2
ρ and Lv than those of Model B which assumes the correct

bar angle. Therefore, we should be able to tell easily if the bar angle is off by

30o, at least in this simple target case.

Model G has been performed while assuming that the bar angle is 10o less

than the bar angle of the target. The lower left panel of Fig. 3.2 shows a barred

disc which is morphologically similar to the target (top left panel). The bar is

reproduced well whereas the spiral structure is barely visible. The left panel

of Fig. 3.6 shows the radial profiles for Model G, which again reproduces very

well those of the target. The bar pattern speed is still well recovered with Ωp =

28.0 km s−1 compared to the target of Ωt,p = 27.5 km s−1. In Table 3.2, Model
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G shows similar values of χ2
ρ and Lv to those of Model B, although the velocity

likelihood values are slightly worse. These results may indicate that primal

does not have the power to determine the bar angle within 10o accuracy, but

can recover it with better than 30o accuracy. However, our ultimate target

is much more complicated than this ideal target, and at this stage we do not

explore further the expected accuracy of recovering the correct bar angle for

this ideal target. At least we demonstrate that with this type of exercise we can

examine how accurately the dynamical model, such as primal, can recover the

bar angle. In future work, we will construct more realistic mock observational

data from N -body barred simulated discs and ‘train’ primal to recover the

bar angle as accurately as possible, and finally evaluate the expected accuracy

of our recovered bar angle using the comparison demonstrated in this section.

3.3.5 The importance of the rotating reference frame

In this section, we show a brief comparison between the resulting models with

and without the rotating reference frame. Model H was performed under

identical conditions to Model B, but without the reference frame corrections

detailed in Section 3.2.2. The lower right panel of Fig. 3.2 shows that the

resulting disc contains a less prominent bar, and no evidence of spiral structure

in a similar fashion to Model F. The right panel of Fig. 3.6 shows the radial

profiles of Model H. In the inner 4 kpc region, the radial density and radial

velocity profiles are lower for the model than for the target. The average

rotation velocity is lower than that of the target across the whole disc. The

pattern speed is also too low with Ωp = 24.3 km s−1 compared to the target

of Ωt,p = 27.5 km s−1. Fig. 3.7 shows a comparison of the evolution of the χ2
ρ

of the density between Model B and Model H. The χ2
ρ in Model H experiences

periodic oscillations in time with the bar rotation which are not seen in Model

B. This lack of a smooth model convergence along with the poor accuracy

on the recovered radial profiles shows the importance of having a rotating

reference frame.
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Fig. 3.7: Time evolution of χ2
ρ for Model B (black line) compared to Model H (red line).

3.4 Chapter summary

In this chapter, we have demonstrated that our updated particle-by-particle

M2M algorithm, primal, can recover a target disc system with a bar, includ-

ing boxy/peanut features, in a known dark matter halo potential. In primal,

the observables are compared with the model at the position of the target par-

ticles. The mass of the model particles are adjusted to reproduce the target

observables, and the gravitational potential is calculated self-consistently from

the model particle mass distribution. We have introduced the likelihood-based

velocity constraints to primal, which allows us to compare the velocity of the

target particle more directly than the smoothed velocity field used in our pre-

vious algorithm. To apply this method to a barred disc, we evaluate at every

timestep the density and velocity likelihood after the reference frame of the

model disc has been corrected. Hence, the bar of the model is always aligned

with the bar of the target. Our fiducial model recovers the radial profiles of
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the surface density, the radial and vertical velocity dispersion and the mean

rotation velocity of the target system very well. In addition, because of our

self-gravity implementation of M2M, we can reproduce the bar morphology

and pattern speed. We have demonstrated that primal performs well even

when the observables are restricted to within a sphere of radius 10 kpc around

a point in the disc plane and at 8 kpc from the centre.

While promising, these applications are still simplified cases. Our ultimate

goal is to further improve primal to be applicable to the future stellar survey

data, including the Gaia data. While Gaia will return an unprecedentedly

large amount of data, for approximately one billion stars, the accuracy of this

data will be highly variable due to distance, extinction, location in the sky,

and etc. In Chapter 4, we further improve primal to take extinction and

Gaia-like observational errors into account.
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Chapter 4

M2M modelling of the Galactic disc

via primal: Fitting to Gaia error added

data

This chapter is based on Hunt & Kawata (2014b)

We have adapted our M2M algorithm, primal, to use mock Milky Way

like data constructed from an N -body barred galaxy with a boxy bulge in

a known dark matter potential. We use M0 giant stars as tracers, with the

expected error of ESA’s space astrometry mission Gaia. We demonstrate the

process of constructing mock Gaia data from an N -body model, including

the conversion of a Galactocentric Cartesian coordinate N -body model into

equatorial coordinates, and how to add error to it for a single stellar type. We

then describe the modifications made to primal to work with observational

error. This chapter demonstrates that primal can recover the radial profiles of

the surface density, radial velocity dispersion, vertical velocity dispersion and

mean rotational velocity of the target disc, along with the pattern speed of the

bar, to a reasonable degree of accuracy despite the lack of accurate target data.

We also construct mock data which take into account dust extinction and show

that primal recovers the structure and kinematics of the disc reasonably well.

In other words, the expected accuracy of the Gaia data is good enough for

primal to recover these global properties of the disc, at least in a simplified



4.1. Introduction 99

condition, as used in this chapter.

4.1 Introduction

In Chapters 2 and 3, we have described the development of an M2M algorithm

called primal. In Chapter 2, we applied primal to the target system of a

smooth axisymmetric disc created by N -body simulations and demonstrated

that primal can reproduce the density and velocity profiles of the target

system well, even when starting from a disc whose scale length is different from

the target system. In Chapter 3, we applied an updated methodology to disc

galaxies with bar structure, and demonstrated that primal can reproduce the

density and velocity profiles of these more complex targets, as well as providing

a good estimate of the pattern speed of the bar.

In this chapter, we first apply primal to the mock observational data

of a single population of stars, M0III, which are constructed from a N -body

simulated target galaxy. First, we ignore the dust extinction for simplicity and

achieve a good recovery of the properties of the target system even with the

Gaia expected errors. Then, we apply the dust extinction to the same mock

target data and attain a reasonable recovery. Finally, we apply extinction to

mock data using red clump stars as tracers and compare the results for these

different tracers.

This chapter is organised as follows. Section 4.3 describes how we turn

a target N -body galaxy model into mock observational data with Gaia-like

errors. Section 4.4 describes the M2M methodology of primal, with a more

detailed explanation shown in Chapters 2 and 3. Section 4.5 shows the per-

formance of our updated method for recreating the target disc system from

the mock Gaia data ignoring dust extinction to highlight the effects of the

observational error. Section 4.6 describes the results for the mock data taking

the dust extinction into account. In Section 4.7, we provide a summary of this

work.

4.2 Target setup

We use for demonstration a single target galaxy created with an N -body sim-

ulation. We selected our Target IV from Chapter 3 as it shows boxy/peanut
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structure in the central bulge, which is thought to exist in the Milky Way

(e.g. Wegg & Gerhard 2013, see Section 1.4.1). It is set up using the method

described in Grand et al. (2012a), with the equations presented in Chapter 2.

The initial conditions for the target galaxy for this chapter are constructed

using the parameters, M200 = 1.75 × 1012M⊙, Md = 5.0 × 1010M⊙, c = 9.0,

zd = 0.3 kpc, σ2
r /σ

2
z = 2.0 and the scale length of the target disc is initially

set as Rt,d = 3 kpc as described in Chapter 3. Our simulated target galaxy

consists initially of a pure stellar disc with an exponential profile with no bulge

and a static dark matter halo with the profile of Navarro et al. (1997). We

run an N -body simulation with this initial condition, with 106 particles, for 2

Gyr using a tree N -body code, gcd+ (Kawata & Gibson 2003; Kawata et al.

2013), and adopt the final output as a target, shown in the top panel of Fig.

4.1.

For the model setup, as mentioned above, in this initial stage of develop-

ment, we assume that the dark matter halo potential is known and there is

no other external potential such as the bulge or stellar halo. We use the same

number of particles, 106, and the same dark matter halo and disc structure

parameters for the model and target galaxies, except for the initial disc scale

length of Rd = 2 kpc for the models which is different from Rt,d = 3 kpc for the

targets. We then evolve the model galaxy gravitationally while simultaneously

adjusting it with primal.

4.3 Generating Gaia mock data

Our target data are in Galactocentric Cartesian coordinates and hence must

be converted into equatorial coordinates before we can add error based upon

the Gaia science performance estimates.

First, we shift the centre to the solar position, with the orientation of

the axes remaining unchanged. Then, we change the orientation of the axes so

that the x axis points in the direction of right ascension α = 0o and declination

δ = 0o, the y axis points in the direction of (α, δ) = (90o, 0o) and the z axis

is aligned with the Earth’s North Pole using the transformation matrix, T .

We call these equatorial Cartesian coordinates. T is given by the inverse of
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Fig. 4.1: Face-on (left) and edge-on (right) density map of the Target (top) and Model A

(bottom), in a 12 kpc by 12 kpc area.

the product of three rotation matrices, T = T1T2T3, as shown in Pasetto et al.

(2003).

T1 provides a rotation around the position angle of the North Celestial

Pole with respect to the semi-circle passing through the North Galactic Pole

and the zero Galactic longitude,

T1 =











cos θ0 sin θ0 0

sin θ0 − cos θ0 0

0 0 1











. (4.1)

T2 and T3 provide rotations around the equatorial position angles of the North
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Fig. 4.2: Real distance (1/π), compared to observed distance (1/πobs), based on the Gaia

science performance estimates of the parallax for M0III stars without extinction (upper),

M0III stars with extinction (middle) and red clump stars with extinction (lower). The white

lines lie along the 1:1 relation to guide the eye.

Galactic Pole

T2 =











− sin δNGP 0 cos δNGP

0 −1 0

cos δNGP 0 sin δNGP











, (4.2)

and

T3 =











cosαNGP sinαNGP 0

sinαNGP − cosαNGP 0

0 0 1











. (4.3)

We use the values of θ0 = 122.7o, δNGP = 27o27′ and αNGP = 192o49′30′′ for
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Fig. 4.3: Face-on (upper) and edge-on (lower) logarithmic number counts of observed stars

for M0III stars with no error (left) with V ≤ 14.5 mag, M0III stars with error but no

extinction (middle left) with V ≤ 14.5 mag and dobs ≤ 10 kpc, M0III stars with extinction

(middle right) with V ≤ 16.5 mag and dobs ≤ 10 kpc and red clump stars with extinction

(right) with V ≤ 16.5 mag and dobs ≤ 10 kpc.

these angles, giving us

T =











−0.0549 −0.8734 −0.4838

0.4941 −0.4448 0.7470

−0.8677 −0.1981 0.4560











. (4.4)

The coordinate matrix, A, for conversion from equatorial Cartesian coordi-

nates to equatorial coordinates is given by

A =











cos(α) cos(δ) − sin(α) − cos(α) sin(δ)

sin(α) cos(δ) cos(α) − sin(α) sin(δ)

sin(δ) 0 cos(δ)











, (4.5)

such that










vr
kµα

π

kµδ

π











= A−1T −1











U

V

W











, (4.6)
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where k = 4.74 is a unit conversion factor between the velocity of the star

with respect to the Sun, (U, V,W ), in km s−1 and the proper motions of the

star (µα, µδ) in arcsec yr−1.

We treat the N -body particles as a single stellar population, which we will

then add error to. We have chosen to use M0 giant (M0III) stars, with assumed

MV = −0.4 and V − Ic = 1.78, for our tracers as these bright red giant stars

will carry the least error in the estimation of their parallax and radial velocity.

We assume each N -body particle (with mi = 5 × 104M⊙) corresponds to one

M0III star. Thus, there exists one M0 giant for every star cluster with mass

of 5 × 104M⊙. This is a very simple assumption and does not follow a stellar

population model or use a particular IMF. In reality, calculating the stellar

mass density from the observed stars will be one of the biggest unknowns,

because it is sensitive to their age, metallicity, IMF and evolutionary track.

However, in this chapter, we simply assume the conversion from M0III star

number density to stellar mass density is known without any error, as a first

step towards more realistic data. We will relax this strong assumption in

future work.

We also assume that we know the position and motion of the Sun. We

locate the observer at (−8, 0, 0) kpc in Fig. 4.1, and the motion of the Sun

is assumed to be 228.14 km s−1. Additionally, in this chapter, we generate

error added data for any particle with Gaia magnitude G ≤ 20 mag and

GRVS ≤ 16.5 mag. The relations to convert V and (V − Ic) to G and GRVS

(Jordi et al. 2010) are

G = V −0.0257 − 0.0924(V − Ic)

− 0.1623(V − Ic)
2 + 0.0090(V − Ic)

3, (4.7)

and

GRVS = V −0.0119 − 1.2092(V − Ic)

+ 0.0188(V − Ic)
2 + 0.0005(V − Ic)

3. (4.8)

We then add error to our target based upon the Gaia performance esti-

mates listed on the Gaia website.1 Note that in this chapter we are using the
1http://www.cosmos.esa.int/web/Gaia/science-performance



4.3. Generating Gaia mock data 105

pre-launch error models. A simple performance model, based upon the Gaia

Mission Critical Design Review, gives the equation for the end of mission par-

allax standard error, σπ, as

σπ = (9.3 + 658.1z + 4.568z2)1/2

×(0.986 + (1 − 0.986)(V − Ic)), (4.9)

where

z = max

(

100.4(12−15), 100.4(G−15)

)

, (4.10)

and where 6 ≤ G ≤ 20 mag.

For 6 ≤ G ≤ 12 mag, shorter integration times will be used to avoid

saturating the CCDs. The end of mission performance will depend on the

exact scheme used to avoid saturation. Thus, for the moment, equation (4.10)

allows us to ignore this uncertainty and returns a constant σπ = 7 µas for

stars with 6 ≤ G ≤ 12 mag. We assume this same error for G < 6 mag.

Although Gaia will not return data for G < 6 mag, information on these very

bright stars will be readily available from other surveys. Additionally, the area

covered by G < 6 mag M0III stars will be covered by intrinsically fainter stars

when using multiple populations. With M0III stars, G = 6 mag corresponds

to the apparent magnitude of stars at dobs ∼ 0.25 kpc. Therefore, only a small

fraction of the mock data will be affected by this simplification.

The position and proper motion errors can be determined from a relation-

ship with σπ, which varies over the sky, and as such are derived from scanning

law simulations. A table2 on the Gaia Science Performance website shows the

ecliptic longitude averaged numerical factor with which to multiply with σπ,

to return the appropriate value of σα∗ , σδ, σπ, σµα∗
or σµδ

. This table2 also

takes into account the variation of the number of transits over the sky.

Note that σα∗ denotes the error in true arc, and may be converted to the

standard right ascension with

σα∗ = σα cos(δ), (4.11)

and similarly

µα∗ = µα cos(δ). (4.12)

2http://www.cosmos.esa.int/web/Gaia/table-6
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We then convert the proper motions to velocities in km s−1 in the direction of

α and δ with

vα = 4.74(µα/π) cos(δ) (4.13)

and

vδ = 4.74(µδ/π). (4.14)

However, because the error in the proper motions is also dependent on the

error in the parallax, the errors must be convolved before they may be used

in primal. We use the approximations

σvα = 4.74

√

1

π2

(

σ2
µα∗

+
µ2
α∗

π2
σ2
π

)

. (4.15)

and

σvδ = 4.74

√

1

π2

(

σ2
µδ

+
µ2
δ

π2
σ2
π

)

. (4.16)

to convolve the errors and also to convert the errors in µα∗ and µδ to errors in

vα and vδ.

A simple performance model for the end of mission radial velocity error,

σvr , is given by

σvr = 1 + bea(V −14), (4.17)

where a and b are constants dependent on the spectral type of the star. Some

examples are given in a table3 on the Gaia science performance website. This

performance model is valid for GRVS ≤ 16.1 mag, where the fit error is 0.07 mag

(Jordi et al. 2010). The a and b values are estimated by linear interpolation

as a function of V − Ic using the table. We then apply these errors to the data

from our M0III N -body target and displace the measured parallax, proper

motion and radial velocity from the true values using random sampling.

Now that our data contain error, we need to strike a balance between the

quantity of data available and the quality of the data, as stars with very large

parallax errors provide incorrect information in the observables of our model.

As such, we do not use all the available particles as points around which

to calculate the observables, but merely those whose magnitude is within a

predetermined limit.

3http://www.cosmos.esa.int/web/Gaia/table-5
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Fig. 4.2 shows the real distance from the observer compared to the ob-

served distance for particles within 10 kpc for M0III stars (top). We first

discuss a simplified case where the dust extinction effects are ignored. The

effects of the dust extinction will be discussed in Section 4.6. The observed

distance, dobs, in Fig. 4.2 is the error added distance from the observer. dobs

is calculated from the randomly displaced parallax measurement, πobs, follow-

ing the expected parallax errors. The top panel of Fig. 4.2 shows that the

accuracy of the distance measurement is excellent within 4 kpc, but starts to

diverge quickly at higher distances. It also shows that while the difference

between the observed and correct positions for the majority of stars remain

within ∼ 2 kpc even up to d = 10 kpc, a significant fraction have errors of

more than 50%. For this chapter, we have set the limit for the selection of the

data to be dobs < 10 kpc. We also add the selection limit of V ≤ 14.5 mag for

obtaining accurate radial velocities. Note that this estimate of distance error

uses only parallax distance estimates, whereas from the real Gaia data it is

also possible to measure photometric distances which may help to reduce the

error.

Fig. 4.3 shows the face-on (upper panels) and edge-on (lower panels)

distribution of generated M0III stars which meet our selection criteria (V ≤
14.5 mag and dobs ≤ 10 kpc). The left-hand panels show the true distribution

of the selected stars and the second column shows the distribution of the stars

after the error has been added, i.e. the position of the stars after the random

displacements in parallax. Fig. 4.3 shows the target data reach the centre of

the galaxy. However, the observed shape of the bar differs between the true

distribution and the error added data. With the addition of error, the boxy

structure of the bar is much weaker and the angle of the bar becomes less

apparent.

4.4 The M2M algorithm: primal

We have presented a full description of both the original M2M and our particle-

by-particle M2M in Chapters 2 and 3. In this section, we describe the modi-

fications made to primal from the previous chapters.
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In a change from Chapters 2 and 3, we have converted the algorithm to

take target data in equatorial coordinates, e.g. right ascension, α, declination,

δ, parallax, π, radial velocity from the position of the Sun, vr, and proper

motions, vα and vδ. We make this change as this is the form in which Gaia

will return its data. We maintain six dimensional phase space information,

and as such no accuracy should be lost at this stage.

We again convert our Galactocentric Cartesian model data into equato-

rial coordinates to compare the radial velocity and proper motion observables

constructed from the Gaia data via the process shown in Section 4.3. We then

calculate the velocity likelihood observables in equatorial coordinates, using

the equations derived in Chapter 3, e.g. for vα, the likelihood is given by

L̂vα,j
=

1√
2π

∑

i

Wijmie
−(vα,j−vα,i)2/2σ2

vα,j , (4.18)

for model particle i and target particle j.

We also convert the target particle positions into Cartesian coordinates

to allow the same form of density observable as Chapters 2 and 3, using the

equation










x

y

z











= T











cos(α) cos(δ)/π

sin(α) cos(δ)/π

sin(δ)/π











, (4.19)

using the observed parallax, πobs, as discussed in Section 4.3. We then use

the same density observable as Chapters 2 and 3 for both the target and the

model.

Note that the positions of the target stars are displaced due to the parallax

errors, and the target density observables, ρt,j, do not correctly represent the

density of the target system. Our target stars are selected with V ≤ 14.5

mag, and the observed distance dobs ≤ 10 kpc, as mentioned in Section 4.3.

However, we do include particles with V > 14.5 mag and dobs > 10 kpc in the

calculation of the density observables themselves. This helps to compensate

for the underestimation of the density of the target stars just inside of the

magnitude cut, for which there are significant number of stars fainter than the

magnitude cut, but within the smoothing length. However, this also counts
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Fig. 4.4: Fractional density error (ρobs − ρtrue)/ρtrue as a function of observed Galacto-

centric radius, RG (left) and observed distance from the Sun, dobs (right), for M0III stars

without extinction (upper), M0III stars with dust extinction (middle) and red clump stars

with dust extinction (lower), coloured by logarithmic number density of the stars. The

white line lies along zero to guide the eye.

fainter stars whose observed distance is much smaller than the real distance

owing to the error, which can result in overestimation of the local density.

Fig. 4.4 shows the fractional density error of the mock data against Galac-

tocentric radius for M0III stars (upper left). The upper-left panel of Fig. 4.4

shows density tends to be overestimated when using this simplistic calculation

of the density. Most notably the panel shows a substantial overestimation

between 1 and 2 kpc from the Galactic centre. This overestimation can be un-

derstood from the face-on view of the distribution of stars shown in the upper

panels of Fig. 4.3. In the data with the true particle positions (left), the bar is

clearly shown. On the other hand, in the error added data (2nd column) the

bar shown is more diffuse, and the apparent angle of the bar looks different.

Therefore, for example, while (x,y)=(−2, 0) is the edge of the bar in the true

distribution, because of the large errors in parallax, the observed distance of
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many stars in the bar are randomly displaced from the true bar location, which

makes the bar appear more diffuse. As a result, the density at (x, y) = (−2, 0)

increases, which leads to the overestimation seen at RG ∼ 2 kpc in Fig. 4.4.

Fig. 4.4 also shows an underestimation in the inner 0.5 kpc region. This is also

understandable from Fig. 4.3, for the same reason, because the observed cen-

tral concentration is more diffuse due to the large parallax error at the centre,

the very centre of the galaxy appears less dense. In this chapter, we simply

take the measured density. However, because of our particle-by-particle M2M

algorithm, we have many target stars, and demonstrate that primal works

reasonably well even with this simple density measurement.

Fig. 4.4 shows the fractional density error of the mock data against ob-

served distance for M0III stars without extinction (upper right). There is a

general trend of overestimation matching that which is seen in the upper-left

panel. The cut-off of the data at dobs ∼ 9.55 kpc is due to the magnitude limit

of V ≤ 14.5 mag for the data selection.

Having converted the observables into their appropriate coordinates, we

then compare these observables with the same method as Chapter 3, resulting

in the change of mass equation

d
dt
mi(t) = −ǫmi(t)

{

M
∑

j

W (rij , hj)

ρt,j
∆̃ρj (t)

− ζM

[

∑

j

Wij

(

1√
2π

e−(vr,j−vr,i)
2/2σ2

vr,j

L̂vr,j

− 1

ρj(t)

)

+
∑

j

Wij

(

1√
2π

e−(vα,j−vα,i)
2/2σ2

vα,j

L̂vα,j

− 1

ρj(t)

)

+
∑

j

Wij

(

1√
2π

e−(vδ,j−vδ,i)
2/2σ2

vδ,j

L̂vδ ,j

− 1

ρj(t)

)]

+ µ

(

ln

(

mi(t)

m̂i

)

+ 1

)

}

, (4.20)

where m̂i is the prior and M is an arbitrary constant mass, which we set as

M = 1012M⊙. We set the prior m̂i = Mtot,ini/N , where Mtot,ini is the initial

total mass of the model system, and N is the number of particles in the model.
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As with Chapters 2 and 3, we write ǫ = ǫ′ǫ′′, where

ǫ′′ =
10

maxi

(

M
∑

j
W (rij ,hj)

ρt,j
∆̃ρj (t)

) . (4.21)

Following de Lorenzi et al. (2008), we use temporally smoothed versions

of ∆ρj , L̂ and ρj . As opposed to the fixed values of the velocity error, σx,j,

which were used in Chapter 3, we now use values based on Gaia’s performance

estimates as discussed in Section 4.3. In other words, we take into account the

difference in errors among different velocity components for different target

stars.

We have again performed a parameter search for the optional parameters

as demonstrated in Chapter 2. These parameters are ǫ′, which controls the

balance between speed and smoothness, µ, which controls the level of regu-

larisation, α, which controls the degree of temporal smoothing and ζ , which

controls the magnitude of the velocity observables contribution to the force

of change. We have determined these values as ǫ′ = 0.1, α = 2.0, ζ = 1 and

µ = 105, these are in agreement with Chapter 3.

We calculate the angle of the bar in the model at each step. Then, we

rotate the model to match the bar angle of the target, assuming the bar angle

is known, for the purposes of calculating the observables in the same reference

frame. Chapter 3 demonstrates that this method will allow the pattern speed

to be recovered along with the density and velocity profiles. When applying

this to the Milky Way we will not know the exact bar angle. However, here

we assume that the bar angle is known for simplicity.

4.5 Results

In this section, we present the results from our models using primal. We

will first show the results for the unconstrained model explained below, and

then for a model where we apply primal to ideal data, i.e. the position

and velocities are measured with no error. Then, we show our fiducial model

where primal is applied to the error added data ignoring dust extinction.

Then, we demonstrate the importance of using all three dimensions of the

velocity constraints, and the importance of calculating density using stars
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Table 4.1: M2M model results at the final timestep. Ωp is the model pattern speed, with

a target of 28.9 km s−1kpc−1, χ2
ρ is a measure of accuracy of the density, −Lr,vα,vδ are the

likelihood values for the radial velocity and proper motions.

Model Ωp (km s−1kpc−1) χ2
ρ −Lvr/10

6 −Lvα/10
6 −Lvδ/10

6

i 34.3 0.370 7.831 8.2112 8.2012

A 28.5 0.100 5.832 5.8898 5.8288

B 28.6 0.137 7.067 2.6357 2.6315

C 26.1 0.126 6.836 2.6365 2.6322

D 25.0 0.130 6.926 2.6363 2.6322

E 33.8 0.130 6.939 2.6356 2.6314

F 22.5 0.196 6.885 2.6364 2.6332

G 25.9 0.196 8.815 2.6362 2.6327

Gi 23.9 0.274 8.898 2.6373 2.6360

H 25.6 0.167 7.548 2.6375 2.6332

Hi 44.4 3.624 10.99 4.0241 4.0203

I 27.7 0.249 1.666 0.8222 0.8211

J 27.3 1.593 0.442 0.2399 0.2396
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with V > 14.5 mag. We then show models with different initial conditions.

Table 4.1 shows a summary of the models including the bar pattern speeds,

the likelihood values Lvr, Lvα and Lvδ , where

L =
∑

j

ln

(

L̂j

ρj

)

, (4.22)

and the χ2
ρ for the density, as given in Equation (2.28). Note that we include

only target particles with V ≤ 14.5 mag and dobs ≤ 10 kpc, and Nr is the

number of particles satisfying this criteria. Note that although we seek to

maximise likelihood, the values in Table 4.1 are −L, and hence smaller values

mean higher likelihood. Note that as discussed in Section 4.4, we do not

take into account the error in density. Especially for distant target stars, the

density tends to be overestimated, because of the larger errors in the distance.

Therefore, χ2
ρ is unlikely to be a fair measurement of the goodness of fit.

4.5.1 Unconstrained model

Firstly we show Model i, where all the constraints from M2M modelling have

been turned off and the system is merely allowed to evolve within its own

self-gravity and the fixed potential of the dark matter halo. Model i is for

reference and comparison with the other models with M2M modelling, as the

known dark matter halo and the similar initial condition of the model to the

target initial condition will contribute partially to the similar mass distribution

and kinematics of the final model system to those of the target system.

Fig. 4.5 shows the radial profiles of the surface density, Σ, the radial,

σr, and vertical, σz , velocity dispersion and the mean rotational velocity, vrot,

for the target (black solid) and Model i (green dash) compared to the initial

model (blue dot). The unconstrained model does not well reproduce the target

in most areas. The Σ profile shows an overestimation of the density within 9

kpc. This is unsurprising due to the lower scale length of the initial model disc.

The σr and σz profiles match poorly within 5 kpc of the centre. However, they

are reproduced nicely in the outer regions, without the help of primal. The

vrot profile is overestimated across the entire disc because of the higher surface

density in the inner region. The left panel of Fig. 4.6 shows the fractional

difference between the target and Model i (green dash) in the radial profiles for
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comparison with the other models. The fractional surface density difference is

given by

∆Σ = (Σ − Σt)/Σt, (4.23)

where Σt is the true surface density of the target, and a similar equation is

used for evaluating the fractional velocity differences in the left panel of Fig

4.6.

The top middle panel of Fig. 4.7 shows the fractional surface density

difference between the target (top left panel) and Model i in a face-on view.

The fractional difference in the surface density map of the model and the

target are calculated using the cloud in cell method on a 240 by 240 grid. Fig.

4.7 shows a substantial overdensity in the model within RG ∼ 6 kpc. This

is to be expected because, without constraints from primal, the model disc

remains more centrally concentrated than the target due to the initial smaller

scale length of 2 kpc.

We have measured the pattern speed of the bar of the target galaxy

by measuring the difference in the bar angle at different epochs. The bar

pattern speed measured is Ωt,p = 28.9 km s−1kpc−1 for the target galaxy.

The pattern speed of the bar for Model i is overestimated significantly with

Ωp = 34.3 km s−1kpc−1 for Model i.

4.5.2 Ideal data

In this section, we show Model A which contains no error in the target data

for reference. This is similar to Model D from Chapter 3, which uses the same

target galaxy and initial conditions for the model. In this chapter, we use a

more realistic selection of the target data, i.e. V ≤ 14.5 mag (corresponding to

dobs ∼ 9.55 kpc for M0III stars), compared with RG ≤ 10 kpc used in Chapter

3, and utilise observables in equatorial coordinates as discussed in Section 4.3.

A more detailed study of primal when applied to data with no error is the

subject of Chapter 3.

Fig. 4.5 shows the radial profiles of the surface density, Σ, the radial, σr,

and vertical, σz, velocity dispersion and the mean rotational velocity, vrot, for
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Fig. 4.5: Surface density profile (upper), radial velocity dispersion (upper middle), vertical

velocity dispersion (lower middle) and rotation velocity (lower) for the Initial model (blue

dot), target (black solid), Model A (red dash-dot) and Model i (green dash).

the target (black solid) and Model A (red dash-dot) compared to the initial

model (blue dot). As in Chapters 2 and 3, these radially binned profiles

are not directly constrained by primal, but are reproduced remarkably well,

especially if compared with the unconstrained model, Model i. Fig. 4.5 shows

a substantial increase in the radial velocity dispersion and a corresponding

decrease in the mean rotational velocity from the initial to the final model,

leading to an excellent agreement with the target profiles in all areas apart from

the inner 3 kpc of σr and vrot which are slightly underestimated, corresponding

to the boxy structure. The left panel of Fig. 4.6 shows the fractional difference

between the radial profiles of the target and Models i and A. Model A (red

dash-dotted) shows less than ten percent error in all areas apart from the outer

edge of the density profile and the inner 1 kpc in the rotation velocity profile.

The top right panel of Fig. 4.7 shows an excellent recovery of the face-
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on view of the surface density distribution in the middle region of Model

A. However, the recovery is still flawed, including a ring of underdensity

around r = 10 kpc, which is due to the failure to recover the spiral/ring

structure, which is seen in the target galaxy in the top left panel (see also

Fig. 4.1). However, the pattern speed of the bar is recovered extremely well

with Ωp = 28.5 km s−1kpc−1 for the final model compared to the target of

Ωt,p = 28.9 km s−1kpc−1 (see Table 4.1). Additionally, Fig. 4.1 shows the

morphology of Model A reproduces well the boxy morphology of the Target’s

central bulge. The values of χ2, Lvr, Lvα and Lvδ from Model A (shown in Ta-

ble 4.1) are all better than those for Model i, the unconstrained model. They

cannot be directly compared to the results for subsequent models, because the

positions of the tracers will have changed and different tracers may have been

selected for use by the d ≤ 10 kpc and V ≤ 14.5 mag selection criteria.

4.5.3 Fiducial model

In this section, we present Model B, our model which best reproduces the

target galaxy described in Section 4.3, when working with the error added

observables. The right panel of Fig. 4.6 shows the fractional difference in

the radial profiles for Model B (black solid) compared with the target galaxy.

The final profiles reproduce the target profiles reasonably well, considering the

parallax errors present in the observational data. However, there is a notice-

able decrease in accuracy when compared with Model A (red dash-dotted).

There is an overestimation of the density between RG ∼ 2 and 4 kpc, and an

underestimation within 1 kpc. There is also an underestimation in the inner

regions of the σr, σz and vrot profiles. This drop in accuracy is to be expected

due to the addition of observational error. The inaccuracy in the surface den-

sity profile is believed to be due to systematic error in the density estimate of

the target galaxy as we see in Fig. 4.4. The error in the density estimate is

discussed further in Section 4.5.5.

The left panel of the second row of Fig. 4.7 shows that there is increased

overestimation of the density except in the bar region in Model B when com-

pared with Model A (top right). This matches what is seen in the right panel

of Fig. 4.6, with the overestimation greatest between RG ∼ 2 and 4 kpc, and
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Fig. 4.6: Fractional difference between models and target in the radial profile of the surface

density (upper), radial velocity dispersion (upper middle), vertical velocity dispersion (lower

middle) and rotation velocity (lower) for Model i (green dash), A (red dash-dot) and B

(black solid) (left). Same as left, but for Model B (black solid), Models C (blue dot), D

(red short-dash) and E (green dash-dot) which use only the density, or specific velocities as

constraints and Model F (yellow triple-dot-dash) which only calculates density from stars

with V < 14.5 mag.

an underestimation present in the central 1 kpc.

Table 4.1 shows a pattern speed of the bar of Ωp = 28.6 km s−1kpc−1

for Model B, compared to Ωt,p = 28.9 km s−1kpc−1 for the target. This is a

remarkably good recovery considering the less accurate constraints in the inner

region of the target galaxy and considering our naive application of primal

to the error added data, and is encouraging for further development.

4.5.4 Limited velocity constraints

In this section, we show the importance of using velocity constraints, as op-

posed to merely density constraints. We also show the importance of using
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three dimensional velocity constraints, as using either vr or vα,δ alone results

in an inferior model.

The right panel of Fig. 4.6 shows the fractional difference in the radial

profiles for Model C (blue dot), performed using only the density observables

as constraints. Because the density is directly linked to the positions of the

target stars, the error in the density observables can become quite high as

you get further from the Sun, as shown in the top right panel of Fig. 4.4.

The top left panel of Fig. 4.4 shows that the density in the inner region of

the target galaxy is overestimated. As a result, the recovery of the density

around 2 kpc is worse than the fiducial model, Model B (black solid). The

right panel of Fig. 4.6 also shows the σz profile is a better match to the target

in the inner 2 kpc but worse around 4 kpc when compared to the fiducial

model. The vrot profile is better reproduced at 0.5 kpc, but is worse around

2.5 kpc. This is unsurprising as there are no constraints upon the velocity.

Interestingly, we find an improvement in the σr profile in the central part of

the galaxy. However, we believe that this is a coincidence and higher σr is

driven by overestimated density constraints.

The area of overestimated density can be clearly seen in Fig. 4.7, which

shows the fractional surface density difference map. The middle panel in the

2nd row of Fig. 4.7 shows two patches of substantial overestimation either

side of the bar in Model C. This is because Model C contains a substantial

bulge but a weak bar. The pattern speed of the bar recovered is worse than

in Model B with Ωp = 26.1 km s−1kpc−1 for Model C, compared to the target

of Ωt,p = 28.9 km s−1kpc−1.

The right panel of Fig. 4.6 shows the fractional difference in the radial

profiles for Model D (red dash), performed using density and radial velocity

observables as constraints. When comparing Model D with Model C (blue

dot), we see an improvement in the Σ profile and the velocity profiles, apart

from the inner 2 kpc of the σr and vrot profiles. Fig. 4.7 shows the fractional

surface density difference map for Model D (2nd row right), which when com-

pared with Model C (2nd row middle) shows very little difference. However,

the pattern speed of the bar for Model D has become worse when compared
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Fig. 4.7: Face-on surface density map of the target (top left) and the face-on fractional

projected surface density difference maps (∆Σ = (Σ− Σt)/Σt,) calculated with a cloud-in-

cell method on a 240×240 grid, for Models i (top middle), A (top right), B (2nd row left),

C (2nd row middle), D (2nd row right), E (3rd row left), F (3rd row middle), G (3rd row

right), H (bottom left), I, (bottom middle) and J (bottom right) plotted for comparison.

The difference maps use the same scale as given by the colour bar. Red shows an overdensity

in the model, and blue is an underdensity in the model. The surface density of the target

(top left) uses its own logarithmic colour scale.
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Fig. 4.8: Same as Fig. 4.6, but for Model B (black solid), Model G (blue dash) which

has Rd,ini = 4.0 kpc, Gi (red dot) which is Model G without constraints, Model H (green

triple-dot-dash) which has Md,ini = 1011M⊙ and Hi (yellow dash-dot) which is Model G

without constraints (left). Note the scale for this figure is different to that of both panels of

Fig. 4.6 and the right panel of this figure. Same as the left panel, but for Model B (black

solid), Model I (red dash) which uses M0III tracers with extinction added and Model J (blue

dash-dot) which uses red clump tracers with extinction added.

with Model C, with Ωp = 25.0 km s−1kpc−1 for Model D, compared to the

target of Ωt,p = 28.9 km s−1kpc−1. Therefore, we think that it is important

to include observed proper motions as constraints.

The right panel of Fig. 4.6 also shows the fractional difference in the radial

profiles for Model E (green dash-dot), performed using density and proper

motion observables as constraints. When comparing Model E and Model B

(black solid), we see that using the proper motion constraints only, rather than

the full velocity constraints has improved the recovery of the σr profile within

3 kpc. However, it has resulted in a worse recovery of the σz profile. The vrot

and Σ profiles in general remain similar.
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The left panel of the 3rd column of Fig. 4.7 shows the fractional sur-

face density difference map for Model E, which when compared with Model

C (2nd row middle) shows a noticeable improvement. The areas of over-

density on either side of the bar have been removed, and the recovery is

more similar to Model B (2nd row left). However, the pattern speed of the

bar for Model E is worse when compared with Models B or C (see Table

4.1), with Ωp = 33.8 km s−1kpc−1 for Model E, compared to the target of

Ωt,p = 28.9 km s−1kpc−1.

When we compare Models C, D and E with Model B, we find Model B to

be superior, especially when aspiring for an accurate recovery of the pattern

speed of the bar, leading us to conclude that the three dimensional velocity

information is an important constraint to use when it is available. This agrees

with our findings in Chapter 2, where this test was performed on data without

errors. Table 4.1 shows the χ2, Lvr , Lvα and Lvδ for Models B, C, D and E. We

see very little difference in Lvα and Lvδ . However, the values of Lvr show the

best recovery of the radial velocities is actually found by Model C, the model

which only uses the density constraint. We find this odd, but it matches what

we observe in the right panel of Fig. 4.6, and as we discussed above, this is a

coincidence owing to the overestimation of the density.

4.5.5 The importance of the data selection

As discussed in Section 4.3, we use only part of the data available to us as

constraints to avoid using the observables with too large error. In this chapter,

we use target M0III stars with V ≤ 14.5 mag and dobs ≤ 10 kpc around which

to calculate the observables. However, because Gaia will observe stars with

G .20 mag, we include the stars with G .20 mag in the calculation of the

density for the observables if they lie within the smoothing length h. Model F

is constructed using the target density measured only using M0III stars with

V ≤ 14.5 mag and dobs ≤ 10 kpc. This leads to a reduced estimate of density

for observables close to the selection limit, because approximately half of their

selection kernel will be outside the limit and contain no stars.

The right panel of Fig. 4.6 shows the fractional difference in the radial

profiles for Model F (yellow triple-dot-dash). When comparing Model F with
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the other models, we see the overestimation of the density at RG = 2 kpc

present in the other models in the right panel of Fig. 4.6, has been removed.

However, the Σ profile is worse in all other areas. The three velocity profiles

have all deteriorated, with the σz profile being particularly poor in the in-

ner 4 kpc and it is barely an improvement over the unconstrained case (left

panel of Fig. 4.6, green dash). Fig. 4.7 shows the fractional surface den-

sity difference in the face-on view for Model F (3rd row middle), which when

compared with Model B (2nd row left), shows a substantially worse recov-

ery with two large patches of overdensity either side of the bar. The pattern

speed of the bar for Model F is the worst recovery of any of the models pre-

sented, with Ωp = 22.5 km s−1kpc−1 for Model E, compared to the target of

Ωt,p = 28.9 km s−1kpc−1. This demonstrates the importance of the density

measurements including faint stars. Because the density observables are differ-

ent in Model F, the value of χ2 may not be directly compared to the preceding

models, but the likelihoods may. The velocity likelihoods are again all very

similar.

4.5.6 Different initial conditions

In this section, we show Models G and H, which are performed in the same

fashion as the fiducial model, Model B, but starting from different initial

conditions for the model. We also show Models Gi and Hi which are Models

G and H performed with the constraints from M2M modelling turned off.

Model G uses an initial disc with scale length Rd,ini = 4 kpc, compared

with the previous models which use Rd,ini = 2 kpc. The left panel of Fig. 4.8

shows the fractional difference in the radial profiles for Model G (blue dash).

When comparing Model G with the fiducial model, Model B (black solid), we

see very similar σr and vrot profiles. However, the σz profile is underestimated.

The Σ profile is in general superior to the fiducial model, but not by a large

amount.

The right panel of the 3rd row of Fig. 4.7 shows the fractional surface

density difference map for Model G, which, when compared with Model B

(2nd row left), shows almost no difference. The pattern speed of the bar

for Model G is lower than the target, but still a reasonable recovery with
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Ωp = 25.9 km s−1kpc−1, compared to the target of Ωt,p = 28.9 km s−1kpc−1.

The values of χ2 and Lvr are slightly worse than Model B. However, the values

of Lvα and Lvδ are very similar to that of the fiducial model.

Model Gi is Model G with the constraints from M2M modelling turned

off. This is the same as with Model i, but starting from an initial disc with

Rd,ini = 4.0 kpc. The left panel of Fig. 4.8 shows the fractional difference in

the radial profiles for Model Gi (red dot), which when compared with Model G

(blue dash) shows a worse match to the target for all the radial profiles, apart

from the Σ profile at R ∼ 2.5 kpc, which is due to the change between the

underestimation in the inner region, and overestimation in the outer region.

The pattern speed of the bar for Model Gi is worse than for Model G, with

Ωp = 23.9 km s−1kpc−1, compared to the target of Ωt,p = 28.9 km s−1kpc−1.

The values of χ2, Lvr , Lvα and Lvδ are all worse than those of Model G.

Model H uses an initial disc with mass Md,ini = 1011M⊙, compared to

the other models which start from a disc with Md,ini = 5 × 1010M⊙. The left

panel of Fig. 4.8 shows the fractional error in the radial profiles for Model

H (green triple-dot-dash). When comparing Model H with Model B (black

solid), we find that the result is very similar in all profiles within 5 kpc from

the centre. However, the fractional difference in the outer section of the profiles

is significantly larger for all profiles, especially in the σr and σz profiles. The

bottom left panel of Fig. 4.7 shows the fractional surface density difference

map for Model H, which when compared with Model B (2nd row left) shows a

generally heavier disc, with overdensities present especially at large radii. This

is unsurprising considering the heavier initial Model disc mass. The pattern

speed of the bar for Model H is lower than the target, but still a reasonable

recovery with Ωp = 25.6 km s−1kpc−1 for Model H, compared to the target

of Ωt,p = 28.9 km s−1kpc−1. Similarly to Model G, The values of χ2 and Lvr

are slightly worse than Model B. However, the values of Lvα and Lvδ are very

similar to that of the fiducial Model.

Model Hi is Model H with the constraints from M2M modelling turned off.

This is the same as with model i but starting from an initial disc with Md,ini =

1011M⊙. The left panel of Fig. 4.8 shows the fractional difference in the radial
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profiles for Model Hi (yellow dash-dot), which when compared with Model H

(green triple-dot-dash) shows a very poor recovery of all the radial profiles.

The pattern speed of the bar for Model Hi is substantially overestimated with

Ωp = 44.4 km s−1kpc−1, compared to the target of Ωt,p = 28.9 km s−1kpc−1.

The values of χ2, Lvr, Lvα and Lvδ are all significantly worse than those of

Model H.

Models G and H show that the results from primal are not heavily depen-

dent on the initial conditions of the model. As with most modelling methods,

it is easier to recover the target properties if the initial model is close to the

target. In the final application, we can iteratively change the initial condition,

and find a suitable one. Comparing Models G and H with Models Gi and

Hi show that primal is able to recover the properties of the target galaxy

from initial discs which would otherwise not evolve into a galaxy which resem-

bles the target. In particular the comparison between Model H and Model Hi

shows the power of primal to recover the properties of the target galaxy from

a model which is initially very different from the desired solution.

4.6 Dust extinction

In previous sections, we applied primal to the mock data constructed without

the dust extinction for simplicity, and to highlight the effect of the observa-

tional errors on the modelling of the Galactic disc. However, in the real Galaxy,

there is the dust extinction which changes the brightness and the colours of

the stars, and can block their light completely depending on their distance

and the position in the sky.

Interstellar extinction is a major problem that must be addressed before

a convincing model of the Milky Way can be produced. Unlike surveys of

external galaxies, where the Galactic extinction can be corrected for with a

function Aλ(l, b) (e.g. Schlegel et al. 1998), we need three dimensional extinc-

tion models, e.g. a function Aλ(l, b, d), where d is the distance from the Sun.

While there are three dimensional extinction maps, they do not cover the en-

tire sky. For example, the map by Drimmel & Spergel (2001), fitted to the

far-infrared (FIR) and NIR data from the COBE/DIRBE instrument, is for
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Galactic latitudes | b |≤ 30o and | l |≤ 20o. Another example is shown in

Marshall et al. (2006), for | l |≤ 100o and | b |≤ 10o. However, a continu-

ous estimate of Aλ(l, b, d) has not yet been constructed (Rix & Bovy 2013).

However, ways to constrain the extinction on any one star can be determined

using a Bayesian method (e.g. Bailer-Jones 2011), and a method using the

2MASS near infra-red (NIR) and Spitzer-IRAC mid infra-red (MIR) photom-

etry called the Rayleigh-Jeans Colour Excess (RJCE) method (Majewski et al.

2011). The RJCE method works by comparing changes in stellar NIR−MIR

colours due to interstellar reddening which can be calculated as stars are all

essentially the same colour in the Rayleigh-Jeans part of the spectral energy

distribution. Nidever et al. (2012) have used the RJCE method to produce

a 2D map of extinction in the Galactic mid-plane for 256o < l < 65o and

| b |≤ 1o − 1.5o (with | b |≤ 4o for certain longitudes), up to d ∼ 8 kpc.

To add extinction to our target tracers, we use the extinction map of the

Milky Way taken from galaxia (Sharma et al. 2011). The publicly avail-

able population synthesis code, galaxia, generates stellar populations from

a galaxy model. galaxia uses a 3D polar logarithmic grid of the dust extinc-

tion which is constructed from the method described by Bland-Hawthorn et al.

(2010) and using the dust maps of Schlegel et al. (1998). We calculate extinc-

tion values for our target for each individual M0III tracer. We then modify

the magnitudes and colours of the tracers based upon the extinction and apply

the Gaia expected error as shown in Section 4.3.

In this section, we demonstrate how primal performs when applied to the

mock data considering the dust extinction. We first show Model I, which uses

the M0III tracers used in the preceding models, with dust extinction added

to our mock data. Then, we show Model J, which uses red clump stars with

assumed MV = 1.27 mag and V − Ic = 1.0 as tracers, with dust extinction

added in the same fashion.

Fig. 4.2 shows real versus observed distance for M0III stars with extinction

(middle) and red clump stars with extinction (lower). The middle panel of

Fig 4.2 shows that the accuracy within 4 kpc remains excellent even with the

addition of extinction to our M0III tracers. However, there is a large drop
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in accuracy at larger distances. However, it is encouraging that the highest

concentration of particles remains centred around the 1:1 line. The bottom

panel of Fig. 4.2 shows a large spread of accuracies for the fainter red clump

tracers. In this first investigation we set a selection limit of V ≤ 16.5 mag

and dobs ≤ 10 kpc for the models with extinction to increase the number of

sampled stars, deferring an extensive investigation into the selection criteria

to following work.

Fig. 4.3 shows the face-on (upper panels) and edge-on (lower panels)

distribution of M0III stars with error but without extinction (2nd column),

M0III stars with extinction (3rd column) and red clump stars with extinction

(right). A comparison of the 2nd and 3rd column panels of Fig. 4.3 shows

that the addition of extinction has a substantial effect on the amount of data

available at the Galactic centre, with the data in the plane being lost from

dobs ∼ 3 kpc towards the Galactic centre. The right panels of Fig. 4.3 show

that for the red clump tracers, the V ≤ 16.5 mag limit leaves only a small

amount of target data available to use as constraints. There is no evidence of

an overdensity from the Galactic centre, and a large amount of data has been

lost from the Galactic plane.

Fig. 4.4 shows the fractional density error of the mock data against ob-

served Galactocentric radius (left) and observed distance from the Sun (right)

for M0III stars without extinction (upper), M0III stars with extinction (mid-

dle) and red clump stars with extinction (lower). The middle left panel of Fig.

4.4 shows a similar trend to the case without extinction (upper left). However,

the worst overestimation of the density is now spread between RG ∼ 2 and 4

kpc. The lower panels of Fig. 4.4 show an even larger spread of the overesti-

mation between RG ∼ 3 and 7 kpc, and the density for stars whose observed

distance is more than 6 kpc is mostly underestimated.

The right panel of Fig. 4.8 shows the fractional difference in the radial pro-

files for Model I (red dash) which uses M0III tracers with dust extinction and

observational error. Model I shows a substantial overestimation of the density

around 2 kpc, a general overestimation of the σr and σz profiles, but a better

recovery in the inner region of the vrot profile. The bottom middle panel of Fig.
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4.7 shows the fractional surface density difference map for Model I, which when

compared with Model B (2nd row left) shows a substantially worse recovery.

There is an overdensity near the centre, which is not present in the fiducial

model, and a large underdensity in the top right of the plot. However, the

pattern speed of the bar is again recovered well with Ωp = 27.7 km s−1kpc−1

for Model I, compared to the target of Ωt,p = 28.9 km s−1kpc−1. The density

overestimation in the inner part of the Σ profile and in Fig. 4.7 is concerning.

However, it is not surprising considering the overestimation shown at RG ∼ 2-

3 kpc in the middle left panel of Fig. 4.4. Due to the extinction, the number

of target stars selected has decreased dramatically from 517,527 to 173,821

(see Table 4.1) and the location of the remaining observables will have moved.

Therefore, in Model I the values of χ2, Lvr , Lvα and Lvδ may not be directly

compared to the preceding models.

The right panel of Fig. 4.8 shows the fractional difference in the radial

profiles for Model J (blue dash-dot) which uses red clump tracers with dust

extinction and error added to the target data. Model J shows a good recovery

of the Σ profile. Model J is also better than model B (black solid) between

RG = 2 and 6 kpc, which is very encouraging. Model J is similar to Model I in

the inner 2 kpc of the σr profile, and is a substantially better reproduction of

the rest of the profile, again superior to Model B. The σz profile for model J is

odd, with a substantial underestimation in the inner region, and a substantial

overestimation in the outer region. The vrot profile is similar to that of Model

B.

The bottom right panel of Fig. 4.7 shows the fractional surface density

difference map for Model J, which when compared with Model I (bottom

middle) shows a better recovery, although it is still noticeably worse than

Model B (2nd row left). The pattern speed of the bar is again recovered well,

with Ωp = 27.3 km s−1kpc−1 for Model J, compared to the target of Ωt,p =

28.9 km s−1kpc−1. We find the accuracy of Model J to be very encouraging

for our future exploration of more realistic mock data containing multiple

populations. Due to the use of red clump tracers the number of selected

tracers in Model J (52,111) has again decreased. Thus, the values of χ2, Lvr,
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Lvα and Lvδ may not be directly compared to the preceding models.

The level of accuracy of Models I and J is still encouraging, considering

the amount of information which is lost due to extinction. However, we find

it surprising that the red clump tracers lead to a more accurate model. How-

ever, self-gravity leads to a stable model in a non-linear way, and different

constraints sometimes act counter-intuitively. We stress the need for further

testing of selection criteria with mock data. What we can conclude for the

time being from this initial trial is that the accuracy of the recovery is difficult

to control for M2M modelling, and a careful balance must be reached between

the quantity and quality of data which are used for observables. The data

selection criteria will need to be different depending on the type of star. We

do not consider it useful to do extensive testing on the selection criteria at

this stage, as primal must be modified to use more realistic mock data before

such tests become meaningful.

4.7 Chapter summary

We have demonstrated that primal can recover to a reasonable degree the

properties of a target disc system with a bar/boxy structure in a known dark

matter halo potential despite the presence of error in the observational data.

To allow us to do this, we have modified primal to use equatorial coordinates

which is the form of data Gaia will provide. In this chapter, the error added

observables are compared with the model at the observed position of the target

particles. We have demonstrated that primal can recover the pattern speed

of the bar to an excellent degree under these conditions.

This chapter is a first attempt at dynamical modelling taking into ac-

count the Gaia error, and is used as a demonstration of how we can and will

deal with this, not a statement of the final capability or accuracy of the al-

gorithm. However, it is encouraging that the Gaia errors are good enough

to recover galactic structure, at least with this simple model, and is worth

further exploration of this methodology. However, we are aware that this is

still a simplified case containing many assumptions. In a forthcoming work,

we will modify primal to work with more realistic mock observational data
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which will consist of multiple stellar populations. In Chapter 5, we describe

a novel way of creating this mock data from a known N -body simulation. A

strong assumption made at this stage is that we assume the relationship be-

tween cluster mass and the number density of M0III stars is known. This is of

course not the case, and will have to be addressed in further works. Addition-

ally, the work in this thesis assumes a known dark matter halo potential for

simplicity, whereas in reality the dark matter distribution of the halo remains

very much unknown. However, the halo does have a significant effect on the

dynamics of the galaxy. Thus, we intend to explore different dark matter halo

density profiles in future work, including the possibility of using a live dark

matter halo. This is discussed in Section 6.2.
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Chapter 5

The stellar kinematics of co-rotating

spiral arms in Gaia mock observations

This chapter is based on Hunt et al. (2015)

We have observed an N -body/SPH simulation of a Milky Way-like barred

spiral galaxy. We present a simple method that samples stars from N -body

model particles. We use it to generate mock Gaia stellar observations, taking

into account stellar populations, dust extinction and Gaia′s science perfor-

mance estimates. We examine the kinematics of stars with V ≤ 16 mag

around a nearby spiral arm at a similar position to the Perseus arm at three

lines of sight in the disc plane (l, b) = (90o, 0o), (120o, 0o) and (150o, 0o). We

find that the structure of the peculiar kinematics around the co-rotating spiral

arm, which is found in Kawata et al. (2014b), is still visible in the observa-

tional data expected to be produced by Gaia, despite the dust extinction and

expected observational errors of Gaia. These observable kinematic signatures

will enable testing whether the Perseus arm of the Milky Way is similar to the

co-rotating spiral arms commonly seen in N -body simulations.

5.1 Introduction

The spiral features visible in many galaxies have long been the subject

of debate. As mentioned in Section 1.4.6, the mechanisms which gener-

ate them are still uncertain. The spiral density wave theory (Lin & Shu
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1964) which treats the spiral structure as a density wave, and can thus

be long-lived, solves the winding dilemma. However, no N -body simula-

tions have yet been able to reproduce these long-lived stable spiral arms,

despite the increase in computational power and resolution which has oc-

curred in recent years (e.g. Sellwood 2011; Dobbs & Baba 2014). Recent

work has shown spiral modes and waves which survive over multiple ro-

tations (Quillen et al. 2011; Roškar et al. 2013; Sellwood & Carlberg 2014),

while the spiral arm features in the stellar mass are short-lived but recurrent

(e.g. Sellwood & Carlberg 1984; Carlberg & Freedman 1985; Bottema 2003;

Fujii et al. 2011; Grand et al. 2012a,b, 2013; Baba et al. 2013; D’Onghia et al.

2013; Roca-Fàbrega et al. 2013), including in galaxies with a central bar (e.g.

Grand et al. 2012b). These results imply that the large spiral arms visible in

external galaxies may only appear to be rigid structures extending over the

disc, while in fact being made of transient reforming features.

The interpretation of the transient and recurrent spiral arm features ob-

served in N -body simulations is still in debate. For example, Minchev et al.

(2012) show for the first time (by studying the time evolution of the disc

power spectrum) that spiral wave modes in N -body simulations can last for as

long as 1 Gyr, which can justify treating the wave modes as quasi-stationary

structure, and the transient and recurrent spiral arm features can be ex-

plained by the superposition of different modes with different pattern speeds

(see also Roškar et al. 2012; Sellwood & Carlberg 2014). On the other hand,

Grand et al. (2012a), D’Onghia et al. (2013) and Baba et al. (2013) demon-

strate non-linear growth of the spiral arm features due to similar but different

(in terms of evolution) mechanisms from swing amplification (Toomre 1981),

which could be difficult to explain with the linear superposition of the wave

modes.

Our position within the Milky Way gives us a unique view of these spiral

structures seen in external galaxies, but it comes with its own set of problems

which we must overcome when studying them. The location and kinematics

of the gaseous component of the arms may be determined from HI and CO

observations (e.g. Dame et al. 2001; Nakanishi & Sofue 2003; Kalberla & Kerp



5.1. Introduction 132

2009). However, to observe the kinematics of the stellar component in and

around the spiral arms, we must look through the disc plane, which carries

the heaviest levels of dust and gas, and thus high levels of extinction.

Dust extinction has long been a problem for Milky Way model construc-

tion. As discussed in Section 4.6, although there are reasonably reliable

extinction maps for extragalactic sources whose extinction by the interstel-

lar medium of the Milky Way can be corrected as a function Aλ(l, b) (e.g.

Schlegel et al. 1998), three-dimensional extinction mapping for sources within

the Milky Way i.e. Aλ(l, b, d) is more challenging. There are three-dimensional

extinction maps for individual sections of the sky (e.g. Drimmel & Spergel

2001; Marshall et al. 2006; Hanson & Bailer-Jones 2014; Sale & Magorrian

2014) and two-dimensional maps have been extended to three dimensions (e.g.

Drimmel et al. 2003). However, a truly Galactic 3D extinction map does not

yet exist (Rix & Bovy 2013). ESA’s Gaia mission will help us map the stellar

structure and kinematics of the Milky Way, and help constrain extinction at

the same time (Bailer-Jones et al. 2013).

Gaia, which was launched on the 19th December 2013, will provide de-

tailed astrometric (e.g. Lindegren et al. 2012), spectroscopic (e.g. Katz et al.

2011) and photometric (e.g. Jordi et al. 2010) information for around one bil-

lion stars in the Milky Way. Detailed information on Gaia scientific accuracies

is available in, for example, de Bruijne (2012). Synthetic Gaia mock data have

already been used to demonstrate different applications of the real Gaia data

set. For example, Abedi et al. (2014) used three tracer populations (OB, A

and red clump stars) with the Gaia selection function, errors and dust extinc-

tion, and demonstrated that the Gaia mock data can recover the parameters

of the Galactic warp. Romero-Gómez et al. (2015) examine the Galactic bar

in the Gaia observable space using red clump tracers with the Gaia selection

function, errors and dust extinction. In Chapter 4, we show that we can re-

cover the large scale structure of the Galactic disc with our made-to-measure

Galaxy modelling code, primal (Chapters 2, 3 and 4), and make a good esti-

mation of the pattern speed of the bar, using tracer populations of M0III and

red clump stars with the Gaia selection function, errors and dust extinction.
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There exist full mock catalogues of Gaia stars, e.g. the Gaia Universe

Model Snapshot (gums) which provides a view of the Besançon Galaxy model

as seen from Gaia (Robin et al. 2012), taking into account dust extinction

while assuming there are no observational errors. This detailed prediction of

Gaia observations gives an excellent indication of the volume and quality of

data which will become available from Gaia, predicting 1.1 billion observable

stars, almost 10,000 times more than from its predecessor, Hipparcos. gums

can be extended through the Gaia Object Generator (gog, Luri et al. 2014) to

simulate intermediate and final catalogue data, including the introduction of

realistic astrometric, photometric and spectroscopic observational errors to the

catalogue based upon Gaia science performance estimates. While these mock

data provide an excellent example of the capabilities of Gaia, the Besançon

galaxy model is an axisymmetric model and a kinematic model not a dynamical

model. Although Gaia will not provide accelerations, the kinematics which

Gaia will provide are from a dynamical system, the Milky Way. Thus, it is

important for our purpose to generate catalogues from fully dynamical models

with non-axisymmetric structures, such as spiral arms and a bar, which for

example N -body disc galaxy models can provide.

Therefore, in this chapter, we propose to create mock Gaia observations

from an N -body model using a population synthesis code, such as galaxia

(Sharma et al. 2011), or the methodology presented in Pasetto et al. (2012)

or Lowing et al. (2015). galaxia is a flexible population synthesis code for

generating a synthetic stellar catalogue from an N -body or an analytical galaxy

model over wide sections of the sky, with a sampling scheme which generates

a smoothly distributed sample of stars. Synthetic catalogues generated from

dynamical Galaxy models are essential for preparing to exploit the real Gaia

catalogue and can be used to determine whether certain features within the

Milky Way will be visible to Gaia.

In Kawata et al. (2014b), we examined the kinematics of both the stellar

and gas components around a transient, co-rotating spiral arm in a simulated

barred spiral galaxy similar in size to the Milky Way. Although this arm

is transient, similar arms recur during the evolution of the galaxy. We made
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predictions of observable kinematic signatures that may be visible in the Milky

Way’s Perseus arm, if it is also a transient, recurrent and co-rotating spiral

arm. We then compared our simulation with data from APOGEE and the

maser sources in Reid et al. (2014) measured by the BeSSeL survey and the

Japanese VLBI Exploration of Radio Astronomy, finding tentative agreement

between our simulation and the observations. Owing to the low number of

maser sources and the lack of distance information for the APOGEE stars,

no firm conclusions could be drawn. However, it is encouraging to see similar

features in both, including the possible signatures of a co-rotating spiral arm.

In this chapter, we build upon the previous work of Kawata et al. (2014b)

by generating a stellar sample with different populations from the simulation

data in Kawata et al. (2014b) and making mock observations of these stars

taking into account the expected Gaia science performance estimates. The aim

is not to make further predictions about the kinematics of transient, recurrent

and co-rotating spiral arms, but rather to examine whether these signatures

remain visible in the Gaia data if they exist in the Milky Way.

5.2 Simulation

We use the simulated galaxy which is presented in Kawata et al. (2014b) and

Grand et al. (2015). The details of the numerical simulation code, and the

galaxy model are described in Kawata et al. (2014b). We briefly describe the

galaxy model in this section. The galaxy is set up in isolated conditions,

and consists of a gas and stellar disc but no bulge component. The discs

are embedded in a static dark matter halo potential (Rahimi & Kawata 2012;

Kawata et al. 2014b). The dark matter halo mass is Mdm = 2.5 × 1012 M⊙,

and the dark matter density follows the density profile in Navarro et al. (1997),

with a concentration parameter of c = 10. The stellar disc is assumed to follow

an exponential surface density profile with the initial mass of Md,∗ = 4.0×1010

M⊙, a radial scale length of Rd,∗ = 2.5 kpc and a scale height of zd,∗ = 350

pc. The gas disc is set up following the method of Springel et al. (2005b), and

has an exponential surface density profile with the scale length of Rd,g = 8.0

kpc. The total mass of the gas is 1010 M⊙. The simulation comprises 106 gas
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particles and 4× 106 star particles. Therefore, each particle has a mass of 104

M⊙. The resolution is sufficient to minimise numerical heating from Poisson

noise (Fujii et al. 2011; Sellwood 2013). We employ a minimum softening

length of 158 pc (equivalent to a Plummer softening length of 53 pc) with the

spline softening and variable softening length for gas particles as suggested by

Price & Monaghan (2007).

The radial profile of the mean metallicity of stars and gas is initially set

by [Fe/H](R) = 0.2− 0.05(R/1 kpc), and the metallicity distribution function

at each radius is centred on the mean metallicity value with the dispersion set

to a Gaussian distribution of 0.05 dex for the gas and 0.2 dex for the stars.

The stellar ages are set randomly between 0 and 10 Gyr for stars present at

the beginning of the simulation.

The simulation was run for 1 Gyr from the initial conditions

with the N -body smoothed particle hydrodynamics (SPH) code, gcd+

(e.g. Kawata & Gibson 2003; Rahimi & Kawata 2012; Barnes et al. 2012;

Kawata et al. 2013, 2014a) without the inclusion of any continuous external

inflow of gas for simplicity. In this chapter, we use the same snapshot of the

galaxy as used in Kawata et al. (2014b) which is taken at t = 0.925 Gyr, as

this snapshot shows a spiral arm at a similar location to the Perseus arm of

the Milky Way in the Galactic longitude range of l = 90− 150o (see Fig. 5.1).

We assume that the position and velocity of the Sun is known. We locate the

observer at (−8,0,0) kpc as shown in Fig. 5.1, and the motion of the Sun is

assumed to be the same as the circular velocity at 228 km s−1.

The velocity dispersion for the N -body particles in the simulated galaxy at

the Galactic radius, 7.5 ≤ RG ≤ 8.5, is comparable to that for the stars in the

Solar neighbourhood. We calculate the radial (σU ), azimuthal (σV ) and verti-

cal (σW ) velocity dispersion for the young and old particles at the Solar radius

of the simulation, which is defined with the Galactic radius, 7.5 ≤ RG ≤ 8.5

and | z |≤ 0.5 kpc. We define the young stars as the star particles with

an age less than 0.5 Gyr, which are the star particles formed after the bar

formation. As stated above, the simulation is only run for 0.925 Gyr and the

particles older than 0.925 Gyr were created in the initial conditions. Thus, the
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Fig. 5.1: Snapshot of the simulated galaxy in Kawata et al. (2014b) which is also used in

this chapter. Face-on view of the star (left) and gas (right) particle distribution within a

12 kpc by 12 kpc area. The solid line indicates the position of the spiral arm identified.

The observer is assumed to be located at (x, y) = (−8, 0) kpc. Three line-of-sight directions

(lLOS = 90o, 120o and 150o) are highlighted with the dotted lines. The galaxy is rotating

clockwise.

old stars are defined as the particles with ages between 1 and 10 Gyr, which

were created in the initial conditions with their age set randomly between 0

and 10 Gyr, and have since been kinematically heated by the formation of

the bar. The analysed velocity dispersions are listed in Table 1. We compare

the velocity dispersion from the simulation with the observed velocity disper-

sion in Holmberg et al. (2009), which shows the velocity dispersion for stars

older than 1 Gyr. The velocity dispersion in Holmberg et al. (2009) increases

continuously with age. We list the velocity dispersion of the second youngest

bin in Figure 7 of Holmberg et al. (2009), which approximately corresponds

to the age of 1.5 Gyr, and the range of the velocity dispersion for the stars

with an age of 2-10 Gyr, to compare respectively with the velocity dispersion

of the young and old stars in the simulated galaxy. Although the radial and

azimuthal velocity dispersion of the young star particles in the simulation are

higher, the velocity dispersion of the old star particles in the simulation is

well within the range given in Holmberg et al. (2009) for the observed velocity

dispersions for the solar neighbourhood stars.

However, we note that the aim of this chapter is to test if the Gaia data
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Table 5.1: Radial (σU ), azimuthal (σV ) and vertical (σW ) velocity dispersion of the sim-

ulation and observed values for the Milky Way (Holmberg et al. 2009).

Simulation Holmberg et al. (2009)

Age ≤ 0.5 Gyr 1-10 Gyr ∼ 1.5 Gyr 2-10 Gyr

σU 30 39 ∼ 26 ∼ 23− 50

σV 21 29 ∼ 15 ∼ 15− 30

σW 8 20 ∼ 10 ∼ 10− 30

can identify the peculiar motion around the co-rotating spiral arm found in

Kawata et al. (2014b). As in Kawata et al. (2014b), the simulation is not

intended to reproduce the whole structure of the Milky Way. The pitch angle

of the spiral arm in the simulation is 39o, which is much larger than the

estimated pitch angle for the Perseus arm, e.g. 9.4o ± 1.4o (Reid et al. 2014).

It is worth discussing the strength of the simulated spiral arm, compared

to the strength of the Perseus arm. Figure 2 in Kawata et al. (2014b) shows

the simulated arm has an amplitude of ∼ 0.12 in the m = 2 Fourier mode

(normalised to the m = 0 mode). A pitch angle of 39o and amplitude of 0.12

is within the scatter of the pitch angle/amplitude relation explored in Figure

8 in Grosbøl et al. (2004). The local density enhancement of the Milky Way’s

Perseus arm is not currently well constrained. However, Benjamin et al. (2005)

estimated the stellar density enhancement of the Centaurus arm is about 20%

using data from GLIMPSE.

As discussed in Kawata et al. (2014b), we measured the strength of the

bar using a gravitational field method (e.g. Buta et al. 2005) described in

Grand et al. (2012b), and obtained the bar strength Qb = 0.15, which is con-

sistent with the lower end of the estimates of the Milky Way’s bar strength,

which is between Qb = 0.17 and 0.83 in Table 1 of Romero-Gómez et al.

(2011).

5.3 Gaia mock catalogue

In Kawata et al. (2014b), the kinematics of the spiral arm shown in Fig. 5.1

are examined at three lines of sight lLOS = 90o, 120o and 150o, with bLOS = 0o.
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We do not include lLOS = 180o, because the distance to the spiral arm in our

simulation is much further than the Perseus arm owing to the large pitch angle

of the simulated galaxy. Predictions are made of the observational signatures of

co-rotating spiral arms notably the difference in kinematic structure between

the trailing near side and leading far side of the spiral arm. In general, in

Kawata et al. (2014b, as also shown in Grand et al. 2014a), the stars in the

trailing near side rotate slower because they tend to be at the apocentre and

migrate outwards, and the stars in the leading far side rotate faster as they

tend to be at the pericentre and migrate inwards. However, there are some

stars which follow the opposite trend, leading to multiple populations seen

in the rotational velocity in the leading far side, one faster and one slower

than the single population in the trailing near side. These features which will

be discussed later may be caused by the corotation resonance of the spiral

arm, and are visible at different galactic longitudes, because the spiral arm

in the simulation corotates at all the examined radial range. However, in

Kawata et al. (2014b), the spiral arm kinematics are examined using the full,

error and extinction free N -body data and thus such trends, when present,

are easy to identify.

In this section, we describe how we generate a sample of stars from the

N -body model of Kawata et al. (2014b) to produce a mock Gaia catalogue. It

is worth noting that the population synthesis code, galaxia (Sharma et al.

2011) provides a tool to generate stellar populations from N -body simulation

data. However, because we plan to combine such a tool with our made-to-

measure Galaxy modelling code, primal, we have developed our own simpli-

fied version of galaxia, a population synthesis code called snapdragons

(Stellar Numbers And Parameters Determined Routinely And Generated Ob-

serving N -body Systems). snapdragons uses the same isochrones and ex-

tinction map as galaxia, but uses a different and simpler process to generate

the stellar catalogue which is described in Section 5.3.2. snapdragons allows

us to add the expected Gaia errors more easily, and enables us to track the

link between sampled stars and their parent N -body particle for our future

studies, e.g. primal modelling of the Galactic disc (see Chapters 2−4) by
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fitting tracers from multiple stellar populations (see Section 6.2), and identi-

fying radially migrating stars and non-migrating stars trapped by the spiral

arm (Grand et al. 2014).

5.3.1 Extinction

We use the extinction map of the Milky Way taken from galaxia

(Sharma et al. 2011), which is a 3D polar logarithmic grid of the dust ex-

tinction constructed using the method presented in Bland-Hawthorn et al.

(2010) and the dust maps of Schlegel et al. (1998), which we call the 3D

Schlegel map. The same method to apply extinction is used in Chapter 4

and more detail is given there. In an update from Chapter 4, we follow the

reduction to the Schlegel EB−V suggested in Sharma et al. (2014), such that

EB−V = EB−V

(

0.6 + 0.2

(

1 − tanh

(

EB−V − 0.15

0.1

)))

. (5.1)

This reduction is made, because it has been suggested (e.g. Arce & Goodman

1999; Yasuda et al. 2007) that the reddening is overestimated by the maps

of Schlegel et al. (1998) by ∼1.3-1.5 in regions with high extinction with

AV > 0.5 (EB−V > 0.15). This reduces extinction by ∼ 40% for low-latitude

high-extinction regions but has minimal effect on high-latitude low-extinction

regions. In Fig. 5.2, we compared the 3D Schlegel map with and without

this reduction term with the 3D extinction map of Sale et al. (2014) which is

based upon photometry from the INT Photometric Hα Survey of the Northern

Galactic Plane (IPHAS). Fig. 5.2 shows the comparison of extinction, AV , for

the 3D Schlegel map without the reduction of Equation (5.1) (red dashed),

the 3D Schlegel map with the reduction (green solid) and the 3D extinction

map from Sale et al. (2014, blue dotted) for the lines of sight of the Galac-

tic longitudes of l = 90o (left column), l = 120o (middle column), l = 150o

(right column) and latitudes of b = 5o (top row), b = 0o (middle row) and

b = −5o (bottom row). The values of A0 in Sale et al. (2014) were used to

calculate AV at the nearest voxel to each line-of-sight using the approximation
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Fig. 5.2: Extinction, AV , for the 3D Schlegel map without the reduction in the extinction

by equation (5.1) (red dashed), the 3D Schlegel map with the reduction (green solid) and

the 3D extinction map from Sale et al. (2014, blue dotted) for the lines of sight of the

Galactic longitudes of l = 90o (left column), l = 120o (middle column), l = 150o (right

column) and latitudes of b = 5o (top row), b = 0o (middle row), and b = −5o (bottom row).

in Bailer-Jones (2011),

AV ≃ A0 − 5.376 + 2.884(log(Teff)) − 0.4217A0

− 0.3865(log(Teff))2 − 0.00374A2
0

+ 0.1072(log(Teff))A0, (5.2)

assuming log(Teff) = 4, 750 K, an average temperature for red clump stars (e.g.

Puzeras et al. 2010; Bovy et al. 2014).

Fig. 5.2 demonstrates the uncertainties of the extinction at low Galactic

latitudes, and the reduction term of equation (5.1) underestimates the extinc-

tion in some lines of sight compared with Sale et al. (2014). Therefore, we will

present results with and without the reduction in the extinction by equation

(5.1).
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5.3.2 Population synthesis: snapdragons

The goal of this population synthesis code is to split each N -body particle from

the galaxy simulation into an appropriate number of stellar particles creating

a mock catalogue of observable stars from our N -body model. We must choose

an IMF and a set of isochrones with which to work. We choose a Salpeter IMF

(Salpeter 1955) where the IMF, Φ(m), is defined in each mass interval dm as

Φ(m)dm = Am−(x+1)dm, (5.3)

where x = 1.35 is the Salpeter index, and A is a constant for normalization in

the desired mass range. We set this constant as

Ai = mi

(
∫ m⋆,i,max

m⋆,min

m−xdm

)

−1

, (5.4)

where mi is the N -body particle mass, m⋆,i,max is the maximum initial mass of

any surviving star and m⋆,min is the minimum stellar mass to be considered.

We make use of the Padova isochrones (e.g. Bertelli et al. 1994; Marigo et al.

2008), although the choice of isochrones (and IMF) may be substituted with

others with no change to the methodology.

It is worth noting that the Padova isochrones are available only for stel-

lar masses above 0.15 M⊙. galaxia, for example, uses the isochrones of

Chabrier et al. (2000) to extend the mass limit down to 0.07 M⊙, which is

the hydrogen mass-burning limit. We set our lower limit on stellar mass as

m⋆,min = 0.1 M⊙ to correspond with the simulation of Kawata et al. (2014b)

and extrapolate from the Padova isochrones for 0.1 ≤ M⊙ ≤ 0.15. It is

relatively safe to do this because all such stars lie on the main sequence. Ad-

ditionally, these exceedingly faint stars will not be visible at the distance of

the spiral arms which are the focus of this work.

As discussed in Section 5.2, each N -body star particle in the simulated

galaxy has been assigned an age and metallicity within the chemodynamical

code, gcd+, then it is made to evolve. When we examine the snapshot, each

particle is matched to its nearest isochrone in both metallicity and age from

the grid of isochrones which are extracted from galaxia. Once an isochrone

is selected, we identify m⋆,i,max from the isochrone. We then determine how
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many stars to sample from the N -body particle by integrating the IMF over

the desired mass range using

Ns = A

∫ m⋆,i,max

m⋆,i,<V
lim

m−(x+1)dm, (5.5)

where m⋆,i,<Vlim
is minimum mass required for the star to be brighter than our

apparent magnitude selection limit, Vlim, taking into account the extinction

value at the position of the parent particle. Stars smaller than m⋆,i,<Vlim
are

not used in the subsequent analysis, to save on computational time.

We then randomly sample stellar masses from the section of the isochrone

Ns times. We have weighted the random selection by the IMF using the

equation

m⋆ = (Rm−x
⋆,i,max + (1 − R)m−x

⋆,i,<Vlim
)

1

−x , (5.6)

where R is a random number between 0 and 1. The isochrones are comprised

of discrete stellar data. Therefore, we interpolate within the nearest isochrone

values of MV and V − Ic to determine MV,⋆ and (V − Ic)⋆ for the generated

m⋆.

The number of stars sampled from each particle has to be an integer value.

However, Ns calculated in equation (5.5) is not an integer value. Therefore, we

compare the decimal component of Ns with another random number between

0 and 1, and if the random number is smaller than the decimal component of

Ns we round up, otherwise we round down.

We calculate the exact stellar mass that is expected to be generated from

a group of N -body star particles using the assumed IMF as

Mexp =
∑

i

Ai

∫ m⋆,i,max

m⋆,i,<Vlim

m−xdm, (5.7)

where i represents an N -body star particle in the selected group. We also

calculate the total mass of the stars which are generated from these particles

Mgen =
∑

i

Ns
∑

j

m⋆,j. (5.8)

Fig. 5.3 compares the generated stellar mass, Mgen, and the exact stellar mass,

Mexp, within a square region of ±5o around (l, b) = (90o, 0o) at different dis-

tance bins. Fig. 5.3 shows the mean and one standard deviation of Mgen/Mexp
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Fig. 5.3: Mean difference between expected mass, Mexp, and generated mass, Mgen, with

one standard deviation calculated using 100 different sequences of independently generated

random numbers. Blue circles show the results for the methodology presented in Section

5.3.2. Red crosses show, for comparison, the results when considering only the integer

component of Ns in equation (5.5).

calculated using 100 different sequences of independently generated random

numbers. Blue circles show the results of the methodology described above,

which shows an excellent agreement between Mgen and Mexp. For comparison,

if we only round Ns down (red crosses), Mgen becomes systematically lower

than Mexp at larger distances where only a few bright stars are sampled from

each particle. Therefore, it is important to statistically sample the decimal

component of Ns.

The generated stars have the same position and velocity as their par-

ent N -body particles. This method suffers from the discrete distribution of

stars. However, if the selected volume is sufficiently sampled by enough N -

body particles to resolve the structures of interest, the discreteness is not an

issue. The region of the spiral arm focused on in this chapter and the peculiar

velocity structures within are well sampled by the N -body particles. There-

fore, we do not think that this method of sampling affects the results in this

work. However, in the case of phase-space structures which are poorly sam-
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pled by N -body particles e.g. in low density regions or even in high density

regions, if the volume sampled is too small, the discreteness of the distribution

becomes an issue. A more sophisticated method to smoothly distribute the

generated stars in the phase space is applied in Lowing et al. (2015) based on

the entropy-based binary decomposition (enbid) code in Sharma & Steinmetz

(2006). This is a powerful method to describe the phase-space distribution of

stars from simulations that do not well resolve the targeted phase-space struc-

ture. This method could be included in the future version of snapdragons.

5.3.3 Observational errors

Having generated the visible stellar catalogue, we then add observational errors

based upon the Gaia Science Performance estimates1. We use the post launch

error estimates approximated from the estimates in pre-launch performance

by Mercè Romero-Gómez (e.g. Romero-Gómez et al. 2015), provided through

the Gaia Challenge collaboration2. For this work, while generating the stellar

catalogue we produced stars only brighter than Vlim ≤ 16 mag, which is well

within Gaia′s G ≤ 20 mag magnitude limit for the astrometry. However,

because we are interested in the Galactic radial and rotation velocity for the

stars, which requires the full 6D phase-space information, we chose the lower

magnitude limit where the Gaia RVS can produce the reasonably accurate

line-of-sight velocity. Note that the errors are added to the parallax, proper

motion and line-of-sight velocities.

A full description of the method to add the pre-launch Gaia error is avail-

able in Chapter 4. However, the Gaia science performance estimates have

been revised after launch, and as such a correction must be made. The error

in parallax has increased, and although it has little effect for stars with V ≤ 16

mag with which we work in this chapter, the coefficients within equation (4.9)

which describes the pre-launch parallax performance provided by Kazi, An-

toja & de Bruijne (Oct. 2014), by fitting to the new estimations on the Gaia

1http://www.cosmos.esa.int/web/Gaia/science-performance
2http://astrowiki.ph.surrey.ac.uk/dokuwiki/doku.php
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science performance web page, are revised to

σπ = (−11.5 + 706.1z + 32.6z2)1/2

×(0.986 + (1 − 0.986)(V − Ic)), (5.9)

where

z = max(100.4(12−15), 100.4(G−15)). (5.10)

Additionally, because of the loss of spectroscopic accuracy by ∼ 1.5 mag

in the RVS post-launch performance, we also apply a correction to the error

function for the end of mission radial velocity. We change the table3 of values

a and b, again determined by fitting the revised performance estimates on the

Gaia science performance web page, for the equation

σvr = 1 + bea(V −14), (5.11)

where a and b are constants dependant on the spectral type of the star. The

new table along with the code to add the Gaia error is available online4.

5.4 Results

As discussed in Section 5.3, it was shown in Kawata et al. (2014b) that in

general the stars in the trailing near side of the spiral arm rotate slower than

average because they tend to be at the apocentre, and the stars in the leading

far side of the spiral arm rotate faster than average as they tend to be at the

pericentre. However, there are groups of stars which follow different trends

leading to multiple populations which will be discussed later. It is important

to determine whether such features will still be visible in the Gaia catalogue,

not just the error and extinction-free N -body model. In this section, we show

the result of sampling these N -body data into stellar data, first looking at

the properties of the resulting mock stellar catalogue, and then examining the

spiral arm kinematics with the stellar data taking into account dust extinction

and Gaia science performance estimates.

3http://www.cosmos.esa.int/web/Gaia/table-5
4https://github.com/mromerog/Gaia-errors
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5.4.1 Population synthesis

In this section, we describe the stellar catalogue produced by snapdragons,

and show the resulting intrinsic colour-magnitude diagram (CMD) varying

the area of the sky coverage. Fig. 5.4 shows the CMD for stars generated by

snapdragons from particles within a square region of ±2o (upper) and ±5o

(lower) around (l, b) = (90o, 0o) . The upper panel of Fig. 5.4 shows clearly the

individual stellar isochrones, because there are only a small number of N -body

particles in the selected region, and each particle has only one age and metallic-

ity. These problems are resolved when smoothing is applied in the phase-space

distribution and age-metallicity distribution (e.g. Sharma et al. 2011). How-

ever, as discussed in Section 5.3.2, we deliberately avoid this smoothing to

maintain the clear particle-star relation. The lower panel of Fig. 5.4 shows

no such discrete structure, as there are sufficiently many particles to cover a

broad range of stellar ages and metallicities in the CMD. Therefore, care is

required with the resolution of the N -body simulation and the selection func-

tion, if we discuss in detail the stellar population distribution in the CMD.

However, this is unlikely to affect the study in this chapter.

We compared the star counts within a circular region of radius of 5o around

(l, b) = (90o, 0o) for snapdragons applied to our N -body simulation and

galaxia using a version of the Besançon model. snapdragons generated

205,621 stars with V ≤ 16 mag, and galaxia generated 251,880 stars with

V ≤ 16 mag. The difference is caused by the structure in the underlying

galaxy model. snapdragons generates far fewer stars near to the observer

owing to the low density inter-arm region close to the observer in the lines

of sight. The Besançon model assumes axisymmetric stellar distribution, i.e.

no azimuthal density contrasts (such as spiral arms and interarm regions) are

applied. Therefore, galaxia+Besançon generates substantially more stars at

low distances.

5.4.2 Observable spiral arm kinematics

In this section, we examine if the possible kinematic signatures of co-rotating

transient and recurrent spiral arms identified in Kawata et al. (2014b) will be

visible in the Gaia data, even given the dust extinction in the disc and Gaia′s
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Fig. 5.4: Intrinsic CMD for stars generated by snapdragons from particles within a

square region of ±2o (upper) and ±5o (lower) around (l, b) = (90o, 0o). Stars with apparent

magnitude of V ≤ 16 mag only are included.

science performance accuracy. A detailed analysis of the kinematics themselves

was the focus of Kawata et al. (2014b), while this work is concerned with

the visibility of this kinematic structure in the Gaia data. We examine the

rotational velocities of the stars in the catalogue for different distances, because

in Kawata et al. (2014b) we found that the rotation velocity is most affected

by the transient co-rotating spiral arm. Then, we calculated the probability

density function (PDF) of the rotation velocity of stars behind and in front of

the spiral arm using Kernel Density Estimation (KDE), which we are using as

a desirable alternative to histograms (e.g. Wasserman 2006).

Fig. 5.5 shows a smoothed contour plot of the Galactocentric rotational

velocity against observed heliocentric distance for particles and stars within a

square region of ±5o around (l, b) = (90o, 0o) (left), (l, b) = (120o, 0o) (middle)

and (l, b) = (150o, 0o) (right). This compares the kinematics of the underlying

N -body model (upper) with the stellar catalogue generated with snapdrag-
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ons, before (middle) and after (lower) the addition of the errors from the

Gaia science performance estimates. Owing to the high percentage of low-

mass and luminosity stellar types which would dominate the selected region

and saturate the plot at small distances, we have made cuts to our sample to

visualise the underlying kinematic structure from the stellar catalogue. We

have first cut the sample of stars in all three lines of sight with absolute

magnitude, MV ≤ −1 mag, calculated from the apparent magnitude V and

observed distance dobs, assuming the dust extinction is known. We then cut

with σvlos/(vlos × dobs) ≤ 0.015 kpc−1 to select the stars with lower error in

the line-of-sight velocities at a smaller distance to generate similar quantities

of data at different distance scales. This selection function selects bright stars

which are a mix of young blue stars and old red stars. The number of stars

selected are 11,903 for (l, b) = (90, 0), 12,989 for (l, b) = (120, 0) and 5,794

for (l, b) = (150, 0). This is purely for illustration purposes and we are not

suggesting that this is a desirable selection function with which to analyse the

kinematics. The upper panels of Fig. 5.5 show the different kinematic struc-

ture in the N -body model at the different lines of sight. These are the same

data as those shown in the top panels of Figure 4 in Kawata et al. (2014b).

Note that the density colour scale for the N -body data is different from the

stellar data in the middle and lower panels.

The middle row of panels of Fig. 5.5 show the velocities of the selected

stars, which appear slightly different from those of the N -body data owing to

the selection function. While the generated stars have the same position and

velocities as their parent N -body particles, the dust extinction, the magnitude

cut of V ≤ 16 mag and the above mentioned selection of bright stars with the

velocity error limit are applied. Therefore, the middle panels are different

from the top panels. Especially, owing to the strong extinction in the plane,

not all the N -body data in the top panel are ‘visible’ in the selected stars

in the middle panel. While the general shape of the distribution has been

recovered, at (l, b) = (90o, 0o) (middle left), the fast rotating stars within the

arm dominate the density scale and wash out the rest of the plot slightly.

At (l, b) = (120o, 0o) (middle), although there is some saturation around 220



5.4. Results 149

Fig. 5.5: Smoothed linear scale contour plot of heliocentric distance against Galactocentric

rotation velocity of simulation particles (upper), selected snapdragons stars (middle) and

selected snapdragons stars observed with Gaia error (lower) within a square region of ±5o

around (l, b) = (90o, 0o) (left), (l, b) = (120o, 0o) (middle) and (l, b) = (150o, 0o) (right). For

the snapdragons stars (middle and lower panels), a limited selection of MV ≤ −1 mag

calculated using V and dobs and assuming a known extinction, along with σvr/(vr × dobs) ≤
0.15 is shown to avoid overly dense populations of fainter stars at smaller distances. This

is to visualise the data set, and these faint stars contribute to the subsequent analysis. The

colour scale shows number density of N -body particles (upper) and snapdragons stars

(middle and lower) in arbitrary units.

km s−1, the kinematic structure is clearly visible and is a good match to the

particle data. Similarly at (l, b) = (150o, 0o) (middle right), despite the lower

number of counts, the kinematic structure is clearly shown.

The lower panels of Fig. 5.5 show the error affected rotation velocity

and distance for the selected stars taking Gaia science performance estimates

into account. The rotation velocity is calculated from the observed parallax,

proper motion and line-of-sight velocities. At (l, b) = (90o, 0o) (lower left), the

shape of the distribution remains relatively unchanged, with the main loss in

accuracy occurring around dobs ∼ 7 − 10 kpc. The recovery of the kinematic

structure around the spiral arm around dobs ∼ 4 kpc remains almost identical
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Fig. 5.6: Comparison of the distribution of Galactocentric rotational velocities for the stars

generated by snapdragons within a square region of ±5o around (l, b) = (90o, 0o) (left),

(l, b) = (120o, 0o) (middle) and (l, b) = (150o, 0o) (right) in the trailing near side (upper) and

leading far side (lower) of the spiral arm which meet the V ≤ 16 mag selection limit when

applying the reduction in the extinction with equation (5.1). The black solid curve shows

the true velocities, and the red dashed curve shows the distribution once the Gaia errors

have been applied. The number of stars, Ns, used to construct the PDFs is given in each

panel for the velocities without (black) and with (red) the inclusion of error. The vertical

lines show the circular velocity (dotted) and the mean rotation velocity (dash-dotted) at

the radius of the spiral arm.

to the case without observational errors. At (l, b) = (120o, 0o) (lower middle),

the visible loss of accuracy is again in the outer region of dobs ∼ 7 − 10 kpc,

with the region containing the spiral arm remaining very similar to that of

the error-free case. At (l, b) = (150o, 0o) (lower right), the entire distribution

remains very similar to the middle right panel, the case without Gaia-like

observational errors.

Fig. 5.6 shows the PDFs, with a KDE bandwidth of 4 km s−1, for the

rotational velocity of the stars in the catalogue within a square region of ±5o

around (l, b) = (90o, 0o) (left), (l, b) = (120o, 0o) (middle) and (l, b) = (150o, 0o)

(right) in the trailing near side, between 1 and 2 kpc closer than the centre

of the arm (upper) and leading far side between 1 and 2 kpc further than

the centre of the arm (lower) using the 3D Schlegel map with the extinction

reduced with equation (5.1). These heliocentric observed distance bins were
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Fig. 5.7: Same as Fig. 5.6, but for the results using the 3D Schlegel map without the

reduction in the extinction given by equation (5.1).

chosen as they show the discussed structure most clearly. We also performed

the analysis on bins which are closer to the centre of the arm. The same

features are present, but they are less clear. The number of stars, Ns, used

to construct the PDFs is given in each panel of Fig. 5.6 for the velocities

without (black) and with (red) the inclusion of error. The centre of the arm

was determined to be at d = 4.0 kpc at (l, b) = (90o, 0o), d = 3.4 kpc at

(l, b) = (120o, 0o) and d = 3.3 kpc at (l, b) = (150o, 0o). Note that Fig. 5.6

uses all the stars with V ≤ 16 mag, not applying the selection function used

for illustration purposes in Fig. 5.5. At all three lines of sight, Fig. 5.6 shows a

clear difference in the distribution of velocities for the ‘true’ data (black solid)

when comparing the different observed distances, as shown in Kawata et al.

(2014b). This is a positive outcome considering the loss of data from the dust

extinction. When comparing the ‘true’ (black solid) stellar catalogue data

with the stellar data taking into account dust extinction and Gaia’s expected

errors (red dashed), a general smoothing out of the structure is evident in the

‘observed’ data. The upper panels of Fig. 5.6 showing the trailing near side

of the arm show very similar PDFs when comparing the true and observed

stellar data, whereas the lower panels showing the leading far side show an

information loss, especially at (l, b) = (90o, 0o), where the three peaks are no

longer resolved. This is to be expected because of the higher distances, and
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therefore additional extinction. However, at (l, b) = (120o, 0o) and (150o, 0o)

even on the far side of the spiral arm the structure within the distribution is

still clearly visible.

Fig. 5.7 shows the same as Fig. 5.6, using the higher extinction values

of the 3D Schlegel map without the reduction term of equation (5.1). The

features in Fig. 5.7 remain very similar to Fig. 5.6 despite the difference in

extinction. There is a significant reduction in the number of observed stars

for the 3D Schlegel map without the reduction in extinction. Therefore, it is

important to note that the assumed extinction model will have a large effect

on the mock catalogue. However, it is encouraging for the interpretation of

the Gaia data that the same peculiar kinematic features are visible with this

higher extinction estimate. Owing to the similarity between Figs. 5.6 and 5.7,

the subsequent discussion will focus on Fig. 5.6.

When comparing the ‘observed’ data in Fig. 5.6 in front and behind the

spiral arms, we see a clear difference in the PDF at all three lines of sight.

In each case, the PDF in the trailing near side of the spiral arm forms a

single central peak similar to the mean rotation velocity, with a small tail

towards faster rotation velocities, whereas the leading far side of the spiral

arm shows a broader distribution of velocities with a peak velocity faster than

the peak for the trailing near side. The difference is particularly apparent at

(l, b) = (120o, 0o) where the leading far side shows two clear peaks, one faster

and one slower than the single peak in the trailing near side. This bi-modal

distribution can also be seen in the lower middle panel of Fig. 5.5 between 4.39

and 5.39 kpc (although note that Fig. 5.5 uses a different selection function).

Also at (l, b) = (150o, 0o), the single broad peak in the trailing near side is

easily distinguishable from the leading far side which shows three peaks. These

three peaks are also partially visible in the lower right panel of Fig. 5.5 between

4.29 and 5.29 kpc. These features all match those observed in Kawata et al.

(2014b) despite the addition of dust extinction and observational errors to the

data.

In general, as shown in Grand et al. (2014), the stars in the leading side

rotate faster as they tend to be at pericentre phase and migrating inwards, and
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stars in the trailing side rotate slower as they tend to be at apocentre phase and

migrating outwards. This explains the single large peak in the trailing side,

and the largest peak on the leading side which has a higher rotational velocity

than the single peak on the trailing side as shown in Fig. 5.6. However, when

the transient spiral arm starts forming, stars which are close to the arm on the

trailing side and are close to the pericentre phase are accelerated towards the

arm, passing through and then slowing down as they reach the apocentre on

the leading side as discussed in Kawata et al. (2014b). These stars correspond

to the ‘slower’ peaks visible in the lower panels of Fig. 5.6. Similarly, the stars

which are close to the arm and close to the apocentre phase on the leading

side are decelerated by the arm, and are overtaken by the arm. Then they are

accelerated again by the arm once they are on the trailing side at pericentre

phase, which corresponds to the small tail present at high velocities in the

upper panels of Fig. 5.6. The difference in the rotation velocity distribution

between the leading and trailing side of the spiral arm seen in Figs. 5.5 and

5.6 is that the latter population is smaller than the former. It appears that it

is easier for stars to escape from the arm on the leading side than the trailing

side. From our analysis of N -body simulations, this appears to be a common

feature of transient and co-rotating spiral arms.

Comparetta & Quillen (2012) propose that the radial overlap of multiple

longer lived patterns moving at different pattern speeds can reproduce the

transient spiral features, which when strong enough can lead to radial migra-

tion away from the corotation radius associated with co-rotating spiral arms as

seen, for example in Grand et al. (2012a,b). In such a scenario, the spiral arm

features are co-rotating, which may give rise to the coexistence of many inner

and outer Lindblad resonances in a range of radii and lead to the features vis-

ible in Figs. 5.5−5.7. However, further analysis of the spiral arms in N -body

simulations is required before drawing firm conclusions on the mechanism that

generates such kinematic signatures. We will address this in future studies.

From Figs. 5.5−5.7, we find that Gaia′s scientific accuracy ought to be

sufficient to examine the kinematic structure of the nearby spiral arms in the

Milky Way, even on the far side of the arm. Figs. 5.6 and 5.7 both show clear
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differences in the kinematics in the leading and trailing sides of the spiral arm,

notably the difference in the number and locations of the peaks, and the small

high-velocity tail present in the trailing near side. The comparison between

the middle and lower panels of Fig. 5.5 shows little difference, implying that

the observational error from Gaia will have limited effect on our ability to

study the kinematics of the spiral arms. Further examination of galaxy models

constructed using the different theories of spiral arm formation will be essential

to determine the distinct kinematic signatures of each theory.

5.5 Summary

We observed our N -body/SPH simulation of a Milky Way-like barred spiral

galaxy to create a mock Gaia stellar catalogue, with particular interest in

the stellar kinematics in and around the spiral arms. We focused on the

same three lines of sight in the disc plane as Kawata et al. (2014b), (l, b) =

(90o, 0o), (120o, 0o) and (150o, 0o) and analysed the galactocentric rotational

velocities of the selected stars as a function of the distance from the observer.

In agreement with existing literature on N -body spiral galaxy simulations, the

spiral arm features seen in the stellar mass in our model are transient, recurrent

and co-rotating, i.e. the spiral arm is rotating at the circular velocity of the

stars at the selected lines of sight.

We show that the structure in the kinematics identified in Kawata et al.

(2014b) remains visible after the inclusion of dust extinction and observational

errors based upon Gaia science performance estimates. Although the inclu-

sion of these observational effects makes the trends less clear, they are still

observable in the mock Gaia data in front of and behind the spiral arm. The

structure on the trailing near side is relatively unchanged, whereas the struc-

ture on the leading far side is, naturally, more affected, although the bi-modal

(or more) and broader distribution of the rotation velocities is still clearly

visible. Because we believe that these kinematic signatures are indications of

transient and co-rotating spiral arms owing to the corotation resonance at all

radii, we predict they should be visible in the Gaia data at different longitudes

if the Milky Way’s Perseus arm is also a transient and co-rotating spiral arm.
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Encouraged by the success of this study, we intend to repeat the analysis

with simulated galaxies which use different theories of spiral structure for-

mation, for example test particle simulations (e.g. Minchev & Quillen 2008;

Minchev et al. 2010; Minchev & Famaey 2010; Faure et al. 2014; Antoja et al.

2014) and N -body simulations with a fixed spiral arm potential (e.g.

Wada et al. 2011). From these analyses, we expect to make predictions of

the kinematic signatures of different spiral arm theories, which can be tested

by the Gaia stellar catalogue (see Section 6.2).
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Chapter 6

Conclusions & further work

6.1 Thesis conclusions

This thesis describes a novel M2M algorithm, primal, designed to create a

dynamical model of the Milky Way from Gaia-like observational data. Tra-

ditional M2M algorithms work in a fixed potential, and alter particle weights

during the modelling. primal applies the M2M method to a live N -body

model, altering the particle masses and the potential which is calculated self-

consistently. This naturally leads to structure formation, allowing us to repro-

duce non-axisymmetric structure such as a bar and spiral arms. Previous M2M

algorithms bin the target data, lowering the effective resolution of the obser-

vations, whereas primal compares the N -body model with the observables at

the position of each target star. By retaining individual stellar observables as

constraints, we can reproduce small-scale phase-space structure and are not

restricted by the bin size. This, for example, allows us to study the struc-

ture and velocity field of the spiral arms and bar. Additionally, we can take

into account the observational errors of individual stars. Previous studies (e.g.

de Lorenzi et al. 2007) applied the mean error, which is valid for extragalactic

observations, but is not suitable for the Galactic data where the error of each

star depends on its stellar type, magnitude and position on the sky.

In Chapter 2, we describe the proof of concept for primal. We detail

the M2M equations and the new particle-by-particle adaptation of the M2M

method, which is designed to work with Gaia (and other upcoming stellar

survey) data. This initial version contained two important innovations over
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existing M2M algorithms. Firstly, while previous algorithms used fixed bins to

calculate the ‘observables’, we use a spline kernel often used in smooth parti-

cle hydrodynamics (SPH) to compare individual stellar data. This effectively

increases the resolution of our constraints from the number of bins times the

number of constrained parameters to the number of observed stars times the

number of constrained parameters. Secondly, we apply our algorithm to a

self-gravitating N -body system, whereas previous algorithms use test parti-

cle simulations under a fixed potential. In a test particle M2M, they cannot

change orbits, and thus, if the initial model orbits are not representative of

the target, they cannot well reproduce the target data. This is not the case

for an N -body system, which allows orbits to change and has the additional

advantage of naturally leading to non-axisymmetric structure formation. Ad-

ditionally, because the potential is calculated self-consistently, once the system

has reached its final state the disc potential can in theory be recovered along

with the structure and dynamics.

In Chapter 2, we show that our initial M2M algorithm can recreate a

featureless axisymmetric disc system created by an N -body simulation in a

known dark matter halo potential, with no error in the observables, starting

from an initial disc model with a different scale length. We also demonstrate

that our algorithm can be applied to data sets only using observables at the

target particles within a R = 10 kpc sphere from the assumed position of the

observer, which is located at RG = 8 kpc from the galactic centre, with a good

degree of success.

In Chapter 3, we show that primal can be applied to non-axisymmetric

systems by rotating the reference frame of the model galaxy to match the

target at each timestep. We introduce the maximum likelihood method for

the velocity constraints, as shown in de Lorenzi et al. (2008), which allows

us to take into account individual errors for different stars and then apply

primal to four different target N -body simulated galaxies. We recreate the

size and shape of the bar of the target galaxy, along with its pattern speed, to

a good degree of accuracy. For example, for our fiducial case the target galaxy

has a pattern speed of the bar of Ωt,p = 27.5 km s−1kpc−1 and our M2M
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model results in a pattern speed of Ωp = 27.9 km s−1kpc−1. We also explore

the effects of assuming a different bar angle for the model galaxy from the bar

angle of the target galaxy, and we find minimal effect, at least in our simplified

case. This is a little concerning, as currently primal does not appear well

suited to constrain the bar angle of the Milky Way. However, as stated in

Chapter 3, testing with more realistic mock data is needed before we can fully

asses the ability of primal to constrain the angle of the bar in the case of the

Milky Way. If we determine that primal can not be used to determine the

bar angle, then we can use an assumed angle from different studies and study

more global structures of the Galactic disc, including the pattern speed of the

bar.

In Chapter 4, we modify primal to recreate a target galaxy by comparing

the target and model in Gaia observable space (α, δ, π, µα, µδ, vr). We create

mock Gaia observations of tracer populations of M0 giant stars and red clump

stars from our N -body target galaxy, taking into account the dust extinction

in the Milky Way and the expected Gaia errors. In Chapter 4, we assume for

the moment that each N -body target particle is represented by one tracer star,

and then calculate the extinction upon it from the 3D galactic extinction map

from galaxia (Sharma et al. 2011). We then modify the apparent magnitude

of the tracer by the extinction value and then calculate a Gaia-like error on the

parallax and velocity components using the code to estimate the Gaia error as

a function of brightness, colour and sky position. The code to estimate Gaia

errors is provided by Mercè Romero-Gómez (e.g. Romero-Gómez et al. 2015).

We show that primal can recreate a target N -body galaxy to a reasonable

degree of accuracy, despite the lack of accurate target data. Again there is an

excellent recovery of the pattern speed of the bar. For our fiducial case, the

target galaxy has a pattern speed of Ωt,p = 28.9 km s−1kpc−1 and our M2M

model creates a bar with Ωp = 28.6 km s−1kpc−1.

In Chapter 5, we generate a more realistic mock Gaia stellar catalogue

from N -body simulated disc galaxies. We have developed a population syn-

thesis code, called snapdragons, which samples a stellar catalogue from

N−body particles. snapdragons takes into account the age and metallicity
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of the particles and generates a Gaia mock stellar catalogue with errors based

upon Gaia′s science performance estimates. Mock Gaia data generated from

known galaxy models by snapdragons enables us to test whether particular

features of the known model will be visible in the Gaia stellar catalogue. For

example, there is still disagreement on how spiral arms form and evolve. It

is in debate whether they are one of the variations of density wave theory

(e.g. Lin & Shu 1964) or if they are material arms (e.g. Grand et al. 2012a).

Observations of the Milky Way’s spiral arms from Gaia may help us to re-

solve this debate, owing to the large area of the disc traced by the observable

stars and the unprecedented accuracy of Gaia′s astrometric measurements. In

Chapter 5, we use snapdragons to make mock Gaia observations from an

N -body/SPH model of a barred disc galaxy similar in size to the Milky Way

used in Kawata et al. (2014b). We examine the kinematics around a nearby

spiral arm in a similar position to the Milky Way’s Perseus arm at three

lines of sight in the disc plane, (l, b) = (90o, 0o), (120o, 0o) and (150o, 0o). In

Kawata et al. (2014b), we show that there are peculiar velocity features associ-

ated with co-rotating spiral arms which have the corotation resonance at every

radii, because N -body simulations have co-rotating, transient spiral arms (e.g.

Grand et al. 2012a,b). We determine that the kinematic signatures identified

in Kawata et al. (2014b) are still visible in the Gaia data despite the obser-

vational error and dust extinction, and thus if the Milky Way’s Perseus arm

contains the signatures of co-rotating spiral arms identified in Kawata et al.

(2014b), they should be visible in the Gaia data around the Galactic longitude

90o < l < 150o at least. This emphasises the usefulness of the comparison of

Gaia data with predictions from mock data generated from N -body simula-

tions.

In summary, in this thesis we have shown the development of a new M2M

algorithm called primal, which is able to recreate a target disc galaxy model

from mock observations of a single stellar population, taking into account

extinction and Gaia level errors. We have shown that primal can recover

non-axisymmetric structure including a boxy/barred bulge, and is particu-

larly effective in recovering the pattern speed of the bar even with the in-
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complete data set. Further work is needed to train primal on more realistic

mock Gaia data in order to fully assess its capabilities. We have developed a

populations synthesis code, snapdragons, which creates a Gaia mock stellar

catalogue of stars brighter than a chosen magnitude from N -body simulations.

By analysing a Gaia mock catalogue generated from a N -body galaxy with

co-rotating transient spiral arms, we show that the peculiar kinematic signa-

tures of the co-rotating spiral arms will be visible in the Gaia data, if the

Perseus arm is also a co-rotating spiral arm.

Models created by primal and mock data created by snapdragons can

also be useful for other researchers and studies beyond our own research. For

example, the ‘Gaia Challenge’ collaboration1, a modelling technique compar-

ison project aimed mainly at being prepared for the Gaia data, has used N -

body simulation data presented in this thesis (e.g. Chemin 2014). Comparing

dynamical models by primal with other dynamical modelling techniques by

other research groups, such as action based methods or Jeans modelling, will

provide valuable insight into the strengths and weaknesses of different meth-

ods. The Gaia Challenge is an important community effort to understand the

characteristics of different modelling techniques, and mock Gaia catalogues

created by snapdragons could be used as test data in future workshops.

6.2 Further work

The work in this thesis has opportunity for further study in multiple directions.

Both primal and snapdragons are useful tools to help study the Galactic

structure and dynamics from the Gaia data. primal is ready to be applied

to the Gaia data, if we can select M0III (or red clump) stars as tracers. This

requires us to either assume the ratio between mass and the percentage of

M0III stars, or leave it as a free parameter as done in Portail et al. (2015).

primal should be further improved to be applied to the successive Gaia data

releases (see Section 1.3.5), and will culminate in a next generation dynamical

model of the Milky Way, which will be constructed from the final catalogue.

In Section 6.2.1, we discuss the future development and application of pri-

1http://astrowiki.ph.surrey.ac.uk/dokuwiki/doku.php
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mal, and in Section 6.2.2, we discuss the future development and application

of snapdragons.

6.2.1 Future development of primal

As shown in Hunt & Kawata (2014a), we have introduced the resampling of

N -body model particles whose masses drift too far from the mean particle

mass and we are currently testing this further. We set a limit on how large

or small these particle masses can become. We then delete any particle whose

mass becomes lower than the lower limit, mmin, to save on computational time,

and split any particle whose mass becomes higher than the upper limit, mmax,

to prevent a single massive particle dominating local dynamics. The particles

with mi > mmax are split into the appropriate number of particles to keep

their mass close to the mean particle mass, m̄. The parent particle is retained

with decreased mass, and generated particles are spaced randomly within the

smoothing length of the kernel. All generated particles share all other prop-

erties with the parent particle including its velocity. This maintains a more

even mass distribution around m̄. We may replace the prior, m̂, in the weight

entropy regularisation term in the M2M method with m̄, resulting in regu-

larisation around a flexible prior, similar to the Moving Prior Regularisation

described in Morganti & Gerhard (2012, see Section 1.6). Interestingly, we

find that we can remove the weight entropy regularisation term and regularise

the model with the resampling alone. This resampling scheme is currently

undergoing testing, and we have yet to explore which parameters and method

of regularisation work best with the resampling scheme.

An essential step in the development of primal, is to utilise multiple

populations of stars simultaneously as constraints for primal, instead of the

single tracer populations used in Chapter 4. Mock stellar data generated by

snapdragons from known N -body systems will be used as a more realistic

set of target galaxy observational data to validate primal. Initially, it will be

tested using distinct known tracer populations, e.g. F, G, K dwarfs and K,

M giants, and then stars of each stellar population will be selected from the

full snapdragons catalogue. For example, the sample may be divided into

dwarfs and giants in the Hertzsprung-Russell diagram (or the Teff− logg plane)
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via the methodology presented in Ciardi et al. (2011). The tracer populations

will be selected by examining which stellar types are more clearly identified

from Teff and logg measured by Gaia′s spectrophotometer data, and which

stellar populations effectively provide constraints for primal to model the

Galactic disc. Once primal has the ability to use observable data from mul-

tiple stellar populations, it can be used to reproduce the distribution of stellar

populations within the Milky Way. Along the same lines, it may be possible

to use the metallicity of the target stars (e.g. [Fe/H]) as an observable using

the likelihood equation. Therefore, primal is potentially able to reproduce

the age-metallicity distribution at different regions in the Milky Way disc.

This result will be a key piece of chemodynamical information to unravel the

formation history of our Galaxy.

Additionally, the current SPH kernel used to calculate each individual

star’s contribution to the observables is not an ideal choice owing to its spher-

ically symmetric nature. In actuality, the distance error in the line-of-sight

owing to the parallax error (σπ) can be large, whereas there is almost no error

in the position (σα, σδ). Therefore, an ellipsoidal kernel elongated along the

line-of-sight when the distance error is larger than the resolution of the model

particles may yield superior estimates of the observables than the current ker-

nel.

It is also important to explore the effect the dark matter halo on the re-

covery of the target data. The use of a known fixed halo is a major assumption

in the current model which must be relaxed. Initially, the profiles of fixed dark

matter haloes will be varied to determine their contribution to the fit, and how

much degeneracy will be present in the recovery of the target galaxy, when an

incorrect halo is assumed. The use of a live dark matter halo where the dark

matter halo is described with N -body particles will also be explored, which,

through momentum exchange with the stellar disc, may have a significant ef-

fect on the model. It is possible, although currently unexplored, that the dark

matter halo may be modified directly during the modelling by changing the

mass of the dark matter particles with additional observational constraints,

e.g. the HI rotation curve and the motion of stars in the halo and streams.
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If this is possible, then it would allow us to derive the best fit structure of

the dark matter halo simultaneously with the structure of the Galactic disc.

Altering the dark matter halo simultaneously is an ambitious task, and to our

knowledge has yet to be attempted in M2M.

6.2.2 Further applications of snapdragons

Chapter 5 shows the initial development of snapdragons and one example

of how mock Gaia data can be used to test theories of spiral arms. The

exploration of co-rotating spiral arms shown in Chapter 5 is continuing with

a comparison of the observable signatures of different theories of spiral arm

structure. For example, in Kawata et al. (2015), we compare the stellar motion

around the spiral arms in the Gaia-data-like mock catalogue generated in

Chapter 5 with a mock catalogue generated from the test particle simulation in

Faure et al. (2014) which models density-wave like spiral arms by considering

a rigidly rotating spiral arm potential. Kawata et al. (2015) show a clear

difference between the two theories. Fig. 6.1 (Figure 1 in Kawata et al. 2015)

shows the Galactic rotation velocity distribution for stars with V ≤ 16 mag

generated with snapdragons in the range of 85o ≤ l ≤ 95o and −5o ≤ b ≤ 5o

for the N -body simulation analysed in Chapter 5 (left) and the test particle

simulation of Faure et al. (2014) (right). The blue lines show the velocity

distribution in front of the spiral arm, and the red lines show the velocity

distribution behind the spiral arm, both taking into account dust extinction

and Gaia-level observational errors as described in Chapter 5. Fig. 6.1 shows a

clear difference between the co-rotating spiral arms in the N -body model (left)

and the density wave like spiral arms in the test particle simulation (right).

The difference in front of the spiral arms is particularly strong between the two

theories. This shows the value of such a comparison and more galaxy models

will be examined in such a way. We will make predictions from simulations

with different underlying theories of spiral arm formation, and determine the

differences which will be visible in the Gaia data, allowing us to constrain the

true nature of the Milky Way’s spiral arms.

In closing, studies as described in this thesis are important preparation

for the upcoming Gaia data. In this thesis we have shown the potential of



6.2. Further work 164

Fig. 6.1: Galactic rotation velocity distribution for stars with V ≤ 16 mag generated with

snapdragons in front of (blue) and behind (red) a spiral arm in an N -body simulation

(left) and a test particle simulation (right) taking into account dust extinction and Gaia-like

errors (from Figure 1 in Kawata et al. 2015).

developing modelling techniques designed for the Gaia data. We still have

over a year before the first Gaia data release, and seven years before the final

full data release. This gives us ample opportunity to maximise the potential of

primal and snapdragons, and develop additional new modelling techniques

to fully exploit the Gaia data. Modelling techniques developed for Gaia will

likely be applicable to future survey data (e.g. LSST). We are entering a

golden age of Milky Way science, and Gaia is only the beginning.
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Erwin P., Bland-Hawthorn J., 2012, A&A, 548, A126

Minchev I., Quillen A. C., 2008, MNRAS, 386, 1579

Minniti D. et al., 2010, New A, 15, 433

Minniti D., White S. D. M., Olszewski E. W., Hill J. M., 1992, ApJL, 393,

L47

Monaghan J. J., Lattanzio J. C., 1985, A&A, 149, 135

Moore G. E., 1965, Electronics, 38, 114

Mora A. et al., 2014, in Society of Photo-Optical Instrumentation Engineers

(SPIE) Conference Series, Vol. 9143, Society of Photo-Optical Instrumenta-

tion Engineers (SPIE) Conference Series, p. 0

Morgan J. S., Burgett W., Onaka P., 2014, in Society of Photo-Optical In-

strumentation Engineers (SPIE) Conference Series, Vol. 9145, Society of

Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p. 0

Morganti L., Gerhard O., 2012, MNRAS, 2607

Morganti L., Gerhard O., Coccato L., Martinez-Valpuesta I., Arnaboldi M.,

2013, MNRAS, 431, 3570

Nagino R., Matsushita K., 2009, A&A, 501, 157

Nakanishi H., Sofue Y., 2003, PASJ, 55, 191

Navarro J. F., Frenk C. S., White S. D. M., 1997, ApJ, 490, 493

Ness M. et al., 2013, MNRAS, 432, 2092

Newton R. R., 1974, MNRAS, 169, 331



Bibliography 177

Nidever D. L. et al., 2014, ApJ, 796, 38

Nidever D. L., Zasowski G., Majewski S. R., 2012, ApJS, 201, 35

Nordström B. et al., 2004, A&A, 418, 989

Oemler A., 1974, PhD thesis, California Institute of Technology

Pancino E., Bellazzini M., Marinoni S., 2013, Mem. Soc. Astron. Italiana, 84,

83

Pasetto S., Chiosi C., Carraro G., 2003, A&A, 405, 931

Pasetto S., Chiosi C., Kawata D., 2012, A&A, 545, A14

Perryman M., 2011, A&A Rev., 19, 45

Perryman M., 2012, European Physical Journal H, 37, 745

Perryman M. A. C., ESA, eds., 1997, ESA Special Publication, Vol. 1200, The

HIPPARCOS and TYCHO catalogues. Astrometric and photometric star

catalogues derived from the ESA HIPPARCOS Space Astrometry Mission

Pettitt A. R., Dobbs C. L., Acreman D. M., Price D. J., 2014, MNRAS, 444,

919

Pfenniger D., 1984, A&A, 134, 373

Pfenniger D., Friedli D., 1993, A&A, 270, 561

Plez B., 2011, in SF2A-2011: Proceedings of the Annual meeting of the French

Society of Astronomy and Astrophysics, Alecian G., Belkacem K., Samadi

R., Valls-Gabaud D., eds., pp. 47–52

Portail M., Wegg C., Gerhard O., Martinez-Valpuesta I., 2015, MNRAS, 448,

713

Price D. J., Monaghan J. J., 2007, MNRAS, 374, 1347

Prusti T., 2012, Astronomische Nachrichten, 333, 453

Ptolemy C., Manitius K., 1995, VizieR Online Data Catalog, 5061, 0



Bibliography 178
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