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ABSTRACT. An exogenous impact function is defined as the derivative of a
structural function with respect to an endogenous variable, other variables, includ-
ing unobservable variables held fixed. Unobservable variables are fixed at specific
quantiles of their marginal distributions.

Exogenous impact functions reveal the impact of an exogenous shift in a vari-
able perhaps determined endogenously in the data generating process. They provide
information about the variation in exogenous impacts across quantiles of the dis-
tributions of the unobservable variables that appear in the structural model. This
paper considers nonparametric identification of exogenous impact functions under
quantile independence conditions.

It is shown that, when valid instrumental variables are present, exogenous im-
pact functions can be identified as functionals of conditional quantile functions that
involve only observable random variables. This suggests parametric, semiparametric
and nonparametric strategies for estimating exogenous impact functions.

1. INTRODUCTION

This paper proposes a quantile based approach to identification and estimation of a func-
tional of a structural model which is informative about the impact of an exogenous change
in a variable that, in the data generating process, is potentially endogenous.

The functional considered here is the derivative of a response (Y7) with respect to
a potentially endogenous variable (Y3) with covariates and instrumental variables held
fixed and with unobservable variables set equal to specified quantiles of their marginal
distributions. This functional, defined formally below, applied to a structural model,
produces what is termed the exogenous impact function for Y.

The approach relies on the existence of instrumental variables that satisfy local quantile
independence conditions rather than the global mean independence conditions frequently
used. A quantile independence condition requires that a conditional quantile, for example
a conditional median, or percentile, of a random variable does not depend on the values
of the conditioning variables!.

It is shown that, under particular local quantile independence assumptions and some
assumptions concerning the monotonicity of the structural relationships, the exogenous
impact function can be identified with a functional of conditional quantile functions as-
sociated with the distributions of observable random variables. This leads directly to an

*I am grateful to Christian Dustmann, Richard Smith and Richard Spady for helpful discussions.
Postal address: Department of Economics, University College London, Gower Street, London WC1E 6BT,
UK. E-mail: andrew.chesher@ucl.ac.uk.

1See Chapter 6 of Manski (1988) for a discussion of quantile independence. Recent uses of quantile
independence conditions as the basis for developing estimators can be found in Newey and Powell (1990),
Chaudurhi, Doksum and Samarov (1997) and Kahn (2001).
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analog estimator of an identifiable exogenous impact function, constructed as the same
functional of estimated conditional quantile functions.
A quantile based approach is attractive because, subject to identifiability conditions:

1. there is a simple and direct link between the exogenous impact function and condi-
tional quantile functions,

2. it allows the extraction of information about the distribution of the effects of exoge-
nous shifts in variables that are endogenous in the data generating process,

3. it does not require the existence of moments of any order.

In contrast an analysis in which identification and inference is based on mean indepen-
dence assumptions does not in general directly generate distributional information and
requires existence of at least first order moments.

A quantile based approach is well suited to the analysis of nonlinear structural models
in which there are monotonicity restrictions because quantiles obey monotonic nonlinear
transformations in the sense that the 7-quantile of A(Y") is just the result of applying the
function h(-) to the 7-quantile ((1 — 7)-quantile) of ¥ when A(-) is monotonic increasing
(decreasing). It is this which allows us to forge the simple link between exogenous impact
functions and conditional quantile functions.

The monotonicity assumptions made to secure the results of this paper are no more re-
strictive than those typically made in an instrumental variable based analysis of structural
models based on mean independence conditions?.

This first Section of the paper proceeds to consider a simple example of the sort of
structural model studied here. The exogenous impact function is defined for this example,
its relationship to conditional quantile functions is given with a summary of the conditions
under which there is the stated correspondence, and there follows a brief discussion of
estimation of exogenous impact functions. The Section concludes with the plan of the
remainder of the paper.

1.1. A simple example. Here is a simple example of the sort of system considered
here.

}/1 - hl(Y27X7€7l/)
Y2 = hQ(X)Zal/)

Y71 and Y5 are scalar random variables, X is a list of covariates and Z is a list of instru-
mental variables.

The following quantile independence conditions, somewhat stronger than are necessary,
are assumed to hold: for some 7. and 7,

1. the unobservable continuously distributed scalar € has conditional 7.-quantile given
v, X and Z independent of v, X and Z.

2. the unobservable continuously distributed scalar v has conditional 7,-quantile given
X and Z independent of X and Z.

The functions hy; and ho are not parametrically specified. h; is assumed to be differ-
entiable with respect to scalar® Ys and v. hg is assumed to be differentiable with respect
to Z and v. h; is monotonic increasing? in ¢ and hy is monotonic increasing in v. There

2See the discussion in Section 2.5.3 of Manski (1988).
3The case in which Y3 and v are vectors is considered in Section 3.
4 Assuming that hy is monotonic increasing in e rather than decreasing is an innocuous normalisation.
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are no assumptions concerning the existence of moments of any order. This alone makes
the problem an interesting one to study.

Example 1: Returns to schooling. To fix ideas it is helpful to have a concrete example.
A system of the sort just described can be used to represent a prototypical model employed
to study returns to schooling, with Y1 measuring a labour market outcome, for example
wages, Yo measuring schooling, € capturing labour market induced heterogeneity and v
measuring ability.

In the context of this example, and others, it can be useful to have information about
the derivative of hy with respect to Ys, the variables X, €, v, and therefore Y5, being held
fixed at interesting values. This is the exogenous impact function studied here.

Formally, the exogenous impact function is 7(7¢, 7., z, 2), defined as follows.

71'(’7'5,’7',/,.’13, Z) = vyzhl(QY2|XZ(TV7xa Z),.’E, QE(TE)7 QV(Tll))

Here V,,hi(-,, -, -) is the partial derivative of hy with respect to its first argument, Q. (7:)
and @, (7,) are the 7.- and 7,-quantiles of the distributions of respectively ¢ and v and
Qy,|xz(Tv,x,2) is the 7,-quantile of the conditional distribution of Y3 given X = x
and Z = z, which, note, is equal to hs(z, z,Q,(7,)) under the monotonicity assumption
assumed to hold for the function hs.

The exogenous impact function, 7(7¢,7,,x, 2), is the rate at which Y; changes as the
value of Y5 is increased when X = x, Z = 2, and when ¢ and v have values equal to the
specified quantiles of their respective distributions.

Example 1 continued. In the context of the returns to schooling example the exogenous
impact function is the rate at which wages increase as schooling is “exogenously” increased
for a person with characteristics x and z and with a value of v equal to the T,-quantile
of the distribution of ability and a value of € equal to the T.-quantile of the distribution
of labour market heterogeneity. Of course this exogenous impact function only has this
interpretation if the exogenous change in schooling leaves all other elements of the system
undisturbed.

The exogenous impact function is a rich source of information, revealing the varia-
tion in the impact of an exogenous shift in Y5 as € and v vary across quantiles of their
marginal distributions. This may be of particular interest when the exogenous shift in
Y5 is the consequence of a policy intervention and the distributional consequences of the
intervention are of interest.

1.2. The exogenous impact function. Under certain conditions, set out in detail
in Section 2 and summarised shortly, the exogenous impact function can be identified
with a functional of conditional quantile functions associated with the distributions of
observable random variables.

In this example involving just one endogenous variable, Y5, when the identifiability
conditions hold, the exogenous impact function can be expressed as follows.

T(Te, Ty, @, 2) = VyzQYl\YQXZ(Tay QY2|XZ(7'U’$’ Z),l“a 2) (1)
V2 Qyivaxz(Te, Qv x 2(Tw, 2, 2), 1, 2)
sz'QYQ\XZ(TV)xa Z)

Here Qy,|v,x2z(7Tc,y2,7,2) is the conditional 7.-quantile of the distribution of Y7 given
Yo = y2, X = 2 and Z = 2. The conditional quantile Qy,|xz(7.,z,2) was defined
earlier. V,, indicates differentiation with respect to y» and V, indicates differentiation
with respect to the ith element of z. If the conditions required for (1) to be valid do hold
then estimates of the conditional quantile functions, Qy, |y, xz and Qy,|xz, lead directly
to estimates of the exogenous impact function.
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1.3. Identification. The required conditions constitute identifiability conditions in
the sense that, when they apply, the exogenous impact function can be identified with a
well defined functional of conditional quantile functions about which data are in principle
informative.

The conditions include analogues of the order and rank conditions familiar in a mean
independence based analysis. Each variable, Z;, is an instrumental variable. For (1) to
apply it is required that there exist at least one instrumental variable Z; which possesses
the quantile independence properties, namely that the 7.- and 7,-quantiles of ¢ and v are
independent of Z;, and such that:

1. Z; is excluded® a priori from the function h;, which relates Y7 to the endogenous
variable Y3,

2. Z; does have a role in determining Y5 via the auxiliary function hs in the sense that
V.. Qy, xz(Tv,,2) # 0 at the chosen values of x and z.

If there is no such instrumental variable then the exogenous impact function cannot be
identified at the chosen values of z, z, 7. and 7, using (1). If there is more than one such
instrumental variable® then (1) applies for each choice of Z; and the exogenous impact
function is in principle overidentified at the chosen values of z and z.

In this nonparametric, analysis, the conditions under which (1) applies are “local”
in two senses. First, quantile independence conditions are required to hold only at the
values 7. and 7, that appear in the exogenous impact function. Second, the condition
V., Qv, xz(Tv,2,2) # 0 is only required to hold at the chosen values of z, z and 7.

If the separate impact of x and z on the exogenous impact function is to be identified
then their separate impact on the conditional quantile functions must be identifiable at
the chosen values of 7. and 7,. This rules out exact functional dependencies among X
and Z.

1.4. Estimation. With suitably informative realisations of Y7, Y5, X and Z, the con-
ditional quantile functions that appear on the right-hand side of (1), and their derivatives,
can be estimated, and then evaluated, as required, at y, = QYQ‘XZ(TV,QZ, z), producing
an estimate of the exogenous impact function.

Estimation can be done using a parametric specification for the conditional quantile
functions, or a semiparametric specification, for example deploying single index restric-
tions, or, if the curse of dimensionality can be kept at bay, using a fully nonparametric
specification”. There may be efficiency gains from joint estimation of the two conditional
quantile functions.

When the exogenous impact function is overidentfied one may wish to efficiently com-
bine the estimates got by using different instrumental variables and there is scope for
testing hypotheses concerning the validity of instruments.

This paper focuses on the identification of exogenous impact functions wvia their corre-
spondence with conditional quantile functions. The interesting, but separate, estimation
and inference issues that this analysis throws up are the subject of continuing research.

5This is a slightly stronger condition than is required. In fact all that is needed is that Z; is excluded
from the function hj at the 7. quantile under consideration which could occur if for example

hi(Ye, X, Z,v) = 0Ya + X'B+ (2'6) e + Av

and 7. = 0.5 and the median of € is zero.

61In this example there is a single endogenous variable appearing in the function k1. With G endogenous
variables appearing in hi, at least G instrumental variables will be required in order to identify the G
structural impact functions.

"For parametric estimation, see e.g., Koenker and Bassett (1978), Koenker and d’Orey (1984, 1994),
for semiparametric estimation see e.g., Chaudhuri, Doksum and Samarov (1997) and Kahn (2001), for
nonparametric estimation, see e.g., Chaudhuri (1991), Nahm (2001).
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1.5. Related work. Rather little attention has been paid to endogeneity in the con-
text of quantile regressions. Amemiya (1982) and Powell (1983) consider estimation in
parametric models in which a conditional median is linear in endogenous and exogenous
variables and independent of instrumental variables. A recent application can be found
in Levin (2001).

The exogenous impact function studied here gives information about the variation
across a population in responses to an exogenous change in a variable potentially endoge-
nous in the data generating process. There is recent work aimed at understanding this
sort of heterogeneity, which has come to be realised to be important in the evaluation of
policy. Heckman, Smith and Clements (1997) explore non-quantile based approaches in
a programme evaluation setting. Abadie, Angrist and Imbens (2001) propose a Quan-
tile Treatment Effect estimator® in a study of the impact of subsidised training on the
distribution of earnings.

The estimation procedure suggested by the results presented here is rather different
to that proposed by Amemiya (1982) on which much subsequent work has been based.
Rather than using the instrumental variables at the first step of estimation, one estimates
quantile regressions which capture the dependency of quantiles of (a) Y7 on Y3, X and Z
and of (b) Y2 on X and Z, and then uses the instruments in a second step to retrieve an
estimate of the exogenous impact function, in a sense applying a “bias correction”.

The connection between exogenous impact functions and conditional quantile functions
forged in this paper does not seem to have been noted, although the discussion® in Manski
(1988) points to the path which leads to the result presented here.

1.6. Plan of the remainder of the paper. Section 2 provides a full set of condi-
tions under which the exogenous impact function can be identified with a functional of
conditional quantile functions, and outlines the method of proof. The proof is given in
the Appendix. Section 3 sketches the extension to the case when there is more than one
endogenous (Y3) variable. Section 4 concludes.

2. EXOGENOUS IMPACT FUNCTIONS WITH ONE ENDOGENOUS VARIABLE

This Section considers the case in which there is a single endogenous variable, Y5, and
potentially many instrumental variables, Z;, i =1,..., M.

A theorem giving conditions under which the exogenous impact function can be iden-
tified with a functional of conditional quantile functions is stated. Some brief remarks
and an outline of the method of proof follow. The proof is given in the Appendix.

Theorem
Scalar Y; and Ya, M-vector Z = {Z;},, M > 1, and K-vector X = {X;}K K >0
satisfy the following equations.

YYI = hl(}/é7X1a"'7XKa57V) (2)
ng = hQ(Xl,...,XK7Zl,...,ZM7V) (3)

These functions are written below in the abbreviated notation hi (Y2, X, e,v), ho(X, Z,v).
Let Qa(7) denote the 7-quantile of a random variable A. Let Q|5(7,b) denote the
conditional 7-quantile of A given B = b, and so forth.
Consider values x and z of respectively X and Z, 7.,7, € (0,1) and a particular
element, Z; of Z.

8Their estimator is a weighted quantile regression estimator based on a parametric model, using a
binary treatment indicator and a binary instrumental variable.

9In Section 6.2.6 of Manski (1988) - “...median independence combines nicely with real-valued response
functions that are monotone in a scalar [unobservable] w...” which is the key to the analysis of this paper.
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Assume the following.

1. € and v are continuously distributed random variables with independent support.

2. At X =, Z = z, the conditional 7.-quantile Q. |, xz(7,v,x, 2) is equal to Q:(7.)
for all v.

3. At X =1, Z = z, the conditional 7,-quantile Q,|xz (7., 2, 2) is equal to Q, (7).

4. At X =2, Z = 2, Y2 = Qvy xz(70,2,2), v = Q,(7,), h1 is a continuous function
of Y5, € and v, and monotonic increasing in ¢ and the partial derivatives of h; with
respect to Ya, V,,h1, and with respect to v, V, hq, exist and are finite.

5. A X =2, Z = 2z, v = Q,(7,), ho is a continuous function of Z; and v, and
monotonic increasing in v, and the partial derivative of hy with respect to Z;, V, ha,
exists and is non-zero.

Define the function
P(y% €, €, l/) = vyghl(y% z,€, V)

and the exogenous impact function

7(-(7—87711’ z, Z) = p(QYg\XZ(TV7]J7 Z)a z, QE(TE)7 QV(TV>)

Then
77(7—577—1/71'72) = VngY1|Y2XZ(T€7QYQ\XZ(Tlnwyz)awyz)
V. Qvivaxz(Te, Qo x 2(T0, 2, 2), 7, 2) @)
V.. Qv xz(Tv, 7, 2) '
2.1. Remarks. The instrumental variables, Z1,..., Zy, are excluded from the func-

tion, hi, determining Y;. Note that there is no requirement that moments of any order
exist, nor any assumption concerning the location (e.g. the median) of the distributions
of € and v.

The identification result is local in the sense that it tells us when the exogenous impact
function can be identified as a functional of conditional quantile functions at particular
quantiles of the distributions of € and v and particular values of X and Z.

Assumption 1 and the continuity conditions in Assumptions 4 and 5 lead to unambigu-
ous definitions of quantiles. Assumptions 2 and 3 define values of 7. and 7, at which there
is quantile independence at the chosen values of X and Z. Of course full independence of
e, v, X and Z will ensure full quantile independence but this is a much stronger condition
than is required.

The monotonicity requirements in Assumptions 4 and 5 are standard in instrumen-
tal variables based attacks on identification!?. In fact the conditions are stronger than
is required because all that is needed is that at the chosen values of 7., 7,, * and z,
conditional quantiles obey the following conditions

QYl\YzXZ(Tangvxaz) = hl(y;7x7Q8(TE)7QV(TV))
QYQ‘XZ(TV7',I/"Z> = h?(vaaQV(TV»

10Tn a mean independence based attack monotonicity implies that the model is separable in € and v.
See Section 2.5.3 of Manski (1988).
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where y5 = Qy,|xz(7,, 7, 2). These conditions may hold even when h; is not monotonic
in ¢ for all ¢ and hs is not monotonic in v for all v. The requirement that h; and hs be
increasing in respectively € and v (rather than decreasing) is an innocuous normalisation.

If there is no Z; satisfying the rank type condition V. ,Qy,xz(7.,7,2) # 0 at the
chosen values of x and z then, at these values and at the chosen quantiles, the exogenous
impact function cannot be identified as the functional (4) of conditional quantile functions.
If there is more than one Z; satisfying the rank type condition at the chosen values of z
and z, then at these values and at the chosen quantiles, the exogenous impact function is
overidentified.

If the separate impact of each element of X and Z on the exogenous impact function
is to be identifiable then the conditional quantile functions, Qy, |y, xz and Qy,|xz must
reveal the separate impact of 2 and z on conditional quantiles (at the chosen values of 7.
and 7,) which rules out exact functional dependencies between X and Z at least in the
region of values of X and Z and at the 7.- and 7,-quantiles that are of interest.

2.2. Outline of the method of proof of the Theorem. The monotonicity of hq
with respect to € implies that the conditional 7-quantile of Y7 given Y5 = yo, X = z,
Z = z, Qv,|v,xz, is related to y2,  and z via the function h; with ¢ replaced by the
conditional T-quantile of the distribution of € given v, which, at 7 = 7., is equal to the
marginal 7-quantile of € under quantile independence. This need only be the case in a
neighbourhood of the quantiles of interest.

The monotonicity assumption on hs ensures the existence of an inverse function, v =
92(X, Z,Y>) which is substituted for v in h;. In fact this inverse function need only exist
in a neighbourhood of v = Q, (7).

The derivatives of Qy,|y,xz with respect to yz is then considered. This is evaluated
at y2 = Qy,|xz(7v,2,2). The term in V,,Qy, |y, x 7 arising from the direct (first) entry
of yo in hy is, after evaluation at appropriate values of its arguments, the object to be
identified. The problem now is to identify the second term in V,,Qy,|y,xz that arises
from the appearance of y2 in go(x, 2z, y2) which has been substituted for v.

To accomplish this we consider the derivative of the conditional 7.-quantile of Y;
given Ys = Qv,|xz(7v,%,2), X = 2, Z = 2 with respect to an instrumental variable z;,
V.. Qv,|v»x 2z, and the derivative of the conditional 7,-quantile of Y given X =z, Z = 2
with respect to z;, V., Qvy,|xz-

We show that the term to be identified is just the ratio of V., Qy, |y, xz to V., Qy,|xz-
For this to be true, at the T-quantiles considered, the instrumental variable Z; must
appear in the h; equation only through its influence on v as captured by the inverse
function go(X, Z,Y2) and it must be that V., Qy,|xz # 0.

Finally, upon rearranging terms, the exogenous impact function is identified as the
functional of conditional quantile functions (1). A full proof is given in the Appendix.

2.3. The exogenous impact function for some specific models. This Section
concludes with two examples in parametric models giving the exogenous impact function
and the components of the functional of conditional quantile functions to which, under
suitable conditions, it corresponds.

The first example is a linear simultaneous equations model, a simple example, but
note that this analysis does not require the existence of moments which is required in
conventional mean independence based analysis of this model. The second example is
similar but a Box-Cox transformation is applied to Y;.

Linear model. First consider the linear model

Y1 = 9}/2 +X’ﬁ1 +e+ (5)
Yo = X'By+7Z'6+v
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and suppose that the quantile independence conditions are satisfied for the 7.- and 7,-
quantiles of respectively ¢ and v.
The exogenous impact function is simply

T(Te, Ty, X, 2) = 0.
The monotonicity assumptions apply, and so,

Qvivaxz(Te,y2.0,2) = 0y + '8 + Qc(7c) + A (y2 — '8y — 26)
(0 + Nys +2'(B; — N\B3) — 2’6 + Q(7¢)
2By + 26+ Qu(1,).

QYQ\XZ(Tzz?x?Z)

We have
Vi Qvivaxz(Te, Qv x 2(Tu, 2, 2),2,2) = 0+ A
V. Qv voxz(Te, Qvy x2(To, @, 2),2,2) = =N
V.. Qv xz(Tv,2,2) = 6

and so, as long as the rank condition, §; # 0 is satisfied,

vziQY1|Y2XZ(7_57 QYQ\XZ(Tl/axa 2),, 2)

=0
VZ¢QY2|XZ(TIM Z, Z)

Vi Qvivaxz(Te, Qyvy | x 2(Tw, ¥, 2), 7, 2) +

which is the desired exogenous impact function.

A Box-Cox model with endogeneity. Now consider the same model but with Y;
subject to a Box-Cox transformation:

Yo —1
L = Yo+ X'By+e+ v
«

Yo = X'B,+7'6+v.

Write the first equation as
Vi = (1+a(0Ys+ X8y +c+ )/

The exogenous impact function is

(7o, T2, 2) =0 (L+a (02 By + 26+ Qu(r,)) + 2/ 8, + Qc(7e) + AQu(m,)) /.
The monotonicity assumptions still apply, so
le\YQXZ(Tg,yQ,iU,Z) = (1+a(0y2 +x/51 +QE(T€) +)‘(y2 _:U152 _2/6)))1/a

= A(Tsay27x7z)1/a7 say,

A o
V?JQQYﬂYzXZ(TEMyanaZ) (0+E> A(Tg,yg,l‘,Z)l/ !
By

VZiQYﬂYQXZ(TEnyava) = o A(Té"y%xaz)l/ail

V.Qyyxz(Tv,x,2) = 6

and on evaluating at y» = Qy,|xz(7., 2, 2), the exogenous impact function is recovered.
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3. EXOCGENOUS IMPACT FUNCTIONS WITH MANY ENDOGENOUS VARIABLES

3.1. Identification. Now consider the case in which there are G > 1 endogenous
variables in the equation determining Y;. The structural equations are then as follows.

Yl - hl(yélr'wYZG;Xagayla"-aVG>

ng = th(X,Z,l/j) jE{l,...7G}
The exogenous impact functions are now, for j € {1,...,G},

Ti(TesTurs o3 Tugs T 2) = Pi(Usts - Yo T Qe (), V1, -+, VE)
where
pj(y21)~"ayZG)x)g,Vla"wVG) :vy2jh1(y217-"7y2G7$757V17"~7VG)~

and ( )

y;z = QY%\XZ Ty Ly 2 .

1=1,...,G. 6
vi = Qu(7,) (©)

The jth exogenous impact function gives the rate of change of Y7 under exogenous
changes in Y55, v and z fixed, with € set equal to the 7.-quantile of its distribution and
each v; set equal to the 7, -quantile of its distribution. Note that these settings for ¢, z,
z and the v;’s fix the Y2;’s at the values shown in equation (6).

Each “reduced form” equation for the Y5;’s is specified as a monotonic function of a
single unobservable v, but this is not very restrictive as there is no requirement that the
v;’s be independently distributed.

Under conditions similar to those of the Theorem in Section 2, the jth exogenous
impact function can be expressed in terms of conditional quantile functions as

* *
71'.7'(7'5,7',]1,. .. aTl/c7x7Z) = VijQY1|Y2XZ(T87y217 e 7y2G?$az) - b]

where the y3,’s and v}’s are as in (6), b; is the jth element of b = [b; ... bg]" and b is any
solution to
c=—Ab (7)

where M element vector c is

* *
VleY1|Y2XZ(Tsayzla s Yogs Ty 2)

VZ]\/IQYl‘YQXZ(TE7 y;la R aySGW z, Z)
and M x G matrix A is

VZ1QY21\XZ(TVU$’Z) vlechlXZ(TVG’x7Z>
A — . .

VZMQY21|XZ(TVU$7Z) VZMQYQG‘XZ(TVG7:I/‘7Z>

When M > G there is potentially a multiplicity of representations of each of the G
exogenous impact functions which is the manifestation of over identification in this setting.

If the matrix A has rank less than G at the selected values of x and z and the selected
quantiles of the distributions of ¢ and the v’s then there is no representation of the
exogenous impact functions in terms of conditional quantile functions and the exogenous
impact function is not identifiable by this means at the selected values of its arguments.

The conditions under which these conditional quantile based representations of the
exogenous impact functions are valid are similar to those in the single endogenous variable
case treated in the Theorem of Section 2. In particular it is required that, in addition to
the matrix A having full column rank at the selected values of the 7,,’s,  and z,
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1. h; is monotonic increasing in € and has finite partial derivatives with respect to each
Y5; and each vy,

2. each function ho; is monotonic increasing in v; and has partial derivatives with
respect to each z; and v,

3. the T.-quantile of € given x, z and v1,...,vq is independent of x, z and vq,...,vg,

4. for each ¢ € {1,,G}, the 7,,-quantile of v; given x and z is independent of = and z.

As in the Theorem of Section 2, many of these conditions need only be satisfied locally,
at, or in a neighbourhood of, =, z, 7. and 7,.

3.2. Outline of the method of proof. The conditional quantile function represen-
tation given in Section 3.1 is obtained as follows.

Monotonicity of hy with respect to €, and 7.-quantile independence leads to the fol-
lowing.

Qvivaxz(Te) = hi(y21s -, ¥26, 7, Qc(Te), 921(2, 2, y21), - - -, g2 (%, 2, Y2i))

The derivatives of Qy, |y, xz are, now for brevity suppressing all arguments to h; and
the go;’s, as follows: with respect to ya;,

Vi Qvivaxz = Vi,ha + Vi, 0V, go;
= Vygjhl + bj

where in the second line b; = V,,;h1V,,.g2;, and: with respect to z;:

G
Ve Quivaxz = 3 Vi, hVz00;. (8)

j=1

Note that, without the exclusion of the Z;’s from the function h; at the chosen value of
T¢, there would be additional terms in this derivative and the claimed result would not
follow.
The monotonicity conditions placed on the hy; functions ensure that there exist inverse
functions as follows.
vj = 92;(X, Z,Ys;)

The argument in the proof in the Appendix leads to (10),
V2:925(X, 2, Y25) = =V y5;925(X, Z,Y2)V 2 hoj (X, Z, v5) (9)
and, substituting in (8) gives the following.

G
V. Qvivaxz = — Z Vo, h1Vy,;925V 2 hoj

j=1
Evaluating V., ho; at v; = Q,,;(7,,;) we have V_ hy; = V.. Qv,;|x 2, and so, for i €
{1,...,M}

G

V.Qvivaxz = _Zvu]-hlvyszijziQng|XZ
=1

G
- Z ijZiQYQHXZ'
=1
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The final equation can be written in matrix form as in equation (7) above and evaluation
at x, z and

Vj:V;:QVj(TVj)7 ]:LvG

ensures that

y2j:ysj:QYzj\XZ(TVjax)z)a ]:177G

4. CONCLUDING REMARKS

This paper has defined an exogenous impact function. This function gives the rate of
change of a response to exogenous changes in variables which are potentially endogenous
in a data generating process. The function can be evaluated at chosen quantiles of distri-
butions of the unobservable random variables that drive a model, and at chosen values of
covariates and instrumental variables.

This paper has shown that, under certain monotonicity conditions and local quantile
independence conditions placed on instrumental variables, the exogenous impact func-
tion can be identified as a functional of conditional quantile functions pertaining to only
observable random variables.

The result is interesting for a number of reasons.

1.

Identification is nonparametric and may be achievable at some quantiles and covari-
ate and instrumental variable values, but not at others.

With parametric models for conditional quantile functions the result can be used to
explore the possibility of parametric identification.

The result offers the possibility of extracting information about the distribution of
exogenous impacts across different quantiles of the marginal distributions of the
unobservable variables that drive the structural model.

The result suggests parametric, semiparametric and nonparametric analog estima-
tors of the exogenous impact function using various types of quantile regression
function estimators.

The exogenous impact function can be defined and identified in contexts (e.g. fi-
nancial markets) in which it is attractive to construct models with nonexistent low
order moments.

APPENDIX: PROOF OF THE THEOREM OF SECTION 2

Throughout consider particular values, x and z, of X and Z, and values 7. and 7, at
which the assumptions of the Theorem are satisfied.
Monotonicity of h; with respect to ¢ and continuity (Assumption 4) imply that

QY;[‘I/XZ(TE) v,x, Z) = hl(hg(ﬂ?, Z, V>7$7 QE‘VXZ(TE'?) v,x, Z)) V) (Al)

and since the conditional 7.-quantile of ¢ is independent of v, X and Z (Assumption 2),

QY1|VXZ(TE7Vava> == hl(h2(x,Z,V),ZC,Q5(Tg),l/).

Assumption 5 implies the existence of the inverse function

l/:gg(Xl,...,XK,Zl,...,ZM,YQ) (A2)
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which is written, using an abbreviated notation, as g2(X, Z, Y3).
Substituting for v in (A1) using (A2) and noting that conditioning on v, X and 7 is
the same as conditioning on Y5, X and Z, gives the following.

QYl\YQXZ(Tsay%xa Z) = hl(yg,ZL’, QS(T€)’92(:L'3 Zayz)) (A?’)

Let y5 = Qyyxz(Tv,2,2). The differentiability assured by Assumptions 4 and 5
implies that there are the following derivatives of the conditional quantile function (A3),

VyQQYﬂYzXZ(T7y>2kax7Z> = vah’l(y;wxaQE(T>ag2(x7Z7y;)>
+Vy,92(2, 2,95)Vihi (y3, 7, Qe (7), g2(2, 2,93)) (Ad)
VZile‘YQXZ(T7y§7(E72) = Vzigz(x,z,yg)vyhl(yg,m,Qg(Tng(x,z,y;)). (A5)

Consider equation (A2). We have, using Assumption 5,
0= V..92(2,2,y3)dzi + Vy,92(, 2, 45) dya (A6)
dy = V= ha(, 2, Qu(7y))dzi (AT)
The monotonicity of hy with respect to v (Assumption 5) implies that
Qvy|xz(Tv,x,2) = ha(2,2,Q,(7,))
and since V., Qy,|xz (7w, 2, 2) # 0 (Assumption 5), from (A7)

dys2

dZi =
vziQY2|XZ(TVa x, Z)

and so on substituting in (A6)

Vz-QQ(xv Z,yg)
Vi 92(2,y5) = — - . A8
192(2,43) V.. Qvy|xz(Tvs T, 2) (A8)
Substituting (A8) into (A4) gives
vyZQYl‘YQXZ(T’y;7$7Z) = Vyghl(ZJ;,x,Qs(T)vgz(!E,ZvyS))

Vz'g2(33,z,y’2“)
— k3 Vl,h *’x’ e T , -’1/‘,27 *
V.. Qvy xz(Tu, 2, 2) 142, 7, Qe(7), 92(, 2,13))

and on using equation (A5),

vaQYI\YgXZ(T&:uy;vIvZ) = Vyzhl(yzaw7Q8(75)792(I7z,y§))
7vz¢QY1|Y2XZ(TEa y>2ka z, Z)
vzi QYQlXZ(TV) €, Z)

Finally, noting that y5 = Qy,|xz(7,,7,2) and ga(2, 2,93) = Q,(7,) and that the
exogenous impact function is

7T(7'5, Ty, T, Z) = vahl(QY2|XZ(TV7 X, Z)a X, Qs(Ts)a QV(TV))
there is the result (4) of Theorem, as follows.

71-(7-877-1/73772) = VyQQY:[‘YQXZ(TE?QYQ'XZ(TV’x’Z)’x’Z)
vziQYﬂYQXZ(Tsa QYQ\XZ(TV, T, 2),T, %)
V.. Qvo|xz(Tvs T, 2)




EXOGENOUS IMPACT AND CONDITIONAL QUANTILE FUNCTIONS 13

REFERENCES

ABADIE, A., ANGRIST, J., AND G. IMBENS (2001): “Instrumental variables estimates
of the effect of subsidized training on the quantiles of trainee earnings,” FEconometrica,
forthcoming,.

AMEMIYA, T., (1982): “Two stage least absolute deviations estimators,” Econometrica,
50, 689-7T11.

CHAUDHURI, P.; (1991): “Nonparametric estimation of regression quantiles and their
local Bahadur representation,” Annals of Statistics, 19, 760-777.

CHAUDHURI, P., K. DOKSUM AND A. SAMAROV (1997): “On average derivative quantile
regression,” Annals of Statistics, 25, 715-744.

HECKMAN, J.J., J. SMITH AND N. CLEMENTS (1997): “Making the most out of pro-
gramme evaluations and social experiments: accounting for heterogeneity in programme
impacts,” The Review of FEconomic Studies, 64, 487-535.

KAHN, S., (2001): “Two-stage rank estimation of quantile index models,” Journal of
FEconometrics, 100, 319-355.

KOENKER, R., AND G. BASSETT JR. (1978): “Regression quantiles,” Econometrica, 46,
33-50.

KOENKER, R.W. AND V. D’OREY (1987): “Computing regression quantiles,” Journal of
the Royal Statistical Society, Series C, 36, 383-393.

KOENKER, R.W. AND V. D’OREY (1994): “Remark on Algorithm AS229; Computing
dual regression quantiles and regression rank scores,” Applied Statistics, 43, 410-414.
LevIN, J., (2001): “For whom the reductions count: A quantile regression analysis of
class size and peer effects on scholastic achievement,” Empirical Economics, 26, 221-246.
Mansk1, C.F., (1988): Analog estimation methods in econometrics, New York: Chapman
and Hall.

NEweEY, W.K., AND J.L. POWELL (1990): “Efficient estimation of linear and Type-1
censored regression models under conditional quantile restrictions,” Econometric Theory,
6, 295-317.

PoweLL, J.L., (1983): “The asymptotic normality of two-stage least absolute deviations
estimators,” Econometrica, 51, 1569-1576.



