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This letter presents preliminary results on the use of multistatic radar 

and micro-Doppler analysis to detect and discriminate between micro- 

drones hovering carrying different payloads. Two suitable features 

related to the centroid of the micro-Doppler signature have been 

identified and used to perform classification, investigating also the 
added benefit of using information from a multistatic radar as opposed 

to a conventional monostatic system. Very good performance with 

accuracy above 90% has been demonstrated for the classification of 

hovering micro-drones. 

 

Introduction: In the past few years the number of micro-drones, i.e. 

small Unmanned Aerial Vehicles (UAVs), available to civilian users 

has largely increased due to low price and ease of use. These platforms 

can be privately used for filming and leisure, for applications such as 

agriculture and surveillance, and for search and rescue in disaster 

response operations. However, these platforms can also be misused to 

conduct anti-social, unsafe, or even criminal acts, including hostile 

reconnaissance, collisions (with people, other micro-drones or larger 

aircraft), and transport of explosives or biological agents [1].  

The suitability of conventional radar systems to detect and identify 

micro-drones has been investigated in recent years. This task is 

expected to be challenging as micro-drones have low Radar Cross 

Section (RCS) and fly at lower altitude and slower speed in comparison 

with conventional aircraft. There is little available research on radar 

detection and classification of micro-drones. In [2-4] the micro-Doppler 

signatures of different models of micro-drones collected using a 

continuous wave radar at X-band have been analysed to discriminate 

between different models and also between micro-drones and large 

birds. In [5] other features extracted from tracks rather than from micro-

Doppler signatures have been proposed to classify micro-UAVs and 

distinguish them from other aircraft, birds, or atmospheric phenomena. 

Our work in [6] investigates the variation of the RCS of micro-drones 

and their blades through simulations and controlled experiments.  

The main objective of this work is to analyse the micro-Doppler 

signatures of a micro-drone hovering while carrying different payloads, 

and investigate the suitability of features to classify and distinguish 

between the different cases. Knowledge that the drone is carrying extra 

payload may be an indication of suspicious and potentially hostile 

activity, and cue other surveillance sensors for improved identification 

or trigger some form of countermeasures if required. Two features 

based on the centroid of the micro-Doppler signature are proposed, and 

the classification benefit of combining data from a multistatic radar 

rather than a conventional monostatic radar are discussed. These 

experimental data from a multistatic radar system measuring micro-

drones carrying different payloads are believed to be significantly novel 

and provide preliminary results to address the open challenge of micro-

drone detection via radar. 

 

Experimental setup and radar system: The data presented in this 

paper were collected using the University College London multistatic 

radar system NetRAD [7]. NetRAD is a coherent pulsed radar 

consisting of three separate but identical nodes that operates at 2.4 GHz, 

S-band. The transmitted power was approximately +23 dBm, with 

horizontally polarized antennas with 24 dBi gain and approximately 

10°×10° beam-width. The RF parameters chosen for the experiment 

described in this paper were linear up-chirp modulation with 45 MHz 

bandwidth and 0.6 μs duration, 5 kHz pulse repetition frequency (PRF) 

which allows the whole micro-Doppler signature of the micro-drone to 

be included in the unambiguous Doppler region, and 30 s duration of 

each recording. The experiment took place in July 2015 in an open 

football field at the UCL Sports Ground to the north of London. Fig. 1 

shows the geometry of the experiment with the three NetRAD nodes 

deployed along a linear baseline with 50 m inter-node separation and 

the micro-drone hovering at approximately 60 m from the baseline. 

Node 1 was used as monostatic transceiver, with Node 2 and Node 3 as 

bistatic receivers. The bistatic angle was approximately 40°. The micro-

drone used in the tests was the quadcopter DJI Phantom Vision 2+. The 

camera provided with the micro-drone was removed for these tests, and 

the micro-drone was fitted with different payloads made of small 

metallic disks, each weighing 10 g, placed in a plastic tray mounted 

below the drone. Three datasets were recorded for no payload, 200 g 

and 500 g payload which was the limit for take-off. 

  

 
Fig. 1 Geometry of the experimental setup 

 

Data analysis and classification: The recorded data were processed 

using Short Time Fourier Transform (STFT) to characterize the micro-

Doppler signature of the micro-drone for different payloads. Firstly the 

range bin where the drone was present was isolated. Then each 30 s 

recording was divided into fifteen 2 s blocks and the STFTs were 

calculated on each block using 0.1 s Hamming window with 95% 

overlap. Fig. 2 shows four micro-Doppler signatures of the drone 

hovering in case of no payload and 500 g payload with data recorded at 

monostatic and bistatic nodes. The horizontal lines related to the 

rotation of the blades are clearly visible in the spectrograms and are 

consistent with the literature [2-4]. The difference in spectrograms 

between the no payload and 500 g payload cases can be empirically 

appreciated, with the blade Doppler lines appearing more uniform and 

straight, and reaching higher positive and negative Doppler values, for 

the 500 g payload case. This is thought to be related to the higher 

rotational speed of the blades when the micro-drone is loaded in order 

to get higher lifting power to cope with the payload. 

 

 
Fig. 2 Micro-Doppler signatures for the drone hovering: (a) monostatic 

no payload, (b) monostatic 500 g payload, (c) bistatic no payload, and 

(d) bistatic 500 g payload 

 

Following the same approach used to classify human micro-

Doppler signatures, feature samples have been extracted from the 

spectrograms [7-8] and used as input to a classifier. Two features based 

on the Doppler and bandwidth centroid of the micro-Doppler signatures 

have been identified as suitable for the loaded/unloaded classification 

[9]. The first parameter gives an indication of the centre of gravity of 

the micro-Doppler signature, and the second provides an estimate of the 

signature bandwidth around the centroid. The parameters are calculated 

as in (1) and (2), where S(i,j) represents the value of the spectrogram for 

the ith Doppler bin and the jth time bin. 

 

fc(j) =
∑ f(i)S(i,j)i

∑ S(i,j)i
                                   (1) 

 

Bc(j) = √
∑ (f(i)−fc(j))2S(i,j)i

∑ S(i,j)i
                            (2) 
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One feature sample has been extracted from each 2 s block of 

spectrograms. The total number of feature samples is therefore 45 per 

recording, assuming 3 radar nodes and 30 s overall duration of each 

recording. Fig. 3 shows bi-dimensional scatter plots of the feature space 

from the three radar nodes. The classes are micro-drone hovering with 

no payload, 200 g payload, and 500 g payload. A good separation 

between the three classes can be seen in the data recorded at each 

different radar node, hence good classification performance is expected 

using these features. 

 

 
 

Fig. 3 Feature samples for micro-drone hovering with different 

payloads as extracted from: (a) Node 1, (b) Node 2, and (c) Node 3 

 

The classifiers used here are the Naïve Bayes and the diagonal-

linear variant of the discriminant analysis classifier, described in more 

details in [7, 10]. The classifiers are trained with 10% to 30% of the 

overall samples available, and the remaining data are used to assess the 

accuracy and calculate the classification error. This process is repeated 

50 times with random changes in the set of samples used for training in 

order to test the consistency of the classifiers behaviour, and the 

classification error averaged over these 50 repetitions is calculated. The 

classification error is defined as the total number of misclassification 

events divided by the total number of samples. The average accuracy is 

simply 100% minus the average error and is reported in this work. 

Multistatic data have been combined in two different ways and the 

resulting classification performance compared with the use of 

monostatic data only, as for a conventional radar. In the first approach 

samples from all the three nodes are given to a single, centralized 

classifier which provides the final decision. In the second approach 

separate classifiers process the samples extracted at each node and 

provide partial decisions, which are then combined in a voting 

procedure to reach the final decision, i.e. the decision which gets the 

majority of 2 out of 3 classifiers. Table 1 shows the classification 

accuracy for different sizes of the training set and different methods of 

combining multistatic information. The three classes considered are the 

micro-drone hovering with no payload, and with 200 g and 500 g 

payload (same as in Fig. 3). Some trends can be extracted from the 

table, such as the increasing accuracy with increasing size of the 

training set (as expected), and the increase in accuracy when combining 

multistatic data through the separate classification and binary voting 

approach, in comparison with using only monostatic data or a single 

classifier. The overall classification results have an accuracy 

consistently above 90% and reaching 100% when the binary voting 

approach is used.  

 

Conclusion: This letter has presented preliminary results of using 

micro-Doppler features extracted from multistatic radar data to 

discriminate and classify between micro-drones hovering while carrying 

different payloads. It has been shown that the proposed features provide 

a classification accuracy consistently above 90% when multistatic data 

are used in separate classification at each node, which can be regarded 

as sufficient for a screening security system. Further work will aim at 

collecting additional data in different conditions to validate these 

preliminary results, including for instance different models of micro-

drones, different payload size and shape, and diverse operational 

scenarios where one or more micro-drones are flying.  

 

TABLE 1: Classification accuracy as function of size of the training set 

and methods of combining multistatic data for micro-drone hovering 

with different payloads 

 

Classification Accuracy [%] 
10% 

train 

20% 

train 

30% 

train 

Discriminant 

Analysis 

Mono 

data only 
97.6 98.3 98.4 

All multi 

data 
86.1 87.1 87.6 

Binary 

voting 
99.5 99.9 100.0 

Naïve Bayes 

Mono 

data only 
82.0 94.5 99.4 

All multi 

data 
81.7 85.7 87.7 

Binary 

voting 
90.0 98.4 99.7 
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