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Quantum Entanglement and Networking with Spin-Optomechanics

by Victor Montenegro-Tobar

Non-relativistic quantum mechanics have proven to be a significant framework to

understand the non-classical behaviour of light and the microcosmos. Perhaps, one

of the first technological revolutions within quantum theory came with the invention

of the transistor, whereby a purely quantum mechanical description was required.

Currently, another outstanding revolution is taking place in a crossroad where in-

formation science meets quantum mechanics (this being the quantum information

field). Such an area of work contemplates both the fascinating theoretical aspect of

quantum correlations, as well as implementations towards quantum tasks performed

by a universal quantum computer; tasks that cannot be realised (or they are hard

to implement) within the classical domain.

This Thesis is devoted to study the dynamics of quantum entanglement in spin-

optomechanics systems. In particular, we explore the quantum stabilization of

quantum entanglement, a quantum concentration scheme in opto-mechanics and

an interfacing of matter and light towards quantum networking applications. Ad-

ditionally, we also investigate theoretical aspects of quantum correlations within

thermal environments, as well as the topical area of quantum sudden transitions.

In Chapter 1, we provide a brief summary of quantum information and of the

quantum optics framework to cover elementary concepts and techniques used sub-

sequently in this work.

Subsequently, in Chapter 2 we present the stabilization of quantum entanglement

in a non-linear qubit-oscillator system. The inclusion of a modest nonlinearity gives

three results, i) the loss of periodicity of the system, ii) the occurrence of quadrature
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squeezing appearing for a short time, and iii) the quantum entanglement reaches

higher values in contrast to the case without non-linearity.

In Chapter 3, a technique to concentrate/distill a two-mode vacuum state in op-

tomechanics via unsharp measurements is presented. Here, one of the optical modes

is injected into a cavity at first, and thereafter, it is nonlinearly coupled to a mechan-

ical oscillator. Afterwards, the position of the oscillator is measured using pulsed

optomechanics and homodyne detection. The results show that this measurement

can conditionally increase the initial entanglement.

Next, in Chapter 4, stimulated by optomechanical transducers and quantum net-

working, a light-matter system is constructed where a qubit is coupled to a cavity

mode mediated through a mechanical oscillator. The qubit-oscillator conditionally

displaced Hamiltonian and the oscillator-cavity radiation-pressure interaction gen-

erate a maximal qubit-cavity entanglement. Additionally, we consider the case in

which the cavity mode is coupled to a waveguide, numerical calculations show a

promising qubit-fibre entanglement under a weak matter-light coupling. For the

quantum network case, we coupled a generic qubit in the first node to a second

qubit-cavity distant Jaynes-Cummings system coupled through an optical fibre,

where qubit-qubit correlations can be achieved in the quantum open systems sce-

nario.

In Chapter 5, we study the evolution of an open quantum system within the

Born-Markov microscopic master equation (MME). Essentially, two distant two-

level atoms are trapped in fibre-coupled cavities. Under the approximation of one-

excitation allowed in the atom-cavity-fibre basis, we can obtain quantum correla-

tions induced by thermal fluctuations from the environments.

Lastly, in Chapter 6, we bring together previously elements explored in this Thesis.

The system is a hybrid atomic-mechanical system formed from two remote qubits

interacting with individual harmonic oscillators. This system, as in Chapter 4, ex-

plores interesting applications in quantum networking schemes. The two qubits are

initially prepared in a Bell-diagonal state, and consequently the two-qubit correla-

tions exhibit few interesting effects such as freezing, sudden changes and revivals in

the evolution of the quantum entropic discord.

To conclude, I summarize my findings in Chapter 7.
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Chapter 1

Introduction

In this introductory Chapter, we will briefly provide some relevant concepts of quan-

tum mechanics as well as a fundamental framework on quantum information and

quantum optics. As this mathematical background can be found in several quantum

textbooks, it will not be our aim to give a detailed analysis of them. The Chapter is

organized as follows : In Section 1.1, we present the dynamics of pure and mixed

quantum states both for unitary dynamics, as well as in the presence of losses (open

quantum system). Next, in Section 1.2, we give an introduction to the quantum bit,

the quantum harmonic oscillator, some states of the quantized electromagnetic field,

and phase space representation. Finally, in Section 1.3, we give a short overview

on how to quantify the quantum entanglement of bipartite systems.

1.1 A Few Words On Quantum Mechanics

Quantum Mechanics (QM) together with General Relativity (GR) are undeniably

the two most greatest theories ever achieved. On the one hand, GR comes to light

as a local classical theory providing a unified description of gravity as a geometric

property of spacetime; a generalization being made as a result of merging special

relativity and Newton’s law of universal gravitation. On the other hand, the situa-

tion for QM could not be more different. Firstly, in contrast to GR and its unifying

character (summarized in the Einstein field equations), QM was constructed as a

set of rules and principles throughout the years. Secondly, unlike GR where the

main groundbreaking result was solely made by Albert Einstein, QM emerged as

1
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the result of the work of several physicists in a close experiment-theory collabo-

ration. Lastly, QM stands by definition as a non-classical theory, and also as a

non-local theory as beautifully proven later by John Bell [Bell1964].

QM has developed through several distinctive phases. In the early 1900s in order

to explain the Black-body radiation, the concept of quanta was introduced by Max

Planck as a discrete (quantized) energy packet. Later, in 1925, another QM phase

took place with contributions from Louis de Broglie, Erwin Schrödinger, Max Born,

Werner Heisenberg, Paul Dirac, among others. Here, the QM matrix machinery

was built. In the subsequent years, the equivalence between the matrix mechanics

and wave mechanics of QM was established, and last but not least, the Uncertainty

principle.

For completeness, in the following we will present a few useful definitions and con-

cepts of QM. First, let us commence considering a system at a given time depicted

by the vector |ψ〉. The vector ket = | 〉 or pure state belongs to a Hilbert space

H, and it can be expanded as a linear combination of vectors |i〉 ∈ H (ci ∈ C, and∑
i |ci|2 = 1) as following:

|ψ〉 =
∑
i

ci |i〉 . (1.1)

A powerful consequence of the above is that, quantum states satisfy the super-

position principle (wave-like nature of QM). Another interesting result due to the

Hilbert space structure is the construction of a quantum system composed of differ-

ent quantum subsystems. In other words, for simplicity let us consider two different

quantum states belonging to different Hilbert spaces |ψ〉A ∈ HA and |ψ〉B ∈ HB.

The whole composite quantum system corresponds to the joint space, a valid state

which belongs to a higher dimensional Hilbert space : |ψ〉AB ≡ |ψ〉A ⊗ |ψ〉B ∈
HAB = HA ⊗HB. As the superposition principle has to remain valid in this joint

tensor space as well, then some valid states of the joint Hilbert space are for example

: |a1〉 ⊗ |b1〉 or 1/
√

2(|a1〉 ⊗ |b1〉+ |a2〉 ⊗ |b2〉, where |ai〉 (|bi〉) belongs to HA(HB).

The last state (entangled) reveals a quintessential feature of quantum mechanics

corresponding to the main issue of this thesis. Of course, we will study this type of

states in more detail in subsequent sections (see Section 1.3).

As said, a quantum pure state is represented by a vector in H, whereas every

measurable physical quantity A is described by an operator (observable) Â acting on

H. An operator is a functional build as Â =
∑

i,j ai,j |i〉 〈j|, where the mathematical

entity bra = 〈 | belongs to the dual space H∗. Furthermore, the only possible



3

outcome of the measurement of a physical quantity A is one of the eigenvalues of

the corresponding observable Â.

In the case of a non-relativistic closed system, i.e., in absence of energy losses, the

time evolution of the state vector |ψ(t)〉 is governed by the Schrödinger equation:

i~
d

dt
|ψ(t)〉 = Ĥ(t) |ψ(t)〉 , (1.2)

where Ĥ(t) is the observable associated with the total energy of the system. As

the Schrödinger equation is of first order in time any subsequent time is determined

by an initial quantum state. It is also important to notice that the Schrödinger

equation does not exhibit any indeterminacy in the time evolution of a quantum

system in itself. The intrinsic random indeterminacy of QM only appears when the

physical quantity is measured. Lastly, if the Hamiltonian of the system is time-

independent, the wave-function can be found solving the eigenvalues problem (E

being the energy/eigenvalue):

Ĥ |ψ(t)〉 = E |ψ(t)〉 . (1.3)

A more general evolution in physics is to consider the coupling between the system

of interest with the environment, i.e., an open system. As we know, losses play a

crucial role in physics and they cannot be avoided.

To present the equation subject to the detrimental effects —or decoherence— due

to the environment, first we have to introduce the mixed states ρ̂. In contrast

to pure or vector states where we have a perfect knowledge of our system, when

mixed states are considered, we can only know our quantum state probabilistically.

Mixed states are linear, semi-positive (eigenvalues greater than or equal to zero),

and self-adjoint (ρ̂ = ρ̂†) operators represented by matrices.

A density matrix ρ̂ (Tr{ρ̂} = 1) describes a probability distribution of quantum

states |ψi〉 as following:

ρ̂ =
∑
i

pi |ψi〉 〈ψi| (1.4)

where, pi is the associated probability of finding the quantum system in the quantum

state |ψi〉.
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To derive the open dynamics, we consider the Hamiltonian of the original quantum

system (Ĥsys), the environment (Ĥenv), and their interaction (Ĥint) as a whole closed

quantum system Ĥtot = Ĥsys + Ĥenv + Ĥint. The equivalent Schrödinger dynamics

for density matrices is the so-called Liouville-von Neumann equation:

d

dt
ρ̂(t)tot = − i

~
[Ĥtot, ρ̂(t)tot], (1.5)

Since we are only interested in the dynamics of the system, we can at this point per-

form a partial trace over the environmental degrees of freedom ρ̂(t) = Trenv[ρ̂(t)tot].

The most general trace-preserving and completely positive form of this evolution is

the Lindblad master equation for the reduced density matrix.

d

dt
ρ̂(t) = − i

~
[Ĥ, ρ̂(t)] +

∑
i,j

ai,j

(
F̂iρ̂(t)F̂ †j −

1

2
{F̂ †j F̂i, ρ̂(t)}

)
, (1.6)

where, {· · · , · · · } stands for the anticommutator. Operators F̂ constitutes a basis

in the space of operators for the reduced system of ρ̂(t). Lastly, ai,j is a positive

definite hermitian matrix. However, throughout all of this thesis (except in Chapter

5) we will consider the usual standard quantum optical master equation, which for

the decoherence of the quantized field â reads as:

d

dt
ρ̂(t) = − i

~
[Ĥ, ρ̂(t)]

+
κ

2
(〈n〉+ 1)

(
âρ̂(t)â† − 1

2
{â†â, ρ̂(t)}

)
+

κ

2
〈n〉
(
â†ρ̂(t)â− 1

2
{ââ†, ρ̂(t)}

)
. (1.7)

In the right hand side of Eq. 1.7, the first line represents the unitary Liouville-von

Neumann evolution, meanwhile the second line is the dissipative Lindbladian part.

As 〈n〉 = (e~ω/kBT −1)−1 is the average photon number, where kB is the Boltzmann

constant, and T is the temperature. It is straightforward to obtain the master

equation at zero temperature:

d

dt
ρ̂(t) = − i

~
[Ĥ, ρ̂(t)] +

κ

2

(
âρ̂(t)â† − 1

2
{â†â, ρ̂(t)}

)
. (1.8)

In the derivation of the above master equation the following approximations were

made:
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• Separability : We assume that at the initial time of the evolution there are no

correlation between the system of interest and the environment. Therefore,

we can write the density operator as a tensor product between them.

• Born approximation : i) we require a quasi-static evolution of the environment,

i.e., the reservoir does not change as a result of the interaction with the system,

ii) the system-environment remain (approximately) separable throughout the

dynamics, in other words, we require weak system-environment coupling.

• Markov approximation : Sometimes called “short-memory environment. It

means that, the environmental correlation functions decay much faster than

those of the system.

• Secular approximation : All fast rotating terms in the interaction picture are

neglected.

In contrast to the Schrödinger equation, the Lindblad Born-Markov master equation

represents a more realistic evolution of a quantum system describing the dissipation

in the quantum system due to its interaction with the environment.

1.2 Quantum Optics & Information Framework

1.2.1 The quantum bit

On the one hand, a bit is the basic unit of information in modern computation.

Essentially, a bit constitutes a way to encode two distinguishable states being valued

in one and only one of two possible outcomes or logical values, such as : up or

down, on or off, 0 or 1, true or false, etc. These states can be stored/processed in

real physical systems such as two different voltages (or currents) in a circuit, for

instance, a voltage below a certain value Vthreshold represents 0, and 1 otherwise.

Other implementations might be two distinct levels of light intensity, two directions

of magnetization or polarization, etc.

On the other hand, in the rapid growing quantum computing field, a quantum bit

(or qubit) is the quantum analogue of the classical bit. However, the qubit exhibits

crucial differences with its classical counterpart. For example, as mentioned above,

a bit is single valued, i.e., it can be in one and only one states 0 or 1, meanwhile
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a qubit due to the superposition principle of QM it could be in a superposition of

both states at the same time, becoming a key feature for quantum processing.

To define the qubit mathematically we shall denote a two-dimensional orthonormal

vector basis {|0〉 , |1〉} (computational basis) in the Hilbert space H over the field

of complex numbers C, thus in the Dirac’s ket notation a qubit reads as:

a |0〉+ b |1〉 (1.9)

where, {a, b} are two complex coefficients satisfying the following normalization

constraint : |a|2 + |b|2 = 1. Eq. 1.9 represents the most general qubit state. Here,

the quantities |a|2 and |b|2 represent the probabilities associated to the outcome |0〉
or |1〉 after a measurement is performed in their corresponding computational basis.

A natural realization for a qubit is a spin−1
2 particle, e.g., an electron. The com-

putational basis is interpreted then as |0〉 = | ↑〉 (spin up), and |1〉 = | ↓〉 (spin

down).

To give the representation of a spin qubit in the Bloch sphere, we consider the Pauli

vector in spherical coordinates as follows:

n · σ̂ =

(
cos θ e−iφ sin θ

eiφ sin θ − cos θ

)
, (1.10)

where, the polar angle 0 ≤ θ ≤ π and the azimuthal angle 0 ≤ φ ≤ 2π. The unitary

vector n = (cosφ sin θ, sinφ sin θ, cos θ), and σ̂ = (σ̂x, σ̂y, σ̂z) is the Pauli vector,

being its components the Pauli matrices (computational basis):

σ̂x =

(
0 1

1 0

)
σ̂y =

(
0 −i
i 0

)
σ̂z =

(
1 0

0 −1

)
. (1.11)

The eigenvector of Eq. 1.10 is:

|ψ(θ, φ)〉 =

(
e−iφ/2 cos θ2

eiφ/2 sin θ
2

)
= cos

θ

2
| ↑〉+ eiφ sin

θ

2
| ↓〉 (1.12)

the above pure state describes the orientation of the qubit in the surface of the

Bloch sphere illustrated in Fig. 1.1-a. Additionally, the 2 × 2 mixed states can be

described by the interior of the sphere, see Fig. 1.1-b.
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x
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Figure 1.1: Qubit representation in the Bloch sphere. In a) a pure or vector
state corresponds at any point in the surface of the sphere, b) a mixed state is

represented inside the sphere, and c) the computational basis {|0〉, |1〉}.

Of course, a straightforward generalization might be made for a d-dimensional or-

thonormal vector basis (qudit). However, throughout all of this work only qubits

will be considered.

1.2.2 Quantum harmonic oscillator

Let us start from a collection of N classical harmonic oscillators, the Hamiltonian

reads as:

H =

N∑
j=1

1

2mj
p2
j +

1

2
mjω

2
jx

2
j (1.13)

where, mj is the mass for the jth-particle oscillating with an angular frequency

ωj . The variables xj and pj are the position and momentum for the jth-particle,

respectively. The above Eq. 1.13 can be quantized using the canonical commuta-

tion relation [x̂n, p̂m] = i~δnm, where x̂n and p̂m = −i~∇m are the position and

momentum operator for a wave function |ψ〉, respectively. Hence, the quantized
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Hamiltonian is:

Ĥ =
N∑
j=1

1

2mj
p̂2
j +

1

2
mjω

2
j x̂

2
j . (1.14)

Considering the one-dimensional time-independent Schrödinger equation Ĥ |ψ〉 =

E |ψ〉 for a single particle, we can solve the eigenvalue problem in the coordinate

representation 〈x|ψ〉 = ψ(x) and obtain the nth−spatial wave-function mode as

(n = 0, 1, 2, 3, . . .):

ψn(x) =
1√

2nn!

(mω
π~

)1/4
e−mωx

2/2~Hn

(√
mω

~
x

)
, (1.15)

where Hn(x) = (−1)nex
2 dn

dxn

(
e−x

2
)

are the Hermite polynomials, and the corre-

sponding energy levels are:

En = ~ω
(
n+

1

2

)
. (1.16)

The above Eq. 1.16 shows that the energy spectrum is discrete and equally spaced.

In addition, in contrast to the classical case, the minimum energy state (n = 0, the

ground state of the system) corresponds to a non-zero value ~ω/2, being this in

accordance with the Uncertainty principle.

To give another useful representation of Eq. 1.14, we introduce the non-hermitian

bosonic annihilation operator for a single particle ([â, â†] = 1):

â =
1√
2~ω

(ωx̂+ ip̂) (1.17)

and therefore we can get:

x̂ =

√
~

2mω
(â† + â), (1.18)

p̂ = i

√
m~ω

2
(â† − â), (1.19)

The Hamiltonian for a single quantum harmonic oscillator then reads as:

Ĥ =
1

2m
p̂2 +

1

2
mω2x̂2 =

(
â†â+

1

2

)
~ω. (1.20)

a useful basis closely related to the annihilation operator is the Fock basis {|n〉},
where n stands for the number of photons in the quantum state. If â (â†) acts on
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|n〉 this can annihilate (create) one photon. Therefore;

â |n〉 =
√
n |n− 1〉 , (1.21)

â† |n〉 =
√
n+ 1 |n+ 1〉 , (1.22)

N̂ ≡ â†â |n〉 = n |n〉 , (1.23)

using the above, the Eq. 1.20 can be rewrite as following: Ĥ = (N̂ + 1/2)~ω. The

eigenvalue problem then in the Fock basis is easily solved as Ĥ |n〉 = En |n〉, where

En = (n+ 1/2)~ω.

1.2.3 Coherent and thermal states

Perhaps, the most common states of the electromagnetic field both in the quan-

tum optics and quantum information field are the coherent and thermal states.

The first type of states were introduced by Glauber [Glauber1963] and Sudarshan

[Sudarshan1963]. Coherent states are defined as the eigenstate of the annihilation

operator. For a single mode it reads as (α ∈ C):

â |α〉 = α |α〉 . (1.24)

Furthermore, they are commonly represented in the Fock basis as following:

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 . (1.25)

In addition, it is straightforward to show that this state exhibits equal uncertainty

in the position and momentum quadratures, i.e., (∆x)2
α = ~/2ω and (∆p)2

α = ~ω/2,

and therefore minimizing the Uncertainty principle (coherent states are minimum

uncertainty states)

(∆x)2
α(∆p)2

α =
~2

4
. (1.26)

Furthermore, they form a set of overcomplete non-orthogonal (〈α|β〉 6= 0,∀ |α〉 6=
|β〉) basis:

〈α|β〉 = e−
1
2

(|α|2+|β|2)eαβ
∗

(1.27)∫
d2α |α〉 〈α| = π. (1.28)
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Another way to define coherent states is using the Displacement operator, defined

as:

D̂(α) = e(αâ†−α∗â) (1.29)

with the above definition, a coherent state is just the vacuum state |vac〉 = |0〉 , α = 0

displaced by a complex amplitude α:

D̂(α) |0〉 = |α〉 . (1.30)

Coherent states obeys a Poisson statistics, the probability of having n photons in a

coherent state is (see Fig. 1.2):

Pn = e−|α|
2 |α|2n

n!
, (1.31)

with average photon number and variance giving by 〈n〉 = |α|2, 〈n2〉 = |α|2 + |α|4.

Α = 0

0 1 2 3
n

0.2

0.4

0.6

0.8

1.0

Pn

Α = 2

Α = 1

Α = 3

0 5 10 15
n

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pn

Figure 1.2: The figure shows the probability of having n photons in a coherent
state Pn as a function of n. In the left panel, the probability of having zero photons
in a coherent state (vacuum state α = 0) is the unity. In the right panel, we plot

α = 1, 2, 3.

Finally, the normalized q−representation (q = x
√
mω/~) for a general coherent

state α is given by (ψα(q) ≡ 〈q|α〉)

ψα(q) =
1

π1/4
exp

(
α∗2 − α2

4

)
exp

(
−1

2
(q −

√
2Re[α])2

)
exp

(
iq
√

2Im[α]
)
.

The second state to consider is the thermal state. It is known that any quantum

system ∈ H at thermal equilibrium is in a thermal state given by:

ρ̂th =
e−Ĥ/kBT

Tr[e−Ĥ/kBT ]
, (1.32)
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where, kB is the Boltzmann constant, and T is the temperature of the state. Another

useful representation is:

ρ̂th =
1

πn̄

∫
|α〉 〈α| exp

(
−|α|

2

n̄

)
d2α (1.33)

n̄ =
1

exp (~ωc/kBT )− 1
(1.34)

above, the normalized thermal state corresponds to a collection of coherent states

at temperature T (n̄ is the average photon number). Lastly, in the Fock basis the

thermal state is:

ρ̂th =
∑
n

P thn |n〉 〈n| , (1.35)

here, the thermal photon statistics P thn is given by (see Fig. 1.3):

P thn =
n̄n

(n̄+ 1)n+1
. (1.36)

n=2

0 5 10 15
n

0.05

0.10

0.15

0.20

0.25

0.30

Pn

n=4

0 5 10 15
n

0.05

0.10

0.15

0.20

Pn

Figure 1.3: We illustrate the thermal photon statistics P thn as a function of the
photon number n. In the left (right) panel, we consider n̄ = 2(n̄ = 4). Of course,
for the vacuum state n̄ → 0 the thermal state coincides with the left panel of

Fig. 1.2.

1.2.4 Squeezed states

As coherent states in the previous section, squeezed states are also minimum un-

certainty states, i.e., (∆x)2
sq(∆p)

2
sq = ~2/4. However, one of its quadratures can

be squeezed to a value less than the coherent case, at the expense of the other

quadrature to increase. In the coherent scenario, as both quadratures are equal, it

is natural to represent this state in the complex plane {〈x〉α = Re[α], 〈y〉α = Im[α]}
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as a circle displaced by α. In contrast to that case, the squeezed state is the vacuum

state, which is first squeezed into an ellipse, tilted by an angle φ, and then displaced

by α (see Fig. 1.4), where the angle φ corresponds to rotation angle for the new

pair of orthogonal axis {〈x̂r〉, 〈ŷr〉}

x̂r =

√
~

2mω
(â†eiφ + âe−iφ), (1.37)

ŷr = i

√
m~ω

2
(â†eiφ − âe−iφ), (1.38)

Figure 1.4: The figure shows the coherent state (black circle) of complex am-
plitude α, and the squeezed state (blue ellipse) in a rotated orthogonal axis

{〈x̂r〉, 〈ŷr〉}.

Let us define the squeeze operator as following:

Ŝ(ξ) = exp

[
1

2
(ξ∗â2 − ξâ†2)

]
, (1.39)

where ξ = reiθ is an arbitrary complex number called the squeezed parameter. The

unitary operator (Ŝ†(ξ) = Ŝ−1(ξ) = Ŝ(−ξ)) give us the following transformation:

Ŝ†(ξ)âŜ(ξ) = â cosh r − â†eiθ sinh r, (1.40)

therefore, it is straightforward to obtain the squeezed coherent state |α, ξ〉 as:

|α, ξ〉 = D̂(α)Ŝ(ξ) |0〉 , (1.41)
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and,

|ξ〉 = Ŝ(ξ) |0〉 , (1.42)

corresponding to the squeezed vacuum state. The representation of squeezed vac-

uum states in the basis of number states is (only even number states are expanded):

|ξ〉 =
1√

cosh r

∞∑
m=0

(−1)m
√

(2m)!

2mm!
eimθ tanhm r |2m〉 . (1.43)

Hence, the probability of detecting odd states is zero. On the other hand, the

probability distribution for even photons in the field is given by (see Fig. 1.5):

Peven=2m =
(2m)!

22m(m!)2

tanh2m r

cosh r
, (1.44)

0 1 2 3 4 5 6
n

0.2

0.4

0.6

0.8

Peven

Figure 1.5: Probability of detecting even photons in the field Peven=2m for a
squeezed vacuum state, r = 0.5.

and the photon distribution for a squeezed coherent state is (see Fig. 1.6):

Pn = | 〈n|α, ξ〉|2, (1.45)

where

〈n|α, ξ〉 =
tanh rn/2r√
2nn! cosh r

Hn

(
α√

2 sinh r cosh r

)
e−

1
2
|α|2+ 1

2
α2 tanh r (1.46)

Hn being the nth order Hermite polynomial.
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0 5 10 15 20
n

0.05

0.10

0.15

Pn

Figure 1.6: Photon distribution for a squeezed coherent state, r = 0.5, α = 5.

1.2.5 Representation in phase space

In classical physics, the state of a particle (or electromagnetic field) with position

(q) and momentum (p) is characterized by a phase space distribution w(q, p), which

quantify the probability of finding simultaneously a set of values {q, p} at some time

t. On the other hand, in quantum mechanics (due to the Uncertainty principle) it is

not allowed to find simultaneously canonical conjugate variables. Additionally, the

phase space distribution can be negative for some regions. Therefore, we shall refer

to the quantum analogue W(q, p) as a quasiprobability distribution. A derivation

of W(q, p) is given in Ref. [Leonhardt-Book] as following. Let us first consider,

the reduced distributions
∫ +∞
−∞ W(q, p)dp and

∫ +∞
−∞ W(q, p)dq. These must yield the

position or the momentum distribution, respectively —where, we have not made any

assumption regarding simultaneous set of measurements on {q, p}. Furthermore,

after performing an arbitrary rotation θ in q-p space, the probability of measuring

the q-position is:

Pr(q, θ) ≡ 〈q| Û(θ)ρ̂(t)Û †(θ) |q〉 , (1.47)

=

∫ +∞

−∞
W(q cos θ − p sin θ, q sin θ + p cos θ)dp. (1.48)
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Thereafter, we introduce the Fourier-transformed distribution or characteristic func-

tion W̃(u, v), and the Fourier-transformed position probability distribution P̃r(ξ, θ):

W̃(u, v) ≡
∫ +∞

−∞

∫ +∞

−∞
W(q, p)e−iuq−ivpdqdp, (1.49)

P̃r(ξ, θ) =

∫ +∞

−∞
Pr(q, θ)e−iξqdq. (1.50)

It is straightforward to show that the Fourier-transformed position probability dis-

tribution is the characteristic function in polar coordinates:

P̃r(ξ, θ) = W̃(ξ cos θ, ξ sin θ). (1.51)

Moreover, the quantum contribution is taking into account when we substitute the

probability as a projection measurement of Eq. 1.47 into Eq. 1.50, where we obtain:

P̃r(ξ, θ) = Tr[ρ̂Û †(θ)e−iξq̂Û(θ)] (1.52)

the above expression is the so-called Weyl operator, and it reads as : Û †(θ)e−iξq̂Û(θ) =

e−iq̂ξ cos θ−ip̂ξ sin θ

W̃(u, v) = Tr[ρ̂e−iq̂ξ cos θ−ip̂ξ sin θ]. (1.53)

Lastly, computing the trace in coordinate representation, i.e.,
∫ +∞
−∞ 〈q| · · · |q〉 dq, and

the Baker-Hausdorff formula we finally get (q = x− v/2):

W̃(u, v) =

∫ +∞

−∞
e−iux〈x− v

2
|ρ̂|x+

v

2
〉dx, (1.54)

W(q, p) =
1

2π

∫ +∞

−∞
eipx〈q − x

2
|ρ̂| q +

x

2
〉dx. (1.55)

Where, W(q, p) is the Wigner function a quantum mechanical quasiprobability dis-

tribution which is real for hermitian operators.

Others commonly used phase space description in quantum optics are the Q− and

P−representation. The first, is a description of the density matrix through its

diagonal elements in a coherent basis, meanwhile the P distribution represents the

density operator as an ensemble of coherent states.
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The definition of the normalized (
∫
d2αQ(α, α∗) = 1) Q distribution function is:

Q(α, α∗) ≡ 1

π
〈α| ρ̂ |α〉 . (1.56)

From the above Eq. 1.56 we can construct the density matrix, once the Q function

is known. Let us commence by

Q(α, α∗) =
e−|α|

2

π

∑
n,m

〈n| ρ̂ |m〉αmα∗n√
n!m!

≡
∑
n,m

Qn,mα
mα∗n. (1.57)

expanding the exponential and comparing equal powers in α and α∗, we get:

∑
r

Qn−r,m−r
r!

π
√
n!m! = 〈n| ρ̂ |m〉 . (1.58)

In general, throughout this thesis we will compute only the Wigner function. In

Fig. 1.7 we illustrate a gallery of the Q- and Wigner phase space representation

for the vacuum, Fock, coherent, thermal, squeezed, and Schrödinger cat states.

1.3 Quantum Entanglement

Non-relativistic quantum theory was firmly set in the 1920’s establishing —among

other things— the fundamental limits on the amount of information that one can

extract from a system with a single set of measurements. Within this mathematical

framework, QM has been proven to be extremely successful experimentally speak-

ing. In other words, it describes accurately the microscopic non-classical world.

However, even nowadays the interpretation of QM seems to be an open question

among the physics community [Schlosshauer2013]. Certainly, a pivotal point in

the interpretation of quantum mechanics goes back to 1935, where in their sem-

inal paper Einstein, Podolsky, and Rosen (EPR) [EPR1935] and E. Schrödinger

[Schroedinger1935] claimed that there must exist some elements of reality that,

within the mathematical background of quantum mechanics together with the “re-

ality criterion” cannot be described by quantum theory.

At the heart of those papers lies the quantum entity called verschränkung or

entanglement, both names given by Schrödinger. Entanglement is understood as

correlations purely of quantum nature between quantum states of the system, e.g.,
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Figure 1.7: From top to bottom, we show the Wigner and Q phase space dis-
tribution for the vacuum, Fock, coherent, thermal, squeezed, and Schrödinger cat

states.
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position, momentum, polarization, atomic energy levels, etc. Basically, quantum

entanglement emerges from the intrinsic non-locality of quantum theory, a feature

that can be summarize in the mathematical Hilbert space structure of QM together

with the Copenhagen interpretation (an exhaustive review of quantum entangle-

ment can be found in Ref. [Horodecki2009]).

Surprisingly, in quantum information science the quantum entanglement far from

being a theoretical curiosity plays a crucial role experimentally, for instance, in

quantum algorithms and processing, as well as in quantum teleportation, quantum

cryptography, etc. In fact, the bare implementation of quantum entangled states

might lead towards quantum tasks that would seem impossible or at least difficult

to perform in the classical domain.

1.3.1 Quantum entanglement for pure states

Let us consider two different quantum systems labeled A and B, we say that :

|ψ〉AB ∈ HA ⊗HB is a product state, if there is |φa〉 ∈ HA, and |φb〉 ∈ HB, such

that |ψ〉AB = |φaφb〉 = |φa〉 ⊗ |φb〉. Otherwise, we say that |ψ〉AB is an entangled

state.

A bipartite vector or pure state can be represented in a joint tensor Hilbert space

HAB = HA ⊗HB as following:

|ψ〉AB =
∑
i,j

ci,j |i〉 ⊗ |j〉 =
∑
i,j

ci,j |i, j〉 (1.59)

where, the coefficients cij corresponds to a specific representation in the chosen basis

{|i〉 ∈ HA, |j〉 ∈ HB}. As an example, it is obvious (in the computational basis)

that the states |01〉 and |10〉 are product states. However, the so-called Bell states

defined by:

∣∣φ±〉 ≡ 1√
2

(|00〉 ± |11〉),∣∣ψ±〉 ≡ 1√
2

(|01〉 ± |10〉) (1.60)

are entangled states, i.e., they cannot be written as in Eq. 1.59.

As said, the most remarkable feature of the entangled states is that they carry

quantum correlations (of course, correlations also occur in classical physics). For
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instance, a measuring of an observable of an entangled state in the subsystem A will

instantaneously affect the state in the subsystem B regardless the distance between

parties. A result no longer valid for product states, in other words, the tempo-

ral operator evolution for product states acts independently on each subsystem as

Û(t) = ÛA(t)⊗ ÛB(t), where the operator Û(t) is called local operator (LO).

1.3.1.1 Schmidt decomposition

The Schmidt decomposition allows us to know if a pure quantum system is entangled

or not. In addition, this decomposition establishes a close relationship between the

mixedness of a quantum system and its separability.

Let us commence considering the general bipartite quantum state as in Eq. 1.59:

|ψ〉AB =
∑
i,j

ci,j |i, j〉 , (1.61)

where, the coefficients ci,j are elements of C =
∑dA

i=1

∑dB
j=1 ci,j |i〉 〈j|, a dA × dB

dimensional matrix.

Using the Singular Value Decomposition theorem, i.e., taking unitary matrices U

and V with dimensions dA × dA and dB × dB, respectively, we can always write

the matrix C in a diagonal form as C = UDV , with D being a diagonal matrix

of dA × dB dimension with real and positives elements in its diagonal. Hence, the

matrix elements of C can be written as:

ci,j =

min[dA,dB ]∑
k=1

ui,kdk,kvk,j , (1.62)

replacing Eq. 1.62 into Eq. 1.61, we easily get

|ψ〉AB =

min[dA,dB ]∑
k=1

dk,k |ak, bk〉 , (1.63)

where |ak〉 =
∑dA

i=1 ui,k |i〉, and |bk〉 =
∑dB

j=1 vk,j |j〉. The corresponding density

matrix is ρ̂AB =
∑

i,k dk,kdi,i |ai, bi〉 〈ak, bk|. It is straightforward to calculate the
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reduced density matrices,

ρ̂A =
∑
k

d2
kk |ak〉 〈ak| ,

ρ̂B =
∑
k

d2
kk |bk〉 〈bk| (1.64)

where, 0 ≤ d2
k,k ≤ 1 and

∑
k d

2
k,k = 1. As a pure state can be defined as ρ̂ = ρ̂2,

we can notice that in the case of a product state, there is only one Schmidt term

different from zero, and equal to one. Conversely, if we have a state with only one

Schmidt coefficient, it must be a product state.

Finally, the bipartite quantum state |ψ〉AB is a product state if and only if the

corresponding reduced density matrices correspond to pure states. This implies that

if we have an entangled state, the corresponding reduced density operators must

correspond to a mixed state (more than one Schmidt coefficient different from zero).

In other words, the quantum entanglement is directly related to the mixedness of

the reduced state.

1.3.1.2 Entropy of entanglement

Given a state |ψ〉, we define the entropy of entanglement E(ψ) as the von Neumann

entropy of the reduced density operator:

E(ψ) = S(ρ̂B) = S(ρ̂A) = −
d∑

k=1

d2
klog2d

2
k. (1.65)

In the above equation, we have used that S(ρ̂) = −Tr[ρ̂log2ρ̂], together with Eq.1.64.

As seen, the more mixed the reduced density operator is, the more entangled the

original state is.

Moreover, the entropy of entanglement cannot increase on the average by local

operations. If pk is the probability of finding |ψk〉 after performing independent

measurements in A and B the von Neumann entropy for each subsystem |ψk〉 is

related with the von Neumann entropy of the whole system as:

E(ψ) ≥
∑
k

pkE(ψk). (1.66)
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The above inequality does not imply that none of the E(ψk) can be larger than

E(ψ). In fact, this is the key ingredient for the distillation of quantum entangled

states.

1.3.2 Quantum entanglement for mixed states

We shall denote the set of operators self-adjoint by A(H), and the set of positive

operators as P (H), with P (H) ⊂ A(H). Additionally, we will denote a linear map

M(H,H′) as ε : A(H)→ A(H′).

As for pure states, we say that a density matrix ρ̂ is a separable state if and only

if there are Real numbers pk ≥ 0, and vector states {|ak〉}({|bk〉}) ∈ HA(HB), such

that:

ρ̂ =
∑
k

pk |ak, bk〉 〈ak, bk| =
∑
k

pkρ̂
A
k ⊗ ρ̂Bk . (1.67)

As density operators might be written in infinite ways, an attempt to achieve Eq.

1.67 seems to be impossible. To overcome this bottleneck, we can introduce an

Entanglement Witnesses (EW ). This corresponds to an observable that detects the

presence of an entangled state. It is defined as a functional Ŵ ∈ A(HA ⊗ HB),

such as: If ρ̂ is separable, then Tr{Ŵ ρ̂} ≥ 0,∀EW . On the other hand, if ρ̂0 is

entangled, then there is an entanglement witnesses W , such that

Tr{Wρ̂0} < 0 (1.68)

Although this is a powerful tool, in principle, we do not know how to construct

all the possibles entanglement witnesses. Thus, the efforts to construct all W are

comparable to checking all the decompositions of ρ̂.

1.3.2.1 Positive maps

All physical actions corresponds to positive maps, because they transform density

operators into density operators, being always positive.

A linear map ε ∈M(H,H′) is a positive map (PM) if for all ρ̂ ≥ 0 ∈ A(H), ε(ρ̂) ≥ 0.

For instance, the transposition is a PM .

A more general extension reads as follows. Consider a linear map ε ∈ M(H,H′)

and another Hilbert space H′′, we define the extension of ε as the linear map ε⊗I ∈
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M(H ⊗H
′′
,H

′ ⊗H
′′
):

(ε⊗ I)

(∑
k

Ak ⊗Bk

)
=
∑
k

ε(Ak)⊗Bk (1.69)

where Ak ∈ A(H) and Bk ∈ A(H
′′
). In addition, we say that, a linear map is a

completely positive map (CPM) (all CPM corresponds to a physical action), if

all the extensions are PM . For entangled states this is crucial, because we must

ensure that changes made on the system will preserve the positive character of each

subsystem.

Not all PM are CPM , for example the partial transpose. Such maps are particu-

larly useful for detecting entanglement as we will exemplify below. Let us consider

the Bell state ρ̂ = |Φ+〉 〈Φ+| (an entangled state)

ρ̂ =
1

2
(|00〉 〈00|+ |00〉 〈11|+ |11〉 〈00|+ |11〉 〈11|) (1.70)

the transposition only of the system A give us:

ρ̂TA =
1

2
(|00〉 〈00|+ |10〉 〈01|+ |01〉 〈10|+ |11〉 〈11|) (1.71)

where, the state ρ̂TA has negative eigenvalues. The Peres-Horodecki partial trans-

position criterion is based on the above idea. It reads as following : a density matrix

ρ̂ ∈ A(C2 ⊗ CN ) with N ≤ 3 is separable. If and only if ρ̂T1,2 ≥ 0 (T1,2 stands for

the partial transpose for the first or second subsystem).

In this thesis, we will consider the negativity as the main entanglement measures,

as we will eventually also compute the same entanglement for an open system, and

negativity is a measure also valid for that case. This quantity is based on the Peres-

Horodecki criterion, as ρ̂T1,2 will have negative eigenvalues for entangled states, we

compute the degree of negativity as follows [Horodecki2009, Vidal2002]:

N(t) =
∑
i

(|λi| − λi), (1.72)

where the λi are the eigenvalues of the partially transposed bipartite system at fixed

time t.



Chapter 2

Entanglement Stabilization in a

Non-Linear Qubit-Oscillator

System

In this chapter we will study a quartic (undriven) non-linear quantum mechanical

oscillator coupled to a spin qubit. To elaborate upon our results, we will present a

summary on the conditioned displacement Hamiltonian, i.e., when the position of

the oscillator is monitored/conditioned by each spin qubit component.

Firstly, in order to produce an experimentally operational regime of the qubit-oscillator

coupling, we will introduce several feasible architectures on hybrid qubit-oscillator

(linear) systems under this type of interaction. Thereafter, we will briefly present

some typical features on quartic non-linear classical oscillators otherwise known as

the Duffing equation. We will also highlight both important features of its quantum

counterpart and possible feasible implementations. Subsequently, we will investigate

the main results of this study, which is the entanglement dynamics between a qubit

coupled to a quartic non-linear mechanical oscillator. Lastly, we explore the entan-

glement witnessing of the non-linear system, and how the Bell’s inequality might

be violated under certain restrictions, resulting in a full benchmark of the hybrid

quantum entanglement achieved.

The next section regarding two-level systems coupled to mechanics in solid-state

physics is based on the academic paper “Hybrid mechanical systems” [Treutlein2015]

where the reader can find a more detailed analysis.

23
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2.1 Hybrid Linear Quantum-Oscillator Systems

Over the last few decades, the interaction between micro and nano-mechanical res-

onators in the quantum regime and quantum two-level systems have shown remark-

able milestones. For example, a macroscopic mechanical oscillator can be driven

into a superposition of spatially separated states, which is a result interesting in

itself. Furthermore, qubit-oscillator systems have been proven to be of paramount

importance in other applications, such as fast, ultrasensitive force and displace-

ment detectors [Blencowe2000], electrometers [Cleland1998, Erbe2001], and radio

frequency signal processors [Wang2000]. In addition, the bare motion of the me-

chanical oscillator can be used as a sensitive probe to extract information regarding

static and dynamical properties of the microscopic quantum system. As we will

study in Chapter 4, quantum mechanical oscillators can be used as suitable candi-

dates for light-matter transducers.

In general, qubit-oscillator systems are quite topical in the quantum information

field, and have been studied in different operational regimes under several types of

interactions. For the purpose of this study we will just focus on a particular type

of interaction, namely conditioned displacement Hamiltonian. Here, the interaction

is given by σ̂z ⊗ x̂, where σ̂z is the Pauli-z operator, and x̂ is the deviation of the

oscillator from its equilibrium position. Hence, the relevant Hamiltonian in the

Schrödinger picture reads as:

Ĥ = Ĥq +
1

2m
p̂2 +

1

2
mω2

mx̂
2 − ~λσ̂zx̂ (2.1)

in the above equation (~ is the Planck constant), Ĥq is the qubit Hamiltonian. The

single-mode mechanical oscillator is characterized by its position x̂, momentum p̂,

mass m, and angular frequency ωm; λ is the qubit-mechanics coupling strength.

Using the expressions in 1.19, we can easily rewrite the Hamiltonian as:

Ĥ = Ĥq + ~ωmb̂†b̂− ~λσ̂zx̂. (2.2)

Eq. 2.2 can be implemented under several schemes (see Fig. 2.1 for a list of solid-state

qubits coupled to mechanical resonators). In particular, the linear qubit-oscillator

interaction in solid-state systems can be justified due to the strong dependence

on the local electrostatic and magnetic field with the qubit. Hence, the gap energy

(Eeg) between the excited (e) and the ground (g) state of the qubit can be expanded
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in Taylor series as : Eeg(x̂) = E0
eg + ∂xEegx̂ + 1/2 × ∂2

xEegx̂
2 + . . ., being x̂ =

xzpf × (b̂† + b̂), as the zero-point fluctuation xzpf ≈ 10−13m is much smaller than

other relevant dimensions in the system, the linear approximation is enough to

validate the Hamiltonian in Eq. 2.2.

Figure 2.1: Four architectures to couple a hybrid qubit-oscillator system via
conditioned displacement Hamiltonian. a) A micromechanical resonator capaci-
tively coupled to a quantized charge, b) a qubit encoded in circulating currents
in a superconducting loop interacts with an arm of the loop, c) an electronic spin
coupled to a quantized motion of a magnetized resonator tip, and d) a deformation
potential coupled to quantum dots (a qubit embedded in the material resonator
bar). As demonstrated later, the last two schemes have been found to be appro-
priate candidates to include non-linearities. This figure was taken from the

paper review in Ref. [Treutlein2015].

Now, let us briefly explore the physical schemes shown in Fig. 2.1 to give an order

of magnitude of the qubit-oscillator coupling parameter λ.

Starting with the micromechanical resonator capacitively coupled to a quantized

charge shown in Fig. 2.1-a, for instance, it could be a Cooper-pair box or an electron

on a quantum dot. In particular, Cooper boxes have attracted much attention since

they can mimic a controllable two-level system [Makhlin2001, Echternach2001], be-

ing a perfect qubit candidate. Essentially, Cooper boxes are composed of a small su-

perconducting island weakly coupled to a superconducting reservoir [Bouchiat1998,

Makhlin2001], characterized by Coulomb charging energy, and the strength of the

Cooper-pair tunneling between the island and the reservoir.

When the Cooper box interacts with a cantilever (mechanical oscillator) it causes

displacement in the cantilever, whose sign depends on which of the two charge

states the Cooper box is in. As it is possible to prepare the Cooper box in a

superposition of charge states, it leads to an entangled state between the Cooper

box and the oscillator, being in a superposition of spatially separated states. The

macroscopicity of this superposition depends on how strong the coupling strength
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is. The Hamiltonian corresponds to:

Ĥ = 4ECδnσ̂z −
1

2
EJ σ̂x + ~ωmb̂†b̂+ λcbσ̂z(b̂+ b̂†), (2.3)

where δn = ng− (n+1/2) with ng = −(CcgV
c
g +Cmg V

m
g )/2e the dimensionless, total

gate charge. The control gate voltage V c
g and cantilever gate electrode voltage V m

g

ranges are restricted such that −1/2 ≤ δn ≤ 1/2 for some chosen n, so that only

Cooper charge states |n〉 ≡ |−〉 ≡
(

1
0

)
and |n+ 1〉 ≡ |+〉 ≡

(
0
1

)
play a role. Thus it

is natural to use spin notation where σ̂x and σ̂z are the usual Pauli matrices. The

coupling constant between the box and cantilever electrode is λcb = −4ECn
m
g

∆xzpf
d ,

where nmg = −Cmg V m
g /2e, ∆xzpf is the zero-point fluctuation displacement uncer-

tainty of the cantilever, and d� ∆xzpf is the cantilever electrode-island gap. Only

the in-plane fundamental flexural mode of the cantilever, with frequency ωm and

operators b̂ and b̂†, is taken into account. All other modes have a much weaker

coupling to the box and will be neglected. We assume that the Josephson junction

capacitance CJ � Ccg and Cmg , so that the charging energy of the box EC ≈ e2/2CJ .

Some of the values used in Ref. [Armour2002] are EC = 150µeV, nmg ≈ −63V m
g ,

∆xzpf ≈ 1.4× 10−13m, d = 0.1µm. λcb/ωm ≈ 0.14− 0.41, where ωm = 50 MHz.

In addition, a qubit system can alternatively be encoded in clockwise and anti-

clockwise circulating currents in a superconducting loop as shown in Fig. 2.1-b.

The coupling for this scheme is ~λc ≈ B0IqlxZPF. Some typical values are B0 ≤
10mT for the perpendicular magnetic field to the bending motion, Iq ≈ 100 nA

for the circulating current, and l ≈ 5µm for the length of the resonator. Hence,

λc/2π ≈ 0.1− 1MHz.

Qubit-oscillator schemes can also be prepared in systems where an electronic spin

qubit is coupled to a quantized motion of a magnetized resonator tip as shown in

Fig. 2.1-c. The spin qubit can be associated with a nitrogen-vacancy (NV) impu-

rity in diamond and the nano-mechanical resonator to a cantilever of fundamental

frequency bending mode ωr and dimensions (l, w, t) being its length, width, and

thickness, respectively. NV centers in diamond are essentially a lattice defect con-

sisting of a nitrogen atom adjacent to a missing carbon, resulting in a defect that

might occur naturally or with ion implantation. The long spin coherence time

(≈ 20ms), scalability, and precision control (initialized - control - readout) make

a perfect candidate for several quantum applications. As a result of the high sen-

sitivity of the spin qubit to the magnetic tip motion, the coherent spin-motion
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exchange excitations can lead both to ground state cooling, as well as macroscopic

quantum superposition states of the oscillator [Rabl2009], and also to quantum spin

transducer [Rabl2010]

As the magnetic tip produces a field ≈ Gmẑ = Gmz0(b̂+ b̂†) (b̂ is the boson annihi-

lation operator for the oscillator), the Hamiltonian reads as:

Ĥ = ĤNV + ~ωr b̂†b̂+ ~λmσ̂z(b̂+ b̂†), (2.4)

where ĤNV =
∑

i=±1−~∆i |i〉 〈i|+ ~Ωi/2(|0〉 〈i|+ |i〉 〈0|) is the spin qubit Hamilto-

nian, being ∆± and Ω± the detunings and the Rabi frequencies of the two microwave

transitions [Rabl2009].

The coupling strength λm = gsµBGmz0, where gs ≈ 2, µB is the Bohr magneton,

Gm the magnetic field gradient and z0 is the zero-point fluctuation. As an example,

we will refer to Ref. [Rabl2009], where the authors consider a Si-cantilever of

dimensions (l, w, t) = (3, 0.05, 0.05)µm with a fundamental frequency of ωr ≈ 7

MHz and a z0 ≈ 5 × 10−13m. A magnetic tip of size ≈ 100 nm and a magnetic

gradient of Gm ≈ 7.8 × 106 T/m at a distance h ≈ 25 nm away from the tip and

results in a coupling strength λm/2π ≈ 115 kHz.

In Ref. [Kolkowitz2012] the NV centers are implanted ∼ 5 nm below the surface

of a bulk diamond sample. The spin sublevels |ms = 0〉 and |ms = ±1〉 of the

electronic ground state exhibit a zero-field splitting of ∼ 2.87GHz. In the presence

of a static magnetic field, the degeneracy between |+1〉 and |−1〉 is lifted, allowing

us to selectively address the |0〉 → |1〉 transition with microwave radiation.

Finally, in Fig. 2.1-d the qubit (for instance, quantum dots or defect centers) can

be coupled by changing the local lattice configuration of the host material. This

deformation is illustrated in where flexural vibrations of the resonator induce a local

stress σ ∼ z0xzpf/l
2, where l is the resonator length and z0 is the the distance of

the defect from the middle of the beam. The associated level shift is then:

~λl ≈ (De −Dg)z0xzpf/l
2 (2.5)

where De and Dg are deformation for the ground and excited electronic states. For

quantum dots a coupling strength of λl ≈ 1− 10MHz can be achieved.
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2.2 Non-linear Quartic Classical Oscillator

Let us commence introducing some basic notions of classical non-linear oscilla-

tors. For our purpose, it will be enough to consider the so-called Duffing oscillator

[Duffing1918]. In general, the Duffing equation describes an oscillator with a lossy

non-linear oscillator under an external periodical driving force. The equation of

motion reads as follows (where we have scaled the below expression by its mass m):

d2

d2t
x(t) + c1

d

dt
x(t) + c2x(t) + c3x(t)3 = F0 cosωt (2.6)

where, the given constants c1, c2, c3 are the strength of the damping, size of stiffness,

and amount of non-linearity in the restoring force, respectively. Predominantly,

c2 = ω2
0 stands for the natural angular frequency of the oscillator, and F0 controls

the amplitude of the periodic driving force; ω is the angular frequency of the driving

force. In the top panel of Fig. 2.2 we have plotted the force exerted on the mass

particle in Eq. 2.6 (in absence of damping, the losses has been included by hand

being proportional to the velocity of the particle) when c3 = ±1/1000 (for plotting

purposes we consider c2 = 1). In the bottom panel of Fig. 2.6 we have illustrated

its corresponding potential energy.

When all {ci} 6= 0 the Eq. 2.6 does not exhibit an analytical solution. However, a

damped driven harmonical oscillator can be found quite often in physical systems.

For instance, it represents a simple LCR circuit driven with an external voltage.

The explicit solution for this case (c3 = 0) reads as:

x(t) =
e
− 1

2
t
(√

c21−4c2+c1
)

2
√
c2

1 − 4c2

(
c2

1ω
2 + (c2 − ω2)2

)(
√
c2

1 − 4c2

(
et
√
c21−4c2 + 1

)
(F0(ω2 − c2)

+ x0(c2
1ω

2 + (c2 − ω2)2)) + c1

(
et
√
c21−4c2 − 1

)
(x0

(
c2

1ω
2 +

(
c2 − ω2

)2)
− F0

(
c2 + ω2

)
)

+ 2F0

√
c2

1 − 4c2e
1
2
t
(√

c21−4c2+c1
) (
c1ω sin(ωt) +

(
c2 − ω2

)
cos(ωt)

)
).

(2.7)

where we have considered x(t)|t=0 = x0 and dx(t)/dt|t=0 = 0. Another interesting

case corresponds to an undamped and unforced particle in an anharmonic potential,

in other words, F0 = c1 = 0. Here, we can easily get a Hamiltonian system from
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Figure 2.2: We illustrate the deviation both from the Hooke’s law (top), as well
as the potential energy stored in a harmonic oscillator (bottom). For plotting

purposes we set c2 = 1, and c3 = 1/1000.
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Eq. 2.6 as following:

1

2

(
d

dt
x(t)

)2

+
1

2
c2x(t)2 +

1

4
c3x(t)4 = H = constant. (2.8)

To link this with the quantized case, we will only consider the scenario when c2,3 > 0.

In this case, the solution is bounded as:

|x(t)| ≤
√

2H/c2, |ẋ(t)| ≤
√

2H (2.9)

a full numerical solution it is shown in Fig. 2.3 for a centre shifted potential, i.e.,
d2

dt2
x(t) + c1

d
dtx(t) + c2x(t) + c3x(t)3 + x0 = F0 cos(ωt).

2.3 Non-linear Qubit-Oscillator System

As shown in previous sections, two-level quantum systems and quantum harmonic

oscillators are the two most basic building blocks due to the remarkable experimen-

tal progresses in the accurate control of the interaction in qubit-oscillator systems,

including: trapped ions [Blatt2008], cavity-QED [Raimond2006], ultracold atomic

Bose-Einstein condensate [Treutlein2007, Hunger2010], quantum dots or Cooper-

pair boxes [Hennessy2007, Steele2009, Armour2002, Bose2006], optomechanical sys-

tems [Scala2013, Yin2013], superconducting qubits coupled to superconducting res-

onators [Chiorescu2004, Wallraff2004, Clarke2008], etc. Furthermore, they have

been investigated in different qubit-oscillator coupling regimes, including the re-

cently so-called ultrastrong regime, where the qubit-oscillator coupling strength is

comparable to the qubit and oscillator energy scales [Grimsmo2013, Ashhab2010,

Hausinger2010, Bourassa2009].

In general, the quantum oscillator is modeled harmonically, however this is typi-

cally an approximation of more complicated scenarios. In fact, quantum non-linear

oscillators (NLO) have been implemented in several settings, including optome-

chanical systems (where tunable non-linearities have been realized [Sankey2009]),

trapped ions (where the trapping potential can be modified to include non-linearities

[Home2011]), and atoms in optical lattices [Lewenstein2013]. Interestingly, it has

been shown that the inclusion of strong enough non-linearities in the oscillator

potential allows new possibilities to generate non-classical states [DiVincenzo2012,

Ong2011, Peano2006, Kolkiran2006, Joshi2011, Rips2013]. However, despite the
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promising experimental progresses in the control and fabrication of NLO, it is still

a challenge to achieve significant non-linearities (for a more detailed discussion

about the non-linear regimes and their possible experimental implementations see

Sec. 2.6). Remarkably, we will show here that also weak non-linearities suffice to

provide non-trivial and potentially useful features in the context of a qubit-NLO

setting.

In the following, we consider a quantum system composed of a qubit interacting with

a quartic (undriven) NLO through a conditional displacement Hamiltonian. In order

to contrast our results when the non-linearity is included in the potential, we first

solve the simplest case, i.e., a qubit interacting with a quantum harmonic oscillator.

In this case, the entanglement is generated periodically as a consequence of the

superposition principle. First, by including a weak non-linear perturbation in the

oscillator potential, we have obtained analytically the wave function in the rotating-

wave approximation — in a regime where both the qubit-NLO coupling as well as the

non-linearity strength are small compared to the oscillator frequency. In this case,

an explicit Kerr-like term in the evolution appears, generating quadrature squeezing

for short times. In particular, we will show that the entanglement generated in this

non-linear scenario is larger with respect to the linear case and, in addition, it

dynamically reaches a stabilization region. For very large times the oscillator shows

an intricate behavior exhibiting negative values in the Wigner distribution.

The second main result of this Chapter is obtained by taking into account a strong

qubit-NLO coupling, while still considering a weak non-linear regime. The novelty

with respect to previous works is the inclusion of the two- and four-phonon processes,

i.e. the full numerical dynamics of the system without any approximation. In this

case i) the entanglement stabilization region is achieved faster than in the weak

qubit-NLO coupling case, and ii) the entanglement reaches its maximum value.

Finally, we have solved the Markovian master equation, taking into account only

the damping of the oscillator, and even in this case the system dynamics remains

robust showing the main features just described for a considerable number of cycles.

In section 2.4 we present the system under consideration for the non-dissipative case.

In section 2.5 we solve the system in the linear case for the sake of comparison with

the results presented in section 2.6 where we consider the full non-linear dynamics.

We focus on two regimes: in subsection 2.6.1 we consider the weak qubit-NLO

coupling regime, in which an analytical approximation can be obtained for the

dynamics of the system wave-function; in subsection 2.6.2 we show the full numerical

solution for the strong coupling regime. Furthermore, we present the case when
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losses are present in the system and suggest possible experimental implementations.

Finally, we give some concluding remarks in section 2.8.

2.4 The Model

We consider a two-level system (qubit) coupled to a quartic non-linear oscillator,

as described by the Hamiltonian

Ĥ = Ĥq + Ĥo + Ĥq−o , (2.10)

where Ĥq (Ĥo) is the free qubit (NLO) Hamiltonian and Ĥq−o is their mutual

interaction. Each term above is defined as follows

Ĥq = ~ωqσ̂z, (2.11)

Ĥo =
1

2m
p̂2 +

1

2
mω2

o x̂
2 + δ̃x̂4, (2.12)

Ĥq−o = −~g̃σ̂zx̂, (2.13)

where ~ωq corresponds to the qubit separation energy between its ground (| ↓〉) and

excited (| ↑〉) states, σ̂z is the usual Pauli z—(pseudo)spin matrix (σ̂z| ↑〉 = | ↑〉, σ̂z| ↓
〉 = −| ↓〉), ωo is the frequency of the oscillator in absence of non-linearities, δ̃ is the

quartic non-linear strength, whereas x̂ and p̂ are the usual position and momentum

operators, respectively. In Eq. (2.13) the interaction strength is parametrized by g̃

(assumed to be positive throughout) and it is linear in the position operator x̂. This

type of interaction has been realized/proposed in various experimental settings —

including ion traps [Mintert2001], cavity-QED [Solano2003], and nanomechanical

resonators [Rabl2009] — and its action can be understood as a displacement of

the oscillator conditioned on the state of the qubit. As such, it has been exploited

for example as a tool for reconstructing the state of quantum oscillators in various

physical systems [Tufarelli2011, Tufarelli2012], or as a mediator to induce qubit-

qubit interactions [Mintert2001].

Let us notice that in order for the Hamiltonian (2.12) to be valid, in the following

we will consider a modest non-linear quartic perturbation. In particular, we require

that δ̃〈N̂〉 � ωo during the evolution (where 〈N̂〉 is the average phonon number for

the oscillator), thus ensuring that the single-frequency assumption for the oscillator

(ωo) remains valid.
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Using the expressions in Eq. 1.19, rescaling Eq. (2.10) by ~ωo and switching to the

interaction picture with respect to the qubit, the relevant Hamiltonian reads

Ĥint = â†â+ δ(â† + â)4 − kσ̂z(â† + â), (2.14)

where,

g = g̃

√
~

2mωo
, (2.15)

δ =
δ̃

~ωo

(
~

2mωo

)2

, (2.16)

k =
g

ωo
. (2.17)

In general, throughout this work we will consider the following initial state:

|ψ(0)〉 =
1√
2

(| ↑〉+ | ↓〉)⊗ |α〉 , (2.18)

where the oscillator coherent state is defined as |α〉 = exp
[
αâ† − α∗â

]
|0〉 = D̂(α) |0〉

(D̂(α) is the usual displacement operator).

2.5 Dynamics in Absence of Non-linearity

For the sake of comparison with the genuine features of an anharmonic oscillator,

we briefly summarize here the results for the case of a simple quantum harmonic

oscillator [δ = 0 in Eq. (2.14)]. In order to obtain the time evolution operator for

this case, we use a direct consequence of the similarity transformation which holds

the following

T̂ f
(
{X̂i}

)
T̂ † = f

(
{T̂ X̂iT̂

†}
)
, (2.19)

the above equation is satisfied for any function f , unitary operator T̂ , and arbitrary

set of operators {X̂i}. Hence we take in particular

T̂ = e−kσ̂z(â†−â), (2.20)

f
(
{X̂i}

)
= Û(t) = e−itĤint (2.21)
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here {X̂i} = {â, σ̂z}. Using the Baker-Campbell-Hausdorff (BCH) relation, it is

straightforward to show the following transformations

T̂ âT̂ † = â+ kσ̂z, (2.22)

T̂ σ̂zT̂
† = σ̂z. (2.23)

Using both the Similarity Transformation as well as the BCH relation, it is easy to

obtain the analytical expression for the time evolution operator

Û(t) = exp
[
ik2(t− sin(t))

]
exp

[
kσ̂z(ηâ

† − η∗â)
]

exp
[
−iâ†ât

]
(2.24)

where,

η = 1− exp [−it] . (2.25)

Therefore, the time evolution for the initial state (Eq. (2.18)) corresponds to

|ψ(t)〉 =
1√
2
| ↑〉 ⊗ D̂(kη)D̂(αe−it) |0〉+

1√
2
| ↓〉 ⊗ D̂(−kη)D̂(αe−it) |0〉 , (2.26)

taking into account that D̂(α1)D̂(α2) = exp [(α1α
∗
2 − α∗1α2)/2] D̂(α1 + α2), we can

finally obtain

|ψ(t)〉 =
1√
2

(eikαsin(t)| ↑〉 ⊗ |α↑〉+ e−ikαsin(t)| ↓〉 ⊗ |α↓〉) (2.27)

where

|α↑〉 =
∣∣αe−it + kη

〉
, (2.28)

|α↓〉 =
∣∣αe−it − kη〉 (2.29)

The above solution implies that the wave function is periodic and, in particular,

the initial separable state is recovered at times 2πn, n being an integer. On the

other hand, for 0 < t < 2π, the oscillator is entangled with the qubit — this

hybrid entanglement reaching its maximum at time t = π. In order to quantify

the entanglement we use the negativity (see Section 1.3.2). The time dependence

is shown in Fig. 2.4 for a fixed coherent state (α = 2) and different couplings

k. A similar dynamics has been reported in analogous optomechanical settings

(see e.g. Ref. [Bose1999a]). It is of relevance to notice at this stage that the
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entanglement generated so far is due only to the interlinked dynamics of the qubit

and the oscillator, as generated by the conditional displacement of Eq. ( 2.13). In

the next section we will add another type of entanglement source to the system

when a non-linearity is added.
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Figure 2.4: Time dependence of the Entanglement negativity for different values
of k in absence of non-linearities in the NLO potential. Starting from the separated
state given by Eq. (2.18) (α = 2) the system becomes entangled (0 < t < 2π),
reaching a maximum at t = π. Finally, at t = 2π the system return to its original
state, thus the negativity is zero. In this and all the figures, t is a scaled time,

corresponding to the actual time multiplied by ωo.

The periodicity of the system can be also appreciated from the reduced density

matrix for the qubit ρ̂q = Trosc(|ψ(t)〉 〈ψ(t)|):

ρ̂q =
1

2

[
| ↑〉 〈↑|+ e4k2(cos(t)−1)(| ↑〉 〈↓|+ | ↓〉 〈↑|) + | ↓〉 〈↓|

]
(2.30)

given that 〈σ̂z〉 = 0, we can easily plot in Fig. 2.5 the Bloch sphere top-view of the

Bloch vector of ρ̂q.

Another feature immediately evident from the solution in Eq. (2.27) is that the dy-

namics of each qubit eigenstate is linked to that of a coherent state during the evo-

lution (e.g., the eigenstate | ↑〉 is linked to
∣∣αe−it + kη

〉
). In order to better appreci-

ate this behavior, as well as the oscillator dynamics, we have calculated the Wigner

function of the reduced density operator for the oscillator ρ̂osc = Trq [|ψ(t)〉 〈ψ(t)|].
In Fig. 2.6 we plot the Wigner function of the reduced density operator for the

NLO associated with the Eq. (2.27). As we can see, if the initial state is |↓, α〉 the
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Time

Figure 2.5: Dynamics of the reduced density operator for the qubit state in the
Bloch Sphere (top-view) with k = 0.5, α = 2, δ = 0. We can see that in absence
of non-linearities the qubit dynamics remains periodically for the whole evolution.
Here, the leftmost (lowermost) point of the x−axis (y−axis) represents the state

|+〉 = 1√
2
(| ↑〉+ i| ↓〉).

oscillator’s Wigner function rotates in a larger circle with respect to the |↑, α〉 initial

state.
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Figure 2.6: The figure shows the Wigner function W (x, y) of the reduced density
operator for the NLO associated with the Eq. (2.27). The single peak of the initial
coherent states separates into two components, each associated with a different
qubit eigenstate. Specifically, the solid line arrow (dashed line arrow) indicates
the component associated with | ↓〉(| ↑〉). The Wigner function is defined as

W (x, y) = 1
π~
∫∞
−∞ 〈x+ x′ |ρ̂osc|x− x′〉 e−2iyx

′/~dx′.
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2.6 Non-linear Dynamics

We will now derive the central results of this work. In particular, in Sec. 2.6.1 we

study the evolution for the weak coupling regime ({k, δ} � 1), where an approx-

imated analytical expression for the wave-function can be obtained. In Sec. 2.6.2

we present the general results in the strong coupling regime (i.e., k ≈ 1, δ � 1),

considering as well the detrimental effects of noise.

2.6.1 Weak qubit-NLO coupling regime : Approximated analytical

solution for k � 1, δ � 1

We will refer to the weak coupling regime when the rescaled qubit-NLO coupling

strength is much lower than the qubit and oscillator free energies. In order to

investigate the perturbation in the NLO we rewrite the quartic term as follows

(â† + â)4 = Â4 + Â2 + Âns, (2.31)

where we have emphasized the phonon process contributions; namely, Âi=2,4,ns

correspond to the operators identifying two- and four-phonon transitions and the

number-state contribution (ns), respectively. Considering the commutation rule

[â, â†] = 1 one obtains

Â4 = â†4 + â4, (2.32)

Â2 = 6(â†2 + â2) + 4(â†2â†â+ â†ââ2), (2.33)

Âns = 6((â†â)2 + â†â), (2.34)

and the Hamiltonian in Eq. (2.14) reads as

Ĥ = (1 + 6δ)â†â+ 6δ(â†â)2 − kσ̂z(â† + â) + δ(Â2 + Â4).

In the equation above, the terms {Â2, Â4} are the two- and four-phonon transitions

respectively, and they can both be neglected by invoking a rotating wave approxi-

mation. By considering a frame rotating with the free oscillator Hamiltonian, one
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can recast Eq. (2.35) as

Ĥint = 6δâ†â+ 6δ(â†â)2 − kσ̂z

(
â†e+it + âe−it

)
+ δ

(
6e+2itâ†

2

+ 4e+2itâ†
2

â†â+ e+4itâ†
4

+H.c.
)
(2.35)

Among the terms proportional to the non-linearity strength δ, the oscillating ones

can be approximately neglected. Thus, transforming back to the Schrödinger pic-

ture, one has the following Hamiltonian:

ĤRWA ≈ (1 + 6δ)â†â+ 6δ(â†â)2 − kσ̂z(â† + â) (2.36)

Using the same techniques as before we obtain the following solution for the wave

function, where we have neglected the terms proportional to {kδ, k2δ, k3δ} (for sim-

plicity we have considered real amplitudes for the coherent state).

Let us consider the following approximation

T̂ Û(t)appT̂
† ≈ exp[−it(1 + 6δ)â†â− 6iδt(â†â)2], (2.37)

where we have neglected products proportional to {kδ, k2δ, k3δ} � 1. Taking into

account that

exp[−it(1 + 6δ)â†â]T̂ = exp[−kσ̂z(â†e−i(1+6δ)t − âei(1+6δ)t)]exp[−i(1 + 6δ)tâ†â].

(2.38)

Multiplying on the left by T̂ † and on the right by T̂ the Eq. (2.37), we can finally

obtain the time evolution operator

Ûapp = exp[−kσ̂z(â− â†)exp[−6δit(â†â)2]exp[−kσ̂z(â†e−i(1+6δ)t − âei(1+6δ)t)]

× exp[−i(1 + 6δ)tâ†â]. (2.39)
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Using the above, it is straightforward obtain the wave function for this case

|ψ(t)〉 =
ek(â†−â)

√
2

exp
[
−6itδ(â†â)2

]
exp

[
k

2
(α− α∗)

]
| ↑〉 ⊗

∣∣∣e−i(1+6δ)t(α− k)
〉

+
ek(â−â†)
√

2
exp

[
−6itδ(â†â)2

]
exp

[
k

2
(α∗ − α)

]
| ↓〉 ⊗

∣∣∣e−i(1+6δ)t(α+ k)
〉

(2.40)

In general we have taken a real amplitude for the coherent state (α = 2), hence the

phase appearing in Eq. (2.40) vanishes giving us the Eq. (2.41).

|ψ(t)〉 =
1√
2
D̂(+k)exp

[
−6itδ(â†â)2

]
| ↑〉 ⊗ |α̃↑〉

+
1√
2
D̂(−k)exp

[
−6itδ(â†â)2

]
| ↓〉 ⊗ |α̃↓〉 (2.41)

where,

|α̃↑〉 =
∣∣∣e−i(1+6δ)t(α− k)

〉
, (2.42)

|α̃↓〉 =
∣∣∣e−i(1+6δ)t(α+ k)

〉
. (2.43)

A comparison between the approximate analytical results in Eq. (2.41) versus a

numerical computation using the full original Hamiltonian in Eq. (2.14) is shown for

short times in Fig. 2.7-a, where we plot the negativity for k = 1/100 and δ = 1/1000

(for α = 2). As we can see, the analytical approximation agrees reasonably well

with the numerical results (the dotted line corresponds to the dynamics of the

system in absence of non-linearity). More importantly, the presence of a non-linear

Kerr-like term proportional to (â†â)2 represents a new source for entanglement

and non-classical effects, allowing to grasp the main features associated with the

full Hamiltonian. The first of these features is the lack of a periodic behavior for

short times which implies, in particular, that the entanglement does not decrease

to zero. In addition, the actual values of the negativity show a clear enhancement

of the entanglement with respect to linear case ( δ = 0). Remarkably, as shown

in Fig. 2.7-b, after few cycles the negativity reaches a plateau, implying a time-

stabilization of the entanglement at values higher than the maximum attained for

δ = 0. For longer time-scales (t � 120π), the expected collapses and revivals

appear only assuming both the rotating-wave approximation and small kδ. On the
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other hand, the full numerical solution of the evolution does not show any collapse

nor revival—in fact, the negativity never drops to zero. Due to the establishment

of a stabilization window, we can define the width of the time plateau (∆) as

the region in which the negativity does not show significant oscillations; e.g., in

Fig. 2.7-b a plateau is approximately achieved for 30π ≤ t ≤ 70π, being its width

∆ ≈ 40π. The dependence between ∆ and δ eludes analytical calculations, however

a straightforward numerical evaluation (under the constraints of {k, δ} � 1) shows

the dependence to be inversely proportional to the non-linearity strength—in fact,

for 10−4 < k < 10−2 and 10−4 < δ < 10−2, one can show that ∆ ≈ 0.1/δ.
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Figure 2.7: (a) negativity as function of time t for k = 1/100 and δ = 1/1000
(α = 2). We compare the entanglement using an analytical expression (solid line)
(Eq. (2.41)) and the numerical one (dashed line) using Eq. (2.35). The dotted
line is the evolution in absence of non-linearity. As we can see the inclusion of the
non-linear term increases the entanglement reaching a time-plateau or stabilization
zone. (b) We compare the analytical expression with the numerical solution for

the same set of parameters for larger times.

We plot in Fig. 2.8-a the Wigner function for the NLO. For short times, we see that

due to the weak coupling the two components of the Wigner function associated with
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Figure 2.8: (a) The above figure shows the Wigner function (W (x, y)) for the
oscillator state for t = 0, π/2, π, 3π/2, 2π. The state considered here is the one in
Eq. (2.41). As we can see, in the first cycle, due to the small values of k and δ both
components of the qubit remains superposed during all time, showing squeezing
in the quadratures {x, y}. (b) The below figure shows the state at t = 50π, as we
see the state becomes complex evidencing negatives values during the dynamics.

the qubit eigenstates are superposed (i.e. |α̃↑〉 ≈ |α̃↓〉). As anticipated, in contrast

with the linear case we can see that the presence of the additional Kerr-like term

gives rise to non-classical features. In particular Fig. 2.8-a shows the emergence of

quadrature squeezing, with squeezing axes that rotate clockwise in the xy-plane.

Defining two arbitrary canonical quadratures (φ is the angle of rotation measured

from the x-axis to xr-axis)

x̂r =
1

2

(
âe−iφ + â†eiφ

)
, (2.44)

ŷr =
1

2i

(
âe−iφ − â†eiφ

)
. (2.45)
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Figure 2.9: The main plot shows (∆x̂r∆ŷr/∆x̂0∆ŷ0) the normalized uncertainty
relation for the first cycle in the weak coupling regime. The sudden increasing in
time shows the short period in which the squeezing remains valid. The subplot
shows the individual normalized variance, the quadrature xr (yr) becomes linearly

increasing (decreasing).

we numerically find for each time t the angle φ that minimize the uncertainty of

∆ŷr (where ∆Ô = 〈Ô2〉−〈Ô〉2). The results are given in Fig. 2.9 and quantitatively

demonstrate the presence of squeezing for short times (the results are normalized

with respect to the coherent state uncertainty ∆x̂0 = ∆ŷ0 = 1/2).

Another interesting feature is that whereas for short times the Wigner function

remains positive, for longer times it assumes negative values. Interestingly, the

appearance of relevant negative regions corresponds to the stabilization zone of the

negativity — for example at t = 50π (see Fig. 2.8-b).

2.6.2 Strong qubit-NLO coupling regime : Numerical solution for

k ≈ 1, δ � 1.

In this section, we solve numerically the full dynamics involving the Hamiltonian in

Eq. 2.14 without restricting to the weak coupling regime. In order to do that, we

have expanded the oscillator state in the Fock basis, properly truncated to obtain

a sufficient numerical accuracy as it is shown in Fig. 2.10.

Regarding the generation of entanglement between the qubit and the NLO, the

effects of a strong coupling are that the two main features that we have individuated

in the previous section are further enhanced. First, the entanglement negativity

reaches higher values with respect to the absence of non-linearities. Second, the
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Figure 2.10: The figure shows |Na − Nb| (in logarithmic scale) as a function
of time, where Nx corresponds to the negativity truncated to a maximal Fock
basis given by x. For instance, N3 means that the oscillator’s field is expanded
as {|0〉 , |1〉 , |2〉 , |3〉}. In our calculations we have considered 50 as the maximum

Fock state expansion (N50).
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entanglement reaches the stabilization region faster then for the weak coupling

regime. As an example, we have plotted in Fig. 2.11 the negativity for k = 0.5, α =

2, and two values for δ = {1/100, 1/1000}. We can see that the negativity stabilizes

already for t ≈ 5π (δ = 1/100) close to the maximal reachable value of 1. This

stability is sustained quite well in a window of time from t = 5π to t = 10π, after

which it starts to oscillate. Remarkably, in this regime the collapse and revival

dynamics is entirely absent. The combination of a high amount of entanglement

and the suppression of negativity oscillations provides a long time window in which

the entanglement is maximal or near-maximal, in strong contrast to the linear case

where maximal negativity is achieved only at defined times (odd multiples of t = π).

Here timing selection is no longer a concern in order to achieve high negativity,

representing in turn a relevant practical advantage.

Furthermore, it is important to note in the subplot in Fig. 2.11, that we have

also considered the contribution of approximated Hamiltonian regarding to only

number-state contribution and up to two-phonon transitions in the dynamics (see

Eq. 2.31). As we can see in solid line, the full dynamics —i.e including up to four-

phonon transitions— provides an entanglement plateau in time domain better than

the other approximated cases.
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Figure 2.11: In the main plot we show the numerical results for the negativity for
k = 0.5, α = 2 and varying δ. In contrast with {k, δ} � 1, here we have achieved a
higher entanglement as well as a faster stabilization zone. In the subplot we com-
pare the entanglement generated for k = 0.5, α = 2, δ = 1/100 using approximated
Hamiltonian, the solid line is for a full Hamiltonian without approximation. The
dashed line consider only number states in the quartic potential, and finally the

dotted line consider up to four-phonon transitions in the quartic potential.
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In order to better understand the enhancement of the qubit-NLO entanglement

we have calculated the Wigner function of the oscillator state conditioned to the

two qubit eigenstates i.e., ρ̂(t)osc↑ = 〈↑| ρ̂(t)| ↑〉 (or ρ̂(t)osc↓ = 〈↓| ρ̂(t)| ↓〉). In

Fig. 2.12, we have plot W↑,↓(x, y) = 1
π~
∫∞
−∞

〈
x+ x′

∣∣∣ρ̂osc↑,↓ ∣∣∣x− x′〉 e−2iyx′/~dx′ at

t = 2π, 4π, 6π, 10π, 15π for each qubit component, together with their product. We

can see that the overlap between the two functions sensibly decades already after the

first cycle (t = 2π). In order to show this quantitatively we illustrates in Fig. 2.12-c

the overlap of the product W↑(x, y)W↓(x, y) together with its integration over all

xy−phase space

wp =

∫ +∞

−∞

∫ +∞

−∞
W↑(x

′, y′)W↓(x
′, y′)dx′dy′. (2.46)

In other words, this shows that the conditioned Wigner functions W↑,↓(x, y) corre-

spond to two almost orthogonal states which implies that maximally entanglement

can be established between the qubit and the oscillator. The quasi-orthogonality is

quantified using Eq. (2.46) and shown in Fig. 2.12-c.

As before, we also calculated numerically the reduced density matrix for the qubit.

In the presence of non-linear coupling, the qubit exhibits an open cycle whose

precession depends on the strength of the non-linearity. For δ � 1/1000 the reduced

qubit evolution tends to the quantum harmonic potential case, and therefore each

cycle is closed. On the other hand, as δ increases, the qubit reaches a stationary

point at times comparable to the entanglement stabilization region (see Fig. 2.13).

Finally, we considered the detrimental effects of noise in the dynamics of the NLO.

We modeled the system with the following master equation in Lindblad form at

zero temperature

˙̂ρ(t) = −i[Ĥs, ρ̂(t)] +
γ

2
(2âρ̂(t)â† − â†âρ̂(t)− ρ̂(t)â†â)

(2.47)

where γ is the oscillator damping rate. In Fig. 2.14 we show the main effects

of the losses. We can see that in the strong coupling regime the presence of the

environment degrades the qubit-NLO entanglement but the main features observed

in the previous sections are still present. In particular, both the enhancement of

entanglement with respect to the linear case and the entanglement stabilization are

robust for small losses.
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Figure 2.12: Here we provide a pictorial explanation for the entanglement en-
hancement for k = 0.5, α = 2, δ = 1/100 at different times t = 2π, 4π, 6π, 10π, 15π.
In Figs. (a) and (b), we plot the Wigner function for the oscillator state for each
spin component W↑,↓(x, y). In column (c), we show the product between W↑(x, y)
and W↓(x, y). The number wp in the corner corresponds to the integration of
the product over all the xy−phase space (Eq. 2.46). The small overlap between
W↑(x, y) and W↓(x, y) then shows that the states corresponding to the latter are
quasi-orthogonal, thus allowing for the establishment of maximal entanglement.
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Time

Figure 2.13: We illustrate the reduced density qubit operator in Bloch Sphere
(top-view) for two cycles 0 ≤ t ≤ 4π. The qubit shows a strong precession in the

dynamics.
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Figure 2.14: Negativity for the open quantum system for different values of the
dissipation ratio γ, and different values of δ. Here, k = 0.5, α = 2.
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We have already mentioned some of the primary experimental setups in the intro-

duction, let us now briefly examine some of those. The strong-coupling regime can

be achieved using a qubit encoded in an electron on a quantum dot or a Cooper pair

on a small superconducting island, coupled to an oscillator consisting of a vibrat-

ing gate electrode. In Ref. [Armour2002] the authors consider a micromechanical

resonator capacitively coupled to a Cooper pair box (CPB). Here, a substantial

coupling in the range of g = 5 − 50 MHz can be reached, and with the current

technology k ≈ 1 can be performed. Following with this regime, a qubit can also be

modeled in clockwise and anti clockwise circulating currents in a superconducting

loop. For instance, in Ref. [Rabl2009] the authors accomplish a strong coupling

between a single electronic spin qubit associated with a nitrogen-vacancy impurity

in diamond and the quantized motion of a magnetized nanomechanical resonator

tip. Here, the dimensionless coupling is approximately k ≈ 0.1 (For further details

related with the full set of parameters see Ref. [Rabl2009]). On the other hand, the

weak coupling regime can be realized in systems where a quantum dot is coupled

to a mechanical oscillator, where this resonator is modulated by changing the local

lattice of the host material [Kolkiran2006].

Another candidate setting for the implementation is given by trapped ions, where

the strong coupling between hyperfine internal states of an ion and its motional de-

gree of freedom has been shown in a variety of configurations [Blatt2008]. Moreover,

the ion internal state can also be coupled to a cantilever under realistic conditions,

for example, for a doubly clamped cantilever frequency of 19.7 MHz [LaHaye2004].

The coupling strength —which can be switched on and off— for a cadmium ion is

given by g ≈ 52.5 kHz [Nizamani2011], and therefore k ≈ 10−3.

Concerning possible implementations of non-linear quantum oscillators, various

experimental platforms can be envisaged. As said, trapped ions can host qubit-

oscillator systems. These platforms can also implement non-linear oscillators and

in fact, by using a tunable set of parameters, the authors of Ref. [Nizamani2011]

showed how to encompass both linear and non-linear potentials (anharmonic and

double-well)—in order to achieve the efficient separation and re-combination of

ions in surface ion-trap geometries using effective potentials. Furthermore, non-

linearities can be generated as a result of static and longitudinal compressive force

in suspended nanomechanical beams [Kolkiran2006] (see Fig. 2.15). For instance,

for values of the length (L), thickness (d), and width (w) of the nanomechanical

beam in the range of L ≈ 200− 400nm, d ≈ 5− 10nm, and w ≈ 10− 20nm a non-

linear strength of the order of δ ≈ 10−2 can be obtained. Finally, non-linearities can
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be achieved in a mechanical oscillator in the form of a nano-cantilever cooled to its

ground state. There, a ferromagnetic impurity in the cantilever tip (nano-magnets)

can induce non-linear potentials via high homogeneous external magnetic fields in

Helmholtz coil configuration [Joshi2011] (for an overview of quantum mechanical

systems see Ref. [Poot2011]). All the mentioned systems are promising candidates

in order to achieve the non-linearity we have considered in this work. In combination

with the qubit-oscillator coupling, these schemes points at the actual possibility of

implementing the qubit-NLO coupling, being the non-linearity the most challenging

task to achieve in an experiment.

Figure 2.15: A nanomechanical beam of length L, width w, and thickness d is
subject to a static longitudinal mechanical force F0 to generate non-linearities. An
external AC-driving transverse force F (t) might be applied to drive the oscillator.
This figure was taken from the original paper “Quantum Properties of

a Nanomechanical Oscillator” [Kolkiran2006]

2.7 Entanglement Witness

In this final section, we will show the violation of the Bell function for the strong

qubit-NLO regime (k ≈ 0.4 and δ ≤ 1/1000). The Bell function (B) can give us a

full benchmark of quantum entanglement.

Any local theory will be restricted to a Bell value between 0 ≤ B ≤ 2, meanwhile a

non-local theory (such as quantum mechanics) will take a number above that, i.e.,

2 < B < 2
√

2, where the upper value is known to be the Cirel’son’s bound. The

Bell function is defined as:

B = max|E(ζ, β) + E(ζ ′, β) + E(ζ, β′)− E(ζ ′, β′)| (2.48)
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where E(i, j) = 〈ÊA(i) ⊗ ÊB(j)〉 is the correlation function of two distinct mea-

surements acting on subsystem A and B. In our particular case, we will follow

the protocol investigated in Ref. [Park2012], where the authors can obtain a value

above 2 for the Bell function in a qubit-field system.

As a first step, we will introduce the measurement for the qubit subsystem Êq(ζ) =

Û †q (ζ)Γ̂qÛq(ζ). Here, Γ̂q = σ̂z corresponds to a dichotomic measurement com-

bined with a unitary operation Ûq(ζ) = exp[ζ∗σ̂− − ζσ̂+] (single qubit rotation)

parametrized by a complex value ζ. Therefore, the qubit measurements is (ζ(θ, φ) =

θe−iφ):

Êq(ζ) = Û †q (ζ)Γ̂qÛq =

 cos 2|ζ| − ζ
|ζ| sin 2|ζ|

− ζ∗

|ζ| sin 2|ζ| − cos 2ζ

 (2.49)

On the other hand, even though in Ref. [Park2012] two field measurements are

considered, namely “on/off measurements” and “parity measurements”. For our

purpose, it will enough to consider the first kind. Therefore, let us introduce the

displaced on/off measurement for the oscillator field as:

Ôo(β) = D̂(β)

( ∞∑
n=1

|n〉 〈n| − |0〉 〈0|

)
D̂†(β). (2.50)

where D̂(β) is the displacement operator with displacement parameter β. Further-

more, an imperfect photodetector with efficiency ν is routinely modeled as a perfect

photodetector preceded by a beam splitter (BS) of transmissivity
√
ν with one of

the ports in the vacuum state |0〉BS . The beam splitter operator then reads as :

B̂o−BS = exp[0.5 cos−1√ν(â†oâBS − âoâ†BS)].

After passing through the beam splitter, the qubit-oscillator outcome corresponds

to:

ρ̂νqo = TrBS

[
B̂o−BS ρ̂(t)qo ⊗ |0〉BS 〈0|BS B̂

†
o−BS

]
. (2.51)

The correlation function with the photon detection efficiency ν is the expectation

value:

E(ζ, β; ν) = Tr
[
ρ̂νqoÊq(ζ)⊗ Ôo(β)

]
(2.52)

Now, we have all the ingredients to maximize Eq. 2.48. As said, we based our

results in Ref. [Park2012]. In that paper, the initial state corresponds to an equally

superposed qubit-field state as 1/
√

2(|e〉 |α〉 + |g〉 |−α〉). Under this state, the Bell



52

violation occurs for ζ = π/2, ζ ′ = 0, β = −β′ = |β|, where |β| satisfies:

2|β|e2(η−1)|α|2 = e−2|α||β|√η(|β|+ |α|√η)− e2|α||β|√η(|β| − |α|√η) (2.53)

However, our state differs from their initial state. In fact, in the weak qubit-

oscillator coupling regime, the oscillator’s amplitudes are |α̃↑〉 =
∣∣e−i(1+6δ)t(α− k)

〉
,

and |α̃↓〉 =
∣∣e−i(1+6δ)t(α+ k)

〉
. Also, even in the case in absence of non-linearity,

the wave-function exhibits an extra phase. Therefore, to maximize the Bell func-

tion we consider the following i) the set of {ζ, ζ ′} parameters do not involve a major

restriction as they corresponds to a qubit rotation, therefore we set ζ ′ = 0 and

ζ = 3π/4. ii) The values of |β| are taken from the expression in Eq. 2.53, being a

deviation from the dynamics in absence of non-linearity (see Fig. 2.16).

0.0

2.5

2.0

1.5

1.0

0.5

2.5

2.0

1.5

1.0

0.5

0.0

0
0.2

0.4
0.6

0.8
1.0

0

0 0.004 0.006 0.008
0.002

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

k

|B
| on

/o
ff

δ = 0
δ = 1/1000

Figure 2.16: In the left panel we plot the Bell function as a function of the
qubit-oscillator coupling (k) and the non-linearity strength (δ) for t = π. In
the right panel, we compare the Bell function for δ = 0 and δ = 1/1000, in
this last case a modest violation is achieved (B > 2). In both cases we consider

ζ ′ = 0, ζ = 3π/4, β = −β′ = |β|, where |β| satisfies Eq. 2.53, η = 0.9
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2.8 Concluding Remarks

We have investigated a qubit (spin) coupled to a quartic non-linear oscillator through

a conditional displacement Hamiltonian. The dynamics begins from a separable ini-

tial state composed of a qubit superposition state (| ↑〉 + | ↓〉)/
√

2 and a coherent

state |α〉 for the oscillator. Throughout this Chapter we have used two relevant

parameters, namely, the qubit-NLO coupling k and the non-linearity δ. We first

recalled the results for the case δ = 0. Here, the entanglement generation is due to

the superposition principle of the hybrid system and it shows a periodic dynamics.

On the other hand, when δ 6= 0 and in the weak coupling regime we analytically

show that a new Kerr-like term appears in the dynamics leading to i) quadrature

squeezing of the oscillator state, ii) the suppression of the entanglement decay by the

appearance of a stabilization region, and iii) an enhancement of the entanglement

negativity compared to the linear case of δ = 0.

The most interesting case corresponds to the strong coupling regime, when we see

that two- and four-phonon transitions play a relevant role both in the entanglement

stabilization and in its enhancement. In particular, the entanglement negativity can

reach its maximal value by virtue of the orthogonalization of the oscillator states

relevant to the present dynamics. Furthermore, solving numerically the correspond-

ing master equation, we have shown that these effects remain robust to the presence

of decoherence in the oscillator system.

Finally, we have considered in some details different possible experimental imple-

mentations for each regime considered here. Witnessing this type of hybrid entan-

glement is a hard task, however following the protocol in Ref. [Park2012] we can

give a full proof of the violation of a Bell inequality for δ = 0, and for the strong

coupling regime.



Chapter 3

Entanglement Concentration in

Optomechanics

On the one hand, the rapidly growing field of quantum cavity optomechanics give

us a theoretical avenue to deeply investigate the interaction between quantized light

and macroscopic oscillators, where —for example— the generation of non-classical

states for macroscopic mechanical oscillators might be achieved within the quan-

tum/mesoscopic limit. On the other hand, quantum cavity optomechanics allows us

to build highly sensitive optical detectors of small forces, displacements, masses, and

accelerations. Thus, becoming a promising field of research to explore, manipulate,

and control mechanical motion using light.

Thus, due to the remarkable progress of this field over the last years, we will present

a novel technique to concentrate/distill two-mode squeezed vacuum states using op-

tomechanics, where our scheme relies essentially on quantum cavity optomechanics

and homodyne detection.

To illustrate the final results of this chapter we will start with a brief summary on

the progress on how the quantum cavity optomechanics has developed and evolved

(review based on the manuscript by M. Aspelmeyer, T. J. Kippenberg, and F. Mar-

quardt [Aspelmeyer2014], where the reader can find further details). Subsequently,

we will give a relevant introduction on entanglement concentration/distillation, and

finally, we will present the entanglement concentration via unsharp measurements.

54
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3.1 Cavity Quantum Optomechanics

Classical optomechanics was investigated back in the year 1619 when Kepler noted

that the tails of the comets near to the Sun were always pointed away to its radial

direction. This phenomena was understood as the pressure exerted on a material

surface by electromagnetic fields, the so-called radiation pressure. As light carries

momentum, then the radiation pressure force is classically stated as the temporal

rate of the light momentum, i.e., F = dp(t)/dt.

In 1970s [Hansch1975, Wineland1975], the non-conservative nature of the radiation

pressure force was pointed out opening a window for the foundations of laser cooling,

an outstanding technique allowing, for example, to cool down ions to their motional

ground state.

Other related works on feedback cooling were investigated in the same decade

[Ashkin1978,Ashkin2006]. For instance, Braginsky [Braginsky1967, Braginsky1970]

studied the radiation pressure on a suspended movable mirror of a cavity, where the

mechanical oscillator might shows damping or anti-damping. Additionally, Bragin-

sky [Braginsky1995] studied the quantum fluctuations of the radiation pressure force

and how they set a limit for position measurement resolution. Future works based

on this research [Caves1980] established the quantum standard limit for continuous

position detection, which is essential for gravitational wave detectors [Abbott2009]

(where, in order to measure the position of the mirror, one measures the optical

phase shift).

In Fig. 3.1 we give a typical cavity optomechanics architecture, where the top panel

shows an optical cavity driven by an external laser coupled to a mechanical mode.

The bottom panel shows an analogue for a capacitive coupling.

Over the past few decades, the radiation pressure interaction in the quantum domain

has been extensively explored both theoretically and experimentally. For instance,

within the Fabry-Perot cavity configuration with a movable mirror due to radia-

tion pressure, the authors present a model for quadrature squeezing [Mancini1994].

There, they achieved (for the open system) that the output light can be squeezed

very close to the incident light, and therefore does not vanished by the thermal

fluctuations. In contrast to previous works where i) the thermal fluctuations on the

movable mirror were not taken into account [Stenholm1993], and ii) a semiclassi-

cal approach showed that squeezing is only feasible for extremely low temperatures

[Hilico1992].
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Figure 3.1: A typical optomechanical configuration. Above, an optical single
cavity mode driven by an external laser is coupled to a mechanical single mode.
Below, we show an analogue for a capacitive coupling. This figure was taken

from its original source [Aspelmeyer2014]

Following with the mechanical effects of light on macroscopic objects, the fact that

the radiation pressure coupling of the electromagnetic field to a oscillatory mir-

ror shows bistability (experimentally showed in the optical [Dorsel1983] and the

microwave regimes [Gozzini1985]). K. Jacobs et. al., [Jacobs1994] shows a field-

oscillatory system through radiation pressure in the adiabatic limit. In that pro-

posal, the authors can obtain both the amplitude quadrature of the external field,

as well as the photon number using the momentum fluctuations of the mirror as a

meter.

Another example is the generation of non-classical states due to radiation pressure

[Bose1997]. There, the authors were interested not only in the non-classical states

of the light cavity field (which can be shown to produce entangled states of two or

more cavity modes), but also in the non-classicality of the mechanical oscillator, a

state which should be interesting in itself. To generate non-classical states of the

cavity field you might follow i) multicomponent cat states generated due to dynamics

alone, ii) entangled states of two or more light modes generated due to the dynamics
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alone, and iii) nonclassical states produced due to conditional measurements on the

mirror.

On the other hand, optical feedback cooling based on radiation pressure of light

was first demonstrated in [Cohadon1999] for the vibrational modes of a macro-

scopic end-mirror. In this seminal work, an external laser beam exerted a radiation

pressure force on the reflected mirror controlling in this way the mechanical mo-

tion. Here, cooling or heating of the mirror can be produced, depending on the

gain of the feedback laser. Furthermore, the thermal motion of a mm−scale mirror

was monitored in a LHe-cryogenic optical cavity [Tittonen1999]. In that experi-

ment, the optomechanical sensor reads out the vibrations of a micro-mechanical

oscillator (Fabry-Pérot cavity configuration), where the mechanical quality factor

increases up to Q = 4 × 106,@4K (Q = 3 × 105,@300K). Other examples on

the experimental side are the optical spring effect [Vogel2003], feedback damping

[Mertz1993], self-induced oscillations [Hohberger2004a], and cavity cooling due to

dynamical backaction of retarded photothermal light forces [Hohberger2004b].

Currently, exhaustive work is being carried out on quantum cavity optomechan-

ics with several new systems such as membranes [Thompson2008] and nanorods

[Favero2009] inside Fabry-Pérot resonators. In those cases, the cavity corresponds

to a standard Fabry-Pérot configuration with an external element placed in the

middle of the cavity, e.g., a dielectric membrane, or a nanorod. Additionally, in

the standard single-sided optomechanical Fabry-Pérot setup (when a single mirror

is allow to move) is hard to achieve good optical properties (high F) and good

mechanical properties (high Q) simultaneously. With the introduction of the mem-

brane scheme this difficulty is removed, because the coupling between the membrane

and light depends upon where the membrane is placed relative to the nodes and

antinodes of the cavity mode. Other examples are whispering gallery microdisks

[Jiang2009] and microspheres [Ma2007], photonic crystals [Eichenfield2009], and

evanescently coupled nanobeams [Anetsberger2009]. In Fig. 3.2 we present a list of

different optomechanical architectures arranged by mass.

3.2 Radiation Pressure — The Quantum Case

As mentioned in the introduction, the classical radiation pressure force was in-

vestigated in Kepler’s times. A modern classical treatment of this force can be

derived from Maxwell equations from classical electrodynamics, thus completing
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Figure 3.2: Several optomechanical architectures arranged by mass, from g− zg
(10−3 - 10−24 kg). Figure taken from [Aspelmeyer2014].

this picture. However, the quantum case is not a trivial task. For our purpose,

we will present a brief derivation of the non-relativistic Hamiltonian under a linear

approximation [Law1995].

Let us consider a one-dimensional Fabry-Pérot cavity configuration under ideal

conditions, where one of the mirrors is allowed to move harmonically. This system

with dynamical boundary conditions is quite challenging, because the field inside

the cavity depends on the position of the movable mirror, and viceversa. The

procedure derived in Ref. [Law1995] is the following. Starting from the Wave

equation for the vector potential A(x, t) with time-dependent boundary conditions

A(0, t) = A(q(t), t) = 0, where q(t) is the classical position of the mirror, we write
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down the Newton’s equation of motion. In principle, the set of above equations

(not shown here), namely the equations for {q(t), A(x, t)} specify completely the

dynamics of the system. Next, we can construct a Lagrangian for the system, and

finally a classical Hamiltonian as following:

H =
1

2m

p+
1

q

∑
j,k

gkjPkQj

2

+ V (q) +
1

2

∑
k

P 2
k + ω2

kQ
2
k, (3.1)

where p is the mirror’s canonical momentum, Qk is a set of generalized coordinates,

Pk is the canonical conjugate of Qk, V (q) is the potential well, gkj are dimensionless

coefficients, ωk = kπ/q, and m being the mass of the mirror.

To quantize the classical Hamiltonian in Eq. 3.1, we follow the standard quantiza-

tion procedure, i.e., we let the variables p, q, Pk, Qk be operators, which obey the

commutation relations [q̂, Q̂j ] = [q̂, P̂k] = [p̂, Q̂j ] = [p̂, P̂k] = 0; [q̂, p̂] = i~; [Q̂j , P̂k] =

iδjk~. To present the Hamiltonian using the boson operators, we use the relations

shown in Ref. 1.17, but for cavity-length-dependent:

âk(q̂) =
1√

2~ωk(q̂)
(ωk(q̂)Q̂k + iP̂k). (3.2)

The final quantized Hamiltonian corresponds to:

Ĥ =
(p̂+ Γ̂)2

2m
+ V̂ (q̂) + ~

∑
k

ωk(q̂)â
†
k(q̂)âk(q̂)−

~π
24q

, (3.3)

where,

Γ̂ ≡ i~
2q

∑
k,j

gkj

√
k

j
(â†k(q̂)â

†
j(q̂)− âk(q̂)âj(q̂) + â†k(q̂)âj(q̂)− â

†
j(q̂)âk(q̂)). (3.4)

In Eq. 3.3, the operator Γ is quadratic, which contributes to two-photon emission

and absorption processes. Additionally, we have replaced the vacuum energy by

the Casimir energy −~π/24q [Plunien1986]. The above general Hamiltonian is an

adequate approximation for quantum optics purposes, in which the cavity field is

dominant. Another final consideration is the linear case, in general we will deal with

mirrors oscillating around a certain equilibrium position l0. Thus, let us consider
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xm ≡ q − l0 is small compared with l0, therefore we can expand:

âk(q̂) ≈ âk0 −
xm
2l0

â†k0, (3.5)

ωk(q̂) ≈ ωk0

(
1− xm

l0

)
(3.6)

here, âk0 and ωk0 are the boson annihilation operator and the frequency associated

with l0, respectively. Using a unitary transformation, we finally get:

Ĥlinear ≈
p̂2

2m
+ V̂ (q̂)− ~π

24q
+ ~

∑
k

ωk0â
†
k0âk0 − x̂mF̂0. (3.7)

In the special case where the cavity field is contributed dominantly from a single

cavity mode k0, then:

x̂mF̂0 ≈ xm
~ωk0

l0
â†k0âk0. (3.8)

For a single cavity mode, and neglecting both retardation effects due to the oscil-

lating mirror, as well as the the Casimir energy (ωcav � ωosc), the above linear

Hamiltonian becomes:

Ĥ =
p̂2

2m
+
mω2

osc

2
x̂2 + ~ωcavâ

†â− ~
ωosc

l0

√
~

2mωosc
â†â(b̂+ b̂†) (3.9)

where we have used Eq. 1.19, and we have considered a harmonic oscillation for the

movable mirror. The Eq. 3.9 constitutes the relevant radiation pressure Hamilto-

nian studied below.

3.3 Entanglement Distillation

The aim of quantum processing is to perform some tasks that might be impossible

(or hard) to realize in the classical domain. To achieve these quantum tasks it is re-

quired to have highly entangled states. However, because of the system-environment

unavoidable coupling, the state could not have the entanglement needed to fulfill

the quantum protocol.

To solve this bottleneck, Bennett et. al., [Bennett1996] proposed the following

protocol (originally for a qubit system). Let us consider two distant parties or

subsystems labeled A and B, or Alice and Bob, as referred usually in quantum
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information. Here, each one share a supply of many copies of a mixed and weakly

(low) entangled state, subsequently they could distill a small number of copies of

states arbitrarily close to a maximally entangled state by two-qubit operations,

measurement and classical communication.

To extend Bennet’s protocol we consider a particular class of states called Gaussian

states. These states are interesting in two ways i) they have found many applications

in quantum information science, and ii) they are easy to generate in the laboratory.

Unfortunately [Eisert2002, Fiurasek2002, Giedke2002], it is not possible to distill

Gaussian states using solely Gaussian operations, i.e., any joint operations, mea-

surements and classical communication between Alice and Bob will leave them with

a state with either the same or less entanglement than the initial state. However,

we can still distill Gaussian states using a non-Gaussian operation, namely Photo-

detection. On the one hand, one advantage of using Photo-detection is that this

operations is quite topical and accessible in the laboratory. On the other hand,

although we can generate states which will be more entangled than their initial

supply, the Gaussian profile is lost. To solve this issue we can use a protocol called

“Gaussification”, which we will cover in Section 3.3.2.

3.3.1 Entanglement distillation using photo-detection

As an example we will refer to [Browne2005], where a simple way to distill a two-

mode squeezed vacuum state —with squeezing parameter r— using photo-detection

is presented. Let us consider that one of the light beams is mixed with a single

photon state |1〉 into an ideal beam splitter with transmissivity T and reflectivity

R, such as R2 + T 2 = 1. Subsequently, one of the outputs of the beam splitter is

measured via an ideal photo-detector.

The state after m photons are registered is:

|ψ〉 =

√
1∑∞

n=m−1 |αn(m)|2
∞∑

n=m−1

αn(m) |n〉 |n+ 1−m〉 , (3.10)

where,

αn(m) = − tanhn(r)Tn−mRm−1

[
−R2

√(
n

m

)
(n+ 1−m) + T 2

√(
n

m− 1

)
m

]
(3.11)
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and
(
n
k

)
= 0 if k > n; and T and R are real.

It is straightforward to compute the von Neumann entropy from Eq. 3.10 (see

Ref. [Browne2005] for details). Here, using solely this non-Gaussian operation, it is

possible to obtain a higher entanglement in contrast to their initial supply, but at

cost of very low probability. This last point is a clear advantage of our protocol, in

which a considerable probability (up to 25% of entanglement concentration success)

is achieved for high distilled entangled states.

3.3.2 From a non-Gaussian state to a Gaussian state

As we briefly describe in the above section, it is possible to distill Gaussian states

using a non-Gaussian operation, namely photon-detection. However the outcome

state will not keep the Gaussian profile. As these states are currently quite topical

in quantum optics/information and easy to prepare experimentally, it is impor-

tant to solve this problem towards real quantum processing implementations using

Gaussian states. A way to solve this issue consists in an iterative protocol called

“Gaussification” [Browne2003a, Eisert2004]. As in the case of distillation explored

previously, we need to have a supply of many copies, in this case copies of a non-

Gaussian two-mode entangled state. After several non-deterministic iterations, it

produces a small number of states that are arbitrarily close to Gaussian states and

which are often more entangled than the input.

In the following, we will list the iterative procedure under ideal conditions for Gaus-

sification, see Fig. 3.3 for a single iteration scheme (In Ref. [Browne2005] the au-

thors consider the main imperfections in a real implementation, for our purpose it

will enough to consider the ideal case)

• Initially, Alice (A) and Bob (B) share a two-mode entangled state
∣∣∣ψ(0)
AB

〉
.

Subsequently, in the next iteration they will use pairs of states generated by

a previous successful iteration.

• Secondly, they prepare two copies of the state (in that iteration), i.e.,
∣∣∣ψ(0)
AB

〉
1
⊗∣∣∣ψ(0)

AB

〉
2
, and they mix their half of two copies of the state on a 50:50 beam

splitter.

• They measure one of the outputs with a photo-detector.

• If no photons are registered, the iteration was a success (otherwise they drop

that copy), and the resultant state is saved for the next iteration
∣∣∣ψ(1)
AB

〉
.
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Figure 3.3: The figure shows a single iteration of the “Gaussification” protocol.
This figure was taken from Ref. [Browne2005].

3.3.2.1 “Gaussification” example

As an example, let us consider the following input state:∣∣∣ψ(0)
AB

〉
= |0〉A |0〉B + η |1〉A |1〉B (3.12)

where, A(B) stands for Alice (Bob). The two copies can be easily write down as∣∣∣ψ(0)
AB

〉
1
⊗
∣∣∣ψ(0)
AB

〉
2
:

∣∣∣ψ(0)
AB

〉
1
⊗
∣∣∣ψ(0)
AB

〉
2

= |0〉1A |0〉
1
B |0〉

2
A |0〉

2
B + η |1〉1A |1〉

1
B |0〉

2
A |0〉

2
B

+ η |0〉1A |0〉
1
B |1〉

2
A |1〉

2
B + η2 |1〉1A |1〉

1
B |1〉

2
A |1〉

2
B . (3.13)

It is straightforward to obtain the state after passing through the 50:50 beam splitter

transformation. After measuring the second mode in zero photons for Alice and Bob,

we get: ∣∣∣ψ(1)
AB

〉
= |0〉A |0〉B + η |1〉A |1〉B +

η2

2
|2〉A |2〉B . (3.14)

A generalization of the above example can be made, where for an infinite number of

iterations a general input state
∣∣ψ(0)

〉
=
∑

n α
(0)
n |n, n〉 tends to a two-mode squeezed

state, i.e., a Gaussian state.
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3.4 Introduction to Entanglement Concentration in Op-

tomechanics via Unsharp Measurements

Recent experiments with quantum optical systems have demonstrated the genera-

tion of entanglement across several hundred of modes and partitions [Yokohama2013,

Chen2014, Gerke2015], thus offering unprecedented opportunities for quantum net-

working [Kimble2008]. However, the states generated in these systems (Gaussian

states of light) suffer from the drawback that entanglement distillation — a pivotal

primitive for long distance quantum communication and networking [Bennett1996]

— is not readily available. This is due to the fact that the interactions naturally

occurring in these systems are Gaussian and a “no-go theorem” prevents Gaussian

operations to distill Gaussian entanglement [Eisert2002, Fiurasek2002, Giedke2002].

To overcome this, purely optical methods involving non-Gaussian operations have

been suggested [Duan2000, Fiurasek2003, Browne2003b, Datta2012, Bartley2013],

with the dominant scheme relying on photon subtraction [Opatrny2000, Olivares2003].

In particular, it has been shown that memory can sufficiently improve such schemes

[Humphreys2014], including enabling quantum computation. The implementa-

tion of such schemes is currently topical but remains technologically challenging

[Wenger2004, Franzen2006, Takahashi2010, Kurochkin2014, Ourjoumtsev2009] and

[Dong2008]. We introduce here an alternative route based on hybrid opto-mechanical

systems that naturally possess non-Gaussian radiation-pressure interactions.

In this context, quantum optomechanics is rapidly opening up new avenues for

the manipulation of optical states [Aspelmeyer2010, Aspelmeyer2014]. Regard-

ing quantum communications, the usage of optomechanical systems for telepor-

tation and establishing Gaussian entangled states of distant systems have been

studied (see, e.g. Refs. [Mancini2002, Pirandola2006, Chang2010, Asjad2014]).

However the quantum communication enabling protocol of entanglement distil-

lation has thus far been left untouched as the majority of the applications con-

sidered the linearized (therefore Gaussian) regime of opto-mechanical interaction.

On the other hand, the bare optomechanical radiation pressure interaction is non-

Gaussian (tri-linear) [Law1995]. Can this coupling be useful for quantum commu-

nication, namely, for entanglement distillation? While it has been known for a

while that the trilinear coupling enables the probing of macroscopic superpositions

[Bose1999a, Marshall2003], only recently it has started drawing serious attention

[Nunnenkamp2011, Stannigel2012b, He2012, Liao2012, Xu2013a, Kronwald2013,
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Two-mode 
squeezed state

source

Figure 3.4: Concentration procedure for two-mode squeezed vacuum (TMSV).
In a) we show the general scheme, where a source generates a TMSV, the first mode
â1 interacts with a damped (κ) mechanical harmonic oscillator V (x) ∝ x2 (g is
the scaled coupling strength). After this interaction, and conditioned on unsharp
measurements of the position x of the mechanical oscillator with resolution δq, the
initial TMSV entanglement between â1 and â2 can be increased. In b) we show the
explicit realization of the same procedure: here we substituted the oscillator with
a single sided Fabry-Pérot cavity with a movable mirror, modeling the injection
of the mode â1 into the cavity via BS of reflectivity r. The position of the mirror

is to be measured by pulsed optomechanics [Vanner2011].

Xu2013b, Akram2013, Liao2014] as it is becoming physically significant in cer-

tain setups [Safavi-Naeini2011, Chan2011, Teufel2011, Murch2008, Xuereb2012] and

[Kaviani2014]. Here we show that the bare “tri-linear” optomechanical radia-

tion pressure interaction can enable the concentration of the entanglement of two

mode squeezed vacua by local operations. In particular, “snap-shot” position de-

tections of a mechanical oscillator, whose technology has been developed recently

[Vanner2011, Vanner2013, Sekatski2014], serve as the alternative to photo-detection.

Our proposal also demonstrates that sometimes the usage of weak (in the sense of

“coarse-grained” or unsharp) measurements can be more fruitful for enacting a

quantum information protocol in comparison to fine grained ones.

This Chapter continues as following, in Section 3.5 we introduce the two-mode

squeezed vacuum state which constitutes the initial input for our protocol. Next, in

Section 3.6 we derive the dynamics of the density matrix in presence of detrimental

effects, such as the injection of the light beam into the cavity, as well as the damping

of the mechanical oscillator. Subsequently, we proceed to measure the position of
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the mechanical oscillator in Section 3.7, achieving in this way the entanglement

concentration for some optimal values. In addition, in order to give a full benchmark

of the distilled output state, we use this state as a resource for the standard quantum

teleportation protocol in Section 3.8. Finally, we give the experimental feasibility

of our scheme in Section 3.9 and the final remarks in Section 3.10.

3.5 Two-Mode Squeezed Vacuum State

In general, the squeezed states experimentally generated are not single mode. A

first approach is to consider the two-mode squeezed state (TMSV), being a highly

entangled state. TMSV states are generated in an Optical Parametric Amplifier,

currently they can be prepared as follows : A pumping laser light (ĉ) with angular

frequency given by Ω is focused onto a non-linear crystal, which absorbs a pump

photon and emits two photons, with frequencies ω1 and ω2 (being the idler and the

signal of the amplifier), therefore Ω = ω1 +ω2. The Hamiltonian for this non-linear

process is:

Ĥ = i~λ(ĉ†â1â2 − ĉâ†1â
†
2), (3.15)

for an intense laser field, we can approximate the quantized boson operator ĉ as a

classical amplitude E

Ĥ = i~λ(E∗â1â2 − Eâ†1â
†
2). (3.16)

The time evolution for Eq. 3.16 is the generator of TMSV states, and it can be

written as following (η = λE(t− t0)):

exp(η∗â1â2 − ηâ†1â
†
2) =

1

cosh s
exp

[
−â†1â

†
2 tanh seiθ

]
× exp

[
−(â†1â1 + â†2â2)ln(cosh s)

]
× exp

[
−â1â2 tanh se−iθ

]
. (3.17)

It is easy to prove that for a two-mode vacuum state |ψ〉TMSV = exp(−η∗â1â2 +

ηâ†1â
†
2) |0〉1 ⊗ |0〉2, the TMSV state reads as:

|ψ〉TMSV =
1

cosh s

∞∑
n=0

tanhn seinθ |n〉1 ⊗ |n〉2 . (3.18)
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As seen in the Chapter 1, the above state is in the Schmidt form written in the two-

mode bi-orthogonal Fock basis. Hence, the reduced density matrices are diagonal:

ρ̂1,2 =
∞∑
n=0

1

cosh2 s
tanh2n s |n〉1,2 〈n|1,2 (3.19)

describing a thermal state, with n̄ = sinh2 s.

3.6 System Dynamics

Let us commence by considering two light-modes (with corresponding annihilation

operators â1 and â2 satisfying [âj , â
†
j ] = 1 for j = 1, 2) in a two-mode squeezed

vacuum (TMSV)

|ψ(0)〉TMSV =
√

1− λ2

∞∑
n=0

λn |n, n〉12 (3.20)

with λ = tanhs and s being the squeezing parameter. One light beam (â1) is

coupled to a mechanical harmonic oscillator (m), whereas mode â2 propagates freely

[a general scheme is illustrated in Fig. (3.4-a)]. As said, we focus our attention on

a Fabry-Pérot configuration [see Fig. (3.4-b)] where the mode â1 is injected into a

cavity. Such injection of a freely propagating optical mode into a cavity is standard

in LIGO [Abbott2009], and is considered quite standard in the study of cavity-based

quantum networks [Chang2010, Parkins2000]. Obviously, the injection itself entails

a loss and decoherence of the optical field, which we will duly take into account.

After mode â1 is injected into the cavity it starts interacting with the mechanical

oscillator via an optomechanical Hamiltonian. In a frame rotating at the frequency

ω1 of mode â1, this is given by :

Ĥint = b̂†b̂− gâ†1â1(b̂† + b̂), (3.21)

where g = g0/ωm is the scaled coupling parameter, ωm is the angular frequency of

the mechanical oscillator (b̂), g0 = xzpfω1/L is the radiation-pressure interaction

strength, L is the cavity length at equilibrium, and xzpf is the zero-point fluctuation

amplitude (we set ~ = 1) [Bose1999a]. In most experimental scenarios, the mechan-

ical oscillator will initially be in a thermal state. However, given the recent possi-

bilities of ground state cooling [Chang2010, Teufel2011, Machnes2012, Vanner2010]
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and without loss of generality, we will consider the initial state of the oscillator as

a coherent state with α = |α|eiφα . The temporal evolution in the absence of any

source of decoherence can be solved straightforwardly [Bose1997, Mancini1997]. In

this ideal case, the dynamics is characterized by a displacement of the mirror po-

sition, conditioned on the photon number n, and a Kerr-like evolution of the light

beam: λn |n〉1 |α〉m → λnexp(ig2n2(t − sin t))exp(ignIm[αη]) |n〉1
∣∣αe−it + gnη

〉
m

.

Here |n〉 is a photonic Fock state, η = 1−e−it, and t represents a scaled time, being

the actual time multiplied by ωm.

However, in realistic experimental conditions the state will be affected by unavoid-

able sources of decoherence. In order to give a full analytical solution we have

neglected the photon leakage from the cavity (in other words, we require cavity

decay κc/ωm < g). We solve the standard Markovian master equation at zero

temperature for the decoherence of the oscillator. In this case, the master equa-

tion reads as: dρ̂(t)/dt = −i[Ĥint, ρ̂(t)] + (2b̂ρ̂(t)b̂† − b̂†b̂ρ̂(t)− ρ̂(t)b̂†b̂)κ/2, being κ

the mechanical energy damping rate. Another inevitable source of decoherence is

the attenuation due to the injection of the light beam into the cavity. To model

this, we consider a beam splitter (BS) in front of the fixed cavity-mirror, such

that one port of the latter is fed with mode â1 and the other with a vacuum field

[Kim2002, Kim1998, Agarwal2012]. Under these sources of decoherence, the full

analytical solution for the evolved density matrix reads

ρ̂(t) = |1− λ2|
∞∑

n,m=0

Cnme−D
κ
nm(t)

min[n,m]∑
k=0

Gknm(θ) |n− k, n〉12 〈m− k,m|12

⊗ |φn(κ, t)〉m 〈φm(κ, t)|m (3.22)

where the θ angle is related with the reflection coefficient of the BS as r = cos(θ/2).

The other terms are

Cnm = λn+meig
2[t−sin t](n2−m2)eigIm[αη](n−m)

Gknm(θ) =

√(
n

k

)(
m

k

)
cos2k θ

2
sinn−k

θ

2
sinm−k

θ

2

φn(κ, t) =
ign

(
1− e−(i+κ/2)t

)
i+ κ/2

+ αe−(i+κ/2)t

Dκ
nm(t) =

κ

2

∫ t

0

(
|φn(κ, t′)|2 + |φm(κ, t′)|2 − 2φ∗n(κ, t′)φm(κ, t′)

)
dt′. (3.23)

The above expressions φn(κ, t) and Dκ
nm(t) can be obtained from the step procedure
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method derived in the appendix of Ref. [Bose1997]. Basically, this methodology

alternates small time steps ∆t between the unitary and the non-unitary dynamics.

In other words, we consider an initial small time step where only the unitary dy-

namics take place. Subsequently, another small time step is considered only for the

non-unitary part. Then, we iterate the procedure.

For the first unitary step, we know how the coherent amplitude for the mechanical

oscillator evolves:

φn(κ, t)→ φn(κ, t)e−i∆t + gn(1− e−i∆t) ≈ (1− i∆t)φn(κ, t) + ign∆t. (3.24)

For the non-unitary step dynamics, is known to transform [Walls1985]

φn(κ, t)→ φn(κ, t)e−
∆t
2
κ ≈ φn(κ, t)

(
1− ∆t

2
κ

)
. (3.25)

Therefore, the full dynamics will be the contribution of both giving us the following

differential equation

d

dt
φn(κ, t) = −iφn(κ, t)− κ

2
φn(κ, t) + ign. (3.26)

Starting from an initial complex amplitude α, it is straightforward to obtain the

solution of Eq. 3.26 being the coherent amplitude shown in Eq. 3.23.

On the other hand,

ρnm(t)→ ρnm(t)eig
2(n2−m2)(1−cos t)∆teigr∆t(n−m) cos(t−φ) (3.27)

and,

ρnm(t)→ ρnm(t)〈φn(κ, t)|φm(κ, t)〉(1−e−κ∆t) (3.28)

therefore,

ρnm(t) = ρnm(0)exp

(∫ t

0
ig2(n2 −m2)(1− cos t′) + igr(n−m) cos(t′ − φ)dt′

)
× exp

(
−κ

2

∫ t

0
|φn(κ, t′)|2 + |φm(κ, t′)|2 − 2φ∗n(κ, t′)φm(κ, t′)dt′

)
= ρnm(0)eig

2(n2−m2)(t−sin t)eigIm[αη](n−m)e−D
κ
nm(t) (3.29)
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3.7 Entanglement Concentration via Radiation Pres-

sure

To distill the initial TMSV we proceed to measure the quadrature position of the

oscillator [Vanner2011] through an inefficient detector. This corresponds to the

positive-operator valued measure (POVM):

Π̂(q) =
1√
2πδ2

q

∫ ∞
−∞

exp(−(q − y)2/2δ2
q ) |y〉 〈y| dy (3.30)

where q = x
√
mωm/~ is the dimensionless position of the oscillator (with actual

position x), m is the oscillator mass, and δq determines the measurement resolution

[Ferraro2005]. The state (unnormalized) after the measurement, conditioned to an

outcome q, is given by (Trm[· · · ] stands for the trace operation with respect to the

mechanical state)

ρ̂(t)12 = Trm

[
ρ̂(t)Π̂(q)

]
=

∫ ∞
−∞

dx 〈x| ρ̂(t)Π̂(q) |x〉

=

∫ ∞
−∞

dx 〈x| ρ̂(t)
1√
2πδ2

q

∫ ∞
−∞

dye
− (q−y)2

2δ2q |y〉 〈y|x〉

=
1√
2πδ2

q

∫ ∞
−∞

∫ ∞
−∞

dxdy 〈x| ρ̂(t)e
− (q−y)2

2δ2q |y〉 δ(y − x)

=
1√
2πδ2

q

∫ ∞
−∞

dx 〈x| ρ̂(t)e
− (q−x)2

2δ2q |x〉

=
|1− λ2|√

2πδ2
q

∞∑
n,m=0

Cnme−D
κ
nm(t)Inm

min[n,m]∑
k=0

Gknm(θ) |n− k, n〉12 〈m− k,m|12

(3.31)

above, Dκ
nm(t) corresponds to Eq. 3.23, being the damping term for the oscillator

obtained following the alternate-step procedure previously discussed, and

Inm =

∫ ∞
−∞

ψφn(κ,t)(x)ψ∗φm(κ,t)(x)e
− (q−x)2

2δ2q dx (3.32)
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in which

ψξ(x) ≡ 〈x |ξ〉 =
1

π1/4
e
β∗2−β2

4 e−
1
2

(q−
√

2Re[β])2
eiq
√

2Im[β] (3.33)

is the position wave-function of an arbitrary coherent state |ξ〉. The probability

density function (PDF) of the outcome q is

p(q) =
|1− λ2|√
π(1 + 2δ2

q )

∞∑
l=0

λ2lexp

[
(q −

√
2Re[φl(κ, t)])

2

−(1 + 2δ2
q )

]
. (3.34)

To quantify the entanglement we use the negativity (see first Chapter), defined as

N(t) =
∑

i(|εi|− εi), where εi are the eigenvalues of the partial transposition of the

normalized version of ρ̂(t)12 of Eq. (3.31).

A quick inspection of Eq. (3.34) reveals that a change in the initial amplitude from

|α|eiφα to |α′|eiφ′α entails a rigid shift of the outcome probability p(q) by ∆q ≈
|α| cos(φα− t)−|α′| cos(φ′α− t). We verified numerically that also the entanglement

negativity is subjected to the same shift, which implies that a change in α can be

accounted for by selecting the measurement outcome q accordingly. Given this, we

set for the rest of this work the initial coherent state to α = 0.

We now have the ingredients to assess the validity of the concentration procedure.

First, in Fig. 3.5 we plot the negativity as a function of the squeezing parameter λ

for several scaled coupling strength g. For our concentration purposes, we will keep

the squeezing parameter low 0 < λ < 0.5 —when λ→ 1 the state approximates to

an EPR (unphysical, we would require infinite energy to create it) entangled state.

As we can notice we have fixed the amplitude of the coherent state α = 1 and the

negativity shows two regimes depending of g, for 0 < g < 0.3 the states have always

a higher entanglement compared with the input state (g = 0). On the other hand,

when g > 0.3 the state is partially distilled.

For a fixed set of values (κ = 0.01, δq ≈ 0.11, r = 0.1, t = π, λ = 0.3) we plot

in the left y-axis of Fig. (3.6-a) the ratio of the negativity ND/N0 (solid line) as

a function of the outcome q of the measurement of the oscillator position, where

ND(N0) stands for the distilled (initial) negativity. In the right y-axis, we show its

corresponding PDF (dashed line) as a function of q. The success probability of the

concentration protocol, namely the probability of obtaining ND > N0, is given by



72

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5

N
eg
at
iv
it
y

λ

ν=0.9
κ =0.01

g = 0 (Unpurified)
g = 0.1
g = 0.2
g = 0.3

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5

N
eg
at
iv
it
y

λ

ν=0.9
κ =0.01

g = 0 (Unpurified)
g = 0.4
g = 0.7
g = 1.0

Figure 3.5: The plot shows the negativity as a function of the squeezing pa-
rameter λ for different scaled coupling strength g. We fixed ν = 0.9, q = 0, and
κ = 0.01. We obtain purification for the initial state when 0 < g < 0.3. However,
as g increases the purification is partially achieved. Other values are : t = π, α = 1.

the shaded region and is defined as:

Pr(g, λ)s =

∫
ND>N0

p(q)dq, (3.35)

In Fig. (3.6-a) we illustrate three representative cases. For weak optomechanical

coupling (g = 0.01), one achieves a large success probability though at the cost of

an almost negligible increase in negativity ND ≈ N0. For intermediate coupling

(g = 0.2) the negativity is significantly enhanced, still retaining a high success

probability. On the other hand, for large coupling (g = 1), not only ND . N0 but
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also the success probability is considerably small.

1.20

1.50

1.80

2.10

2.40

Figure 3.6: Upper panel a): We plot in the left y-axis the ratio of the negativity
ND/N0 as a function of the oscillator’s position q (solid line), where ND (N0)
stands for the distilled (initial) negativity. In the right y-axis we show the PDF as
a function of q (dashed line). In the middle panel b) we illustrate the concentration
success probability (Pr(g, λ)s) corresponding to the shaded region in the upper
panel. Finally, in the bottom panel c) we show the ratio of negativity as function

of λ and g for a specific oscillator’s position q = 1.5.

As a consequence, we see that an optimal region of the coupling value emerges,

given that the entanglement concentration is predominantly achieved for interme-

diate radiation-pressure coupling. Similarly we can also see that entanglement con-

centration is achieved for intermediate values of the initial entanglement, implying
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that concentration is optimal in the parameter region 0.2 < {g, λ} < 0.4, for which

Pr(g, λ)s > 0.15 and ND > N0.

The reason for this behaviour can be intuitively understood considering the struc-

ture of the TMSV state and its evolution under the concentration protocol. The

states of the whole system (in absence of decoherence) before and after the optome-

chanical interaction are given by |0〉m
∑

n λ
n |n, n〉1,2 and

∑
n λ

neig
2n2π |2gn〉m |n, n〉1,2

respectively. The states |2gn〉m become more and more distinguishable for larger g.

As a consequence, the measurement of the oscillator position effectively becomes a

sharp measurement of Fock state inside the cavity [Jacobs1994] that projects the

two light beams into a factorized state |n, n〉1,2. This intuitively explains the failure

of the concentration protocol for large g. The failure for large λ is instead due to

the fact that the number of photon Fock states compatible with a specific outcome

q is finite (for any non-zero g). For large enough λ, this finite superposition of a

small set of Fock states |n, n〉1,2 is not enough to exceed the entanglement of the

initial TMSV.

As said, we are neglecting here the cavity decay and further losses in the extraction

of the distilled state from the cavity. However, let us note that our results indicate

that the concentration protocol is robust against large injection losses (in Fig. 3.6 we

considered a beam-splitter reflectivity of r = 0.1), which in turn suggests robustness

against cavity and extraction losses as well.

3.8 Quantum Teleportation with the Distilled State

It is of course, crucial to suggest both a method to verify the successful concen-

tration/distillation of entanglement, as well as an application of the distilled state.

In the following we will show how the teleportation of an arbitrary coherent state

|β〉 by the distilled state can serve both purposes. Following the standard pro-

cedure [Braunstein1998], we combine mode â1 with the coherent state to teleport

into a balanced beam splitter. Subsequently, we measure the position (momentum)

quadrature of the transmitted (reflected) beam. The unnormalized state after the
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joint {x̄, p̄}-measurements corresponds to

ρ̂(t)2 =
|1− λ2|e−(x̄2+p̄2)−|β|2

πp(q)
√

2πδ2
q

∞∑
n,m=0

Cnm
2n+m

e−D
κ
nm(t)

× Inm
∞∑

n′,m′=0

βn
′
β∗m

′

2n′+m′
1

n′!m′!

min[n,m]∑
k=0

Gknm(θ)

× 4k√
(n− k)!(m− k)!

n−k,n′∑
j,j′=0

D(n− k, j, n′, j′)

×
m−k,m′∑
l,l′=0

D∗(m− k, l,m′, l′) |n〉2 〈m|2 (3.36)

where D(n− k, j, n′, j′) =
(
n−k
j

)(
n′

j′

)
ei
π
2

(2j′−n′)Hj+j′(x̄)×Hn−k+n′−j−j′(p̄), in which

Hn the Hermite polynomial of degree n. The normalization of Eq. (3.36) gives us the

probability of the joint measurement p(x̄, p̄) = Trρ̂(t)2. The success of the telepor-

tation can be quantified by the fidelity which in our case reads as f(x̄, p̄) = 〈β|ρ̂2 |β〉,
being ρ̂2 the normalized state appearing in Eq. (3.36) displaced by D̂(

√
2(x̄+ ip̄)).

In particular, we consider the fidelity averaged over all possible outcomes:

〈F(x̄, p̄)〉β =

∫ +∞

−∞
f(x̄, p̄)βp(x̄, p̄)βdx̄dp̄. (3.37)
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Figure 3.7: The figure shows (〈FD(x̄, p̄)〉β/〈F0(x̄, p̄)〉β) the ratio of the average
fidelity as a function of the amplitude (β) and phase (φβ) of the coherent state to

teleport. In this figure we have used the parameters α = 2eiπ/4 and q = 0.

In Fig. (3.7), with parameters α = 2eiπ/4 and q = 0, we clearly distinguish many

instances in which the fidelity with the distilled state is greater then the one with the
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original state, i.e., 〈FD(x̄, p̄)〉β > 〈F0(x̄, p̄)〉β [the subindex in FD (F0) corresponds

to the distilled (initial) state]. This shows that, for a wide range of β, the distilled

state can be exploited to improve the performances of teleportation.

3.9 Experimental Feasibility

The generation of the TMSV state is routinely achieved in quantum optical labo-

ratories, where our range of interests 0 < λ < 0.5 can be fully realized. On the

other hand, our protocol requires the initialization of the mechanical oscillator in

its ground state or in a coherent state. The cooling of a mechanical oscillator to

its quantum ground state has been recently achieved [Teufel2011, Machnes2012,

Vanner2010]. Finally, typical values in optomechanics shown a wide range for the

oscillator’s damping rate κ [Verhagen2012, Chan2011, Murch2008] compatible with

our assumptions. Therefore, the initial preparation does not involve a new experi-

mental challenge. Our optimal g value of ∼ 0.2 for the optomechanical interaction

can now be achieved in several setups [Safavi-Naeini2011, Chan2011, Teufel2011,

Murch2008, Xuereb2012, Kaviani2014].

The key stage of this work consists in measuring the oscillator. After the pulse â1

interacts with the mechanical oscillator under sufficiently weak radiation-coupling

(e.g., using g ≈ 0.2, ωm/2π = 500 kHz, and g0 ' 86 kHz, as in [Vanner2011]), a

second auxiliary pulse with a duration much smaller than the mechanical period is

then injected into the cavity. The optical phase of the emerging field (correlated

with the mechanical position) is then measured via balanced homodyne detection

[Vanner2011].

3.9.1 Thermalized mechanical oscillator

To consider a more real experimental scenario, we treat the mechanical oscillator

as a thermal state at some temperature T . The mechanics then corresponds to a

collection of coherent states as following:

ρ̂thm(0) =
1

πn̄

∫
|α〉m 〈α|m e

−|α|2/n̄d2α (3.38)

with n̄ being the thermal occupation number.
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The density matrix in absence of decoherence can be found easily as:

ρ̂(t)12 =
1√
2πδ2

q

∫ ∞
−∞

dx 〈x| ρ̂(t)e
− (q−x)2

2δ2q |x〉

=
|1− λ2|

πn̄
√

2πδ2
q

∞∑
n,m=0

λn+meig
2(t−sin t)(n2−m2) |n, n〉12 〈m,m|12

⊗
∫
d2αe−|α|

2/n̄eigIm[αη](n−m)

∫ ∞
−∞

ψφn(x)ψ∗φm(x)e
− (q−x)2

2δ2q dx. (3.39)

Following the same alternate step procedure described above (see from Eq. 3.24),

we can compute the dynamics in presence of the same detrimental effects considered

in the coherent case, namely damping of the mechanical oscillator, and injection of

the light beam into the cavity:

ρ̂(t)12 =
|1− λ2|

πn̄
√

2πδ2
q

∞∑
n,m=0

λn+meig
2(t−sin t)(n2−m2)

×
min[n,m]∑
k=0

Gknm(θ) |n− k, n〉12 〈m− k,m|12

×
∫
d2αe−|α|

2/n̄eigIm[αη](n−m)e−D
κ
nm(t)

×
∫ ∞
−∞

ψφn(κ,t)(x)ψ∗φm(κ,t)(x)e
− (q−x)2

2δ2q dx (3.40)

In Fig. 3.8 we plot in the left (right) y−axis the ratio of the negativity (the proba-

bility density function). In Fig. 3.9 we illustrate the negativity as a function of the

squeezing parameter λ for different scaled coupling strength g.
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Figure 3.8: In the left (right) y−axis we plot the ratio of the negativity (the
probability density function). Other values are ; ν = 0.95, λ = 0.3, g = 0.2, n̄ =

0.001, κ = 0.001
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Figure 3.9: The plot shows the negativity as a function of the squeezing parame-
ter λ for different scaled coupling strength g. Other values ; ν = 0.95, q = 1.5, n̄ =

0.001, κ = 0.001.

3.10 Conclusion

In summary, we have presented a first application of optomechanics in entanglement

concentration, which is arguably the most important protocol in long distance quan-

tum communications. Our proposal uses an indirect measurement of the photon

number of the electromagnetic field inside a cavity through the position measure-

ment of a mechanical element coupled to it. For an optimal strength of the optome-

chanical coupling, the photon number is measured weakly or “unsharply” and this

results in entanglement concentration conditioned to the position outcome. For a

vacuum state inside the cavity, the position meter does not move, corresponding to a

failed outcome of concentration. Thus our procedure has a degree of qualitative sim-

ilarity with the known purely optical procedure of photon subtraction [Duan2000,
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Fiurasek2003, Browne2003b, Datta2012, Bartley2013, Opatrny2000, Olivares2003],

where also the vacuum component is essentially filtered, and we have comparable

probabilities of success and entanglement enhancement on concentration. On the

other hand, the position measurements of a mechanical oscillator can be highly pre-

cise, especially as we are not concerned about back-reaction as the measurement

is at the end of our protocol (the oscillator can be reinitialized before performing

concentration again). Other optimizations of our protocol may be attempted such

as multiple modes in the cavity.

The state obtained through our protocol is non-Gaussian, and thus it can serve

as the first step of Gaussification [Browne2003b, Campbell2012] (see Section 3.3.2)

— which can enhance its entanglement further and act on multiple copies — or,

more in general, for quantum computation purposes [Menicucci2006]. Moreover,

the procedure here outlined could be useful also in a quantum repeater scenario for

long distance communication, considering that there no further extraction of the

distilled state from the optical cavity is needed.



Chapter 4

Mechanical Qubit-Light

Entanglers in Nonlinear

Optomechanics

Interfacing between matter qubits and light is a crucial requirement for scalable

quantum networks. However, a generic qubit may not directly interact with a rele-

vant optical field mode.

In Section 4.3, we show how a parametric coupling of the qubit with a mechanical

object, in conjunction with the trilinear radiation pressure coupling of the same

object with light, can induce near maximal qubit-light entanglement at an optimal

time. Next, in Section 4.4, we show how this qubit-cavity entanglement can feasibly

be used to entangle the qubit with light traveling through a linking optical fibre.

Moreover we show the scenario can potentially be adapted to entangle a generic

qubit with another atomic (resonant) qubit in a spatially separated cavity connected

to the former through a single mode optical fibre (see Section 4.4). We also show

in Section 4.3 how our method enables conditional non-classical state preparation

of an optical field state through the measurement of a generic qubit, which might be

more convenient to measure in comparison to the mechanics.

Our optomechanical transducer benefits from not requiring any cooling of the me-

chanical element, and not needing an adjusting of the detunings and transition fre-

quencies so as to have perfect quanta-exchange Hamiltonians between any pairs of

quantum systems.

80
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4.1 Quantum Networks

A quantum network is composed of quantum nodes linked by classical or quantum

channels. On the one hand, having n qubits connected by k classical channels the

dimension of the state space is 2nk, meanwhile for the quantum case the dimension

increases up to 2kn, being exponentially larger [Kimble2008]. In general, the quan-

tum nodes (usually a combination between fields and atomic qubit states due to

their long storage times) are made to generate and to process (e.g. state selection

via quantum measurements) quantum information, whereas the “flying qubits” or

photons traveling through the quantum channels are made to distribute the quan-

tum entanglement between nodes. In order to create a quantum network, it is a

essential to efficiently control each node, and therefore all techniques used to protect

or to improve the quantum entanglement are all crucially important. For example,

quantum entanglement stability investigated in Chapter 2 and quantum concentra-

tion (or distillation for several copies) studied in Chapter 3 are important in these

cases. Of course, the scalability of the network will contribute to the destruction of

the coherence of the quantum information to propagate. It is then vital to consider

the detrimental effects of the main sources of decoherence.

In Fig. 4.1 we show several schemes regarding quantum networks, where a special

emphasis would be noted for the two quantum nodes linked through a quantum

channel in Fig. 4.1-c. Although previous schemes are based on quantum state

transfer and entanglement distribution between nodes within cavity quantum elec-

trodynamics (QED) (e.g., see Refs. [Cirac1997, Pellizzari1997]), the main difference

in our proposal lies within the undriven full dynamics (not linearized Hamiltonian)

of a generic qubit coupled to an opto-mechanical system linked to a cavity QED

system (Jaynes-Cummings interaction Hamiltonian) under cavity and mechanical

losses. As far as I know, the above model under the full regime have not yet been

explored.

4.2 Introduction

Over the last decades, the growing field of quantum information has become of

paramount importance not only to test quantum mechanics, but also to achieve

quantum algorithms towards the future universal quantum computer. Although

some quantum algorithms have been successfully realized, it is still challenging
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Figure 4.1: Several quantum networks scenarios. In (a) an array of quantum
nodes linked to their neighbors through quantum channels. (b) The figure shows a
matter-light interface. (c) Two nodes connected via an optical fibre, in particular
two trapped atomic qubits are placed into two distant cavities within cavity QED
operational regime. In (d) distribution of entanglement using ensembles of a large
number of atoms. This figure was taken from its original source, see Ref.

[Kimble2008] for a more detailed description
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to deal against decoherence and scalability. To bypass these bottleneck, a solu-

tion has been proposed to distribute quantum entanglement over long distances

with low losses rates, namely, a quantum network [Kimble2008]. In general, each

quantum network node is built on single atoms due to their long storage/coherent

time, whereas the “flying” qubits (optical photons) allow us to transfer informa-

tion coherently between them. Central to these networks is to generate qubit-light

entanglement for which would seem to require an interaction of a qubit and a cav-

ity field. At least this was the standard scheme for very long as the qubits were

generically assumed to be atomic in nature so that they could have a resonant

interaction with cavity fields. The qubit-cavity direct coupling could be used to

either map the qubit state to a cavity field so that it was carried and fed in to

a distant cavity through the light [Cirac1997, Pellizzari1997, vanEnk1999], or to

entangle maximally a qubit with the field in a cavity. Subsequent joint detec-

tions of fields from two separate cavities could be used to maximally entangle the

qubits in a heralded manner [Bose1999b]. Crucial to all these is that the qubit

interacts directly and resonantly with the optical field. In recent years a plethora

of other qubits have surfaced which have frequencies in the microwave and radio-

frequency range [Pla2012, Maragkou2015, Kolkowitz2012, Rabl2009, Rabl2010]. For

these an alternate strategy has been suggested whereby both the qubit and the

optics interact with a mechanical mediator. This is possible because a mechan-

ical object generically interacts with a wide variety of physical systems. These

systems have shown the successful linking of distant qubits through optomechan-

ics [Stannigel2010, Stannigel2011, Stannigel2012a, Habraken2012]. However these

schemes rely on an exchange of excitations between systems – between the qubit

and the mechanics (a Jaynes-Cummings interaction) and between the mechanics

and light (a beam-splitter interaction). Such an exchange is only ensured at the

cost of an appropriate adjustment of detunings of the fields that drive the qubit

and the optical field from their respective transitions by precisely the mechanical

frequency. It is thereby be important to explore whether parametric interactions

of qubits with mechanics (as in Chapter 2) as well as the parametric trilinear op-

tomechanical interaction (as in Chapter 3) which are generic qubit-mechanics and

radiation pressure interactions without any necessity for adjusting resonances, can

be fruitfully used to entangle a qubit with light. In particular, this question is quite

nontrivial as it is not apriori intuitive that the qubit and light can be entangled

to a high degree by these means as the mechanical mediator needs to disentangle

substantially from both of them in order for that to happen. In the previously stud-

ied case of Jaynes-Cummings combined with beam-splitter interaction, on the other
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hand, it is quite intuitive that the former and latter Hamiltonians swap quantum

states from the qubit to mechanics and mechanics to light respectively. They are

thereby intuitively clear candidates for state transfer from qubits to optical fields.

The nature of the parametric Hamiltonians, however, are clearly not of a state

swapping type by nature. Thereby under these Hamiltonians the most sensible task

perhaps is to look for an entanglement between the qubit and the optical fields me-

diated by the mechanical degree of freedom (obviously such entanglement suffices

as a building block of optomechanical networks as discussed above). Even in this

task, whether the entanglement will be “transitive” in nature is apriori not clear.

The individual Hamiltonians do indeed entangle a qubit-mechanical oscillator pair

and an optical field-mechanical oscillator pair, but whether also a qubit-optical field

entanglement will result from this is hard to guess.

In this Chapter, we study essentially a feasible light-matter system, where a generic

qubit (typically not having a resonance in the optical frequencies) is entangled to

a single electromagnetic cavity mode, where both are mediated through a mechan-

ical object (modeled as a harmonic oscillator for simplicity). Here we consider

the qubit directly coupled to the mechanical oscillator position. Such a qubit-

oscillator Hamiltonian can be synthesized in a variety of ways, notably through

magnetic field gradients [Scala2013] or through capacitive couplings [Armour2002].

In other words, the actual mechanical position is essentially linked to two states of

the qubit. On the other hand, for the oscillator-cavity subsystem we exploit the (in-

trinsically nonlinear) radiation pressure interaction. Very recently, such tripartite

qubit-oscillator-optics systems have been found to be of interest fundamentally in

giving rise to interesting polaritonic states involving mechanics [Restrepo2014] and

tripartite entanglement [Abdi2015]. However, the practical applications of such sys-

tems in enabling quantum networking, specifically in the regime of the interactions

we use remains unexplored.

In the following we divide our presentation into several sections. First, we fix our

attention into the dynamics of quantum correlations for a tripartite system (qubit-

oscillator-cavity). To study this case, we solve analytically the tripartite dynamics

in absence of decoherence, and then we compute the negativity for the reduced

bipartite subsystems respectively. Secondly, we study the conditional preparation

of non-classical states of the optical field conditional on measuring the states of

the qubit, which can, in principle, be done with a high fidelity. Subsequently,

motivated for quantum networking, we coupled the single cavity mode to an output

field (waveguide/optical fibre). In this case, we solve numerically the Markov-Born
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master equation under oscillator energy losses and photon leakage from the cavity.

Lastly we explore whether a generic qubit can be entangled with an atomic qubit

in a distant cavity by using our mechanism in one of the cavities.

Our results are shown to be promising under actual experimental values. In our

scheme, at a particular time (multiples of the mechanical oscillator cycle), a high

amount of entanglement between the qubit-cavity subsystem is generated, inde-

pendently of the qubit-oscillator and oscillator-cavity coupling parameters. Here,

optimal entanglement between two subsystems is understood as the only non-zero

negativity between relevant subsystems. This is because, at least when the whole

tri-partite subsystem is assumed to be a closed system, then at this time, the relevant

sub-systems are in an entangled pure state. Entangled pure states with substantial

entanglement are, of course, the most useful type of entangled states. We have

found that the mechanical oscillator state becomes disentangled from the rest of

the system at each cycle so as to ensure (for optimally chosen couplings) that the

qubit and the cavity field are in a highly entangled pure state. Furthermore, for

some particular coupling values, we can also generate multicomponent Schrödinger-

cats states for the cavity field. Additionally, a partial qubit-fibre entanglement is

achieved for an optimal cavity-fibre coupling.

4.3 Tripartite Qubit-Oscillator-Cavity Evolution

At first we investigate the building block of our quantum network proposal towards

the qubit-qubit correlation shown in Section 4.4, namely a single tripartite qubit-

oscillator-cavity node. This first approach will show us —among other things— the

optimal operational regime in which bipartite quantum entanglement between any

pair of the systems can be generated. In subsequent sections, we will investigate

how this basic node can be connected to another distant qubit-cavity node (under

Jaynes-Cummings interaction) through an optical fibre.

Let us first commence considering a closed system as shown in Fig. 4.2 —in a later

Section we will solve the Born-Markov master equation when both the photon leakage

from the cavities as well as the oscillator damping are considered. As mentioned

in the introduction, a generic qubit is indirectly coupled to a single cavity mode,

where both are being mediated through a quantum mechanical oscillator (modeled

as a harmonic oscillator for simplicity)
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Figure 4.2: The figure shows a qubit-cavity bipartite system mediated through a
mechanical oscillator. On the one hand, the mechanical mode (b̂) is coupled to the
cavity field (â) with a strength g via radiation pressure interaction as in Chapter 3,
whereas the qubit is coupled to the oscillator position with a strength λ as studied
in Chapter 2. In Section 4.4 we will consider the quantum open system, where Γm

and κc are the rates of mechanical loss and photon leakage respectively.

The interaction Hamiltonian considered here is a combination of previous couplings

reported in this Thesis, namely the qubit-oscillator displaced conditioned Hamilto-

nian (see Chapter 2), and the radiation pressure interaction for the oscillator-field

coupling (see Chapter 3). In principle, it is not obvious that the bipartite qubit-

light system will be entangled dynamically. Because, in contrast to other proposals

where they are mainly based on excitation exchange (Jaynes-Cummings like, and

Beam-Splitter interactions), the qubit-light Hamiltonian considered here it is of a

dispersive type, i.e. an interaction Hamiltonian that conserves the excitations of

the qubit and the cavity field.

It is straightforward to write down the relevant Hamiltonian (~ = 1) in the inter-

action picture as following:

Ĥint = −(gâ†â+ λσ̂z)(b̂e−iωmt + b̂†eiωmt) (4.1)

where, ωm stands for the angular frequency of the mechanical oscillator; g is the

cavity-oscillator radiation-pressure coupling, and λ is the qubit-oscillator coupling

strength. Finally, â (b̂) is the usual boson annihilation operator for the cavity

(oscillator), and σ̂z is the Pauli z−spin matrix for the spin qubit. Even in a bipar-

tite optomechanical system it is known that measurements on the cavity field can
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conditionally project the mechanical oscillator to interesting non-classical states

[Bose1997]. However, in practice, a qubit (being a digital measurement of 0 or

1) may be measured much more faithfully in comparison to a continuous position

degree of freedom. Thus it is important to find whether non-classical states of a

cavity field can be prepared even when a qubit and the field are interfaced indirectly

through the mechanical element. Here we show that it is indeed the case.

For a particular set of values of the coupling parameters g and λ we can generate

non-classical states for the cavity mode (multimode Schrödinger cat states). The

appropriate choice of {g, λ} is shown in the regions denoted by i, ii, and iii in Fig.

4.3-top and coincides with the disentanglement between the qubit and the cavity

mode at t = 2π/ωm (particularly, in those regions the relation between g and λ

corresponds to gλ = k/4, where k = 1, 2, 3, respectively).

The multimode Schrödinger cat states are achieved for g2 = ω2
m/2p, where p ≥ 2

gives the p−mode Schrödinger cat state generated. This can be quantitatively

shown with the reduced cavity density matrix at t = 2π/ωm (see Fig. 4.3-bottom

for a gallery of multimode cat states).

ρ̂(2π/ωm)c = e−|α|
2
∞∑

n,m=0

αnα∗m√
n!m!

e
2iπg2(n2−m2)

ω2
m cos(4πgλ(n−m)/ω2

m) |n〉 〈m| (4.2)

4.4 Towards Quantum Networking: Qubit-fiber Entan-

glement and Quantum Correlations of Two Distant

Qubits

In the following, we will address the quantum networking scenario in order to achieve

this goal we will consider the network architecture shown in Fig. 4.4. Firstly, we

will only aim for the bipartite qubit-fibre entanglement dynamics, i.e., in absence

of the second node. Subsequently, we will solve the full qubit-qubit dynamics in

presence of photon leakage from cavities and damping of the mechanical object.

Although the optical fibre can be modeled as a space-temporal operator into a

continuum of modes, i.e., f̂(t, z) ≈
∫∞

0 f̂ωe
−iω(t−z/c)dω, where [f̂ω, f̂

†
ω′ ] = δ(ω − ω′),

we will use an approximation which takes into account the finiteness length l of

the fibre. Let us consider the number of modes which would significantly interact
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Figure 4.3: The top figure shows the negativity as a function of λ/ωm and g/ωm
at t = 2π/ωm. As seen above, a high qubit-cavity entanglement can be reached
for a wide set of coupling values. However, in regions i, ii, and iii the qubit-cavity
might disentangle for some chosen parameters. Interestingly, in those regions we
can achieve non-classical states (multimode Schrödinger cat states, see bottom

figure) for λ = 1/4g. Other values are α = 1, n̄ = 0.1.

Optical Fibre

Figure 4.4: The figure illustrates the quantum open case for two distant qubits
connected through an optical fibre. A tripartite qubit-mechanical-optics system is
coupled to an output field by an interaction strength ν, a remote qubit is trapped

inside a cavity (single-mode) interacting via Jaynes-Cummings coupling.



89

with the cavity mode as n = (lν̄)/2πc, where ν̄ is the decay rate of the cavity

field into a continuum of fibre modes. For simplicity we will consider n ≤ 1, i.e.,

essentially only one (resonant) mode of the fibre will interact with the cavity modes.

This approximation is often called the short-fibre limit [Serafini2006]. Moreover,

another fibreless situation can be considered, i.e., one can remove the optical fibre

dependence. For example this can be achieved having in mind on-chip technologies,

where the nodes are directly coupled next to each other, even though this case is

quite interesting (and as far as I know it has not been treated under our particular

model) it is not modeled here.

The Hamiltonian for the single node coupled to an output field then reads as —

where we have considered cavity-fibre resonance:

Ĥint = −(gâ†â+ λσ̂z)(b̂e−iωmt + b̂†eiωmt) + i
√

2κf (â†f̂ − âf̂ †). (4.3)

In Fig. 4.5, we have computed the negativity for an initial coherent state for the

cavity α = 0.8, and other parameters that they were chosen to maximize the en-

tanglement. In particular, we selected n̄ = 0 for simplicity, some cooling techniques

for macroscopic objects can be found in [Teufel2011, Machnes2012] and also they

were already discussed in Chapter 3. To reach a higher entanglement we prepare

the cavity in a number state superposition:

|ψ(0)〉cav =
1√
2

(|0〉 − |1〉). (4.4)

Even though this state superposition is hard to produce in the laboratory, there have

been some experimental proposals to generate it, for instance see Ref. [Bose1999a].

In Fig. 4.5 we plot the entanglement generated dynamically for the initial cavity

state shown in Eq. 4.4. After this stage, two qubit-fiber entanglement pairs can

in principle be used to entangle distant qubits. The idea is that the light from

two distinct fibers is jointly measured to entangle the qubits in a heralded man-

ner. However, we are next going to consider the entanglement between two distant

qubits in a pure dynamical manner (i.e., without measurements). The combined

dynamics of two of our spin-opto-mechanical nodes connected by fiber becomes too

complicated to handle in view of the growing Hilbert space and the fact that though

each individual node can be analytically solved, the case when they are connected
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by a fiber has to be handled numerically. We are thereby going to consider a some-

what simplified problem where one node has our spin-optomechanical setup, while

the other node has a resonant qubit.

0 20 40 60 80 100 120
ωm t

0.0

0.2

0.4

0.6

0.8

1.0

N
eg
a
ti
vi
ty

Figure 4.5: The figure shows the qubit-fibre entanglement dynamics for two
different initial cavity states. We plot in red dashed line an initial coherent state
for the cavity α = 0.8, other parameters are : g = 0.1ωm, λ = 0.2ωm, n̄ = 0, ν =
0.1ωm. In black solid line we consider an initial number state superposition for the
cavity |ψ(0)〉cav = 1√

2
(|0〉 − |1〉), other values are : g = 0.1ωm, λ = 0.16ωm, n̄ =

0, ν = 0.14ωm.

Now, we have all the ingredients to explore the quantum entanglement dynamics

generated between distant qubits. On the one hand, a generic qubit is placed as in

Section 4.3. On the other hand, we will consider a second resonant qubit trapped

inside a distant cavity through Jaynes-Cummings coupling interaction gJC , where

both cavities are connected via an optical fibre (see Fig. 4.4).

The Hamiltonian in the interaction picture (in units of ~) is:

Ĥint = −(gâ†1â1 + λσ̂z1)(b̂e−iωmt + b̂†eiωmt) + gJC(σ̂+
2 â2 + σ̂−2 â

†
2) (4.5)

+
∑
j=1,2

i
√

2κf (â†j f̂ − âj f̂
†). (4.6)



91

To consider a realistic scenario we will numerically solve the Markovian master

equation under energy losses from the cavities, as well as the damping from the

oscillator —for an initial number superposition state for the cavities. The master

equation reads as following:

˙̂ρ(t) = −i[Ĥint, ρ̂(t)] +
κc
2

∑
i=1,2

L[âi]ρ̂(t)

+ (nth + 1)
Γm
2
L[b̂]ρ̂(t) + nth

Γm
2
L[b̂†]ρ̂(t) (4.7)

where, L[Ô]ρ̂(t) = 2Ôρ̂(t)Ô† − ÔÔ†ρ̂(t) − ρ̂(t)ÔÔ†. In additions, κc is the rate of

energy losses due to photon leakage from the cavity, and Γm corresponds to the

damping of the mechanical oscillator. We solve Eq. 4.7 at zero temperature, i.e.,

nth = 0.
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Figure 4.6: Qubit-qubit entanglement dynamics for the quantum open system.
We consider equal losses rate for both the photon cavity leakage, as well as the
damping of the mechanical oscillator. In red solid line (blue dashed line) Γm =
κc = 0.001 (Γm = κc = 0.01). In black solid line we show the dynamics in absence
of losses, i.e., the unitary evolution. Other values are : g = 0.1ωm, λ = 0.16ωm, n̄ =

0, ν = 0.14ωm.
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4.5 Concluding Remarks

In this Chapter, we have presented two main results i) a feasible interfacing between

matter qubits and light, and ii) qubit-qubit quantum entanglement between two

distant nodes.

Basically, for the first case, we have considered a physical model composed of

a parametric coupling of the qubit with a mechanical object, together with the

radiation pressure coupling of the same object with light. To explore the quan-

tum entanglement dynamically generated between bipartite systems, we solve the

negativity for the corresponding reduced density matrices, with special attention

in the (indirect) qubit-light subsystem. As a result of the dispersive nature of

the interaction Hamiltonian considered here, it is not straightforward to evidence

quantum correlations between them. Our results shown to be quite promising un-

der low qubit-mechanics and qubit-light coupling strength, for experimental val-

ues shown in Chapters 2 and 3 respectively. For instance, for optimal values

α = 1, n̄ = 0.1, λ/ωm = 0.5, g/ωm = 0.1 a high entanglement can be achieves

for ωmt = 2π (N → 1). Moreover, at that time (and multiples of the mechanical

oscillator cycle), we have found that the mechanical oscillator state becomes dis-

entangled from the rest of the system at each cycle so as to ensure (for optimally

chosen couplings) that the qubit and the cavity field are in a highly entangled pure

state, being of course, the most useful type of entangled states.

Furthermore, for some particular coupling values, we can also generate multicom-

ponent Schrödinger-cats states for the cavity field when the qubit is measured. In

practice, the advantage of a qubit projection is that a qubit may be measured much

more faithfully in comparison to a continuous position degree of freedom as shown

previously, e.g., see Ref. [Bose1997].

On the other hand, towards the remote qubit-qubit quantum entanglement between

nodes. First, we shown (for a closed system) a partial qubit-fibre entanglement for

an optimal cavity-fibre coupling. Secondly, we solved the master equation consid-

ering photon losses from the cavities, as well as energy losses from the mechanical

object. The results shown that qubit-qubit entanglement can be generated between

a generic and an atomic qubit.

Our proposal opens up the scope of quantum networking even when the interac-

tions are not of the energy exchange type, such as purely Jaynes-Cummings type.
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Furthermore, in our investigation we have not considered a linearized Hamiltonian

nor an external field to drive the cavity mode —a regime unexplored so far.



Chapter 5

Quantum Correlations Driven

by Thermal Environments

At first glance, this part of the Thesis might seems as the most different Chapter of

this work. However, the physical system is closely related to quantum networks (as

it is based on a well-known system, see for instance Ref. [Serafini2006]). Further-

more, we use this model to explore other ways to quantify quantum correlations, as

well as to answer a more fundamental question regarding quantum open systems —

whether the thermal quantum fluctuations of the environment can induce quantum

correlations or not.

As said, this Chapter is devoted to the study of the evolution of an open quantum

system within the Born-Markov microscopic master equation (MME). Particularly,

our system of interests corresponds to two distant two-level atoms trapped in fibre-

coupled cavities. In general, thermal effects on the relevant system have been usually

treated as a destructive source of quantum correlations. However, a counterintuitive

dynamics was found a few years ago [Krauter2011, Muschik2011, Kastoryano2011,

Memarzadeh2011] where thermal fluctuations might indeed induce quantum corre-

lations.

To study the quantum correlations driven by thermal fluctuations. First, we will

consider that our system will start from its ground state, i.e., no excitations are

present at t = 0 —atoms are in the ground state, and fields are in the vacuum

state. Secondly, each (independent) reservoir will start at a non-zero temperature.

Finally, under the approximation of one-excitation allowed in the atom-cavity-fibre

94
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basis, we can obtain an induced quantum correlations for the transient evolution due

to thermal fluctuations from the environment.

To quantify the quantum correlations, we will explore two new measures of quantum

entanglement, namely Quantum Discord (see Sec. 5.1) and Concurrence.

5.1 Quantum Discord

Alternatively to entanglement, the quantum correlations can be also quantified by

the quantum discord originally suggested in Refs. [Henderson2001, Ollivier2001],

also see for instance [Luo2008, Ali2010, Lu2011, Qing2011, Fanchini2010]. Quan-

tum discord corresponds to a measure of quantum correlation which does not involve

quantum entanglement necessarily — only for mixed states, for pure states quan-

tum entanglement and quantum discord are equivalent. In other words, the quantum

entanglement can be zero, but there may be still quantum correlations due to quan-

tum nature alone. In fact, non-zero quantum discord indicates the presence of

correlations that are due to non-commutativity of quantum operators.

To define this measure of quantum correlations, we have to go back to classical

information theory. As known, the Shannon entropy H(X) quantify the amount

of information contained in a random variable X. If H(X) = 0, then no new

information can be obtained by measuring X, therefore we have complete knowledge

about that variable. Thus, Shannon entropy can be related both to the degree of

knowledge of an specific random variable or to the amount of information that it can

be extracted via measurements. The mutual information is then define as following

I(A;B) = H(A) +H(B)−H(A,B), (5.1)

where, H(A,B) is the joint conditional entropy, i.e., corresponds to the informa-

tion content of the full system. The meaning of the mutual information is quite

straightforward from its mathematical expression.

On the other hand, classical correlation is defined as:

C(A;B) = H(A)−H(A|B), (5.2)

above, H(A|B) = H(A,B)−H(B) stands for the conditional entropy, which quan-

tifies the uncertainty in measurement the random variable A when B is known.
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The quantum discord QD(ρ̂(AB)) of a bipartite system A and B described by a

density matrix ρ̂(AB) is defined as the difference between the mutual information

and the classical correlation

QD(ρ̂(AB)) = I(ρ̂(AB))− C(ρ̂(AB)), (5.3)

where the quantum mutual information reads as:

I(ρ̂(AB)) = S(ρ̂A) + S(ρ̂B)− S(ρ̂(AB)), (5.4)

On the other hand, the classical correlation for a density matrix is given by:

C(ρ̂(AB)) = max
{Π̂k}

[S(ρ̂A)− S(ρ̂A|{Π̂k})] (5.5)

where {Π̂k} is a complete set of projectors preformed locally on the B-subsystem,

and S(ρ̂A|{Π̂k}) =
∑

k=1,2 pkS(ρ̂
A(k)
q ) stands for the quantum conditional entropy,

being

ρ̂A(k)
q =

1

pk
(Î⊗ Π̂k)ρ̂q(Î⊗ Π̂k), (5.6)

above pk corresponds to the probability of measuring the B-subsystem, thus pk =

Tr[(Î⊗ Π̂k)ρ̂q(Î⊗ Π̂k)].

The maximization shown in Eq. 5.5 is due to that classical correlations can vary

according to the chosen basis {Π̂k}. Therefore, to compute the purely quantum

correlations regardless {Π̂k}, it is necessary that C(ρ̂(AB)) be maximized over the

set of all possible projective measurements.

In addition, quantum discord might be a better measurements for quantum cor-

relations than quantum entanglement as shown in Ref. [Datta2008]. In fact, in a

DQC1 circuit [Knill1998] even though a small amount of entanglement is achieved,

the quantum discord can be nonzero for typical instances of the DQC1 circuit.

This could explain the speed-up in the DQC1 circuit when there is no quantum

entanglement.
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5.2 Microscopic Master Equation

In the following Section, we will introduce a different master equation derived from

a microscopic point of view. In Ref. [Kryszewski2008] there is an excellent tutorial

to obtain the final standard form of the microscopic master equation (MME) con-

sidered here. In the following, we will only highlight some important points for its

derivation, it is not our intention to give an exhaustive treatment of the microscopic

approach.

Let us commence from the von Neumann equation in the Schrödinger picture,

d

dt
ρ̂AB(t) = − i

~
[ĤAB, ρ̂AB(t)], (5.7)

where A stands for the system of interests, and B corresponds to the environment

(being A+B a closed system). The total Hamiltonian is ĤAB = Ĥ0 + V̂AB, where

Ĥ0 = ĤA⊗ ÎB + ÎA⊗ ĤB, and V̂AB is the system-environment interaction Hamilto-

nian. As usual, we proceed as following, i) we switch the Eq. 5.7 to the Interaction

picture frame, ii) we solve formally the von Neumann differential equation in this

rotating frame, and lastly iii) we iterate further to obtain the following solution:

∆ˆ̃ρAB(t) = − i
~

∫ t+∆t

t
dt1[

ˆ̃
V AB(t1), ˆ̃ρAB(t)]

− 1

~2

∫ t+∆t

t
dt1

∫ t1

t
dt2[

ˆ̃
V AB(t1), [

ˆ̃
V AB(t2), ˆ̃ρAB(t)]], (5.8)

where, we have kept up to the second order in
ˆ̃
V AB(tj). Therefore, we have neglected

earlier times of the dynamics. To obtain only the evolution of A we proceed to

perform the partial trace on B,

∆ˆ̃ρA(t) = − i
~

∫ t+∆t

t
dt1TrB{[

ˆ̃
V AB(t1), ˆ̃ρAB(t)]}

− 1

~2

∫ t+∆t

t
dt1

∫ t1

t
dt2TrB{[

ˆ̃
V AB(t1), [

ˆ̃
V AB(t2), ˆ̃ρAB(t)]]}. (5.9)

To compute the partial trace in the above equation, we consider

ˆ̃ρAB(t) = ˆ̃ρA(t)⊗ ˆ̃ρB(t) + ˆ̃ρentangled(t). (5.10)
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The Born approximation allow us to approximate the above relation as following:

ˆ̃ρAB(t) ≈ ˆ̃ρA(t)⊗ ˆ̃ρB(t). (5.11)

Additionally, we use the fact that the environment is at thermodynamic equilibrium,

and therefore it can be replaced by ˆ̃ρB(t) = σ̂B. On the other hand, in general, we

can write the interaction operator in the Schrödinger picture as:

V̂AB =
∑
α

Âα ⊗ X̂α =
∑
α

Â†α ⊗ X̂†α, (5.12)

where Âα (X̂α) acts on ĤA (ĤB). Moreover, for simplicity we will use 〈X̂α(t)〉B ≡
TrB{X̂αρ̂B(t)} = TrB{X̂ασ̂B} = 0. After some algebra, we get:

∆ˆ̃ρA(t)

∆t
=

1

~2∆t

∫ t+∆t

t
dt1

∫ t1

t
dt2TrB{

ˆ̃
V AB(t2)ˆ̃ρA(t)⊗ σ̂B

ˆ̃
V AB(t1)

− ˆ̃
V AB(t1)

ˆ̃
V AB(t2)ˆ̃ρA(t)⊗ σ̂B}+H.C. (5.13)

At this point, there is no much difference between the usual master equation used

in quantum optics/quantum information. In fact, this is a quite general approach of

solving the open quantum case. In the next section we will introduce the so-called

Davies operators, physically representing quantum jumps between the eigenstates

of the full system of interests, being the main difference with the master equation

routinely used in quantum open systems.

5.2.1 Quantum jumps between eigenstates of the system

For a non-degenerate spectrum, we can write the Hamiltonian of the system as

following:

ĤA =
∑
a

~ωa |a〉 〈a| , (5.14)

where, ~ωa is the energy associated with the projector eigenstate |a〉 〈a|. We define

the Davies operators as [Breuer-Book]:

Âα(Ω) ≡
∑
a,b

δ(ωba − Ω) |a〉 〈a| Âα |b〉 〈b| ,

Âα =
∑

Ω

Âα(Ω). (5.15)
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In the following step, we consider the Markov approximation. As said in Chapter

1, we neglect the influence of the history of the physical system on its current state.

Switching to the Schrödinger picture, we readily get:

dρ̂A(t)

dt
= − i

~
[ĤA, ρ̂A(t)]

+
1

~2

∑
Ω
α,β

Γαβ(Ω)(Âβ(Ω)ρ̂A(t)Â†α(Ω)− 1

2
{Â†α(Ω)Âβ(Ω), ρ̂A(t)}),

(5.16)

above we have neglected the Lamb shift contribution i/~[ĤLS , ρ̂A(t)], where

Γαβ(Ω) =

∫ ∞
−∞

dτeiΩτGαβ(τ),

∆αβ(Ω) =
1

2i

∫ ∞
0

dτ

(
eiΩτTrB{

ˆ̃
X
†
α(τ)X̂βσ̂B} − e−iΩτTrB{X̂†α

ˆ̃
Xβ(τ)σ̂B}

)
,

Gαβ(t1, t2) ≡ Gαβ(τ = t1 − t2) = TrB{
ˆ̃
X
†
α(τ)X̂βσ̂B},

ĤLS =
1

~
∑
α,β,Ω

∆αβ(Ω)Â†α(Ω)Âβ(Ω). (5.17)

Eq. 5.16 corresponds to the MME used below, this standard form preserves nor-

malization, hermiticity, and positivity of the density matrix ρ̂A(t). Other properties

can be found in [Breuer-Book, Kryszewski2008].

5.2.2 On time-scales

Firstly, let us consider a fast time-scale regarding the decay of correlations in the

environmental degrees of freedom τB. A second slower (compared with τB) time-

scale, TA is related with the dynamics of the system, where both are related as

τB � t� TA. In other words, the environment does not change significantly when

time t� TA elapses.

In Eq. 5.8, we have kept up to the second order in the interaction strength. To

justify this truncation, it can be shown that the third order contribution reads as:

∆ˆ̃ρA(t)

∆t

(3)

∼ V τB
~

ˆ̃ρA(t)

TA
� 1 (5.18)
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where, we have used that V τB/~ � 1. Therefore, third and higher orders can be

neglected.

5.3 Introduction

Entanglement is a property hard to reach technologically and even when achieved,

it is a very unstable quantum state, vulnerable under the effects of decoherence, any

dissipative process as a result of the coupling to environment. Conventionally these

effects are considered mainly destructive for entanglement, nevertheless some recent

studies of this subject attest results different from the common conviction, appearing

as counterintuitive at a first glance [Krauter2011, Muschik2011, Kastoryano2011,

Memarzadeh2011].

An alternative approach to measure the entire correlations in a quantum system

was originally suggested in [Henderson2001, Ollivier2001]. For example, by using

the concepts of mutual information and quantum discord (QD) the quantum cor-

relations may be distinguished from the classical ones. Further the QD could be

compared to the entanglement of formation (E) [Wooters1998] in order to find if the

system is in a quantum inseparable state (entangled), or in a separable state with

quantum correlations like QD [Luo2008, Ali2010, Lu2011, Qing2011, Fanchini2010].

Such an analysis is considered in this Chapter.

The inclusion of the interaction of the system with the environment plays an im-

portant role in physics, implying a more realistic picture because the dissipation is

always present in the real devices. In the proposed study we deal with atoms, cavi-

ties and a fibre in the framework of the physical model suggested in [Cirac1997]

which attracted a high interest for quantum information applications and sub-

sequently discussed detailed from different aspects [Pellizzari1997, Mancini2004,

Serafini2006, Yang2011]. As a basic model, we consider the one recently analyzed

in [Montenegro2011] and extend the calculations for a very special case, i.e. when

the atoms are initially disentangled and in the ground states while the fields are

in vacuum states and coupled to the reservoirs at finite temperatures. The entire

system is considered open because of the leakage of the electromagnetic field from

the cavities and fibre into their own thermal baths. Therefore, Is it possible to gen-

erate atomic quantum correlations by the processes of absorption and exchanging

excitations with the thermal reservoirs? In the following we present the model and

detailed analysis in search for an answer.
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5.4 Trapped Atoms in a Fibre-Coupled Cavities

We present here the model schematically shown in Fig. 5.1 and recall the basic

equations which lead us to the effect we are looking for. Hence, one considers two

qubits (two-level atoms) interacting with two different and distant cavities, coupled

by a transmission line, e.g. fibre, waveguide. For simplicity we consider the short-

fibre limit, i.e., only one (resonant) mode of the fibre interacts with the cavity modes

[Serafini2006].

Figure 5.1: Two atoms trapped in distant coupled cavities. The cavities and
transmission line exchange the energy at the rates γ1, γ2 and γ3 with their baths

having the temperatures T1, T2 and T3, respectively.

Now, let us define a given state of the whole system by using the notation: |i〉 =

|A1〉 ⊗ |A2〉 ⊗ |C1〉 ⊗ |C2〉 ⊗ |F 〉 ≡ |A1A2C1C2F 〉, where Aj=1,2 correspond to the

atomic states, that can be e(g) for excited(ground) state, while Cj=1,2 are the cavity

states, and F corresponds to the state of the fibre. Both Cj=1,2 and F describe a 0

or 1 photon state. The Hamiltonian of the composite system under the RWA reads
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(with ~ = 1)

Hs = ω0a
†
3a3 +

2∑
j=1

(
ωaSj,z + ω0a

†
jaj

)
+

2∑
j=1

(
gjS

+
j aj + νa3a

†
j +H.c.

)
, (5.19)

where a3 is the boson operator defining the fibre mode, a1(a2) is the boson operator

for the cavity 1(2); ω0 and ωa are the fibre (cavity as well) and the atomic frequen-

cies, respectively; gj (ν) the atom-cavity (fibre-cavity) coupling constants; and Sz,

S± are the usual atomic inversion and ladder operators, respectively.

The model is studied under the assumption of a single excitation in the system of

atoms and fields, and using the above mentioned notation, the state-basis of the

system becomes:

|1〉 = |eg000〉 ,

|2〉 = |gg100〉 ,

|3〉 = |gg001〉 ,

|4〉 = |gg010〉 ,

|5〉 = |ge000〉 ,

|6〉 = |gg000〉 , (5.20)

where the last vector is required by the existence of the excitation’s leakage to the

reservoirs. Hence, it is straightforward to bring the Hamiltonian Hs in Eq. (5.19)

to a matrix representation in the above state-basis [Montenegro2011].

Ĥs =



0 g1 0 0 0 0

g1 ∆ ν 0 0 0

0 ν 0 ν 0 0

0 0 ν ∆ g2 0

0 0 0 g2 0 0

0 0 0 0 0 −ωa


, (5.21)

where ∆ = ωc − ωa is the atom-cavity detuning.

To simulate the dynamics of the given system, one considers the approach of the

microscopic master equation (MME), developed in [Scala2007, Breuer-Book] in or-

der to describe the system-reservoir interactions by a Markovian master equation.
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This description considers jumps between eigenstates of the system Hamiltonian

rather than the eigenstates of the field-free subsystems, which is the case in many

approaches employed in quantum optics. Therefore, we assume that the system of

interest, i.e. the atoms, cavities and fibre are parts of a larger system, composed by

a collection of quantum harmonic oscillators in thermal equilibrium.

The external environment represents the part of the entire closed system other than

the system of interest. Between each element of the system and its own bath one

may identify different kind of dissipation channels. In CQED the main source of

dissipation originates from the leakage of the cavity photons due to the imperfect

reflectivity of the cavity mirrors. A second source of dissipation corresponds to the

spontaneous emission of photons by the atom, however this kind of loss we consider

small and they are neglected in the model. Following the common procedures

[Scala2007, Breuer-Book], one obtains the MME for the system’s reduced density

operator ρ(t)
∂ρ

∂t
= −i [Hs, ρ] + L(ω̄)ρ+ L(−ω̄)ρ, (5.22)

where ω̄ > 0 with the dissipation terms defined as

L(ω̄)ρ =
3∑
j=1

γj(ω̄)

(
2Aj(ω̄)ρA†j(ω̄)−

{
A†j(ω̄)Aj(ω̄), ρ

})
.

In the above equations we considered: Aj(ω̄) =
∑

ω̄α,β
|φα〉 〈φα| (aj + a†j) |φβ〉 〈φβ|

fulfilling the properties Aj(−ω̄) = A†j(ω̄), where ω̄α,β = Ωβ − Ωα with Ωk as an

eigenvalue of Hamiltonian Hs and its corresponding eigenvector |φk〉, denoting the

k -th dressed-state. We should point out that the eigenfrequencies of Hamiltonian

Hs are chosen in order to satisfy the following inequality Ω6 < Ω5 < Ω4 < Ω3 <

Ω2 < Ω1.

Further in Eq. (5.22) one may use the so-called Kubo-Martin-Schwinger (KMS)

condition [Breuer-Book], which gives a relation for the damping constants γj(−ω̄) =

exp (−ω̄/Tj) γj(ω̄), where Tj are the reservoir temperatures in the corresponding

unit. The KMS condition ensures that the system tends to a thermal equilibrium

for t→∞.

In order to solve Eq. (5.22) one may use a kind of formal solution, because in

the most general case there is no an analytic solution for the eigenvalue equa-

tion based on Hamiltonian Hs. Once having the operators Aj(ω̄αβ), it is easy to
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write Eq. (5.22) for the density operator ρ(t) decomposed in the eigenstates basis,

〈φm| ρ(t) |φn〉 = ρmn, and we get

ρ̇mn = −iω̄n,mρmn +
5∑

k=1

γk→6

2

(
2δm6δ6nρkk − δmkρkn

− δknρmk
)

+

5∑
k=1

γ6→k
2

(
2δmkδknρ66 − δm6ρ6n − δ6nρm6

)
(5.23)

Here δmn is the Kronecker delta; the physical meaning of the damping coeffi-

cients γk→6 and γ6→k refers to the rates of the transitions between the eigen-

frequencies Ωk downward and upward, respectively, defined as follows γk→6 =∑
j={1,2,3} c

2
i γj
[
〈n(ω̄6,k)〉Tj + 1

]
and γ6→k results from the KMS condition, where

ci are the elements of the matrix for the transformation from the states {|1〉 , ..., |6〉}
to the states {|φ1〉 , ..., |φ6〉} (see Eq. (14) and Appendix A in [Montenegro2011]).

Here 〈n(ω̄α,β)〉Tj =
(
e(Ωβ−Ωα)/Tj − 1

)−1
corresponds to the average number of the

thermal photons. The damping coefficients play the central role in our model be-

cause their dependence on the temperature of the reservoirs imply a complex ex-

change mechanism between the elements of the system and the baths. Therefore,

in the presence of the temperature we solve numerically the coupled system of the

first-order differential equations (5.23) and compute the evolution of entanglement

considering the atom-field system in the initial unexcited state |gg000〉.

In order to compute the atomic entanglement, we need to perform a measurement

of the cavities-fibre field with a state |000〉 = |0〉C1 ⊗ |0〉C2 ⊗ |0〉F . The feasibility

of such a measurement is discussed in the next section.

In the next section we present the calculations of the quantum correlations depend-

ing on the system characteristics: such as atom-cavity detuning, coupling constants

and thermal reservoirs.

5.5 Measuring the quantum correlations

5.5.1 Entanglement

Once projected on the state |000〉 of the field subspace we find that the reduced

atomic density matrix in the 2-qubit basis {|gg〉 , |ge〉 , |eg〉 , |ee〉} preserves during
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the time evolution a symmetric X-form structure

ρ̃(t) =


a 0 0 0

0 b b 0

0 b b 0

0 0 0 0

 , (5.24)

with the atoms initially in ground state, i.e. a(0) = 1 and b(0) = 0. This particu-

larity of the density matrix results from the implicit symmetry on the interchang-

ing of the undistinguished qubits in equivalent cavities. In the following we will

compute the qubit-qubit entanglement using the concurrence [Wooters1998]. This

quantum correlation measure is defined as C(ρ) = max(0, λ1, λ2, λ3, λ4), where

λ{i+1} > λi for i = {1, 2, 3} are the eigenvalues of the matrix
√√

ρρ̃
√
ρ, with

ρ̃ = (σ̂y ⊗ σ̂y)ρ∗(σ̂y ⊗ σ̂y) is the spin-flipped state of ρ. For our particular case, the

concurrence can be easily computed [Montenegro2011] and gives C(t) = 2b/(a+2b).

In the following, we are mainly interested in studying the evolution of atomic en-

tanglement, the concurrence (C), as a function of the temperatures of the thermal

baths. The system under consideration refers to the atoms with long radiative life-

times, each coupled to its own cavity. These two cavities are connected by a fibre

with the damping rates γ1 = γ2 = γ3 ≡ γ = 2π · 10MHz, respectively, which are

within the current technology [Serafini2006]. The transition frequency of the atom

is chosen to be mid-infrared (MIR), i.e. ωa/2π = 4THz and hence, for experimen-

tal purposes the coupling between the distant cavities can be realized by using the

modern resources of IR fibre optics, e. g. hollow glass waveguides [Bowden2007],

plastic fibres [Chen2006], etc. We choose the range of MIR frequencies in order to

limit the thermal reservoir only up to room temperature (300K), that corresponds

to a thermal photon. The values of the coupling constants and the atom-cavity de-

tuning will be varied in order to search the optimal result. We must mention here

that to satisfy the RWA we should have 2g � γmax(ω̄) [Scala2007]. Satisfying this

condition we start with the case g1 = g2 ≡ g = ν = 5γ, considering all the reservoirs

at the same temperature, T , and study how the atomic entanglement evolves as a

function of the atom-cavity detuning, ∆.

The result is shown in Fig. 5.2 from which we conclude that the atom-cavity detun-

ing facilitate in this case the generation of a quasi-stationary atomic entanglement

and for ∆ = 0.1ωa the system reaches a long-lived entanglement state. Of course,
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in the asymptotic limit the concurrence will vanish and the atoms eventually disen-

tangle themselves due to the damping action of the reservoirs. The maximal value

of the concurrence of ∼0.2 corresponds to the bath’s temperature about 300 K, that

is about one thermal excitation for the given frequency ωa (i.e. kBT/~ωa ' 1.5).

In order to find the optimal relation between the coupling constants and damping

rate we did the calculations for different situations as follows: (i) g = ν = 100γ, (ii)

g = γ and ν = 100γ, (iii) g = 10γ and ν = γ. For example, we present the case (ii)

in Fig. 5.3, from which we see that the concurrence gets the same maximal value as

in the previous case Fig. 5.2(c), but it takes a longer time for the quasi stationary

entanglement to reach its plateau. The rest of the cases give worst results.

Now, let us analyze a more general situation, when all the independent baths have

different temperatures. After performing the computations, we found an interesting

effect that only the thermal bath of the fibre plays an important role in the genera-

tion of entanglement in the system, while the thermal baths of the cavities generate

very little entanglement. This situation is represented in Fig. 5.4. Therefore, after

analyzing all the calculations, we come to the conclusion that the case represented

in Fig. 5.2(c) corresponds to the optimal one for the generation of entanglement.

5.5.2 Quantum Discord

Since in our case the 2-qubit density matrix has a simplified X-form (5.24), one

can easily compute the quantum and classical correlations in the system by using

a particular case for the algorithm discussed in [Ali2010]. Even if some recent

studies as [Lu2011, Qing2011] found that the analytic approach of [Ali2010] could

not be considered as a general one, in our case the computation of QD may follow

this procedure without some divergences of the minimization approach. In the

framework of the algorithm and notations used in [Ali2010], we have to optimize

QD just by changing the parameters (k, l) in the range (0, 1) and find easily the

condition of the resultant minimum for (k, l)=1/2. For more accuracy we have

compared the calculations with the approach proposed in [Fanchini2010], by using

Eq. (6) of the later and obtained exactly the same result. Hence, we observe

in Fig. 5.5 the time evolution of the QD similar to that of entanglement, but

the initial growth is steeper in the discord, which implies the appearance of the

quantum correlations in the system prior to the entanglement [Auyuanet2010]. For

a better illustration of the thermal effect under discussion, in the inset is shown the
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Figure 5.2: Evolution of the concurrence for g = ν = γ and different atom-
cavity detunings: (a) ∆ = 0 , (b) ∆ = 10−4ωa and (c) ∆ = 0.1ωa. The baths
have the same temperature with the average number of thermal photons given by
〈n(ω̄6,5)〉T . The abscissa axis of the dimensionless time, γt, is in a logarithmic

scale.



108

Figure 5.3: Concurrence for ∆ = 0.1ωa, g = 5γ and ν = 100γ.

temperature dependence of the steady values (flat time-plateau) of the quantum

and classical correlations.

5.5.3 Experimental hint

In this section we discuss the tasks important for an experimental realization of the

ideas discussed here. In our opinion, the most difficult is to realize a quantum non-

demolition (QND) measurement of the photon states in the fibre-coupled cavities.

However, currently there exists technological possibilities to realize experiments on

QND photon counting, attaining single-quantum resolution, performed with optical

or microwave photons [Guerlin2007], for an exhaustive review see [Grangier1998].

In the experiment discussed in [Guerlin2007] the cavity mode was coupled to Ry-

dberg atoms or superconducting junctions and the QND method is based on the

detection of the dispersive phase shift produced by the field on the wave function

of non-resonant atoms crossing the cavity. This shift can be measured by atomic

interferometry, using the Ramsey separated-oscillatory-field method. The advan-

tages of QND experiments in radiometry and in particular applied for IR photons

are suggested in [Castelleto2001].

In order to simulate a measurement on the fibre-cavity subsystem one may compute

the field density operator and therefore monitoring the probability of the field state.

As we are interested to preserve the field in the vacuum state, i.e. ρfib−cav(t) =

|000〉 〈000|, one tests the probability of this state during the temporal evolution of
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Figure 5.4: Evolution of the concurrence for arbitrary baths temperatures, (a)
T1 = T2 = 0 and varying the fibre’s bath temperature, (b) T3 = 0 and varying
equally the cavities’ bath temperatures, and (c) varying differently all the temper-

atures. The rest of the parameters are the same as in Fig. 5.2(c).
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Figure 5.5: Evolution of the quantum discord (QD), entanglement of formation
(E) and classical correlations (CC) for one thermal excitation and the parameters
chosen as in Fig. 5.2(c). The inset represents the same quantities as a function of

the temperatures of the reservoirs calculated for a late time, t = 1s.

the system. The dynamics of this probability for different schemes of engineering of

the thermal reservoirs is shown in Fig. 5.6. Based on these results we conclude that

the success to find the fibre-cavity field in a vacuum state after the measurement

strongly depends on the managing of the thermal reservoirs. Hence, from this

point of view, a more efficient variant to drive the qubits to long-lived quantum

correlations is to increase the fibre’s bath temperature while the baths of the cavities

maintain at possible low temperature.

5.6 Concluding remarks

In this study we show a very interesting effect that the long-lived quantum cor-

relations between the atoms trapped in separate cavities can be generated by the

dissipative coupling to the thermal baths. This is an example that could give us a

new insight into the effects of the system-environment exchange versus the quantum

correlations. From the analysis of the obtained results, mainly Fig. 5.4 and 5.6,

we conclude that the entanglement can be optimized by engineering the thermal

bath of the fibre rather than the baths of each cavity, hence suggesting that the

“quasi-local” manipulations produce little effect on the generation of entanglement.

Furthermore, we found that our system evidences quantum correlations quantified

by QD prior to the appearance of the entanglement. The model discussed here

could be experimentally implemented by using a QND experiment in order to test
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Figure 5.6: Probability to find simultaneously the fibre and the cavities in a
vacuum state by engineering of the thermal baths as follows: (a) all the baths
have the same temperature T , (b) varying the fibre’s bath temperature T3, while

T1 = T2 = 0. The rest of the parameters are the same as in Fig. 5.2(c).

the fibre-cavity field state and evidences a sufficient high probability for a successful

measurement.



Chapter 6

Monitoring the quantum

correlations of two

remotely-located

atomic-mechanical systems

In this final Chapter, we present an ongoing investigation, where the physical system

under consideration corresponds to a hybrid atomic-mechanical system formed from

two initially entangled remote qubits (two-level atoms) interacting with individual

harmonic oscillators. Therefore, we will bring together elements previously explored

in this Thesis, such as the direct qubit-oscillator coupling studied in Chapter 2, and

interesting applications towards quantum networking schemes (see Chapter 4).

We study thoroughly the dynamics of the main measures of quantum correlations

(entanglement and discord, see Chapter 5) for different physical conditions of the

entire system in order to control the generation, propagation, and preservation of

the correlations. The system is investigated when any dissipation mechanism is ne-

glected; and subsequently, we consider the mechanical losses of the oscillators. For

both cases, the two qubits are initially prepared in a Bell-diagonal state, and conse-

quently discover that the two-qubit correlations exhibit few interesting effects such

as freezing, sudden changes and revivals in the evolution of the quantum entropic

discord.

112
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6.1 Non-dissipative dynamics

Essentially, the system is composed of two remote qubit-oscillator systems (denoted

by A and B), where each qubit interact with its own oscillator — modeled harmon-

ically for simplicity, see Fig. 6.1. First, we shall consider the system in absence

of any source of decoherence, afterward (in Section 6.3) we will solve the system

subject to mechanical losses.

Figure 6.1: The figure illustrates two subsystems labeled A and B, where two
initially correlated qubits are coupled to their independent distant quantum har-
monic oscillator. On the one hand, the mechanical oscillator oscillates with an
angular frequency Ωim and amplitude xim, i = {A,B}. On the other hand, the
qubit (two-level atom) is characterized as usual by its excited (ground) state |e〉
(|g〉), with an energy gap given by ~ωAq . In Section 6.3 we will consider the damping

of the oscillator, being Γm the mechanical damping rate.

The Hamiltonian of the model in the Schrödinger picture is (in the units of ~),

Ĥ =
∑

i={A,B}

ωqσ̂
i
z + Ωiâ†i âi − g

iσ̂iz(â
†
i + âi). (6.1)

Here, ωq is the qubit energy gap (for simplicity, ωAq = ωBq = ωq), Ωi is the angular

frequency for the oscillator (i = {A,B}), and gi = xizpfωq/L corresponds to the

qubit-oscillator strength coupling; being xizpf the zero-point fluctuation oscillator

amplitude, and L the oscillator equilibrium length. On the other hand, σ̂iz is the
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usual z-Pauli operator for the qubit and âi (â†i ) is the annihilation (creation) boson

operator for the oscillator.

The direct interaction in Eq. 6.1 (≈ σ̂iz ⊗ x̂im) is the conditioned displacement

Hamiltonian (see Chapter 2 for more details), where each qubit eigenstate is being

monitored via the oscillator’s position quadrature throughout the dynamics.

To obtain the relevant Hamiltonian of our work, we switch from the Schrödinger

picture to the Interaction picture as follows (in reference frame rotating at ωq)

Ĥint = â†AâA − k
Aσ̂Az (â†A + âA) + Ω̃â†B âB − k

Bσ̂Bz (â†B + âB), (6.2)

where Ĥint is scaled by the mechanical frequency of the A−subsystem (ΩA), so the

scaled qubit-oscillator coupling, ki = gi/ΩA (i = {A,B}) and the oscillator angular

frequency ratio is Ω̃ = ΩB/ΩA.

From Eq. 6.2 it is clear that i) the Hamiltonian is analogous to an effective po-

tential energy for the oscillator with its center shifted a quantity proportional to

g, depending on the qubit eigenvalue ±1. ii) It is straightforward to notice that

[ĤA, ĤB] = 0, where a simple inspection show us; ĤA = â†AâA − kAσ̂Az (â†A + âA)

and ĤB = Ω̃mâ
†
B âB − kBσ̂Bz (â†B + âB). Hence, the unitary operator evolution

can be easily calculated as Û(t) = exp[−itĤint/~] = exp[−it(ĤA + ĤB)/~] =

exp[−itĤA/~]exp[−itĤB/~]. The previous exponential has been derived in Chapter

2, given us for our case the final expression:

Û(t) = exp
[
kAσ̂Az (η(t)â†A − η

∗(t)âA)
]

exp
[
−iâ†AâAt

]
× exp

[
kBσ̂Bz (η(t̃)â†B − η

∗(t̃)âB)
]

exp
[
−iâ†B âB t̃

]
(6.3)

Above, we defined η(t) = 1− exp[−it] and Ω̃mt ≡ t̃.

Regarding the initial conditions, we prepare the oscillators as coherent states with

different amplitudes, namely,
∣∣αA〉 and

∣∣αB〉 ({αA, αB} ∈ C), and the qubits will

be initialized in a state with maximally mixed marginals, i.e. Bell-diagonal (BD),

described by a X-type density matrix. In the Bloch form reads ρ̂(0)ABq = [I ⊗ I +

~c · (σ̂A ⊗ σ̂B)]/4, where ~c = {c1, c2, c3} and σ̂ = (σ̂x, σ̂y, σ̂z) is the Pauli vector (see

Chapter 1). On the other hand, in the two-qubit basis, the matrix form for the
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maximally mixed marginals is:

ρ̂(0)ABq =
1

4


1 + c3 0 0 c1 − c2

0 1− c3 c1 + c2 0

0 c1 + c2 1− c3 0

c1 − c2 0 0 1 + c3

 (6.4)

To derive the density matrix dynamics, we can easily notice that

Û(t) |e, e〉 ⊗
∣∣αA, αB〉 = C+,+ |e, e〉 ⊗

∣∣ΦA
+(t),ΦB

+(t̃)
〉
,

Û(t) |e, g〉 ⊗
∣∣αA, αB〉 = C+,− |e, g〉 ⊗

∣∣ΦA
+(t),ΦB

−(t̃)
〉
,

Û(t) |g, e〉 ⊗
∣∣αA, αB〉 = C−,+ |g, e〉 ⊗

∣∣ΦA
−(t),ΦB

+(t̃)
〉
,

Û(t) |g, g〉 ⊗
∣∣αA, αB〉 = C−,− |g, g〉 ⊗

∣∣ΦA
−(t),ΦB

−(t̃)
〉
.

(6.5)

where,

C±,+ = e±ik
AIm{αAη(t)}e+ikBIm{αBη(t̃)}, (6.6)

C±,− = e±ik
AIm{αAη(t)}e−ikBIm{αBη(t̃)}, (6.7)

ΦA
±(t) = αAe−it ± kAη(t), (6.8)

ΦB
±(t̃) = αBe−it̃ ± kBη(t̃). (6.9)

Finally, the initial state ρ̂(0)AB = ρ̂(0)ABq ⊗
∣∣αA〉 〈αA∣∣ ⊗ ∣∣αB〉 〈αB∣∣ evolves as fol-

lowing:

ρ̂(t)AB =
1

4

[
(1 + c3) |e, e〉 〈e, e| ⊗ ρ̂+,+,+,+

m + (c1 − c2)C2
+,+ |e, e〉 〈g, g| ⊗ ρ̂+,+,−,−

m

+ (1− c3) |e, g〉 〈e, g| ⊗ ρ̂+,−,+,−
m + (c1 + c2)C2

+,− |e, g〉 〈g, e| ⊗ ρ̂+,−,−,+
m

+ (c1 + c2)C2
−,+ |g, e〉 〈e, g| ⊗ ρ̂−,+,+,−m + (1− c3) |g, e〉 〈g, e| ⊗ ρ̂−,+,−,+m

+ (c1 − c2)C2
−,− |g, g〉 〈e, e| ⊗ ρ̂−,−,+,+m + (1 + c3) |g, g〉 〈g, g| ⊗ ρ̂−,−,−,−m

]
(6.10)

above we defined the mechanical operator as (ρ̂a,b,c,dm = ρ̂a,b,c,dm (t)):

ρ̂a,b,c,dm (t) =
∣∣ΦA

a (t),ΦB
b (t̃)

〉 〈
ΦA
c (t),ΦB

d (t̃)
∣∣ (6.11)
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here, {a, b, c, d} can take the symbols {+,−}.

6.2 Dynamics of the Two-Qubit Correlations

To have access to the qubit evolution one traces over the degrees of freedom of both

oscillators in Eq. 6.10, hence the reduced density matrix results

ρ̂(t)ABq =
1

4

[
(1 + c3) |e, e〉 〈e, e|+ (c1 − c2)C2

+,+φ
A
−,+φ

B
−,+ |e, e〉 〈g, g|

+ (1− c3) |e, g〉 〈e, g|+ (c1 + c2)C2
+,−φ

A
−,+φ

B
+,− |e, g〉 〈g, e|

+ (c1 + c2)C2
−,+φ

A
+,−φ

B
−,+ |g, e〉 〈e, g|+ (1− c3) |g, e〉 〈g, e|

+ (c1 − c2)C2
−,−φ

A
+,−φ

B
+,− |g, g〉 〈e, e|+ (1 + c3) |g, g〉 〈g, g|

]
(6.12)

where we have used Tr (|α1〉 〈α2|) = 〈α2|α1〉, hence φA±,∓ = 〈ΦA
±(t)|ΦA

∓(t)〉, and

φB±,∓ = 〈ΦB
±(t̃)|ΦB

∓(t̃)〉.

First let us compute the entropic quantum discord, QD(ρ̂q) (see Section 5.1 for

further details), defined as the difference between the mutual information I(ρ̂q),

and the classical correlation C(ρ̂q).

QD(ρ̂ABq ) = S(ρ̂Aq ) + S(ρ̂Bq )− S(ρ̂ABq )−max
{Π̂k}

[S(ρ̂Aq )− S(ρ̂q|{Π̂k})]. (6.13)

To compute the above Eq. 6.13, we require both the associated von Neumann en-

tropies {S(ρ̂Aq ), S(ρ̂Bq ), S(ρ̂ABq )} as well as the quantum conditional entropy defined

by (see Chapter 5)

S(ρ̂q|{Π̂k}) =
∑
k=1,2

pkS(ρ̂A(k)
q ), (6.14)

where, ρ̂
A(k)
q is:

ρ̂A(k)
q =

1

pk
(Î⊗ Π̂k)ρ̂q(Î⊗ Π̂k), (6.15)

above, pk is the probability (pk = Tr[(Î ⊗ Π̂k)ρ̂q(Î ⊗ Π̂k)]), and {Π̂k} corresponds

to a complete set of projectors pre-formed locally on the B-subsystem defined by :

Π̂k = |πk〉 〈πk|, corresponding to a qubit rotation to cover all possible outcomes

π1 = cos θ |e〉+ eiµ sin θ |g〉 , (6.16)

π2 = e−iµ sin θ |e〉 − cos θ |g〉 , (6.17)
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where the angles vary between 0 ≤ θ ≤ 2π, and 0 ≤ µ ≤ 2π.

It is straightforward to obtain the von Neumann entropy for the reduced operators

S(ρ̂Aq ) = S(ρ̂Bq ) = 1. Moreover,

ρ̂A(1)
q =

1

2

[
(1 + cos(2θ)c3) |e〉 〈e|+ f(µ, θ) |e〉 〈g|

+ h(µ, θ) |g〉 〈e|+ (1− cos(2θ)c3) |g〉 〈g|
]

(6.18)

ρ̂A(2)
q =

1

2

[
(1− cos(2θ)c3) |e〉 〈e| − f(µ, θ) |e〉 〈g|

− h(µ, θ) |g〉 〈e|+ (1 + cos(2θ)c3) |g〉 〈g|
]
. (6.19)

where,

f(µ, θ) = sin θ cos θ[(c1 − c2)C2
+,+φ

A
−,+φ

B
−,+e

iµ + (c1 + c2)C2
+,−φ

A
−,+φ

B
+,−e

−iµ],

h(µ, θ) = sin θ cos θ[(c1 + c2)C2
−,+φ

A
+,−φ

B
−,+e

iµ + (c1 − c2)C2
−,−φ

A
+,−φ

B
+,−e

−iµ].

(6.20)

To calculate the quantum conditional entropy, we notice that the eigenvalues for

the density matrices ({ε(k)
1,2}, k = 1, 2) in Eqs. 6.18-6.19 are equivalent, and they

correspond to:

ε
(k)
1,2 =

1

2

[
1± 1

2

√
2(c2

3 + 2f(µ, θ)h(µ, θ) + c2
3 cos 4θ)

]
=

1

2
[1± Λ(µ, θ)] . (6.21)

For instance, ε
(2)
1 stands for the first eigenvalue for ρ̂

A(2)
q . Moreover, we can simplify

the quantum conditional entropy expression as following:

S(ρ̂q|{Π̂k}) = −1

2
[1 + Λ(µ, θ)] log2

[
1

2
(1 + Λ(µ, θ))

]
− 1

2
[1− Λ(µ, θ)] log2

[
1

2
(1− Λ(µ, θ))

]
= F(µ, θ). (6.22)

Therefore, the classical correlation can be written as : C(ρ̂q) = max
{Π̂k}

[S(ρ̂Aq ) −

S(ρ̂q|{Π̂k})] = 1 − min
{µ,θ}

[F(µ, θ)]. Since the above function F(µ, θ) is a monotoni-

cally decreasing function, we can obtain the minimal value of (F(µ, θ)) maximizing
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the value of Λ(µ, θ), this imply to optimize the angles {µ, θ} in the expression:

c2
3 + 2f(µ, θ)h(µ, θ) + c2

3 cos 4θ.

Finally, we can give the following expression for the classical correlation:

C(ρ̂q) =
∑
j=1,2

1

2

[
1 + (−1)jm(t)

]
log2

[
1

2
(1 + (−1)jm(t))

]
(6.23)

being m(t) = max
{µ,θ}

[Λ(µ, θ)]. Therefore, the quantum discord reads as:

QD(ρ̂q) = 2 +

4∑
i=1

λilog2λi −
∑
j=1,2

1

2

[
1 + (−1)jm(t)

]
log2

[
1

2
(1 + (−1)jm(t))

]
(6.24)

where λi are the eigenvalues of the reduced qubit density matrix in Eq. 6.12, they

can be easily found as:

λ1,2 =
1

4

(
1− c3 ± |φA−,+φB−,+(c1 + c2)|

)
, (6.25)

λ3,4 =
1

4

(
1 + c3 ± |φA−,+φB−,+(c1 − c2)|

)
. (6.26)

Before presenting the main results of the qubit-qubit correlations, it is important

to emphasize that, the qubit dynamics can be reported with only one mechanical

oscillator. In other words, one of the (scaled) qubit-mechanics coupling can be

zero e.g, kB = 0 [He2013]. However, our motivation to consider two oscillators is

closely related with the open quantum case where both oscillators will be affected

by mechanical energy losses, and therefore both subsystems will suffer detrimental

effects due to the contact with their surroundings. Furthermore, it is of our interest

to study the symmetry of the oscillators, as in a realistic setup the mechanical

angular frequencies there will be always different Ω̃m 6= 1.

In Fig. 6.2 we compute the quantum discord for an initial qubit configuration

where c1 = 1, and c2 = −c3. We consider the dynamics for different qubit-oscillator

coupling strength kA = 0.5 and kB = 0.1, both achievable under current technology;

the coherent amplitudes were set as αA = 2 and αB = 1, and we consider a slightly

different mechanical oscillators Ω̃m = 0.9. This particular initial condition for the

qubit c1 = 1, and c2 = −c3 give us a wide region where sudden transitions appears

in the quantum discord dynamics. Additionally, the election both of the coherent

amplitudes as well as the qubit-mechanics coupling do not gravitate in the quantum
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sudden behavior (nor the angular frequencies for the oscillators). However, it has

been shown that the particular Bell-diagonal type for the qubit evolution with

initial parameters {ci} is strongly susceptible to exhibit quantum sudden changes

[Lang2010].

Figure 6.2: Top panel shows the quantum discord as function of c3 and t with
kA = 0.5; Bottom panel, quantum discord as a function of kA and t with c3 =
0.7. Other parameters are: Ω̃ = 0.9, kB = 0.1, c1 = 1, c2 = −0.7, and the
coherent amplitudes αA = 2, αB = 1. In some temporal regions the freezing of
QD is achieved, which is strongly depending on c3 and kA. In this non-dissipative

scenario the periodicity of the quantum discord can be controlled by Ω̃.
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In the top panel of Fig. 6.2 we plot the quantum discord as a function of the

parameter c3 and time. Here, for a modest value of c3 the quantum discord plateau

is larger in contrast to higher values of c3. Also, the transitions are more abrupt

when 0.5 ≤ c3 ≤ 1. In the bottom panel of Fig. 6.2 we illustrate the dependence

of the quantum discord as function of kA and t —for a fixed kB = 0.1. As seen

in this figure, there is a region in which freezing of quantum correlations can be

obtained [You2012, Aaronson2013]. This dynamics can be understood as following,

for kA = 0 and kB 6= 0, we have the situation illustrated in Ref. [He2013], where the

quantum discord remain constant. In fact, for a qubit-mechanics coupling threshold

kAthres ≤ 1/4, kB = 0.1 the freezing of quantum discord is achieved —corresponding

to its initial QD. For values higher than kAthres > 1/4 the quantum discord shows a

time plateau (which decreases as kA increases) followed by sudden transitions, i.e.,

∂QD(kA, t)/∂t|kA does not exist.

The role of Ω̃m is illustrated in Fig. 6.3. As seen, for mechanical oscillators with

different angular frequencies, i.e., Ω̃m 6= 1 the quantum discord shows a decreasing

dynamics. Interestingly, also a strong qubit-mechanics destroy the quantum cor-

relations (for example for kA = 1), weaker values are required not only to obtain

a high value in the QD, but also to exhibits quantum sudden transitions (see Fig.

6.3-a). In the bottom panel of Fig. 6.3 we show the dynamics for larger times. It is

important to pointed out that, for identical mechanical objects Ω̃m = 1 the period

corresponds to 2π, whereas for Ω̃m 6= 1 the period become larger, in fact, for the

case represented in Fig. 6.3 the relation is exactly T = 2π/Ω̃m, being T the period

of the quantum discord generated in time.

6.3 Dissipative Dynamics

To give a more realistic scenario of our work we consider the open quantum case;

where we consider the detrimental effects of the oscillators in contact with a ther-

mal reservoir at zero temperature. The master equation under the Markov-Born

approximation is:

d

dt
ρ̂(t) = −i

[
Ĥint, ρ̂(t)

]
+

Γm
2

[
2âAρ̂(t)â†A − â

†
AâAρ̂(t)− ρ̂(t)â†AâA

+ 2âB ρ̂(t)â†B − â
†
B âB ρ̂(t)− ρ̂(t)â†B âB

]
. (6.27)
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Figure 6.3: Quantum discord as a function of time for Ω̃m = 0.1 and two different
qubit-oscillator coupling kA = 1 and kA = 0.5. As seen above, for non-identical
mechanical oscillators and strong coupling qubit-oscillator value, the quantum
discord does not exhibit quantum sudden transitions nor freezing. In Fig. 6.3-b)

we show the same dynamics for larger times.

To give a full analytical solution of Eq. 6.3 we will follow the alternate-step pro-

cedure found in Ref. [Bose1997], and studied in detail in Chapter 3. Let us start

from the following initial condition:

ρ̂(0) = ρ̂q(0)⊗
∣∣αA〉 〈αA∣∣⊗ ∣∣αB〉 〈αB∣∣ . (6.28)
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For simplicity, we consider αA = αB = 0. In this case, the full density matrix is:

ρ̂(t)AB =
1

4

[
(1 + c3) |e, e〉 〈e, e| ⊗ %̂(Γm, t)

+,+,+,+
m

+ (c1 − c2) |e, e〉 〈g, g| ⊗ %̂(Γm, t)
+,+,−,−
m

+ (1− c3) |e, g〉 〈e, g| ⊗ %̂(Γm, t)
+,−,+,−
m

+ (c1 + c2) |e, g〉 〈g, e| ⊗ %̂(Γm, t)
+,−,−,+
m

+ (c1 + c2) |g, e〉 〈e, g| ⊗ %̂(Γm, t)
−,+,+,−
m

+ (1− c3) |g, e〉 〈g, e| ⊗ %̂(Γm, t)
−,+,−,+
m

+ (c1 − c2) |g, g〉 〈e, e| ⊗ %̂(Γm, t)
−,−,+,+
m

+ (1 + c3) |g, g〉 〈g, g| ⊗ %̂(Γm, t)
−,−,−,−
m

]
(6.29)

where, following with the previous definitions, i.e., {a, b, c, d} can take the symbols

{+,−}:

%̂(Γm, t)
a,b,c,d
m =

∣∣ΦA
a (Γm, t)

〉 〈
ΦA
c (Γm, t)

∣∣
⊗

∣∣ΦB
b (Γm, t̃)

〉 〈
ΦB
d (Γm, t̃)

∣∣ (6.30)

and

ΦA
±(Γm, t) =

±ikA

i+ Γm
2

(
1− e−(i+ Γm

2
)t
)

(6.31)

ΦB
±(Γm, t̃) =

±ikB

i+ Γm
2

(
1− e−(i+ Γm

2
)t̃
)
. (6.32)

As shown in Chapter 3, for the A subsystem we get

DA
±,∓(Γm, t) =

∫ t

0
|ΦA
±(Γm, t

′)|2 + |ΦA
∓(Γm, t

′)|2 − 2ΦA
±(Γm, t

′)∗ΦA
∓(Γm, t

′)dt′.

(6.33)

It is straightforward to show that DA
+,−(Γm, t) = DA

−,+(Γm, t) ≡ DA, thus:

DA =
16(kA)2

(Γ2
m + 4)2

((
Γ2
m + 4

)
t+

(
Γ2
m + 4

) (
1− e−Γmt

)
/Γm (6.34)

+ 4e−
1
2

(Γmt)(Γm cos(t)− 2 sin(t))− 4Γm

)
. (6.35)
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The same dynamics follows for the oscillator in the subsystem B. Therefore, we only

need to change t → t̃, and A → B accordingly. In the following, we shall consider

equal losses for both oscillators, i.e., D = DA + DB. Thus the open quantum

dynamics reads as:

ρ̂(t)AB =
1

4

[
(1 + c3) |e, e〉 〈e, e| ⊗ %̂(Γm, t)

+,+,+,+
m (6.36)

+ (c1 − c2) |e, e〉 〈g, g| ⊗ e−
Γm
2
D%̂(Γm, t)

+,+,−,−
m

+ (1− c3) |e, g〉 〈e, g| ⊗ %̂(Γm, t)
+,−,+,−
m

+ (c1 + c2) |e, g〉 〈g, e| ⊗ e−
Γm
2
D%̂(Γm, t)

+,−,−,+
m

+ (c1 + c2) |g, e〉 〈e, g| ⊗ e−
Γm
2
D%̂(Γm, t)

−,+,+,−
m

+ (1− c3) |g, e〉 〈g, e| ⊗ %̂(Γm, t)
−,+,−,+
m

+ (c1 − c2) |g, g〉 〈e, e| ⊗ e−
Γm
2
D%̂(Γm, t)

−,−,+,+
m

+ (1 + c3) |g, g〉 〈g, g| ⊗ %̂(Γm, t)
−,−,−,−
m

]
. (6.37)

As before, to have access to the qubit dynamics, we proceed to trace off the degrees

of freedom of the oscillators

ρ̂(t)AB =
1

4

[
(1 + c3) |e, e〉 〈e, e|+ (1− c3) |e, g〉 〈e, g|

+ (1− c3) |g, e〉 〈g, e|+ (1 + c3) |g, g〉 〈g, g|

+ e−
Γm
2
D
{

(c1 − c2) |e, e〉 〈g, g|φA−,+(Γm, t)φ
B
−,+(Γm, t)

+ (c1 + c2) |e, g〉 〈g, e|φA−,+(Γm, t)φ
B
+,−(Γm, t)

+ (c1 + c2) |g, e〉 〈e, g|φA+,−(Γm, t)φ
B
−,+(Γm, t)

+ (c1 − c2) |g, g〉 〈e, e|φA+,−(Γm, t)φ
B
+,−(Γm, t)

}]
.

With the density matrix in Eq. 6.38, we can obtain all the ingredients to compute

the quantum discord for the dissipative case. Firstly, we can calculate the mutual

information and obtain its eigenvalues:

λΓm
1,2 =

1

4

(
1 + c3 ± e−

Γm
2
D|(c1 − c2)φA−,+(Γm, t)φ

B
−,+(Γm, t)|

)
(6.38)

λΓm
3,4 =

1

4

(
1− c3 ± e−

Γm
2
D|(c1 + c2)φA−,+(Γm, t)φ

B
−,+(Γm, t)|

)
. (6.39)
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The classical correlation for the open case is:

ρ̂A(1)
q (Γm, t) =

1

2

[
(1 + cos(2θ)c3) |e〉 〈e|+ f̄(µ, θ) |e〉 〈g|

+ h̄(µ, θ) |g〉 〈e|+ (1− cos(2θ)c3) |g〉 〈g|
]

ρ̂A(2)
q (Γm, t) =

1

2

[
(1− cos(2θ)c3) |e〉 〈e| − f̄(µ, θ) |e〉 〈g|

− h̄(µ, θ) |g〉 〈e|+ (1 + cos(2θ)c3) |g〉 〈g|
]
.

(6.40)

where,

f̄(µ, θ) = e−
Γm
2
DφA−,+(Γm, t)e

iµ sin θ cos θ
[
(c1 − c2)

× φB−,+(Γm, t) + (c1 + c2)φB+,−(Γm, t)e
−2iµ

]
,

h̄(µ, θ) = e−
Γm
2
DφA+,−(Γm, t)e

iµ sin θ cos θ
[
(c1 + c2)

× φB−,+(Γm, t) + (c1 − c2)φB+,−(Γm, t)e
−2iµ

]
(6.41)

with eigenvalues

ε
Γm(k)
1,2 =

1

2

[
1± 1

2

√
2(c2

3 + 2f̄(µ, θ)h̄(µ, θ) + c2
3 cos 4θ)

]
=

1

2

[
1± Λ̄(µ, θ)

]
. (6.42)

Finally, we have all the elements to compute the quantum discord in presence of

detrimental effects from the mechanical oscillators. In Fig. 6.4 we have illustrated

the dynamics of the quantum discord as a function of time. The effect of a modest

damping rate Γm = 0.01 does not gravitate in the sudden changes nor in the time

plateau generated in the quantum discord. Other (stronger) values for Γm, such

as Γm − 0.1 and Γm show a semi-damped and a strong-damped behavior of the

quantum discord, respectively.
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Figure 6.4: Quantum discord as a function of time for the quantum open case,
where we have considered damping of the mechanical oscillators. Other values are

: c1 = 1, c2 = −0.7, c3 = 0.7, kA = 0.5, kB = 0.1, Ω̃m = 0.9, αA = αB = 0.

6.4 Concluding remarks

In this ongoing work we have demonstrated a few interesting effects of the quantum

correlations in a quantum network of two systems with atomic-mechanical oscil-

lator interaction. In general we studied the dynamics of classical and quantum

correlations measured by entropic quantum discord for a two-qubit system initially

prepared in Bell-diagonal states. As result we found that the quantum discord cal-

culated by its original entropic measure evidence the process of freezing and sudden

decoherence in time with some periodicity.

Furthermore, witnessing the sudden changes on the quantum discord remains as

an open question for further investigation. In particular, in this feasible atomic-

mechanical quantum system we show illustratively some interesting effects with

possibilities to monitor the quantum correlations by tuning the physical parameters

of the model - important tools for applications in quantum information science.



Chapter 7

Summary and Outlook

“At the heart of quantum mechanics lies the superposition principle”

—First Chapter of The Principles of Quantum Mechanics by P. A. M.

Dirac (1984).

Perhaps the most fascinating feature of quantum theory is quantum entanglement.

A quantum property which allow us to entangle or correlate two parties regardless

the distant between them. Subsequently, this “spooky action at a distance” (in

Einstein’s words) was a crucial aspect to demonstrate the non-locality of quantum

mechanics [Bell1964]. Far from being just a theoretical curiosity, quantum entan-

glement also can be used as a resource for quantum information purposes. In fact,

there are some tasks that can only be realized within quantum processing, for in-

stance, quantum teleportation and quantum cryptography. To accomplish those

protocols it is required to manipulate highly entangled states. However quantum

entanglement is a fragile resource susceptible to decohere in presence of thermal

fluctuations or other sources of decoherence. To solve this problem, we can pro-

tect or enhance the entanglement against its environment, or we can increase it

using concentration or distillation protocols. Both cases are heavily investigated

in Chapters 2 and 3, respectively. Another key element of quantum information is

the propagation of quantum entanglement over long distances, the so-called quan-

tum networks. In general, two (or more) nodes are coupled through quantum and

classical channels, where matter-like systems play the role as nodes due to their

long coherence and storage times, meanwhile “flying qubits” or optical photons in

optical fibres carry the information coherently between them. Essentially, quantum

networking is our motivation for Chapters 4, 5, and 6. However, in the last two, we
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also investigate two theoretical aspects of quantum mechanics, namely whether the

quantum entanglement can be driven by thermal environments, and quantum sud-

den transitions in the quantum discord. In the following, we will briefly summarize

some important points of the research presented here.

We present the stabilization of quantum entanglement in a non-linear qubit-oscillator

system in Chapter 2. Particularly, we have investigated a spin qubit coupled to a

quartic non-linear oscillator (NLO) through a conditional displacement Hamilto-

nian. This type of interaction has been heavily investigated under linear approxi-

mations, where basically the centre of the oscillator’s potential is shifted conditioned

on the eigenstate of the qubit. Some experimental implementations, together with

a wide range of qubit-oscillator coupling was described in Chapter 2. Through-

out that Chapter we have used two relevant parameters, namely, the qubit-NLO

coupling k and the non-linearity δ. As a starting point, we solved the system dy-

namics analytically for the case δ = 0. Here, the entanglement generation is due

to the superposition principle of the hybrid system and it shows a periodic dynam-

ics. On the other hand, when δ 6= 0 and in the weak coupling regime (k � 1) we

analytically show that a new Kerr-like term appears in the dynamics leading to i)

quadrature squeezing of the oscillator state, ii) the suppression of the entanglement

decay by the appearance of a stabilization region, and iii) an enhancement of the

entanglement negativity compared to the linear case of δ = 0.

The most interesting case corresponds to the strong coupling regime (k ≈ 0.5),

when we see that two- and four-phonon transitions play a relevant role both in the

entanglement stabilization and in its enhancement. In particular, the entanglement

negativity can reach its maximal value by virtue of the orthogonalization of the

oscillator states relevant to the present dynamics. Furthermore, solving numerically

the corresponding master equation, we have shown that these effects remain robust

to the presence of decoherence in the oscillator system.

In addition, we have presented a section where the violation of the Bell function is

achieved. We used a dichotomic measurement for the spin qubit, whereas an on/off

measurement was considered for the oscillator’s degrees of freedom. Perhaps, the

most challenging part was the maximization of the Bell function, as we do not have

the full analytical expression for the strong coupling regime —because the quartic

undriven Hamiltonian does not have an analytical solution, it is hard to consider all

the possible outcomes for the oscillator’s field. However, under some approximations

we can obtain a value above the classical limit in the Bell function.
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Other numerics made in that Chapter were performed in different ways. For in-

stance, MATLAB was useful to compute the dynamics for a truncated Fock space,

and also using the Runge-Kutta algorithm for the quantum open systems case. Ad-

ditionally, we used a quantum optics toolbox written in Python (QuTiP) [QuTiP],

where we obtained the same results within a tolerance of approximately 10−4 using

Backward Differentiation Formula “BDF” as the integration method.

As an outlook for this chapter, it may be interesting to recast the problem as a

means to measure nonlinearities through a quantum probe – ideally a Ramsey type

probe where only the spin is measured.

As mentioned above, quantum concentration/distillation is crucial for quantum net-

working purposes. Here, in Chapter 3 we have presented a first application of

optomechanics in entanglement concentration. Our proposal uses an indirect mea-

surement of the photon number of the electromagnetic field inside a cavity through

the position measurement of a mechanical element coupled to it. For an optimal

strength of the optomechanical coupling, the photon number is measured weakly or

“unsharply” and this results in entanglement distillation conditioned to the position

outcome. On the other hand, the position measurements of a mechanical oscillator

can be highly precise, especially as we are not concerned about back-reaction as

the measurement is at the end of our protocol (the oscillator can be reinitialized

before performing distillation again). Other optimizations of our protocol may be

attempted such as multiple modes in the cavity. Furthermore, we have considered

only the detrimental effects of the light injection into the cavity via a beam splitter

operations, as well as the damping of the mechanical object. However, to consider

an even more realistic scenario we need to consider the photon leakage from the

cavity.

The state obtained through our protocol is non-Gaussian, and thus it can serve

as the first step of Gaussification [Browne2003b, Campbell2012] (see Section 3.3.2)

— which can enhance its entanglement further and act on multiple copies — or,

more generally, for quantum computation purposes [Menicucci2006]. Moreover, the

procedure outlined here could be useful also in a quantum repeater scenario for long

distance communication, considering that the extraction of the distilled state from

the optical cavity is simplified in comparison to settings where the two distilled

modes are trapped in two cavities (one node is always freely propagating in our

case). However, the generalization to scalable repeaters is a separate topic for the

future. The attractiveness of using optomechanics could be in the possibility of

using integrated technology in the nodes of repeaters.
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In Chapter 4, stimulated by quantum networks we present a feasible light-matter in-

terfacing, as well as qubit-qubit quantum entanglement between two distant nodes.

The physical model is composed of a parametric coupling of the qubit with a me-

chanical object, in conjunction with the radiation pressure coupling of the same

object with light. In contrast to previous similar schemes based on exchange of en-

ergy excitations and linearized Hamiltonians in presence of an external drive (i.e.,

solving the Langevin’s equations), we consider here a dispersive Hamiltonian (in the

sense that both the qubit, as well as the cavity excitations remain constant through-

out the dynamics), therefore it is not obvious that qubit-cavity entanglement will

be generated dynamically. Furthermore, we exploit the trilinear radiation pressure

interaction and the qubit-mechanical strength without further approximations. Our

results shown to be quite promising under low qubit-mechanics and qubit-light cou-

pling strength, for experimental values shown in Chapters 2 and 3 respectively.

For instance, for optimal values α = 1, n̄ = 0.1, λ/ωm = 0.5, g/ωm = 0.1 a high

entanglement can be achieved for ωmt = 2π (N → 1).

Furthermore, for some particular coupling values, we can also generate multicom-

ponent Schrödinger-cat states for the cavity field when the qubit is measured. In

practice, the advantage of a qubit projection is that it can be performed much

more faithfully in comparison to a continuous position degree of freedom as shown

previously, e.g., see Ref. [Bose1997].

Towards the remote qubit-qubit quantum entanglement between nodes. First, we

shown how a partial qubit-fibre entanglement for an optimal cavity-fibre coupling

can be achieved, where we have considered the short-fibre limit —only one mode

of the fibre field is resonant with cavity mode. Additionally, we consider a sec-

ond initial condition for the single cavity mode, |ψ(0)〉 ≈ |0〉 − |1〉. Although this

state is harder to prepare as a cavity mode experimentally, in contrast to a coher-

ent state (i.e., Laser state), we use the initial Fock number state as we achieve a

higher qubit-fibre entanglement. Secondly, we solved the master equation consid-

ering photon losses from the cavities, as well as energy losses from the mechanical

object. The results shown that qubit-qubit entanglement can be generated between

a generic and an atomic qubit. For modest losses Γm = κc = 10−3, the qubit-fibre

entanglement remain robust. Other scenarios can be extended, for example, within

on-chip technologies we can eliminate the fibre and consider cavities directly cou-

pled. Furthermore, an identical second tripartite node can be considered instead of

a qubit-light Jaynes-Cummings Hamiltonian —situation not considered here mainly

for its complexity and is left as an issue to address in the future.
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Subsequently, we investigate in Chapter 5 a very interesting effect within the Born-

Markov microscopic master equation (MME) framework. Essentially, our physical

system corresponds to two distant two-level atoms trapped in fibre-coupled cavi-

ties. In general, thermal effects on the relevant system have been usually treated

as a destructive source for quantum correlations —in fact, this is the case for all

of our research reported in the previous Chapters. However, a counterintuitive

dynamics was found a few years ago [Krauter2011, Muschik2011, Kastoryano2011,

Memarzadeh2011] where thermal fluctuations might indeed induce quantum corre-

lations.

To study the quantum correlations driven by thermal fluctuations, we initially con-

sider that the qubit-fibre-cavities system starts from its ground state. As is known,

if we consider only the closed quantum system with no initial excitations, then no

quantum correlations will be generated in time. However, for an open quantum case

the situation may vary. In particular, the Born-Markov MME can be understood

as quantum jumps between eigenstates of the full system (Davies operators). Thus,

as the Lindbladian contributes to create photon excitations, the dissipation term

can be understood as an external drive.

This is an example that could give us a new insight into the effects of the system-

environment exchange versus the quantum correlations. From the analysis of the

obtained results, we conclude that the entanglement can be optimized by engineer-

ing the thermal bath of the fibre rather than the baths of each cavity, hence suggest-

ing that the “quasi-local” manipulations produce a modest effect on the generation

of entanglement. Furthermore, we found that our system evidences quantum corre-

lations quantified by quantum discord prior to the appearance of the entanglement.

Finally, the model discussed here could be experimentally implemented by using a

quantum non-demolition experiment in order to test the fibre-cavity field state and

evidences a sufficient high probability for a successful measurement.

Lastly, in Chapter 6 we present an ongoing investigation. Here, we have all the

ingredients to assess a quantum network of two systems with atomic-mechanical

oscillator interaction, where the interaction is of the type shown in Chapter 2. The

main difference with previous works is that in this case the qubits are initially

correlated in a Bell-diagonal form assisted by independent mechanical oscillators.

The role of the quantum harmonic oscillators is to assist the qubit evolution, in the

sense that they do not entangle with their respective qubits during the evolution.

Therefore, considering the open quantum case for the damping of the mechanical

objects, we can investigate the robustness of the qubits correlations.
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In general we studied the dynamics of classical and quantum correlations measured

by the entropic quantum discord for different physical conditions of the entire system

in order to control the generation, propagation and preservation of the correlations.

As a result we found that the quantum discord evidence the processes of freezing,

quantum sudden transitions and revivals in time —with some periodicity depending

on the symmetry of the oscillators.

To conclude, in this last chapter we presented a kind of atomic-mechanical quantum

system which evidence illustratively some interesting effects with possibilities to

monitor the quantum correlations by tuning the physical parameters of the model

- important tools for applications in quantum information science.
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Reichel, and P. Treutlein, Phys. Rev. Lett. 104, 143002 (2010).

[Jacobs1994] K. Jacobs, P. Tombesi, M. J. Collett, and D. F. Walls, Phys. Rev. A

49, 1961 (1994).

[Jiang2009] X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, and O. Painter, Opt. Express

17, 20911 (2009).

[Joshi2011] C. Joshi, M. Jonson, E. Andersson, and P. Öhberg, J. Phys. B: At. Mol.

Opt. Phys. 44, 245503 (2011).

[Kastoryano2011] M. J. Kastoryano, F. Reiter, and A. S. Sørensen, Phys. Rev. Lett.

106, 090502 (2011).

[Kaviani2014] H. Kaviani, C. Healey, M. Wu, R. Ghobadi and P. E. Barclay,

arXiv:1412.4431 (2014).

[Kim1998] M. S. Kim, G. Antesberger, C. T. Bodendorf and H.Walther, Phys. Rev.

A 58, R65 (1998).

[Kim2002] M. Kim, Journal of Modern Optics. 49, 10, p. 1739-1746 (2002).

[Kimble2008] H. J. Kimble, Nature 453, 1023 (2008).

[Knill1998] E. Knill and R. Laflamme, Phys. Rev. Lett. 81, 5672 (1998).

[Kolkiran2006] A. Kolkiran and G. S. Agarwal, arXiv:0608621v2 (2006).

[Kolkowitz2012] S. Kolkowitz, A. C. Bleszynski Jayich, Q. P. Unterreithmeier, S.

D. Bennett, P. Rabl, J. G. E. Harris, and M. D. Lukin, Science 335 (6076),

1603-1606 (2012).

[Krauter2011] H. Krauter, C. A. Muschik, K. Jensen, W. Wasilewski, J. M. Pe-

tersen, J. I. Cirac and E. S. Polzik, Phys. Rev. Lett. 107, 080503 (2011).



138

[Kronwald2013] A. Kronwald, M. Ludwig, and F. Marquardt, Phys. Rev. A 87,

013847 (2013).

[Kryszewski2008] S. Kryszewski and J. Czechowska-Kryszk, arXiv:0801.1757v1

(2008).

[Kurochkin2014] Y. Kurochkin, A. S. Prasad, and A. I. Lvovsky, Phys. Rev. Lett.

112, 070402 (2014).

[LaHaye2004] M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, Science,

304, 74 (2004).

[Lang2010] M. D. Lang and C. M. Caves, Phys. Rev. Lett. 105, 150501 (2010).

[Law1995] C. K. Law Phys. Rev. A 51, 2537 (1995).

[Leonhardt-Book] Ulf Leonhardt, in Measuring the Quantum State of Light, (Cam-

bridge University Press) (2005).

[Lewenstein2013] M. Lewenstein, A. Sanpera, and V. Ahufinger, Ultracold Atoms

in Optical Lattices: Simulating quantum many-body systems, Oxford U. Press

(2013).

[Liao2012] J.-Q. Liao, H. K. Cheung, and C. K. Law, Phys. Rev. A 85 025803

(2012).

[Liao2014] J.-Q. Liao and F. Nori, Scientific Reports 4, 6302 (2014).

[Lu2011] X.-M. Lu, J. Ma, Z. Xi, and X. Wang, Phys. Rev. A 83, 012327 (2011).

[Luo2008] S. Luo, Phys. Rev. A 77, 042303 (2008).

[Ma2007] R. Ma, A. Schliesser, P. Del’Haye, A. Dabirian, G. Anetsberger, and T.

Kippenberg, Opt. Lett. 32, 2200 (2007).

[Machnes2012] S. Machnes, J. Cerrillo, M. Aspelmeyer, W. Wieczorek, M. B. Ple-

nio, and A. Retzker, Phys. Rev. Lett. 108,153601 (2012).

[Makhlin2001] Y. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73, 357

(2001).

[Mancini1994] S. Mancini and P. Tombesi, Phys. Rev. A 49, 4055 (1994).

[Mancini1997] S. Mancini, V. I. Man’ko, and P. Tombesi, Phys. Rev. A 55, 3042

(1997).



139

[Mancini2002] S. Mancini, V. Giovannetti, D. Vitali and P. Tombesi, Phys. Rev.

Lett. 88, 120401 (2002).

[Mancini2004] S. Mancini and S. Bose, Phys. Rev. A 70, 022307 (2004).

[Maragkou2015] M. Maragkou, Nature Materials 14, 468 (2015).

[Marshall2003] W. Marshall, C. Simon, R. Penrose and D. Bouwmeester, Phys.

Rev. Lett. 91, 159903 (2003).

[Memarzadeh2011] L. Memarzadeh and S. Mancini, Phys. Rev. A 83, 042329

(2011).

[Menicucci2006] N.C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T.C. Ralph,

M.A. Nielsen, Phys. Rev. Lett. 97, 110501 (2006).

[Mertz1993] J. Mertz, O. Marti, and J. Mlynek, Appl. Phys. Lett. 62, 2344 (1993).

[Mintert2001] F. Mintert and C. Wunderlich, Phys. Rev. Lett. 87, 257904 (2001).

[Montenegro2011] V. Montenegro and M. Orszag, J. Phys. B: At. Mol. Opt. Phys.

44 154019 (2011).

[Murch2008] K. W. Murch, K. L. Moore, S. Gupta, and D. M. Stamper-Kurn,

Nature Phys. 4, 561 (2008).

[Muschik2011] C. A. Muschik, E. S. Polzik, and J. I. Cirac, Phys. Rev. A 83, 052312

(2011).

[Nizamani2011] A. Nizamani and W. K. Hensinger, Appl. Phys. B 106, 327 (2011).

[Nunnenkamp2011] A. Nunnenkamp, K. Borkje, and S. M. Girvin, Phys. Rev. Lett.

107, 063602 (2011).

[Olivares2003] S. Olivares, M.G.A. Paris, R. Bonifacio, Phys. Rev. A 67, 032314

(2003).

[Ollivier2001] H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901 (2001).

[Ong2011] F. R. Ong, M. Boissonneault, F. Mallet, A. Palacios-Laloy, A. Dewes,

A. C. Doherty, A. Blais, P. Bertet, D. Vion, and D. Esteve, Phys. Rev. Lett.

106, 167002 (2011).
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