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Abstract 
 

Peripheral nerve injuries in adults can trigger neuropathic pain which coincides 

with alterations in dorsal horn neuronal activity and glial cells residing in the 

dorsal horn, and infiltrating T-lymphocytes. These cells synthesise and release 

pro-inflammatory mediators that can directly and indirectly sensitize dorsal 

horn neurones and contribute to neuropathic pain. Neuropathic pain is rare in 

infants and studies presented in this thesis show that a spared nerve injury 

(SNI) at postnatal day (P) 10 does not result in pain-like behaviour but triggers 

an anti-inflammatory immune response in the dorsal horn, not observed in 

nerve injured adults. However, if infant SNI treated animals are intrathecally 

administered with the pro-inflammatory mediator tumor necrosis factor (TNF) 

or  lipopolysaccharide-activated microglia they develop pain-like behaviour 

while blockade of anti-inflammatory activity after infant SNI ‘unmasks’ 

neuropathic pain-like behaviour. Thus, nerve injury induced pain-like 

hypersensitivity in infants is actively suppressed by dominant anti-

inflammatory neuro-immune activity.  The anti-inflammatory response can also 

be evoked by direct C-fibre nerve stimulation in the infant, but not in adult 

rodents.   

However, mechanical hypersensitivity does eventually develop following early 

life nerve injury in the rat at adolescence (Vega-Avelaira et al., 2012). 

Longitudinal studies presented in this thesis indicate that hypersensitivity 

emerges in response to not only mechanical stimulation but also following 

innocuous and noxious cold stimulation of the hind paw, and contralateral 

weight bearing. The emergence of behavioural hypersensitivity at adolescence 

coincides with an increase in spontaneous and evoked- activity of wide 

dynamic dorsal horn neurons, that is absent in sham controls. In addition, the 

immune response in the dorsal horn switches from an anti-inflammatory 

response to pro-inflammatory, characterised by an increase in the expression 

of TNF and Brain-derived neurotrophic factor. This explains why neuropathic 

pain is rare in infants, but complex regional pain syndromes can emerge, for 

no observable reason at adolescence. 
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1.1 Introduction 

The perception of pain is essential for survival and to avoid harm. It is defined 

by the International Association for the Study of Pain (IASP) as ‘an unpleasant 

sensory and emotional experience associated with actual or potential tissue 

damage, or described in terms of such damage’. This suggests that pain is an 

experience with both sensory and affective components to the physiological 

sensation of noxious, or potentially noxious stimuli. The term nociception is 

defined by IASP as ‘the neural process of encoding noxious stimuli’. Therefore 

nociceptive pain occurs in the presence of an acute noxious stimulus and 

serves a protective role preventing against injury by generating both a reflex 

withdrawal from the stimulus and an unpleasant sensation resulting in 

avoidance of the noxious stimuli, and is typically described in animal studies.  

In mammals the nociceptive system enables noxious or high threshold stimuli 

to activate high threshold primary sensory neurons, termed nociceptors (Fig 

1.1). Nociceptors transmit information about the noxious stimulus from the 

periphery to the dorsal horn spinal cord, the first point of integration in the 

central nervous system (CNS). Within the dorsal horn sensory information can 

be modulated by excitatory and inhibitory interneurons and descending 

pathways from the brain before it is transmitted onto higher brain centres 

where pain is perceived. Therefore, the modulation of sensory input in the 

dorsal horn spinal cord plays a key role in pain perception. Importantly 

nociceptive pain is typically short in duration and stops when noxious stimulus 

is removed such as upon tissue repair (Basbaum et al., 2009; Woolf and Ma, 

2007). 

The nociceptive system is also highly plastic and when noxious input is 

repeated or is particularly intense the nociceptive system can become 

sensitized so that the threshold for its activation is reduced and responses are 

amplified leading to behavioural hypersensitivity (Ji et al., 2003; Woolf and 

Salter, 2000; Woolf and Walters, 1991). In normal nociceptive processing 

these processes return to normal once the tissue has healed which is the case 

of inflammatory pain caused by inflammation associated with peripheral tissue 
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injury, which is not permanent and is the expression of ‘use-dependent’ 

synaptic plasticity triggered in the CNS by nociceptive input (Latremoliere and 

Woolf, 2009).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.1 The nociceptive system 

Nociceptors have specialised transduction molecules that generate inward currents in the 
nociceptor’s peripheral terminal in response to a noxious stimulus. If the current exceeds the 
threshold value an action potential is generated enabling the transmission of information from 
the periphery, centrally into the dorsal horn spinal cord. Sensory information maybe modulated 
in the dorsal horn by interneurons or by descending pathways before being relayed to higher 
centres of the brain. Adapted with permission from WebMD Scientific American® Medicine. 
1/1/2015 
 

Sensitization also underlies pathological pain states which can persist, even 

once the injury has healed, and therefore fails to serve a protective or useful 

biological role. Although inflammatory pain can develop into pathological pain, 

one key example is neuropathic pain which is pain caused by direct lesion of 

the nervous system such as following traumatic injury or surgical intervention 

(Clifford J Woolf and Mannion, 1999). Therefore, a painful insult leads to 

inflammation and an acute phase of ‘nociceptive pain’ followed by a recovery 

period, healing, and the return of function. In nerve injured patients’ pain can 

persist resulting in a state of chronic neuropathic pain characterised by 
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debilitating symptoms that can severely affect a patient’s quality of life (Woolf 

and Mannion, 1999).  

Neuropathic symptoms include both positive symptoms (hypersensitivity) 

which are often combined with hyposensitivity due to denervation. Patients 

may experience spontaneous pain (pain in the absence of noxious stimuli), 

allodynia (the reduction in the threshold required to elicit pain so that innocuous 

stimuli can produce pain) and hyperalgesia (enhanced amplitude and duration 

in response to noxious stimuli) (Baron et al., 2010; Scholz and Woolf, 2002; 

Von Hehn et al., 2012).  

Several animal models that mimic peripheral nerve injury have been 

developed to elucidate mechanisms underlying neuropathic pain (Bennett and 

Xie, 1988; Decosterd and Woolf, 2000; Ho Kim and Mo Chung, 1992; Seltzer 

et al., 1990). Much of the research suggests that the development and 

maintenance of chronic pain is an expression of neural plasticity in both the 

peripheral nervous system (PNS) i.e.  peripheral sensitization 

(hyperexcitability and sensitization of primary sensory afferents) and central 

nervous system (CNS) i.e. central sensitization (enhancement of excitatory 

synaptic transmission in the dorsal horn spinal cord) (Basbaum et al., 2009; 

Costigan et al., 2009; Gold and Gebhart, 2010; Ji et al., 2003; Latremoliere 

and Woolf., 2009; Von Hehn et al., 2012; Woolf and Salter., 2000; Porreca et 

al., 2002; Ruscheweyh et al., 2011). Most current pain management strategies 

that focus on dampening peripheral and central abnormal neuronal activity 

produce undesirable side-effects and lack efficacy (Baron et al., 2010; Varrassi 

et al., 2010; Kingery., 1997; Nikolajsen et al., 1997).  

The last decade has brought compelling evidence that neuropathic pain is not 

confined to just neuronal alterations but involves the activation of immune and 

immune like glial cells. For example, in the dorsal horn spinal cord, resident 

glial cells including microglia and astrocytes transform into a ‘pain related 

enhanced state’ and T-cell lymphocytes infiltrate into the dorsal horn. These 

cells release inflammatory cytokines, chemokines and growth factors that alter 

neuronal activity and contribute to neuropathic pain (Austin et al., 2012; Clark 

and Malcangio, 2012; McMahon and Malcangio, 2009; Taves et al., 2013; 

Tsuda et al., 2013; Xu et al., 2006).  
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In the infant, both animals and humans display clear acute pain responses to 

noxious stimuli and also develop pain hypersensitivity upon inflammation of 

the skin, joints and viscera (Andrews and Fitzgerald, 1994; Barr, 1998; 

Cornelissen et al., 2013; Fitzgerald, 1991; Fitzgerald et al., 1989; Hedo et al., 

1999; Lidow et al., 2001; Marsh et al., 1999; Ruda et al., 2000; Slater et al., 

2007; Thompson et al., 1995; Walker et al., 2003). However, infant’s exhibit 

lower thresholds and reflexes to noxious stimulation are un-coordinated and 

involve whole body movements (Andrews et al., 2002; Jennings and 

Fitzgerald, 1998) and studies into the postnatal development of the nociceptive 

pathway suggest that there are profound alterations in the nociceptive system 

in the first few weeks of life that underlie these baseline thresholds (Andrews 

et al., 2002; Andrews and Fitzgerald., 1999; Fitzgerald and Swett., 1983; 

Beggs et al., 2002).  

Despite infants displaying robust nociceptive responses neuropathic pain is 

rare in infants before the age of 5-6 years of age (Anand and Birch, 2002; 

Howard et al., 2014; Marsh et al., 1999; Sethna et al., 2007; Walco et al., 2010; 

Walker et al., 2005) and this has been confirmed in nerve injury infant rat and 

mice models (Costigan et al., 2009; Howard et al., 2005; Moss et al., 2007; 

Vega-Avelaira et al., 2009). So the question remains as to why there is 

specifically no neuropathic pain immediately following peripheral nerve injury 

in infants.  

Recent longitudinal studies in rats have revealed a previously unsuspected 

aspect of infant neuropathic pain, that animals that undergo nerve injury in 

early life do eventually develop pain hypersensitivity, but only when they reach 

adolescence (Vega-Avelaira et al., 2012). This suggests that early life nerve 

injury can affect pain processing later in life.  Studies aimed to identify the 

mechanism underlying these age dependent differences indicate that the 

inflammatory immune response, which is robust in the adult dorsal horn spinal 

cord following a nerve injury, maybe absent in the dorsal horn spinal cord of 

infants (Barr and Hunter., 2014; Costigan et al., 2009; Moss et al., 2007; Vega-

Avelaira et al., 2007).  

To date both the neuronal and inflammatory profile in the dorsal horn both in 

the early period after infant nerve injury (in the absence of pain like-behaviour) 
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and in the later period following infant nerve injury (at the onset of pain-like 

behaviour), remain to be elucidated and is the subject of this thesis. This 

introduction gives a brief background to pain including the sensory circuitry 

required to transmit and process nociceptive inputs from the periphery to the 

central nervous system and its postnatal development. As this thesis is 

concerned with the processing of neuropathic pain in the infant nervous 

system, the mechanisms underlying neuropathic pain and the evidence for 

long-term changes in pain processing following early life injury is also 

examined.  

1.2 The nociceptive system 

Research into elucidating key cells and molecules that underlie normal acute 

pain is important to understanding the mechanisms underlying pathological 

pain hypersensitivity. Therefore this section will outline the processing of acute 

pain, with a particular focus on signalling in the dorsal horn.  

1.2.1 Nociceptors 

Nociceptors are a group of sensory fibres that are distinguished by their 

relatively high thresholds, being activated by noxious tissue threatening stimuli 

(Campbell et al., 1988; Sherrington, 1906) and convey information regarding 

the intensity, duration and location of the stimulus (Handwerker et al., 1987; 

Peschanski et al., 1981).  

These afferents have cell bodies located either in dorsal root ganglia (DRG) or 

the trigeminal ganglia and transduce information via specialised transducer 

receptor/ion channel complexes from free endings located in peripheral skin 

and subcutaneous tissue to the dorsal horn spinal cord (Lawson and Waddell, 

1991; Mesulam and Brushart, 1979). 

Sensory neurons are known as primary afferent fibres and are functionally, 

anatomically and neurochemically diverse and can be classified according to 

their conduction velocity, axon diameter and myelination status as well as 

responses to different stimuli (Hjerling-Leffler et al., 2007; Lawson, 2002) and 

can be classified into three different subtypes (Aβ, Aδ and C-fibres) 

accordingly (Boyd and Kalu, 1979; Hunt and Rossi, 1985).  
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1.2.3 A-fibres  

Myelinated Aδ- and Aβ-fibres were first identified in cats as a group of sensory 

neurons responding to noxious mechanical stimulation (Burgess et al., 1968; 

Burgess and Perl, 1967), although the ability of Aβ-fibres to conduct noxious 

information is frequently overlooked (Djouhri and Lawson, 2004). A-fibres 

conduct more rapidly than C-fibres and mediate acute well localized ‘first’ or 

fast pain while the slower C-fibres are responsible for the dull poorly localized 

‘second’ or slow pain following noxious stimulation (Handwerker et al., 1987; 

Julius and Basbaum, 2001; Woolf and Ma, 2007), although a smaller 

proportion of nociceptors are A-fibres.  

Aδ-fibres are small and thinly myelinated fibres (2-5μm) and conduct 

information about noxious inputs such as pin prick and non-noxious input from 

hair follicles at 12-30ms-1 (Djouhri and Lawson, 2004; Lawson and Waddell, 

1991; Menétrey et al., 1977).  

Aβ-fibres are larger than Aδ-fibres (5-14μm) and carry information about light 

touch, brush, vibration and other innocuous stimuli conducting at 

approximately 14-30ms-1 (Djouhri and Lawson, 2004; Harper and Lawson, 

1985). 

 Aδ-fibres can be subdivided into two subtypes I and II. Type I Aδ-fibres are 

high threshold rapidly conducting mechanoreceptors that are also responsive 

to high intensity heat (>53OC), cold and chemical stimuli (Handwerker and 

Kobal, 1993; Simone and Kajander, 1997; Treede et al., 1995). If the heat 

stimulus is maintained, these afferents will also respond at lower temperatures 

(Treede et al., 1995). These fibres sensitize following injury, and underlie 

pinprick pain (Magerl et al., 2001).   Type II have lower heat thresholds and 

are slower conducting (Lawson et al., 1997; Lawson, 2002; Treede et al., 1998, 

1995).  

1.2.4  C-fibres 

C-fibres are thin and unmyelinated fibres (0.4-1.2μm), with a conduction 

velocity of around 2m/s-1 (Woolf and Fitzgerald, 1983) and are sub-classified 

based on their receptive properties. The majority of C-fibres are polymodal, 

responding to a variety of noxious stimuli including mechanical, thermal and 



Chapter One  General Introduction 

21 
 

chemical stimuli but can also be mechano-insensitive and play a crucial role in 

mediating itch and pain (Bessou and Perl, 1969; Djouhri and Lawson, 2004; 

Han et al., 2013; Perl, 2007; Schmelz et al., 1997; Torebjörk, 1974; Torebjörk 

and Hallin, 1974). A small subset of C-fibres respond to cooling and another 

to low threshold stimulation (brush and light touch) and play a critical role in 

mechanical hypersensitivity caused by injury (Olausson et al., 2007; Seal et 

al., 2009).  

C-fibres can also be classified neurochemically (Snider and McMahon, 1998) 

into a subpopulation that are peptidergic and release substance P and 

calcitonin gene related peptide (Hunt and Rossi, 1985; Nagy and Hunt, 1982) 

and express the neurotrophic tyrosine kinase receptor type 1 (TrkA) the 

receptor for nerve growth factor, and a subpopulation that are termed non-

peptidergic (Kaplan et al., 1991; Snider and McMahon, 1998). A large 

percentage of non-peptidergic fibres bind isolectin B4 (IB4) and project to 

distinct laminae in the dorsal horn spinal cord in comparison to peptidergic 

neurons (see below) (Plenderleith and Snow., 1993; Dong et al., 2001).  

Nociceptive afferents, in addition to the aforementioned neurotransmitters also 

synthesize and release glutamate (a major nociceptor neurotransmitter), , 

adenosine triphosphate (ATP), nitric oxide (NO) and others,  at their terminals 

in the dorsal horn and are thus also involved in central transmission and 

modulation of nociceptive information (Millan, 1999). 

1.2.5 Tansduction and transmission 

Nociceptors express an array of transducer receptor/ion channel complexes 

including ligand-gated ion channels and G protein coupled receptors on the 

surface of the peripheral terminal which when activated generate depolarizing 

currents and, if large enough, the initiation of action potentials that enables the 

encoding of high intensity noxious stimuli to the dorsal horn spinal cord. This 

distinguishes nociceptors from sensory neurons which transmit innocuous 

information and express low threshold transducers.  

Nociceptor transduction molecules include the transient receptor potential 

(TRP) family of cation channels (Ramsey et al., 2006). For example TRP 

vanilloid 1 (V1) is the molecular target of capsaicin but also responds to heat 
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and protons (Caterina et al., 1999, 1997). TRPV1 is activated by heat and 

TRPV3 and TRPV4 are activated by chemical, osmotic and heat stimuli and 

have a threshold of 32-390C and 27-340C respectively and participate in the 

perception of warmth (Güler et al., 2002; Lee and Caterina, 2005).  

Cold sensation in the skin is mediated by the expression of ion channel TRP 

melastatin 8 (M8) which is activated by cooling the skin to below 300C and also 

responds to other cooling chemicals (Dhaka et al., 2007; McKemy et al., 2002; 

Peier et al., 2002). Acid sensing ion channels (ASICs) are activated by protons 

which are increased during tissue inflammation and therefore contribute to 

inflammatory pain (Deval et al., 2010). The molecular mechanisms that 

underlie mechanosensory transduction has been difficult to elucidate (Gillespie 

and Walker, 2001). Although ASICs were candidate transducer molecules, this 

was disproven (Drew et al., 2004). However, a recent study using a 

conopeptide analogue termed noxious mechanosensation blocker-1 (NMB-1) 

lead to elucidation for a role of Epac1, a cyclic AMP sensor that potentiates 

mechanotransducer Piezo2 and contributes to mechanical allodynia 

(Eijkelkamp et al., 2013). 

The generation of action potentials in nociceptors requires the activation of 

voltage gated ion channels including sodium channels (VGSC) and potassium 

channels. At the central terminal voltage gated calcium channels enable the 

release of neurotransmitters into the dorsal horn spinal cord and thus convey 

nociceptor signals to postsynaptic dorsal horn neurons. As VGSC contribute 

to generator potentials in the periphery and action potentials in the axon and 

release of central neurotransmitters, they are a prime target for investigation 

and therapeutic approaches for pain including Nav1.7 and 1.8 (Akopian et al., 

1999; Benarroch, 2007; Benn et al., 2001; Dib-Hajj et al., 2008; Estacion et al., 

2008; Minett et al., 2012; Nassar et al., 2004; Raouf et al., 2010; Wood et al., 

2004). 

1.2.6  Projection of primary afferents into the dorsal horn spinal cord 

Primary afferents project to the dorsal horn through dorsal roots and synapse 

onto dorsal horn spinal cord neurons, which is the first site of integration of 

sensory information in the central nervous system. During acute pain, the 
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release of glutamate into central terminals in the dorsal horn from nociceptors 

primarily activates the ligand gated channels of α-amino-3-hydroxy-5-methyl-

4-isoxazolepropionic acid (AMPA) and kainate subtypes of ionotropic 

glutamate receptors that generate excitatory postsynaptic currents (EPSCs). 

Summation of EPCSs on the postsynaptic neuron can result in action potential 

firing and transmission to higher order neurons.  

The dorsal horn is organised into anatomically and electrophysiologically 

distinct laminae (Basbaum and Jessell, 2000). Information arriving at the 

dorsal horn maybe processed by both excitatory and inhibitory interneurons, 

and may also be modulated from descending control from the brain stem 

(Sivilotti and Woolf, 1994). The majority of these neurons within the spinal 

dorsal horn correspond to propriospinal and local circuit interneurons, but 

approximately 10% have projecting axons that terminate in the brainstem and 

thalamus (Todd, 2010).  

The grey matter is divided into ten laminae (Molander et al., 1989, 1984; 

Rexed, 1954, 1952) which can be subdivided into superficial laminae I and II, 

and deep laminae III-X and together is known as the dorsal horn (Fig 1.2). 

Primary afferents project into the dorsal horn in a highly organised and ordered 

somatotopic fashion based on both the sensory modality they transmit and 

body region that they innervate (Molander and Grant, 1985).  

C-fibres terminate predominantly in lamina II outer (IIo). Peptidergic fibres, 

(expressing CGRP and innervating deeper parts of the skin in addition to joints 

and viscera) project to both lamina I and II while non-peptidergic fibres 

(expressing IB4 and innervate the epidermis) project centrally to lamina II 

(Lawson et al., 1997; Todd, 2010, 2002). Aδ nociceptors project to lamina I, 

some to IIo and branch to V and X. Aδ hair follicle afferents terminate between 

lamina II and III. Aβ tactile and hair afferents innervate lamina III-IV and some 

to lamina V-IV (Light and Perl, 1979) although one study identified Aβ 

terminating within laminae I-V (Woodbury et al., 2008).  
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Fig 1.2 Primary afferent innervation of the dorsal horn spinal cord. 

Primary afferents terminate in a highly ordered manner. Aβ tactile and hair afferents arborize 
in lamina III-V and some to lamina II inner. Aδ nociceptors terminate mainly in lamina I although 
some branch to lamina V and lamina X. Aδ hair follicle afferents arborize between lamina II 
and III. C-fibre peptidergic afferents arborize in LI and LII outer and most non-peptidergic C-
fibres arborize centrally in LII. Adapted by permission from Macmillan Publishers Ltd: Nature 
reviews neuroscience (Todd., 2010), copyright (2010) 

 

The ventral horn contains motor neurons that are responsible for the initiation 

and coordination of movement including withdrawal reflexes associated with 

noxious stimulation. 

1.2.7  Laminae organisation of the dorsal horn spinal cord 

The somatotopic distribution of primary afferents into the dorsal horn enables 

areas on the skin to be represented via their central termination patterns in the 

spinal cord (Swett and Woolf, 1985). A study by Molander and Grant, 1986 

utilised horseradish peroxidase tracing in the hind limb nerves of rats. They 

found that although the central projections of primary afferents overlap, they 

are well delineated in three dimensional areas in a symmetrical longitudinal 

pattern in the dorsal horn. Further studies showed that these nerve terminals 

are organised in a medio-lateral direction with nerve terminals from afferents 

innervating hind paw skin territories terminating more laterally then those 

innervating the plantar hind paw, which terminate in the medial dorsal horn and 

those that innervate the lateral hind paw terminating caudally to those 
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innervating the medial hind paw (Molander and Grant, 1986; Woolf and 

Fitzgerald, 1986). As a result, dorsal receptive fields (an area of the body that 

when stimulated, evokes action potentials in a given neuron) are organised 

somatotopically (Jr and Coggeshall, 2004).  

In naïve animals, stimulation of the skin outside the receptive fields (or ‘low 

probability firing fringe’) can influence the interneurons within the dorsal horn 

(via polysynaptic inputs) that may be either excitatory or inhibitory but are not 

sufficient to evoke an action potentials (Brown and Fyffe, 1981; Woolf and 

Fitzgerald, 1986; Woolf and King, 1990). Following injury, such as with the 

chemical irritant mustard oil, the surrounding area receptive fields expand so 

that the low probability firing fringes induces action potentials (Cook et al., 

1987; Devor et al., 1979; Devor and Wall, 1981; Suzuki et al., 2000; Wilson 

and Kitchener, 1996; Woolf and King, 1990). This demonstrates that the 

receptive field size, while intimately determined by the primary afferent input, 

is normally under inhibitory control and can expand rapidly.  

1.2.8 Dorsal horn neurons  

Dorsal horn neurons are responsible for encoding information from primary 

afferents and passing information to reflex circuits or supraspinal sites.  

Although the modality to which a dorsal horn neurone will respond is 

determined to some extent by the peripheral input to that cell (for example a 

large number of neurons in lamina I respond to noxious input) 

electrophysiological studies in the dorsal horn spinal cord have enabled 

identification and classification of dorsal horn neurons based on their 

responses to mechanical peripheral stimulation. The major types have been 

described (Menétrey et al., 1977). 

1. Low threshold neurons, responding solely to innocuous brush, touch 

and pressure. These are mostly located in deeper laminae II, III and a 

few in lamina I (Millan, 1999). 

2. Wide dynamic range (WDR) neurons respond to both innocuous and 

noxious stimuli and respond to input from all primary afferents and are 

therefore activated in response to a range of modalities including 

mechanical, heat and chemical stimuli (Coghill et al., 1993; Handwerker 
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et al., 1975; Maixner et al., 1986; Menétrey et al., 1977). WDR neurons 

are the most prevalent cell type, predominantly found in deep laminae 

IV to VI but are also encountered in laminae I and II (Coghill et al., 

1993). WDR neurons located in deeper laminae are implicated in C-

fibre sensitization and amplification and therefore pain.  Other 

properties of WDR neurons include their ability to fire action potentials 

in a graded fashion and, unlike nociceptive specific neurons (see below) 

maintain high rates of impulse discharge throughout repetitive 

nociceptive stimulation and are also sufficient to encode intensity in 

addition to spatial and qualitative aspects of pain (Coghill et al., 1993; 

Maixner et al., 1986).  WDR also exhibit wind-up (Cata et al., 2006; 

Nackley et al., 2004).  

3. Nociceptive specific neurons respond to noxious stimulation only. They 

are predominantly located in laminae I and IIo but are also located in 

laminae V and VI. The ability of these neurons to encode stimulus 

intensity is limited (Coghill et al., 1993). 

4. Neurons that are able to respond to joint movement or pressure. 

The majority of the neurons within the dorsal horn are locally projecting 

interneurons which pay a key role in modulating the output in response to 

primary afferent input.  

Interneurons can be subdivided into excitatory and inhibitory types depending 

on the expression of neurotransmitters with glutamate being the main 

excitatory transmitter. Gamma-aminobutyric acid (GABA) and glycine are the 

main inhibitory transmitters that activate ligand gated ion channels GABAA 

receptor and glycine receptors respectively. Although both neurotransmitters 

are released by descending inhibitory pathways from the brainstem, they are 

released predominantly by local interneurons (Kato et al., 2006; Millan, 1999).  

The second major type of dorsal horn neuron are the projection neurons that 

relay information to supraspinal sites, where pain and other somatic 

sensations are perceived. Dorsal horn projection neurons are located largely 

in lamina I but also in lamina III-V and receive monosynaptic inputs directly 

from primary afferents, or polysynaptic inputs from interneurons (Coggeshall 
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and Carlton, 1997; Dubner and Bennett, 1983; Jankowska and Lindström, 

1972; Spike et al., 2003). 

1.2.9 Ascending pathways  

In general, projection neurons in lamina I receive monosynaptic input from Aδ 

and C-fibres and polysynaptic information from Aβ fibres via excitatory 

interneurons from deeper laminae (Coggeshall and Carlton, 1997; Dubner and 

Bennett, 1983, 1983; Jankowska and Lindström, 1972; Todd et al., 1994).  

Projection neurons are the origin of multiple of ascending pathways including 

the spinothalamic, spinoreticular, spinoparabrachial and spinomesencephalic 

tracts which terminate in a variety of forebrain structures.  

Retrograde and anterograde tracing have shown that lamina I projection 

neurons have two main supraspinal targets. These are that 1) the lateral 

parabrachial area (LPb) that projects to areas of the brain responsible for the 

affective components of the pain experience including the amygdala and 

hypothalamus (Gauriau and Bernard, 2002) and 2) the lateral thalamus that 

then projects to the insular (IC) and somatosensory (SS) cortices involved in 

the sensory-discriminative aspects of pain (Gauriau and Bernard, 2004).  

However, lamina I projection neurons also project to the caudal ventrolateral 

medulla (CVLM), the nucleus of the solitary tract (NTS) and the periaqueductal 

grey matter (PAG) and nuclei in the thalamus (Bourgeais et al., 2003; Todd, 

2010).  

Lamina I projection neurons respond to noxious stimuli, and a few to innocuous 

cooling and have dendrites that generally remain within the lamina  (Bester et 

al., 2000; Han et al., 1998; Willis et al., 1974; Zhang et al., 2005). The 

projections from deeper laminae (although fewer in number) terminate in the 

medial thalamus and projects to other areas including the anterior cingulate 

cortex (ACC) that is implicated in the attentional aspect of pain and the reticular 

nuclei that may be involved in the motor responses (Gauriau and Bernard, 

2002). Human imaging experiments indicate that the most common area 

activated during noxious stimulation are the primary and secondary 

somatosensory, insular, anterior cingulate and prefrontal cortices and 

thalamus (Apkarian et al., 2005). However, there is no one brain area activated 
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solely by noxious stimulation as the areas aforementioned may also be 

activated during non-noxious stimulation (Iannetti and Mouraux, 2010; Tracey 

and Mantyh, 2007). 

1.2.10 Descending pathways 

Sensory information arriving in the dorsal horn from primary afferents can also 

be modulated by descending control in the dorsal horn spinal cord, an example 

of top-down modulation by the brain. Although not the subject of this thesis, it 

is important to understand how these systems are organised and impact on 

dorsal horn processing.  

The PAG and rostro-ventral medulla (RVM) are important structures that 

mediate descending modulation by exerting both inhibitory and facilitatory 

effects on spinal excitability and pain sensitivity in the adult (Eippert et al., 

2009; Tracey and Mantyh, 2007). The PAG receives input from dorsal horn 

projection neurons as well as from the limbic forebrain, amygdala and the 

diencehphalon (Fields et al., 1991). Stimulation of the PAG can reduce dorsal 

horn responses, inhibit reflex responses to noxious stimuli and produce 

analgesia, all of which can be eliminated by spinal cord transection (Basbaum 

et al., 1977; Fields et al., 1977; Mayer et al., 1971). This descending inhibitory 

system is activated in situations of stress and fear when noxious input does 

not produce pain (Terman et al., 1984).  

Although the PAG exerts inhibitory effects on nociception via a descending 

pathway to the spinal cord, it is mostly relayed via the RVM, the main output 

nucleus to the dorsal horn (Ossipov et al., 2010; Pomeroy and Behbehani, 

1979). Unlike the PAG, the RVM exerts inhibitory and excitatory effects on 

nociception in the dorsal horn (Fields and Heinricher, 1985). There are three 

cell types in the RVM identified by firing in response to noxious stimulation 

preceding the tail-flick reflex i) cells that fire immediately before the tail flick 

test are termed ON cells, ii) cells that decrease in firing immediately before the 

tail-flick are termed OFF cells and iii) those that remain unaltered are termed 

neutral cells (Fields et al., 1991; Fields and Heinricher, 1985). These studies 

suggest that the population of ON cells are associated with facilitating the 

reflex responses while the OFF cells do the converse. Furthermore, low 
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intensity stimulation of the RVM facilitates spinal nociception and high intensity 

stimulation can have inhibitory effects (Hathway et al., 2009; Urban and 

Gebhart, 1999; Zhuo and Gebhart, 1997, 1992). Fields and colleagues 

identified that both ON and OFF cells project to laminae I, II and V of the spinal 

cord where nociceptive primary afferent fibres terminate (Fields et al., 1995). 

The role of neutral cells in the nociceptive reflex is unclear.  The cell types 

cannot be separated anatomically within the RVM and all contain 5-

hydroxytryptamine (5-HT) (Bardin, 2011; Marinelli et al., 2002) or GABA (as 

well as glycine) (Hossaini et al., 2012; Kalyuzhny and Wessendorf, 1998) and 

are not always functionally distinct.  

1.3 Sensitization in pain state  

When noxious stimulation is repeated, or in the presence of tissue injury, the 

nociceptive system can become sensitized so that the threshold for its 

activation is reduced and responses are amplified and behavioural 

hypersensitivity exhibited. This can occur in both the peripheral and central 

nervous system (Ji et al., 2003; Woolf and Salter, 2000; Woolf and Walters, 

1991). 

1.3.1 Peripheral sensitization 

Peripheral sensitization typically develops as a consequence of tissue damage 

that causes a local inflammatory response associated with changes in the 

environment of the nerve fibre following tissue injury and inflammation. Such 

insults can induce the release of  molecules such as neurotransmitters, 

cytokines, chemokines, growth factors, ion channel activators termed the 

‘inflammatory soup’ (Basbaum et al., 2009; Chiu et al., 2012; Milligan et al., 

2001; Woolf and Ma, 2007). These molecules activate intracellular signalling 

pathways in the nociceptor that can lead to phosphorylation of receptors and 

ion channels resulting in changes in threshold and kinetics that alter the 

sensitivity and excitability of the nociceptor. The nociceptor may now be 

sensitive to normally non-noxious stimuli as well as exhibiting enhanced 

responses to noxious stimuli.  
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One example is nerve growth factor (NGF) that is released upon tissue injury 

and is a key component of the ‘inflammatory soup’ (Woolf et al., 1994). NGF 

acts via its receptor TrkA on peptidergic C nociceptors (Snider and McMahon, 

1998) and produces heat hypersensitivity. NGF-TrkA activates downstream 

signalling pathways via Src kinase that directly phosphorylates and potentiates 

TRPV1, a transducer of heat, on peripheral nociceptor terminals (Caterina et 

al., 1999). Activation of TRPV1 leads to depolarisation and a rapid change in 

heat sensitivity (Zhang et al., 2005). In addition retrograde transport of NGF to 

the nucleus of nociceptors promotes an increase in proteins including 

substance P, TRPV1, and Nav1.8 (Ji et al., 2002). These changes lead to 

enhanced excitability of the nociceptor and amplifies the inflammatory 

response.  

ATP and bradykinin can also bind to their receptors on primary afferents and 

modulate TRPV1 via intracellular signalling pathways while other inflammatory 

agents function by directly binding to TRPV1 to modulate the channel and 

include extracellular protons and lipids.  These interactions result in a decrease 

in the channel’s thermal activation threshold and increase in the magnitude of 

the response providing a direct mechanism by which inflammatory meditators 

induce allodynia and hyperalgesia respectively (Basbaum et al., 2009).   

Immune cells that are recruited by tissue injury release inflammatory mediates 

that  can act directly on primary afferents to cause peripheral sensitization and 

subsequent release of neuropeptides that further activate immune cells, 

inducing a positive feedback loop that drives inflammation (Chiu et al., 2012). 

Two of the most common cytokines released by immune cells (such as 

macrophage and neutrophils) are tumour necrosis factor (TNF) and interleukin 

(IL)-1 beta (-1β) (Binshtok et al., 2008; Zhang et al., 2011a) which are sensed 

directly by nociceptors via receptors and lead to increases in membrane 

excitability by intracellular signalling pathways. For example, intraplantar 

administration of TNF induces thermal sensitivity that can be reversed by anti-

NGF administration (Woolf et al., 1997). In addition, exposure of TNF and IL-

1β to voltage gated sodium channels 1.7-1.8 generate and propagation action 

potentials and sensitize these channels (Linley et al., 2010).  
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Peripheral sensitization can therefore present as a reduction in threshold and 

an amplification in the responsiveness of primary afferents leading to pain in 

response to normally innocuous stimuli and enhanced pain responses to 

noxious stimulation respectively at the site of inflammation (primary 

hyperalgesia) (Bessou and Perl, 1969; Gold and Gebhart, 2010) and 

represents an important mechanism underlying nociception during acute 

tissue injury and inflammation.  

However, peripheral sensitization cannot explain a number of aspects of 

clinical pain hypersensitivity including the spread of sensitivity outside the 

areas of tissue injury (secondary hypersensitivity), why repeated stimuli at a 

constant intensity leads to an increase in pain and why pain may outlast a 

peripheral stimulus (Pfau et al., 2011; Seal et al., 2009; Woolf and Salter, 

2000). These aspects of pain hypersensitivity are instead explained by central 

sensitization. 

1.3.2 Central sensitization 

Central sensitization is a form of long-lasting activity dependent synaptic 

plasticity in the dorsal horn that is initiated by nociceptive fibres and leads to 

pre and post synaptic changes resulting in an increase in post synaptic 

membrane excitability and the facilitation of nociceptive processing (Woolf, 

1983a). This can be driven by a nociceptive conditioning input such as 

sustained activation of C-fibres by heat, electrical or chemical activation that 

leads to homo- and hetero-synaptic potentiation. In this way a normally 

subthreshold input starts to activate dorsal horn neurons due to a spread of 

change in synaptic strength from activated to neighbouring non-activated 

synapses. This can alter the receptive field spatial, temporal and threshold 

properties (Ji and Suter, 2007a; Latremoliere and Woolf, 2009; Woolf and 

King, 1990) generating long lasting responses to inputs from low threshold 

primary afferents and from topographically different locations (Cook et al., 

1987; Woolf, 1983a; Woolf and King, 1990; Woolf and Thompson, 1991; Woolf 

and Wall, 1986). Specifically, heterosynaptic potentiation may explain how a 

nociceptive high threshold input enables input from low threshold sensory 

fibres activated by light touch to activate normally high threshold nociceptive 
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neurons, thus reducing the pain threshold as a consequence of an increase in 

synaptic efficacy and increase in the excitability of dorsal horn neurons.  

Multiple mechanisms have been implicated in central sensitisation including 

an alteration in glutamatergic/ N-methyl-D-aspartate receptor (NMDAR) 

mediated neurotransmission, disinhibition and glial-neuronal interactions 

(Basbaum et al., 2009).   

1.3.3 Glutamatergic/NMDAR mediated neurotransmission 

During nociceptive pain glutamate will bind to AMPA and kainate receptors 

while the NMDAR remains silent, blocked by a magnesium ion in its receptor 

pore. However, upon injury sustained release of glutamate and neuropeptides 

substance P and calcitonin gene related peptide (CGRP) leads to sufficient 

membrane depolarisation to force the magnesium ion to leave the pore 

enabling glutamate to bind to the receptor and the subsequent generation of 

an inward calcium current (Mayer et al., 1984).  

NMDA is essential for central sensitization and administration of NMDAR 

antagonist MK-801 attenuates behavioural hypersensitivity following 

cutaneous application of mustard oil, sural nerve stimulation and nerve injury 

-induced behavioural hypersensitivity (Woolf and Thompson, 1991).  

Postsynaptic cytosolic calcium activates intracellular signalling pathways and 

secondary messenger systems leading to the phosphorylation and alteration 

in NMDA and AMPA receptors conductance’s and membrane trafficking. This 

results in an increase in the density of ion channels in the postsynaptic neuron 

and enhanced excitatory transmission in the dorsal horn and thus a functional 

change that manifests as central sensitization (Carvalho et al., 2000; Lau and 

Zukin, 2007).  

Calcium is multifunctional, inducing the formation of NO and prostaglandin E2 

(PGE2) that can increase dorsal horn excitability (Samad et al., 2001; J. Wu et 

al., 2001) along with activating signalling pathways that leads to downstream 

transcriptional changes contributing to increases in AMPA and NMDA currents 

and reductions in potassium currents (Hu et al., 2003; Ji et al., 2009, 1999). 
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1.3.4 Disinhibition 

A reduction in the synthesis, release or activity of inhibitory transmitters leads 

to a state of disinhibition. Inhibitory interneurons in the dorsal horn are 

essential for modulating information as observed by spinal administration of 

GABA or Glycine receptor antagonists that produce behavioural 

hypersensitivity (Malan Jr et al., 2002; Sivilotti and Woolf, 1994). Evidence 

suggests that disinhibition decreases tonic inhibition to enhance depolarisation 

and excitation of dorsal horn projection neurons leading to enhanced neuronal 

output in response to noxious and innocuous stimulation (Keller et al., 2007; 

Torsney and MacDermott, 2006). For example, mice lacking protein kinase C 

gamma (PKCγ) interneurons, located in lamina II fail to develop nerve injury 

induced pain-like behaviour (Malmberg et al., 1997).  

In naïve mice, blockade of glycinergic inhibition caused innocuous brushing of 

the hind paw to activate PKCγ interneurons indicating that disinhibition leads 

to hypersensitivity. Non-neuronal cells located in the CNS can also lead to 

disinhibition (see below) acting through a variety of mechanisms and 

contribute to the plasticity observed in pathological pain.  

1.3.5 Glial-neuronal interactions 

Microglia and astrocytes are both non-neuronal cells that reside in the CNS 

and have been implicated in altering the excitability of spinal cord circuits. The 

diversity of receptors on both microglia and astrocytes enable them to sense 

and react to their surroundings via activation of intracellular pathways, such as 

the mitogen activated kinase (MAPK) family, that leads to the release of 

mediators that modulate synaptic activity.  The MAPK family includes 3 major 

members; extracellular signal-regulated kinase 1 and 2 (ERK1/2), p38 and c-

Jun N-terminal kinase (JNK) and play a key role in intracellular signalling in 

glia (but also neurons) that lead to the synthesis of inflammatory mediators 

that modulate both excitatory and inhibitory synaptic transmission (Fig 1.3) and 

are required for the genesis of persistent pain (Gao et al., 2010a; Ji et al., 2009, 

1999; Zhuang et al., 2005).  
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1.3.5.1 Microglia 

Microglia are the resident immune cells of the CNS, constituting as much as 

10-15% of cells in adulthood and are heterogenous with respect to both 

morphological and functional properties (McMahon and Malcangio, 2009; Olah 

et al., 2011). Microglia are derived from a restricted subpopulation of yolk sac 

erythromyeloid progenitors that express the transcription factors SPI1/Pu.1+ 

and Irf8+ (Alliot et al., 1999; Kierdorf et al., 2013).  

Microglia interact with synapses and have been implicated in circuitry 

formation as well as phagocytosis of newborn neurons, synaptic terminals and 

also play a role in shaping neuronal circuitry in the early postnatal stages 

(Paolicelli et al., 2011; Schafer et al., 2012; Stephan et al., 2012; Tremblay et 

al., 2010). The surveillance role of microglia relies on several pattern 

recognition receptors expressed by microglia that also recognize pathogen 

associated molecular patterns (PAMPs) and damage associated molecular 

patterns (DAMPs) including soluble and insoluble factors released by 

damaged cells enabling them to sense neurotransmitters, neuropeptides and 

neuromodulators and thus neuronal activity.  

Following an insult, microglia transition into a  ‘pain related enhanced state’ 

characterised by alterations in morphology, expression of cell surface 

receptors and secretion of mediators including cytokines, chemokines, ATP, 

glutamate and NO that are all capable of enhancing excitatory transmission 

via pre-, post- and extrasynaptic mechanisms (Ji et al., 2013) promoting 

ongoing inflammation and central sensitization (Beggs and Salter, 2010; 

Chessell et al., 2005; Clark et al., 2007; Suter et al., 2007; Taves et al., 2013; 

Tsuda et al., 2009; Ulmann et al., 2008; Zhang et al., 2007). This has been 

examined most extensively in lamina II dorsal horn neurons where incubation 

of TNF, IL-1β and chemokine (C-C motif) ligand 2 (CCL2) in spinal cord slices 

rapidly increases spontaneous EPSC (sEPSC), as does exposure of cultured 

dorsal horn neurons with interferon gamma (IFN-γ) indicating a role in 

presynaptic modulation (Kawasaki et al., 2008; Vikman et al., 2005, 2003; 

Zhang et al., 2010).  

These mediators also act to increase EPSC amplitude caused by enhanced 

signalling of AMPA glutamate receptors in post-synaptic sites (Ji et al., 2013). 
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Extrasynaptic TNF, IL-1β and CCL2 act to induce central sensitization by 

enhancing NMDAR currents in LII neurons (Gao et al., 2009; Kawasaki et al., 

2008). Although the contribution of microglia is mostly demonstrated in 

neuropathic pain, a role has been implicated in other pain states (Cho et al., 

2012; Clark et al., 2012; Raghavendra et al., 2004). 

1.3.5.2 Astrocytes  

Astrocytes are derived from the neuroectoderm and form physically coupled 

networks that are closely associated with neuronal synapses where they 

contribute to synaptic plasticity by altering the excitability of dorsal horn 

circuits, as described in both inflammatory and neuropathic pain (Gao et al., 

2009; Gao and Ji, 2010). Astrocytes can facilitate intercellular transmission of 

calcium signalling and exchange of cytosolic contents. It has also been shown 

that increases in astrocytic calcium can modulate neural networks by uptake 

of potassium, thus determining the resting membrane potential of neurons and 

neuronal activity (Wang et al., 2012).  

Stimulation of astrocytes in pain states induces JNK signalling pathways that 

lead to the production of mediators including CCL2 and IL-1β that modulates 

synaptic transmission and contributes to central sensation (Gao et al., 2009).  

Astrocytes contain the glutamate transporter (GLT-1) that buffers the 

glutamate released into synapses to prevent excessive activation of 

postsynaptic glutamate receptors. The release of glutamate at nerve terminals 

activates metabotropic glutamate receptors on astrocytes, leading to the 

increase of intracellular calcium and release of glutamate, D-serine and ATP 

that can increase neuronal sensitivity (Hamilton and Attwell, 2010). D-serine 

acts on synaptic NMDA receptors while glutamate binds to extrasynaptic 

NMDA receptors. If the glutamate transporter GLT-1 is down regulated, such 

as after nerve injury (Sung et al., 2003) this leads to an increase in glutamate 

and increase in dorsal horn excitability that contributes to persistent pain (Nie 

and Weng., 2009; Ren., 2010).  

In astrocytes TNF induces phosphorylation of intracellular JNK and activation 

of nuclear factor kappa β (NF-κβ) leading to the release of CCL2 that binds to 
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its receptor on neurons and interacts positively with neuronal NMDA and 

AMPA receptors (Gao et al., 2010a; Gao and Ji, 2010; Wang et al., 2011).  

1.3.5.3 Modulation of inhibitory synaptic transmission.  

Central sensitization can also be the result of a decrease in inhibitory control 

(disinhibition) (Baba et al., 2003; Coull et al., 2005; Moore et al., 2002; 

Zeilhofer, 2008). Glial mediators including BDNF, cytokines, chemokines and 

PGE2 can all modulate inhibitory synaptic transmission. For example IL-1β 

and IL-6 act pre-synaptically to inhibit the frequency of spontaneous inhibitory 

postsynaptic currents (sIPSCs) in lamina II neurons with IL-1β also reducing 

the amplitude of sIPSCs.  

One of the most established mechanisms by which microglia increase spinal 

excitability is via the release of BDNF. Under normal conditions, intracellular 

concentrations of chlorine ion (Cl-)are maintained by the effect of the Cl- co-

transporter potassium ion (K+)Cl- exporter 2 channel (KCC2) and sodium ion 

(Na+)K+ exporter 1 channel (NKCC1) that together maintain a Cl- concentration 

gradient so that opening of Cl- channels causes Cl- entry into a neuron and 

hyperpolarisation. BDNF can reduce the KCC2 expression so that activation 

of GABAA receptors by GABA results in diminished or reduced Cl- entry and 

disinhibition. TNF can also suppress the activity of Glutamate decarboxylase 

(GAD) 67 positive neurons in spinal cord slices and CCL2 and IFN-γ inhibits 

GABA-induced responses in dorsal horn neurons (Gosselin et al., 2005; Zhang 

et al., 2010). Anti-inflammatory cytokines such as IL-10 and IL-4 can also 

regulate synaptic activity via suppression of pro-inflammatory cytokine 

production (Ji et al., 2013).  

1.4 Neuropathic pain 

Neuropathic pain results from pain caused by lesion or disease of the nervous 

system and affects up to 8% of the European population characterised by 

stimulus-independent pain (such as shooting, burning, lancinating or 

dysesthesias) and stimulus-evoked pain (such as mechanical, thermal or 

chemical hyperalgesia) which can occur alongside depression, mood and 
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sleep changes (Bourquin et al., 2006; Torrance et al., 2006). Neuropathic pain 

is often chronic, causing substantial disability and a loss of quality of life and 

is among the most challenging pain disorders to treat and is therefore 

associated as having a high economic impact on society (Attal et al., 2006; 

Bouhassira et al., 2008; Dworkin et al., 2003; Finnerup et al., 2005; Hunt and 

Koltzenburg, 2005; Koltzenburg, 1998; Toth et al., 2009). Estimates of the life-

time prevalence of neuropathic pain are as high as 10%. There are many 

different classification schemes for peripheral neuropathic pains. Firstly, 

clinicians will classify painful neuropathies as asymmetrical (affecting 

individual nerves) and symmetrical types (affecting many nerves 

simultaneously for example as in a glove distribution). Patients are then sub-

grouped into causes.  

A third group with complex regional pain syndrome type I is also included in 

‘neuropathic pain’ which is a heterogenous disease that presents without 

demonstrable nerve lesion (Hunt and Koltzenburg, 2005).This classification 

presents difficulties and no ‘framework’ for the clinical management of the pain 

(Woolf and Mannion, 1999) because within each group the pain experienced 

by patients maybe heterogeneous and thus this scheme does not identify the 

mechanism underlying the generation of pain. 

 It has been suggested that grouping patients based on their sensory 

symptoms, as opposed to aetiology would be more effective (Baron, 2006; 

Koltzenburg, 1998) and enable the identification of distinct sensory symptoms 

that can be related to peripheral or central mechanisms and may lead to better 

targeted therapeutics (von Hehn et al., 2012). The advantage of this approach 

is it will lead to a therapeutic focus on targeting the maladaptive plasticity (von 

Hehn et al., 2012). For example, a patient experiencing pin prick 

hypersensitivity in an area outside the receptive field of injury to the skin or 

mechanical allodynia suggests central sensitization as an underlying 

mechanisms. Pharmaceutical targets such as post-synaptic NMDA receptors 

maybe targeted such as ketamine or by mimicking and enhancing inhibition 

via the administration of tricyclic antidepressants and opioids. However, the 

use of these therapeutics are limited due to the side effects of these neuronal 

targets agents. 
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Fig 1.3 Glial mediated modulation of excitatory and inhibitory synaptic 
transmission in the dorsal horn spinal cord. 

(A) Modulation of excitatory synaptic transmission. Presynaptically TNF, IL-1β, CCL2 and 
IFN-γ increase glutamate release and enhance EPSC frequency. Postsynaptically acting 
mediators increase AMPAR activity and extrasynaptic acting mediators increase NMDAR 
activity and NMDA-induced currents while glutamate released from astrocytes can induce 
NR2B inward currents in neurons (B) Modulation of inhibitory synaptic transmission. 
Presynaptically IL-1β and IL-6 decrease GABA and glycine release and IPSC frequency. 
Postsynaptically acting IL-1β and BDNF decrease GABA/GLYR activity and IPSC amplitude. 
Extrasynaptic acting IL-1β, CCL2 and IFN-γ suppress GABA and/or glycine-induced currents. 
TNF inhibits action potentials in inhibitory neurons. In lamina I neurons BDNF causes 
disinhibition. Reprinted from Pain, Glia and pain Is chronic pain a gliopathy, 154, Ji, Berta and 
Nedergaard, S10-S28, (2013). 
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1.4.1 Animal models of pain 

The development of animal models has been an invaluable tool with which to 

investigate key mechanisms underlying different pain conditions and aid drug 

discovery. However, as non-human animals are unable to self-report, instead 

hypersensitivity to a noxious stimulus is characterised by a reflex withdrawal 

as a surrogate measure (Mogil et al., 2006).  

Administration of thermal, cold, or mechanical stimuli applied to an inflamed or 

injured region (usually the paw) and the time taken for hind-limb withdrawal or 

the amplitude of the reflex can then be measured and compared to controls 

(either the contralateral uninjured side or a sham control animal). However, 

one criticism of animal models is that ongoing pain is not easily assessed and 

this is universally exhibited in chronic pain patients (Backonja and Stacey, 

2004). A number of attempts to measure spontaneous pain include monitoring 

innate behaviour including asymmetrical directed behaviour such as shaking, 

guarding and flinching but are difficult to measure (Mogil, 2009). As a result 

hypersensitivity measured by a reflex withdrawal from noxious stimuli is the 

most common measure in pain research.  

1.4.2 Animal models of neuropathic pain 

Although there is an abundance of neuropathic pain models (including central 

pain, drug induced neuropathy and disease induced neuropathy models) to 

investigate the pathophysiology of traumatic nerve injury and the ontogeny of 

neuropathic pain (Sorkin and Yaksh, 2009), the peripheral nerve injury model 

is most frequently used (Pradhan et al., 2010; Jaggi et al., 2011). In rodents 

peripheral nerve injury normally involves injuring the sciatic nerve, or branches 

or central nerve spinal nerves allowing the evaluation of changes in the hind 

paw reflex response compared with baseline and the contralateral paw (Fig 

1.4). 
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Fig 1.4  Animal models of peripheral nerve injury 

(A) Four different nerve injury models are shown including the spared nerve injury (SNI), 
chronic constriction injury (CCI), partial sciatic ligation (PSL) and the spared nerve ligation 
(SNL) model.  (B) Nerve Injury models leads to hypersensitivity such as an enhanced response 
to mechanical stimulation with Von Frey hair monofilaments (Vfh). Vfh’s are applied to the 
plantar surface of the hind paw. The threshold force for a paw withdrawal decreases following 
nerve injury (Kim and Chung., 1992; Seltzer et al., 1991; Decosterd and Woolf., 2000).  
Reprinted from Cell, 52, Campbell and Meyer, Mechanisms of neuropathic pain, 77-92 (2006) 
with permission from Elsevier. 
 

The first neuropathic pain models involved complete transection of the sciatic 

nerve (Wall et al., 1979) and resulted in a neuroma and behavioural autotomy. 

However, the major limitation is that complete amputation is usually only 

observed as phantom limb pain whereas clinically neuropathy involves partial 

lesions to peripheral nerves.  

Subsequent models share the commonality of degeneration of some, but not 

all sensory fibres so that a peripheral target is partially de-innervated and 

innervated. Bennett and Xie developed the chronic constriction injury (CCI) 

involving application of 3-4 loose ligatures of chronic gut (or silk) tied around 

the sciatic nerve till a brief twitch is observed. Animal behavioural signs of pain-

like behaviour include autotomy, guarding, excessive licking, limping, 

contralateral weight bearing (De Vry et al., 2004). The onset of mechanical, 

thermal and cold hypersensitivity develop within one week and persist for 

seven weeks post-surgery. However, the CCI model has a greater 

inflammatory component than other nerve injury models and due to the 

subjectivity of the tightness of the constriction there is considerable variation 

in the aforementioned behavioural outcomes (Pradhan et al., 2010).  
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The partial sciatic nerve ligation (PSL) model or Seltzer model (Seltzer et al., 

1990) involves the tight ligation of one-third of the sciatic nerve distal to the 

nerve branches. Signs of spontaneous pain have been reported and cold, and 

mechanical hypersensitivity develop one week after surgery, persisting for six 

weeks. As in the CCI model there is variation in the duration and magnitude of 

responses depending on the material used. The spinal nerve ligation model 

(SNL) involves ligation of the L5 and L6 nerves (Kim and Chung, 1992) and 

results in the development of spontaneous pain like behaviour and 

mechanical, cold and thermal hypersensitivity develops 24-48 hours and 

persists for 10-16 weeks. Although the ligation is more easily reproducible 

compared to the above methods, the close proximately to the L4 nerve means 

that inflammatory process may play a key role in this neuropathic animal 

model.   

The spared nerve injury model, developed by Decosterd and Woolf., 2000 

involves the ligation and subsequent axotomy of the tibial and common 

peroneal nerves while keeping the sural and saphenous nerve intact. 

Therefore the damaged sensory fibres innervate a more restricted area and 

testing is performed in the innervated skin region adjacent to the denervated 

area of the limb. In both rats and mice, mechanical hypersensitivity develops 

4 days after surgery and persist for up to 6 months (Bourquin et al., 2006; 

Decosterd and Woolf, 2000; Shields et al., 2003).  

Responsiveness to noxious and innocuous mechanical and cold stimuli is 

increased in the sural and, to a minor extent the saphenous region (Decosterd 

and Woolf, 2000). However, thermal thresholds remain unaltered although 

responses to noxious thermal stimulation is exaggerated. These changes are 

robust, substantial and prolonged and closely mimic many features of clinical 

neuropathic pain (Shields et al., 2003). In addition, this model enables 

investigation of responses to both non-injured skin territories that adjoin de-

innervated areas enabling simultaneous investigations in both injured and non-

injured primary afferents that both make a contribution to neuropathic pain. 

Importantly the surgical procedure for creating this model is simple in 

comparison to the SNL, PNL and CCI and thus, there is less variability in the 

degree of damage (Decosterd and Woolf, 2000; Lindia et al., 2005).  
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Together nerve injury animal models have been key to the elucidation of the 

neuronal and non-neuronal mechanisms underlying neuropathic pain-like 

behaviour in the PNS and CNS.  

Following peripheral nerve injury primary afferents exhibit ectopic activity and 

extensive transcriptional changes in both the injured and non-injured sensory 

neurons that lead to alterations in membrane properties and transmitter 

function. These alter the presynaptic release of new transmitters and 

neuromodulators into the dorsal horn that induce activity dependent plastic 

changes in the CNS involving neuronal and non-neuronal mechanisms (Bester 

et al., 2000; Costigan et al., 2002; Fukuoka et al., 2001; Kohno et al., 2003; 

Latremoliere and Woolf, 2009; Noguchi et al., 1995). There are several reviews 

outlining nerve injury induced peripheral changes that contribute to 

neuropathic pain but in this thesis I focus upon the changes that take place in 

the CNS with a focus on the dorsal horn spinal cord (Campbell and Meyer, 

2006; Devor, 1991; Sommer and Kress, 2004; Woolf and Mannion, 1999). 

1.4.3 Changes in the CNS underlying neuropathic pain 

Following peripheral nerve injury abnormal activity from primary afferents can 

induce activity dependent plastic changes in the CNS. For example, in naïve 

conditions noxious stimulation is required to activate extracellular signal-

regulated kinases (ERK) in superficial dorsal horn neurons but following 

peripheral nerve injury low threshold stimulation acquires this capacity (Ji et 

al., 1999; Matsumoto et al., 2008) that mimics the allodynia observed in 

patients with peripheral neuropathic pain.  

Central sensitisation therefore provides a mechanism for how i) 

hypersensitivity occurs following nerve injury in the absence of peripheral 

sensitization ii) how low threshold primary afferent input can produce pain 

(allodynia) and iii) why there is a spread of sensitivity beyond areas outside 

the damaged nerve territory (secondary hyperalgesia) (Campbell and Meyer, 

2006; Perl, 2007; Seal et al., 2009; Woolf, 2011; Woolf and Salter, 2000).  

Mechanisms underlying these sensations include alterations in synaptic 

circuitry, disinhibition and alterations in brainstem regulation. Numerous 

studies also indicate that the enhanced output of dorsal horn neurons is not 
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solely dependent upon neuron to neuron transmission but glia to neurons 

interactions also play a key role in initiation and maintenance of pain 

hypersensitivity following nerve injury coining the idea that  neuropathic pain 

is a neuro-immune disorder (Austin and Moalem-Taylor, 2010) 

1.4.4 Central neuronal mechanisms of neuropathic pain 

Peripheral nerve injury induces structural, physiological and expression 

changes in the dorsal horn spinal cord.  Following nerve injury low threshold 

Aβ and C fibre mechanoreceptors which usually convey information about 

pleasant touch and project onto protein kinase C-γ (PKC-γ) positive 

interneurons start to convey pain (Perl, 2007; Seal et al., 2009). In the dorsal 

horn PKCγ, which is restricted to ventral lamina II and III in the dorsal horn is 

up-regulated following nerve injury and although mice lacking PKCγ show 

normal acute pain responses they do not develop hypersensitivity following 

nerve injury (Malmberg et al., 1997; Mao et al., 1995; Polgár et al., 1999).  

Dynorphin may also play a role in the maintenance of neuropathic pain. 

Dynorphin is up-regulated in the spinal cord several days after the onset of 

nerve injury-induced pain-like behaviour and intrathecal administration of 

dynorphin causes mechanical hypersensitivity, while antibodies blocking 

dynorphin are able to reverse hypersensitivity (Kajander et al., 1990). 

Furthermore, pain-like behaviour is initiated but not maintained in mice lacking 

dynorphin (Wang et al., 2001).  

Following a nerve injury postsynaptic changes in the dorsal horn occur which 

include phosphorylation of NMDA subunits and increased AMPA receptor 

density as a result of an increase in trafficking and synthesis of ion channels 

and scaffold proteins that are important in synaptic plasticity and indicative of 

central sensitization (Iwata et al., 2007; Latremoliere and Woolf, 2009; Miyabe 

et al., 2006; Takasusuki et al., 2007; Tao et al., 2003). 

In vivo recordings in nerve injured rodents indicate alterations in the activity of 

dorsal horn neurons to a range of stimuli. However, the response of dorsal 

horn neurons to heat stimulation remain unaltered, despite the development of 

thermal hypersensitivity in these animals (Laird and Bennett, 1993; Palecek et 

al., 1992). These studies show no changes in the mechanical threshold or 
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responses to wind up in nerve injured animals which are comparable to sham 

controls (Chapman et al., 1998a), more neurons respond to innocuous 

mechanical stimulation and there is an enlargement of receptive fields 

compared to sham controls (Laird and Bennett, 1993; Palecek et al., 1992; 

Suzuki et al., 2000).  

Patch clamp recordings in spinal cord slices indicate a facilitation of  NMDA 

receptor currents in the SNL animal model while following CCI and nerve 

transection the threshold for eliciting EPSCs is reduced and there is an 

increase in mono-and poly-synaptic Aβ-fibre evoked EPSCs (Kohama et al., 

2000; Okamoto et al., 2001).  

A loss of inhibition (or disinhibition) also contributes to the increase in 

excitatory synaptic strength and neuronal excitability in the dorsal horn. 

Following nerve injury a reduction in IPSC in lamina II neurons occurs as a 

consequence of reduced presynaptic GABA release in the superficial dorsal 

horn (Moore et al., 2002). Inhibiting GABA and glycine release increases A-

fibre mediated excitatory transmission in the superficial dorsal horn and 

induces mechanical hypersensitivity (Baba et al., 2003; Sivilotti and Woolf, 

1994).  

Behavioural investigations also suggest that descending pathways, involving 

the descending facilitatory projections from the PAG and RVM are importance 

for the maintenance, but not induction of neuropathic pain behaviour and 

injection of lidocaine into these brain areas can attenuate mechanical 

hypersensitivity in nerve injured animals (Burgess et al., 2002; Pertovaara et 

al., 1996). Inhibitory neurotransmission (norepinephrine, 5-hydroxytryptamine 

and endogenous opioids) following nerve injury can also alter so that tonic 

noradrenergic inhibition is suspended and the descending serotonergic input 

changes from inhibition to facilitation (Bee and Dickenson, 2008; Rahman et 

al., 2008; Vera-Portocarrero et al., 2006).  

Histological studies suggest that ipsilateral dorsal horn neurons undergo 

degeneration following CCI as observed with TUNEL staining, and are 

possible GABAergic neurons (Azkue et al., 1998). However, it is possible that 
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these cells maybe non-neuronal and there is some controversy about this 

(Polgar et al., 2003).  

A key clinical problem in neuropathic pain patients is mechanical allodynia and 

a number of investigations into the mechanisms underlying this symptom have 

been undertaken. Spinal lamina I output neurons are not organised to receive 

direct input from low threshold afferent (their dendrites are restricted to lamina 

I) and low threshold afferents terminate in deeper laminae (Bester et al., 2000; 

Keller et al., 2007; Miraucourt et al., 2007). However, there are excitatory 

interneurons that are presynaptic to lamina I projection neurons that have 

dendrites ventrally and receive input from deeper layers (Cordero-Erausquin 

et al., 2009).  

Polysynaptic pathways have also been identified that are  normally repressed 

by inhibition (via feed-forward glycinergic interneurons) that represses the 

relay of information via an excitatory interneuron that expresses PKC-γ from 

low threshold mechanosensitive afferents to lamina I projection neurons (Baba 

et al., 2003; Keller et al., 2007; Lu et al., 2013; Miraucourt et al., 2007; Torsney 

and MacDermott, 2006). However, following peripheral nerve injury the 

nociceptive neurons that respond to innocuous touch can be replicated via 

antagonising glycine and/or GABAA mediated currents pathways suggesting 

dis-inhibition as a key mechanism underlying mechanical allodynia. 

Disinhibition also provides a mechanism by which glial activation can regulate 

pain processing via altering Cl- mediated inhibition (Ferrini and De Koninck, 

2013).  

1.4.5 Central non-neuronal mechanisms of neuropathic pain 

Following nerve injury neurotransmitters and other mediators are released in 

to the dorsal horn spinal cord such as glutamate, fractalkine, ATP, misfolded 

proteins, complement components and nuclear factors that stimulate 

microglia, the recruitment of T-lymphocytes and at later time points, astrocytes. 

These non-neuronal cells alter the expression of cell surface receptors, 

signalling pathways that ultimately leads to the release of pro- and anti-

inflammatory mediators, the balance of which determines if neuropathic pain 
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is initiated and maintained (McMahon and Malcangio, 2009; Scholz and Woolf, 

2007; Tanga et al., 2004).   

 

Fig 1.5  Microglia, astrocyte and T-cells transition to a pain-related enhanced state 
in the dorsal horn following peripheral nerve injury. 

Signals conveying a nerve injury arrive via primary afferents in the dorsal horn and stimulate 
the release of chemokines, proteases, growth factors, neurotransmitters and cathepsin-S that 
induces the proliferation and movement of microglia to the site in the dorsal horn where injured 
primary afferents arborize. Microglia express MHC-II and, together with co-stimulatory 
molecule CD40 present antigens to T-lymphocytes. Astrocytes also proliferate. The induction 
of intracellular signalling of MAPKs in astrocytes and microglia, induce the release of pro-
inflammatory mediators such as TNF, BDNF and IL-1β which act pre-synaptically to enhance 
neurotransmitter release from primary afferents and post-synatpcially on dorsal horn neurons 
which together increase the activity of excitatory neurons and reduce the activity of inhibitory 
neurons. Reprinted from The Lancet, 11, Calvo, Daves and Bennett, The role of the immune 
system in the generation of neuropathic pain, page 629-642., Copyright (2012), with 
permission from Elsevier. 

1.4.5.1 Microglia 

In the adult, the most highly regulated genes following nerve injury are 

expressed in spinal microglia (Griffin et al., 2007) which are the first spinal cord 

glia cell type to be stimulated, within 4 hours of peripheral nerve injury (Tanga 

et al., 2004). Initially  microglia  undergo rapid proliferation  and migrate to the 

site where injured terminals terminate as well as in the ventral horn around 

motor neuron cell bodies of injured motor neurons (Beggs and Salter, 2007; 

Suter et al., 2007).  
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Three main signalling pathways mediate the recruitment of resident microglia 

to the dorsal horn and including the chemokine fractalkine acting on the 

CXCR1 receptors, CCL2 on CCR2 and Toll-like receptors (TLRs) (Kim et al., 

2007; Tanga et al., 2005; Verge et al., 2004; White et al., 2005) although a 

range of mediators both released by primary afferents and the products of 

tissue injury including ATP, misfolded proteins, and nuclear factors are sensed 

by microglial cell surface receptors that also initiate the transition into an 

enhanced pain response state (Liu et al., 2000; Ma et al., 2003; Wu et al., 

2001). 

In addition to nerve injury, dorsal horn sensitization can also be evoked by 

intense C-fibre stimulation. A study by Hathway et al showed that C-fibre 

stimulation of the sciatic nerve in adult rats induced hypersensitivity and 

increases in microglia marker expression in the dorsal horn that could be 

prevented by administration of minocycline (Hathway et al., 2009). If the nerve 

is completely blocked, mechanical hypersensitivity and microglial activation is 

stopped, although C-fibre inhibition alone does not prevents SNI nerve injury 

or microglia activation (Suter et al., 2009; Wen et al., 2007; Xie et al., 2009).  

The transition of microglia into a ‘pain related enhanced state’ is characterised 

by alterations in cell morphology, gene expression, the expression of surface 

proteins, regulation of receptors and channels and activation of intracellular 

singling cascades (including phosphorylation MAPK such as p38 and ERK and 

the Src-family kinases Src, Lck and Lyn) and the subsequent release of 

inflammatory mediators.  

Although an over simplification, microglia polarisation can be categorised into 

classical M1 and alternative M2 activation states. Lipopolysaccharide (LPS) is 

known as a representative M1 polarisation inducer that leads to increases in 

pro-inflammatory molecules including TNF, IL-1β, and IFN-γ and NO. In 

contrast IL-4 induces M2 polarisation leading to the expression IL-4, cluster of 

differentiation (CD)206 and IL-10 and neuro-protective effects (David and 

Kroner, 2011; Kigerl et al., 2009; Kobayashi et al., 2013; Liao et al., 2012; 

Ponomarev et al., 2007). Following nerve injury in adult rodents, microglia 

exhibit a predominantly pro-inflammatory M1 response characterised by the 

release of TNF, IFN-γ, and growth factors such as BDNF that alter excitatory 
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synaptic transmission and reduces inhibitory transmission and thus induce 

central sensitisation via distinct mechanisms (Coull et al., 2005; Ledeboer et 

al., 2005; Svensson et al., 2005; Tanga et al., 2004). While neurotransmitters 

such as glutamate and GABA produce synaptic alterations at µM 

concentrations, cytokines, chemokines and growth factors alter synaptic 

activity at nM concentrations (Coull et al., 2005; Gao et al., 2009; Kawasaki et 

al., 2008).  

The actions of these mediators are characterised by increased excitatory 

synaptic transmission and decreased inhibitory synaptic transmission leading 

to central sensitization of dorsal horn neurons and the development of 

persistent pain. To counterbalance this effect M2 polarised anti-inflammatory 

cytokines including IL-4, IL-10, IL-13 and Transforming growth factor beta 

(TGF-β) act on homeostasis restoration and promote repair mechanisms. 

However, following adult nerve injury in the dorsal horn the balance is tipped 

towards a predominant pro-inflammatory response and pain-like behaviour. 

Multiple studies have examined the role of cytokines and chemokines on 

neuronal activity. For example, Gruber-Schoffnegger and colleagues showed 

that activation of spinal glial were essential for the induction of long term 

potentiation (LTP) induction at C-fibre synapses in LI neurons and the 

cytokines TNF and IL-1β are individually sufficient and necessary for LTP 

induction, amplifying both AMPA and NMDA mediated currents acting 

indirectly via IL-1 receptors and TNF receptors expressed on glial cells in the 

dorsal horn that lead to the subsequent release of inflammatory mediators 

(Gruber-Schoffnegger et al., 2013; Jin et al., 2003; Katsura et al., 2006; Suter 

et al., 2007; Tsuda et al., 2004; Zhuang et al., 2005). These inflammatory 

mediators act in a positive feedback loop to further recruit microglia, stimulate 

astrocytes,  and promote the sensitization of the CNS nociceptive circuits and 

neuropathic pain (Jin et al., 2003; Katsura et al., 2006; Suter et al., 2007; 

Tsuda et al., 2004; Zhuang et al., 2005).  

Microglia also play a key role in T lymphocyte recruitment as part of the 

adaptive immune system that have a role in the maintenance of 

hypersensitivity following nerve injury (Cao and DeLeo, 2008; S. M. Sweitzer 

et al., 2002).  For example, nerve injured stimulated microglia act as local 
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antigen presenting cells (APCs) and direct and modify T-cells by expressing 

major histocompatibility complex (MHC) class II and co-stimulatory molecule 

CD40 that regulate leukocyte infiltration (Grace et al., 2011; Kazansky, 2008).  

Finally, blocking microglial responses or promotion of anti-inflammatory 

responses in animal models of neuropathic pain prevents and in some cases 

reverse hypersensitivity (Coull et al., 2005; Ledeboer et al., 2005; 

Raghavendra et al., 2003; Tsuda et al., 2003) 

1.4.5.2 T-cells 

T-cell lymphocytes (T-cells) are the major cellular components of the adaptive 

immune response and can be divided into helper T (Th) cells, cytotoxic (Tc) 

cells and regulatory T cells (Tregs). Th cells can be sub-divided into type 1 

(Th1) and Th2 that broadly have different patterns of cytokine production, 

originally described in a CD4+ T-cell and are classified on their cytokine 

production and associated effector function (Mosmann and Coffman, 1989; 

Mosmann and Sad, 1996). Th1 cells produce mostly IFN-γ, an inflammatory 

cytokine important in the response to microbial infections. Th2 cells secrete IL-

4 participating in immunity against parasites and encourage antibody 

production as well as IL-10. The cytokine productions of Th1 and Th2 cells are 

mutually inhibitory for both the differentiation and effector functions of the 

reciprocal phenotype. For example, IFN-γ inhibits the proliferation of Th2 cells 

and IL-10 inhibits the synthesis by Th1 cells (Fiorentino et al., 1989; Mosmann 

et al., 1990; Mosmann and Coffman, 1989). T-cells can infiltrate healthy and 

diseased CNS across the choroid plexus, blood-brain barrier (BBB) and blood-

spinal cord barrier (BSpCB) to identify antigens (Engelhardt, 2006; Engelhardt 

and Ransohoff, 2005; Hickey, 2001; Ransohoff et al., 2003).  

Accumulating evidence suggests that seven days after peripheral nerve injury 

CD4+ T-cells infiltrate the spinal cord, due to an increase in blood-CNS barrier 

permeability, where they interact with activated glia and exhibit a Th1 response 

which contributes to pro-inflammatory mediators that sensitise neurons (Beggs 

et al., 2010; Cao and DeLeo, 2008; Costigan et al., 2009; Hu et al., 2007; 

Sweitzer et al., 2002). In addition to nerve injury, permeability of the BSpCB 

can be increased 24 hours after electrical stimulation of the sciatic nerve or 
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capsaicin application which can be reduced by lidocaine prior to surgery 

(Beggs et al., 2010).  

The use of knock out rodents has provided important evidence for the 

involvement of lymphocytes in the maintenance of neuropathic pain behaviour. 

For example, hypersensitivity in nerve injured mice can be attenuated in nerve 

injured MHC class II and microglia CD40 null mice (Cao et al., 2009; Sweitzer 

et al., 2002). Athymic rats lacking T-cells and T-cell deficient nude mice exhibit 

reduced hypersensitivity following peripheral nerve injury (Cao and DeLeo, 

2008; Moalem et al., 2004) and mice lacking functional T-cells (deficient in the 

recombinant activating gene-1) exhibit attenuated thermal and mechanical 

hypersensitivity following nerve injury (Costigan et al., 2009; Kleinschnitz et 

al., 2006).  

In adult neuropathic rodents, IFN-γ is a prominent pro-inflammatory mediator 

up-regulated in the dorsal horn spinal cord that alters neuronal excitability (see 

below). As a result of the antagonist function of a Th1 and Th2 response, there 

is a strong bias towards either a Th1 or Th2 response. As CD4 null mice still 

exhibit increases in the expression of microglia markers, but not astrocyte 

markers, suggests that the interaction of T-cells and microglia may facilitate 

the activation of astrocytes (Raghavendra et al., 2003).  

1.4.5.3 Astrocytes 

Nerve injury stimulates astrocytes at a later time point than microglia, around 

4 days post injury (Colburn et al., 1999; Tanga et al., 2004) and these play a 

key role in the maintenance of neuropathic pain. Glial fibrillary acidic protein 

(GFAP) antisense treatment in neuropathic rats reverses established pain 

(Kim et al., 2009). Similarly to microglia, astrocytes express a variety of 

receptors and following nerve injury, leads to the activation of intracellular 

signalling pathways of the JNK member of the MAPK family that is persistently 

activated in spinal cord astrocytes following nerve injury (Ma and Quirion, 

2002; Zhuang et al., 2006). Astrocytes also release a plethora of mediators 

many of which overlap with microglia and T-cells including NO, excitatory 

amino acids, ATP and pro-inflammatory cytokines including IFN-γ and CCL2  

(Gao et al., 2009; Gosselin et al., 2005; Liu et al., 2000; Milligan et al., 2001; 
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Queiroz et al., 1997; Racz et al., 2008). Although fewer studies have 

investigated the role of astrocytes in nerve injury induced pain, astroglial toxins 

and astrocyte proliferation inhibitors can attenuate neuropathic pain like 

behaviour in animal models (Milligan et al., 2003). 

Together this data suggests that nerve injury induces the release of microglial-

derived mediators that  contribute to a pro-inflammatory  environment in the 

first synapse in the spinal cord that persists beyond the original nerve injury 

and spreads to remote sites and hence, the development of pain 

hypersensitivity and long term maintenance of pain. 

1.5 Postnatal development of pain pathways 

Even before birth, the infant nervous system responds to noxious stimulation; 

chemical, heat or mechanical cutaneous stimuli can evoke activity in dorsal 

horn spinal cord neurons and reflexes in the foetus (Fitzgerald, 1987c; 

González and Angulo, 1932). However, the neonatal nervous system 

undergoes profound postnatal developmental alterations reflected in both the 

lower reflex thresholds, larger reflex receptive fields and exaggerated and un-

coordinated responses following noxious stimulation in the neonate. This 

continues until approximately  postnatal day 10 (P10) in the rat and gradually 

refines over the first few weeks of postnatal development (Andrews et al., 

2002; Andrews and Fitzgerald, 1999, 1994; Ekholm, 1967; Fitzgerald et al., 

1988; Waldenström et al., 2003, 2003).   

These alterations in behaviours arise from fine tuning of excitatory and 

inhibitory synaptic connections and neuronal circuitry in the dorsal horn over 

the postnatal period so that the processing of noxious inputs differ in infant and 

adult animals (Fitzgerald, 2005a; Fitzgerald and Walker, 2009). For example, 

the properties and receptive fields of dorsal horn neurons reflect the same 

properties of large receptive fields, low thresholds and prolonged action 

potential after-discharge in the early postnatal period (Fitzgerald, 1988, 1985a; 

Torsney and Fitzgerald, 2002; Ririe et al., 2008). Furthermore sensitization of 

the spinal cord to repeated C-fibre input does not occur in infant animals 

(Hathway et al., 2009) but electrical stimulation of cutaneous A-fibres 

sensitizes dorsal horn neurons in P6 rats (Jennings and Fitzgerald, 1998). 
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These functional properties in the newborn rodent are also observed in the 

kitten and in human neonates (Andrews et al., 2002; Andrews and Fitzgerald, 

1994; Ekholm, 1967). 

Compared to humans, the rat pup is born at an immature stage and the first 

postnatal week corresponds to human preterm development from 24 weeks to 

full term 40 post conception weeks (Fitzgerald, 1991). By P7 a rat pup can be 

considered an infant and by P21, when the rat is weaned, they are considered 

a young adolescent (McCutcheon and Marinelli, 2009; McGrath et al., 2013) 

and are considered an adult by the age of 8 weeks.  

This section describes how sensory systems develop over the postnatal period 

with particular attention to dorsal horn spinal cord processing. Within the dorsal 

horn postnatal developmental changes in the balance of inhibitory and 

excitatory signalling influence acute responses to sensory input and also 

underlies longer term alterations in sensory processing following tissue injury 

in early life. 

1.5.1 Primary afferent connections to the dorsal horn 

In the rat, by birth much of the nociceptive circuitry is in place. For example, 

sensory neurons grow out from the dorsal root ganglia towards the periphery, 

reaching the epidermis and dorsal horn and the lumbar spinal cord by E20 

(Fitzgerald, 1987a; Reynolds et al., 1991). In vivo dorsal horn recordings in the 

rat foetus at E20 show that activity can be evoked in the dorsal horn spinal 

cord in response to noxious cutaneous chemical, heat and mechanical 

stimulation (Fitzgerald, 1987b). However, during development A-and C-fibres 

in the immature dorsal horn undergo reorganisation in the postnatal period 

(Benn et al., 2001; Fitzgerald et al., 1991; Fitzgerald, 1987a; Fitzgerald and 

Swett, 1983; Jackman and Fitzgerald, 2000; Mirnics and Koerher, 1995; 

Woodbury and Koerber, 2003) with  maturation occurring through the first 2-3 

postnatal weeks in the rodent, a period that extends throughout infancy and 

early childhood in humans (Beggs et al., 2002; Cornelissen et al., 2013, 2013; 

Jennings and Fitzgerald, 1998).  

By E15 A-fibres penetrate the dorsal horn in a somatotopic appropriate manner 

and have made synaptic contacts (Coggeshall et al., 1996; Fitzgerald et al., 
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1994).  Initially however, A-fibre terminals spread widely into the superficial 

dorsal laminae extending into LI and LII which in the adult is occupied mostly 

by C-fibres. These terminals form functional connections with immature 

superficial dorsal horn neurons which has a significant influence on the 

physiological responses of dorsal horn neurons. Stimulation at Aβ-fibre 

strength stimulation can evoke c-Fos expression (a marker of neuronal 

activation) and prolonged activity in LII which is absent by P21 (Andrews and 

Fitzgerald, 1994; Jennings and Fitzgerald, 1998; Nakatsuka et al., 2000; Park 

et al., 1999) and repetitive Aβ fibre stimulation before P21 sensitizes dorsal 

horn neurons (Jennings and Fitzgerald, 1998). As a result dorsal horn cell 

cutaneous mechanical thresholds are lower and a larger proportion of neurons 

respond to low threshold stimulation (Fitzgerald, 1987b; Fitzgerald and 

Jennings, 1999; Torsney and Fitzgerald, 2002).  

Over the first three postnatal weeks A-fibres withdraw to deeper laminae in an 

activity dependent manner and exhibit a mature pattern by P21(Beggs et al., 

2002; Fitzgerald et al., 1994; Fitzgerald and Jennings, 1999; Granmo et al., 

2008; Jennings and Fitzgerald, 1998, 1996).  

In contrast to A-fibres, C-fibres are the last to enter the dorsal horn grey matter 

directly into LI-LII at  E19 although the full complement of C fibres (including 

the IB4+ subset) are detected as late as P5 (Fitzgerald et al., 1987a; Fitzgerald 

and Swett., 1983). During the early postnatal period A and C-fibres overlap 

which partly explains the sensitivity of infant animals to low-threshold input.    

Although C-fibres form functional synapses at birth, in the first postnatal week, 

they are unable to evoke spike activity in dorsal horn neurons until P9 (Baccei 

et al., 2003; Fitzgerald, 1988; Jennings and Fitzgerald, 1998). For example, C-

fibre irritant mustard oil induces only a weak flexion reflex and c-Fos 

expression in dorsal horn neurons (Fitzgerald and Gibson, 1984; Williams et 

al., 1990) and although application of capsaicin to spinal cord slices increases 

glutamate release in the dorsal horn by P0, these is a significant increase 

between P5 and P10 showing that C-fibre synaptic input matures steadily from 

birth (Baccei et al., 2003). These experiments show that although nociceptive 

responses are present at birth, neurotransmitter release is asynchronous and 

thus does not readily induce spike activity in vivo (Fitzgerald et al., 2005). 
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Therefore, in the early postnatal period, nociceptive responses are largely 

mediated through Aδ-fibres which may assume a different role in the 

transmission of information to the spinal cord to accommodate for the 

immaturity of C-fibre connections. 

C-fibre input in the early postnatal period is important for the development of 

nociceptive processing and innocuous input processing and the withdrawal of 

A-fibre terminals from the superficial laminae is halted in animals without C-

fibre terminals (Beggs et al., 2002; Torsney et al., 2000). 

1.5.2 Excitatory neurotransmission in the immature dorsal horn   

Most of the excitatory transmission in the dorsal horn is mediated by glutamate 

acting on postsynaptic ionotropic receptors including NMDA, Kainate and 

AMPA receptors. These receptors show considerable postnatal regulation 

exhibiting differences in expression and subunit stoichiometry with age. Initially 

these receptors are highly expressed and gradually become restricted to the 

superficial dorsal horn (Jakowec et al., 1995; Pattinson and Fitzgerald, 2004).  

In the first postnatal weeks NMDA receptors (NMDAR) have a higher affinity 

for NMDA and are more abundant at birth declining in the first two postnatal 

weeks (Gonzalez et al., 1993; Green and Gibb, 2001). Receptors also exhibit 

a more calcium permeable stoichiometry in the neonate and neonatal rat LI-II 

neurons have increased AMPAR-dependent calcium influx due to a reduced 

expression of subunit GluR2 compared to mature rats which have a reduced 

calcium permeability (Hartmann et al., 2004). Activation of calcium dependent 

intracellular cascades alters synaptic strength and is also important in neuron 

growth (Gu and Spitzer, 1995; Li et al., 2013; Li and Baccei, 2011). The 

restriction of expression of glutamate receptors and changing of subunit 

composition coincides with a dampening of general spinal cord excitability. 

1.5.3 Inhibitory neurotransmission in the immature dorsal horn   

Inhibitory circuits and brainstem descending controls play an equally essential 

role in modulating nociceptive signals and also show considerable postnatal 

developmental changes. GABA and glycine are the major inhibitory 

neurotransmitters in the dorsal horn that act via activation of ligand gated 
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chlorine channels (GABAA and glycine receptor). In the neonatal dorsal horn 

GABAergic signalling dominates in lamina II neurons for the first two postnatal 

weeks while glycinergic miniature IPSC are absent, although their receptors 

are present (Baccei and Fitzgerald, 2004; Dougherty et al., 2009; Ma et al., 

1992; Schaffner et al., 1993). In contrast glycinergic inhibition develops later 

in the second postnatal week coinciding with an alteration in glycinergic 

receptor expression to a mature α1/β glycine receptor composition (Baccei and 

Fitzgerald, 2004; Koch et al., 2012).  

In the immature dorsal horn tactile responses are facilitated rather than 

inhibited by glycinergic activity although this period ceases in the second 

postnatal week upon the development of glycinergic inhibition coinciding with 

the maturation of C-fibre spinal input (Koch and Fitzgerald, 2014). The 

combination of greater excitatory neurotransmission and a lack of glycinergic 

inhibition plays a key role in the excitability of the dorsal horn, a trend that 

favours synaptic strengthening and is important for the maturation of the pain 

pathway. 

1.5.4 Descending neurotransmission in the immature dorsal horn   

Experiments in adult mammals indicate that descending control exerts 

inhibitory effects on dorsal horn spinal cord processing, as blocking 

descending control results in a fall in mechanical reflex thresholds and 

exaggerated responses to noxious stimulation (Sherrington, 1910).  

Stimulation of the dorsolateral funiculus that contains descending fibres from 

the brainstem, produces analgesia in adults by inhibiting responses and c-Fos 

activation of dorsal horn neurons in response to  hind paw stimulation but not 

in animals younger than P9 (Boucher et al., 1998; Fitzgerald and Koltzenburg, 

1986). From P12 stimulation inhibits around 50% of cells and by P18 causes 

widespread inhibition in the dorsal horn (Fitzgerald and Koltzenburg, 1986) 

and stimulation of the PAG does not inhibit dorsal horn cells until P21 (van 

Praag and Frenk, 1991).  

The ablation of the RVM in animals up to the age of P21 results in an increase 

in mechanical thresholds whereas the same treatment in adults results in a fall 

in mechanical thresholds (Hathway et al., 2009). A study by Hathway et al., 
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demonstrated that this top-down control on dorsal horn neurons changes 

markedly in the first few postnatal weeks from a unimodal facilitatory control in 

neonatal rats (before P21) to inhibitory at older ages (Hathway et al., 2009, 

2012). In addition, in contrast to adults, brainstem descending inhibition of C 

fibre inputs is absent at P21 while the facilitation of A-fibre input in early life is 

likely to enhance non-noxious inputs to the dorsal horn in the early postnatal 

weeks, promoting activity-dependent development of sensory networks (Koch 

and Fitzgerald, 2014).  

The mechanism underlying the switch is likely to be associated with the 

maturation of RVM and PAG circuitry. Interestingly, the postnatal development 

of GABAergic neurons in the rat PAG correlates with the development of 

descending control with an increase from P5 to P10, maturation at P14 and 

established after P20 (Barbaresi, 2010).   

1.6 The development of persistent and chronic pain  

While mammalian nociceptive pathways are functional at birth and robust 

behavioural and physiological responses to noxious stimuli can be measured, 

the response of the nervous system to more prolonged injury is less well 

understood (Fitzgerald, 2005a, 1991; Slater et al., 2007).  

Both neurobiological and behavioural studies in animal models show that 

during critical periods in the postnatal period a ‘normal’ sensory experience 

(i.e. non-noxious stimulation) is essential for the postnatal development of the 

nociceptive circuitry indicating activity depending shaping of neuronal circuits 

(Beggs et al., 2002; Fitzgerald, 2005a; Koch et al., 2012).  

The use of different animal models to mimic injuries such as inflammation, 

surgical injury and visceral insults has shown that when noxious stimulation is 

repeated or persistent the effects may outlast the period of stimulation. This 

may have long-lasting alterations on pain processing later in life which is 

critically dependent on the time at which the injury occurs and the type, severity 

and duration of injury (Fitzgerald., 2005).  



Chapter One  General Introduction 

57 
 

1.6.1 Long-term effects of early life injury  

Insults such as acute carrageenan inflammation or surgical incision in the hind 

paw during the first postnatal week, a critical period for many insults, are 

associated with a general hyposensitivity (i.e. decreased sensitivity) that 

emerges 4-5 weeks later. The area around the injury maintains an enhanced 

sensitivity so that a new injury (such as a repeat of CFA, capsaicin, formalin 

but not nerve injury) to the same region causes an enhanced hyperalgesia that 

is greater in amplitude and duration compared to controls (Beggs et al., 2012; 

Chu et al., 2007; LaPrairie and Murphy, 2009; Ren et al., 2004; Sternberg et 

al., 2005; Walker et al., 2009). The hypersensitivity following a second insult is 

apparent shortly after the initial injury but also in adult hood (even in 125 day 

old rats), long after the initial injury is resolved (Ren et al., 2004). Importantly, 

the effects of these relatively mild insults are constrained to the early neonatal 

period, the critical period being in the first postnatal week and disappearing if 

the initial injury is completed after P9.  

If the injury is more extensive, such as following neonatal visceral injury e.g. 

exposing the bladder or bowel to a chemical irritant, animals display long-

lasting hypersensitivity and secondary hyperalgesia while re-injury in 

adulthood results in enhanced hyperalgesia (Christianson et al., 2010; 

DeBerry et al., 2010; Randich et al., 2006; Wang et al., 2008).  

The two different changes in pain sensitivity i) a global reduction in baseline 

sensitivity (hyposensitivity) or ii) increased pain and hyperalgesia in the region 

of neonatal injury must be due to two different mechanisms. The 

hyposensitivity following carrageenan is generalized to all hind paws and must 

involve pathways beyond the dorsal horn. Due to the maturational switch of 

the RVM from a facilitatory before P21 to a dominating inhibition, brain stem-

mediated alterations in descending modulation maybe a key mechanism. In 

support of this evidence in animal models shows that  following neonatal hind 

paws carrageenan insult, adults exhibit enhanced inhibition from the RVM in 

response to noxious inputs and alterations in the PAG including opioid-

mediated responses and increased expression of 5HT receptors (Anseloni et 

al., 2005; Wang et al., 2004; Zhang et al., 2010). Therefore a permanent 
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change in RVM circuitry or signalling as a result of early injury may alter 

descending control and subsequently nociceptive dorsal horn networks. 

Mechanisms underlying the increased hyperalgesia are segmentally restricted 

to the previously injured paw and thus represent different mechanisms to those 

underlying hyposensitivity. During these insults afferent input following 

neonatal injury is likely to be intense as in vivo electrophysiological recordings 

of dorsal horn neurons during skin incision show that the initial afferent evoked 

activity is greater in infants compared to adults (Ririe et al., 2008) and early life 

injury causes changes in dorsal horn nociceptive circuitry, similar to central 

sensitisation (Al-Chaer and Traub, 2002; Beggs et al., 2012; Wang et al., 

2008).  

Neonatal skin wounds cause increases in spinal flexion reflex 

electromyographic excitability, enlarged dorsal horn receptive fields 6 weeks 

later that are NMDAR dependent (Beggs et al., 2012; Chu et al., 2007; Torsney 

and Fitzgerald, 2003) and patch clamping studies in dorsal horn slices of adults 

following infant tissue injury show a decrease in inhibitory signalling in lamina 

II neurons (Li et al., 2013). As the maturation of dorsal horn glycinergic circuits 

are dependent on C-fibre activity in the postnatal period, insults during this 

period may alter glycinergic neurotransmission (Koch et al., 2012; Koch and 

Fitzgerald, 2014).  

Long-term enhancement of pain activity might also be maintained by the 

neuro-immune system. Of particular interest is the incision model, where 

incision activates microglia in the dorsal horn in the adult, but prior neonatal 

skin incision greatly enhances hypersensitivity that is mirrored by alterations 

in time course and degree of microglial expression in the dorsal horn compared 

to controls.  This ‘primed’ state can be reversed by intrathecal administration 

of minocycline at the same time as adult incision (Beggs et al., 2012).  

As microglia in adults are known to release pro-inflammatory mediators this 

‘priming’ may increase the release after re-injury, thus enhancing spinal dorsal 

horn excitability and behavioural hypersensitivity. Furthermore, microglia are 

long lived cells they are well suited to a role in persistent alterations. Evidence 

for this was shown by direct C-fibre stimulation, not injury, in the neonate, that 
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also ‘primed’ microglia showing that alterations are maintained in the dorsal 

horn circuitry. However, novel neuro-immune interactions in the neonate have 

been implicated in long term effects of neonatal nerve injury which differs 

substantially from neonatal inflammation and tissue injury with respect to both 

the critical period and behavioural responses.   

1.6.2  Nerve injury at infancy 

Neuropathic pain is rare in infants and only very few reports exist before 5-6 

years of age in humans (Anand and Birch, 2002; Howard et al., 2014; Sethna 

et al., 2007; Walco et al., 2010). For example, thirteen years is the median age 

of onset for paediatric neuropathic pain syndromes such as phantom pain, 

complex regional pain syndrome and peripheral neuropathy pain (Walco et al., 

2010). The reasons for this are unknown, although it is apparent that pain is 

more likely to be observed in late childhood and adolescence than at younger 

ages (Anand and Birch, 2002; Atherton et al., 2008).  

Traumatic severe traction nerve injury at birth can cause brachial plexus palsy 

and would be expected to result in pain but studies show a full recovery of 

sensory function with little evidence for neuropathic pain (Anand and Birch, 

2002). Similarly traumatic brachial plexus injury pain occurs in older children, 

but not infants (Dumontier and Gilbert, 1990; El-Gammal et al., 2003) and 

distal nerve injury leads to neuropathic pain in children older than 5 years, with 

an increase in severity in teenagers (Atherton et al., 2008; Hwang et al., 2008). 

In addition, clinical investigation into adolescents that had phantom limb pain 

show that children with the earliest amputations had a delayed onset of 

phantom pain, emerging after a mean of 7 years (Melzack et al., 1997) 

suggesting long term alterations in pain processing occurs as a result of 

trauma sustained at infancy. 

1.6.3  Animal model of infant nerve injury 

Very early studies into the effect of infant nerve injury used neonatal peripheral 

nerve section (usually of the sciatic nerve) to show that axotomy in the early 

neonatal period (P0) caused growth retardation of the rat dorsal horn, 

substantial DRG cell death and sprouting of adjacent nerve terminals which 

began to occupy inappropriate somatotopic termination patters (Aldskogius 
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and Risling, 1981; Cheema et al., 1984; Fitzgerald and Shortland, 1988; Himes 

and Tessler, 1989; Yip et al., 1984). However, further studies show that these 

effects were absent if sectioning took place at P10 or later (Beggs., 2000; 

Coggeshall et al., 1997; Fitzgerald, 1985b; Himes and Tessler, 1989; Li et al., 

1994). More recent studies using peripheral nerve injury models (as opposed 

to axotomy) show that the absence of neuropathic pain in early life is confirmed 

in rodent nerve injury models. SNI, CCI, PNL and in the first 2-3 weeks of 

postnatal life do not produce the same degree of acute mechanical 

hypersensitivity as observed in adults (Howard et al., 2005; Lee and Chung, 

1996; Ririe and Eisenach, 2006). This is very different to other insults where 

the ‘critical period’ in rodents is observed only if the insult occurs in the first 

postnatal week of life. Furthermore, infant rats and humans clearly respond to 

acute and chronic pain behaviour from an early neonatal age suggesting that 

the mechanisms underlying neuropathic pain behaviour in infants must be 

differentially regulated.  

Interestingly the genes most differentially regulated in the dorsal horn spinal 

cord following infant and adult nerve injury are immune related (Costigan et 

al., 2009). Immunohistochemical analysis indicates that although there is a 

significant increase in microglial markers in the infant dorsal horn spinal cord 

following nerve injury, this was substantially less than in adults (Moss et al., 

2007; Vega-Avelaira et al., 2012). Whereas nerve injury in adults is associated 

with an infiltration of T-cells associated with the Th1 pro-inflammatory 

response in the dorsal horn spinal cord this occurs to a substantially lesser 

extent, if at all, in infants following nerve injury (Costigan et al., 2009). Finally, 

a key characteristic of adult neuropathic pain is an induction of a pro-

inflammatory response and the release of pro-inflammatory immune mediators 

in the dorsal horn, critical for sensitization and pain-like hypersensitivity (Taves 

et al., 2013; Tsuda et al., 2013) that is absent when the same surgery is 

performed before P21 at least (Costigan et al., 2009; Moss et al., 2007; Vega-

Avelaira et al., 2007).  

These studies have ascribed the absence of neuropathic pain behaviour 

following nerve injury in infant rodents to immature neuroimmune pathways, 

rather than a failure in pain circuitry which are summarised in Fig 1.6A 
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(Costigan et al., 2009; Moss et al., 2007; Vega-Avelaira et al., 2012). Recent 

longitudinal studies in rats have revealed a previously unsuspected aspect of 

neuropathic pain, that animals that undergo nerve injury in early life do 

eventually develop pain hypersensitivity but only when they reach 

adolescence, age P31 (Vega-Avelaira et al., 2012). A similar delayed onset 

was observed in neuropathic autonomy in infant animals (Wall et al., 1979).  

  

Fig 1.6 Cellular activity in the dorsal horn in the early and late phase after infant 
SNI.  

A) 1 week after P10 SNI (when the animal is P17) A-fibres are withdrawing from the superficial 
dorsal horn. Pro-inflammatory mediators are absent. Some astrocyte and microglial makers 
are up-regulated, others remain the same compared to controls. B) 3-4 weeks after P10 SNI 
(when the animal is P31-P38) A-fibres have withdrawn from the superficial dorsal horn. 
Astrocyte (GFAP) and microglial (IBA-1) immunohistochemistry markers appear up-regulated. 
Reprinted from The Lancet, 11, Calvo, Daves and Bennett, The role of the immune system in 
the generation of neuropathic pain, page 629-642., Copyright (2012), with permission from 
Elsevier. 

 

P10 SNI + 3-4 weeks 

P10 SNI +1  week 
A 

B 
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Together these data raises the intriguing possibility that neuropathic pain is not 

so much absent in the infant but suppressed until the animal reaches 

adolescence. At this time there is an increase in immune-reactivity of IBA-1 

and GFAP (microglial and astrocytes respectively). However the presence and 

inflammatory mediators at this age has not yet been investigated (see Fig 1.6b) 

The understanding of postnatal maturation of T-cells may provide some 

underlying clues as although initially it was thought that neonatal T-cells were 

unresponsive in the neonatal period, leading to the susceptibility of new-borns 

to microbial infection (Gammon et al., 1986; Lawn et al., 2005) this 

interpretation did not  explain the vulnerability of infants to immune mediated 

allergic reactions. In the 1980s it was recognised that T-cells could be 

classified into Th1 or Th2 and it was only then that it was recognised that 

infants are capable of mounting an immune response (Ridge et al., 1996; 

Sarzotti et al., 1996) but has a strong bias towards a Th2 function (Adkins et 

al., 2000; Forsthuber et al., 1996; Min et al., 2000; Powell and Streilein, 1990; 

Singh et al., 1996). Furthermore, under certain conditions neonates may also 

mount a potent Th1 response such as following some infections (Forsthuber 

et al., 1996; Jupelli et al., 2010; Sarzotti et al., 1996). This raises the following 

questions; is the immune response immature and unable to respond to insult? 

Or are immune processes under postnatal developmental regulation?  

Although little work has been undertaken to identify whether microglia alter 

their phenotype and functions over postnatal development recent studies show 

that microglia play varied and key physiological roles in the postnatal 

development of the nervous system including remodelling and refining the 

developing nervous system by removing excess axonal projections and 

promoting neurogenesis (Baskar Jesudasan et al., 2014; Lai et al., 2013; 

Schafer et al., 2012; Scheffel et al., 2012; Tremblay et al., 2010). These studies 

highlight that the phenotype of immune mediators alter depending on the age 

of the animal and region in the CNS. 
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1.7 Aims of the thesis 

The aims of the experiments presented in this thesis were as follows; 

 

1. To examine the early and delayed behavioural consequences of a 

peripheral nerve injury sustained at infancy to a range of stimuli. 

2. To characterise the properties of sensory dorsal horn cells in vivo during 

the early and delayed period following early life peripheral nerve injury 

and to identify if changes in dorsal horn neuronal activity parallel 

changes in behaviour. 

3. To characterise the immune profile in the dorsal horn in the early and 

late period following infant peripheral nerve injury and test if the 

absence of pain-like behaviour is caused by underlying immune 

alterations.  
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2.1 Introduction  

Animal models of nerve injury have been an essential tool, enabling the 

elucidation of some of the key mechanisms underlying a variety of neuropathic 

pain symptoms. More recently, these have also been replicated in infant rats 

to illustrate that if a nerve injury is performed before P33, pain-like behaviour 

is absent, which is in stark contrast to the robust hypersensitivity modelled in 

adult rodents following the same nerve injury(Howard et al., 2005, Decosterd 

and Woolf., 2000). A study by Vega-Avelaira et al., showed that following infant 

nerve injury (SNI), mechanical hypersensitivity does eventually emerge when 

the animal reaches adolescence (Vega-Avelaira et al., 2012). Before the 

mechanisms underlying this phenomena were investigated in subsequent 

chapters of this thesis, this chapter further tests the delayed onset of pain-like 

behaviour model and identifies if hypersensitivity develops later to other 

sensory modalities, in addition to mechanical stimulation.  The delayed onset 

of pain-like hypersensitivity model following infant nerve injury (SNI) is also 

tested in mice. As nerve transection in the early neonatal period in rodents can 

result in extensive neuronal loss of DRG and interneurons, the degree of 

neuronal loss following infant SNI is also investigated seven days after surgery 

(Cheema et al., 1984; Oliveira, A et al., 1997; Yip et al., 1984). 

2.1.1 The SNI model of neuropathic pain 

The SNI model of neuropathic pain was first described by Decosterd and Woolf 

and mimics partial denervation, a common cause of neuropathic pain in 

patients (Decosterd and Woolf., 2000; Koltzenburg, 1998). The surgery 

comprises of exposing the sciatic nerve, ligation and lesion of two of the three 

terminal distal branches of the sciatic nerve (the tibial and common peroneal 

nerves) while leaving the sural nerve intact (Fig 2.1A). This permits 

behavioural testing of the non-injured skin territories in the area innervated by 

the sural nerve which is located on the lateral plantar (Fig 2.1B) and dorsal 

paw surfaces and is adjacent to the denervated areas.  
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The SNI model has a number of advantages over earlier nerve injury animal 

models such as the Seltzer partial sciatic nerve ligation (PSL) model and the 

Bennett chronic constriction injury (CCI) model (Bennett and Xie, 1988; Seltzer 

et al., 1990). In these models ligation/chronic constriction of the sciatic nerve 

induces swelling and strangulation which leads to the development of thermal 

and mechanical hypersensitivity in the ipsilateral hind paw. 

             A          B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.1 Spared nerve injury model of neuropathic pain. 

(A)  Diagram of the sciatic nerve, terminal branches, dorsal root origins (L4-L6 of the dorsal 
root ganglion) and dorsal horn innervation pattern. (B) Different areas on the plantar surface 
of the paw innervated by the sciatic nerve. Reprinted from Pain, Spared nerve injury: an animal 
model of persistent peripheral neuropathic pain, 87, Decosterd and Woolf, 149-158, (2000). 

 

However, inevitably the extent of damage is difficult to reproduce and leads to 

variability in behavioural outcomes (Jaggi et al., 2011). Another widely used 

model, the Chung spinal nerve ligation (SNL), which involves putting a tight 

ligature of two spinal segmental nerves (L5 and L6) close to the intact DRG 

and L4 spinal nerve (Ho Kim and Mo Chung, 1992). Although this model 

enables behavioural assessments of the intact dermatomes of the paw, there 

is a risk of damage and/or exposure of the intact L4 spinal nerve to 

inflammation. In contrast to the aforementioned peripheral nerve injury animal 
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models, the SNI model is advantageous as the surgery is simple, requiring the 

transection of two sciatic nerve branches, which is less invasive and does not 

give rise to excessive inflammation. Importantly this surgery ensures a long 

lasting injury and has a 100% success rate (Decosterd and Woolf, 2000; Pertin 

et al., 2012). The consistency of this model is particularly helpful when 

comparing behavioural changes in animals of different ages and sizes as was 

completed in this chapter. Adult mice also develop hypersensitivity following 

SNI surgery while younger animals do not (Bourquin et al., 2006; Pertin et al., 

2012; Shields et al., 2003).  

It is widely believed that gender differences in pain exist and that this is 

mediated by gonadal steroid hormones (Craft et al., 2004; Greenspan et al., 

2007) with female human and non-human animals exhibiting lower pain 

thresholds and more hypersensitivity than males (Aloisi et al., 1999; 

Wiesenfeld-Hallin, 2005). However, both male and female rats and mice 

develop robust neuropathic pain-like behaviour following nerve injury 

(Bourquin et al., 2006; Casals-Díaz et al., 2009). However, as this study 

involves the longitudinal assessment of behaviour from infancy to adolescence 

and the effects of sex remain relatively untested in this nerve injury model, the 

decision was made to carry out all experiments in male rats and mice only.  

2.1.2 Behavioural responses in the adult rodent following SNI  

Symptoms reported by patients suffering nerve injury include spontaneous 

pain, tactile and cold hypersensitivity and pinprick hypersensitivity, all of these 

are replicated in animals that undergo SNI (Decosterd and Woolf., 2000; Pertin 

et al., 2012). These hypersensitivities in the rodent have a rapid onset (<24h 

post-surgery) and prolonged duration (at least 6 months) (Decosterd and 

Woolf, 2000; Erichsen and Blackburn-Munro, 2002; Leith et al., 2010; Woolf 

and Mannion, 1999). In SNI treated rodents sensitivity to basal heat remains 

unchanged which is in contrast to other nerve injury models (such as CCI and 

SNL) which give rise to thermal hypersensitivity and is a reflection of a 

reduction in the activation threshold of nociceptor peripheral terminals (i.e. 

peripheral sensitization) (Baron, 2006; Koltzenburg, 1998; LaMotte et al., 

1982; Woolf and Mannion, 1999). However, a number of studies suggest that 
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thermal hyperalgesia is not a typical feature of clinical neuropathic pain (Baron, 

2006; Koltzenburg, 1998; LaMotte et al., 1982; Woolf and Mannion, 1999). 

2.1.3 Behavioural responses in the infant rodent following SNI  

Compared to adult models of nerve injury, comparatively little is known about 

the behavioural consequences and the time course following infant nerve 

injury. A relatively recent study has shown that nerve injury in infant rat pups 

fails to induce hypersensitivity if performed in rat pups before 4 weeks of age 

(Howard et al., 2005; Ririe et al., 2006; Vega-Avelaira et al., 2007). Only when 

nerve injury is performed at postnatal day 33 does mechanical hypersensitivity 

develop in the affected limb 7 days after surgery, as in adult rodents. A recent 

longitudinal study which examined the long term consequences of early-life 

nerve injury upon mechanical hypersensitivity showed that SNI at postnatal 

day 10 (P10) did not induce mechanical hypersensitivity for the first three 

weeks after surgery (Vega-Avelaira et al., 2012). However, mechanical 

hypersensitivity did develop on the ipsilateral hind paw when the animal 

reached P38 (Vega-Avelaira et al., 2012) and was maintained for as long as 

testing continued (44 days). As in adults, SNI in infant rats did not change 

thermal behavioural thresholds at any time after surgery (Decostered and 

Woolf, 2000). This suggests that the delayed development of mechanical 

hypersensitivity was not due to a non-specific motor deficit but was a sensory 

response to early life peripheral nerve injury.  

These data led to the hypothesis that nerve injury in early life can affect pain 

processing later in life. The work in this thesis aims to decipher the possible 

mechanisms that underlie these age dependent changes in pain perception 

following nerve injury. However, before these mechanisms can be investigated 

a more thorough analysis of behavioural modifications and their time course 

was required, testing responses to a range of sensory modalities. This would 

enable the paradigm to be applied to further investigate the mechanisms 

underlying age dependent differences in pain-like behaviour following nerve 

injury. In extension to this work it is currently unknown if mice also display a 

delayed onset of mechanical hypersensitivity following infant nerve injury. 

Therefore this paradigm was also applied to mice to further validate the model 

and test the hypothesis that mice would display a delayed onset of mechanical 
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hypersensitivity following infant nerve injury. This novel application to mice is 

favourable so that future experiments can take advantage of genetically 

altered mice.   

2.1.4 Neuronal degeneration of interneurons in adults following nerve 
injury 

In adults there is some evidence that proposes that adult peripheral nerve 

injury causes neuronal degeneration in the DRG and dorsal horn spinal cord 

(Moore et al., 2002; Polgár et al., 2005; Scholz et al., 2005; Tandrup et al., 

2000; Whiteside and Munglani, 2001). These studies have used a combination 

of complementary methods to study neuronal degeneration and include 

labelling of dorsal horn sections with Terminal deoxynucleotidyl transferase 

dUTP nick-end labelling (TUNEL), that detects DNA fragmentation from 

apoptotic signalling cascades and cells that have suffered severe DNA 

damage (Gavrieli et al., 1992) as well as labelling of Caspase-3, a protease 

that mediates apoptosis and precedes DNA damage (Degterev et al., 2003; 

Polgár et al., 2005).  

In addition to labelling, stereological analysis of the numbers of neurons in a 

specified volume of the dorsal horn (packing density) has also been utilised 

(Coggeshall, 1992). However these studies draw different and conflicting 

conclusions. While all studies report no significant increases in TUNEL or 

Caspase-3 positive cells on the contralateral side to nerve injury, a number 

report significant increases in cell death 7 days after SNI surgery (Moore et al., 

2002; Scholz et al., 2005; Whiteside and Munglani, 2001). These significant 

increases described equates to an increase of 1 and a quarter TUNEL or 

Caspase-3 positive cells per section. Scholz et al (2005) reported that the cell 

death observed in the superficial dorsal horn (lamina I-III) occurred specifically 

in GABAergic inhibitory interneurons together with a marked decrease in 

inhibitory postsynaptic currents, 4 weeks after SNI (Scholz et al., 2005).This 

paper suggests that 7 days after peripheral nerve injury the greatest degree of 

cell death is observed in interneurons, with no cell death occurring after 21 

days. Transplantation of GABAergic neuronal precursors from the mouse 

medial ganglionic eminence into the spinal cord of mice 7 days after SNI 
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reduced SNI-induced mechanical hypersensitivity within two weeks of injury 

(Bráz et al., 2012).   

However, an extensive study by Polgar et al., (2005) refutes this, reporting no 

detectable loss of neurons from laminae I-III in the ipsilateral dorsal horn 1 or 

4 weeks after SNI in any of the three methods used (Polgár et al., 2005). This 

group also showed that following adult nerve injury, both Caspase-3 and 

TUNEL staining did not co-label with NeuN, but with the astrocyte marker glial 

fibrillary acidic protein (GFAP) and a microglia marker ionized calcium-binding 

adapter molecule 1 (IBA-1) (Gehrmann et al., 1995; Polgár et al., 2005) which 

would suggests a significant loss of neurons from the dorsal horn is not 

necessary for the development of pain-like behaviour in the SNI model. 

2.1.5 Naturally occurring neuronal degeneration in infants  

The extent of neuronal degeneration of spinal interneurons, occurring naturally 

over postnatal development, or following nerve injury, is not as well described 

as that of more clearly defined and quantifiable neuronal groups, such as the 

dorsal root ganglion (DRG) or spinal motor neurons. These systems have 

relatively few synaptic connections and projections, making them simple to 

manipulate and investigate (Harris and McCaig, 1984; Himes and Tessler, 

1989; Kashihara et al., 1987; Tandrup et al., 2000). In contrast, cell death of 

spinal interneurons, a heterogeneous group in terms of number, connections, 

and spatial relationship, have been relatively neglected (Lowrie and Lawson, 

2000). 

During development, it is now well established that both DRG neurons and 

motor neurons undergo a period of naturally occurring neuronal degeneration 

which is regulated by signals from their inputs and synaptic targets. Evidence 

for this largely comes from the fact that the occurrence of neuronal 

degeneration is at the time when contact is being made with the main synaptic 

targets to enable size matching of synaptically linked populations (Coggeshall 

et al., 1994; Lowrie and Lawson, 2000). Naturally occurring cell death in DRG 

cells occurs between E 17-19, with some continuing till P5. In motor neurons, 

degeneration occurs exclusively prenatally during a critical period that peaks 

at E16, coinciding with the formation of neuromuscular connections 
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(Coggeshall et al., 1994; Hamburger and Oppenheim, 1990; Harris and 

McCaig, 1984). Interestingly, if a target organ (limb bud) is removed or added 

before this critical period, natural motor neuron cell death is increased or 

decreased respectively (Hamburger, 1958; Oppenheim, 1991). In contrast, 

studies into naturally occurring degeneration of interneurons are conflicting. A 

number of early studies in the spinal cord and brain nuclei of the chick found 

no evidence for interneuron cell death during development (McKay and 

Oppenheim, 1991). However, one study in the rat pup by Lawson et al., 

observed neuronal degeneration in the dorsal horn spinal cord on and just after 

birth that fell sharply until P10, where it was negligible (Lawson et al., 1997). 

As these cells were widely distributed throughout the grey matter of the dorsal 

horn, it suggests that the low level of degeneration is not restricted to a subset 

of interneurons.  

2.1.6 Neuronal degeneration in infants following nerve injury 

It is widely established that disruption of synaptic connections during an early 

postnatal age, a critical period of plasticity, can have extensive consequences. 

For example, similarly to the developmental studies, the effect of nerve injury 

on neuronal degeneration in neonates is most commonly described following 

P0 peripheral axotomy in the DRG, (as opposed to interneurons) which 

induces extensive (between 50-75%) degeneration of axotomised DRG cells, 

occurring rapidly (in a 24 hour period) (Aldskogius and Risling, 1981; Himes 

and Tessler, 1989; Yip et al., 1984). Following this, lesioned cells withdraw 

from the central terminals while the undamaged adjacent collaterals sprout into 

the denervated region (Bondok and Sansone, 1984) and form synaptic 

connections in inappropriate laminae in the dorsal horn spinal cord (Fitzgerald 

et al., 1990; Fitzgerald, 1985; Shortland and Fitzgerald, 1994).  

However, the extent of neuronal degeneration following peripheral injury is age 

dependent with early neonatal animals exhibiting more extensive neuronal 

degeneration than older animals. For example, axotomy in P10, P21 or adult 

animals does not cause any DRG cell loss 7 days after injury (Beggs., 2000; 

Coggeshall et al., 1997; Himes and Tessler, 1989; Li et al., 1994). This 

difference may be due to the requirement of peripheral sensory neurons for 

neurotropic support in the early postnatal period (Himes and Tessler, 1989; 
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Lewis et al., 1998; Schmalbruch, 1984; Tandrup et al., 2000; Whiteside et al., 

1998).  

Even less is known about the effects of early life nerve injury on interneurons. 

One study indicated that nerve crush at P2 did cause a low but significant 

increase in interneuron degeneration 4 days after injury compared to un-

operated animals, but not compared to the contralateral dorsal horn (Lawson 

and Lowrie, 1998). Importantly, different nerve injuries are also likely to cause 

a variation in the extent of neuronal degeneration of these interneurons. For 

example, in adults, sciatic nerve transection, nerve crush, SNI and CCI 

induced interneuron degeneration to a significant but varying extent, with SNI 

inducing the least and SNL the greatest interneuron cell loss in the L5 spinal 

segment (Li et al., 1995; Parrilla-Reverter et al., 2009; Scholz et al., 2005).  

Together these studies indicate that the extent of neuronal degeneration is 

dependent on the type of nerve injury (axotomy, SNI, CCI), the age that the 

injury occurred (P0, P10, adult) and the group of cells involved (DRGs, motor 

neurons, interneurons). As studies in the adult suggest that interneuron 

degeneration following peripheral nerve injury is observed greatest at 7 days 

after SNI and that a nerve injury at P0 causes extensive neuronal cell death, it 

is important to first establish if extensive neuronal degeneration of interneurons 

occurs following SNI at P10. 
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2.2 Aims of the chapter 

 

In adult rats, the behavioural modifications following SNI is well described 

(Bourquin et al., 2006; Decosterd and Woolf, 2000), and interneuron 

degeneration may occur 7 days following nerve injury (Polgár et al., 2005; 

Scholz et al., 2005). However, in the infant behavioural modifications and their 

time course following the same injury is relatively unexamined and it is 

unknown if nerve injury induces extensive interneuron death in the dorsal horn 

spinal cord. The behavioural modifications in infant mice following peripheral 

nerve injury also remains to be elucidated.  The key objectives of this chapter 

are to: 

 

1. Complete the longitudinal behavioural profile in infant (P10) rats 

following SNI to a range of sensory stimuli including mechanical, 

innocuous cold, noxious cold, thermal stimulation and weight bearing. 

2. Establish if the same pattern of delayed SNI-evoked mechanical 

hypersensitivity that occurs in infant rats is also observed in infant mice.  

3. To examine the extent of neuronal degeneration following infant SNI in 

rats to include dorsal horn interneurons. 

 

The immunostaining experiments in this chapter were completed with the 

assistance of BSc student Liam O’Leary 

 

 

 

 

 



Chapter Two                  The delayed onset of pain-like behaviour following infant nerve injury 

74 
 

2.3 Materials and Methods 

2.3.1 Animals 

Surgery was performed on male Sprague–Dawley rats, obtained from UCL 

Biological Services or male CD1 mice, from Charles River. Surgery was 

performed either on young adult rodents (rats and mice) at postnatal day 33 

(P33), which were housed in littermates of five or in infant rodents at P10, that 

were housed with their mother and littermates (Moss et al., 2007; Vega-

Avelaira et al., 2012, 2007). Weaning of both rats and mice were completed at 

P21. All animal procedures were licensed by the UK Home Office (London, 

United Kingdom) and experiments were performed in accordance with the UK 

Animal (Scientific Procedures) Act 1986. 

2.3.2 Animal Surgery 

Spared nerve injury (SNI) and sham surgery were performed on P10 and P33 

animals under general anaesthesia with 2-3% isoflurane in oxygen (Abbott 

Animal Health, Queensborough, UK) with antiseptic conditions (Chaplan et al., 

1994). SNI surgery was performed by moving the biceps femoris muscle to 

expose the sciatic nerve and its three terminal branches in the upper lateral 

thigh. The common peroneal and tibial branches were tightly ligated with a 5.0 

silk suture and transected distally while the sural nerve was left intact. In sham 

animals the sciatic nerve was exposed but not ligated. In all cases care was 

taken not to touch, stretch or damage intact nerves. Muscle and skin were then 

closed in two layers. After surgery, animals were returned to their cages and 

litters and maintained on a 12 hour light/dark cycle at constant ambient 

temperature in the Biological Services Unit. Animals had free access to food 

and water until the next procedure. 

2.3.3 Animal behaviour  

Both rats and mice were habituated to the testing environment for four days 

prior to sensory testing. Behavioural acclimation was allowed until cage 

exploration and major grooming activities ceased. In rats, sensory reflex 

withdrawal thresholds of the hind paw to mechanical, thermal radiant heat 

stimulation, acetone and ethyl chloride stimulation were measured in the 
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ipsilateral and contralateral paw, together with weight bearing 1 day prior to 

surgery (baseline) and every 7 days after surgery, not extending beyond 35 

days post-surgery (Fig. 2.2). In mice only mechanical thresholds were tested 

until there was a drop in the mechanical threshold of the ipsilateral paw. For 

all tests stimuli were applied to the lateral plantar surface of the hind paw in 

the sural nerve innervated region. Each sensory test was followed by at least 

a 10 minute interval and all tests were performed during the day portion of the 

circadian cycle only (06:00-18:00 h). 

 

 
 

Fig 2.2 schematic diagram showing the design of the longitudinal behavioural 
study in rats. 

Behavioural testing was carried out every 7 days following P10 or P33 SNI or sham surgery. 
 

2.3.4 Mechanical sensory testing 

Animals were placed into Perspex boxes on an elevated metal mesh floor until 

they had acclimated to the environment. Hind-limb flexion withdrawal reflex 

thresholds in response to mechanical stimulation of the hind-paw were 

determined using von Frey hairs (vFh) (Stoelting, Woodvale, Il). VFhs are 

calibrated nylon monofilaments that exert a reproducible stimuli measured in 

grams that increase logarithmically in stiffness (0.02–2.56 g, Stoelting). A vFh 

was presented perpendicular to the dorsolateral plantar surface of the 

ipsilateral or contralateral hind paw in the sural nerve territories and held for 2 

seconds with enough force to bend the filament (Decostered and Woolf, 2000). 

The 50% paw withdrawal threshold was determined using the up-down method 

(Chaplan et al., 1994). The starting vFh used for mice was vFh #5 and for rats, 
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vFh #9. Based on the first response (negative or positive) the next filament 

was then presented which was either a higher or lower filament respectively 

(up and down).  For example, if the animal did not respond to filament #5 the 

next filament presented was #6. If the animal did respond to #6 by a withdrawal 

of the hind paw, the next filament presented would be #5 again.  Following the 

first change in direction (up to down or down to up) filaments were applied 4 

more times, regardless of whether the animal responded or not. Using this 

pattern of positive responses (represented by an X) and negative responses 

(represented by a 0) the result was tabulated and the 50% response threshold 

was interpolated using the formula as outlined by Chaplan et al, 1994: 

 

50% g threshold = (10 (Xf+kᵟ)) / 10,000 
 

Where Xf = value (in log units) of the final vFh used; kappa = tabular value for 

the pattern of positive/negative responses; and ᵟ= mean difference (in log 

units) between stimuli which is 0.224.  

2.3.5 Heat sensory testing 

To test heat withdrawal latency, rats were placed in the same Perspex cages 

used for mechanical sensory testing. The lateral plantar surface of the hind 

paw was exposed to a beam of radiant heat (Hargreaves et al., 1988) and the 

withdrawal latency (seconds) was recorded. This was repeated twice at an 

interval of 5 minutes on each paw and the mean of each paw calculated. A cut 

off latency of 20 seconds was set to avoid tissue damage (Kiguchi et al., 2010).  

2.3.6 Cold sensory testing 

Rats were kept in the same Perspex boxes as above and two different cooling 

stimuli were applied to the lateral paw, acetone (Fisher Scientific) and ethyl 

chloride (Acorus Therapeutics LTD) to examine cold responses. Acetone was 

applied to the hind paw by using a syringe with tubing attached to create an 

acetone bubble which was placed on the lateral plantar surface for one second 

(Flatters and Bennett, 2004). Ethyl chloride was applied as a spray to the 

lateral planter surface of the hind paw for one second.  Both coolants spread 

over the whole hind paw and the rat’s response was measured on a four point 

scale as described by Flatters and Bennett, (2004). Over the first 20 seconds 
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if, no response was seen the trial was recorded as 0. If the animal did respond, 

behaviour was assessed for another 20 seconds (to a total of 40 seconds). 

This length of time was used as the behaviour evoked by acetone can be in 

the form of an episodic sequence and to ensure that only cooling pain 

behaviour was measured, as opposed to the startle response. Responses 

were graded on a four point scale; 0, no response; 1, a quick withdrawal, flick 

or stamp of the paw; 2, prolonged withdrawal or repeated flicking (>2) of the 

paw; 3, repeated flicking of the paw with licking directed at the ventral side of 

the paw. The test was repeated 5 minutes later and the mean response of 

each paw was calculated. 

2.3.7 Weight bearing evaluation 

Hind limb weight bearing was measured using an incapacitance tester 

(Churchill Electronic Services Ltd). The rats were placed in a Plexiglas box 

chamber designed so that each hind paw rested on a separate transducer pad 

with front paws resting on a slope. For rat pups the forelimbs were supported 

by a gloved finger in the chamber. The load on each transducer was recorded 

over a 5 second period. For each rat three readings from each paw were taken 

and then averaged. The results are presented as the percentage of ipsilateral 

weight of the total weight bearing on the ipsilateral and contralateral paws. 

2.3.8 Spinal cord preparation and sectioning 

Spinal cords were harvested from rats 7 days after P10 SNI or sham surgery 

for immunohistochemistry analysis or FJC staining (a total of 18 rats). Rats 

were terminally anaesthetised with an intraperitoneal overdose of 

pentobarbital (Euthatal, 100 mg/kg, Merial Animal Health Ltd, UK) and 

transcardially perfused with heparinised saline (0.5% heparin; Monoparin, CP 

Pharmaceuticals, UK) in 0.9% NaCl (Baxter, Belgium) followed by 4% 

paraformaldehyde in 0.1M phosphate buffered saline (PBS). A laminectomy 

was completed and the spinal cords were carefully dissected and removed 

with the dura intact to minimize any physical trauma to the cord. The fourth 

and fifth lumbar segments (L4 and L5) of the spinal cord were then cut and a 

slice was made into the contralateral ventral surface of the cords using a razor. 

This enabled the easy identification of the ipsilateral and contralateral spinal 
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cord of sham and SNI tissue during the analysis stage. Spinal cords were then 

post fixed for 6 hours in 4% paraformaldehyde and transferred to 20% sucrose 

in 0.1 M PBS for 18–36 h. Finally, spinal cords were stored at 4°C in 30% 

sucrose in 0.1 M PBS until staining procedures were carried out. 

To section, spinal cords were frozen rostral cord up onto a microtome (Leitz 

Wezlar, Germany) using 30% sucrose and dry ice. Serial transverse sections 

of spinal cord were then cut (14μm for Fluoro-Jade C staining and 40μm 

sections for immunohistochemical analysis) and stored in a 0.1 M phosphate 

buffer (PB) solution containing 5% sucrose and 0.02% azide.  

2.3.9 NeuN and IB4 immunohistochemical staining 

To identify if there was a change in the overall density of neurons in the spinal 

cord 7 days following P10 SNI, an antibody against neuronal nucleic marker 

(NeuN) was used that binds to a neuron specific nuclear protein and is 

expressed from early in development (Sarnat et al., 1998). An antibody against 

isolectin B4 (IB4) was also used to label the non-peptidergic subpopulation of 

C-fibres that project principally to the interior of lamina II of the dorsal horn 

(Wang et al., 1994), from the early postnatal period (Jennings and Fitzgerald, 

1998).  

First, 40μm free floating sections were blocked in 0.1 MPB solution containing 

10% normal goat serum (NGS, Vector) and 0.3% Triton-X (BDH) for 1 hour. 

Sections were then incubated in primary antibody mouse polyclonal antibody 

anti-NeuN (1:5000, Chemicon, USA) and anti-IB4 (Griffonia simplicifolia) 

labelled with fluorescein isothiocyanate (FITC, 1:1000; Sigma-Aldrich Inc.) for 

24 hours at room temperature. Sections were then washed three times in 0.1M 

PB for 10 minutes and then incubated with the secondary goat anti-mouse 

polyclonal antibody Alexa-593 (1:500, Invitrogen, Eugene, Oregon, USA). 

After two washes in 0.1 M PB, sections were mounted onto gelatinized slides 

and left to air dry for 50 minutes. Finally, slides were cover slipped in 

fluoromount (Sigma-Aldrich Inc). Antibody specificity was ensured by 

excluding the primary antibody to test for antibody specificity and by excluding 

the secondary antibody to identify any primary antibody fluorescence. Both 

controls were negative in accordance with published data (Cavallaro et al., 



Chapter Two                  The delayed onset of pain-like behaviour following infant nerve injury 

79 
 

2008; Fang et al., 2006). Following staining, slides were kept in the dark for 20 

hours to normalize the background and then imaged using on a microscope at 

10X magnification with OpenLab® software. Slides were coded and examined 

under the appropriate wavelength fluorescent microscopy and the images 

were visualised using image J 1.36 (NHS) software.  

2.3.10 Fluoro-Jade C staining 

Fluoro-Jade C (FJC) is a sensitive and high resolution marker for degenerating 

neurons  (Bian et al., 2007; Schmued et al., 2005; Schmued and Hopkins, 

2000) which has been used to identify neurodegeneration in a range of tissues, 

including the infant rat spinal cord (Walker et al., 2010; Westin et al., 2010). As 

FJC only stains neurons, it does not generate false positives, unlike more 

general stains of dying cells including caspase-3 and TUNEL (Polgár et al., 

2005). 

First, 14 μm L4-L5 spinal cord sections were placed into nets and rinsed in 

distilled water and then immersed in 1% sodium hydroxide in 80% ethanol for 

5 minutes. This was followed by immersion in 70% ethanol for 2 minutes and 

2, 2 minute rinses. Sections were placed in 0.06% potassium permanganate 

solution for 10 minutes followed by 10 minutes in 0.0002% solution of FJC 

(Chemicon, Temecula, CA) and 0.01% of 4'6- diamidino-2-phenylindole (DAPI; 

Molecular Probes, Eugene, OR) dissolved in 0.1% acetic acid vehicle. 

Sections were rinsed in distilled water and sections were mounted onto 

gelatinized slides and left to air dry for 50 minutes before cover slipping with 

DPX non-fluorescent mounting media. Staining specificity was confirmed by 

the absence of staining in controls where FJC had been excluded from the 

protocol. Following staining, slides were kept in the dark for 20 hours to 

normalize. Microscope images were acquired at a 40X magnification with 

OpenLab® software. Slides were coded and examined under the appropriate 

wavelength fluorescent microscopy.  The images were visualised using image 

J 1.36 (NHS) software and analysis was performed under blind conditions. For 

each section, the number of FJC cells that co-labelled with DAPI were counted 

under blind conditions. DAPI was used to identify the location of sections under 

the microscope and ensure the FJC stain was only apparent in the soma of 

cells. For each animal, a positive co-localised cell was drawn as a dot on to a 
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spinal cord diagram to enable comparisons between ipsilateral, contralateral 

sides and dorsal versus the ventral horn.  Finally, the counts from 10 sections 

containing the highest number of FJC counts were averaged for each animals 

and used for statistical analysis. 

2.3.11 Data analysis 

Data was analysed and graphs plotted using GraphPad Prism software 

(version 6.00, GraphPad Software, San Diego, CA, USA, 

www.graphpad.com). All behavioural data was first tested for normality and 

homogeneity of variance using Shapiro-Wilk and Levene tests respectively. If 

data was not normally distributed, logarithmic transformation (log 2) was 

carried out and all  paw withdrawal thresholds (g) before statistical analysis as 

previously described (Geranton et al, 2009 Baumgartner et al, 2002; Sens et 

al, 2012). Behavioural data was then analysed by a repeated measure two-

way analysis of variance (ANOVA) (time and surgery), adjusted for multiple 

comparisons using the Bonferroni correction analysis where appropriate. A two 

tailed student’s t-test was used to compare FJC counts between SNI and sham 

animals. The criterion for statistical significance was p < 0.05. All data are 

presented as mean±standard error of the mean unless otherwise stated. 
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2.4 Results 

The effects of infant (P10) and adult (P33) SNI on the responses of the hind 

paw to mechanical, innocuous cold (acetone), noxious cold (ethyl chloride), 

thermal cutaneous stimulation and contralateral weight bearing were 

investigated in a longitudinal behavioural study.  

2.4.1 Longitudinal study of mechanical paw withdrawal thresholds 
following SNI in infant and adult rats. 

SNI in adult rats causes a well-established, significant and persistent 

mechanical hypersensitivity on the ipsilateral hind paw 7 days post-surgery 

compared to controls (SNI contralateral paw and the sham ipsilateral paw) (Fig 

2.3A) when the mechanical threshold of the ipsilateral SNI paw drops to  

3.73g±0.72 compared to the SNI contralateral paw (14.00g±2.8, P<0.0001,  

Bonferroni post-test) and the sham treated ipsilateral paw (11.75g±2.43, P 

=0.0007,  Bonferroni post-test) which was maintained for at least 3 weeks post-

surgery (Decosterd and Woolf, 2000).   

Similarly SNI in adult mice causes a significant mechanical hypersensitivity on 

the ipsilateral hind paw post-surgery compared to controls (Fig 2.3C). Four 

days post SNI, the mechanical thresholds on the ipsilateral paw were 

significantly lower (0.44g±0.14) compared to the SNI contralateral paw 

(1.74g±0.27, P<0.0001, Bonferroni post-test) and the sham treated ipsilateral 

paw (1.89g±0.38, P <0.0001, Bonferroni post-test). Time was only significantly 

different in the SNI ipsilateral paw from 0 to 3 days post SNI surgery (P<0.01, 

Bonferroni post-test). 

The same SNI surgery in infant rats had no effect on the ipsilateral hind paw 

mechanical threshold for the first three weeks after infant surgery (Howard et 

al, 2005) (Fig 2.3B). Only at 28 days after SNI, when infant rats reached P38 

was there a significant difference. At this time point the mechanical threshold 

of the SNI ipsilateral hind paw fell (5.47g±1.2) significantly below the SNI 

contralateral hind paw mechanical threshold (15.65g±2.8, P<0.001  Bonferroni 

post-test) and sham ipsilateral hind paw mechanical threshold (12.89±3.75 

P<0.01;  Bonferroni post-test) (Vega-Avelaira et al., 2012). The mechanical 

hypersensitivity on the ipsilateral paw was maintained until the end of the 
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experiment (35 days post-surgery). As previously described, mechanical 

thresholds increase normally with postnatal age from P10, P17, P24, P31 to 

be significantly greater at P38 in both the SNI contralateral and sham ipsilateral 

paws (P <0.05, Bonferroni post-test). There was no effect of time on the SNI 

ipsilateral paw (Howard et al., 2005; Vega-Avelaira et al., 2007).  

Infant mice also showed a delay in the development of mechanical 

hypersensitivity following infant SNI (Fig 2.3D) remaining similar to controls for 

the first three weeks after surgery. Only at 21 days post-surgery, when infant 

mice reached P31 did mechanical thresholds in the SNI treated ipsilateral paw 

fall 5 fold below controls. In infant mice there is a significant increase in the 

mechanical thresholds in control groups from P10, P17, P24 to P31 and not 

the SNI ipsilateral paw (P<0.001, Bonferroni post-test).  

 

2.4.1.1 Longitudinal study of weight bearing, cool, cold and thermal 
hypersensitivity following SNI in infant and adult rats. 

The delayed-onset of infant hypersensitivity post-nerve injury was not 

restricted to mechanical tests. Fig 2.4 B, D and F show that other tests of hind 

paw sensitivity including weight bearing and cold sensitivity (measured by 

application of acetone and ethyl chloride) displayed a similar pattern of delayed 

adolescent onset hypersensitivity. Only hind paw heat sensitivity was 

unaffected in both infant and adult groups compared to controls (Fig 2.4H).  
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Mechanical (vFh) 

 

Fig 2.3  Mechanical withdrawal thresholds in rats and mice following infant and 
adult SNI or sham surgery 

(A) In adult rats the mechanical withdrawal threshold of the ipsilateral paw is significantly 
reduced below that of  controls (SNI contralateral paw and the Sham ipsilateral paw) 7 days 
after SNI surgery and is maintained (2-way ANOVA, F(2,15)=9.616, P=0.002,  SNI surgery: 
n=6, sham surgery: n=6, i.e. n=6 per group) (B) Mechanical withdrawal thresholds in control 
infant rat paws increase with age from day 0, 7, 14, 21 days post-surgery today 28 post-surgery 
(P38) (2-way ANOVA, F(5,90)=13.75,  P<0.0001).  28 days post infant SNI is there a significant 
decrease in the mechanical threshold of the ipsilateral hind paw compared to controls (2-way 
ANOVA, F (2, 19) =8.487, P=0.0023, n=7 per group) and interaction between time and surgery 
(F (10, 90) =2.361, P=0.0158) (c) Adult mice display a significant reduction in mechanical 
withdrawal thresholds on the ipsilateral paw 4 days post SNI surgery compared to controls (2-
way ANOVA,  F(2,12) =23.28, P<0.0001, time F(2,24)=12.83, interaction F(4,24)=2.224 n=5 
per group). (D) Mechanical withdrawal thresholds in infant control mice increase with age (2-
way ANOVA, surgery F (3, 95) =10.68, P<0.0001,). 21 days post infant SNI there is a 
significant decrease in the mechanical thresholds in the ipsilateral hind paw compared to 
controls (2-way ANOVA, F(2,16) =8.872, P<0.0026, n=6 per group). There was also an 
interaction of time (2-way ANOVA, F (6, 95) =8.020, P<0.0001. Bonferroni post-test). Rats: 
SNI ipsilateral vs SNI contralateral (and sham ipsilateral if only * is shown) *P<0.05; **P<0.01, 
***P<0.001, ****P<0.0001 and SNI ipsilateral vs sham ipsilateral paw ~P<0.05 ~~P<0.01 
~~~P<0.001. Mice SNI ipsilateral vs SNI contralateral and sham ipsilateral ****p<0.0001. 
Bonferroni post-test between days post-surgery comparisons group +++ P<0.001, ++ P<0.01, 
+P<0.05  
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2.4.2 Infants 

Twenty one days post infant nerve injury there is a significant reduction in 

ipsilateral weight bearing (17.1±2.1%) compared to that of sham controls 

(44.7±0.88%, P<0.001, Sidak post-test, Fig 2.4B) that was maintained until the 

end of testing. There was a significant effect of time on weight distribution 

weight bearing only in the SNI ipsilateral paw between 0-14 days post-surgery 

to 21 days post-surgery (P<0.0001, Sidak post-test).  

Application of acetone (Fig 2.4D) and ethyl chloride (Fig 2.4F), did not alter 

cold scores following infant surgery for the first 3 weeks post-surgery. Only 28 

days after infant surgery did cold scores significantly differ when the ipsilateral 

paw showed significantly greater cold scores (1.20±0.38 cold score) compared 

to the SNI contralateral hind paw (0.38±0.18 cold score, P<0.05, Bonferroni 

post-test) and the sham ipsilateral hind paw (0.25±0.16 cold score, P<0.05, 

Bonferroni post-test) following acetone application. Similar increases in cold 

scores upon ethyl chloride application were observed on the nerve injured 

ipsilateral paw 28 days after SNI surgery (SNI-ipsilateral 2.0±0.93 cold score) 

compared to controls (SNI-contralateral 0.75±0.16 cold score, sham-ipsilateral 

0.63±0.18 cold score, P<0.001, Bonferroni post-test) which was maintained for 

at least 35 days post-surgery.  

SNI at infancy did not alter thermal thresholds compared to controls (Fig 2.4H). 

However, as previously reported, there was a significant fall in thermal 

thresholds with postnatal age between P10 and P17 to P24 on all paws (2-way 

ANOVA showed a main effect of time, P=0.0001; P<0.05, Bonferroni post-test, 

n=4/group) (Falcon et al., 1996; Huang et al., 2010; Vega-Avelaira et al., 

2012), confirming the absence of any generalised loss of spinal cord function 

in these animals. 

2.4.3 Adults 

In contrast SNI in adult rats develop reduced ipsilateral weight bearing and 

hypersensitivity in response to acetone and ethyl chloride stimulation (cool and 

cold hypersensitivity) within 7 days of surgery (Fig 2.4A, C, E) but not thermal 

hypersensitivity (Fig 2.4G). 7 days after SNI surgery the percentage of 

ipsilateral paw load drops (17.12%±2.29) compared to the ipsilateral paw of 
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sham controls (48.87%±7.17, P<0.0001, Sidak post-test) which is maintained 

for at least 28 days. Time was significantly different in the SNI ipsilateral paw 

only, between P0 and 7 days post SNI surgery (P<0.001, Sidak post-test). 

As previously published, adult rats develop cold hypersensitivity 7 days after 

SNI surgery in response to innocuous cold (acetone) (Decosterd and Woolf, 

2000; Leith et al., 2010). At day 7 the cold score on the SNI ipsilateral paw was 

significantly higher (Fig 2.4C, 1.42±0.30 cold score) than that of the SNI 

contralateral and sham ipsilateral paw (both which had a 0.0±0.0 cold scores 

P<0.0001, Bonferroni post-test) and persisted until the end of testing. 

Responses of SNI in adults to hind paw noxious cold stimulation (ethyl 

chloride) showed similar results (Fig 2.3C). 

Seven days post SNI surgery the cold score on the ipsilateral hind paw was 

significantly higher (1.86±0.5 cold score) compared to the SNI treated 

contralateral paw (0.57±0.39 cold score, P<0.05; Bonferroni post-test) and the 

sham ipsilateral paw (0.43±0.30 cold score, P<0.01; Bonferroni post-test) and 

maintained for at least 28 days post SNI (Decosterd and Woolf, 2000). 
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2.4.4 The effect of SNI upon spinal neuronal degeneration in the 
infant rats. 

A preliminary test into the effect of SNI surgery at infancy (P10) on the neuronal 

composition of the dorsal horn, 7 days after infant SNI or sham surgery is 

shown in Fig 2.5. NeuN (red) immuno-staining on L4/L5 dorsal horn sections 

reveals no obvious or gross difference in the NeuN neuronal staining pattern 

or density in the dorsal horn of sham and SNI treated animals. IB4 immune-

staining (in green) shows that non-peptidergic C-fibre terminals disappear in 

the SNI derived section and shows the location of the lesioned afferents 

(Beggs and Salter, 2007; Molander et al., 1996; Molliver et al., 1997; 

Plenderleith et al., 1992).  

Fig 2.5  Images of NeuN and IB4 staining in rats 7 days following infant SNI or 
sham surgery.  

Patterning of neuronal staining (NeuN in red) shows no obvious difference in SNI and Sham 
groups. IB4 staining (green) was used to identify the termination area of damaged non-
peptidergic C-fibre terminals. n=3/treatment group. Images were taken at 10 x magnification. 
Scale bar, 100µm. 

2.4.5 Fluoro-Jade C staining  

Fluoro-Jade C (FJC) stains degenerating neurons and has successfully been 

used to identify neuronal degeneration in the spinal cord tissue of infant rats 

(Walker et al., 2010; Westin et al., 2010). To identify if infant SNI induced 

neuronal degeneration, FJC positive cells in the L4/L5 lumbar region of the 
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spinal cord collected from rats 7 days after infant SNI or sham surgery were 

counted in a blind manner. FJC staining was observed in a few DAPI labelled 

cells with a distinctive disrupted soma (Fig 2.6A). FJC/DAPI positive cells from 

10 sections which contained the highest FJC counts per animal were mapped 

onto a spinal cord diagram (Fig 2.6B) and the average number of FJC/DAPI 

co-labelled cells in 10 sections/animal were counted in SNI and sham treated 

groups (n=6 animals/treatment group). Fig 2.6C and D shows there is no 

significant differences in the mean number of degenerating neurons 7 days 

post infant SNI and sham surgery in either the dorsal horn or the ventral horn 

(SNI ipsilateral-59±5.2 compared to sham treated control 45±4.2, unpaired T-

test). Furthermore, FJC positive neurons were distributed throughout the 

ipsilateral and contralateral dorsal and ventral horn (Fig 2.6B) suggesting no 

obvious pattern in distribution. 
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Fig. 2.6  FJC staining in the L4/L5 lumbar spinal cord of rats 7 days following SNI 
or sham surgery.  

 

(A) Fluoro Jade C (green) co-stains with DAPI (red) in the L3/L4 spinal cord as illustrated with 
arrows. The co- stain image is magnified to show clear co-labelling. (B) Mapping of FJC 
positive cells in each animal revealed no patterns in distribution in sham or SNI treated animals 
(diagrams are representative images from 1 animal).  (C-D) The number of FJC positive cells 
were counted from 10 sections from rats 7 days after infant SNI or sham surgery. No significant 
differences were observed in FJC/DAP counts taken from the ipsilateral and contralateral 
dorsal (C) and ventral horn (D). (10 sections from each animal; n=6 animals/treatment group; 
data was normally distributed, unpaired Student’s t-test was not significant). Images are taken 
at 40x total magnification, Line with error bars represent mean±s.e.m. Scale bar=40µm.  
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2.5 Discussion 

Data presented in this chapter confirms previous studies to show that infant 

rodents do not develop mechanical hypersensitivity in the early period 

following a peripheral nerve injury, emerging 3-4 weeks after surgery, when 

the rat reaches P38 (Howard et al., 2005; Ririe and Eisenach, 2006; Vega-

Avelaira et al., 2007,2012). In extension to the published data, these studies 

extend beyond mechanical hypersensitivity to cool and cold hypersensitivity 

and weight bearing which develop within a few days following adult SNI but 

are absent when SNI is performed at P10. Clinical studies also suggest that 

neuropathic pain symptoms in infants are rare before the ages of 5 and 6 but 

increase in incidence with age (Sethna et al., 2007; Walco et al., 2010) and 

also that early-life nerve injury may have long term consequences upon pain 

processing later in life. One study by Melzack et al, (2007) investigating 

phantom limb pain in adolescents documented that children with the earliest 

loss of limbs have a delay in the onset of phantoms, which emerge after a 

mean of 7 years (Melzack et al., 1997).  

2.5.1 Delayed onset of hypersensitivity following infant SNI to 
mechanical, cool, cold but not thermal stimulation 

Mechanical thresholds were tested using vFh, which deliver a punctate 

mechanical stimulus, detected by mechanonociceptors that are densely 

innervated in the extremities of glabrous skin (e.g. hind paws) to elicit pin-prick 

pain (Boada et al., 2010). Experiments involving selective nerve fibre block 

indicate that sensitivity to punctate mechanical stimuli is mediated primarily by 

thermal sensitive, capsaicin insensitive A-fibre nociceptors (Aδ fibres) (Magerl 

et al., 2001; Ziegler et al., 1999). The use of ketamine, an NMDAR antagonist, 

in adult rats following nerve injury attenuates mechanical hypersensitivity 

(Qian et al., 1996; Suzuki et al., 2001). An earlier study completed in the 

Fitzgerald laboratory indicated that administration of ketamine also reverses 

mechanical hypersensitivity that arises at adolescence following infant nerve 

injury (Vega-Avelaira et al., 2012). This finding suggests that the delayed onset 

of mechanical hypersensitivity is mediated by NMDA facilitated central 

sensitization. Central sensitization leads to enhanced neuronal activity 
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occurring as a result of opening of NMDA channels that allow calcium entry 

into the cell (Latremoliere and Woolf, 2009; Woolf, 1983), vital for both the 

initiation and maintenance of activity dependent central sensitization (Ma and 

Woolf, 1995).   

Studies in the adult rodent show that PKC-γ positive neurons play a key role 

in the development of mechanical hypersensitivity (Lu et al., 2013; Malmberg 

et al., 1997; Seal et al., 2009) although the expression of PKC-γ is present in 

the dorsal horn spinal cord by P10 (Malmberg et al., 1997). Pro-inflammatory 

mediators, such as TNF, are also known to interact positively with NMDA 

subunits in the dorsal horn spinal cord of nerve injured rats, promoting 

neuronal activity and pain-like behaviour (Daulhac et al., 2006; Zhang et al., 

2011a) and initial studies suggest that infants may not mount a robust 

inflammatory response as adults following nerve injury (Costigan et al., 2009; 

Moss et al., 2007; Vega-Avelaira et al., 2007). However, the inflammatory 

profile in the dorsal horn spinal cord at the onset of pain behaviour following 

infant nerve injury remains to be elucidated.  

For the first time data presented here indicates that infant mice also display 

the same delay in mechanical hypersensitivity, emerging 21 days after SNI, 

which until now has only been examined in the rat.  Interestingly the onset of 

mechanical hypersensitivity in mice was quicker after surgery than in rats. This 

is consistent with a study by Wall and colleagues which also described this 

time course difference between rats and mice following sciatic nerve 

transection where mice displayed an earlier onset on the 7th and 14th day after 

nerve transection while rats displayed autotomy 7 days later (Wall et al., 1979). 

Hind paw behavioural testing also shows that following infant SNI, rats display 

a delayed onset of hypersensitivity to both innocuous (acetone) and noxious 

(ethyl chloride) cold and contralateral weight bearing. Both coolants generate 

rapid changes in both the surface and subsurface skin temperatures. Acetone 

lowers the surface temperature of the skin by 7.7 OC, while ethyl chloride 

causes a decrease by 25.4OC (Leith et al., 2010). These temperatures activate 

different receptors and primary afferent subsets. For example innocuous cold 

substances activate the TRP melastatin 8 (TRPM8), while noxious cold 

(<15oC) activates the TRP ankyrin 1(TRPA1) channel (Caterina et al., 1997; 
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Story et al., 2003) although there is disagreement as to whether native or 

recombinant TRPA1 is intrinsically cold sensitive (Bautista et al., 2006; 

Karashima et al., 2009). While innocuous cooling with acetone activates 

subsets of A δ and C-fibres low-threshold afferents, more intense cold stimuli 

with ethyl chloride additionally activate populations of nociceptive afferents 

including C and A δ fibres (Cain et al., 2001; Campero et al., 1996).   

These afferents project to different laminae in the dorsal horn with C-fibres 

mainly located in lamina I and II, A δ to laminae I, III and V (Lamotte, 1977; 

Light and Perl, 1979). These differences are also reflected in the differential 

behavioural response to these coolant, as stimulation of the rat hind paw with 

ethyl chloride, but not acetone, evokes robust withdrawal reflexes in lightly 

anesthetized animals (measured as hind limb EMG activity) (Leith et al., 2010). 

Another difference between these coolants is that spinal responses of ethyl 

chloride and acetone are also differentially modulated by descending control 

systems originating in the PAG, that selectively modulates the transmission of 

noxious (evoked by ethyl chloride) but not innocuous (evoked by acetone) 

information (Leith et al., 2010). As the delayed cold hypersensitivity emerges 

following both acetone and ethyl chloride in the same pattern the differences 

in the processing of these two coolants do not underlie the onset of cold pain 

hypersensitivity.  

Contralateral weight bearing is not a stimulus-evoked reflex response, but an 

example of ‘guarding’ behaviour. This type of behaviour is highly appropriate 

in preventing potentially injurious mechanical stimuli to the actual site of injury 

and avoids interference with the progress of wound healing. Therefore, a delay 

in onset of contralateral weight bearing also suggests an underlying centrally 

mediated mechanism associated with an increase in the activity of the 

somatosensory system and an associated central adjustment which is 

displayed here as contralateral weight bearing (Mogil et al., 2010; Mogil and 

Crager, 2004). 

In contrast to mechanical, non-noxious and noxious cold stimulation and 

contralateral weight bearing, the withdrawal latency to heat stimuli following 

infant SNI developed normally, similarly to sham controls for all time points 

tested and is consistent with a previous study. The latencies of withdrawal from 
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a heat stimulus are longer in infants and shorten during postnatal development 

(Vega-Avelaira et al., 2012). A δ (type II) and C-fibres are both necessary for 

the perception of thermal pain near the pain thresholds (Torebjörk and Hallin, 

1973). One ion channel involved in the transduction of heat (52oC) is the 

neuronal TRP vanilloid receptor 1, (TRPV1), as illustrated by noxious heat 

responses being inhibited by vanilloid receptor antagonists (Kirschstein et al., 

1999; Nagy and Rang, 1999). Clinical studies have shown that changes in 

temperature thresholds (measured here as withdrawal latency) is not a usual 

symptom displayed by neuropathic pain patients (Decosterd and Woolf, 2000; 

Jørum et al., 2003; LaMotte et al., 1982; Magerl et al., 2001) and when it does 

present, is usually an indicator of peripheral sensitization (Hunt and 

Koltzenburg, 2005).  

Interestingly, in vivo electrophysiological studies in adult rodents indicate that 

nerve injury does not induce an increase in the activity of dorsal horn neurons 

in response to heat stimuli, despite the presence of heat hypersensitivity in 

these animals (Laird and Bennett, 1993; Palecek et al., 1992) which is in 

contrast to alterations in response to other sensory modalities such as 

following mechanical stimulation (Palecek et al., 1992; Suzuki et al., 2000). To 

measure changes in central processing, the reflex duration from a heat source 

(the time the animal lifts its paw following thermal stimulation) can be 

measured and an exaggerated reflex would reflect an increase in 

hypersensitivity of neurons in the CNS (Decosterd and Woolf, 2000; Treede et 

al., 1992). In this study the reflex response duration to heat stimuli was not 

tested as, due to the longitudinal nature of the study, constant testing to 

suprathreshold heat stimuli in itself may lead to damage and/or sensitization. 

However, as adult SNI rats do display a longer reflex response compared to 

sham controls, it is expected that P10 rats would also display an increase in 

the reflex response duration to heat stimulation 3-4 weeks after SNI, although 

this still needs to be confirmed.  

The behavioural data from this study suggests a number of interesting points. 

Firstly, the early absence of pain-like behaviour following infant SNI is unique 

to nerve injury as P0-P10 rodents demonstrate robust hypersensitivity to 

peripheral inflammatory insults including formalin, carrageenan and full 
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thickness skin wounds (Alvares et al., 2000; Barr et al., 2003; Marsh et al., 

1999; Ren et al., 2004; Reynolds and Fitzgerald., 1995; Torsney and 

Fitzgerald, 2002; Walker et al., 2003). Secondly, the data suggests that the 

delayed hypersensitivity is not due to a general sensory or motor deficits. 

Having extended behavioural sensory testing in rats and consolidated the 

delay in mechanical hypersensitivity following infant nerve injury in mice, the 

next aim was to identify the mechanisms that may underlie the delay in pain-

like behaviour following infant nerve injury.  

2.5.2 Neuronal degeneration following P10 SNI 

Although axotomy of the sciatic nerve in the immediate postnatal period (P0) 

causes extensive loss (75%) of DRG cells, occurring within 24 hours of injury 

(Aldskogius and Risling, 1981; Cheema et al., 1984; Himes and Tessler, 1989; 

Yip et al., 1984) at older ages axotomy of the sciatic nerve including P10, P21 

and adult animals does not cause any DRG cell loss 7 days after injury 

(Beggs., 2000; Lewis et al., 1999; Li et al., 1994). The data described in this 

chapter indicates that P10 SNI does not induce neuronal degeneration in the 

spinal cord of rats compared to sham controls, at the 7 day time point following 

P10 SNI. The absence of neuronal degeneration at this age maybe due to the 

fact that interneurons have abundant connections from different sources and 

may undergo adjustment rather than degeneration. Furthermore, with age 

these neurons change in the requirement of peripheral sensory neurons for 

neurotrophic support in the immediate postnatal period (Bennett et al., 1996, 

1988; Himes and Tessler, 1989; Lewis et al., 1998; Schmalbruch, 1984; 

Oliveira et al., 1997: Tandrup et al., 2000; Whiteside et al., 1998).  In addition, 

although axotomy of the sciatic nerve results in central sprouting, this is not 

observed in animals beyond P10 (Fitzgerald, 1985b; Fitzgerald and Shortland, 

1988; Shortland and Fitzgerald, 1994) and together with the data presented in 

this thesis suggests that nerve injury in the infant is not associated with 

extensive neuronal cell loss in the spinal cord.  

As the neonatal nervous system undergoes considerable postnatal changes 

(as outlined in Chapter One), alterations occurring, particularly at the time of 

pain-like behaviour onset, may provide a clue to the underlying mechanism. 
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2.5.3 Postnatal development of the peripheral nervous system. 

By birth both A and C sensory fibres are distributed to all body regions and, 

although fibres initially penetrate the epidermal surface, they retract and 

become organised in late embryonic stages (Fitzgerald, 2005; Jackman and 

Fitzgerald, 2000). Age related changes in receptor function, distribution and 

firing frequency can alter sensitivity to different stimuli. Nociceptors are 

responsive to stimuli and respond to tissue damage by birth including in 

response to intense mechanical, thermal and chemical skin stimulation and 

the expression of TRPV1, TRPA1 and TRPM8 mRNA is present in the DRG 

by birth (Fitzgerald, 1987a, b; Hjerling-Leffler et al., 2007) as are voltage gated 

sodium channels Nav1.8 and 1.9, which regulate neuronal hyper-excitability, 

and by P7 they are expressed at adult levels (Benn et al., 2001). In addition, 

the maturation of primary afferent input in to the dorsal horn occurs at an earlier 

time point than the onset of pain like behaviour (Beggs et al., 2002; Coggeshall 

et al., 1996; Fitzgerald et al., 1994; Jennings and Fitzgerald, 1998, 1996). For 

example, small diameter afferents, which are the last afferent type to enter the 

dorsal horn, grow into the rat dorsal horn by P5 and A fibres withdraw to mature 

locations in the first 3 weeks (Baccei et al., 2003; Beggs et al., 2002; Benn et 

al., 2001; Fitzgerald et al., 1994; Fitzgerald, 1987a; Fitzgerald and Shortland, 

1988; Fitzgerald and Swett, 1983; Nakatsuka et al., 2000; Park et al., 1999; 

Woodbury and Koerber, 2003). This suggests that the postnatal maturation of 

sensory transduction and transmission mechanisms and central innervation 

are unlikely to underlie the delayed onset of pain behaviour following infant 

SNI. 

2.5.4 Postnatal development of central processing 

The functional properties of the dorsal horn network are also highly age 

dependent and undergoes considerable postnatal development (See Chapter 

One). This includes the fine-tuning of both excitatory and inhibitory synaptic 

connections and neuronal circuitry which in the naïve animal coincides with 

the behavioural changes observed in the first postnatal weeks.  For example, 

in neonates the concentrations of NMDARs are high and widely distributed in 

the dorsal horn but by P21 these are restricted to laminae I and II (Watanabe 

et al., 1994) and both receptor affinity for NMDA and NMDA evoked calcium 
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influx decline to adult levels by P15 (Hori and Kanda, 1994). A similar trend is 

observed with AMPAR, and metabotropic glutamate receptor subtypes 

(mGluR) 3 and 5 that are also expressed at a high level in the neonatal dorsal 

horn and decrease to adult levels in the first 3 weeks of postnatal life (Berthele 

et al., 1999; Jakowec et al., 1995).   

GABAergic control is present from birth, although glycinergic inhibition 

emerges only in the second postnatal week, contributing to the refinement and 

dampening of responses to touch at this time (Baccei and Fitzgerald, 2004; 

Koch and Fitzgerald, 2014). Furthermore, both GABA and glycinergic inhibition 

exhibit mature properties and spinal cord distribution by P23 (Keller et al., 

2001; Schaffner et al., 1993).  

Descending activity from the brainstem also contributes to the excitation and 

inhibition in spinal nociceptive circuits which is immature at birth and the 

rostroventral medulla (RVM), exclusively facilitates spinal pain transmission 

and only later does the influence of the RVM exhibits biphasic facilitation and 

inhibition (Hathway et al., 2009). As the role of descending control in the 

neonate is one of excitation, it is unlikely that the developmental change in 

descending control underlies the delayed onset of pain hypersensitivity.  

Overall, the neonate is more excitable than the adult and underlies the 

differences observed in the behaviour of the naïve animal (Andrews and 

Fitzgerald, 1999, 1994; Falcon et al., 1996; Fitzgerald, 1985; Fitzgerald and 

Shortland, 1988; Jennings and Fitzgerald, 1996; Pattinson and Fitzgerald, 

2004; Teng and Abbott, 1998; Torsney and Fitzgerald, 2002). The normal 

development of thermal thresholds suggest that the delay is not due to a 

general sensory or motor deficit at this age and it is also unlikely that the delay 

is due to changes occurring during postnatal development, as these occur at 

an earlier time point than to be relevant to the delayed emergence of pain-like 

behaviour although a centrally mediated mechanism is possible.  

A previous study by Vega-Avelaira et al., shows that the delayed onset of 

mechanical hypersensitivity following infant nerve injury can be reversed by 

administration of an NMDAR antagonist, which further suggest pain-like 

behaviour may be centrally mediated (Vega-Avelaira et al., 2012). In adults, 



Chapter Two                 The delayed onset of pain-like behaviour following infant nerve injury 

97 
 

electrophysiological recordings from nerve injured animals show that dorsal 

horn neurons develop profound changes including a significant increase in 

activity of wide dynamic range neurons with a larger percentages of neurons 

responding to innocuous mechanical stimuli (Palecek et al., 1992) which also 

have larger receptive field sizes (Suzuki et al., 2000). To date in vivo 

electrophysiological studies in infant animals following nerve injury are yet to 

be completed but may elucidate if the absence of hypersensitivity following 

infant nerve injury and its subsequent onset at a later time point reflect 

alterations in the activity of dorsal horn spinal cord neurons. This is 

investigated in the next chapter. 

2.6 Conclusion 

The data presented in this Chapter confirms and extends published work to 

indicate that P10 rats do not display hypersensitivity to mechanical, innocuous 

and noxious cold stimulation or contralateral weight bearing for the first two to 

three weeks following infant SNI surgery. However, pain-like behaviour does 

eventually emerge but later when the rat reaches adolescence. 
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3.1 Introduction 

Chapter Two described the longitudinal behavioural alterations that occur 

following infant (P10) peripheral nerve injury (SNI) to show that nerve injury at 

infancy does not cause hypersensitivity to mechanical, innocuous and noxious 

cold stimuli, in the early period following surgery, but does eventually develop 

along with contralateral weight bearing 3-4 weeks later. This is in contrast to 

adult nerve injury models where neuropathic pain-like behaviour develops 

within 7 days of nerve injury (Decosterd and Woolf, 2000).  This Chapter aims 

to investigate if these behavioural alterations following infant SNI are 

accompanied by changes occurring centrally, in the dorsal horn spinal cord. 

Experiments presented in this Chapter use in vivo electrophysiology to 

examine dorsal horn neuronal activity in the early period after P10  SNI (when 

pain-like behaviour is absent) and 28 days later (when pain-like behaviour 

emerges) (Vega-Avelaira et al., 2012).  

Peripheral nerve injury in the adult rodent leads to changes in both the 

peripheral and central nervous system which contributes to the initiation and 

maintenance of neuropathic pain behaviour. In the periphery, primary afferent 

fibres become more excitable upon nerve injury and electrophysiological 

studies have shown that ectopic action potential discharge is generated from 

within the neuroma a the sits of injury or dorsal root ganglia (Amir et al., 2005; 

Kajander et al., 1992; Kajander and Bennett, 1992; Petersen et al., 1996; 

Study and Kral, 1996; Xie and Xiao, 1990). The irregular firing of sensory 

neurons is the result of multiple molecular changes in the neurons, including 

altered expression of sodium and potassium channels (Kim et al., 2008; Rose 

et al., 2011; Roza et al., 2003), the growth associated protein (GAP)-43 and 

neurotransmitters such as calcitonin gene-related peptide (CGRP) and 

substance P (Bennett et al., 1989; Cameron et al., 1991). Together these 

peripheral changes result in abnormal input to the dorsal horn spinal cord, 

which in turn contribute to postsynaptic changes in the dorsal horn that drive 

central sensitization. 
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As the dorsal horn serves as a vital first point in sensory integration for 

incoming peripheral afferent signals and transmission of sensory information, 

abnormal signals arriving from the periphery following nerve injury alter dorsal 

horn neuronal excitability that have consequences on the spinal processing of 

cutaneous inputs, and subsequently the perception of sensory information. A 

number of studies have investigated nerve injury induced changes in spinal 

somatosensory processing in the spinal cord dorsal horn of the rat and monkey 

(Chapman et al., 1998a; Laird and Bennett, 1993; Leem et al., 1995; Palecek 

et al., 1992; Suzuki et al., 2000; Takaishi et al., 1996). However, the effect of 

nerve injuries on spinal processing in neonatal animals are not currently 

known. 

3.1.1 Peripheral nerve injury in adults results in alterations in 
dorsal horn neuronal activity.  

In vivo electrophysiological studies in adult rodents following  peripheral nerve 

injury of the sciatic nerve indicate two consistent changes of dorsal horn 

neurons and include i) an absence of detectable peripheral receptive fields due 

to partial deafferentation (Laird and Bennett, 1993; Takaishi et al., 1996) and 

ii) abnormally high levels of spontaneous activity (Chapman et al., 1998b; Laird 

and Bennett, 1993; Palecek et al., 1992; Suzuki and Dickenson, 2006; 

Takaishi et al., 1996; Walczak et al., 2006). Interestingly, the majority of studies 

using partial nerve injury models have failed to demonstrate altered dorsal 

horn responses to heat stimuli, despite the presence of heat hypersensitivity 

in these animals (Palecek et al., 1992; Laird and Bennett, 1993). While the 

characteristics described above are prominent features in all experimental 

neuropathic pain animal models, other alterations in dorsal horn responses to 

different stimuli vary depending on the nerve injury model used and time point 

analysed. Changes in the mechanical sensitivity to dorsal horn neurons are 

subtle. For example, Laird and Bennett (1993) reported that 9-11 days post 

chronic constriction injury (CCI) there were no differences in the size of 

cutaneous receptive fields, thermal or mechanical thresholds, or the 

magnitude of responses to acetone (cold) compared to sham controls. 

However, other studies, following spared nerve ligation (SNL) in the adult rat, 

have shown that a larger percentage of wide dynamic range (WDR) neurons 
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respond to innocuous mechanical stimuli, and these neurons also have 

enlarged receptive fields (Palecek et al., 1992; Suzuki et at., 2000). A larger 

percentage of neurons exhibited high spontaneous firing rates following SNL 

(Chapman et al., 1998; Takaishi et al., 1996: Suzuki and Dickenson, 2006; 

Palecek et al., 1992) although thermal and mechanical thresholds remained 

comparable 7-14 days post-surgery and wind-up responses are also 

comparable to controls (Chapman et al., 1998b).  

In vitro recordings from slice preparations in the substantia gelantinosa 

indicate that N-methyl-D-aspartate receptor (NMDAR) currents are facilitated 

in the SNL model (Isaev et al., 2000). In addition, following both sciatic nerve 

transection and CCI, there is a decrease in the threshold for eliciting excitatory 

post synaptic currents (EPSCs) and increased prevalence of mono and poly 

synaptic Aβ fibre evoked EPSCs (Kohama et al., 2000; Kohno et al., 2003; 

Okamoto et al., 2001). Other studies have shown that primary afferent evoked 

inhibitory postsynaptic currents (IPSCs) are reduced in duration and 

magnitude after partial nerve injury and it has been suggested that this is due 

to a reduction in the release of GABA acting on pre-synaptic GABAA receptors 

(Moore et al., 2002). These findings further indicate that neurons within the 

dorsal horn are hyperexcitable following nerve injuries.  

To date studies into the responsiveness of spinal neurons following SNI in the 

adult remain unexplored. This is surprising as studies into nerve injury 

associated spinal cord glial cell activation and dorsal horn cell death 

predominantly utilize the SNI model (Basbaum et al., 1991; Bennett and Xie, 

1988; Carlton et al., 1991; Ho Kim and Mo Chung, 1992; Munger et al., 1992; 

Seltzer et al., 1990). As illustrated in Fig3.1, an advantage of the SNI model 

for in vivo electrophysiological recordings is that the branches of the sciatic 

nerve innervate the dorsal horn spinal cord in a specific somatotopic map, 

enabling the sampling of dorsal horn neurons located in the spared sural nerve 

territory while the area innervated by sectioned branches can be excluded 

(Molander and Grant, 1986; Woolf and Fitzgerald, 1986). This is in contrast to 

the CCI models where the experimenter would be unaware if they are sampling 

dorsal horn neurons with an unclassified input, i.e. damaged or spared by 

constriction. 
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Fig 3.1 Schematic dorsal view map of lamina II of the dorsal horn spinal cord. 

Diagram illustrates the density centres of projections from different nerves that innervate the 
hind paw T, tibial, CP, common peroneal, S, sural, PC posterior cutaneous. Reprinted from 
Neuroscience, 19, Molander and Grant, Laminar distribution and somatotopic organization 

of primary afferent fibres from hind limb nerves in the dorsal horn. A study by 

transganglionic transport of horseradish peroxidase in the rat, 297-312 (1986) with 
permission from Elsevier. 
 

Reconstruction of superficial dorsal horn illustrating areas 
innervated by nerves from the hind paw. 
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3.1.2 Alterations in dorsal horn neurons following infant nerve 
injury 

If neonatal nerve injury is performed soon after birth (P0-5) it can permanently 

alter central spinal cord connections of afferents (Fitzgerald et al., 1990; 

Shortland and Fitzgerald, 1991). For example, sciatic nerve section at birth 

(P0) induces the sprouting of the saphenous nerve terminal field caudally from 

mid L4 to L4-L5 while the axotomised and invading A-fibres sprout dorsally into 

the deafferented substantia gelatinosa (Fitzgerald et al., 1990; Fitzgerald and 

Shortland, 1988). These changes are triggered by primary sensory neuron cell 

death in the DRG and subsequent deafferentation of the dorsal horn. However 

by P10 the sprouting observed following sciatic nerve transection is absent 

(Fitzgerald, 1985b).  

To date there has been only one study investigating alterations in dorsal horn 

activity following partial denervation peripheral nerve injury at infancy (Li et al., 

2009).  In this study patch clamp recordings demonstrated that SNI at P6 failed 

to elicit spontaneous excitatory neurotransmission or neuronal excitability 3-5 

days after surgery which was in contrast to adults (Li et al., 2009).  The effect 

of infant nerve injury on dorsal horn neuronal activity in vivo in the early period 

in the absence of pain-like behaviour and later at the onset of pain like 

behaviour have not been investigated.  

 

 

 

 

 

 

 

 



Chapter Three             Alterations in dorsal horn neuronal activity following infant nerve injury 

104 
 

3.2 Aims of the Chapter 

While it is documented that peripheral nerve injury in adult rodents leads to 

alterations in dorsal horn responses and central processing, this has not been 

characterised in the SNI neuropathic model in adult or infants. To test whether 

the delayed onset of behavioural hypersensitivity following infant SNI coincides 

with changes in the dorsal horn sensory circuits, responses of WDR neurons 

will be recorded in infant rats following peripheral nerve injury, in the early 

period where pain-like behaviour is absent, and in the later period when pain 

behaviour emerges. The key objectives of the experiments described in this 

chapter are to: 

 

1. Characterise spontaneous and cutaneous evoked responses of dorsal 

horn neurons in adult rats, 7 days after SNI and sham surgery, when 

neuropathic pain-like behaviour is established. 

2. Characterise spontaneous and cutaneous evoked responses of dorsal 

horn neurons in young rats, 7 days after P10 SNI and sham surgery, 

when there is no neuropathic pain-like behaviour. 

3. Characterise spontaneous and cutaneous evoked responses of dorsal 

horn neurons in rats, 28 days after P10 SNI and sham surgery, when 

neuropathic pain-like behaviour has emerged. 
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3.3 Methods 

3.3.1 Animals and surgery 

Male Sprague-Dawley rats were obtained from UCL Biological services unit. 

Rat pups were housed with mother and their littermates while animals over 

P21 were caged in littermates of 5.  All animals had free access to water and 

were housed in 12 hour light/dark cycles.  SNI or sham surgery was completed 

on P10 or P33 rats and mechanical sensory testing was completed as outlined 

in Chapter Two. All experiments were conducted in accordance with the United 

Kingdom animals Scientific Procedures Act of 1986.  

3.3.2 In vivo electrophysiology 

All electrophysiology experiments were conducted on rats at the following time 

points: 

1) 7 days post infant (P10) SNI or sham surgery (when rats reach P17) 

2) 28 days post infant (P10) SNI or sham surgery (when rats reach P38)  

3) 7 days post adult (P33) SNI or sham surgery (when rats reach P40) 

P17 and P40 naïve rats were also used as non-injured controls.  

3.3.2.1 Animal preparation 

The animals were anaesthetised under isoflurane-anaesthesia (5% in medical 

oxygen, Univentor unit 400, Royem Scientific, UK) via a nose cone to achieve 

areflexia and placed on their back on a heating blanket. A cannula was inserted 

into the trachea and sutured to ensure stability. The animals were artificially 

ventilated by connecting the tracheal cannula via a Y connector to a ventilator 

pump (small animal ventilator, model 687, Harvard Apparatus Inc) at 80 

breaths per minute. The air flow was adjusted according to the rat’s size and 

heart rate (350-400 beats per minute) and monitored using an 

electrocardiogram. The animal was then fixed onto a stereotaxic frame (Kopf 

Instruments, CA) using ear and hip bars. The body temperature was 

maintained using a feedback electric blanket with a rectal probe maintained at 

(37ºC) and for smaller rats a heating lamp was also used. A laminectomy was 
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performed to expose the lumbar enlargement taking care not to touch the 

spinal cord. 

3.3.2.2   Laminectomy 

The skin on the back of the animal was cleaned, and hair flattened with alcohol. 

An incision to the skin was made using a scalpel along the vertebrae two 

centimetres rostral and caudal to the base of the rib cage to allow access to 

the lumbar segment (L) 4-L5 of the spinal cord. Fat and connective tissue was 

then removed to enable visualisation of the vertebrae. Rat tooth forceps were 

used to lift the column and vertebrae were removed using rongeurs. Any 

bleeding was immediately stopped by applying pressure to the bone. The dura 

was then lifted up with fine forceps and cut using iris scissors. Once the surgery 

was completed, the vertebral column was secured using a pair of rat tooth 

forceps clamped perpendicularly to the stereotaxic frame. Throughout the 

experiments warm mineral oil was used to cover the exposed spinal cord and 

prevent excessive heat and fluid loss, subcutaneous injections of saline were 

given to each animal to maintain hydration.  

3.3.2.3 Single unit extracellular recordings 

Isoflurane-anaesthesia was reduced to 1.8% for extracellular recordings that 

were made using a 10μm tipped glass-coated tungsten microelectrode 

(Ainsworks, Welford, Northants) which was lowered onto the dorsal horn. A 

reference electrode was also inserted into the muscle close to the recording 

area for differential recordings. The recording system was grounded through 

the stereotaxic frame and animal.  

Neuronal activity was passed through a x1 head stage amplifier and amplified 

by 5000 via a x5k differential amplifier (NeuroLog, Digitmer, UK). This signal 

was passed through low and high pass filters, set at 1 kHz and 10 kHz 

respectively and onto a spike trigger and set manually to produce output pulses 

for spikes above a particular voltage. The spike trigger unit generated all-or-

nothing impulses from the raw data signal with the threshold for the generation 

of spikes set on the front panel of the unit during each experiment. The signal 

was fed into an audio amplifier (TDS 2012 digital storage oscilloscope, 
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Tektronix) and speaker so that a click could be heard each time an impulse 

was produced. Filtered signal was then fed into a PowerLab system which 

converted the signal from analogue to digital (4SP, AD Instruments, UK) and 

recorded onto a computer. Signals of raw data were displayed on to an 

oscilloscope to allow constant viewing of the data signal. Spike discrimination 

and analysis was carried out using Chart 7 software (ADI instruments, 

Oxfordshire, UK) 

Recordings were made from dorsal horn neurons with an input from the 

‘spared’ sural nerve, identified as having a receptive field in the sural nerve 

territory. To identify these cells, the electrode was moved rostrocaudally along 

the cord, adjacent to the central vein. Once in the correct area, the electrode 

was manually lowered through the cord in vertical tracks in 10µm steps. To 

isolate individual dorsal horn cells the electrode was manually lowered onto 

the dorsal surface of the spinal cord and stroking of the ipsilateral (to the 

surgery) plantar skin of the hind paw (in the sural nerve territory) was used as 

the search stimulus. The threshold of the spike trigger unit was continuously 

set above background activity so that clicks were formed by the action 

potentials of cells and facilitated their isolation. Cells in the deep dorsal horn 

were selected once a stable action potential spike amplitude (usually 50µV) 

and shape could be distinguished from background noise levels (usually 15µV) 

(Torsney and Fitzgerald, 2002). These parameters were monitored throughout 

to ensure the same cell was always being recorded. 
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3.3.2.4 Cell Characterisation 

Only cells with receptive fields within the sural nerve territory on the plantar 

region of the hind paw were used for recordings. Wide dynamic range (WDR) 

neurons were selected by ensuring each neurons responded to both 

cutaneous touch and pinch of the receptive field (Fig 3.2).  

 

Fig 3.2 Diagram showing in vivo electrophysiological recordings in the dorsal 
horn spinal cord 

An electrode in laminae III-IV of the dorsal horn was used to record background activity of cells 
in the sural nerve territory (denoted by the blue line on the paw). Receptive fields of isolated 
cells were mapped in response to pinch and brush followed by recording of a range of stimulus-
evoked neuronal activity in response to stimulation of the receptive field. 
 
 

First, background activity was recorded over a 3 minute period. If the recorded 

spike was not stable over this recording period, the cell was rejected. The 

plantar paw receptive field of a cell was then characterised by mapping the 

cells response to pinch (using forceps) and dynamic brush (using a paint 

brush) of the skin. This was drawn out onto a representative image of the 

plantar paw and digitally scanned. Receptive fields were analysed using 

ImageJ software and presented as a percentage of total paw area (Ririe et al., 

2008).The properties of each cell was then characterized by applying stimuli 

to the centre of the cutaneous receptive field for three seconds and the number 

of spikes in 3 seconds were measured unless stated (Fig 3.2).   
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Recordings during the stimulation of the receptive field included:  

1. Dynamic brush (no.3 paintbrush) 

2. Noxious pinch with calibrated forceps 

3. Acetone drops 

4. Ethyl chloride spray 

5. 33g and 66g calibrated pressure forceps:  

6. Calibrated von Frey hairs (Threshold that elicited firing) 

7. Application of threshold von Frey hair 

8. Application of suprathreshold, 6.3g von Frey hair 

 

Each stimuli was applied 3 times with at least 5 minute intervals between each 

stimulus (Chapman et al., 1998b). The mean number of spikes evoked per 

second to each stimulus was then calculated and used for analysis.  All 

animals were euthanized with an overdose of sodium pentobarbitone 

(intraperitoneal injection) at the end of each experiment. 

3.3.3 Data Analysis 

Background spikes were counted in a fixed window duration of 3 minutes.  

Stimulus evoked spikes were counted with a fixed window duration of 3 

seconds (so as to exclude any discharge). All data are presented as mean. 

The number of spikes was analysed and graphed using GraphPad Prism 

software (San Diego, CA, USA). Comparisons of proportions of cells exhibiting 

specific firing characteristics were made using the Chi-Square (X2) test. The 

non-parametric Mann–Whitney U test was used to test for significance 

between treatments at a given age unless stated. For all data a significance-

value of less than 0.05% was deemed statistically significant. 
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3.4 Results 

3.4.1 Electrophysiological properties of dorsal horn neurons in infants 
and adults following the spared nerve injury. 

In this study a total of 114 single unit extracellular recordings were made from 

dorsal horn neurons from 50 rats. A summary table for the number of cells 

recorded in each age and treatment groups is provided in Table 3.1. A pilot 

study was also undertaken using naïve P17 and P40 rats which were used to 

establish any differences in the recordings between sham animals and age 

matched naïve controls. 

 

 

Table 3.1 Number of cells recorded in each experimental group 

Table showing the number of cells, and in brackets the number of animals used, recorded in 
each experimental group at each age.   
 
 

All cells used in the study had cutaneous mechanoreceptive fields located on 

the plantar surface of the hind paw in the sural nerve territory. Only WDR 

neurons were selected for recording while neurons with only low or high 

threshold input were rejected (low threshold cells did not respond to pinch, 

high threshold cells did not respond to brush). Multiple cells were recorded in 

each animal but not all stimuli were tested in each cell.  

There was no significant difference in the depth of recordings between SNI 

and sham treated animals within a postnatal age (Fig 3.3). The average depth 

of all cells recorded from the spinal cord surface from P17 rats was 

477±11.54µm and from P38-P40 rats 654.9±21.40µm which are classified as 

cells from deep III, IV and V laminae (Torsney and Fitzgerald, 2002; Urch and 

Dickenson, 2003). 

  Number of cells 
(number of animals) 

 

 SNI Sham Naïve  

Infant surgery +7 days 10 (5) 17 (5) 11 (4) 

Infant surgery +28 days 10 (5) 15 (5)  

Adult surgery +7 days 17 (6)             20 (11)           14 (9) 
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Fig 3.3 Depth of recorded dorsal horn cells at different ages  

Scatter plot shows the depth of recorded cells from the surface of the spinal cord. There is no 
significant difference in the depth of recorded cells between different treatment groups (SNI or 
sham) within a postnatal age.  

3.4.2 Dorsal horn activity in infant and adult rats following sham    
surgery is comparable to age matched naïve controls. 

 

To test for any effects of sham surgery on dorsal horn activity a pilot study was 

initially conducted to compare the spontaneous and evoked-activity (to 

innocuous dynamic brush and noxious pinch) of dorsal horn neurons in sham 

animals and age matched naïve controls. Infant sham surgery did not 

significantly alter the mean spontaneous or evoked activity of dorsal horn 

neurons compared to naïve rats at either 7 days (Fig 3.4A) or 28 days (Fig 

3.4B) after P10 surgery. As the activity of cells from sham and naïve animals 

are not significantly different within a postnatal age group, any significant 

differences observed between SNI and sham surgery treatment groups are 

due to peripheral nerve injury. 
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A      B 

Fig 3.4 Activity of dorsal horn neurons in infant and adult sham treated rats is 
comparable to naïve age matched controls. 

(A) 7 days after infant (P10) sham surgery rats display comparable activity to naive age 
matched controls to spontaneous activity infant sham: n=16 cells, infant naïve: n=7cells; brush 
(infant sham n=16 cells; infant naïve n=11 cells) and pinch-evoked activity (infant sham: n=17 
cells; infant naïve: n=10 cells) (B) 7 days after adult (P40) sham surgery and 28 days after 
infant sham surgery (P38) rats display comparable spontaneous activity (infant sham +28 days 
n=10 cells; adult sham n=14 cells; adult naïve n=11 cells) and brush (infant sham +28 days 
n=15 cells; adult sham n=15 cells; adult naïve n=14 cells) and pinch-evoked activity (infant 
sham +28 days n=15 cells; adult+7 days sham n=15 cells, to age matched (P40) naïve controls 
(n=14). P10+7d sham n=5 animals, P17 naive n=4 animals, P40 naive rats n=9 animals, 
P33sham+7d n=11 animals, P10sham+28d n=5 animals. 

3.4.3 Dorsal horn activity following infant and adult SNI and sham 
surgery  

3.4.3.1 Spontaneous activity 

Fig 3.5 shows that in infants spontaneous activity of WDR neurons was not 

significantly different between SNI and sham treated rats 7 days after surgery. 

However, 28 days after infant SNI, spontaneous activity had increased 

significantly compared to sham-treated rats (mean firing rate, sham = 0.3±0.11 

spikes. sec-1; SNI = 15.3±8.5 spikes. sec-1; Mann Whitney test P<0.0001). An 

increase in spontaneous activity was also observed in adults 7 days post SNI 

(3.5±1.03 spikes. sec-1) compared to sham controls (0.2±0.17 spikes. sec-1) 

(Mann Whitney test P <0.01) consistent to previous reports (Chapman et al., 

1998b; Laird and Bennett, 1993). A higher proportion of neurons exhibited 

spontaneous activity (over 0.1 spikes per second) in adults following SNI 

(sham 42%; SNI 69%, although not significant) and in rats 28 days after P10 

SNI (sham 50%; SNI 100%; χ2 analysis, P<0.05). In infants 7 days after SNI 
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there was no significant difference in the percentage of neurons exhibiting 

spontaneous activity compared to sham controls (sham 56%; SNI 43%). 

 

 

 

 

 

 

 

Fig 3.5 Spontaneous dorsal horn activity in infant and adult rats following SNI or 
sham surgery 

 (A) Infants did not show any significant differences in spontaneous neuronal activity 7 days 
after SNI surgery compared to sham controls (sham n=16; SNI n=7 cells).  A significant 
increase in activity did occur in infants 28 days  after SNI (sham=10; SNI=9) and in adult SNI 
treated rats 7 days after SNI surgery compared to sham controls (sham=19; SNI=16;). Mann 
Whitney test** P<0.01, **** P <0.0001. Infant sham +7d n=5 animals per group, Infant SNI +7d 
n=5 animals per group, Infant sham +28d, n=5 animals per group, Infant SNI+28d, n=5 per 
group, Adult sham +7d, n=11 animals per group, Adult SNI +7d, n=6 animals per group. 
 

3.4.4 Cutaneous receptive field sizes. 

Fig 3.6A and B show the effect of SNI and sham surgery on the receptive fields 

of brush and pinch respectively. The cutaneous receptive field size was 

measured as a percentage of the total foot area in order to correct for large 

differences in plantar foot area in the different postnatal ages tested (Koch et 

al., 2012; Torsney and Fitzgerald, 2003). Although not statistically compared 

here receptive fields appeared larger in infant compared to older sham treated 

adults which is consistently reported in other studies (Andrews and Fitzgerald, 

1994; Beggs et al., 1992; Fitzgerald, 1985a).  SNI at infancy significantly 

reduces the average brush and pinch receptive field compared to sham 

controls 7 days after surgery (Brush: sham 12.7±1.37%, SNI 7.6±0.71%, Mann 

Whitney test P<0.01; Pinch: sham 16.0±1.86 %, SNI 7.4±1.12% Mann Whitney 

test, P<0.001). However, by 28 days after infant SNI,  brush and pinch -

receptive fields significantly increase compared to sham surgery (Brush: sham 

5.6±1.86%, SNI 11.4±1.05%, Mann Whitney test, P<0.05; Pinch: sham 

8.5±1.10 %, SNI14.2±1.57%, Mann Whitney test, P<0.001). In adults both 
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brush and pinch receptive fields in SNI and sham treated rats are not 

significantly different as previously reported in peripheral nerve injured adult 

rodents (Laird and Bennett, 1993).  

 
A          B 

  
 

Fig 3.6 Receptive fields of brush and pinch in infant and adult rats following SNI or 
sham surgery. 

(A) Brush receptive fields in infant animals 7 days after SNI (n=10 cells) decreased significantly 
compared to sham controls (n=20) but 28 days after infant SNI (n=9) increased significantly 
compared to sham control (n=10). The receptive field of brush in adult SNI (n=11) and sham 
treated animals (n=19) were similar. (B) Pinch receptive fields in infant animals 7 days after 
SNI (n=10) also decreased compared to sham controls (n=18) while 28 days after infant SNI 
pinch (n=7) receptive fields increased compared to sham controls (n=10). Pinch receptive 
fields in adult SNI (n=11) and sham treated animals (n=18) were similar. Mann Whitney test 
*P<0.05, ** P<0.01, *** P<0.001. Infant sham +7d, n=5 animals per group; Infant SNI+7d, n=5 
animals per group, Infants sham +28d, n=4 animals per group, Infants SNI +28d, n=4 animals 
per group and Adult sham +7d, n=11 animals per group, Adult SNI +7d, n=6 animals per group. 
 

3.4.5 Pinch and brush-evoked activity 

Fig 3.7A shows that the activity of neurons evoked by pinching the receptive 

field did not significantly alter in SNI treated rats compared sham controls 

within any age group. In addition, brush evoked activity was not significantly 

different in infant and adult SNI from sham treated rats 7 days after surgery 

(Fig 3.7B). However, brush evoked activity of dorsal horn neurons was 

significantly increased in rats 28 days after infant SNI with a mean firing rate 

of 34.7±9.56 spikes. sec-1 compared to 16.9±2.69 spikes. sec-1 following sham 

surgery (Mann Whitney test P=0.0009).  
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A    B 
 

 
 

Fig 3.7 Pinch and brush evoked dorsal horn activity in infant and adult rats 
following SNI or sham surgery. 

(A) Infant and adult SNI and sham treated rats exhibited comparable pinch evoked-activity in 
each age group (Infant+7days, sham n=17, SNI n=9 cells; Infant+28days, sham n=15, SNI 
n=9; Adult+7days, sham=15, SNI n=17). (B) Infant and adult SNI and sham treated rats 
exhibited comparable brush evoked activity 7 days after surgery (Infant+7days, sham n=29, 
SNI n=9; Adult+7days, sham=15 SNI n=16). Brush evoked activity significantly increase 28 
days after SNI (sham n=15, SNI n=9; Mann Whitney test Pt<0.001). Infant SNI+7d, n=5 
animals per group, Infants sham +28d, n=5 animals per group, Infants SNI +28d, n=5 animals 
per group and Adult sham +7d, n=11 animals per group, Adult SNI +7d, n=6 animals per group. 

3.4.6 Acetone and ethyl chloride evoked activity 

Although cellular responses to cold stimulation in adult rodents have been 

characterised in naïve and SNI treated animals, this is the first study to date 

that has investigated responses in infants. Fig 3.8A shows that in infants 7 

days after SNI or sham surgery, there was no significant difference between 

the percentage of cells that responded to acetone (SNI 80%, Sham 88%). 

Although not statistically tested it also appears that infant rats maybe naturally 

more responsive to acetone than mature rats. 28 days after infant SNI surgery 

a significantly larger proportion of cells responded to acetone in SNI treated 

animals (90% of cells) compared to sham (36% of cells) surgery (χ2 analysis, 

P <0.01). In addition, SNI treated animals exhibited a significantly higher 

activity (10.52±3.05.03 spikes. sec-1) compared to sham controls (0.8±0.34 

spikes. sec-1, Mann Whitney test, P<0.0001). Similarly, in adults, a larger 

proportion of cells responded to acetone 7 days after SNI (70%) compared to 

sham controls (22%) (χ2 analysis, P<0.05) and rats also displayed significantly 

higher mean acetone evoked activity following SNI (6.3±1.80 spikes. sec-1) 
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compared to sham animals (0.08±0.05 spikes. sec-1; Mann Whitney test, 

P<0.05).  

The activity of WDR neurons in response to ethyl chloride applied to the 

receptive field was also measured. In infants 7 days after surgery, all cells in 

both sham and SNI treated animals responded to ethyl chloride (sham; n= 16 

cells; SNI n=3 cells). However as the n of cells was low, the magnitude of the 

responses was not graphed or significance calculated. In animals 28 days after 

infant SNI or sham surgery a similar proportion of cells responded to ethyl 

chloride (SNI 100%, Sham 83%) but the mean neuronal activity of SNI treated 

animals was significantly higher (40.9.1±10.90 spikes. sec-1) than sham 

controls (6.6±1.95 spikes.sec-1, Mann Whitney test, P<0.001). In adults both 

the proportion of cells and neuronal activity of cells were not significantly 

different 7 days after SNI and sham surgery (SNI 100%, Sham 70%).   

A          B 
 

 

Fig 3.8 Acetone and ethyl chloride evoked dorsal horn activity in infant and adult 
rats following SNI or sham surgery. 

(A)Infant rats exhibited comparable neuronal activity in response to acetone application 7 days 
post sham (n=12) and SNI (n=5) surgery. 28 days after infant SNI (n=9) acetone evoked 
activity significantly increased compared to sham (n=11) controls and in adults 7 days after 
SNI (n=10) compared to sham surgery (n=9). (B) Similarly 28 days after infant SNI (n=9) ethyl 
chloride evoked responses significantly increased compared to sham (n=13) controls. Mann 
Whitney test *P<0.05, ** P<0.01, **** P<0.0001. Infant sham+7d, n=4 animals per group, 
SNI+7d, n=3 animals per group, Infants sham +28d, n=4 animals per group, Infants SNI +28d, 
n=3 animals per group and Adult sham +7d, n=9 animals per group, Adult SNI +7d, n=3 
animals per group. 
 



Chapter Three             Alterations in dorsal horn neuronal activity following infant nerve injury 

117 
 

3.4.7 Pressure evoked activity 

Dorsal horn activity to 33g and 66g pressure stimulus applied with forceps to 

the centre of the receptive field was also tested. Every cell tested responded 

to both 33g and 66g pressure application. Fig 3.9A and 3.9B shows that 28 

days after infant SNI dorsal horn neuronal activity is increased in response to 

33g and 66g pressure compared to sham controls (Mann Whitney test, P<0.05, 

P<0.01). Responses of adult dorsal horn neurons to 33g and 66g pressure in 

rats 7 days following SNI was not significantly different from sham controls. 

Responses to pressure were not measured in P17 rats due to their 

comparatively small paws which made application of the pressure device 

difficult and readings varied widely with replication. 

A      B 
  

Fig 3.9 33g and 66g pressure evoked dorsal horn activity in infant and adult rats 
following SNI or sham surgery. 

(A) 33g pressure induces an increase in dorsal horn activity in rats 28 days following SNI (n=8) 
relative to sham controls (n=11) but the activity of dorsal horn neurons in adults 7 days after 
SNI (n=10) remain comparable to sham controls (n=12). (B) 66g pressure evoked activity in 
rats 28 days after SNI (n=8) increased relative to sham treated rats (n=11) but remained 
comparable in SNI (n=9) and sham treated rats (=14) 7 days after adult surgery. Mann Whitney 
test *P<0.05, **P<0.01. Infants sham +28d, n=4 animals per group, Infants SNI +28d, n=3 
animals per group and Adult sham +7d, n=9 animals per group, Adult SNI +7d, n=5 animals 
per group. 

3.4.8 Von Frey hair thresholds and evoked activity 

Mechanical thresholds were determined by applying vFh’s to the cutaneous 

receptive field in ascending order, where the lowest force required to induce 

action potential firing was the ‘threshold’ hair and at this point recordings were 

made. Fig 3.10A shows that following SNI, the threshold vFh at each age group 

is not significantly different than the vFh threshold of sham treated rats. 
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However, the mean neuronal activity evoked by the application of the threshold 

vFh in infant rats 7 days after infant SNI (Fig 3.10B) was significantly reduced 

compared to age matched sham controls (Sham 22.7±2.04 spikes. sec-1, SNI 

10.5±1.90 spikes. sec-1 , Mann Whitney test, P<0.001). Fig 3.10C shows that  

7 days after infant SNI significantly lower activity is evoked in WDR neurons 

following stimulation with a 6.3g vFh (11.6±2.35 spikes. sec-1) compared to 

sham controls (31.8±5.44 spikes. sec-1,Mann Whitney test, P<0.01). 

Differences in mean activity of dorsal horn neurons were not observed to either 

a threshold or 6.3g vFh application at any other age.  

                            A   
 
 
 
 
 
 
 
 
 
 
 
 

 
 
    
Fig. 3.10 Von Frey hair threshold and evoked activity in infant and adult rats following 
SNI and sham surgery. 
 
(A) In all age groups VFh thresholds were similar in SNI and sham treated animals (Infant 
+7days, SNI n=7 and sham n=13 cells; Infant +28 days, SNI n=6 and sham n=18; Adults 
+7days, SNI n=8 and sham n=19). (B)  Activity of dorsal horn neurons was significantly lower 
in infant rats 7 days after infant SNI (n=7) compared to sham controls (n=12) but comparable 
in infants 28 days after SNI (n=6) and sham surgery (n=9) and in adults 7 days after SNI (n=11) 
and sham surgery (n=18). (C) Activity of dorsal horn neurons to a 6.3g VFh was reduced in 
infant rats 7 days after SNI (n=4) compared to sham controls (n=12) but comparable in infants 
28 days after SNI (n=3) and sham(n=9) surgery and adults 7 days after SNI (n=9) and sham 
(n=5) surgery. Mann Whitney test *P<0.05,** P<0.01.Anaimals/group: Infant sham+7d, n=4, SNI+7d, 

n=3, Infant sham +28d, n=4, Infant SNI +28d, n=3 and Adult sham +7d, n=10, Adult SNI +7d, n=4. 

B 
C 
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3.5 Discussion 

Chapter 2 demonstrated that in contrast to adults, SNI at infancy (P10) does 

not induce pain-like behavioural alterations 7 days post-surgery but emerges 

28 days later. This is the first study to examine the physiological properties of 

dorsal horn neurons at these early and late stages of post infant nerve injury 

and demonstrates that peripheral nerve injury at infancy induces long lasting 

physiological changes in dorsal horn processing of sensory information. 

In adult rodents the use of NMDA antagonists in peripheral nerve injury animal 

models, can significantly reduce hypersensitivity (Carlton and Hargett, 1995; 

Christensen et al., 1999; Latremoliere and Woolf, 2009; Mao et al., 1993) 

suggesting that nerve injury induces central sensitisation and thus alterations 

in the spinal processing of sensory processing which underlie the pain-like 

behaviour (Chaplan et al., 1997; Shields et al., 2003). This has been confirmed 

in a number of peripheral nerve injury models including CCI and SNL, where 

alterations in spontaneous and evoked responses of dorsal horn neurons were 

observed alongside typical neuropathic pain-like behaviour (Chapman et al., 

1998b; Laird and Bennett, 1993; Suzuki and Dickenson, 2006; Takaishi et al., 

1996; Walczak et al., 2006). However, different animal models of peripheral 

nerve injury display similar, but not identical behavioural changes (Pradhan et 

al., 2010).  

3.5.1 Spontaneous activity in adults and infants following SNI. 

Although behavioural responses to evoked stimuli can be readily measured in 

animal models of nerve injury, ongoing activity is more difficult to quantify and 

only a few studies characterize ongoing pain (Tappe-Theodor and Kuner, 

2014) despite a large proportion of neuropathic pain patients reporting this as 

a symptom (Rasmussen et al., 2004). As a result measuring spontaneous 

activity using in vivo electrophysiological recordings is a useful tool to reveal 

physiological changes underlying spontaneous pain, which is difficult to 

identify using behavioural measures (Suzuki and Dickenson, 2006).  

In infants, no difference in either the mean spontaneous activity or proportion 

of cells exhibiting spontaneous activity was observed in rats 7 days after SNI 
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surgery compared to sham controls. However, 28 days later a significantly 

greater proportion of cells in SNI treated rats exhibited spontaneous activity of 

greater magnitude (more than 17 fold) compared to age matched sham 

controls.  Similarly in adults SNI induced a mean increase (by more than 14 

fold) in spontaneous activity to 3.5 spikes.sec1 compared to sham controls, 

paralleling the time course of the evoked behavioural hypersensitivity which is 

well characterised in other studies of nerve injury. Dorsal horn spontaneous 

activity is well documented in the literature as being a dominant characteristic 

in animal nerve injury models which also exhibit spontaneous firing patterns 

with an average frequency of 3.5 spikes.sec-1 (Chapman et al., 1998a, 1998b; 

Laird and Bennett, 1993; Walczak et al., 2006). Although not significant, there 

was also trend for a higher proportion of neurons in the adult SNI group to 

exhibit spontaneous activity compared to sham controls at this age. This is 

similar to previous studies (Chapman et al., 1998a, 1998b; Palecek et al., 

1992) which found that 50% of neurons in SNL treated rats and monkeys 

exhibited spontaneous activity, significantly higher than sham controls.  

Although the origin of spontaneous activity of spinal neurons in the dorsal horn 

is unknown, it maybe secondary to the generation of ectopic activity from the 

site of injury and from the dorsal root ganglion, occurring 12 hours post-surgery 

and persisting for 53 days (Chapman et al., 1998b; Sun et al., 2005; Tal and 

Eliav, 1996; Wall and Devor, 1983; Wu et al., 2001). Supporting this, previous 

studies suggest that ectopic discharge shows a good correlation with 

neuropathic pain behaviour in rodents in the early stage after nerve injury (Chul 

Han et al., 2000; Sun et al., 2005) and prevention of sensory neuronal ectopic 

activity (by blocking sodium channels or using local anaesthetic) can attenuate 

behavioural signs of allodynia (Boucher et al., 2000; Sukhotinsky et al., 2004). 

Therefore ectopic activity in afferents could promote the hyperexcitability in 

spinal neurons which in turn contribute to the development and maintenance 

of neuropathic pain behaviour (Sheen and Chung, 1993; Tal and Eliav, 1996; 

Wall and Devor, 1983; Yoon et al., 1996) although this is debated as 

neuropathic pain-like behaviour in adult rats following SNI is not prevented by 

a peripheral nerve block (Suter et al., 2003). Furthermore, if the periphery was 

the origin of spontaneous activity observed in dorsal horn neurons in rats 28 
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days after P10 SNI, the initiation of ectopic activity of primary afferents would 

be at least 10 days after surgery, which is a substantially longer time frame 

than observed in adults, which is initiated 12 hours post injury if not sooner 

(Sun et al., 2005). 

Substantial evidence suggests that glial cells may also alter central 

neurotransmission following nerve injury via the release of glial and neuronal 

signalling molecules such as cytokines, chemokines and growth factors that 

exert pathological effects including neuronal hyperexcitability and 

spontaneous activity. For example incubation of spinal cord slices with TNF, 

IFN-γ, IL-1β and CCL2 increase spontaneous EPSC frequency (Gao et al., 

2009; Kawasaki et al., 2008; Vikman et al., 2003; H. Zhang et al., 2010) and 

blocking pro-inflammatory responses in adults following nerve injury can 

alleviate pain behaviour (Ledeboer et al., 2005; Svensson et al., 2005; Xu et 

al., 2010) However, the presence of pro-inflammatory cytokines in the dorsal 

horn 28 days after infant SNI remains to be explored. 

Regardless of the mechanism, this marked contrast in the occurrence of 

spontaneous activity 28 days after P10 SNI, but not 7 days may underlie 

behavioural hypersensitivity as proposed in adults (Chapman et al., 1998b; 

Suzuki and Dickenson, 2006).  

3.5.2 Alterations in evoked-neuronal activity in adults following SNI. 

Only receptive fields in the ‘spared’ sural nerve territory were mapped in both 

sham and SNI treated animals and there was no evidence of discontinuous or 

oddly shaped receptive fields at any age. Similarly to previous findings in other 

rodent nerve injury models, SNI in adults did not induce alterations in receptive 

fields (Laird and Bennett, 2011; Palecek et al., 1992). In addition, mechanical 

thresholds and evoked activity to brush, pinch, pressure, ethyl chloride, 

threshold and 6.3g von Frey hair application were not altered by SNI which is 

consistent to previous studies (Chapman et al., 1998b; Laird and Bennett, 

1993; Palecek et al., 1992; Takaishi et al., 1996). Following SNI acetone 

evoked activity in a higher proportion of cells and to a higher frequency 

compared to sham surgery. This result is important clinically, as heightened 

cold sensitivity is frequently reported by patients with neuropathic pain (Jørum 
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et al., 2003; Leith et al., 2010; Ochoa and Yarnitsky, 1994). Interestingly there 

was no change in either the frequency of responses or proportion of cells in 

SNI treated animals using ethyl chloride. Electrophysiological studies have 

demonstrated that WDR and nociceptive specific dorsal horn neurons are 

excited by cold stimuli and encode intensity to noxious cold temperatures 

(Brignell et al., 2008) with subsets of spinal dorsal horn neurons responding to 

innocuous (e.g. acetone) and or noxious cold (e.g. ethyl chloride).  

A recent study has shown that complement factors and their receptors, 

including complement-5 (c5), are some of the most differentially regulated 

genes in the dorsal horn in a number of adult nerve injury models and are only 

expressed by microglia (Griffin et al., 2007). Furthermore, intrathecal injection 

of C5 synthetic peptide induces cold hypersensitivity (enhancing responses to 

acetone) while blockade of C5 receptor reduces cold evoked pain behaviour 

in rats following SNI.  

3.5.3 Alterations in evoked-neuronal activity in infants 7 days following 
SNI. 

In contrast to adults, infant SNI induced a significant reduction in both brush 

and pinch receptive fields 7 days after surgery compared to sham controls. It 

has been well documented that cutaneous receptive fields are larger relative 

to the size of the paw in P3 rats than in P21 animals (Fitzgerald, 1985a; 

Fitzgerald and Jennings, 1999; Torsney and Fitzgerald, 2002) due to immature 

glycinergic inhibition of cutaneous evoked activity, that undergo activity 

dependent maturation in the second postnatal week (Koch et al., 2012). A 

potential mechanism underlying the decrease in receptive field size could be 

injury evoked-acceleration of the maturation of glycinergic neurotransmission 

in the cord, and warrants further investigation.  While brush and pinch evoked 

activity and von Frey hair thresholds in infants were similar between treatment 

groups, the number of spikes evoked by von Frey hairs was reduced in the 

infants 7 days after SNI. An explanation for the decrease in firing observed 

could be due to a decrease in receptive field size. This would cause a reduction 

in the number of dorsal horn neurons activated by a given stimulus leading to 

an increase spatial discrimination while decreasing responses to vFh 

stimulation.  Since mechanical thresholds were unchanged, it is unlikely that 
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changes in mechanical transduction processes underlie this decrease in 

activity. Furthermore, behaviourally P10 SNI exhibited similar responses to 

sham controls and there were no signs of hyposensitivity (Howard et al., 2005; 

Vega-Avelaira et al., 2012). The reduction in activity of WDR neurons following 

SNI may seem surprising, but is consistent to the responses observed in adult 

models of nerve injury (Chapman et al., 1998b; Palecek et al., 1992). One 

confounding factor maybe a reduction in peripheral drive into the dorsal horn 

spinal cord resulted from a complete injury. However, as the model used in 

this study was the SNI, all WDR neurons recorded had receptive fields in the 

sural nerve area which was spared. In support of this Li et al., used patch 

clamp slice recording of dorsal horn spinal cord neurons taken from rats 3-6 

days after P6 SNI to show that infant nerve injury does not significantly 

modulate synaptic transmission or neuronal excitability in the dorsal horn (Li 

et al., 2009). The data in this thesis also suggests that nerve injury in infants 

does not increase dorsal horn neuronal activity.  

As previously mentioned neuronal glia cell interactions may also influence the 

overall activity of the dorsal horn neuronal activity and the failure to evoke 

mechanical hypersensitivity in infant rats may reflect a weaker glial response 

in the infant spinal cord completed to adults (Moss et al., 2007; Vega-Avelaira 

et al., 2007, 2012). In addition, as glia can also be beneficial and release anti-

inflammatory factors which act to restore normal pain signalling and protect 

against neurotoxicity, it is possible that a different immune response may occur 

between infants and adults which in the infant is protective. 

3.5.4 Alterations in evoked-neuronal activity in animals 28 days 
following infant SNI 

28 days after infant SNI, at the onset of pain-like behaviour WDR neuronal 

activity is profoundly altered and significantly greater compared to sham 

controls to range of stimuli including brush, acetone, ethyl chloride, threshold 

von Frey hair, 33g and 66g pressure. There is also an increase in both brush 

and pinch receptive fields in SNI treated animals. Importantly, these data 

suggest that the onset of pain-like behaviour is maintained by alterations 

occurring centrally. This supports a previous study showing that the pain-like 
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behaviour following infant SNI can be reversed by the administration of an 

NMDA receptor antagonist (Vega-Avelaira et al., 2012).    

There are a number of possible mechanisms that may underlie the observed 

increase in receptive field and stimulus-induced increases in dorsal horn 

activity. One possibility is that nerve injury at infancy induces collateral 

sprouting of cutaneous sensory terminals into adjacent inappropriate regions 

of the dorsal horn outside their usual terminal areas, as in neonates following 

sciatic nerve section. However sprouting is not observed if transection is 

performed at P10 and is unlikely it would occur following partial peripheral 

denervation (Fitzgerald 1985b, 1990; Shortland and Fitzgerald, 1991, 1994). It 

is also possible that the balance of inhibitory and excitatory activity in the spinal 

cord are altered. For example, following nerve injury in the adult dorsal horn, 

glutamate uptake activity is reduced and a loss of GABAergic transmission 

may occur acting to enhance neuronal transmission supporting the induction 

and maintenance of neuropathic pain (Moore et al., 2002; Sung et al., 2003).  

Peripheral nerve injury can also cause the activation of silent synapses (Devor 

and Wall, 1981; Hylden et al., 1989) between primary afferents and dorsal horn 

neurons and induce changes in the physiological characteristics of these cells. 

For example, in nerve injured adults, heterosynaptic facilitation can occur and 

input from primary afferent Aβ fibres transmitting non-noxious stimuli such as 

light touch can engage in pain transmission circuits resulting in pain in 

response to innocuous stimuli. In support of this, a recent study identified a 

feed forward glycinergic interneurons that in naïve animals represses the relay 

of innocuous input to lamina I by a lamina IIi excitatory interneurons that 

expresses PKC-γ (Lu et al., 2013). Although in naive animals LI neurons do 

not receive input directly from non-nociceptive primary afferents, after nerve 

injury the majority becomes responsive to innocuous touch (Keller et al., 2007).  

This can also be replicated by inhibiting either glycine or GABA inhibition 

showing that central disinhibition can unmask interconnections between 

separate sensory path ways (Keller et al., 2007; Miraucourt et al., 2007). 

However, GABAergic inhibition is present early in postnatal development and 

glycinergic inhibition matures by the second postnatal week and in this context 

it would be more likely for increases in activity to be observed 7 days after 
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infant SNI (Koch and Fitzgerald, 2013). Microglia activation following nerve 

injury can lead to hypersensitivity also through the modulation of chlorine 

mediated inhibition (Ferrini and De Koninck, 2013).  

As the genes most differentially regulated in infants and adults following nerve 

injury are immune related, with infants failing to mount a pro-inflammatory 

response in the dorsal horn 7 days after nerve injury (Costigan et al., 2009; 

Vega-Avelaira et al., 2009, 2007). One hypothesis is that a switch in the profile 

of inflammatory mediators in the dorsal horn may underlie the onset of pain 

behaviour 28 days after P10 SNI. A recent study suggests that at this time 

point, glial cell markers are increased in the dorsal horn compared to sham 

controls (Vega-Avelaira et al., 2009) although the presence of mediators that 

modulate dorsal horn neuronal activity remains to be elucidated.  

3.6 Conclusion 

While behaviour alone may reflect changes in the peripheral or motor system, 

the results presented in this chapter indicate that nerve injury induces 

alterations in the processing of sensory information by directly effecting dorsal 

horn neuronal sensitivity.  

The profound alterations of neuronal activity coinciding with the onset of 

behavioural hypersensitivity suggests that the mechanism for the delayed 

onset of hypersensitivity lies within the dorsal horn. This data also confirms 

that early life nerve injury can cause prolonged changes in the central 

processing of sensory information in the dorsal horn that persist into adulthood. 

 
 
 
 



 

126 
 

 
 
 
 

 
 
 
 

Chapter Four 
 
 

Inflammatory mediators in the 
dorsal horn following infant nerve 

injury 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter Four              Inflammatory mediators in the dorsal horn following infant nerve injury 

127 
 

 

4.1 Introduction 

Despite infant rat pups not displaying pain-like behaviour in response to 

neuropathy in the first few weeks of life, behavioural hypersensitivity does 

eventually emerge at adolescence (Vega-Avelaira et al., 2012). Chapter 3 

indicates that the onset of pain-like behaviour following infant nerve injury 

coincides with an increase in both spontaneous and evoked dorsal horn 

neuronal activity suggesting that central changes in sensory processing in the 

dorsal horn spinal cord may underlie behavioural hypersensitivity. This 

corroborates a previous study showing that the late onset of mechanical 

hypersensitivity following infant nerve injury can be reversed by administration 

of an NMDA antagonist (Vega-Avelaira et al., 2012). As behavioural 

hypersensitivity coincides with an increase in microglia (IBA-1) and astrocyte 

markers (GFAP) in the dorsal horn spinal cord (Vega-Avelaira et al., 2012) this 

Chapter aims to elucidate the immune profile in the dorsal horn spinal cord in 

the early and late period following infant nerve injury in the absence and onset 

of pain-like behaviour respectively.   

4.1.1 Adults exhibit a pro-inflammatory response in the dorsal horn 
spinal cord following peripheral nerve injury.  

The dorsal horn spinal cord is the primary relay site for the processing of 

somatosensory information and central sensitization following nerve injury, 

contributing to the onset of neuropathic pain (See Chapter One). Following 

peripheral nerve injury in the adult infiltrating immune cells (e.g. macrophages 

and T-lymphocytes), glial cells in the CNS (e.g. microglia and astrocytes) and 

neurons release predominantly pro-inflammatory mediators (including 

cytokines, chemokines and growth factors) into the dorsal horn. Together 

these cells form an integrated network that modulates dorsal horn sensory 

neuronal excitability leading central sensitization and pain behaviour and has 

led to the notion that neuropathic pain is a neuro-immune disorder (Austin and 

Moalem-Taylor, 2010; Beggs and Salter, 2007; Clark et al., 2007; Costigan et 

al., 2009; Tsuda et al., 2003; Zhuang et al., 2005). Electrical stimulation of the 

sciatic nerve and dorsal root, in the absence of nerve injury, can also stimulate 
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the release of fractalkine, induce the transition of microglia into a pain-related 

enhanced state, and the subsequent release of pro-inflammatory mediators 

leading to behavioural hypersensitivity that mimics neuropathic allodynia 

(Clark et al., 2009; Hathway et al., 2009). Thus, the activity of the primary 

afferents that synapse in the dorsal horn is a pivotal component in the release 

of pro-inflammatory mediators that lead to dorsal horn neuron excitability and 

pain behaviour via a number of mechanisms (Wen et al., 2007; Xie et al., 

2009).  

4.1.2 Microglia 

Microglia are regarded as macrophages equivilants in the central nervous 

system and act as the first and main form of immune response. Increasing 

evidence suggests spinal microglia are prominent players in the genesis of 

persistent pain, by releasing the inflammatory mediators (Taves et al., 2013). 

Nerve trauma causes microglia to display characteristic signs of reactivity 

within 4 hours of nerve injury in the area where these nerves terminate (Beggs 

and Salter, 2007; Hathway et al., 2009; Ji et al., 2013; Suter et al., 2009; Tanga 

et al., 2004).  

A number of signalling molecules have been identified that enable direct 

communication between injured primary afferents and microglia including 

fractalkine, chemokine ligand 2 (CCL2), neuregulin-1 and matrix 

metallopeptidase 9 (MMP-9) (Calvo et al., 2010; Clark et al., 2010, 2009, 

2007). In addition, products of tissue injury including adenosine triphosphate 

(ATP) which act through purinergic receptors, proteins that act through TLRs, 

complement components and reactive oxygen species can all induce a 

microglia response (Abbadie et al., 2003; Tanga et al., 2005; Tsuda et al., 

2004, 2003).  

Reactive microglia exhibit increased phosphorylation MAPK p38 and ERK1/2 

that induce proliferation and secretion of inflammatory mediators (cytokines, 

chemokines and growth factors). Like T-cells, microglia can be functionally 

polarised under different conditions (Durafourt et al., 2012; Kobayashi et al., 

2013; Taves et al., 2013). The M1 phenotype (classical/pro-inflammatory) 

occurs in response to pro-inflammatory cytokines (IFN-γ and TNF) as well as 
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pathogen-associated molecular patterns (PAMPS) such as LPS, while 

interleukin IL-10, IL-4 or IL-13 differentiate microglia towards an M2 

(alternative/anti-inflammatory phenotype) (Fairweather and Cihakova., 2009; 

Gadani et al., 2012; Michelucci et al., 2009; Ponomarev et al., 2007).  

Nerve injury in adults, stimulates the transition of microglia into an M1 

phenotype and ‘pain-related enhanced response state’ and release of pro-

inflammatory mediators including TNF, IL-1β and BDNF from the primary 

afferent fibre terminals (McMahon and Malcangio, 2009). These mediators can 

depolarise post synaptic neurons, thus contributing to central sensitization and 

pain-like behaviour (Coull et al., 2005; Ji and Suter, 2007b; Kawasaki et al., 

2008; Ledeboer et al., 2005; Milligan et al., 2003; Tsuda et al., 2004; Zhuang 

et al., 2005).  

TNF is synthesized and released by a multitude of cell types and is a prototypic 

pro-inflammatory cytokine due to its primary role in initiating the activation of 

other cytokines and growth factors including IL-1β, IL-6 and IL-8 (Hide et al., 

2000; Wagner and Myers, 1996). In the dorsal horn TNF enhances the 

amplitude of glutamate-induced excitatory currents by increasing the 

frequency of spontaneous EPSC and the amplitude of AMPA and NMDA-

induced currents (Kawasaki et al., 2008; Zhang et al., 2011). This dual role in 

increasing neuronal excitability and promoting ongoing inflammation make 

TNF a central mediator of neuropathic pain behaviour. This is confirmed by 

interference of TNF signalling through neutralising anti-bodies or receptor 

antagonists that reverses pain hypersensitivity in models of peripheral nerve 

injury, even if the treatment is delivered after the pain is established (Marchand 

et al., 2009; Svensson et al., 2005; Sweitzer et al., 2001).  

BDNF, released from microglia following ATP activation via P2X4 receptors 

(P2X4R) acts via its tyrosine protein kinase B (trkB) receptor on Lamina I dorsal 

horn neurons to reverse the polarity of currents activated by GABA, which 

switch from hyperpolarizing or inhibitory to depolarizing or excitatory. This 

leads to the disinhibition of lamina I neurons which are a major group of 

nociceptive output neurons in the dorsal horn and increase pain-like 

behaviours in animal models of neuropathic pain (Coull et al., 2005; Kawasaki 

et al., 2008; Trang et al., 2009). 
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4.1.3 Astrocytes 

Astrocytes are another subtype of glial cell in the CNS which envelope 

synapses and have many important physiological properties, many of which 

relate to the maintenance of homeostasis (Dong and Benveniste, 2001) but 

are also immunocompetent cells and are activated following peripheral nerve 

injury in adults.  Activation markers including JNK and ERK, that are up-

regulated in the dorsal horn 1 week after peripheral nerve injury and may 

persist for 3 months post injury (Colburn et al., 1999; Coyle, 1998; Ji et al., 

2013; Ma and Quirion, 2002; Mika et al., 2009; Zhuang et al., 2006, 2005). 

Following nerve injury astrocytes also release a plethora of mediators such as 

nitric oxide, excitatory amino acids, IL-1β and TNF that mediate 

hypersensitivity and are associated with the maintenance phase of 

neuropathic pain (Duan et al., 2003; Kawasaki et al., 2008; Liu et al., 2000; 

Malcangio et al., 1996; Queiroz et al., 1997).  

4.1.4 T-cells 

Following nerve injury T lymphocytes (but not B or NK cells) infiltrate the dorsal 

horn spinal cord within 7-10 days by transendothelial migration (Cao and 

DeLeo, 2008; Costigan et al., 2009; Engelhardt, 2006; Grace et al., 2011; Hu 

et al., 2007; Zhang et al., 2009). Depending on the environmental context, 

naïve T cells proliferate and differentiate into T helper (Th) subsets Th1, Th2 

and Th17 that are classified by their distinctive cytokine profiles and effector 

function (Mosmann and Coffman, 1989; Mosmann and Sad, 1996; Palmer and 

Weaver, 2010).  

Th1 cells produce mediators mostly associated with pro-inflammation such as 

IFN-γ which is important in responses against microbial infection, while Th2 

cells secrete anti-inflammatory mediators including IL-4 and IL-10. Two 

transcription factors T-bet and GATA-3 are required for the transcription of Th1 

and Th2 cytokine genes respectively. When cluster of differentiation 4 (CD4) 

T-cells are activated under Th1 skewing conditions, GATA3 is down regulated 

while in Th2 conditions (such as in the presence of IL-4) GATA3 is up 

regulated. The opposite is true for T-bet (Zheng and Flavell, 1997). Therefore, 

in addition to promoting Th2 cell differentiation GATA3 also inhibits Th1 cell 



Chapter Four              Inflammatory mediators in the dorsal horn following infant nerve injury 

131 
 

differentiation and IFN-γ production (Ouyang et al., 1998; Zheng and Flavell, 

1997). Evidence also indicates that Th2 responses also suppress macrophage 

and microglia M1 phenotypes and expression of pro-inflammatory mediators 

(Aloisi et al., 1999; Chao et al., 1993; Durafourt et al., 2012; Kopf et al., 1993; 

Kuhn et al., 1991; Lord and Lamb, 1996; Milligan and Watkins, 2009; 

Ponomarev et al., 2005; Üçeyler et al., 2009).  

In adults, following nerve injury a Th1 response dominates in the dorsal horn 

and interferon gamma (IFN-γ) is significantly up regulated (Costigan et al., 

2009). IFN-γ is released from infiltrating T-cells (as well as astrocytes and 

damaged neurons) and intrathecal administration of IFN-γ in adult rats induces 

pain-like behaviour, together with spontaneous firing, increased wind up and a 

reduction in inhibitory tone of dorsal horn neurons, thus promoting central 

sensitization and neuropathic pain like behaviour in rodents (Tsuda et al., 

2009). IFN-γ signalling is also critical in transforming resting microglia via its 

IFN receptor (IFNR) into an activated morphology, increasing the expression 

of key markers and release of pro-inflammatory mediators associated with an 

enhanced pain-related response state (Costigan et al., 2009; Tsuda et al., 

2009). In adult rats disruption of this signalling pathway can reverse pain-like 

behaviour and IFN-γR null mutant mice also exhibit reduced neuropathic pain 

like behaviour (Costigan et al., 2009; Racz et al., 2008; Vikman et al., 2005). 

In addition, adoptive transfer of Th1 cells into nude rats following nerve injury 

increases pain like hypersensitivity while adoptive transfer of CD4+ (cluster of 

differentiation 4) T-cells into CD4-/- mice induces mechanical hypersensitivity 

to wild type levels (Cao and DeLeo, 2008; Moalem et al., 2004).  

4.1.5 Inducing an anti-inflammatory response in adults after nerve 
injury 

Anti-inflammatory mediators can regulate and limit potentially damaging 

effects of excessive inflammatory reactions by down-regulating the synthesis 

of pro-inflammatory cytokines (such as TNF, IL-1β and IL-6) and recruitment 

of anti-inflammatory immune cells in the spinal cord (Hu et al., 1999; Ledeboer 

et al., 2005; Poole et al., 1995).  

Many studies have shown that by inducing a response in favour of an anti-

inflammatory pathway following peripheral nerve injury can disrupt the 
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development of chronic neuropathic pain. For example, IL-4 (released from T-

cells in the dorsal horn) and IL-10 (released from both T-cells and microglia in 

the dorsal horn) are hallmark potent anti-inflammatory cytokines that are anti-

nociceptive in models of chronic pain and act to suppress pro-inflammatory 

mediators including IL-1β, IL-6, nitric oxide (NO) and TNF and 

microglia/macrophage responses (Poole et al., 1995). IL-10 cytokine acts via 

the induction of suppressor of cytokine signalling 3 (SOCS3) to inhibit genes 

associated with the janus kinase (JAK) and signal transducer and activator of 

transcription (STAT) 3 pathway that inhibit the transcription factor nuclear 

factor kappa-B (NF-Ƙb) important for the expression of pro-inflammatory 

mediators including IL-1β and TNF (Driessler et al., 2004; Inagaki-Ohara et al., 

2003; Mosser and Zhang, 2008; Ogawa et al., 2008). Intrathecal administration 

of IL-10 protein or adenovirus vectors (that produce IL-10) can prevent and 

reduce pre-established pain related behaviours following peripheral nerve 

injury and is correlated with a decrease in pro-inflammatory cytokine 

expression in the dorsal horn spinal cord (Milligan et al., 2005a,b). Treatment 

with glatiramer acetate, which enhances the expression levels of IL-10 and IL-

4, can reverse hypersensitivity following nerve injury (Leger et al., 2011). 

Plasmid DNA encoding IL-10 encapsulated into micro particles on a synthetic 

polymer permits high but slow release of IL-10 to effectively reduce mechanical 

hypersensitivity following CCI for 70 days (Soderquist et al., 2010).  

Together these studies indicate that, in adults, the predominant release of pro-

inflammatory mediators in the dorsal horn spinal cord act as potent 

neuromodulators to induce dorsal horn sensitization and neuropathic pain. 

Clearly an important factor in the development and duration of pain following 

nerve injury is the balance between pro and anti-inflammatory mechanisms, 

and altering the balance towards an anti-inflammatory response maybe a 

therapeutic strategy for neuropathic pain (Costigan et al., 2009; Kawasaki et 

al., 2008; Ledeboer et al., 2005; Milligan et al., 2003).  

4.1.6 Infants do not exhibit a pro-inflammatory response in the 
dorsal horn spinal cord following nerve injury. 

As described in Chapter Two, peripheral nerve injury in infant rat pups is not 

associated with the development of mechanical hypersensitivity 7 days after 
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surgery, and the up-regulation of glia cell markers in the dorsal horn spinal 

cord is significantly less than observed in adults (Costigan et al., 2009; Moss 

et al., 2007; Vega-Avelaira et al., 2007). Microarray comparison of adult and 

infant L4/L5 DRG and lumbar dorsal horn spinal cord tissue 7 days after infant 

nerve injury indicate that the genes most differentially regulated are those 

associated with the peripheral and central immune system (Costigan et al., 

2009; Vega-Avelaira et al., 2009). This led to the concept that the absence of 

pain like behaviour in infants following peripheral nerve injury maybe due to an 

endogenous ‘immature’ and ‘unresponsive’ immune response (Costigan et al., 

2009; Moss et al., 2007; Vega-Avelaira et al., 2007).  

However, further studies in the infant show that responses are more complex.  

Intrathecal administration of exogenous ATP-stimulated microglia and direct 

C-fibre stimulation does not result in reduced behavioural mechanical 

thresholds or robust expression of microglia markers or T-cell markers, in 

contrast to adults (Hathway et al., 2009; Moss et al., 2007; Vega-Avelaira et 

al., 2007). Indeed, studies suggest that infants can mount an immune 

response but this is dependent on the type of the injury (Forsthuber et al., 

1996; Moss et al., 2007). Furthermore, in response to insults that induce a pro-

inflammatory response in adults, infants can mount anti-inflammatory 

responses in the periphery (Adkins et al., 2000, 2000; Min et al., 2000; Powell 

and Streilein, 1990). 

These studies suggest that an infant may mount a dominant anti-inflammatory 

dorsal horn response in the early phase following nerve injury. As the animal 

reaches adolescence this response may subside or even switch to a pro-

inflammatory response, unmasking pain behaviour. Currently little is known 

about the expression and balance of inflammatory mediators in the infant 

dorsal horn in the early and late periods after nerve injury and warrants further 

investigation.   
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4.2 Aims of the chapter 

 

In adults peripheral nerve injury leads to an immune response characterised 

by the release of pro-inflammatory mediators that underlie neuropathic pain 

sensitization. However, comparatively little is known about the immune 

response in the dorsal horn spinal cord of infants after peripheral nerve injury. 

This is important because the onset of pain behaviour is delayed in infants and 

only emerges when the animals reach adolescence.  The key objectives of this 

chapter are to: 

 

1. Identify the immune profile in the dorsal horn of infants 7 days after P10 

SNI, in the absence of pain behaviour. 

2. Determine if a similar inflammatory response is induced in the infant 

following C-fibre stimulation.  

3. Establish if the immune profile in the dorsal horn of infants changes 21 

days after P10 SNI, at the onset of pain behaviour. 

4. To test whether manipulation of the immune response in the early post 

nerve injury period in infant mice can ‘unmask’ pain-like behaviour. 
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4.3 Materials and Methods 

4.3.1 Animals, surgery and behavioural testing 

Male CD1 mice were obtained from Charles River. Mice pups were housed 

with mother and their littermates while animals over P21 were caged in 

littermates of 5 and allowed free access to water and housed in 12 hour 

light/dark cycles.  SNI or sham surgery was completed on P10 and P33 CD-1 

mice and mechanical sensory testing was completed as outlined in chapter 2. 

All experiments were conducted in accordance with the United Kingdom 

animals Scientific Procedures Act of 1986.  

4.3.2 Tissue extraction of dorsal horn spinal cord tissue for use in 
cytokine array and real time qPCR 

Mice were transcardially perfused with PBS. The spinal cord was exposed by 

making an incision to the skin using a scalpel along the vertebrae and cutting 

through the vertebrae vertically, four centimetres rostral to the base of the 

ribcage, and three centimetres caudal to the base of the rib cage to ensure the 

lumbar segment (L) 4-L5 of the spinal cord remained intact. Fat and connective 

tissue was then removed via scalpel to enable visualisation of the vertebrae. 

Toothed forceps were used to lift the column and the vertebrae was removed 

using rongeurs. The rostral spinal cord was lifted out using small toothed 

forceps. The ipsilateral and contralateral L4/L5 lumbar dorsal horn quadrants 

were separated using a scalpel and placed immediately into labelled 

Eppendorf tubes and stored at -80°C until required. 

4.3.3 Cytokine array 

4.3.3.1 Protein extraction from spinal cord 

Ipsilateral and contralateral lumbar dorsal horn quadrants of mice 21 days after 

P10 SNI (n=5) were defrosted on ice and homogenized separately using a 

pestle tissue grinder (Corning life science, #7724T-1) in 20µl lysis buffer 

(containing 1/10 RIPA; Millipore, #20-188; 1/100 of protease and phosphatase 

inhibitors; Sigma., # P5726, P0044, P8340, P7626, adjusted to 1ml with double 

distilled water and kept at 40C). Homogenised tissue was made up to a volume 

of 100-200µl with lysis buffer, vortexed (10 seconds) and kept on ice for 30 
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minutes (Zhuang et al., 2005). Samples were centrifuged at 8,000 rpm for 20 

minutes at 40C to remove any remaining insoluble material, and the 

supernatant was transferred in new tubes and subsequently stored at -800C.  

4.3.3.2 Total protein quantification 

Protein quantity per sample was determined using a bicinchoninic acid (BCA) 

assay (Pierce # PI23227). Six bovine serum albumin (BSA) standards were 

prepared by using a 50:50 dilution curve beginning at 1mg/ml (Table 4.1).  In 

a 96 well plate 10µl of each BSA standard or 2µl of protein sample with 8µl of 

water was added to each well. 200µl of BCA working reagent was then added 

to each well, covered and placed on a shake plate for 10 seconds and kept in 

an incubator set at 370C for 30 minutes. The plate was re-shaken for 10 

seconds, uncovered and read at 562nm absorbance. The colour emitted by 

the known samples enabled a standard curve to be generated and the 

unknown protein concentrations to be calculated.  

 

Table 4.1 Table showing volumes of solutions used to make six BSA standards. 

Standard protein was added with water volumes to form concentrations of solution and used 
to form a standard curve. 

4.3.3.3 Incubation of samples with cytokine blots 

The mouse cytokine array kit was purchased from R & D Systems (Mouse 

cytokine array panel A; # ARY006) and performed according to the protocol of 

the manufacturer as previously described (Gao et al, 2009). The protein 

concentration from ipsilateral or contralateral tissue obtained from 5 animals 

(21 days after P10 SNI) were added together to produce one 400µg protein 

sample. Each sample was then incubated with a separate blot (array) pre-

coated with 40 cytokine/chemokine duplicate antibodies for 24 h at 4°C on a 
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rocker. Blots were washed in buffers provided and incubated for 30 minutes 

using Streptavidin-horse radish peroxidase (HRP)-conjugated secondary 

antibody,  and developed using enhanced chemiluminescence (ECL) solution 

(Thermo scientific, #34076). Both blots were then exposed onto Hyperfilm at 

the same time (GE Healthcare) for 1–10 minutes. The intensity of the duplicate 

bands were analysed using image J 1.36 (NHS) software. Duplicates were 

averaged and the background subtracted to calculate the mean pixel density 

for each protein.  

4.3.4 Quantitative real-time RT-PCR. 

Dorsal horn spinal cord tissue for real time quantitative polymerase chain 

reaction (qPCR) analysis was defrosted on ice. Total ribonucleic acid (RNA) 

was extracted using RNeasy Plus Mini kit (Qiagen) according to the 

manufacturer’s protocol as follows. Tissue was placed in 300µl buffer RLT 

containing β-mercaptoethanol (10µl/ml) and was disrupted and homogenized 

using a pestle tissue grinder and vortexed for 10 seconds. The lysate was 

added into a Qiashredder (Qiagen) column and collection tube and centrifuged 

for 3 minutes at maximum speed (13,000 rpm). Tissue lysate was then 

centrifuged at full speed for 3 minutes, removed and transferred via pipette into 

an Eppendorf tube. Samples were processed by further centrifugation steps 

as described in the manufacturer’s protocol. To ensure complete removal of 

ethanol from RNA extract following the final centrifugation, columns were 

placed on a heat block for 1 minute at 550C and RNAse free water was eluted 

in the step. The quantity of RNA obtained was measured using a Nanodrop 

1000 spectrophotometer (Thermo Fisher Scientific).  

4.3.4.1 Reverse transcription and q-PCR 

Total RNAs (0.5-1 μg) were reverse-transcribed using the SuperScript III 

reverse transcriptase (Invitrogen) or QuantiTect RT kit (Qiagen) according to 

the protocol of the manufacturers. Specific primers including glyeraldehyde 3-

phosphate dehydrogenase (GAPDH) control were designed using IDT 

SciTools Real-Time qPCR software (Integrated DNA Technologies). Firstly 

RNA was added to 2µl of gDNA wipe-out buffer and made up to 12µl with 

RNase-free water and set into a heat block at 370C. The cDNA concentration 
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of each sample was then measured using a Nanodrop and stored at -20oC 

until required.  Specific primers were designed using IDT SciTools Real-Time 

PCR software (Integrated DNA technologies) and purchased from Sigma® and 

diluted to a concentration of 100M using RNAfree water. Forward and reverse 

primer sequences are described in Table 4.2. Gene-specific mRNA analysis 

was performed using a MiniOpticon Real-Time or CFX96 Real-time systems 

(Bio-Rad). Quantitative PCR amplification reactions contained the same 

concentration of reverse transcription product in a final volume of 15 μl (7.5µl 

of 2x Kapa SYBR Master Mix (Kapa Biosystems), 1.5µl of forward and 1.5µl of 

reverse primer and 4.5µl of cDNA dilution). Samples were added into wells and 

centrifuged for 5 minutes at 5,000g. The thermal cycling conditions comprised 

of 3 minutes of polymerase activation at 95°C, 45 cycles of 10 second 

denaturation at 95°C, and 30 second annealing and extension at 60°C. A DNA 

melting curve was included to test the amplicon specificity. GAPDH was used 

as an internal control. 

 

 Table 4.2 Sequences of the primers used for quantitative real-time RT-PCR. 

4.3.5 C-fibre stimulation 

C-fibre stimulation of mice was performed as previously described in rats 

(Hathway et al., 2009). P10 or P33 mice were anesthetized with isoflurane (5% 
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induction) and the left sciatic nerve was exposed via an incision through the 

thigh, the overlying muscle was moved aside using blunt dissection and the 

nerve dissected free of perineural membranes. Isoflurane was reduced to 3% 

and exposed nerve was electrically isolated from the surrounding muscle and 

other tissues by placing a small piece of plastic under the nerve. Two silver 

wire electrodes were placed under the exposed sciatic nerve. Care was taken 

to ensure that the electrodes were only in contact with the nerve and that the 

sciatic nerve was never stretched. Isoflurane was reduced to 2.3% and trains 

of electrical stimuli were applied for 5 min at 10 Hz (500 μs, 6 mA) to recruit C-

fibre afferents as described elsewhere (Kerr et al., 2001). Sham controls 

underwent surgery and electrode placement but not electrical stimulation. 

Stimuli were generated using a Neurolog (Digitimer, Welwyn Garden City, UK) 

NL300 pulse generator, an NL510 pulse buffer and an NL800 stimulus isolator. 

Following stimulation, electrodes were removed and the muscle and skin 

sutured using 5.0 Mersilk (Ethicon, Edinburgh, UK). Animals were then 

returned to their home cage to recover with free access to food and water. 

Identical procedures were followed in both P10 and P33 mice. Mechanical 

sensitivity was tested 3 and 24 hours post C-fibre stimulation and tissue 

collection taken at the 24 hour time point for q-PCR analysis. Q-PCR for this 

experiment was performed by Dr Berta. 

4.3.6 Microglial culture and activation  

Microglia cultures were prepared from cerebral cortices of 2-day-old postnatal 

mice (n=10). Tissues were then minced into approximately 1 mm pieces, 

added to 2mls of Hank’s balanced salt solution (HBSS, Invitrogen, #141175-

095) and centrifuged at 300g for 5 minutes. Supernatant was discarded and 

replaced in 3ms of Dulbecco’s modified eagle medium (DMEM, Invitrogen, # 

11995-065). The cell pellets were dissociated with a pipette and poured 

through a cell strainer and centrifuged at 500g for 5 minutes. Supernatant was 

discarded and the pellet was re-suspended in 3mls of DMEM. Cell suspension 

was then filtered through a 100µm and 10 µm filter (BD Bioscience, USA) and 

volume adjusted to 25mls of DMEM and mixed. 5ml of DMEM were added to 

flasks to cover the bottom and 5ml of re-suspended cells were added to each 

flask and incubated at 370C at 5% CO2 level for 2 days before adding 5mls of 
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fresh DMEM. Media was maintained for 3 weeks with culture media (containing 

10% foetal bovine serum, heat inactivated; invitrogen #10010-023, Fungizone; 

Invitrogen #15295-018 in high-glucose DMEM) which was then changed with 

DMEM every 3 days.  The mixed glia were shaken at 370C for 4 hours (200 

rpm), and the floating cells were collected and centrifuged at 300g for 15 

minutes and plated at a density of 5x105 cells per well on 13mm diameter 

uncoated glass coverslips. After 48 hours the plated cell medium was 

exchanged with HEPES buffer (10mM pH 7.4 containing: NaCl, 150 mM; KCl, 

5 mM; MgCl2, 1 mM; CaCl,1mM and D(+) glucose, 5.55 mM). The cell density 

of microglia was measured using a cell counter and the volume of PBS 

adjusted to give a final density of 1000cells/10µl.  This method resulted in 

greater than 95% purity of microglia (Nakajima et al., 1992). The cells were 

subsequently incubated with Lipopolysaccharide (LPS, 1mg/mL; E.coli; 

Sigma, UK) or an equivalent volume of PBS for three hours prior to intrathecal 

injection. LPS-activated or PBS-non-activated microglia were kept at 370C and 

vortexed prior to each injection. Microglia culture production and stimulation 

was performed by Dr Elisabeth Old. 

4.3.7 Drug and microglia administration and post behaviour testing 

Anti-IL-10, TNF and LPS-activated microglia preparations or controls were 

administered via intrathecal (i.t) injection to male mice 7 days after P10 SNI or 

sham surgery (Fig 4.1). Mechanical thresholds were tested before and at 

various time points following i.t injection (Table 4.3). 
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Fig 4.1 Diagram showing the time course for the intrathecal delivery of drugs and 
microglia cells. 

Mice were given SNI or sham surgery at P10. 7 days later (when the mice reached P17) 
intrathecal injections were administered and mechanical thresholds were then tested at 
various times following injections.  
 

Rat IL-10 monoclonal antibody (R&D systems, Mineapolis, MN# JES052A5) 

or isotype control antibody (R&D systems, Mineapolis, MN# MAB005) were 

reconstituted (0.5mg/ml) in sterile phosphate buffer saline (PBS) and stored at 

-200C until use. Prior to injection, solution was kept out of the fridge to reach 

room temperature and then intrathecally administered (10µg). This dose was 

based on a previous study (Lin et al, 2010).  Recombinant rat TNF (R&D 

systems, Mineapolis, MN #510-RT) or vehicle control were reconstituted 

(10µg/ml, pH7) in sterile PBS containing 0.1% bovine serum albumin and 

intrathecally administered (20ng). 
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Table 4.3 Table showing the doses of anti-IL10, TNF and microglial preparations 
administered and time course of mechanical threshold testing 

Intrathecal injections containing anti-IL-10, TNF, LPS-activated microglia or controls were 
administered at 7 days post P10 SNI or sham surgery. IL-10 was administered for 3 
consecutive days while one i.t injection of TNF and microglia were administered. Mechanical 
thresholds were tested at different time points following i.t injections for each reagent. 

 

This dose was based on previous study (Gao et al., 2009; Zhang et al., 2011). 

LPS-activated microglia or control (PBS non-activated microglia) were kept in 

a water bath maintained at 370C, and vortexed before being intrathecally 

injected. To ensure accurate volumes of reagents were injected, injectable 

solutions were measured with a pipette and put onto parafilm for easy transfer 

to 1ml insulin syringes.  All injections were performed under brief isoflurane 

anaesthesia (2.7%) by spinal cord puncture with a 1 ml insulin syringe between 

the L5 and L6 level to deliver reagents (3.5µl) to the cerebral spinal fluid 

(Beringue, 2013; Westin et al, 2010; Hylden and Wilcox, 1980; Zhang et al., 

2011).  Drugs and microglial preparations were administered for different 

numbers of days and mechanical thresholds were tested at different time 

points following administration (see table 4.3). 

4.3.8 Statistical analyses. 

Data was analysed and graphs plotted using GraphPad Prism software 

(version 6.00, GraphPad Software, San Diego, CA, USA, 

www.graphpad.com). All behavioural data was checked for skewness and 

kurtosis and the Shapiro-Wilk normality test completed before statistical 

http://www.graphpad.com/
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testing.  A normal distribution of 50% mechanical threshold (g) was achieved 

by logarithmic transformation (log2) of data before statistical analysis as 

previously described (Baumgärtner et al., 2002; Géranton et al., 2009; Sens et 

al., 2012). Behavioural data was then analysed by a repeated measure two-

way analysis of variance (ANOVA) and adjusted for multiple comparisons 

using the Bonferroni correction analysis where appropriate for within age group 

comparisons (Sens et al, 2012). Behavioural data is presented as 

mean±standard error of the means unless otherwise stated. QPCR data was 

analysed using a 2-tailed student’s t test and expressed as fold change 

compared to sham control. The criterion for statistical significance was p < 

0.05. 
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4.4 Results 

4.4.1 Three weeks after infant SNI, an increase in inflammatory 
mediators occurs in the ipsilateral dorsal horn. 

To determine if the delayed onset of pain-like behaviour at 21 days after infant 

SNI is marked by changes in the late expression of cytokines and chemokines, 

a screening cytokine array (blot) on ipsilateral dorsal horn mouse tissue  was 

completed and compared to contralateral dorsal horn tissue from the same 

animal (n=5). Each membrane contained40 different cytokine and chemokine 

antibodies (Fig 4.2 A) and was incubated with either ipsilateral or contralateral 

dorsal horn tissue (Fig 4.2B).  

A 
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B     C 

 

 

Fig 4.2 Cytokine array reveals an up-regulation of inflammatory mediators in infant 
mice 21 days after infant SNI in the ipsilateral dorsal horn. 

 

(A)Illustration of the cytokine array containing 40 different antibodies with duplicates as well 
as positive control proteins (controls). Highlighted mediators identify mediators that were 
upregulated in the ipsilateral dorsal horn compared to the contralateral dorsal horn.(B) 
Membranes were incubated with ipsilateral or contralateral dorsal horn spinal cords (400μg 
overnight at 40C) from mice 21 days after P10 SNI.(C) Bar graph showing the mean signal 
(pixel density) of the pair of duplicate spots (minus an averaged background), indicating an 
increase in the expression of inflammatory mediators in the ipsilateral dorsal horn (highlighted 
in green in A):  BLC, CXCL13, C5a, GM-CSF, INF- γ, IL-1α, KC, M-CSF,MIP-1β, CCL3 , 
TARC, CCL17, CCL2, TNF, CD54, ICAM-1, MIP-1α, CCL3. Average data from two replicates 
of one pooled sample from 5 animals. Note the control protein levels in the two arrays are the 
same. 
 
 

The mean signal (pixel density) of each pair of duplicate spots representing 

each cytokine from each membrane was quantified and plotted (Fig 4.2C). 

There was an increase in the level of several proteins in the ipsilateral dorsal 

horn compared to the contralateral dorsal horn including IL-1α (7.0 fold), IFN- 

γ (4.7 fold), MIP-1β (13.01fold), TNF (4.5 fold) and KC (3.7 fold). Notably, the 

expression of positive controls was the same on the ipsilateral and 

contralateral sides.  

4.4.2 Age dependent expression of pro-inflammatory mediators 
following SNI. 

After this initial screening, the expression of immune cell markers and pro-

inflammatory mediators in the ipsilateral dorsal horn was characterised using  

real time qPCR, at three different ages;  
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1) Infant mice, 1 week after SNI (infant+7d), which do not exhibit 

behavioural mechanical hypersensitivity. 

2)  Infant mice, 21 days after SNI (infant+21d), at the onset of behavioural 

mechanical hypersensitivity.   

3) Adult mice, 1 week after SNI (adult+7d). As it is well documented that 

adult rodents exhibit robust mechanical hypersensitivity, increases in 

glial cell markers and pro-inflammatory mediators in their ipsilateral 

dorsal horn, this age group was used as a positive control.  

Expression levels in SNI animals were compared to ipsilateral dorsal horn 

tissue taken from age matched, sham controls.   

At 21 days after infant SNI, there is a profound increase in the expression of 

pro-inflammatory mediators and immune cell markers in the ipsilateral dorsal 

horn compared to sham controls including microglia marker IBA1 (Fig 4.3A; 

Student’s t-test, P =0.004), T-cell/natural killer cell marker CD2 (Fig 4.3B; 

Student’s t-test, P =0.02), growth factor BDNF (Fig 4.3C; Student’s t-test, P 

=0.004) and the pro-inflammatory cytokine TNF (Fig 4.3D; Student’s t-test, P= 

0.00028). Although IFN- γ protein increased in the ipsilateral compared to 

contralateral dorsal horn spinal cord, this was not significant (Fig 4.3F). 

In the adult ipsilateral dorsal horn, expression of these immune cells and pro-

inflammatory mediators was also significantly increased 7 days after adult SNI   

(Calvo et al., 2010; Tsuda et al., 2004; Xu et al., 2006). (Fig4.3A-D, IBA1 

P=0.0012, CD2 P=0.049, BDNF P=0.032, TNF P=0.03, Student t-test) 

However, adult mice also exhibited an increase in the expression of astrocyte 

marker GFAP (Fig 4.3E; Student’s t-test, P=0.02), pro-inflammatory mediator 

IFN- γ (Fig 4.3F; Student’s t-test, P=0.023) and T box transcription factor (T-

bet) (Fig 4.3G; Student’s t-test, P=0.042).  

In contrast, there was no significant difference in the expression of pro-

inflammatory mediators or immune cell markers compared to sham controls in 

infants 7 days post SNI.  
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Fig. 4.3  A pro-inflammatory immune responses emerges 21 days after infant SNI.  

Real time qPCR analysis shows no changes in the expression of immune cell markers or pro-
inflammatory mediators in infants 7 days after SNI compared to sham controls. There is a 
significant increase in the expression of (A) IBA-1 (n=6) (B) CD2 (n=4) (C) BDNF (n=8) and 
(D) TNF (n=8) in mice 21 days after infant nerve injury compared to sham controls. An increase 
in these markers is also observed in adults 7 days after SNI (IBA-1, n=6, CD2, n=8, BDNF, 
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n=4, TNF, n=5), In SNI adult mice (E) GFAP (n=6) (E), IFN-γ (n=4) (G) and T-bet (n=8) are 
also upregulated. Student’s t-test, * P <0.05, ** P <0.01 *** P <0.001. Data expressed as fold 
of sham controls ±standard error of the mean. 

4.4.3 Age dependent expression of anti-inflammatory mediators 
following nerve injury. 

Figure 4.4 shows the expression of anti-inflammatory mediators in the dorsal 

horn spinal cord at the three different age groups following nerve injury. 7 days 

after infant SNI there is a significant increase in the expression of transcription 

factor GATA-3 (Fig 4.4A; Student’s t-test, P=0.026). GATA-3 is required for the 

differentiation of CD4+ T cells into a Th2 anti-inflammatory subset, and the 

subsequent transcription of all anti-inflammatory Th2 cytokine genes including 

the powerful anti-inflammatory cytokines IL-10 and 4 IL-4 (Shoemaker et al., 

2006; Zheng and Flavell, 1997). As further confirmation, a significant increase 

in the expression of both IL-10 (Fig 4.4B; Student’s t-test, P=0.004) and IL-4 

(Fig 4.4C; Student’s t-test, P=0.028) also occurred 7 days after infant SNI. 

The expression of IL-10 and IL-4 in the ipsilateral dorsal horn return to control 

levels 21 days after infant SNI and expression of GATA-3 in SNI treated mice 

decreases below sham control levels (Fig 4.4A; Student’s t-test, p<0.05).  In 

marked contrast to infants, was no change in the expression of any anti-

inflammatory mediator tested 7 days after adult SNI.  
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Fig 4.4 Infant nerve injury is characterised by an increase in the expression of anti-
inflammatory immune markers.  

(A)Real-time qPCR analysis in infant mice 7 days after SNI indicates a significant increase in 
the expression of transcription factor GATA-3 (n=4) and (B) anti-inflammatory markers IL-10 
(n=4) and (C) IL-4 (n=4) compared to sham controls. However, 21 days after infant SNI, the 
expression level of IL10 (n=6) and IL4 (n=4) returned to baseline while the expression of 
GATA3 (n=5) was significantly less than sham controls. In adults SNI did not alter the 
expression levels of GATA-3 (n=6), IL-10 (n=4) or IL-4 (n=6). Student’s t-test, * P<0.05 ** 
P<0.01. Data expressed as fold of sham controls ±standard error of the mean. 

4.4.4 Infant C-fibre stimulation induces an increase in the 
expression of anti-inflammatory mediators 

Previous studies show that direct non-damaging stimulation of C-fibres in the 

sciatic nerve of uninjured adult rats induces mechanical hypersensitivity and 

an increase in the expression of microglia markers and expression of pro-

inflammatory mediators in the dorsal horn and central sensitization (Hathway 

et al, 2009).  Electrical stimulation of the sciatic nerve in infant mice at 10Hz 

for 5 min at intensities sufficient to activate C-fibres (6mA, 500µs) had no 

significant effect upon mechanical thresholds of the ipsilateral paw compared 

to sham controls (Fig 4.5A). Identical C-fibre stimulation of the sciatic nerve in 

adults caused a significant decrease in mechanical thresholds 3 and 24 hours 

after C-fibre stimulation (Fig 4.5B; 2 -way ANOVA indicated a significant main 

effect of time P=0.0001, stimulation P=0.0002 and interaction P=0.0002) at 3 

hours and 12 hours post stimulation (P<0.0001 Bonferroni post-test at 3 and 

12 hours, sham n=7, stimulation n=9). Real time qPCR analysis of anti-

inflammatory mediator expression in the ipsilateral tissue of adult and infant 

mice 24 hours after C-fibre stimulation shows that in infants the expression of 

both IL-4 (Student’s t-test, P=0.01) and IL-10 (Student’s t-test, P=0.04) in the 
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ipsilateral dorsal horn is increased (Fig 4.5C). However the expression of IL-

13 and TGF-β did not alter in infants after C-fibre stimulation. In contrast, in 

adults the expression of anti-inflammatory mediators in the dorsal horn spinal 

cord following C-fibre stimulation was not significantly different from sham 

controls. 

Fig 4.5 C-fibre stimulation in infants is characterised by an increase in the expression 
of anti-inflammatory immune markers.  

 
(A)In infants, C-fibre stimulation did not alter mechanical thresholds of the ipsilateral paw 
compared to sham controls(n=8/treatment group) (B) Adult C-fibre stimulation (6mA, 500µs) 
at 10Hz for 5 min reduced mechanical thresholds significantly in the ipsilateral paw of adult 
mice compared to sham animals(2-way ANOVA, stimulation F(1,14)=24.35, P=0.0002, time 
F(3,42)8.287, P<0.0001, interaction F(3,42)=14.38, P=0.0001; Bonferroni post-test, 
****P<0.0001; sham n=7, stimulation n=9). (C) Real-time qPCR analysis revealed an 
increased expression of IL-10 and IL-4 in infants 24 hours after C-fibre stimulation compared 
to sham controls, that is not present in adults (IL-4 adult n=6, infant n=5; IL-10 adult n=5, infant 
n=5; TGFβ adult n=4, infant n=5; IL-13 adult n=6, infant n=6). (Student’s t-test, *P<0.05, 
**P<0.01, n=4-8 animals per group). Real-time qPCR data expressed as fold of sham controls 
±standard error of the mean. 
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4.4.5 Intrathecal administration of anti-IL-10 unmasks 
hypersensitivity in infants after SNI.  

Having established the presence of an anti-inflammatory profile in the dorsal 

horn of infant mice 7 days after SNI, the functional importance of the anti-

inflammatory mediator IL-10 was examined.  Anti-IL-10 (10ug, 3.5 µl) was 

intrathecally administered to the lumbar cord of mice 7 days after infant SNI 

for 3 consecutive days (days 7-9 post surgery) and mechanical thresholds of 

the ipsilateral paw were tested 1 hour after each injection. Before intrathecal 

injections, all groups exhibited comparable baseline thresholds (Fig 4.6). 

Administration of intrathecal anti-IL10 reduced the mechanical thresholds of 

infant mice on day 2 and 3 of injections in SNI treated mice, but not sham 

controls (Fig 4.6, 2 -way ANOVA indicated a significant main effect of time 

P=0.0007, treatment P=0.0007 and interaction P<0.0001, n=6/treatment 

group). Thresholds recovered on day 4, 1 day after the last intrathecal anti-

IL10 injection. Importantly, mechanical thresholds of SNI infant mice treated 

with isotype-control antibody remained constant. 

 

 Fig. 4.6 Blocking anti-inflammatory cytokine IL-10 unmasks hypersensitivity in infants 
after SNI. 

 
Intrathecal administration of anti-IL-10 for 3 consecutive days after infant SNI (days 7-9) 
reduced mechanical thresholds one hour after the second and third injection, but recovered 
one day later (2-way ANOVA, treatment F(2,90)=6.685, P=0.0020, time F(5.90)=4.746,  
P=0.0007, interaction F(10,90)=4.326, P<0.0001; Bonferroni post-test, ***P<0.001, 
****p<0.0001. SNI mice treated with control antibody or sham mice treated with anti-IL-10 
displayed no change in mechanical thresholds. n=6/treatment group. Line with error bars 
represent mean±standard error of the mean 
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4.4.6 Intrathecal administration of TNF-alpha induces 
hypersensitivity in infants after SNI. 

In adults intrathecal administration of the pro-inflammatory cytokine TNF can 

induce hypersensitivity (Zhang et al., 2010). Intrathecal administration of TNF 

(20ng, 3.5µl) to mice 7 days after infant SNI induced a marked reduction in 

mechanical thresholds 30 and 180 minutes after injection which was the same 

in both SNI and sham treated animals (Fig 4.7; 2 -way ANOVA indicated a 

significant main effect of time P<0.0001, treatment P=0.0026 and interaction 

P<0.0001, n=7/treatment group). Mechanical thresholds in both groups 

recovered 1 day later. Mechanical thresholds of SNI mice treated with vehicle 

remained unchanged for the duration of testing. 

 

 

Fig. 4.7 Administration of pro-inflammatory TNF-α induced hypersensitivity in infants 
after SNI and sham surgery 

Intrathecal administration of TNF (20ng) 7 days after infant SNI or sham surgery reduced 
mechanical thresholds 30 to 180 minutes after injection (2-way ANOVA, treatment 
F(2,18)=8.470 P=0.0026, time F(3.54)=35.12, P<0.0001, interaction F(6,54)=6.899, 
P<0.0001; Bonferroni post-test, ***P<0.001, ****p<0.0001, n=7 per group. Both SNI TNF and 
sham TNF treated groups had the same significance values at 0.5 and 3 hours post injection). 
Mechanical thresholds recovered to base line 1 day later. Intrathecal injection of vehicle control 
in mice 7 days after SNI did not change mechanical thresholds. Line with error bars represent 
mean±standard error of the mean. 
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4.4.7 Intrathecal administration of LPS-activated microglia induced 
hypersensitivity in infants after SNI.  

Intrathecal administration of LPS-activated microglia 7 days after infant SNI 

significantly reduced mechanical thresholds 1 hour after injection (Fig 4.8) 

compared to SNI infants administered with non-activated microglia, and sham 

infants administered with LPS-activated microglia (2 -way ANOVA indicated a 

significant main effect of treatment only, P=0.0003) This was maintained from 

1 hour to 5 hours post injection (Bonferroni post-test, * P <0.05, ** P<0.01, *** 

P <0.001, n=5/group). At 6 hours post intrathecal injection, there was a small 

but significant difference in mechanical threshold between SNI treated animals 

administered with LPS-activated microglia and non-activated microglia, but not 

compared to sham animals administered with LPS-activated microglia 

(P<0.05). Intrathecal injection of LPS-activated microglia into sham treated 

mice failed to induce mechanical hypersensitivity at any time point post 

injection. There was also a non-significant decrease in baseline thresholds of 

control animals, presumably arising from the repeated testing of animals.  

 

Fig. 4.8 Administration of LPS activated microglia unmasks hypersensitivity in infants 
after nerve injury 

Seven days after infant SNI or sham surgery mice received one 3.5µl intrathecal injection of 
LPS activated microglia or PBS non–activated microglia control (1000 cells/10µl). SNI, but not 
sham treated mice displayed a decrease in mechanical threshold following administration of 
LPS activated microglia (2-way ANOVA, F (2, 12)-10.68, P=0.002, n=5.group) one to 4 hours 
later (Bonferroni post-test *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 and SNI+LPS 
activated microglia and non-activated microglia only +p<0.05).  Thresholds of control animals 
show a non-significant decrease in baseline, arising presumably from repeated testing of 
animals. Line with error bars represent mean±standard error 
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4.5 Discussion 

In adults the role of the immune system in the development and maintenance 

of neuropathic pain is well documented and is dominated by a pro-

inflammatory response that leads to the sensitization of neurons in the dorsal 

horn and pain-like hypersensitivity  (Costigan et al., 2009; Coull et al., 2005; 

Gao et al., 2009; Ji and Suter, 2007). In contrast, nerve injuries that lead to 

neuropathic pain in adults have little effect in human or rodent infants which 

has been associated with a weak pro-inflammatory immune response 

(Costigan et al., 2009; Moss et al., 2007; Vega-Avelaira et al., 2007; Walco et 

al., 2010). 

When animals that have undergone SNI at infancy reach adolescence, hind-

paw hypersensitivity develops. Data presented in Chapter 3 indicated a 

profound alteration in dorsal horn processing of sensory information occurs, at 

this time point. The aim of this study was to examine the inflammatory profile 

in the ipsilateral dorsal horn spinal cord in mice 7 and 21 days after infant SNI, 

in the absence and onset of pain-like behaviour respectively, and compare this 

to age matched sham controls to establish if the different pain states have 

underlying differential dorsal horn immune profiles (Costigan et al., 2009; Coull 

et al., 2005; Moss et al., 2007; Tsuda et al., 2009; Vega-Avelaira et al., 2009, 

2007). SNI in infants induced a striking increase in the expression of anti-

inflammatory mediators 7 days after infant SNI, which when blocked 

unmasked mechanical hypersensitivity. Notably, the delayed onset of 

mechanical hypersensitivity that occurs when animals are older coincides with 

a switch in the immune response to a characteristic pro-inflammatory profile, 

similar to that observed in nerve injured adults. 

4.5.1 The immune profile in the infant dorsal horn 7 days after 
infant SNI is associated with an anti-inflammatory response 

In infant mice, SNI surgery failed to increase the expression of either microglia 

(IBA-1) or astrocyte (GFAP) markers in the dorsal horn spinal cord 7 days after 

infant SNI. In previous studies microglia (MHC-II DMα, MHC-II DMβ, integrin-

αM, CD68, IBA-1) and astrocyte (GFAP) markers did significantly increase in 

infant rats 7 days after P10 SNI but to a substantially lower magnitude than 
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observed in adults, leading to the suggestion that the immune response in 

infants is weak (Costigan et al., 2009; Moss et al., 2007; Vega-Avelaira et al., 

2009, 2007). However, an increase in expression of immune cell markers such 

as IBA-1, is not necessarily a reflection of the responsiveness of a cell or 

indicative of a so called activated state (Beggs and Salter, 2010; Ji et al., 2013; 

McMahon and Malcangio, 2009; Zhuang et al., 2006). For example, P2X4R 

null mutant mice which fail to develop mechanical hypersensitivity after 

peripheral nerve injury coincides with significant increases in IBA-1 (McMahon 

and Malcangio, 2009; Ulmann et al., 2008). Therefore the presence of 

microglia and T-cell are not necessarily correlate to pain-like behaviour, while 

the up-regulation of inflammatory mediators (ATP, BDNF, TNF) that modulate 

neuronal activity and pain sensitivity are better associated with pain states (Ji 

et al., 2013; McMahon and Malcangio, 2009).  

In infants, SNI failed to increase the expression of any pro-inflammatory 

mediator tested (including TNF,  BDNF or IFN-γ) in the dorsal horn 7 days after 

surgery, that is a dominant feature in adults following SNI and can lead to 

changes in excitability or synaptic transmission, and ultimately sensitization 

(Coull et al., 2005; Marchand et al., 2005). This complements previous studies 

indicating that neither TNF nor IFN-γ increase in expression in the infant dorsal 

horn following SNI (Costigan et al., 2009; Li et al., 2009).  This blunted 

response is also observed in infants following other insults, including bacterial 

infection and C-fibre stimulation where immune cells mount a weak 

inflammatory cytokine production associated with fewer immune cells 

compared to adults (Levy, 2007; Moss et al., 2007; Prescott et al., 1998).  

However, it is suggested that the ‘default’ response in neonates is skewed 

towards an anti-inflammatory response (high IL-10) (Elahi et al., 2013; Moss 

et al., 2007; PrabhuDas et al., 2011; Shigemoto-Mogami et al., 2014). 

Examples of these age dependent differences are identified in residing 

immune cells both in the peripheral and central nervous systems where T-cells 

and microglia exhibit a skewed Th2 and M2 profile respectively. For example, 

under basal and LPS-stimulated conditions, postnatal mouse microglia up-

regulate genes associated with an M2 orientation expression including 

arginase and CCL22, whereas more M1 associated gene expression such as 
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CXCL10 are down regulated (Scheffel et al., 2012). In addition, neonatal T-

cells activated with anti CD3, show little proliferation and are deficient in the 

secretion of IL-2 and IFN-γ and instead secrete Th2 cytokines (Adkins et al., 

1994, 1993). Neonatal responses to some vaccines such as hepatitis B virus 

are diminished in Th1 activity and biased towards Th2 function (Rose et al., 

2007) and suggests that under normal conditions the default neonatal 

response is the Th2/M2 pathway (Adkins, 2000). 

Data presented in this chapter shows that SNI at infancy does initiate an 

immune response, but one that is characterised by an increase in the 

expression of transcription factor GATA-3, IL-10 and IL-4, associated with an 

anti-inflammatory not pro-inflammatory response. The transcription factor 

GATA-3 is an important regulator of T-cell development and promotes the 

differentiation of CD4+ T-cells into a Th2 cell lineage, promoting the secretion 

of anti-inflammatory cytokines including IL-4, IL-10, and IL-13 as well as 

inhibiting Th1 cell differentiation and IFN-γ production (Ferber et al., 1999; 

Ouyang et al., 1998). Both IL-10 and IL-4 are released by a number of cells 

but are mainly associated with T-cell signalling, although IL-10 is also released 

by macrophages and microglia (Aloisi et al., 1999; Durafourt et al., 2012; Lord 

and Lamb, 1996; Milligan and Watkins, 2009; Ponomarev et al., 2005; Poole 

et al., 1995; Üçeyler et al., 2009). IL-4 signalling induces T-cell proliferation 

and differentiation into a Th2 phenotype, activating GATA3 and suppressing 

macrophage and microglia M1 phenotypes and pro-inflammatory mediator 

expression (Chao et al., 1993; Durafourt et al., 2012; Kopf et al., 1993; Kuhn 

et al., 1991). Like IL-4, IL-10 also acts to inhibit pro-inflammatory mediator 

release and reduces the recruitment of immune related glia cells in the spinal 

cord (Frei et al., 1994; Hu et al., 1999; Ledeboer et al., 2000; Poole et al., 

1995). IL-10 can also inhibit the expression of major histocompatibility complex 

(MHC) class II on microglia (that serve an antigen presenting cell to T-cells) 

but not astrocytes (Frei et al., 1994; Sweitzer et al., 2002). 

Although the origin of IL-10, IL4 and GATA-3 cannot be confirmed by this 

study, these markers are associated with T-cell signalling. As T-cells originate 

from hematopoietic stem cells in bone marrow, and only divide in the thymus, 

increased levels of these cells must be due to an infiltration from the blood via 
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leukocyte extravasation (Engelhardt, 2006). Both infant and adult rodents have 

CD2+ T-cells residing in their spinal cord which provide a surveillance role in 

the CNS (Costigan et al., 2009). Further investigation into whether infant SNI 

disrupts the integrity of the blood brain barrier, as observed in adults following 

peripheral nerve injury, as well as examination of other T-cell and monocyte 

markers would clarify if infiltration of immune cells occurs in infants (Beggs et 

al., 2010; Echeverry et al., 2011; Zhang et al., 2007).  

Regardless of the origin of anti-inflammatory mediators in the infant dorsal 

horn following SNI, it is clear that nerve injury induces a differential age 

dependent immune response. Importantly, the data shows that the expression 

of  IL-10 following nerve injury is functionally essential for the absence of 

mechanical hypersensitivity in this early period following P10 SNI as blocking 

spinal IL-10 unmasked pain-like behaviour causing infant mice to develop 

mechanical hypersensitivity. In line with this, evidence in adult neuropathic 

models suggests that both IL10 and IL-4 are anti-nociceptive, suppressing pro-

inflammatory cytokines, microglia responses and pain behaviour (see 

introduction) (Hao et al., 2006; Milligan et al., 2005a, 2005b). 

The function of a predominant anti-inflammatory response observed during 

this postnatal period in response to nerve injury and other insults may act to 

stop excessive inflammation that may occur with the transition from a sterile in 

utero setting to colonization with commensal microbes (Maynard et al., 2012). 

In addition, studies in the healthy brain indicate a dual role for microglia during 

postnatal development associated with the substantial changes that occur in 

the connectivity of the CNS that occur over this period. This includes their 

ability to remove cellular debris and dead cells via phagocytosis activity and  

secondly, to establish contacts with synapses and regulate the size of dendritic 

spines during critical periods (Arnoux et al., 2013; Marın-Teva et al., 2004; 

Schafer et al., 2012; Tremblay et al., 2010). For example, microglia within the 

juvenile visual cortex can modify their association with dendritic spines in 

response to changes in visual sensory experience and actively engulf synaptic 

structures and exert a major role in controlling the number of synapses through 

synaptic pruning (Tremblay et al., 2010). This is confirmed by the disruption in 

microglia function such as depletion of microglia CX3CL1 receptor or 
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administration of a microglia inhibitor that results in the delayed synaptic 

pruning and maturation of hippocampal synaptic circuits during development 

(Paolicelli et al., 2011; Schafer et al., 2012). As substantial rearrangement and 

refining of synaptic connections occur at P10 in the dorsal horn it is possible 

that dorsal horn microglia are also providing similar functions at this time to 

enable the refinement and rearrangement of synaptic connections and pruning 

of axonal projections which would temporarily increase the production of 

damage associated molecular patterns (DAMP) during the postnatal period. 

As a result, a peripheral nerve injury at P10, in the context of dorsal horn 

postnatal rearrangements and colonization with commensal microbes in the 

periphery, that leads to an increase in DAMP and other mediators instigates 

signal pathways associated with a default anti-inflammatory immune 

responses in both the periphery (T-cell) and centrally in the dorsal horn spinal 

cord (microglia) and the absence of pain like behaviour (Bianchi, 2007; Elahi 

et al., 2013; Gordon and Taylor, 2005; Levy, 2007, p. 200; Moss et al., 2007; 

Mosser and Edwards, 2008; Scheffel et al., 2012). This would enable normal 

postnatal development in the dorsal horn to occur through phagocytic activity, 

without the initiation of an extensive and damaging inflammatory response 

resulting in the absence of hypersensitivity.  

Interestingly, despite the age-dependent difference in the immune profile 

following nerve injury, immature dorsal horn neurons are capable of 

responding to pro-inflammatory mediators although the degree of 

responsiveness of neonatal immune cells varies markedly with the stimulation 

conditions (Adkins et al., 1994; Moss et al., 2007). The data presented in this 

chapter indicates that intrathecal application of TNF induces mechanical 

hypersensitivity in mice 7 days after P10 SNI. A study by Li et al., showed that 

this is the result of an increase in the efficacy of glutamatergic synapses and 

intrinsic excitability of neonatal dorsal horn neurones following SNI (Li et al., 

2009). In addition, intrathecal administration of LPS activated microglia also 

induce mechanical hypersensitivity in SNI but not sham treated infant mice.  

LPS is a bacterial endotoxin that causes the activation of numerous signalling 

pathways (PKC, MAPK and NF-ƙB) in microglia that are involved in the release 

of immune-related cytotoxic factors including nitrous oxide (NO), pro-
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inflammatory cytokines including TNF and IL-6 LPS and reactive oxygen 

species (Bhat et al., 1998; Chao et al., 1992; Lee et al., 1993; Sawada et al., 

1989), that also efficiently down regulates IL-10 (Mizuno et al., 1994). LPS 

activated microglia release TNF at lower concentrations than the single TNF 

injection administered here (Berta et al., 2014; Welser-Alves and Milner, 

2013). The results show that the lower levels of TNF sensitized infant SNI 

mice, while leaving sham animals of the same age unaffected and suggests 

that although infants can mount pro-inflammatory immune response that lead 

to pain behaviour to various insults, peripheral nerve injury in infants induces 

a response that is skewed towards a Th2/M2 response characterised by the 

release of anti-inflammatory mediators. As a result in infants anti-nociception 

naturally dominates following nerve injury. 

4.5.2 In infants, C-fibre stimulation induces the release of anti-
inflammatory mediators in the dorsal horn spinal cord. 

In adults, primary afferent input and C-fibre electrical stimulation of the dorsal 

root or sciatic nerve, at intensities known to cause central sensitization, result 

in a ‘microglial pain-related enhanced response state’ and behavioural 

hypersensitivity 24 hours after stimulation (Beggs et al., 2010; Hathway et al., 

2009; McMahon and Malcangio, 2009; Wen et al., 2007; Xie et al., 2009). In 

adults such stimulation releases cathepsin S from microglia which liberates 

CX3CL1 from dorsal horn neurons contributing to amplification and 

maintenance of chronic pain (Clark et al., 2009). This response is attenuated 

with pre-treatment with minocycline, an inhibitor of pro-inflammatory polarised 

microglia (Hathway et al., 2009; Kobayashi et al., 2013; Taves et al., 2013).  

It has been confirmed in adults that C-fibre stimulation also increases the 

permeability of the blood brain barrier 24 hours after stimulation (Beggs et al., 

2010) and pain-like behaviour may also be linked to T-cell infiltration. Notably, 

mustard oil irritant does not induce IBA-1 or GFAP immunoreactivity in the 

dorsal horn which suggests that glial responses are selective to different forms 

of primary afferent input (Molander et al., 1997). Remarkably the absence of 

hypersensitivity in infants following stimulation is accompanied by an increase 

in the expression of anti-inflammatory IL-10 and IL-4 which is not observed in 

adults. This suggests that IL-10 and IL-4 release, in the absence of pathology 
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is directly activated by neurotransmitter release from C-fibre terminals in the 

dorsal horn and the response could be a direct result of activity in damaged C-

fibre afferent terminals. Interestingly, IL-10 release from neonatal spinal cord 

microglia is potentiated by the excitatory neurotransmitter glutamate (Werry et 

al., 2011). Importantly, the result was not a global increase in anti-inflammatory 

mediators as other anti-inflammatory mediators remained unaltered following 

stimulation.  

4.5.3 Hypersensitivity onset at adolescence is characterised by a 
pro-inflammatory response in the ipsilateral dorsal horn 

When SNI treated infants reach adolescence a delayed mechanical 

hypersensitivity develops that coincides with an increase in the expression of 

immune cell markers (microglia and T-cells) and pro- inflammatory mediators 

including TNF and BDNF that can alter synaptic transmission in the dorsal horn 

and are associated with pain sensitization (see introduction) (Coull et al., 2005; 

Marchand et al., 2005; Taves et al., 2013). In addition, anti-inflammatory 

mediators (IL-10 and IL-4) that can act in a regulatory capacity to control 

inflammation are now reduced to sham control levels and maybe insufficient 

to control the increase in expression of pro-inflammatory mediators. The 

development of a delayed pro-inflammatory response was also confirmed at a 

protein level by a cytokine array which indicated an increase in protein 

expression of pro-inflammatory mediators in the ipsilateral compared with the 

contralateral dorsal horn.  

Although real time qPCR showed that IFN-γ expression was not increased in 

mice 21 days after P10 SNI, IFN-γ protein levels were higher in the ipsilateral 

compared to contralateral dorsal horn. In addition although was no increase in 

GFAP 21 days after P10 SNI, which is in contrast to a previous study in rats 

21 days after P10 SNI where an increase in GFAP was observed (Vega-

Avelaira et al., 2012). As this analysis was undertaken at the onset of 

mechanical hypersensitivity in mice, an increase in astrocyte makers may 

occur at a later time point (Zhuang et al., 2006). 
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4.5.4 Postnatal development of the immune profile 

It is increasingly recognised that the immune profile in both peripheral (T-cells) 

and central residing immune cells (microglia) undergo a developmental shift 

with age from an anti-inflammatory skewed response (such as high IL-10) to 

pro-inflammatory  in both rodents and humans (Elahi et al., 2013; Moss et al., 

2007; PrabhuDas et al., 2011; Shigemoto-Mogami et al., 2014). For example 

cytokine analysis of LPS-activated microglia between P0 to P49 mice reveal a 

gradual developmental shift to a defence-orientated M1 phenotype, with an 

increasing induction of TNF, IL-1β, IL-6 and a decline in arginase with age 

(Scheffel et al., 2012). In addition, following both LPS and non-TLR mediated 

challenges such as experimental autoimmune encephalomyelitis, with 

increasing age discrete subsets of microglia secrete TNF indicating a shift 

towards microglia response heterogeneity (Scheffell et al., 2012). T-cell 

responses also show an age dependent shift and at P4, neonatal T-cells 

produce high levels of IL-4, that diminishes by P6 and from the first week of 

life onwards, there is a gradual and continual increase in the capacity of T cells 

to mount Th1 responses (Adkins et al., 1993; Adkins and Hamilton, 1992).  

Furthermore, vaccinations in infants are associated with a skewed Th2 

response and secretes IL-4 and IL-10 and lower T-cell mediated IFN-γ/IL-12 

responses in the first 3-6 weeks in mice or 12-18 months in humans that 

gradually increase (Adkins, 2000, 1999; Barrios et al., 1996; Mosmann and 

Coffman, 1989; Powell and Streilein, 1990). In humans, TLR stimulation of 

whole blood, induces the production of anti-inflammatory innate cytokines 

(IL10) that dominates in preterm infants and declines over the first few years 

of life while the production of TNF increases (Corbett et al., 2010; Kollmann et 

al., 2009; Lavoie et al., 2010) and one of the last cytokines to reach adult-level, 

around the age of 2, is IL-12p70 which promotes the development of Th1 cell 

immune responses (Corbett et al., 2010). This is despite TLR sensor function 

and downstream signalling molecules being developed in new born infants 

(Strunk et al., 2011; Tulic et al., 2011) and indicates that the neonatal 

environment may be responsible for promoting the skew towards a Th2 

lineage.  
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The mechanisms underlying the developmental switch from immune 

suppression in the neonate to pro-inflammatory responses in the adult, 

whether intrinsic or external to immune cells, is an understudied area of 

research, particularly in microglia, but is probably multifactorial (PrabhuDas et 

al., 2011). Lewis and colleagues showed that during human infancy recent 

thymic emigrants (T-cells recently produced by the thymus) are present in 

large proportions in the periphery and are impaired in the acquisition of Th1 

function (Haines et al., 2009). These cells also predominate in infant mice 

(Opiela et al., 2009). In addition the anti-inflammatory cytokine profile in infants 

is induced during foetal life by regulatory T-cells which dominate in the foetal 

circulation suppressing reactivity to non-inherited antigens and promote a 

suppressive environment (Mold et al., 2008). These remain during postnatal 

development and maybe an important source of Th2-type cytokines in early 

life in mice and humans (Adkins, 2003; Prescott et al., 1998).  

Another suggested mechanism is that Th1 cells in neonates, but not Th2 cells 

undergo apoptosis in response to re-exposure to antigens and so provide a 

potential mechanism for the Th2 biased secondary responses (Li et al., 2004). 

In addition, studies in humans and mice indicate distinct epigenetic 

mechanisms may also have a major role. Hypomethylation of cytokine loci 

contributes to the expression of cytokine genes and hypermethalation 

contributes to their silencing. The Th2 locus is hypomethylated in infant 

humans and mice relative to adults that corresponds to the Th2-polarizing 

cytokine responses in infants (Rose et al., 2007; Webster et al., 2007). In 

addition skewed responses maybe due to quantitative differences in T-cells 

and, due to low numbers, when animals are challenged the antigen load may 

affect the response. For example Sarzotti et al, demonstrated that if neonatal 

mice were infected with a high dose of virus a Th1 response was mounted but 

a low does initiated a Th2 response and subsequent protection (Sarzotti et al., 

1996).  

In summary both quantitative and qualitative properties of neonatal CD4+ cells 

are probably factors in the plasticity of neonatal Th1/Th2-cell responses. Given 

the central role of CD4+ Th cells in influencing the responses of many other 

immune cell types, variation in Th-cell responses in neonates may contribute 
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substantially to variability in the responses of other cell populations. However, 

the mechanisms underlying postnatal changes of microglia are yet to be 

studied. 

4.6 Conclusion 

Depending on the developmental status of the animal, nerve injury will trigger 

differential immune responses in the dorsal horn spinal cord. In infants an anti-

inflammatory immune response dominates, characterised by the release of 

anti-inflammatory mediators IL10 and IL4 which can also be induced at this 

age by C-fibre stimulation. As an anti-inflammatory cascade in the dorsal horn 

suppresses neuronal sensitization anti-nociception naturally dominates in the 

early period following infant nerve injury.  At a later period, a gradual 

developmental change occurs in the immune response tipping the balance to 

pro-inflammatory response which dominates and the development of pain like 

behaviour. This data suggests that nerve injury in early life may affect pain 

processing later in life and is associated with the dysfunction of the immune 

system and may underlie the onset of complex pain behaviours that also 

emerge at adolescence. 
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5. 1  Introduction 

The absence of pain following nerve injury in infant mammals is of particular 

clinical interest as pain behaviour to noxious stimuli and inflammation is 

present, even before birth (Andrews and Fitzgerald, 1994; Fabrizi et al., 2011; 

Fitzgerald, 1991; Rokyta and Fricová, 2012; Walker et al., 2007). However, 

longitudinal studies in rats and humans have revealed that following a nerve 

injury sustained at infancy, mechanical hypersensitivity does eventually 

emerge, but much later (Melzack et al., 1997; Vega-Avelaira et al., 2012).  

As the dorsal horn is the first point in sensory integration where information 

from the periphery is modulated locally by spinal interneurons before being 

relayed to higher centres, alterations in dorsal horn neuronal activity are 

fundamental to the processing and perception of sensory information following 

nerve injury.  While it is clear that in adult rodents the hypersensitivities arising 

following nerve injury coincide with alterations in both neuronal and immune 

systems in the dorsal horn (Beggs and Salter, 2007; Cao and DeLeo, 2008; 

Chapman et al., 1998b; Clark et al., 2009, 2007; Costigan et al., 2009; Gao et 

al., 2005, 2010b; Griffin et al., 2007; Hao et al., 2007; Laird and Bennett, 1993; 

Marchand et al., 2009; Milligan et al., 2005b; Moore et al., 2002; Palecek et 

al., 1992; Polgár et al., 2005; Suzuki and Dickenson, 2006; Takaishi et al., 

1996; Taves et al., 2013; Tsuda et al., 2013, 2003; Zhuang et al., 2005) the 

mechanism underlying the absence and late onset of hypersensitivities in the 

early and late period following infant nerve injury had not been investigated 

before the work presented in this thesis (Moss et al., 2007; Vega-Avelaira et 

al., 2012) 

In the last 30 years research into the postnatal development of pain circuitry 

indicates extensive alterations occur in the first few weeks of life which can be 

altered by both noxious and non-noxious sensory inputs (Albuquerque et al., 

1999; Andrews and Fitzgerald, 1994; Baccei and Fitzgerald, 2004; Beggs et 

al., 2002; Fitzgerald, 1985a; Fitzgerald and Jennings, 1999; Fitzgerald and 

Swett, 1983; Hathway et al., 2006; Koch et al., 2012; Watanabe et al., 1994). 

Expression studies in the dorsal horn show that the most differentially 
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regulated genes in the dorsal horn between infant and adult nerve injured 

rodents are immune related (Costigan et al., 2009). A study by Vega-Avelaira 

et al., revealed that early life nerve injury leads to alterations in behavioural 

hypersensitivity that correlate with alterations in the expression of microglia 

and astrocyte markers in the dorsal horn spinal cord (Vega-Avelaira et al., 

2012)   

5.2 Summary of findings 

The aim of this thesis was to further our understanding into the mechanisms 

that underlie the absence and delayed onset of pain-like behaviour following 

infant nerve injury and elucidate immune profile in the dorsal horn at these time 

points. A summary of the major findings are presented in Table 5.1. 
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Chapter Two:  
 

 Pain-like 

behaviour to a 

range of hind paw 

tests is absent in 

rats 

 Mechanical 
hypersensitivity is 
also absent in 
mice 

 Spinal cord 
neuronal 
degeneration is 
absent 

 Pain-like 

behaviour to a 

range of hind paw 

tests is present in 

rats. Thermal 

hypersensitivity is 

absent 

 Mechanical 
hypersensitivity is 
present in mice 

 Pain-like 

behaviour to a 

range of hind 

paw tests is 

present in rats. 

Thermal 

hypersensitivity 

is absent 

 Mechanical 
hypersensitivity 
is present in 
mice 

Chapter 
Three: 
  
 
  

Compared to sham 
controls, dorsal horn 
cells in SNI animals 
exhibit: 

 a decrease in 
activity to 
threshold and 6.3g 
Von Frey hairs 

 a decrease in both 
brush and pinch 
receptive fields 

Compared to sham 
controls, dorsal horn 
cells in SNI animals 
exhibit: 

 an increase in 
spontaneous 
activity 

 increase in activity 

evoked by brush. 

noxious and non-

noxious cold  

 increase in brush 
receptive field  

Compared to sham 
controls,  dorsal horn 
cells in  SNI animals 
exhibit: 

 an increase in 
spontaneous 
activity 

 increase in 

activity evoked 

by non-noxious 

cold  
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Table 5.1 Summary of the major findings in this thesis 

Upper panel denotes the three different age ranges used in experiments i) 1 week after infant 
SNI, ii) 3-4 weeks after infant SNI and iii) 1 week after adult SNI. The column on the left 
illustrates the main methods utilised in each chapter; hind paw sensory testing, in vivo 
electrophysiology in the dorsal horn and real time qPCR of inflammatory mediators in the 
dorsal horn and spinal application of pharmacological agents.  

5.3  Technical considerations 

5.3.1 Animals 

P10 animals were chosen to represent infants in this thesis for three reasons 

i) The rat is born at an immature stage and the first postnatal week in the rat 

pup and P0 on the rat put corresponds to 24 to 40 post-conception weeks and 

pups are considered infants by P7 (Fitzgerald, 1991) ii) between P0-P5 

transection or crush of the sciatic nerve causes cell death in the DRG and 

Chapter Four: 
 
 

 

Compared to sham 
controls, the dorsal 
horn of SNI animals: 

 have an increase 

in the expression 

of anti-

inflammatory 

mediators  

 C-fibre nerve 
stimulation does 
not cause 
mechanical 
hypersensitivity 
but induces an 
anti-inflammatory  
response  

 blockade of spinal 
anti-inflammatory 
IL-10 reveals 
mechanical 
hypersensitivity 

 spinal 
administration of 
TNF induces 
mechanical 
hypersensitivity in 
SNI and sham 
animals 

 spinal 
administration of 
LPS activated 
microglia induces 
mechanical 
hypersensitivity 

Compared to sham 
controls, the dorsal 
horn of SNI animals 
have: 

 an increase in the 

expression of 

microglia and T-

cell markers but 

not astrocytes 

 an increase in the 
expression of pro-
inflammatory 
mediators 
 

 

Compared to sham 
controls, the dorsal 
horn of SNI animals 
have: 

 an increase 

in the 

expression of 

microglia, 

astrocyte and 

T-cell 

markers  

 an increase in 
the expression of 
pro-inflammatory 
mediators  

 C-fibre nerve 
stimulation 
induces 
mechanical 
hypersensitivity 
and an absence 
of anti-
inflammatory 
dorsal horn 
response  
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collateral sprouting of primary afferent central terminals in the dorsal horn, but 

does not occur if the surgery is performed at  P10 (Fitzgerald et al., 1990, 

1985b) and iii) ensures consistency with previous studies investigating 

mechanisms underlying the age dependent differences in pain behaviour 

following nerve injury all of which have been carried out in P10 rodents 

(Costigan et al., 2009; Moss et al., 2007; Vega-Avelaira et al., 2006, 2012). 

P33 was used for all investigations in the young adult as postnatal changes to 

the dorsal horn spinal cord are complete at this time and ensures the 

consistency of ages with previous studies (Costigan et al., 2009; Fitzgerald, 

2005a; Moss et al., 2007; Vega-Avelaira et al., 2012, 2007). 

All studies were carried out in male rodents. In recent years the study of pain-

related sex differences has received greater attention (Aloisi et al., 1994; Craft 

et al., 2004; Greenspan et al., 2007; Mogil, 2012; Wiesenfeld-Hallin, 2005). 

These studies suggest that females (both humans and non-human) exhibit 

lower thresholds to noxious stimuli and have a greater pain sensitivity and 

prevalence of chronic pain compared to men (Aloisi et al., 1999; Wiesenfeld-

Hallin, 2005) and that chronic neuropathic pain is more prevalent in females 

than in males (Torrance et al., 2006; Vacca et al., 2014) (although see 

Bouhassira et al., 2008). Studies into the mechanism underlying these sex 

differences suggest that gonadal steroid hormones play an important but 

complex role (Berkley, 1997; Craft et al., 2004; Fillingim and Ness, 2000). One 

recent study by Vecca et al., shows that following nerve injury, female mice 

have a higher pain perception and a show a delay of recovery from neuropathic 

pain compared to adults (Vacca et al., 2014). This study suggested that male 

mice exhibited faster nerve regeneration and reduction in both microglial and 

astrocytic activity compared to female mice (Vacca et al., 2014).  

In rodents although sex differences are present, they are unlikely to exist to 

the same extent in neonatal animals (Banik et al., 2006; Beggs et al., 2012). 

For example, tail flick latencies in hot plate tests are shorter in infant female 

rats although in the incision pain model, mechanical sensitivity did not differ 

between males and females (Beggs et al., 2012). However, sex differences in 

the long term effects of early life pain have been reported in the animal 

literature (LaPrairie and Murphy, 2007). In human clinical studies the long-term 
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effects of early pain on sex differences have rarely been studied and 

demonstrate contradictory results (Grunau et al., 2006; McGrath et al., 2013). 

As the experiments presented in this thesis are longitudinal, starting at infancy 

until the adolescent period and after careful consideration, it was decided that 

experiments in this thesis should be performed in male animals. 

The choice to use rats or mice in a study was to ensure the mechanisms 

underlying the delayed onset of pain behaviour could be elucidated in the most 

efficient way and keep animal use to a minimum. For sensory behavioural 

tests, immunohistochemistry, staining and in vivo electrophysiology studies, 

rats were utilised over mice due to a the following reasons i) the outcomes of 

behavioural assessment following SNI have been extensively documented in 

the rat compared to mouse models ii) rats are more resilient to surgery under 

anaesthesia which is particularly important during in vivo electrophysiology 

experiments where the stability of the animal is essential for effective 

recordings and iii) tissue preparation and anti-bodies used and protocols were 

already published and optimised for use with rat tissue (Bourquin et al., 2006, 

2006; Decosterd and Woolf, 2000; Schmued et al., 2005; Walker et al., 2010).  

Before carrying out any experiment in mice, the delayed pain-like behaviour 

following infant nerve injury model was replicated and confirmed in mice that 

were subsequently used for cytokine arrays and real time qPCR analysis due 

to i) the availability of high quality reagents such as the cytokine array being 

available in mice as opposed to rats and ii) to enable the use of genetically 

modified mouse lines that will enable future investigations into mechanisms 

underlying delayed pain behaviour following infant nerve injury to be used. 

5.3.2 Sensory hind-paw behavioural tests  

Reflex responses such as those evoked by thermal, mechanical (Vfh) or 

innocuous cold (acetone) stimuli are widely used in pain research as a tool to 

assess hypersensitivity (Decosterd and Woolf, 2000; Flatters and Bennett, 

2004). These reflex responses reflect the excitability of spinal circuits and has 

led to our current understanding of pain processing. Furthermore, newborn 

mammals display clear reflex withdrawal behaviour from noxious stimulation 

at birth and this has been used to demonstrate pain behaviour following 
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noxious stimulation and inflammatory injury in both the rodent pups and 

humans (Cornelissen et al., 2013; Fitzgerald et al., 1989, 1988; Walker et al., 

2007). However, it is accepted that measures of spinal reflexes are not 

measures of pain ‘perception’ as such but act as a surrogate measure. 

Measures of evoked reflexes are justified as i) they are practical to obtain ii) 

they can be repeated and quantified, and iii) they are clinically relevant as 

humans do suffer these hypersensitivities (Mogil and Crager, 2004; Tétreault 

et al., 2011).  

In addition to the use of evoked reflex responses, weight bearing in rodents 

was also measured following infant nerve injury. Although a test most 

frequently used to assess pain behaviour in joint pain animal models (Schött 

et al., 1994; Tétreault et al., 2011), previous studies show that the measure of 

contralateral weight bearing is different from that observed with reflex 

withdrawal testing as in adult rodents they have different time courses with 

respect to both onset and maintenance of hypersensitivity (Mogil et al., 2010). 

In addition, while both SNI and CCI in mice induce changes in mechanical 

thresholds, measured using vFh, changes in contralateral weight bearing is 

only present in SNI treated mice, supporting the argument for independence 

of these behaviours (Mogil et al., 2010).  

It should be noted that within this thesis the increased pain-like behaviour to a 

particular stimuli is described as hypersensitivity as opposed to allodynia 

(increased pain in response to normally innocuous stimuli) or hyperalgesia 

(increased response to noxious stimuli) which are human interpretations of 

stimuli and therefore cannot be terms allocated to responses of rodents to a 

stimuli (Sandkühler, 2009). 

5.3.3 Anaesthesia 

It is known that anaesthesia can affect sensory processing in the spinal dorsal 

horn (Devonshire et al., 2010) altering firing patterns of neurons (Haseneder 

et al., 2004; Leite and Cascio, 2001) and it is therefore essential to take 

anaesthetic into account in the analysis, particularly during in vivo recordings 

as it can alter neuronal firing patterns. However, although the equilibration 

times changed depending on the size of the animal, in all studies the same 
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inhalation anaesthetic was used and the final anaesthetic depth was held in all 

animals. For example, during in vivo electrophysiology recording a depth of 

1.8% was used as previously documented for all recordings, regardless of the 

age of animal (Hathway et al., 2009; Koch et al., 2012). Furthermore, the heart 

rate, body temperature and perfusion of the animal were continuously 

assessed and together this ensured valid comparisons between groups.  

These potential effects of anaesthesia on spinal neurons during in vivo 

electrophysiology studies can by eliminated through decerebration and 

withdrawal of anaesthesia. However, the surgery can be very severe, 

particularly when working with young animals and can result in cranial bleeding 

and a high mortality rate and so was not performed in this thesis (Coderre and 

Wall, 1987; Swett and Woolf, 1985).  

5.3.4 In vivo electrophysiology 

In vivo electrophysiology enables detailed recordings to be made from 

individual spinal neurones in response to specific peripheral input. This is 

advantageous over measurements of reflexes, such as those analysed in 

behavioural or electromyographical (EMG) studies which require sensory and 

motor integration. This is of particular importance when investigating age-

dependent changes as recordings from dorsal horn neurones are not 

susceptible to changes in the postnatal development of motor output. 

Furthermore, in contrast to in vitro slice preparations the animal is intact, 

enabling investigations into neuronal activity in the context of a functioning 

animal system. However, there are a few disadvantages of an in vivo 

preparation i) performing electrophysiology preparations, particularly in infant 

animals, is challenging so the n numbers in some experiments are low and ii) 

unlike behavioural or EMG studies, recordings from spinal neurones are 

varied, as they are a heterogeneous population and so the responses are 

unlikely to be uniform from one cell to the next and iii) the spinal cord is 

heterogeneous in composition so identification of the phenotype of a recorded 

cell is limited. As a result recordings of activity from a projection neuron, 

excitatory or inhibitory interneuron would have different outcomes. This 

disadvantage was overcome by ensuring the cells analysed in each study were 

firstly characterised and confirmed as WDR neurones (responding to both 
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innocuous and noxious stimuli) with cutaneous receptive fields in the sural 

nerve territory, thus limiting both the variation of responses and laminar 

distribution of the cells.  

5.3.5 Real time qPCR 

The real time qPCR method has been extensively used to quantify 

expressional changes of inflammatory mediator transcript numbers amplified 

from nucleic acids in the dorsal horn spinal cord (Berta et al., 2014; Costigan 

et al., 2009; Moss et al., 2007; Zhang et al., 2011). This technique is fast and 

effective as, in addition to the processing being short, multiple genes can be 

run at the same time. However, this technique can be influenced by a number 

of confounding factors including i) nucleic acid extraction efficiencies are 

variable between samples that are processed at different times ii) SYBR green, 

used for detection binds to all double-stranded DNA and if a primer is not 

specific to the target gene a non-specific product will be formed iii) 

quantification of the initial target sequence of an unknown concentration is 

determined from the cycle threshold and is expressed relative to a co-amplified 

steady state (housekeeping gene) and any variation in the expression of the 

housekeeping gene can mask or indicate artificial changes in the gene of 

interest. These factors were addressed by i) ensuring that the samples within 

an age group were subject to the same extraction procedure at the same time 

ii) analysing  the post-PCR dissociation curve following each experiment to 

confirm that the fluorescence signal was generated from the target template 

and not that of a non-specific product, thus ensuring that the primers used 

were specific (Smith and Osborn, 2009) and experiments whereby the 

dissociation curve varied were discarded, iii) ensuring that quantification of 

target genes were completed using the comparative cycle threshold method 

(Schmittgen and Livak, 2008) and using GAPDH as the control transcript 

(housekeeping gene) for comparisons to transcripts from other genes 

expressed in the dorsal horn spinal cord. GAPDH is an important enzyme in 

glycolysis and is frequently used as a control in models of nerve injury and is 

not affected by age dependent changes (Barber et al., 2005; Berta et al., 2014; 

Raghavendra et al., 2003; Scheffel et al., 2012; Vasudeva et al., 2014) iv) in 

all experiments amplicons were short (between 50-100 base pairs) to enhance 
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the specificity of the products. It should also be noted that real time qPCR is 

unaffected by differences in spinal cord size as the same amount of RNA 

material was used and so the amount of DNA material at each age was also 

identical.  

5.3.6 Volumes of drug 

In this thesis intrathecal injections were carried out in P10 mice under 

anaesthesia using a 1 ml insulin syringe with a 30-gauge needle perpendicular 

to the skin at the low lumbar level (L5-L6). Although some studies use 

intrathecal injection volumes of up to 10µl of solution (Xu et al., 2013; Zhang 

et al., 2011) a study by Westin et al., 2010 identified that the volume of 

intrathecal injectate required to produce spread across lumbar and low 

thoracic segments was 0.5 mcl per gram bodyweight (Walker et al., 2010; 

Westin et al., 2010). In line with these studies, this thesis used an injection 

volumes of 3.5µl to ensure spread across the lumbar spinal cord in P10 pups. 

5.4  Interpreting the results in this thesis  

To date substantial progress has been made into elucidating the postnatal 

changes occurring in the neuronal circuity associated with pain processing, 

with an aim of improving our understanding of both the mechanisms underlying 

neonatal pain and its treatment. However, little work into the postnatal 

development of immune function within the CNS has been completed. This is 

of particular interest in the context of nerve injury as expression studies 

indicate that in nerve injured animals the most prevalent functional class of 

differentially regulated genes in the dorsal horn spinal cord are from the 

immune system (Costigan et al., 2009; Griffin et al., 2007). The data presented 

in this thesis offers a mechanistic explanation for the observed clinical findings. 

5.4.1 Infants do not display pain-like behaviour following nerve injury 
due to an anti-inflammatory response in the dorsal horn 

While nerve injury in adults stimulates spinal glial cells and recruits T-cells 

which powerfully contribute to the induction of pain facilitation (due to the 

release of pro-inflammatory mediators), this thesis indicates that the absence 

of pain behaviour following infant nerve injury is characterised by an anti-
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inflammatory response in the dorsal horn spinal cord typified by an increase in 

expression of transcription factor GATA-3 and cytokines IL-10 and IL-4 (Fig 

5.1).  

Following infant nerve injury spontaneous dorsal horn neuronal activity was 

absent, which is in contrast to the increase in spontaneous dorsal horn activity 

consistently observed in adult neuropathic pain models (Chapman et al., 

1998b; Laird and Bennett, 1993). Although evoked-dorsal horn activity 

remained equivalent to sham controls for most sensory modalities, activity to 

Von Frey hair stimulation and receptive field areas were reduced in SNI 

animals. As a generalised reduction in activity to all sensory modalities was 

not observed in infants following SNI activity, this illustrates that there is not a 

global hyposensitivity of dorsal horn neurons. This is supported by behavioural 

studies showing that seven days after infant SNI and sham surgery animals 

have similar responses and thresholds.  

It is well documented that infant receptive fields are larger than adults and are 

subsequently refined and reduced over postnatal development by activity 

dependent mechanisms that can be by prevented by spinal cord application of 

NMDA blockers (Beggs et al., 2002; Fitzgerald and Jennings, 1999; Fitzgerald 

and Koltzenburg, 1986; Torsney and Fitzgerald, 2002; Koch et al., 2012). It is 

possible that injury induced activity at infancy eliminated the excitatory 

synaptic connections while strengthening inhibitory connections during the 

postnatal period so that receptive fields were reduced to those observed in a 

more mature rodent.  

The anti-inflammatory response in the dorsal horn is consistent with the 

‘default’ immune response in neonates which is skewed in an anti-

inflammatory direction where responses of T-cells and microglia exhibit Th2 

and M2 responses respectively (Adkins, 2000; Elahi et al., 2013; PrabhuDas 

et al., 2011; Scheffel et al., 2012). GATA-3 is an important regulator of T-cell 

development and promotes the differentiation of CD4 T-cells into a Th2 cell 

lineage and the secretion of anti-inflammatory cytokines including IL-4, IL-10 

and IL-13 while inhibiting Th1 cell differentiation and IFN-γ production (Ferber 

et al., 1999; Ouyang et al., 1998). IL-4 signalling induces T-cell proliferation 

and differentiation into a Th1 phenotype and suppresses macrophage and 
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microglia M1 phenotypes and pro-inflammatory mediator expression (Stein et 

al., 1992). IL-10 inhibits pro-inflammatory mediator release and reduces the 

recruitment of immune related glia cells in the dorsal horn spinal cord (Gordon, 

2003; Ponomarev et al., 2005). Interestingly IL-10 supresses the pro-

inflammatory functions of antigen presenting cells by antagonizing the 

expression of co-stimulatory molecules, the release of pro-inflammatory 

cytokines and maturation thus hindering their ability to stimulate adaptive 

immune effector cells (Fiorentino et al., 1991).  

The infant anti-inflammatory response does not require nerve damage as 

stimulation of intact afferent C fibre nociceptors stimulates the expression of 

anti-inflammatory IL-10 and IL-4 in infants, but not adults. This suggests that 

their release is directly activated by neurotransmitter release from C fibre 

terminals in the dorsal horn and that the response following infant nerve injury 

could be a direct result of activity in damaged C fibre afferent terminals. This 

is supported by the fact that IL-10 release from microglia is potentiated by 

glutamate (Werry et al., 2011). Anti-inflammatory cytokine IL-13 and TGF-β 

were not up-regulated in the spinal cord following C-fibre stimulation in infants 

indicating that there is not a general increase in anti-inflammatory mediator 

expression but one that is specific to IL-10 and IL-4.  

This thesis did not elucidate the origin of IL-10 and IL-4. Although both IL-10 

and IL-4 are usually associated with T-cells, studies also suggest they may be 

released from microglia (Chabot et al., 1999; Milligan and Watkins, 2009; Park 

et al., 2005; Ponomarev et al., 2005). Furthermore, resident CD2+ T-cells are 

found in both infant and adult dorsal horn spinal cords but in the infant these 

markers (CD2+ and CD3+) are not up-regulated following nerve injury 

(Costigan et al., 2009). 

Importantly blocking IL-10 following infant SNI mice unmasks pain like 

behaviour indicating that the expression of IL-10 is functionally essential for 

the absence of mechanical hypersensitivity. It also indicates that the signalling 

of pain-like behaviour is not absent rather it is actively suppressed and can be 

unmasked if the anti-inflammatory response is unbalanced. 
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5.4.2 Nerve injured and sham treated infants develop pain-like 
behaviour following administration of pro-inflammatory 
mediators  

Despite the dominant anti-inflammatory response observed in infants following 

SNI, infant pain circuits are capable of responding to pro-inflammatory 

mediators. For example, nerve injury sensitizes neonatal lamina I neurones to 

TNF in vitro (Li and Baccei, 2011) and naïve rodents can develop pain-like 

behaviour in response to intrathecal administration of  LPS and ATP-activated 

microglia, but to a significantly lesser extent than observed in adults (Moss et 

al., 2007). The application of intrathecal TNF and LPS-activated microglia can 

also induce mechanical hypersensitivity in mice seven days after SNI. Results 

presented in this thesis suggest that in these studies, the anti-inflammatory 

activity is overcome by tipping the balance to a pro-inflammatory response in 

infants. While administration of TNF induced mechanical hypersensitivity in 

both sham and SNI treated infants, administration of LPS-activated microglia 

evoked hypersensitivity in SNI but not sham treated infants. LPS is a bacterial 

endotoxin that causes the activation of TLR4 and the subsequent activation of 

the MAPK and NF-ƙB signalling pathways in microglia involved in the release 

of cytotoxic factors including TNF and IL-6 that can also efficiently down 

regulate IL-10 (Harry, 2013).  

Although LPS-activated microglia also produces TNF,  an explanation for this 

inconsistency in behaviour maybe because LPS- activated microglia would not 

produce as much TNF as administration compared to the application of TNF 

directly to the spinal cord. For example, LPS administration to neonatal spinal 

cord cultures in vitro does not increase the secretion of pro-inflammatory 

mediators or phagocytosis activity (Baskar et al., 2014; Werry et al., 2011) and 

LPS application to microglia derived from infant spinal cords significantly 

increases IL-10 release and IL-10 mRNA expression (Baskar et al., 2014; 

Werry et al., 2011). This suggests that although neonatal preparations of LPS-

activated microglia may not secrete TNF to the same extent as adults and that 

TNF is released at lower concentrations than the single TNF injection 

administered (Berta et al., 2014; Welser-Alves and Milner, 2013). As a result 

the lower levels of TNF can sensitized young nerve injured mice, while leaving 

sham animals of the same age unaffected. This is consistent with the finding 
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that the amount and type of effector released by microglia vary with the nature 

of the activating stimulus and age of animal (Lai and Todd, 2008). 

The results presented in this thesis indicate that despite infant nerve injured 

mice being able to respond to stressors such as TNF and LPS-activated 

microglia, infant mice do not normally produce TNF and BDNF following nerve 

injury due to the predominant anti-inflammatory response. 

5.4.3 Nerve injured infants eventually develop pain-like behaviour and 
a pro-inflammatory response in the dorsal horn spinal cord. 

When nerve injured infant rodents reach adolescence there is a switch in the 

immune response from anti to pro-inflammatory that coincides with a delayed 

onset of mechanical hypersensitivity and increases in spontaneous and 

activity-evoked responses in dorsal horn neurones similar to that seen in adult 

nerve injury models as summarised in Fig 5.1 (Laird and Bennett, 1993). This 

timing is consistent with postnatal changes in TLR inducible cytokine and 

chemokine release from microglia which is at its lowest at P21 and after which 

it rises considerably towards adolescence (Scheffel et al., 2012). Therefore 

despite the fact that nerve injury was performed in infancy, pain behaviour 

emerges at adolescence, at least in part as a result of a change in 

neuroimmune activity.  

This is consistent with previous studies suggesting that the onset of pain 

behaviour in rats following infant SNI coincides with an increase in IBA-1 

immunofluorescence in the ipsilateral dorsal horn (Vega-Avelaira et al., 2012). 

Interestingly pre-emptive administration of minocycline, which selectively 

inhibits M1 polarization of microglia (and release of TNF, IL-1β and IFN-γ), 

failed to prevent the onset of pain hypersensitivity at adolescence (Vega-

Avelaira et al., 2012). This maybe because other studies administrated the 

drug via an intrathecal route, not subcutaneously and also minocycline 

decreases IL-10 expression in the dorsal horn spinal cord so the overall 

response may still have been pro-inflammatory (Ledeboer et al., 2005). 

Furthermore, at the onset of pain behaviour, the significant increase in T-cell 

marker CD2 and other proteins involved in T-cell chemo-attraction and 

signalling (including IFN-γ and CXCL9) suggests that the infiltration of T-cells 
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in the dorsal horn spinal cord may occur at this age, although this needs to be 

verified.  

 

Fig. 5.1 Summary diagram showing alterations of the neuro-immune system in the 
dorsal horn following infant nerve injury  

(A) Infant (P10) SNI triggers an anti-inflammatory response in the dorsal horn including the 
release of anti-inflammatory mediators IL-4 and IL-10 and transcription factor GATA3. This is 
characteristic of anti-inflammatory microglial activity (M2) and T helper cell activity (Th2). 
Spontaneous and evoked dorsal horn activity is not enhanced and pain-like behaviour is 
absent  (B) 3-4 weeks after P10 SNI IL-10, IL-4 and GATA3 return to control levels. A pro-
inflammatory response arises due to a switch in microglial and T-cell activity to M1 and Th2 
respectively and is associated with the release of TNF and BDNF. These mediators excite 
dorsal horn neurons (both spontaneous and evoked activity) and trigger pain-like behaviour. 
Reprinted from The Lancet, 11, Calvo, Daves and Bennett, The role of the immune system in 
the generation of neuropathic pain, page 629-642., Copyright (2012), with permission from 
Elsevier. 
 
 

T-cells are known to participate in pain sensitization by releasing pro-

inflammatory cytokines in the adult dorsal horn spinal cord and, remarkably, 

nerve injured animals lacking T cells show attenuation of pain behaviour  (Cao 

P10 SNI + 3-4 weeks 

A 

B 

P10 SNI + 1 week 



Chapter Five                         General Discussion 

179 
 

and DeLeo, 2008; Costigan et al., 2009; Moalem et al., 2004; Sarah M 

Sweitzer et al., 2002). As the astrocyte marker GFAP did not increase at this 

time, astrocyte activation is unlikely to drive the delayed onset of 

hypersensitivity but maybe associated with its maintenance (Tsuda et al.,  

2011).These findings show that neuropathic pain following early life nerve 

injury is not absent but suppressed by neuroimmune activity and that ‘latent’ 

pain can still emerge at adolescence, when the neuroimmune profile changes. 

This data may explain why neuropathic pain is rare in young children and also 

why it can emerge for no observable reason, in adolescent patients (McKelvey 

et al., 2015).  

5.5 Wider implications of research 

5.5.1 The absence of neuropathic pain in infants  

As observed in rodent neonates, it is well documented that even premature 

human infants show strong spinal nociceptive reflex activity and distinct 

cortical potentials following skin breaking and other noxious procedures 

(Cornelissen et al., 2013; Fabrizi et al., 2011; Slater et al., 2010). Children are 

also capable of developing, and do report, chronic pain associated with 

pathologies such as arthritis and cancer (McGrath et al., 1990; Palermo, 2000). 

In contrast neuropathic pain in human infants, occurring acutely or as a feature 

of post-surgical pain (Kehlet and Rathmell, 2010), is rare under the age of 5 

and increases in likelihood at older ages (particularly in adolescence) with a 

median age of onset in paediatric patients of 13 years of age (Anand and Birch, 

2002; Atherton et al., 2008; Walco et al., 2010).  

There are many examples to support this observation. Although chronic 

neuropathic pain is exhibited by adults after brachial plexus injuries (such as 

following spinal root avulsion) infants do not show evidence of chronic pain 

behaviour or neuropathic syndromes (Anand and Birch, 2002). Similarly 

following limb amputation adult patients may develop phantom limb pain and, 

although there are some reports in young children, there is a negative 

correlation between age and onset of phantom pain (i.e. older age, shorter 

time of phantom onset) with no reference to chronic neuropathic pain in infants 

in the majority of these studies (Hall et al., 2006; Krane and Heller, 1995; 



Chapter Five                         General Discussion 

180 
 

Kristensen et al., 2010; McGrath and Hillier, 1992; Melzack et al., 1997; Poeck, 

1964; Weinstein et al., 1964). Furthermore, distal nerve injury does lead to 

neuropathic pain in children, but only at 5 years of age or older, with an 

increase in severity in teenagers (Atherton et al., 2008; Hwang et al., 2008). 

One study by Atherton et al. (Atherton et al., 2008) studied 49 children with 

distal upper limb nerve injury at 1 month to 18 years of age at injury and 

followed them up at a mean of 2 years and 3 months later. Patients younger 

than 5 years did not report chronic neuropathic pain or allodynia (0/15). Those 

older than 5 had an increased sensitivity to pinprick or thermal stimuli and 

children which presented chronic neuropathic pain were all older than 12 years 

of age at the time of surgery. This explains why preadolescents with 

neuropathic pain are ‘infrequent visitors to paediatric pain clinics’ and why all 

reported cases of complex regional pain syndromes (CRPS) in children are 

older than 8 years of age (Walco et al., 2010). Therefore laboratory and clinical 

studies show that infant nerve injury presents very differently in comparison to 

adults where neuropathic pain is one of the most challenging aspects of pain 

management (Dworkin et al., 2007; Woolf and Mannion, 1999).  

It is important to reiterate that the response of infants to nerve injury is unique 

in comparison to other insults such as inflammatory and incisional pain which 

are prevalent in young infants. This thesis suggests that the immune system 

may underlie the difference in pain behaviour observed in infants that show a 

predominant anti-inflammatory response in the dorsal horn spinal cord 

following nerve injury. The function of a predominant anti-inflammatory 

response in the infant dorsal horn maybe to prevent excessive responses to 

microbes following the transition from a sterile environment in utero (Maynard 

et al., 2012) and also facilitate the role of microglia in regulating CNS synaptic 

development by synaptic stripping involving the removal damaged cells and 

dysfunctional synapses (Kettenmann et al., 2013) which if were not contained, 

would produce wide spread and damaging inflammation.  

In the infant dorsal horn IL-10 may act to reduce antigen presenting cell 

maturation, thus preventing T-cell activation, a notion supported by a study by 

Costigan and colleagues where nerve injured adults exhibited T-cell infiltration 

into the dorsal horn spinal cord and the up-regulation of IFN-γ that was absent 
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in infants (Costigan et al., 2009; Moss et al., 2007). Therefore the anti-

inflammatory response to nerve injury in infants maybe an indirect 

consequence of the requirements for normal postnatal development in the 

dorsal horn, while in an adult this balance changes towards a protective  pro-

inflammatory response (Beggs et al., 2002; Bremner and Fitzgerald, 2008; 

Koch et al., 2012).  

These experiments highlight the differences in the maturing immune 

processes that can alter nociception and, as there is increased recognition that 

the immune system is intimately involved in pain, any new avenues of 

treatment which target this system warrants caution when extrapolating data 

on pain management from adults to infants.  

5.5.2 The onset of neuropathic pain in adolescence 

The advances in medical care have led to a profound increase in the survival 

of infants but the implication is that infants exposed to procedural and/or post-

surgical pain may display alterations in pain sensitivity later in life. Animal 

studies support this and show that stimulation of peripheral nociceptors at 

infancy does cause long term alterations in the circuitry of the CNS (see 

Chapter One).  

To understated these long term changes in humans, studies into the pain 

sensitivity of children and adolescents who had early life pain experiences as 

infants including surgery, burns and circumcision have been conducted and 

provide evidence for long term alterations in pain sensitivity which vary 

depending on the type of surgery and the area tested. Following chest surgery 

in early life, the skin sensitivity of children aged 9-12 years of age showed 

hyposensitivity to touch, cold and heat in the area of surgery in addition to 

dysaesthesia (Schmelzle-Lubiecki et al., 2007). In a separate study infants 

who had surgery in the first 3 months of life and follow up surgery in the same 

dermatome, had higher pain sensitivity and required more postoperative 

morphine compared to infants with no prior surgery (Peters et al., 2005) and 

children who had suffered moderate burns at infancy (in the first 24 months of 

life) showed greater pain and sensitisation to noxious stimulation but a  

decrease in general mechanical and thermal sensitivity (at 16 years of age)  
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(Wollgarten-Hadamekl et al., 2011). Finally, boys who had been circumcised 

early in life display greater pain behaviour to immunization at age 4 compared 

to uncircumcised boys (Taddio et al., 1995). 

The aforementioned clinical studies indicate that painful experiences at infancy 

do alter pain processing later in life. However, although studies show that the 

prevalence of neuropathic pain increases with age, the long term effect of 

infant nerve injury are relatively sparse and it has  been recognised that 

neuropathic pain in adolescence has been under recognized (Howard, 2003) 

and the lack of longitudinal  studies into the long term effects of infant nerve 

injury warrants further investigation (Jones, 2011). However, the discovery that 

delayed onset of pain hypersensitivity emerges at adolescence in animal 

models is consistent with the observation that infant phantom limb pain does 

appear for many years after the original loss of limbs during infants, in some 

cases up to 3-15 years later (Melzack et al., 1997). This data may also explain 

the peak onset of complex pain syndromes such as CRPS type 2 occurs in 

adolescent patients (Walco et al., 2010). Interestingly one study has shown 

that patients with long standing CRPS exhibit significant increases in microglia 

and astrocyte immunoreactivity in their spinal cord compared to controls (Del 

Valle et al., 2009).  

As with other types of injury long term outcomes following infant nerve injury 

does vary with type of nerve injury and brachial plexus injuries and repair in 

neonates show that no patient of 5 years of age or less at the time of nerve 

injury developed chronic neuropathic pain later in life (Anand and Birch, 2002). 

It is increasingly recognised that adolescents show a relatively high prevalence 

of chronic idiopathic pain-like syndromes (Hoftun et al., 2011; Howard, 2003). 

For example, sensory polyneuropathy syndromes that appear at adolescence 

such as non-length dependent small fibre polyneuropathy that is often 

iodiopathic with symptoms presenting similar to those observed in neuropathic 

pain patients including burning and pin prick pain, and can occur at 

adolescence (Khan and Zhou, 2012). This syndrome is usually considered a 

pschogenic disorder due to a lack of awareness of its status as a distinct 

disorder but it has recently been associated with immune disorders (Khan and 

Zhou, 2012).  
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Although some patients do respond to treatment and reassurance with simple 

analgesics, a significant proportion go on to develop various degrees of 

chronicity that is difficult to treat and perplexing. Although under reported 

iodiopathic functional pain syndromes, CRPS type II and juvenile idiopathic 

arthritis which have an onset at adolescence are increasingly recognised and, 

although the underlying mechanisms and causes remain to be elucidated, 

some studies suggest that dysfunctional inflammatory processes may underlie 

these pain syndromes (Ham et al., 2009; Lahdenne et al., 2003; Low et al., 

2007; Pharoah et al., 2006; Prakken et al., 2011; Sethna et al., 2007). 

The experiments presented in this thesis suggest that a shift in the balance of 

anti- to pro inflammatory activity at adolescence may reveal a latent 

neuropathic hypersensitivity and could reveal new therapeutic avenues. 

Multiple rodent studies have shown that exogenous IL-10 and IL-4 are anti-

nociceptive in adult neuropathic models and suppress pro-inflammatory 

cytokines, microglia responses and pain behaviour, and in infants this anti-

nociceptive response naturally dominates over the pro-inflammatory response 

following nerve injury (Hao et al., 2006; Ledeboer et al., 2007; Milligan et al., 

2005a, b).  

Clinically, treatment using IL-10 remains insufficient because of difficulties in 

the route of IL-10 administration and its biological half-life (Milligan et al., 

2005a). Recently Soderquist and colleagues produced a plasmid DNA 

encoding IL-10 which is slowly released from biodegradable microparticles and 

provides long term pain relief for 70 days in an animal model of neuropathic 

pain, suggesting a potential use for intrathecal gene therapy (Soderquist et al., 

2010).  In addition Van Montfran and colleagues presented a novel method of 

IL-10 delivery by utilising transduced T cells (Van Montfrans et al., 2002). One 

advantage of using T-cells as delivery vehicles is the likelihood of IL-10 being 

released only on activation in local sites of inflammation/injury and secondly 

this would prevent systemic exposure to the retro viral vector while ensuring 

sustained gene expression. However, this technology still needs to be 

developed and tested in humans. One alternative is to utilise substances that 

are already used to treat other diseases that enhance the expression of anti-

inflammatory mediators. A recent study by Ji and colleagues has illustrated 
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that intrathecal administration of Resolvin E1 in a nerve injured rat prevented 

the development of hypersensitivity, up-regulation of microglial markers and 

TNF in the dorsal horn spinal cord and could also transiently reduce pre-

established hypersensitivity (Xu et al., 2013). However, this has the 

disadvantage of having to be intrathecal administered. One reagent of 

particular interest is Glatiramer acetate, used to alleviate the symptoms of 

multiple sclerosis and acts to induce regulatory Th2 cell responses (Dhib-

Jalbut, 2003). Oral administration of Glatiramer acetate in a rat neuropathic 

pain model reduced microglia markers and TNF while increasing the invasion 

of CD3+ and CD4+ T-cells and expression of IL-4 and IL-10 in the dorsal horn 

while attenuating neuropathic hypersensitivity (Leger et al., 2011). Future 

studies investigating the ability of anti-inflammatory reagents to treat complex 

pain syndromes that arise at adolescence warrants further study. 

 

5.6 Further work 

The experiments presented in this thesis have raised additional questions 

which could be addressed to better understand the changing pain profile 

following infant nerve injury. These include, but are not limited to;  

1. In infants seven days after SNI, what alterations occur in the in dorsal 

horn circuitry that underlie the observed reduction in the receptive fields 

and response to Von Frey hairs? How does the blockade anti-

inflammatory or application of pro-inflammatory mediators alter activity 

of dorsal horn neurones of nerve injured infants? 

2. What is the origin of infant SNI induced IL-10 and IL-4 in the dorsal 

horn? What mechanisms underlie the switch from anti to pro-

inflammatory responses in the dorsal horn at the time of pain-like 

behaviour onset following infant nerve injury?  Can the immune balance 

in the dorsal horn spinal cord of animals prior to the onset of pain-like 

behaviour be manipulated to further delay the onset of pain behaviour? 

Do mice lacking in key pro-inflammatory mediators develop pain-like 

behaviour following infant nerve injury?  
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5.7 Conclusion 

The experiments presented in this thesis have examined the long term 

consequences of infant peripheral nerve injury to show a delay in the onset of 

pain-like behaviour does occur in response to stimulation with a range of 

stimuli. The alterations in dorsal horn processing and the immune profile in the 

dorsal horn have also been characterised in infants in the early and late period 

following infant nerve injury and, for the first time, responses of dorsal horn 

neurons in SNI treated adult rats have also been examined using in vivo 

electrophysiological recordings. These studies indicate that neuropathic pain 

behaviour following early life peripheral nerve injury is not absent, but 

suppressed by neuro-immune activity. This is characterised by an anti-

inflammatory profile in the infant dorsal horn spinal cord that can be evoked by 

brief C-fibre stimulation. This suggests that the release of anti-inflammatory 

mediators at this age is directly activated by neurotransmitter release from C-

fibre terminals in the dorsal horn upon nerve injury. Infant nerve injury may 

have consequences later in life resulting in alterations that occur centrally in 

the dorsal horn spinal cord characterised by an increase in dorsal horn 

neuronal activity and a shift in the balance from anti- to pro inflammatory 

activity at adolescence to reveal a latent neuropathic pain hypersensitivity, 

similar to that observed in the adult. The data therefore provides a mechanistic 

explanation for the currently poorly understood paediatric chronic pain states 

that emerge at adolescence that may be the result of an earlier trauma or injury 

whose effects have been masked until later in life by the local CNS immune 

suppression
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