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Abstract

Complex systems which can be modelled as networks are ubiquitous. Well-known examples in-

clude social and economic networks, as well as many examples in cell biology such as gene reg-

ulatory and protein signalling networks. Many cell biological processes are inherently stochas-

tic and non-stationary, and this is the perspective from which I have developed novel mathe-

matical and computational statistical models, focusing particularly on network models. These

models are primarily motivated by cell biological processes relating to DNA methylation and

stem cell and cancer biology, but can be generalised to other systems and domains. I have used

these and other models to identify and analyse novel DNA-based cancer biomarkers.
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Chapter 1

Introductory Material

1.1 Background to the work

1.1.1 Epigenomics and DNA methylation

Epigenetic information is stored in the genome in the form of heritable modifications to the

chemical structure of DNA, such as methylation of particular bases, as well a variety of chemical

modifications of the histone proteins which package the DNA. This epigenetic information

is changed much more easily and more often than the genetic information contained in the

sequence of nucleotides: genetic and epigenetic information have been likened to ‘nature’s pen

and pencil set’ (Gosden & Feinberg, 2007). Epigenetic information can be modulated during

the lifetime of an organism by, for example, diet and other environmental cues (Teschendorff

et al. , 2009) and these changes persist in subsequent mitosis, leading to an acquired change of

phenotype.

DNA methylation is an epigenetic mark consisting almost entirely of the methylation of

CpG dinucleotides (Bernstein et al. , 2007), and most CpGs in the genome are methylated

(Bird, 2002). It is possible for one, both, or neither alleles at a particular genomic locus to be

methylated (Li et al. , 2010), and methylation states of specific loci and alleles are propagated

in mitotic cell division via ‘maintenance’ methyltransferase DNMT1 (Bernstein et al. , 2007).

The methylation of CpGs in the promoter region of a gene is associated with a silencing of that

gene, and this effect is particularly important in cancer, where such aberrant gene silencing is

associated with functional changes important in every stage of tumour progression (Jones &

Baylin, 2002).

CpGs tend to cluster together in short regions of around 1kb (Jones, 2012) with high C, G

and CpG densities, termed CpG islands (CGI), and CpGs in these regions tend to be hypomethy-

lated relative to the methylation level of CpGs outside. In humans, about 60% of gene promoter

regions are associated with CGIs (Bernstein et al. , 2007). Hypermethylation of CpGs in the
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gene promoter, i.e., the region close to the transcriptional start site (TSS), are incontrovertibly

associated with silencing of the corresponding gene (Jones, 2012), although gene silencing as-

sociated with hypermethylation of a gene’s promoter region is not exclusively associated with

promoter regions aligned with CGIs (Blelloch et al. , 2006). It is also questionable whether pro-

moter methylation initiates the gene silencing or vice versa, with the latest evidence in support

of the second of these scenarios (Jones, 2012).

Polycomb group proteins (PcG) play a fundamental role in development. They maintain

a class of genes known as polycomb group targets (PCGTs) in a repressed state in ES (em-

bryonic stem) cells, to maintain pluripotency, and ‘poised for activation’ during differentiation

(Lee et al. , 2006). The link between PCGTs and cancer has been discussed by many authors

(Widschwendter et al. , 2006; Ohm et al. , 2007; Schlesinger et al. , 2006). It was recently

shown that DNA hypermethylation in cancers preferentially targets PCGTs which are develop-

mental regulators (Easwaran et al. , 2012), and that this may hence contribute to the stem-like

characteristics of cancer. In further support of these ideas it has been noted that tumours which

are particularly poorly differentiated tend to display expression patterns which are similar to ES

cells, including repression of PCGTs (Ben-Porath et al. , 2008).

Polycomb group proteins maintain the repressed state of genes via chromatin (the DNA

packaging). DNA in its compact state is wrapped around histone proteins (a main component

of chromatin). PRC2 (polycomb repressive complex 2) is responsible for the trimethylation of

lysine 27 of histone 3 (leading to the epigenetic mark H3K27me3), which is associated with this

compact state (Jones, 2012). Genes occupied by PRC2 in ES cells mostly carry bivalent chro-

matin marks (Easwaran et al. , 2012). Bivalency includes the histone modification H3K4me3

(trimethylation of lysine 4 on histone 3), a mark which is associated with activation of the cor-

responding gene, in addition to the repressive H3K27me3 mark. It is thought that it is this

bivalent state which maintains stemness, keeping the gene repressed, but poised for activation

upon differentiation. Because DNA methylation is also associated with repression and activa-

tion of genes, it is of interest whether genes that carry the chromatin markings H3K27 and/or

H3K4me3 in stem cells have altered methylation patterns in cancer, as this might be associated

with a return or accentuation of stem-like cell characteristics.

1.1.2 Network models

Networks and other non-Euclidean relational datasets have become important applications in

modern statistics. An important consideration is balancing statistical fidelity with computa-

tional tractability. For network data, much attention has been on parametric models, such as

degree based models, and community based alternatives (Holland et al. , 1983; Bickel & Chen,



1.1. Background to the work 14

2009; Rohe et al. , 2011; Qin & Rohe, 2013; Wilson et al. , 2013). One of the most widely

studied of these models is the stochastic blockmodel, in which, under the assortative assump-

tion, there is a greater probability of observing an edge (or interaction) between a pair of nodes

(or individuals) if they are in the same block, or community. The problem of finding commu-

nities in social and biological networks has been studied for many years (Girvan & Newman,

2002). Real life examples of this problem include identifying groups of friends in a social net-

work, and identifying functional subnetwork modules in a biological network. In the biological

setting, considering groups of genes defined together as subgraphs can lead to great increases

in statistical power, aiding discovery of novel biological phenomena (Jacob et al. , 2012; Li

& Li, 2010; Peng et al. , 2010). The solution to this problem is often based on maximising

the Newman-Girvan modularity (Newman & Girvan, 2004). The Newman-Girvan modularity

quantifies the extent to which edges are observed between community members, for a particu-

lar assignment of nodes to communities, compared with the expected number of edges between

community members if there were no community structure present. It can be shown that fitting

the stochastic blockmodel and maximising the Newman-Girvan modularity over a network are,

under certain conditions, both equivalent to spectral clustering (Bickel & Chen, 2009; Newman,

2013).

It has been shown recently that the stochastic blockmodel can be used to represent any ex-

changeable network as a ‘network histogram’, even if the generative mechanism of the network

is not that of the blockmodel (Olhede & Wolfe, 2014). Exchangeable means here that the or-

dering of its nodes carries no information (Diaconis, 1977; Bickel & Chen, 2009). The network

histogram and the blockmodel in general are piecewise-constant approximations of an under-

lying function, called the ‘graphon’ (Wolfe & Olhede, 2013), in the sense that the graphon

function can be thought of as the generative mechanism of the data. The network histogram

also provides a method to estimate the optimal number of blocks, or communities, which a

valid blockmodel representation of the network comprises, if there is a smooth function in the

graphon equivalence class. This is important and useful, because it means that the blockmodel

can be used to identify, for example, an unknown number of communities in a social network,

or an unknown number of functional subnetwork modules in a biological network. The network

histogram method (Olhede & Wolfe, 2014) can be used to estimate the optimal granularity at

which communities, or functional subnetwork modules, can be identified and isolated in social

and biological networks, by fitting the stochastic blockmodel.

Over the past few years in cell biology, much of the focus has shifted from investigation

of individual genes, to pathways of genes, to gene networks. The need for novel methodology
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for network analysis in cell biology results from this recognition that examining the way genes

work in groups is often more successful in revealing biological principles. Further, by consid-

ering groups of genes together as communities, statistical significance can be obtained which

would not be possible at the level of individual genes. Many genes regulate, directly or indi-

rectly, the behaviour (such as expression level) of other genes. Hence, networks are a natural

way to model this gene regulatory and associated behaviour (e.g., relating to cell signalling).

As a cancer progresses, its signalling and control networks are re-arranged (‘re-wired’), and

this drives adaptive alterations in phenotype, which are advantageous for the cancer (Barabási

& Oltvai, 2004). Previous research has found that patient survival outcome in breast cancer

(BRCA) could be predicted well by network models of this re-wiring, based on gene expres-

sion data (Taylor et al. , 2009). It is well established that DNA methylation plays a major role

in gene regulation, and therefore DNA methylation patterns often reflect patterns of gene regu-

lation. It has been previously shown that DNA methylation can serve as a surrogate for activity

at genomic-regulatory regions (Brocks et al. , 2014). Hence, DNA methylation measurements

are well suited as a basis from which to infer information about the topology and behaviour of

genomic regulatory and associated networks.

1.2 Aims for the work

Changes in DNA methylation are highly stochastic. The time-scale over which these changes

take place is much quicker than mutations in the basic DNA code, but much slower than the

transient and periodically varying expression level of individual genes. This time-scale is ideal

for biomarker development. DNAm measurements are also taken directly from DNA, whereas

gene expression measurements must come via RNA. Hence, DNAm patterns might be expected

to lead to more reliable disease biomarkers than gene expression patterns. Further, differences

in DNA methylation levels are among the earliest changes in human carcinogenesis (Feinberg

et al. , 2006). Therefore, DNA methylation data are thought to be extremely promising as a

basis for the development of novel biomarkers. A major aim of this work is to inform the

development of DNA-based biomarkers, and this is the main reason for the focus in this work

on DNA methylation patterns.

The study of network models is a fascinating area of mathematical statistics on the most

abstract level, and is a topic of much current interest in that field. Network models are also very

well suited to analyse many equally fascinating problems of current interest in cell biology.

Both fields stand to gain from this situation: new questions are raised by the field of cell biology,

which give rise to new directions in mathematical statistics. In the process, cell biology acquires
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new models and techniques with which to approach some difficult questions. My main aim is

that the work presented here is of interest and relevance both to mathematical statisticians, and

to cell biologists.

This thesis is organised as follows. In chapter 2, I introduce statistical measures of stochas-

tic processes in intra-gene DNA methylation patterns, and investigate the association of these

patterns with cancer. In chapter 3, I develop time-series methodology to infer differential net-

work patterns in time-course DNA methylation measurements, of differentiating healthy and

cancer stem cells. In chapter 4, I develop novel statistical network methodology to infer net-

works, and communities (i.e., groups of entities within these networks, amongst which there is a

high density of interactions), from a range of matrices which measure the strength of interactive

behaviour, between pairs of entities or variables. Such matrices may include covariance and

correlation matrices, and test-statistics from arbitrary distributions (which may be expressed as

‘p-values’). The methodology of chapter 4 is relied upon for the work carried out in chapters

5, 6 and 7. In chapter 5, I develop novel statistical methodology to infer and represent groups

(called ‘co-communities’), of strongly interacting entities or variables which are of two funda-

mentally different types, in bipartite networks. In chapter 6, I draw on the findings of chapter 2

to develop DNA-based prognostic biomarkers, based on stochastic processes in DNA methyla-

tion. In chapter 6, I also draw on the findings of chapters 4 and 5, to find groups of genes which

strongly interact or are otherwise highly co-associated in terms of DNA methylation stochastic-

ity and gene expression, deriving further biological meaning and suggesting new directions for

experimental investigation. In chapter 7, I develop a measure of the strength of network interac-

tion between pairs of genes based entirely on DNA methylation data, and I draw on the findings

of chapter 5 to infer groups of strongly interacting, or highly co-associated genes. These groups

form potential DNA methylation network biomarkers for cancer.

1.3 Publications

The findings of chapter 2 have been published as the following journal article: Bartlett, T. E.,

Zaikin, A., Olhede, S. C., West, J., Teschendorff, A. E., & Widschwendter, M. (2013). Corruption

of the intra-gene DNA methylation architecture is a hallmark of cancer. PloS one, 8(7), e68285.

Chapter 3 is based on methodology which contributed to a journal article currently under

review at Cell Stem Cell: Carn H., Stricker S. H., Gagrica S., Bartlett T. E., Feber A., Wilson

G., Teschendorff A. E., Beck S., & Pollard S. M. BMP signalling does not trigger terminal

differentiation of glioblastoma stem cells.

The findings of chapter 4 are included in a journal article currently under review at the
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Journal of Applied Statistics: Bartlett, T. E. Community detection and network inference, based

on covariance matrices and test statistics from arbitrary distributions.

The findings of chapter 5 are being prepared for submission to the Journal of the Royal

Statistical Society Series C: Bartlett, T. E., & Olhede, S. C. Co-modularity and Co-community

Detection in Large Networks.

The findings of chapter 6 are included in a journal article currently under review at PLoS

Medicine: Bartlett, T. E., Jones, A., Goode, E. L., Fridley, B. L., Cunningham, J. M., Berns,

E. M. J. J., Wik, E., Salvesen, H. B., Davidson, B., Trope, C. G., Lambrechts, S., Vergote, I.,

& Widschwendter, M. Intra-gene DNA methylation variability is a technically and clinically

independent prognostic marker in women’s cancers.

Some of the findings of chapter 7 have been published as part of a journal article: Bartlett,

T. E., Olhede, S. C., & Zaikin, A. (2014). Detection of Epigenomic Network Community Onco-

markers. PloS one, 9(1), e84573.

Some of the findings of chapter 7 have appeared as part of a conference paper: Bartlett, T.

E., Olhede, S. C., & Zaikin, A. (2014). Novel Statistical Network Methodology to Identify and

Analyze Cancer Biomarkers. Joint Statistical Meeting Proceedings, Statistical Epidemiology

Section. American Statistical Association, Boston, MA, U.S.A.

The rest of the findings of chapter 7 are included in a journal article currently under review

at the Annals of Applied Statistics: Bartlett, T. E., & Zaikin, A. DNA Methylation Network

Community Oncomarker Detection.

Work I did during this PhD, but which is not included in this thesis, has also been published

as part of a journal article: Teschendorff A. E., Marabita F., Lechner M., Bartlett T. E., Tegner

J., Gomez-Cabrero D., & Beck, S. (2013). A beta-mixture quantile normalization method for

correcting probe design bias in Illumina Infinium 450K DNA methylation data. Bioinformatics,

29(2):189-196.



Chapter 2

Corruption of the Intra-Gene DNA

Methylation Architecture Is a Hallmark of

Cancer

2.1 Introduction

Differences in DNA methylation levels - in particular hypermethylation of genes with tumour

suppressor function or involvement in stem cell biology - are among the earliest changes in

human carcinogenesis, and hence offer novel strategies to identify individuals who might be at

risk of developing such illnesses or individuals with early stage cancers. However, to proceed

with developing such tests, measures of DNA methylation are needed which can be consistently

linked to clinically relevant differences such as disease states of samples.

The role of early epigenetic changes in oncogenic transformation, including disruption of

the healthy epigenotype of progenitor cells, the creation of an epigenetically permissible envi-

ronment in which genetic aberrations can have tumorigenic effects, and phenotypic plasticity

leading to tumour adaptation and associated with intra-tumour heterogeneity, was originally

proposed by (Feinberg et al. , 2006). More recently, the effect of stochastic noise as an epi-

genetic phenomenon and its effect on phenotypic plasticity has been explored by (Pujadas &

Feinberg, 2012). It is hypothesised that one way in which stochastic dysregylation of stem cell

genes (such as PCGTs) and associated phenotypic heterogeneity might manifest, is in terms of

changes to intra-gene methylation variability. As such, a change in intra-gene methylation vari-

ability may be closely linked to the creation of an epigenetically permissible environment for

oncogenic transformation, and to tumourigenesis. Such changes would be expected to accom-

pany the early stages or even precede the onset of the disease, and hence identifying reliable

indicators of such changes might provide a valuable lead in the search for markers for use in

screening programmes or early diagnosis.
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Recently, evidence together with plausible biological mechanisms have been presented

(Jaffe et al. , 2012) suggesting that variability of methylation at specific genomic locations is

important in the development of cancer. It has been noted in particular that there is an increase

in stochastic methylation variability in regions which are already known to have altered levels

of methylation in cancers, leading to aberrant and varying gene expression, and providing an

epigenetic mechanism for tumour heterogeneity (Hansen et al. , 2011). Intra-gene methylation

variability is deemed to be a disruption of the normal methylation profile, or architecture, of a

particular gene, and such a change may be more generally linked to the creation of an epige-

netically permissible environment for oncogenic transformation, and to tumourigenesis. Such

changes would be expected to accompany the early stages or even precede the onset of the dis-

ease, and hence identifying reliable indicators of such changes might provide a valuable lead

for the development of DNA-based cancer biomarkers in bodily fluids.

Previous studies (Jaffe et al. , 2012; Teschendorff & Widschwendter, 2012; Teschendorff

et al. , 2012) have focussed on the effects of sample to sample variability of methylation;

here for the first time, I analyse the association of phenotype with intra-gene variability of

methylation (IGV). Making use of DNA methylation data derived from the Illumina Infinium

HumanMethylation450 platform, which interrogates > 485000 CpGs genome-wide including

> 330000 with known gene annotations (corresponding to on average 17 CpGs per gene), I

have analysed IGV in 681 normal and 3284 cancerous samples, taken from 14 different cancer

entities.

2.2 Results
To investigate intra-gene methylation architecture, four gene-centric measures are considered,

as follows:

1. The mean deviation of the sample methylation profile from the mean methylation profile

of healthy phenotype control samples, for each gene. This mean methylation profile may

fluctuate a lot within each gene, and so it is not the same as the mean methylation level

of a gene. Because this mean deviation is normalised at every probe by dividing by the

probe standard deviation across the healthy phenotype control samples, it is called the

‘mean z-score’ measure; this is illustrated in figure 2.1(a). An example of one of the

genes found to be most significant according to this measure is shown in figure 2.1(b)

and (c).

2. The mean derivative of the methylation measurements for each gene. The derivative of

the methylation profile for a given gene and sample is approximated by the differences
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between the methylation values measured at consecutive probes mapping to that gene.

The mean of the absolute values of these differences is then calculated as the ‘mean

derivative’ measure; this is the same as the sum total of all the increases and decreases

in methylation level from one probe to the next across the gene. This is a self-calibrating

measure of intra-gene methylation variability, because it is calculated for a given sample

without reference to any other sample.

3. The mean of the methylation measurements for a particular genomic region for each

gene. Typical mean methylation levels vary greatly from one genomic region to another;

hence the mean methylation level for a particular genomic region was used as the ‘mean

methylation measure’ for a gene, and the same region was used for each gene.

4. The variance for each gene of the methylation measurements for a particular genomic

region. Because variance is calculated in relation to the mean, this measure was similarly

calculated for each gene using only the probes mapping to a particular genomic region,

again using the same genomic region for each gene. This is called the ‘methylation

variance’ measure; it is another self-calibrating measure.

These four measures each seek to examine a different characteristic of intra-gene methylation

architecture, and all are able to classify samples one-by-one, i.e., they are intra-gene or intra-

sample measures, rather than sample to sample measures as has been investigated previously in

the context of methylation variability.

healthy cancer total
BRCA 98 586 684
UCEC 36 334 370
THCA 50 357 407
LUAD 32 306 338
BLCA 18 126 144
LUSC 43 227 270
COAD 38 258 296
HNSC 50 310 360
KIRC 160 283 443
LIHC 50 98 148

READ 7 96 103
PRAD 49 176 225
KIRP 44 87 131

PAAD 6 40 46

Table 2.1: Number of samples in each data set

As the mean z-score is calculated as

a mean measure of methylation difference

from the healthy methylation profile, strictly

speaking it is a measure of methylation in-

stability. The mean derivative and methy-

lation variance measures are both measures

of intra-gene methylation variability; how-

ever, the mean derivative is calculated with

reference to the ordering of the probes (i.e.,

this measure would return a different number

if the order of the probes was randomised)

whereas the methylation variance would not; the mean derivative additionally considers all

probes mapping to the gene, whereas the methylation variance measure only considers probes

mapping to a particular genomic region. The mean methylation measure is unique here in that



2.2. Results 21

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

di,j

σi

β

Probes 5'UTR 3'UTRi

d i,j = |βi,j − μi |
zi,j = di,j σi

Mean z−scorej = 
1

n
∑zi,j

Cancer
Healthy
Healthy μ
Healthy μ +/− σ

(a)

12140000 12160000 12180000 12200000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CpG locus / bp

β

BRCA TNFRSF8 (chr 1) Cancer Healthy(b)

C
an

ce
r

H
ea

lth
y

BRCA TNFRSF8 (chr 1)
β 0−0.1 0.1−0.2 0.2−0.3 0.3−0.4 0.4−0.5
0.5−0.6 0.6−0.7 0.7−0.8 0.8−0.9 0.9−1

(c)

TSS1500 TSS200 5'UTR 1stExon Body
3'UTR Island Shore Shelf

Figure 2.1: The mean z-score measure
(a) The mean z-score is calculated for tumour sample j (shown in red) for gene g (to which n probes
map), from the mean, µi, and standard deviation, σi, of the healthy control samples at each probe i
(b) The methylation profiles of 586 cancer (red) and 98 healthy (blue) samples across a gene, with
probes spaced (unevenly) according to their genomic loci. Genomic regions are indicated under the
gene with the colour code displayed at the bottom of the figure. (c) A heatmap illustrating the same gene,
with probes evenly spaced; beta values for each sample and each probe are indicated by the colour
code displayed at the top of the figure. Samples are plotted in order of mean z-score, such that the
tumour sample with the smallest mean z-score and the healthy sample with the smallest mean z-score
are adjacent. Genomic regions are indicated under the gene with the colour code displayed at the bottom
of the figure. N.B., this gene has two transcriptional start sites (TSSs) in different locations.

it does not measure difference in methylation level and instead measures absolute methylation

level; it is included here mainly for comparison.

The properties of these four measures were initially investigated in the context of fourteen

Illumina Infinium Human Methylation 450 data sets, which were downloaded from The Cancer

Genome Atlas (TCGA) (Collins & Barker, 2007). I applied these four measures to the four-

teen TCGA data sets; in all, I analysed 450K DNAm data from 3284 tumour and 681 healthy

samples; details of the number of samples of each phenotype and in each data set are shown

in table 2.1 (for data set abbreviations, see ‘methods and models’). I also carried out a meta-

analysis of these data which is to my knowledge the largest meta-analysis performed in any

DNA methylation study.

2.2.1 Comparison of intra-gene methylation measures

As a preliminary assessment of the relative merits of these four measures, I looked at their

ability to distinguish between tumour and healthy tissue. The correlation of the tissue sample

phenotype to the four methylation measures was considered in terms of distributions of per-
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Figure 2.2: Distributions of per-gene AUCs calculated from intra-gene methylation measures
Each box displays the values of the AUCs for the 1000 most significant genes for a particular tumour
type and intra-gene methylation measure. The mean z-score predicts phenotype better than the other
three measures in all 14 tumour types. Tumour type abbreviations are as follows: Bladder Urothelial
Carcinoma (BLCA), Breast Invasive Carcinoma (BRCA), Colon Adenocarcinoma (COAD), Head and
Neck Squamous Cell Carcinoma (HNSC), Kidney Renal Clear Cell Carcinoma (KIRC), Kidney Renal
Papillary Cell Carcinoma (KIRP), Liver (LIHC), Lung Adenocarcinoma (LUAD), Lung Squamous Cell
Carcinoma (LUSC), Pancreatic Adenocarcinoma (PAAD), Prostate Adenocarcinoma (PRAD), Rectum
Adenocarcinoma (READ), Thyroid Carcinoma (THCA), and Uterine Corpus Endometrioid Carcinoma
(UCEC).

gene AUCs (area under curve, which is a measure of prediction accuracy, see ‘methods and

models’ for details). These distributions are shown in box-plots in figure 2.2. For every data

set, the mean z-score measure is significantly better at discriminating tumour from healthy tis-

sue using these methylation data, than the mean derivative measure, the methylation variance

measure, and the mean methylation measure (visual comparison of figure 2.2 was confirmed

by Kolmogorov-Smirnov tests, data not shown); this is because the mean z-score measure is

defined relative to the healthy mean methylation profile. Excluding the mean z-score measure,

the mean methylation measure is significantly better at discriminating tumour from healthy tis-

sue than the remaining two measures in ten of the remaining data sets, with the mean derivative

discriminating significantly better in two data sets (READ and THCA), and inconclusive results

for the remaining data sets (KIRC and PAAD, which has unstable results due to small sample

size).

I investigated the overlap of the top-ranked genes according to each measure (figure 2.3).

These four methylation measures are seen to be complimentary in that there are lower ranked

genes according to each measure (genes further towards the bottom of each vertical bar) which

are significant according to the other measures (indicated by colour coded lines); however the

mean z-score appears to offer the most complimentary information because some of the top

1000 most significant genes according to this measure (coloured red) are frequently found

among the lower ranked genes according to the other measures (towards the bottom of the

vertical bars).
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To directly compare the effectiveness of the mean z-score measure at predicting phenotype

(cancer/healthy) independent of mean methylation level, a logistic regression model was fitted

to each gene using mean z-score and mean methylation as covariates, leading to p-values for

each gene for each of mean z-score and mean methylation. In every data set except two, for the

large majority (80-100%) of those genes with at least one of the two covariates significant, the

mean z-score covariate p-value was more significant than the corresponding mean methylation

covariate p-value. In the remaining two data sets, the mean z-score covariate p-value was more

significant for the majority (50-80%) of genes with at least one significant covariate (detailed

results not shown). Hence, the mean z-score is a better predictor of phenotype than the mean

methylation, even after adjustment for mean methylation level.

2.2.2 Meta-analysis and gene-set enrichment analysis

A meta-analysis of the fourteen data sets was carried out. Genes were assigned significance

according to their mean AUC (based on the mean z-score measure) across all data sets by a

permutation method (see ‘methods and models’ for details); this identified over 4000 signif-

icant genes which were associated with a consistent difference between cancer and healthy

phenotypes across tissue types (FDR q ≤ 0.05). These genes consistently show the biggest

differences between healthy and cancer phenotypes (as the mean z-score measure is defined

relative to healthy control samples), and as the mean z-score is a measure of methylation insta-

bility, they are termed the most unstable meta-analysis genes, ‘MUs’. The mean z-scores for

individual tumour and healthy samples for the 50 most significant of these MUs meta-analysis

genes are displayed in figure 2.4. In particular, figure 2.4 shows the extent to which the instabil-

ity is consistent (high mean z-score, red) across cancer patients as compared to healthy patients

(low mean z-score, blue). Genes with a mean AUC close to 0.5 across most tumour types were

also found; these are genes which tend to have the smallest differences between healthy and

cancer phenotypes across tissue types and hence are marked as least unstable meta-analysis

genes, ‘LUs’. Over 2800 LUs genes were found to be significant by this permutation method

(FDR q ≤ 0.05).

To confirm the biological significance of the findings of this meta-analysis with reference

to genes which are well known to be important in cancer biology, the MUs and LUs genes were

tested for enrichment by genes which in ES cells carry the repressing/activating chromatin

marks H3K27me3 (H3K27 ES genes), H3K4me3 (H3K4 ES genes) and bivalent (i.e., both

H3K27me3 and H3K4me3 marks, Biv ES genes) and enrichment by PCGTs (ES cell polycomb

group targets); MUs are highly enriched by Biv and H3K27 ES genes and PCGTs, and LUs

genes are highly enriched by H3K4 ES genes (table 2.2). A more general gene-set enrichment
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Figure 2.3: Overlap of genes found as significant according to each of the intra-gene methylation mea-
sures

For a given tumour type, for each methylation measure genes are ranked according to their significance
as defined by the AUC measures summarised in figure 2.2. Then for each measure with genes ranked in
this way, the locations of the top 1000 genes according to each of the other three measures are displayed
with colour coded lines (these colours are as defined at the top of the figure). Hence, for each tumour
type, there are 12 vertical bars of horizontal lines: for each of the four methylation measures, there is
a set of three of these vertical bars, with one bar for each of the remaining three methylation measures.
The horizontal lines in each of these three bars in a set have the same ordering (which is according to
significance due to the methylation measure indicated under the set of three bars); each vertical bar
is then coloured to indicate significance according to the three other methylation measures, with the
1000 most significant genes according to each of these methylation measures indicated with a coloured
horizontal line. The four methylation measures are complimentary because there are lower ranked genes
according to each measure (genes further towards the bottom of each vertical bar) which are significant
according to the other measures; however the mean z-score appears to offer the most complimentary
information because some of the top 1000 most significant genes according to this measure (coloured
red) are frequently found among the lower ranked genes according to the other measures.
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Figure 2.4: Heatmap of the mean z-score for the top 50 genes found by the meta-analysis
Mean z-scores for tumour (T) and healthy (H) samples are displayed in a heatmap according to the
colour code for the top 50 meta-analysis genes (top 50 MUs genes). The heatmap shows the extent to
which the instability is consistent (high mean z-score, red) across cancer patients as compared to healthy
patients (low mean z-score, blue). For each tissue type healthy samples appear to the right of tumour
samples; where no space is available the (H) label is omitted. Abbreviations: R (READ), B (BLCA),
K(KIRP), P (PAAD).
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H3K27 H3K4 Biv PCGT
MUs 1.43× 10−28 1 5.19× 10−278 1.77× 10−234

LUs 1 4.33× 10−70 1 1

Table 2.2: Enrichment of MUs and LUs genes by stem cell genes
P-values (one-sided Fisher’s exact test) show enrichment of MUs (most unstable meta-analysis genes)
and enrichment of LUs (least unstable meta-analysis genes) by genes in various SC categories. This
confirms the biological significance of the findings of the meta-analysis with reference to these genes
which are well known to be important in cancer biology.

analysis (GSEA) was also carried out, testing enrichment of the MUs and LUs genes by mem-

bers of over 6000 gene sets (see ‘methods and models’ section for details). In particular, the

MUs genes show enrichment by many developmental and cell signalling gene sets.

The MUs genes are associated with generally higher methylation levels than genes which

are not significant according to the meta-analysis (i.e., genes which are neither MUs or LUs)

for both tumour and healthy samples, for these genomic regions located closer to the promoter

across all tissue types, however the MUs genes are also associated with a large variability of

methylation levels. The LUs genes conversely are associated with consistently very low levels

of methylation in both tumour and healthy samples for these genomic regions, and particularly

for TSS200, 5’UTR and 1stExon, suggesting that the low methylation instability of these genes

is associated with a lack of methylation in the most functionally important genomic regions

in both diseased and normal tissues, and therefore that regulation of these genes is by mecha-

nisms other than those involving DNA methylation, in particular the availability of transcription

factors.

2.2.3 Correlation of tumour gene expression with intra-gene methylation architecture

In order to investigate the effect of intra-gene methylation architecture on gene expression, the

217 BRCA tumour samples with matched gene expression and methylation data available from

TCGA were considered in more detail. For each gene a non-linear multivariate regression anal-

ysis was performed (see ‘methods and models’) of gene expression to intra-gene methylation

architecture, for these matched tumour samples, taking gene expression as the response, and

taking one of mean z-score, mean derivative and methylation variance as one covariate predic-

tor, together with mean methylation as a second covariate predictor. The relative proportions

of genes found as significant or not, and significant according to one covariate or the other,

or both, are shown in figure 2.5; in particular there are many genes with expression not sig-

nificantly predicted by mean methylation but significantly predicted by mean z-score, mean

derivative, or methylation variance.

Enrichment by stem cell genes of genes with expression significantly predicted by only
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Figure 2.5: Correlation of expression to intra-gene methylation architecture, for matched BRCA samples
Expression was taken as the response variable, with one of mean z-score, mean derivative and methyla-
tion variance as one covariate predictor, together with mean methylation as a second covariate predictor.
(a) The proportion of genes with at least one covariate significant (FDR q ≤ 0.05), and the proportion
of genes with neither covariate significant. (b) The proportion of significant genes (i.e., the proportion of
the genes represented by the left of each pair of bars in a) which are significant due to one, or the other,
or both covariates. For the genes which are significant due to only one covariate predictor, the propor-
tions of these genes for which the significance is due to positive or negative correlation are indicated on
the bars with / and \ respectively. There are many genes with expression not significantly predicted by
mean methylation but significantly predicted by mean z-score, mean derivative, or methylation variance.

one covariate was again tested to confirm the biological significance of findings with reference

to genes which are well known to be important in cancer biology. It was found that genes with

expression predicted by only the mean z-score covariate were significantly enriched by Biv ES

genes and PCGTs (p = 1.3 × 10−3 and p = 5.0 × 10−3 respectively, Fisher’s exact test), a

result which is consistent with the findings here that Biv ES genes are enriched among MUs

meta-analysis genes, i.e., those genes which are most consistently associated with the biggest

difference in methylation pattern between cancer and healthy phenotypes. It was also found

that, correspondingly, genes with expression predicted by only the mean methylation covari-

ate in the multivariate regression with the mean z-score covariate were significantly enriched

(p = 9.0 × 10−4, Fisher’s exact test) by H3K4 ES genes, a result which is consistent with my

findings that H3K4 ES genes are enriched among LUs meta-analysis genes, i.e., those genes

which have consistently least difference in methylation pattern between cancer and healthy

phenotypes. Similarly, it was found that genes with expression predicted by only the mean

derivative covariate were significantly enriched by Biv ES genes and PCGTs (p = 9.5 × 10−4

and p = 8.4 × 10−4 respectively, Fisher’s exact test) and that genes with expression predicted
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only by the mean methylation covariate in the same multivariate regression were significantly

enriched by H3K4 ES genes (p = 3.1× 10−4, Fisher’s exact test).

These findings extend to heterogeneous tumour phenotype, as defined by gene expression,

the idea that differences in methylation patterns in stem cell genes are a hallmark of cancer,

and shows that this can be measured by intra-gene methylation architecture in the form of

intra-gene methylation variability (according to the mean derivative and methylation variance

measures) and instability (according to the mean z-score measure) more accurately than by

mean methylation level alone.

2.2.4 Association of genome-wide mean z-score with breast cancer intrinsic subtypes

Differences in intra-gene methylation architecture between heterogenous tumour phenotypes

(as defined by gene expression) was further explored, in the context of breast cancer intrinsic

subtypes. The same 217 BRCA samples with matched gene expression and methylation data

available were each uniquely assigned to one of these disease subtypes, according to estab-

lished molecular definitions, using the PAM50 classifier (Parker et al. , 2009). This was done

by correlating the gene expression profile (Spearman correlation) for each sample to the PAM50

classifier canonical gene expression profiles for 5 different intrinsic subtypes, and for each sam-

ple choosing the subtype with the largest correlation coefficient, leading to 42 samples classified

as Basal, 24 as Her2, 81 Luminal A, 54 Luminal B, and 16 classified as Normal. For each of

these samples, a genome-wide mean z-score was also calculated, as a per-sample genome-wide

measure of intra-gene methylation architecture. The distributions of these genome-wide mean

z-scores for each intrinsic subtype are shown in figure 2.6; there are clear differences in the

means and distributions between each of the subtypes. A Kruskal-Wallis test was carried out

to check the significance of these differences, with a very significant result, p = 1.4 × 10−12.

Removing the samples classified as Luminal B and Normal (as the distributions of genome-

wide mean-z scores have larger and smaller variances, respectively, for these subtypes than the

others), still resulted in a significant result in the Kruskal-Wallis test, p = 0.023. This ability to

distinguish between heterogenous tumour phenotypes, in the context of established molecular

definitions of disease subtypes, indicates that it may be possible to use intra-gene methylation

architecture to develop new molecular classifiers of cancer, or make established ones more ro-

bust. This is particularly interesting, since methylation levels are typically more stable than

gene expression levels.
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Figure 2.6: Distributions of genome-wide mean z-score, for breast cancer intrinsic subtypes
The mean across all genes of the mean z-scores was calculated for the 217 BRCA samples with matched
expression and methylation data available. These samples were independently classified by correlation
of their gene expression profiles (Spearman correlation) with those of the PAM50 breast cancer intrinsic
subtype classifier (Parker et al. , 2009). The distributions of these genome-wide mean z-scores, for each
intrinsic subtype, are shown in the boxplots. Indicated significance was calculated using the Kruskal-
Wallis test.

2.2.5 Intra-gene methylation architecture as a predictor of clinical outcome

A preliminary test of the ability of intra-gene methylation architecture to predict clinical out-

come was carried out, using a small, publicly available pilot data set, generated as part of a

study of childhood B-cell acute lymphoblastic leukaemia (Sandoval et al. , 2013). This data set

contains methylation data generated using the same Illumina Infinium HumanMethylation450

platform, with corresponding clinical outcome data in the form of binary recurrence / non-

recurrance status (5 and 24 samples respectively), and was downloaded from Gene Expression

Omnibus (GEO).

The data were split into training and test sets, and the Elastic Net algorithm (Zou & Hastie,

2005; Friedman et al. , 2010) was used to fit the model to the training set, automatically select-

ing the subset of features (genes or CpGs), out of all those available, which model the data best.

This model fit was then used to blindly predict the outcome in the test set, and this was repeated

multiple times as part of a ‘leave two out cross-validation’ strategy (Herzberg & Tsukanov,

1986), covering every possible division of test and training set (see ‘Methods and models’ for
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further details). This analysis was carried out for the four methylation measures described, as

well as probe-level CpG beta-values, and in the case of the methylation variance and mean

methylation levels, for both gene body and TSS 200 (promoter) genomic regions; the resulting

test-set AUCs calculated across all possible test/training set permutations are shown in table 2.3.

The methylation variance performs particularly well, outperforming all other measures. On the

other hand, the mean z-score performs particularly badly; this might be because correspond-

ing healthy data for only four healthy samples was available, which could have lead to poor

estimates of the healthy population methylation parameters which this measure is calculated in

relation to.

2.3 Discussion

AUC
CpG Beta 0.78
Mean z-score 0.64
Mean derivative 0.79
Gene body variance 0.88
Gene body mean 0.77
TSS 200 variance 0.86
TSS 200 mean 0.84

Table 2.3: Association of methyla-
tion measures with clinical
outcome

Association of methylation measures with
disease recurrence, based on a small pilot
data set from a study of childhood B-cell
acute lymphoblastic leukaemia. AUCs
were calculated by fitting the model to a
training set; this model was then used for
blind prediction in a test set. AUCs re-
ported were calculated from all possible
test/training set permutations.

I have shown that the reorganisation of intra-gene

methylation architecture is a fundamental characteris-

tic of cancer cells, and that there are many ways to as-

sess these differences, which can provide complimen-

tary information. I have developed measures to detect

some of these differences, including the first investi-

gation of intra-gene variability of methylation (as op-

posed to sample to sample variability of methylation).

I have shown that my mean z-score measure is consis-

tently more effective at predicting cancer compared to

healthy phenotype than mean methylation, even after

adjustment for the mean methylation level, and I have

found an indication that intra-gene methylation vari-

ability is more effective at predicting clinical outcome

than mean methylation level or individual CpG methy-

lation level, in a small pilot study.

I have carried out what is, to my knowledge, the largest meta-analysis performed in any

DNA methylation study. In particular, over 4000 MUs genes were found to be significantly

associated with a consistent difference between cancer and healthy phenotypes, demonstrating

that, as a method for distinguishing cancer from healthy tissue, my mean z-score measure is

robust to differences between tumour types. The most significant MUs genes according to this

meta-analysis can be considered as particularly characteristic of a generalised and non tissue-

specific cancer phenotype. These significant MUs meta-analysis genes are also significantly
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enriched (table 2.2) by genes carrying H3K27 and bivalent chromatin marks in ES cells and by

PCGTs, consistent with the idea that the tumour phenotype is associated with the acquisition

of stem-like cell characteristics (Easwaran et al. , 2012). In this meta-analysis, over 2800 LUs

genes were also found to be significantly associated with an absence of difference in methyla-

tion pattern from healthy to cancer, and these are significantly enriched by genes carrying the

activating H3K4 chromatin mark in ES cells (table 2.2).

The correlation for tumour samples of gene expression to intra-gene methylation architec-

ture (figure 2.5) shows that there are a substantial number of genes for which mean methylation

is not significantly predictive of gene expression but other measures of intra-gene methylation

architecture are. In particular, in the case of my mean z-score and mean derivative measures,

genes with expression predicted by these measures and not by mean methylation are enriched

by Biv ES genes and PCGTs, suggesting that the intra-gene methylation instability and vari-

ability are able to provide important information about heterogeneous tumour phenotype (as

measured by gene expression), particularly in relation to stem-like cell characteristics, which is

beyond the reach of measures based on mean methylation level alone.

The differences in the genome-wide mean z-scores across breast cancer intrinsic subtypes

(figure 2.6) highlight the potential of intra-gene methylation architecture to distinguish between

heterogenous tumour phenotypes in the context of established gene expression based definitions

of distinct subtypes of this disease. This indicates that it may be possible to use intra-gene

methylation architecture to develop new molecular classifiers of cancer, or make established

ones more robust.

Further improvements in classification by my methods will be gained by the inclusion of

complementary epigenetic data, in particular those which measure patterns of histone modifi-

cation. As discussed, it is well established how crucial genes which carry important histone

markings in stem cells are to understanding cancer biology. By extending the view of the epi-

genetic landscape beyond DNA methylation to consider also histone markings not just in stem

cells but also in mature healthy cells and cancer cells, we will gain mechanistic insights into the

interaction between intra-gene methylation architecture and histone modifications.

In summary, I have shown for the first time that generalised differences in intra-gene

methylation architecture are a better predictor of phenotype than mean methylation level alone,

and I have developed novel measures of these differences, which offer a considerable reduction

in complexity from per CpG methylation measures (hundreds of thousands of features) to per

gene methylation measures (tens of thousands of features). I have shown that there are many

genes with expression predicted by measures of intra-gene methylation architecture other than
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mean methylation level, and therefore that more general measures of intra-gene methylation ar-

chitecture offer novel information about heterogeneous tumour phenotype (as defined by gene

expression). I have also shown that intra-gene methylation architecture is able to distinguish

between established molecular definitions of heterogenous cancer subtypes, and I have found

an indication that intra-gene methylation architecture might be a better indicator of patients

likely to suffer a recurrence of cancer, than more familiar mean or individual CpG methylation

measures. Because it has been shown previously that differences in methylation pattern occur

prior to the onset of disease (Zhuang et al. , 2012), I anticipate that my measures of intra-gene

methylation architecture might also be able to efficiently find pre-disease methylation patterns.

I therefore believe that my measures of intra-gene methylation architecture have potential for

further development as DNA based cancer biomarkers.

2.4 Methods and models

2.4.1 Data source and preprocessing

Methylation data, collected via the Illumina Infinium HumanMethylation450 platform, were

downloaded from The Cancer Genome Atlas (TCGA) project (Collins & Barker, 2007) at

level 3. These data were obtained from fourteen different tumour types, as follows: Bladder

Urothelial Carcinoma (BLCA), Breast Invasive Carcinoma (BRCA), Colon Adenocarcinoma

(COAD), Head and Neck Squamous Cell Carcinoma (HNSC), Kidney Renal Clear Cell Car-

cinoma (KIRC), Kidney Renal Papillary Cell Carcinoma (KIRP), Liver (LIHC), Lung Ade-

nocarcinoma (LUAD), Lung Squamous Cell Carcinoma (LUSC), Pancreatic Adenocarcinoma

(PAAD), Prostate Adenocarcinoma (PRAD), Rectum Adenocarcinoma (READ), Thyroid Car-

cinoma (THCA), and Uterine Corpus Endometrioid Carcinoma (UCEC).

These data were pre-processed by first removing probes with non-unique mappings and

which map to SNPs (as identified in the TCGA level 3 data); probes mapping to sex chromo-

somes were also removed; in total 98384 probes were removed in this way from all data sets.

After removal of these probes, 270985 probes with known gene annotations remained. Individ-

ually for each data set, probes were then removed if they had less than 95% coverage across

samples; probe values were also replaced if they had corresponding detection p-value greater

than 5%, by KNN (k nearest neighbour) imputation (k = 5).

Matched gene expression data were also downloaded for 217 samples for the BRCA data

set, and were quantile normalised.
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2.4.2 Intra-gene methylation measures

Four methylation measures were considered, and were calculated separately for each sample,

for each gene:

• ‘Mean z-score’: the mean of the z-scores calculated from the methylation values for the

probes mapping to the gene, with population parameters for each probe calculated from

healthy control samples

• ‘Mean derivative’: the mean absolute derivative of the methylation profile across the gene

• ‘Methylation variance’: the variance of the methylation values for probes mapping to one

genomic region of the gene

• ‘Mean methylation’: the mean of the methylation values for probes mapping to one ge-

nomic region of the gene

To calculate the mean of the z-scores for each gene, the R / Bioconductor package ‘Illumi-

naHumanMethylation450k’ (Triche & Jr., 2012) was used to identify the probes mapping to

each gene. Then for each probe, the mean and standard deviation of the methylation values

for that probe were found from healthy tissue samples, allowing a z-score zi,j for each probe i,

and for each sample j, to be calculated according to equation 2.1. By taking the mean of the

absolute zi,j for all probes i mapping to gene g, a single intra-gene methylation predictor value

xj(g) was then calculated for each gene g, for each sample j, according to equation 2.2. A

regularisation parameter, ξ, was added to each probe standard deviation when calculating probe

z-scores to prevent very large values from occurring; ξ was chosen to be 0.01 after considering

the distribution of probe standard deviations.

zi,j =
|βi,j − µ(h)i |
σ
(h)
i + ξ

=
di,j

σ
(h)
i + ξ

(2.1)

xj(g) =
1

n(g)

∑
i∈P (g)

zi,j (2.2)

where βi,j is the methylation value for probe i and sample j, µ(h)i and σ(h)i are the mean and

standard deviation of the methylation values corresponding to the relevant healthy tissue sam-

ples for probe i, n(g) denotes the number of probes mapping to gene g and P (g) is the set of

probes mapping to gene g.

To calculate the ‘mean derivative’ methylation measure, the ‘IlluminaHumanMethyla-

tion450k’ package was again used to find the probes mapping to each gene. Ordering the



2.4. Methods and models 34

probes P (g) = {i(1), ..., i (n(g))} mapping to gene g as they are positioned along the DNA,

the derivative of the methylation profile for gene g and sample j is estimated as the differences

between the beta values at consecutive probes; hence the mean derivative for this gene and

sample is estimated according to equation 2.3.

xj (g) =
1

n(g)− 1

∑
1≤k<n(g)

∣∣βi(k+1),j − βi(k),j
∣∣ (2.3)

In this way, a single intra-gene methylation predictor value xj(g) was calculated for each gene

g, for each sample j.

To calculate the ‘methylation variance’ and ‘mean methylation’ measures, first the most

effective genomic region, for each of these measures, across which to calculate these measures

for each gene, was selected. For this, annotation information for the probes used by the Illumina

Infinium platform was obtained from Gene Expression Omnibus (GEO) (Edgar et al. , 2002).

This annotation information details which probes map to one of six genomic regions for each

gene, as follows: (1) TSS1500; probes annotated to distances greater than 200bp and less than

1500bp upstream from the TSS (transcriptional start site) of the gene. (2) TSS200; probes

annotated to within 200bp upstream of the TSS of the gene. (3) 5’UTR; probes annotated to the

5-prime untranslated region of the gene. (4) 1stExon; probes annotated to the first exon of the

gene. (5) Body; other probes annotated to the gene body. (6) 3’UTR; probes annotated to the

3-prime untranslated region of the gene.

Separately for each of these genomic regions, the variance of methylation levels for each

gene for probes mapping to the genomic region in question was calculated. Then the effec-

tiveness of each genomic region at discriminating between healthy and tumour tissue was com-

pared, by considering the correlation of the tissue sample phenotype to the methylation variance

measure in terms of distributions of per-gene AUCs; the ‘Body’ (gene body) genomic region

was chosen for the methylation variance measure, as it performed best in 13 out of 14 data sets.

This methylation variance was calculated for each gene for which there was ‘Body’ annotation

information available, to give a single intra-gene methylation predictor value xj(g), for each

gene g, for each sample j.

It should be noted, however, that in general for each gene there were far more probes

annotated as ‘Body’ than for other genomic regions (table 2.4), leading to better estimates of

the methylation variance for this region. Therefore, the relative greater effectiveness of this

genomic region in this comparison does not necessarily imply biological significance. The

minimum number of probes to be able to calculate the methylation variance for a given gene
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and genomic region was set to be 3, and the methylation variance was not calculated for any

gene with any fewer annotated probes than this for a given genomic region. As there were more

genes with at least 3 probes annotated to the ‘Body’ region (table 2.4), it would be expected that

there would be more genes which significantly associate with phenotype when this genomic

region is used, which is likely to be another reason it performs better, without relevance to

biological significance.

TSS1500 TSS200 5’UTR 1stExon Body 3’UTR
Mean no. probes 2.7 2.4 2.5 1.5 7 0.82
Median no. probes 2 2 1 1 3 1
No. probes, 95% CI (0-10) (0-7) (0-13) (0-6) (0-39) (0-4)
No. genes with min 3 probes 8512 7570 5258 3734 10029 958
No. genes with min 1 probe 14259 12979 11408 12194 15858 10291
No. genes with 0 probes 4013 5293 6864 6078 2414 7981

Table 2.4: Number of probes per genomic region and gene, of 18272 annotated genes

To choose which region to use to calculate the mean methylation measure, the same pro-

cedure was followed as for the methylation variance measure; the ‘Body’ genomic region was

similarly chosen as this region correlated best with cancer/healthy phenotype in 10 out of 14

data sets. This mean methylation measure was calculated for each gene for which there was

‘Body’ annotation information available, to give a single intra-gene methylation predictor value

xj(g), for each gene g, for each sample j. It is again worth noting that it is likely to be be due

to the greater number of probes per gene annotated to ‘Body’, and the corresponding increase

in accuracy of the calculated estimates of the mean methylation, which leads to this genomic

region being more effective in this comparison, rather than there being any biological signifi-

cance to this finding. In the case of mean methylation, it was only required that there be one

probe annotated to a genomic region to allow a mean methylation level to be represented for

that genomic region for that gene, as methylation levels of neighbouring CpGs within the same

genomic region are expected to be highly correlated; again, there were more genes with at least

one probe annotated to the ‘Body’ region than the other regions (table 2.4), similarly suggesting

a reason for its better performance other than biological significance.

2.4.3 Comparison of intra-gene methylation measures

Methylation measures were assessed according to the distributions of their per-gene AUCs.

The AUC is the ROC (receiver-operator characteristic) ‘area under curve’ and is defined as the

probability that a randomly chosen item from the ‘positive’ class will be scored higher than a

randomly chosen item from the ‘negative’ class (Fawcett, 2006).

The same procedure was used for the main comparison of intra-gene methylation mea-
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sures, for the choice of genomic region used in the methylation variance measure, and for the

choice of genomic region used in the mean methylation measure. In this procedure, each data

set was split half and half into a training and test set, maintaining the same proportion of can-

cer and healthy samples in both sets. Using only the training set, AUCs were calculated for

all genes, and the top 1000 genes were selected as those with the best AUC. Then using the

test set, an AUC was calculated for each of these top 1000 genes identified in the training set.

For the mean z-score measure, the mean healthy methylation profiles and healthy methylation

standard deviations calculated from the training set were used to calculate the z-scores for both

the cancer and healthy samples in the test set. The distributions of these test-set AUCs were

compared in distribution density plots and using the Kolmogorov-Smirnov test (figure 2.2).

2.4.4 Meta-analysis and gene-set enrichment analysis

A meta-analysis of the fourteen data sets was carried out. The mean across all data sets of

the per-gene AUCs generated from the mean z-score measure was calculated for each gene.

Significance was then assigned to each of these per-gene mean AUCs by similarly calculating

null mean AUCs after permuting AUCs within data sets. This resulted in 4267 significant most

unstable (MUs) meta-analysis genes with FDR q-value (Benjamini & Hochberg, 1995) less than

5%, i.e., those genes corresponding to the upper tail of the null mean AUC distribution, which

are associated with a consistent difference between cancer and healthy phenotypes across tissue

types. This permutation method also resulted in 2818 significant (FDR q ≤ 0.05) significant

least unstable (LUs) meta-analysis genes, i.e., those genes corresponding to the lower tail of the

null mean AUC distribution, which were associated with least difference from healthy to cancer

phenotype across tissue types.

To confirm the biological significance of the findings of this meta-analysis with reference

to genes which are well known to be important in cancer biology, the MUs and LUs genes

were tested for enrichment by genes which in ES cells carry the repressing/activating chro-

matin marks H3K27me3 (H3K27 ES genes), H3K4me3 (H3K4 ES genes) and bivalent (i.e.,

both H3K27me3 and H3K4me3 marks, Biv ES genes) and enrichment by PCGTs (ES cell

polycomb group target genes) using the one-tailed Fisher’s exact test. A more general gene-

set enrichment analysis (GSEA) was also carried out both on the MUs and LUs genes; 6811

gene set definitions were downloaded from the Broad Institute Molecular Signatures Database

http://www.broadinstitute.org/, and each gene set was tested separately for enrichment among

the significant genes. Enrichment was again tested using the one-sided Fisher’s exact test,

finding 1048 and 778 gene sets significantly (FDR q ≤ 0.05) enriched by MUs and LUs meta-

analysis genes respectively.
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2.4.5 Correlation of tumour gene expression with intra-gene methylation architecture

For the 217 BRCA tumour samples for which matched gene expression and methylation data

were available, for each gene a multivariate regression analysis of gene expression and intra-

gene methylation architecture was carried out. Gene expression was used as the response, with

one of mean z-score, mean derivative and methylation variance as one covariate predictor, and

with mean methylation as a second covariate predictor. As it was expected that this relationship

would be non-linear, and as for a non-specified non-linear monotonic function the ranks of

data points in response and predictor variables are linearly related if there is a good association

between these variables, the ranks of each of the variables across the samples were correlated

to one another, as follows.

Defining for gene g the ranks of the samples according to the expression data as r(e)(g),

the ranks of the samples according to the mean z-score, mean derivative or methylation variance

as r(x)(g), and the ranks of the samples according to the mean methylation as r(m)(g), the data

were modelled according to equation 2.4:

r(e)(g) = α(g)r(x)(g) + γ(g)r(m)(g) + µ(g) + ε (2.4)

where µ(g) is the intercept term for gene g, and ε is the model error. Where r(e)(g) is well-

correlated with r(x)(g), similar integer entries in these vectors (corresponding to similar ranks)

will appear in similar positions in these vectors (N.B., these vectors are not themselves or-

dered). This will then be reflected as a small p-value for this comparison (calculated from the

corresponding t-statistic for the linear model α(g) coefficient), and similarly for r(m)(g) (and

corresponding γ(g) coefficient), if it is well-correlated with r(e)(g).

This linear model was applied to the data for each gene present in the matched expression

and methylation data for the BRCA dataset. ‘Body’ annotated probes were again used to cal-

culate the methylation variance and mean methylation measures as used in this model, because

probes annotated to this genomic region produced, in both cases, the greatest number of signif-

icant p-values (for the respective covariate), as compared to using probes annotated to each of

the other genomic regions.

2.4.6 Association of clinical outcome with intra-gene methylation architecture

A childhood B-cell acute lymphoblastic leukaemia data set, with corresponding clinical out-

come data in the form of binary recurrence / non-recurrance status (5 and 24 samples respec-

tively, together with 4 healthy samples), was downloaded from the Gene Expression Omnibus

http://www.ncbi.nlm.nih.gov/geo/ under accession number GSE39141, and these data were sim-
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ilarly pre-processed. The Elastic Net method (Zou & Hastie, 2005) was then used to predict

recurrence status in a test set, following model fitting to a training set.

The data were split into test set and training set, with the model fitted to the training set

and the accuracy of this fit assessed using the test set, according to the ‘leave two out cross

validation’ strategy (Herzberg & Tsukanov, 1986). This method proceeds by systematically

selecting the test set as one item from the ‘positive’ class (recurrence, in this case) and one

item from the ‘negative’ class (non-recurrance, in this case), before fitting the model to the

remainder of the data as the training set. This model fit is used to score the two test set items

(with their actual recurrance/non-recurrance class unseen), resulting in two possibilities: either

the item from the ‘positive’ class scores more highly than the item from the ‘negative’ class,

or it doesn’t. This process is repeated until all possible combinations of pairs of samples (as

the test set) have been exhausted, each pair consisting of one sample from the ‘positive’ class

and one from the ‘negative’ class. Then the proportion, of all test set combinations, in which

the item from the ‘positive’ class scores higher than the item from the ‘negative’ class, is taken

as the AUC, fulfilling the definition of the AUC as the probability that a randomly chosen item

from the ‘positive’ class will be scored higher than a randomly chosen item from the ‘negative’

class (Fawcett, 2006). Viewed alternatively, it is valid to take what is in effect the mean of

a large number of test set AUCs, because comparisons of sample scores are only ever made

between items in the same test set which have been calculated using the same corresponding

training set model fit.



Chapter 3

Time-series and Network Modelling of the

DNA Methylation Epigenome of

Differentiating Human Glioblastoma and

Healthy Neural Stem Cells

3.1 Introduction

Glioblastoma is the most common type of brain tumour, and is invariably lethal (Surawicz et al.

, 1999). Even after radiation and chemo therapies in combination with surgery, median life

expectancy is only around 12 to 14 months (Surawicz et al. , 1998; Ballman et al. , 2007), and

this very poor prognosis has not changed much over the last 20 years (Chen et al. , 2011). The

stem-cell model of cancer (Kleinsmith & Pierce, 1964), or more correctly tumour initiating cell

or stem-like cell as these cells may derive from differentiated cell types, has been demonstrated

to be an applicable model for glioblastoma (Singh et al. , 2004), giving rise the to the study

of glioblastoma stem-like cells. Differentiation of brain tumour initiating cells greatly reduces

their tumorigenicity (Piccirillo et al. , 2006), indicating the need to study in more detail the

dynamic changes in gene regulation of glioblastoma stem-like cells, as they differentiate. A

genetic ‘hit’ does not necessarily lead to runaway cell proliferation (as in cancer) because of

cell heritable gene transcriptional regulation, i.e., epigenetic mechanisms (Carén et al. , 2013).

Hence, the study of dynamic changes in the DNA methylation epigenome of differentiating

glioblastoma stem-like cells.

Time-series methods, in comparison to methods which only consider two experimental

conditions (e.g., measurements taken at the beginning and end of an experiment) are able to

analyse more precisely the dynamic behaviour of quantities of interest during the experiment.

They are able to use the uncertainties across all time points (as well as experimental replicates)
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for statistical inference, leading to more reliable estimates of which features (out of a potentially

very large number measured) change significantly and in a regular/co-ordinated way during the

experiment. The time-series modelling approach also allows smoothed estimates to be made of

the inferred change in a quantity (such as methylation level) between any two time points during

the experiment, based on the model as fitted to all the data points, rather than directly comparing

the measured quantity at only those time points, thus reducing the uncertainty associated with

such contrasts.

3.2 Methods and models

3.2.1 Data collection and preparation

Three human glioblastoma stem-like cell lines (G19, G26 and G144, referred to here as GNS1,

GNS2 and GNS3 respectively) and one healthy human neural stem cell line as a control (Cb130,

referred to here as NS) were induced to differentiate by treatment with bone morphogenetic

protein (BMP). Average methylation level β values were collected at six time points during the

experiment (from 0 to 64 days inclusive) using the Illumina Infinium HumanMethylation450

platform. These measurements represent time-series of the DNA methylation profiles of the

differentiating glioblastoma and healthy neural stem cells.

These data were first pre-processed by removing individual data values with corresponding

detection p-value greater than 0.05, before removing all data for CpGs with corresponding

coverage less than 95% across samples. Any remaining missing values (in total, 0.24% of the

data set) were then replaced by KNN (k nearest neighbour) imputation (k = 5). The data

were also checked for batch effects by hierarchical clustering and correlation of the significant

principle components with phenotype and batch: no significant batch effects (which would

warrant further correction) were found.

3.2.2 Time-series modelling using spline curves

The method of Storey (Storey et al. , 2005) was used to model the time-series of the methylation

profiles of the differentiating cells. Originally, this method was developed in the context of gene

expression data, however due to the analogous nature of the problem, the core methodology

was taken to be a suitable way to approach these data, and was re-implemented here from the

original algebraic descriptions of the method, in the R programming language.

The foundation of Storey’s method is the use of spline basis functions to model the data,

and a brief summary of the method, as it is applied here, now follows; for more details the

reader is referred to the original paper (Storey et al. , 2005). It is assumed that the biological

replicates j lead to noisy measurements yij(t) of a ‘true’ methylation time-course µi(t) for CpG
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i, which can be modelled according to equation 3.1,

yij(t) = µi(t) + γij + εij(t) (3.1)

where εij(t) represents the noise, or random error, and γij represents the systematic deviation

from the ‘true’ methylation time-course µi(t) for replicate j, and CpG i. Equation 3.1 can be

discretised as equation 3.2 to express more specifically the scenario modelled in this investiga-

tion, that of discrete observations, yijk, at particular points in time, k, with k ∈ {1, 2, ...K}.

yijk = µik + γij + εijk (3.2)

Noting that γij is not time dependent (equations 3.1 and 3.2), i.e., it is assumed that the sys-

tematic deviation from the ‘true’ methylation time-course is constant for a particular CpG and

replicate, this term can be subtracted and instead the mean-centred methylation time-course can

be modelled, as in equation 3.3,

y
(c)
ijk = µ

(c)
ik + ε

(c)
ijk (3.3)

where

y
(c)
ijk = yijk − ȳij ,

ȳij =
1

k

K∑
k=1

yijk

and

µ
(c)
ik = µik − µ̄i,

µ̄i =
1

K

K∑
k=1

µik

where ε(c)ijk is random error. Note that ȳij and µ̄i are simply the time-averages of the measured

and ‘true’ methylation profiles, respectively. This model only allows us to assign significance

according to change in methylation (in comparison to a null model of ‘no change in methyla-

tion’), a restriction which is appropriate for the purposes of this investigation. The advantage

of this model is that now the measurements for each replicate can be expected to deviate from

the ‘true’ mean-centred methylation time-course µ(c)ik by only the random error ε(c)ijk, and hence

measurements for all replicates can be combined into one model fit without the extra model

parameter γ which would complicate inference. The discretised, mean-centred model equation
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3.3 can be expressed more succinctly in vector form, equation 3.4.

y
(c)
ij = µ

(c)
i + ε

(c)
ij (3.4)

As per the method of Storey (Storey et al. , 2005), the ‘true’ mean-centred methylation profile,

µ
(c)
i , is modelled by spline basis functions of order P , according to equation 3.5,

y
(c)
ij = S(c)αi + ε

(c)
ij (3.5)

where S(c) is a K ×P matrix (which is the same for each CpG i) representing the values of the

mean-centered spline basis functions at each time point, and αi are the model coefficients for

CpG i. The k ∈ {1, 2, ...,K} are the indices of the time-points tk at which the measurements

are taken, which for this investigation are {t1...tK} = {0, 8, 16, 24, 32, 48, 64} for NS, GNS1

and GNS2 cell-lines and {t1...tK} = {0, 8, 15, 32, 47, 63} for the GNS3 cell-line with all times

measured in days. Also j ∈ {1, 2} for NS, GNS1 and GNS2 cell-lines and j ≡ 1 for GNS3;

for NS, GNS1 and GNS2 cell-lines the model is fitted to both replicates j simultaneously.

3.2.3 Determining the order of the spline basis function

To determine the order, P , of the spline basis functions used in the model (equation 3.5), for

each cell-line a singular value decomposition was taken of the data matrix. The resulting right

singular vectors can be thought of as ‘eigen-CpGs’ (Alter et al. , 2000), and those which are

significant (i.e., are associated with the significant component of the variation in the data) were

selected by estimating the dimensionality d of the data matrix (for each cell-line) using random

matrix theory (Plerou et al. , 2002), and then selecting the eigen-CpGs associated with the d

largest singular values. The order of the spline basis was then determined by testing values

of P from 2 to 5, using these to model each significant eigen-CpG according to equation 3.5,

and identifying the value of P which minimised the model error for each eigen-CpG and each

cell-line ε(c)i1 · ε
(c)
i1 +ε(c)i2 · ε

(c)
i2 (using the dot product notation a ·b = a>b). The order, P , for the

spline basis was then set to be the same for NS, GNS1 and GNS2 (as these have the same data

structure, with two replicates j); P was set for these cell lines as the largest value identified in

this way for any of these cell-lines and eigen-CpGs, P = 4. GNS3 has a different data structure

with only one replicate, and so P was set independently for this cell line, P = 3.
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3.2.4 Assigning significance

The alternative model (equations 3.4 and 3.5) is compared to the null model that there is no

methylation change over the time-course, equation 3.6, to assign significance.

y
(c)
ij = ε

(0)
ij (3.6)

Significance is assigned for each CpG i by calculating an F-statistic, Fi (equation 3.7), com-

paring these null and alternative models,

Fi =
RSS

(0)
i −RSS

(c)
i

RSS
(c)
i

(3.7)

where RSS(c)
i and RSS(0)

i are the residual sum of squares for the alternative and null models

respectively, i.e. (again using the dot product notation a · b = a>b)

RSS
(c)
i = ε

(c)
i1 · ε

(c)
i1 + ε

(c)
i2 · ε

(c)
i2

and

RSS
(0)
i = ε

(0)
i1 · ε

(0)
i1 + ε

(0)
i2 · ε

(0)
i2

for NS, GNS1 and GNS2 cell-lines and

RSS
(c)
i = ε

(c)
i1 · ε

(c)
i1

and

RSS
(0)
i = ε

(0)
i1 · ε

(0)
i1

for the GNS3 cell-line.

Because the errors ε(c)ij and ε(0)ij can be expected to be correlated in time for many i, signif-

icance is assigned by a permutation method, instead of calculated directly from the F-statistic

(equation 3.7). To generate a null F-statistic distribution, samples are randomly taken with re-

placement from the alternative model fit errors, as these will resemble a residual distribution

irrespective of whether the null or alternative model is true (Storey et al. , 2005); for repetition

b, this leads to null time-course y
(B)
ijb for CpG i. Hence the value of the null time-course, y(B)

ijkb,

at each time-point tk, is a sample taken with replacement from ε
(c)
ijk with j ∈ 1, 2 for NS, GNS1

and GNS2 or j ≡ 1 for GNS3 and k ∈ {1, ...,K}. A null F-statistic F (B)
ib is then calculated for

CpG i and repetition b from the null time-course y
(B)
ijb in exactly the same way as the observed
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F-statistic Fi is calculated for the observed data. This is repeated 250 times, with b = 1, .., 250,

to generate the null F-statistic distribution for CpG i, with significance then assigned according

to equation 3.8,

pi =
1

250

250∑
b=1

1

(
F

(B)
ib > Fi

)
(3.8)

where pi is a conventional p-value. For each cell-line, this process of modelling and assigning

significance is carried out independently for 482421 CpGs, and the calculated values of pi

are then converted to FDR q-values, qi, according to the method of Benjamini and Hochberg

(Benjamini & Hochberg, 1995). CpGs are classified as significant if qi < 0.05 and if modelled

change in methylation level ∆β̂i > 0.2, where

∆β̂i = max
k∈{1,...,K}

ŷ
(c)
ik − min

k∈{1,...,K}
ŷ
(c)
ik

and ŷ
(c)
i is the modelled mean-centred methylation time-course for CpG i, which at time tk has

the value ŷ(c)ik , with

ŷ
(c)
i = µ̂i = S(c)α̂i

where α̂i are the fitted model coefficients. The threshold of 0.2 was set here after consultation

with the experimental biologist who generated these data. It is based on her best judgement

of a threshold above which a change in methylation level would be expected to be biologically

meaningful, in this context. This identifies the number of significant CpGs, for each cell line,

as shown in table 3.1.

NS GNS1 GNS2 GNS3
5678 1235 37656 11737

Table 3.1: Number of Significant CpGs

Comparison of the numbers of CpGs (out of 482421) found as significant (q < 0.05 and ∆β̂ > 0.2)

3.2.5 Identification of a glioblastoma stem-like cell differential epigenotype

To understand how the tumourigenicity of glioblastoma stem-like cells is so greatly reduced

when they are induced to differentiate (Piccirillo et al. , 2006), it is of particular interest and rel-

evance to study CpGs with methylation levels which are different in glioblastoma stem-like cells

compared to healthy stem cells. These tumour-associated methylation profiles are expected to

change towards the levels of healthy cells, which will remain at similar methylation levels; i.e.,

the tumour-associated aberrations will be normalised against the healthy profiles. Such CpGs

could be thought of as characterising a glioblastoma stem-like cell differential epigenotype,

contrasted against the healthy epigenotype. If glioblastoma stem-like cells are the drivers of
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the tumour, then differentiation of all glioblastoma stem-like cells would be expected to stop

tumour progression. Therefore, identifying such a characteristic glioblastoma stem-like cell

differential epigenotype could lead to novel insights into this disease.

A list of 100145 CpGs previously found as significantly differentially methylated (q <

0.05) between healthy cells (3 cell lines) and glioblastoma stem-like cells (11 cell lines) were

additionally filtered according to the following criteria:

1. CpGs found as significant (q < 0.05) in the time-course modelling of glioblastoma stem-

like cells

2. CpGs which change methylation level by more than 0.2 during the experiment, in

glioblastoma stem-like cells

3. CpGs with methylation level different by no more than 0.3 in glioblastoma stem-like cells

and healthy stem cells at the end of the experiment

4. CpGs which change methylation level by less than 0.2 during the experiment in healthy

neural stem cells

Criteria 2-4 were similarly set here after consultation with the experimental biologist who gen-

erated these data, based on her best judgement of biologically meaningful thresholds for this

context. In order to apply these criteria, for CpGs found as significant, methylation levels ŷi

inferred from the alternative model fits of the time-courses for each significant CpG were used,

calculated according to equation 3.9.

ŷi = ŷ
(c)
i +

ȳi1 + ȳi2
2

, (3.9)

ŷ
(c)
i = µ

(c)
i = S(c)α̂i,

ȳij =
1

k

K∑
k=1

yijk.

For CpGs which were not found as significant, methylation levels ŷ(0)i inferred from the null

model of the time-courses were used, as defined in equation 3.10:

ŷ
(0)
i =

ȳi1 + ȳi2
2

. (3.10)

In order to take account of the uncertainty estimated by the time-course modelling, these criteria

were applied also subject to an uncertainty envelope. It is difficult to predict how these model



3.2. Methods and models 46

errors are distributed, and hence no prediction is given of the quantile range of any underlying

distribution covered by this envelope. Instead, a small number multiple of the estimated model

standard deviation was used for this envelope, and as it lead to consistent and relevant results,

this was retained as an acceptable approach. The uncertainty envelope is defined as ŷi ± 2σ̂i,

where σ̂i is the estimated model error, defined for significant CpGs (i.e., those for which the

alternative model is chosen) as:

σ̂
(m)
i =

√
ε
(c)
i1 · ε

(c)
i1 + ε

(c)
i2 · ε

(c)
i2

2K
, (3.11)

and defined for not significant CpGs (i.e., those for which the null model is chosen) as:

σ̂
(0)
i =

√
ε
(0)
i1 · ε

(0)
i1 + ε

(0)
i2 · ε

(0)
i2

2K
. (3.12)

Hence, incorporating this uncertainty envelope, criteria 2 requires, for the GNS cell-line:

[(
max

k∈{1,...,K}
ŷ
(c)
ik − 2σ̂

(m)
i

)
−
(

min
k∈{1,...,K}

ŷ
(c)
ik + 2σ̂

(m)
i

)]
> 0.2

Incorporating the uncertainty envelope, criteria 3 then requires:

∣∣∣(ŷ(GNS)iK ± 2σ̂
(GNS)
i

)
−
(
ŷ
(NS)
iK ± 2σ̂

(NS)
i

)∣∣∣ < 0.3

where ŷ(GNS)iK and σ̂(GNS)i are the alternative model estimated methylation level ŷ(m)
iK at the

end of the experiment (i.e., the time when k = K, tK = 64 days) and model error σ̂(m)
i

for the GNS cell-line for CpG i, and ŷ(NS)iK and σ̂(NS)i are the estimated methylation level at

the end of the experiment and model error for CpG i for the NS cell-line according to the

alternative model ŷ(m)
iK and σ̂(m)

i if q(NS)i < 0.01 or according to the null model ŷ(0)i and σ̂(0)i

otherwise. Incorporating the uncertainty envelope, criteria 4 then requires for the NS cell-line,

for q(NS)i < 0.01:

[(
max

k∈{1,...,K}
ŷ
(c)
ik + 2σ̂

(m)
i

)
−
(

min
k∈{1,...,K}

ŷ
(c)
ik − 2σ̂

(m)
i

)]
< 0.2

and otherwise:

2× 2σ̂
(0)
i < 0.2

which reflects the need for some certainty that when the null model is chosen, the methylation

levels really do change in the required range over the duration of the experiment. The num-
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bers of CpGs identified in this way as being part of the glioblastoma stem-like cell differential

epigenotype, according to each GNS cell-line, are shown in table 3.2.

GNS1 GNS2 GNS3
No. CpGs 28 1521 639

No. annot. to genes 17 978 425
No. genes 17 769 341

Table 3.2: Number of CpGs of the glioblastoma stem-like cell differential epigenotype.
Comparison of the numbers of CpGs identified as part of the glioblastoma stem-like cell differential
epigenotype according to each cell-line, the subset of these which are annotated to genes, and the number
of annotated genes represented among these CpGs.

3.2.6 Network model of the glioblastoma stem-like cell differential epigenotype

A network model of the glioblastoma stem-like cell differential epigenotype was produced, by

filtering a list of pairs of genes corresponding to known biochemical interactions in humans

downloaded from http://www.pathwaycommons.org, with the list of genes identified as being

part of the glioblastoma stem-like cell differential epigenotype. Each pair of genes in the down-

loaded list represents a pair of genes known to take part in a biochemical interaction or process

(if a particular interaction or process involves three genes, this will appear as three pairs in the

list, etc). Pairs of genes in the list were only retained in the filtered list if both genes of the pair

have at least one CpG annotated which was identified as being part of the glioblastoma stem-

like cell differential epigenotype. Each pair of genes in the filtered list was then cross-checked

to see if it connected to any other pairs in the filtered list, forming connected components where

possible. This filtering and connecting was carried out independently for each glioblastoma cell

line, with no connected components larger than two genes found for either the GNS1 or GNS3

cell-lines (i.e., none of the pairs in the filtered list had any genes in common for these cell lines).

However, a connected component consisting of 32 genes was found for the GNS2 cell line, and

this was used as the network model of the glioblastoma stem-like cell differential epigenotype.

3.3 Results

The network model of the glioblastoma stem-like cell differential epigenotype, as identified for

the GNS2 cell line, is shown in figure 3.1. A subnetwork containing the 18 most connected

and relevant genes was produced by removing all ‘tendrils’ (by removing all genes which are

connected to at most only one other gene and repeating this until no such genes remain) with the

exception of those including HOXD4, PAX6 and EZH2 (as these genes are of particular interest

and relevance to stem cell biology and DNA methylation); this subnetwork is shown in the

same figure. The methylation time-courses for all CpGs identified as part of the glioblastoma
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stem-like cell differential epigenotype for the GNS2 cell-line and which are annotated to genes

which form part of the subnetwork (figure 3.1 (b)) are shown in figure 3.2, for all cell lines.

The subnetwork (figure 3.1 (b)) contains a number of genes which are of great interest

and relevance to glioblastoma and developmental biology, in particular WT1, STAT3, HOXD4,

EZH2, P73, PAX6, VIMENTIN (VIM), and CBP (CREBBP); a review of all genes and interac-

tions appearing in this subnetwork now follows.

STAT3 is typically thought of as an oncogene; its protein-product up regulates growth pro-

moting genes such as MYC as well growth inhibitors such as P21WAF1, with this balancing

inhibition lost during oncogenic transformation in glioblastoma (Barré et al. , 2003). In partic-

ular mutational circumstances in glioblastoma however, STAT3 can also function as a tumour

suppressor, for example in the context of PTEN loss (De La Iglesia et al. , 2008). STAT3 pre-

dominantly resides in the cytoplasm of unstimulated cells; when it is activated, it translocates

to the cell nucleus, and binds to the target gene DNA, promoting their expression, a process

which is likely to include recruitment of the histone acetyltransferase CBP as a co-activator

(Wang et al. , 2005). CBP is crucial as a co-activator in relation to multiple genes involved in

the glioblastoma stem-like cell differential epigenotype (figure 3.1), and one of these which is

particularly relevant to glioblastoma is WT1.

As well as being co-activated by CBP (Wang et al. , 2001), WT1 is an oncogene and its

expression is required for the viability of multiple tumours of the brain. WT1 is a regulator of

cell cycle and growth factors as well as apoptosis; it is expressed in at least 80% of glioblastoma

specimens and is not expressed in healthy glial cells (Nakahara et al. , 2004; Oji et al. , 2005;

Chen et al. , 2011), and a pharmaceutical therapy directly targeting WT1 has reached phase II of

clinical trials (Izumoto et al. , 2008). WT1 is also involved in a mutually repressive interaction

with the tumour suppressor P73 (Scharnhorst et al. , 2000). P73 is additionally thought to inter-

act with the master developmental regulator PAX6 (Lunardi et al. , 2010), and the transcriptional

promoting functions of P73 again rely on co-acvivation by CBP (Lemasson & Nyborg, 2001).

CBP itself is directly regulated by the master developmental regulator HOXD4, the activity of

this and other Hox proteins having been shown to inhibit CBP in vivo, while not themselves

being acetylated (and hence not co-regulated) by CBP (Shen et al. , 2001).

A key and recently uncovered link from WT1 to developmental biology, highlighted

here as an interaction in the glioblastoma stem-like cell differential epigenotype, concerns the

polycomb-group (PcG) protein EZH2 (Xu et al. , 2011). EZH2 forms part of the polycomb re-

pressor complex-2 (PRC-2), and PRC-2 is involved in gene repression, particularly in relation

to stem cell genes which may or may not become activated later in development according to
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Figure 3.1: Glioblastoma stem-like cell differential epigenotype network model
(a) The network model of the glioblastoma stem-like cell differential epigenotype, as identified for the
GNS2 cell line. (b) The same network model with tendrils removed, with the exception of those including
HOXD4, PAX6 and EZH2.
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Figure 3.2: Glioblastoma stem-like cell differential epigenotype methylation time-courses
Methylation time-courses for all cell lines and experimental replicates, for all CpGs identified as being
part of the glioblastoma stem-like cell differential epigenotype for the GNS2 cell-line, which are anno-
tated to genes which are in the subnetwork shown in figure 3.1 (b). Annotation information for each CpG
is shown above the time-course plots, relating to annotated gene, chromosome, genomic region location,
and location relative to CpG island. The variable ‘p’ which appears in the legend indicates the number
of ‘passages’ each experimental replicate went through during the experiment, and is referred to here
only to distinguish between the experimental replicates.
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cell type specialisation (Lee et al. , 2006). PRC-2 is responsible for the trimethylation of lysine

27 of histone 3, leading to the repressive epigenetic mark H3K27me3, which is then ‘read’ by

polycomb repressor complex-1 (PRC-1), stabilising the chromatin in a compact state, such that

the DNA does not get transcribed (Bickmore, 2012). WT1 interacts with both EZH2 and an-

other component of PRC-2, SUZ12, as well as the DNA methyltransferase DNMT1, and EZH2

specifically methylates H3K27, with knockdown of EZH2 resulting in down-regulated global

H3K27me3 (Xu et al. , 2011).

DNMT1 is instrumental in CpG methylation (Yen et al. , 1992), and repressive CpG methy-

lation of genes which are normally repressed in development by H3K27 methylation is known to

be a key event in oncogenic transformation, leading to a return of stem-like cell characteristics

(Easwaran et al. , 2012). So coupled with the finding that WT1 mediates interaction between

DNMT1 and PRC-2 (Xu et al. , 2011), WT1 is highlighted as fundamental to understanding

glioblastoma biology, and the great reduction in the tumourigenicity of glioblastoma stem-like

cells as they are induced to differentiate to specialised cell types which do not express WT1.

Further evidence for a link between WT1 gene expression and CpG methylation of gene

targets of PcG proteins (PCGTs) is provided by correlating WT1 expression levels (Affymetrix

data) to the methylation levels of CpGs annotated to PCGTs in TCGA glioblastoma samples

(Spearman correlation test); there is a positive association for a significant number of CpGs for

all genomic regions as shown by the concentration of p-values close to zero (figure 3.3).

IGFBP-3 regulates apoptosis, and has been shown to directly induce apoptosis in a number

of different cancer cells (Sueoka et al. , 2000; Gill et al. , 1997), and RXR-α (RXRA) has a

key role in the regulation of gene transcription (Solomin et al. , 1998), and is also co-activated

by CBP (Gelman et al. , 1999). IGFBP-3 and RXR-α bind to each other within the nucleus

and the RXR-α - IGFBP-3 interaction leads to modulation of the transcriptional activity of

RXR-α and is essential for mediating the effects of IGFBP-3 on apoptosis (Liu et al. , 2000).

Interestingly, the methylation levels of the CpGs identified for the genes encoding these proteins

as part of the glioblastoma stem-like cell differential epigenotype are reduced over the course

of the experiment in the GNS2 cell line (figure 3.2), towards the low methylation level in the

NS cell lines, possibly indicating up regulation of these genes and restoring of normal tumour

suppressive action in the differentiated state.

IGFBP-3 is thought to modulate signalling pathways activated by IGF-1R (Mohseni-Zadeh

& Binoux, 1997), and IGF-1R is known to activate STAT3 (Prisco et al. , 2001). GR (NR3C1)

acts as a co-activator of STAT3 (Zhang et al. , 1997; Lerner et al. , 2003), with GR again co-

activated by CBP (Almlöf et al. , 1998; Peterson & Workman, 2000). HNF6 (ONECUT1) is
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a cell-type specific transcription factor normally expressed only in the liver, which is again

co-activated by CBP (Lannoy et al. , 2000), which inhibits the activity of GR (Pierreux et al.

, 1999), and is repressed by SHP (NR0B2) (Lee et al. , 2008); SHP similarly functioning to

repress RXR-α (Lee et al. , 2000).
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Figure 3.3: Correlation of WT1 expression with
PCGT methylation

P-value histograms, showing the correlation of WT1
expression (Affymetrix data) to the methylation lev-
els of CpGs annotated to PCGTs in TCGA glioblas-
toma samples (Spearman correlation test), for dif-
ferent genomic regions. There is a positive associ-
ation for a significant number of CpGs for all ge-
nomic regions, as shown by the concentration of p-
values close to zero.

STAT3 enhances the expression of

the cytoskeletal protein VIMENTIN (VIM),

which exhibits a complicated pattern of de-

velopmental and tissue specific expression

(it is initially widely expressed in the em-

bryo, but progressively restricted to fewer

cell types during development), and is aber-

rantly expressed in most metastatic tumours,

whatever their embryological origin (Wu

et al. , 2004). VIMENTIN in turn regulates

PLA2G4A (cytosolic phospholipase A2), and

the remaining interactions indicated by that

final branch of the subnetwork (figure 3.1) in-

volving ACTC1 (actin, alpha cardiac muscle

1), PRKAR1B and SH3RF1, are present in the

subnetwork on the grounds of their protein

products having been found to interact with

c-MYC (which is one of the most potent ac-

tivators of tumorigenesis, frequently overex-

pressed in diverse cancers (Agrawal et al. ,

2010)). It is also worth noting that the CpG

annotated to ACTC1 which was identified as

part of the glioblastoma stem-like cell dif-

ferential epigenotype shows the largest beta

change (0.54) of any CpG found as part of this glioblastoma stem-like cell differential epigeno-

type (figure 3.2), with methylation increasing in GNS2 from a low level at the start of the

experiment to a high level similar to NS by the end of the experiment.
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3.4 Discussion

The time-series modelling approach used here has been effective, finding many CpGs with beta

values which change in a significant and consistent way during the experiment, and rejecting

as not significant CpGs with possibly large but more random changes in beta, such as can be

seen in figure 3.2, NR3C1, for GNS3. The time-series modelling approach has also succeeded

in finding significant CpGs on account of consistent behaviour throughout the experiment de-

spite relatively large variance between experimental replicates, as in the case of the GNS1 cell

line, for which 1235 CpGs were found as significant (q < 0.05) by this time-series approach.

This contrasts with a LIMMA (Smyth et al. , 2004) analysis for this cell line of both exper-

imental replicates but considering only two experimental conditions (the start and end of the

experiment), which identified only 60 significant CpGs (q < 0.05).

The statistical methodology used to identify the glioblastoma stem-like cell differential

epigenotype has also proven to be effective, with these results illustrated in the form of a 32

gene network model, which is further condensed to an 18 gene subnetwork (figure 3.1). This

subnetwork contains a number of genes which are of great interest and relevance to glioblastoma

and developmental biology, in particular WT1, STAT3, HOXD4, EZH2, P73, PAX6, VIMENTIN

(VIM), and CBP (CREBBP).

WT1 is already well known for its oncogeneic function in glioblastoma; it is expressed in

at least 80% of glioblastoma specimens and is not expressed in healthy glial cells (Nakahara

et al. , 2004; Oji et al. , 2005; Chen et al. , 2011). A pharmaceutical therapy directly targeting

WT1 has also reached phase II of clinical trials (Izumoto et al. , 2008). WT1 has also recently

been shown to mediate the interaction between the CpG methylating enzyme DNMT1 and

PRC-2 (polycomb repressive complex-2), particularly relevant as CpG methylation of gene

targets of polycomb group proteins (PCGTs) is thought to lead to the return of stem-like cell

characteristics in cancer (Easwaran et al. , 2012).

IGFBP-3 regulates apoptosis including in cancer cells (Sueoka et al. , 2000; Gill et al. ,

1997), and binding to RXR-α is necessary for this function (Liu et al. , 2000). Interestingly, the

methylation levels of the CpGs identified for IGFBP-3 and RXR-α as part of the glioblastoma

stem-like cell differential epigenotype are reduced over the course of the experiment in the

GNS2 cell line towards the low methylation level in the NS cell lines (figure 3.2), possibly

indicating up regulation of these genes and restoring of normal tumour suppressive action in

the differentiated state.

A network model such as figure 3.1 highlights biochemical interactions which might be

of particular interest and relevance. Sequences and pathways of such interactions may act in
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combination to form larger systems, and might be thought of in certain circumstances as genetic

circuits. For example, IGFBP-3 is thought to modulate signaling pathways activated by IGF-

1R (Mohseni-Zadeh & Binoux, 1997), and IGF-1R is known to activate STAT3 (Prisco et al. ,

2001) which is primarily an oncogene. On the other hand, STAT3 is coactivated by GR (NR3C1)

(Zhang et al. , 1997; Lerner et al. , 2003), but the activity of GR is paradoxically inhibited by

HNF6 (ONECUT1) which is a cell-type specific transcription factor normally expressed only

in the liver. Both RXR-α and HNF6 are repressed by SHP (NR0B2) (Lee et al. , 2000, 2008),

the first of these seeming to oppose apoptosis induced by IGFBP-3, and the second seeming

to promote tumourigenesis via GR - STAT3. If HNF6 is repressed by SHP this might be tu-

mourigenic because HNF6 would then presumably be unavailable to repress GR, the protein

product of which could then co-activate STAT3. However, as HNF6 is a liver specific transcrip-

tion factor, it would be expected to be expressed only in cancerous cells of the brain (which

might take on phenotypic characteristics not expected for their location in the organism), if at

all. One possibly explanation is that in certain circumstances, STAT3 can act in the opposite

sense, as a tumour suppressor (De La Iglesia et al. , 2008); hence, HNF6 expression in cancer

cells could theoretically have a tumourigenic effect by downregulating GR - STAT3. However,

this might imply a tumour suppressive function for SHP suppression of HNF6, in contradiction

to the oncogenic function of SHP suppression of RXR-α. This alludes to the complexity of

possible genetic circuits involved, and also the limitations and dangers of making mechanistic

inferences based on a network model such as presented here, where interactions are drawn from

a wide range of literature involving many different experimental circumstances.

It must be emphasised that these are only indications of potential gene circuits at work, as

there is no supporting evidence from gene expression in this analysis, which would be needed

to prove the existence of any gene regulation patterns in these cell lines. Additionally, although

all these genes are identified as being in some way part of this glioblastoma stem-like cell dif-

ferential epigenotype, there is no evidence presented here that the interactions represented take

place in the sequence in time which would be necessary to constitute a regulating genetic cir-

cuit: the biochemical processes which are represented in figure 3.1 take place over the course of

seconds, minutes or hours, whereas the sample frequency of the time-series as observed in these

experiments is on the scale of days. Further, no evidence is provided here that the interactions

shown in figure 3.1 even take place in the same cells at any time during the experiment; as many

of the beta changes are in the region 0.3, we would expect only a sub-population of the cells in

any particular cell line and experimental replicate to actually have real methylation changes at

these CpGs, as the only possible values of beta for a single cell are 0, 0.5 and 1.
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As would be expected in this stem cell context, there is a strong developmental link among

the genes identified as part of the glioblastoma stem-like cell differential epigenotype. Although

WT1 is not expressed in healthy mature glial cells, it is expressed in parts of the spinal chord

and brain of the developing mammalian embryo (Armstrong et al. , 1993). P73 is intimately

involved in differentiation and development (Scharnhorst et al. , 2000), and VIMENTIN (VIM)

exhibits a complicated pattern of developmental and tissue specific expression (it is initially

widely expressed in the embryo, but progressively restricted to fewer cell types during devel-

opment), and is aberrantly expressed in most metastatic tumours, whatever their embryological

origin (Wu et al. , 2004). As well as the identification of HNF6 in this analysis which would

normally be expressed only in the liver, the CpG annotated to ACTC1 which was identified as

part of the glioblastoma stem-like cell differential epigenotype shows the largest beta change

(0.54) of any CpG found as part of this glioblastoma stem-like cell differential epigenotype

(figure 3.2). The full name of ACTC1 is ‘actin, alpha, cardiac muscle 1’, which would normally

be expected to be expressed only in the heart, and so is another gene which is presumably only

expressed in mature brain cells which are cancerous. In support of this, the methylation level of

the relevant CpG increases in GNS2 from a low level at the start of the experiment to a high level

similar to NS by the end of the experiment, suggesting expression in the glioblastoma stem-like

cells, and repression in the differentiated cells. ACTC1 has also been found to interact with

c-MYC, which is one of the most potent activators of tumorigenesis, frequently overexpressed

in diverse cancers (Agrawal et al. , 2010).

Hox genes are master developmental regulators, and in drosophila, polycomb group pro-

teins maintain the repressed state of Hox genes, which act as ‘molecular address markers’, after

they have not been activated at a critical time in development; silencing of certain Hox genes

will cause segments further back in a fly to take on characteristics of segments usually found

further forward in the animal (Alberts, 2002). It is believed that the Hox genes are similarly

important in mammalian development, participating, for example, in the growth and organisa-

tion of limbs, where certain Hox genes are sequentially activated as the limb develops (Zakany

& Duboule, 2007). The methylation levels of the CpGs annotated to HOXD4 which are identi-

fied as part of the glioblastoma stem-like cell differential epigenotype show methylation levels

decreasing in GNS2 towards a low level in NS during the experiment, particularly in the re-

gion close to the transcriptional start site (TSS), indicating an increasing pattern of activation of

HOXD4 as the glioblastoma stem-like cells differentiate. HOXD4 inhibits the activity of CBP,

the protein product of which co-activates the oncogenes STAT3 and WT1, suggesting another

possible mechanism for the reduction in tumorigenicity of the glioblastoma stem-like cells as
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they differentiate.

The statistical methods used here, and the resulting glioblastoma stem-like cell differential

epigenotype (figure 3.1), have highlighted a number of genes already known for their role in

glioblastoma and developmental biology. Further evidence has been provided for the impor-

tance of certain biochemical interactions which are involved in this glioblastoma stem-like cell

differential epigenotype, and a very interesting next stage would be to develop a mathematical

model the dynamic behaviour of a number of these and other interactions, during differentia-

tion, to gain further insights into the reduction in tumorigenicity of glioblastoma stem-like cells

as they are induced to differentiate.



Chapter 4

Network Inference and Community Detection,

Based on Covariance Matrices, Correlations

and Test Statistics from Arbitrary

Distributions

4.1 Introduction

In this chapter I present methodology which enables estimation of binary adjacency matrices,

from a range of measures of the strength of association between pairs of network nodes, or

more generally pairs of variables. This strength of association can be quantified in terms of

sample covariance / correlation matrices, and more generally by test-statistics / hypothesis test

p-values from arbitrary distributions. Binary adjacency matrices inferred in this way are then

ideal for community detection, for example by fitting the stochastic blockmodel. I show that

this methodology works well in a simulation study, and several gene expression data-sets. This

methodology performs well on large datasets, and is based on commonly available and compu-

tationally efficient algorithms.

Community detection and clustering are, strictly speaking, different problems. Commu-

nities are composed of entities that have some interaction in a real-world sense (such as com-

munication in a social network, and gene-regulation in a biological network). On the other

hand, a cluster may simply consist of correlated variables. However, in practice, inference

using network models can yield identical approaches to both these problems. The stochastic

blockmodel is an effective and efficient method to detect communities in networks, and more

generally, to cluster together variables with correlated observations. However, the stochastic

blockmodel assumes a binary relationship between the network nodes, and by extension, the

variables to be clustered: either there is an edge between a pair of nodes, or there isn’t. Such
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binary relationships are normally expressed in the form of an adjacency matrix.

If a binary adjacency matrix is used to define pairs of variables which are correlated, and

other pairs of variables which are not correlated, then the zero entries may be used to define

pairs of variables which are independent. This relates closely to the ‘probabilistic graphical

model’ (Koller & Friedman, 2009) paradigm, in which a joint probability distribution over a

large number of variables is made tractable, by taking advantage of independencies between

pairs of variables, as specified in the graphical model. These ideas are also closely related

to thresholding a covariance matrix to a sparse representation using regularisation techniques

(Bickel & Levina, 2008), where again zeros in the sparse representation imply independent pairs

of variables. A variety of other methods have also been presented to infer networks from mea-

sures of association, such as network inference from multiple node attributes in cell biological

data (Katenka et al. , 2012).

This chapter is organised as follows. In section 4.2, I define the notation and models,

and present the main methodology used throughout the chapter. Then in section 4.3, I present

examples to illustrate the performance of the methods, including simulated datasets, and eight

gene expression data-sets.

4.2 Model definition

I start by specifying a model by which we can estimate the adjacency matrix A.

Definition 1. For m ∈ N+, define the set of nodes {1, ...,m}, and for each node i, define a

corresponding variable xi. Let ẑij represent an observed measure of association/dependence

between variables xi and xj , where:

ẑij ∼ N
(
µij , σ

2
)
.

Let A ∈ {0, 1}m×m be an adjacency matrix, the elements of which satisfy:

Aij =



0, if there is no edge between nodes i and j, which represents

the variables xi and xj being independent,

1, if there is an edge between nodes i and j, which represents

the variables xi and xj not being independent,

and let w = p (Aij = 1). Then, the observed measures of association ẑij may be modelled
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using the mixture distribution:

ẑij ∼ (1− w) · N
(
0, σ2

)
+ w · N

(
µij , σ

2
)
. (4.1)

Next, I describe how to calculate the observed measures of association/dependence ẑij from

sample covariance/correlation matrices, and from test statistics from arbitrary or unknown dis-

tributions. After that, I describe how to fit the model of Definition 1, and how to infer the esti-

mated adjacency matrix Â from the fitted model. Then, I describe how to carry out community

detection on Â, and at the end of this section I talk about a significant model mis-specification

which can arise.

4.2.1 Applying the model to a covariance/correlation matrix

We can estimate an adjacency matrix, from a sample covariance or correlation matrix, by fitting

the model of Definition 1, as follows. Equation 4.2 defines the sample covariance matrix Σ̂, for

the m variables represented by the vector x, x1, ..., xm, for samples x(k), k = 1, ..., n:

Σ̂ =
1

n

n∑
k=1

(x(k)− x̄) (x(k)− x̄)T , where x̄ =
1

n

n∑
k=1

x(k). (4.2)

By dividing each row and each column of Σ̂ by the square roots of the corresponding elements

of the leading diagonal, we obtain the sample correlation matrix, r̂:

r̂ =
(

diag(Σ̂)
)−1/2

Σ̂
(

diag(Σ̂)
)−1/2

.

The (i, j)th element of r̂, i.e., r̂ij , is the Pearson correlation coefficient between variables xi and

xj . If xi and xj are jointly normally distributed, and the {xi(k), xj(k)}, k = 1, ..., n samples

are independent, the Fisher transform (Fisher, 1915) converts r̂ij to the normally distributed

variable ẑij :

ẑij =
1

2
ln

(
1 + r̂ij
1− r̂ij

)
, (4.3)

where

ẑij
approx∼ N

(
1

2
ln

(
1 + rij
1− rij

)
,

1

ν − 3

)
,

where rij is the true correlation coefficient between variables xi and xj , and ν is the degrees

of freedom. Hence, we can model the Fisher-transformed correlation coefficients ẑij with the
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mixture model of equation 4.1, with:

µij =
1

2
ln

(
1 + rij
1− rij

)
and σ2 =

1

ν − 3
. (4.4)

4.2.2 Applying the model to test statistics from arbitrary distributions

We can also estimate an adjacency matrix by fitting the model of Definition 1, when the asso-

ciation between variables xi and xj is assessed by a test-statistic from an arbitrary distribution,

which may be expressed in terms of a hypothesis-test p-value. Such p-values may result from

test-statistics from any known distribution, or may even be derived from an unknown distribu-

tion, for example by Monte-Carlo simulation. We can represent these p-values in the matrix P̂,

where p̂ij is the estimated probability for the pair of variables xi and xj , under the null hypothe-

sisH0 that there is no association between xi and xj (i.e., that they are independent). Assuming

these p-values arose from two-tailed tests, we can apply the inverse-normal transformation as

follows:

ẑij = Φ−1 (1− p̂ij) , (4.5)

with equivalent expressions available for one-tailed tests. Applying this transformation is equiv-

alent to applying quantile normalisation, mapping the null distribution of pij onto the standard

Normal N (0, 1) distribution. Hence, after applying this transformation, we can again fit the

mixture model of Definition 1, and use this model fit to infer the estimated adjacency matrix Â.

I now describe how to carry out this model fitting and inference of Â.

4.2.3 Model fitting and adjacency matrix inference

I fit the model of Definition 1 using an empirical Bayes procedure (Johnstone & Silverman,

2004). The method is based on a mixture prior over µij , with a Laplace density for the non-zero

mean component.

Definition 2. With µij and w given by Definition 1, let γ (·) represent the Laplace distribution

probability density function, with spread parameter a:

γ (µij) =
a

2
exp (−a |µij |).

Then, the mixture prior over µij is defined as:

fprior (µij) = (1− wi) δ (µij) + wiγ (µij) .

Typically the Laplace spread parameter is taken as a = 0.5. If the mixture components have
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Gaussian likelihoods fN
(
·
∣∣µij , σ2) as in Definition 1, it follows from Definition 2 that the

posterior density over the observed measures of association ẑij is:

fposterior (µij |ẑij) =
(1− wi) δ (µij) fN

(
ẑij
∣∣0, σ2)+ wiγ (µij) fN

(
ẑij
∣∣µij , σ2)

fmarginal (ẑij)
,

where the marginal density is:

fmarginal (ẑij) = (1− wi)fN
(
ẑij
∣∣0, σ2)+ wig (ẑij) , (4.6)

where g (µij) is the convolution of the Laplace density with the standard normal density. Com-

paring the expression for fmarginal (ẑij) in equation 4.6 with equation 4.1, we see that the

normally-distributed non-zero mixture component in equation 4.1, is replaced with the con-

volution of the Laplace and normal densities in equation 4.6. If a Gaussian prior were used

instead of the Laplace prior, then the marginal density in equation 4.6 would be exactly the

same as equation 4.1. However, as noted in (Johnstone & Silverman, 2004), this empirical

Bayes procedure requires a prior with tails that are exponential or heavier. Hence I use, as they

do, the Laplace rather than a Gaussian prior. I note that this is a slight model mis-specification.

This procedure results in a separate model being fitted to each pair of variables (xi, xj),

based on the corresponding observed statistic ẑij . However, a common weight wi is used for all

models corresponding to each xi. This estimate of wi is found as the value which maximises

the marginal likelihood (equation 4.7) of the observed statistics ẑij over all the pairwise com-

parisons of xi with xj , j 6= i. This allows the model for each pairwise comparison (xi, xj) to

‘borrow strength’ from all the other comparisons (xi, x
′
j), j′ 6= i, j′ 6= j:

ŵi = arg max
w

∑
j 6=i

log {(1− w)φ (ẑij) + wg (ẑij)} . (4.7)

For a particular xi, if the ẑij are mostly close to zero, then wi will be set low, which means

that fewer edges (Aij = 1) will be detected; this therefore corresponds to i being a low-degree

node. If for a different xi, the ẑij are generally further from zero, then ŵi will be set high, which

corresponds to more edges being detected; this therefore corresponds to i being a high-degree

node. Hence, setting ŵi separately for each variable xi allows adaptation to a heterogenous

degree distribution in A. The marginal likelihood of equation 4.7 assumes that the ẑij are

independent, however this will not be true in practice. The use of the Laplace prior rather than

a Gaussian prior tends to mitigate the effect of this mis-specification.

As in (Johnstone & Silverman, 2004), I use the posterior median to calculate µ̂ij . This
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means that:

P (|µij | > 0|ẑij) > P (µij = 0|ẑij) =⇒ |µ̂ij | > 0,

P (|µij | > 0|ẑij) < P (µij = 0|ẑij) =⇒ µ̂ij = 0.

We can then estimate the corresponding adjacency matrix entry Aij as follows:

Âij =1 if |µ̂ij | > 0,

Âij =0 otherwise.

However, because I apply the method separately to all comparisons xi with xj , j 6= i and to all

comparisons xj with xi, i 6= j, this may not always lead to consistent inference of the form:

Âij = Âji. I therefore make a conservative estimate of Aij as follows:

Âij =1 if |µ̂ij | > 0 and |µ̂ji| > 0, (4.8)

Âij =0 otherwise.

The spread parameter a in the Laplace prior is typically set as a = 0.5. However, for additional

model flexibility where needed, a can also be estimated by marginal maximum likelihood, in

which case I estimate ai separately for each variable xi, simultaneously with wi.

4.2.4 Community detection

Having inferred Â, community detection (Girvan & Newman, 2002) may then proceed by

fitting the degree-corrected stochastic blockmodel (Holland et al. , 1983; Bickel & Chen, 2009;

Rohe et al. , 2011; Qin & Rohe, 2013) directly to Â. However to fit the degree-corrected

stochastic blockmodel, the number of communities in the model must first be specified; this

number can be estimated as in (Olhede & Wolfe, 2014). Using this estimate of the number of

communities, I infer the set of communities Ĉ in Â, such that a community ĉ ∈ Ĉ is a group of

variables xi, i ∈ ĉ. Such a community ĉ would correspond to an unexpectedly large number of

non-zero entries Σ̂ij , of the sample covariance matrix Σ̂, for pairs of variables xi and xj , where

i ∈ ĉ and j ∈ ĉ. Alternatively, the community ĉ would correspond to an unexpectedly large

number of significant p-values p̂ij , in the matrix P̂, for pairs of variables xi and xj again with

i ∈ ĉ and j ∈ ĉ.
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4.2.5 Model mis-specification

A practical point of note, is that sometimes directional information may not be available in the

measures of association/dependence between xi and xj . Such directional information deter-

mines whether the correlation/covariance is positive or negative, such as the sign on the sample

Pearson correlation coefficient. This scenario might arise if the sign of the correlation or test-

statistic has been discarded at an earlier stage in the data-processing which cannot be repeated,

or if the measure of association is a p-value resulting from a two-tailed test. This would result in

all calculated ẑij ≥ 0, which causes a model mis-specification, because the small values of ẑij

which correspond to H0, and which hence originate from µij = 0, will all be positive. Hence,

under these circumstances, the small ẑij will originate from a half-normal rather than a normal

distribution.

We can informally explore under what circumstances this model mis-specification will

have a significant effect. The mean of a half-normal distribution is σ
√

2/π, where σ2 is the

variance of the corresponding normal distribution. Therefore, if the ẑij are derived from covari-

ance/correlation matrices (as described in Section 4.2.1), the mean of the ẑij which originate

from the zero-mean component (i.e., correspond to µij = 0) under this model mis-specification

will be
√

2/ (π × (ν − 3)), where ν is the degrees of freedom. Hence, when ẑij is calculated

from n = 50, n = 100 and n = 200 samples, the corresponding half-normal distribution

means are 0.12, 0.081 and 0.057, respectively. The standard deviation of a half-normal is ap-

proximately 0.6× that of a full normal distribution, and hence the corresponding standard de-

viations are 0.088, 0.061, and 0.043, respectively. Maclaurin expanding the Fisher transformed

expression for ẑij in terms of r̂ij (equation 4.3) up to first, third and fifth orders, gives r̂ij ,

r̂ij +(r̂ij)
3/3 and r̂ij +(r̂ij)

5/5 respectively. Hence, we can take ẑij ≈ r̂ij for this assessment.

We can reasonably hypothesise that the region in which we expect this model mis-specification

will become problematic, is when the observed ẑij fall in the region between the mean, and the

mean plus one standard deviation, of these half-normal distributions. This is because in this re-

gion, much of the distribution of the mixture component which arises from µij 6= 0 will overlap

with much of the distribution of the component arising from µij = 0. Such regions correspond

to 0.12 < rij < 0.21 if ν = 50, 0.081 < rij < 0.14 if ν = 100, and 0.057 < rij < 0.1 when

ν = 200. This point will be examined further in the context of the simulation study, in the next

section.
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4.3 Examples

I now present results of applying the above methodology to simulated data, and to several

gene-expression data-sets. I carry out network inference as described, resulting in the binary

adjacency matrix, to which I fit the degree-corrected stochastic blockmodel by regularised spec-

tral clustering (Holland et al. , 1983; Bickel & Chen, 2009; Rohe et al. , 2011; Qin & Rohe,

2013). I note that spectral clustering could be expected to be computationally intensive, as it

requires a singular value decomposition (SVD) of a large matrix. However, efficient computa-

tional methods exist to find the top few components in the singular value decomposition of large

sparse matrices (Sørensen, 1992; Lehoucq & Sørensen, 1996). Binary adjacency matrices such

as those considered here tend to be very sparse, and we only require as many components as

the number of communities or clusters we are trying to find, a number which tends to be two or

more orders of magnitude smaller than the dimension of the adjacency matrix, m. Hence, these

efficient computational methods are applicable here. Implementations of these efficient compu-

tational methods are included in Matlab and R, meaning that this methodology is practical for

large data-sets, and are accessible to a wide range of users.

4.3.1 Simulation study

I carried out a simulation study, to evaluate the effectiveness of this network inference method-

ology against generated networks with known ground-truth community structure. A genera-

tive model for exchangeable random networks with heterogenous degrees is the logistic-linear

model (Perry & Wolfe, 2012). I use a version of that model here with community structure

added. This additional community structure takes the form of ‘blocks’. This block structure

is very general: as noted in (Olhede & Wolfe, 2014) it can be used as a model for community

structure in relation to many real data-sets for which the true generative mechanism of the com-

munity structure is not exactly such block structure. The generative model for this simulation

study is defined as:

Logit (pij) = αi + αj + θij

where pij defines the probability of an edge being observed between nodes i and j. I choose to

use this model, because the parameters can take any real values, and the edge probabilities pij

will still be between 0 and 1. This model only deviates from the equivalent log model when the

parameter values become very large, which is what prevents pij from reaching (and exceeding)

1. The node-specific parameters αi, i ∈ 1, ...,m are elements of the parameter vector α which

defines a power-law degree-distribution for the nodes. Each αi is generated as the logarithm of

a sample taken from a bounded Pareto distribution as in (Olhede & Wolfe, 2012). I note that
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because the αi are chosen to be random, the generated networks are exchangeable (Kallenberg,

2005), whereas if the elements of α were defined deterministically, these networks would in-

stead be generated under the inhomogenous random graph model (Bollobás et al. , 2007). The

community parameter θij is allowed to take two values: θij = θin if i and j are in the same

community, and θij = θout otherwise. I choose to do this because it is a simple way of adding

community structure, and it is equivalent to a modelling constraint which improves parame-

ter identifiability in some formulations of the stochastic blockmodel (Newman, 2013). After

generating the pij , the network is generated by sampling each Aij according to:

Aij ∼ Bernouilli (pij) .

The communities themselves are planted in the network as randomly chosen groups of 150

nodes. I set the number of communities k = 20, and hence the generated networks each

comprise m = 3000 nodes.

Having generated a network with known ground-truth community structure in this way, I

use it to randomly generate a sample correlation matrix r̂, from which I attempt to reproduce

the known community structure. To do this, I first generate a random sample covariance matrix

Ŝij for each pair of nodes i and j, according to:

Ŝij ∼Wishart (S, ν)

where

S =

 1 rgen

rgen 1


if Aij = 1, where rgen is the model generative correlation coefficient, and

S =

 1 0

0 1


if Aij = 0, and ν is the degrees of freedom. I then calculate the estimate of the sample Pear-

son correlation coefficient r̂ij for nodes i and j as r̂ij =
(
Ŝij

)
12
/

√(
Ŝij

)
11
×
(
Ŝij

)
22

=(
Ŝij

)
21
/

√(
Ŝij

)
11
×
(
Ŝij

)
22

. With all elements of r̂ generated in this way, with r̂ij = r̂ji

and r̂ii = 0 for i, j ∈ {1, ...,m}, I proceed with network inference and community detection

according to the methods presented above.

I test the methods on networks generated with values of θin ∈ {50, 30, 20, 10}, which cor-
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responds to within-community edge density ρin ∈ {0.81, 0.34, 0.15, 0.039}. For all networks,

I set θout = 1, corresponding to between-community edge density ρout = 0.0013. I generate

sample covariance matrices with rgen ∈ [0, 0.8], and degrees of freedom ν ∈ {50, 100, 200}.

For each combination of parameters, I carry out 50 repetitions of network generation followed

by network inference and community detection, to enable assessment of the variability of the

accuracy of the network inference. To compare detected communities in the inferred network

with the ground-truth planted communities, I use the normalised mutual information (NMI)

(Danon et al. , 2005). The NMI assesses the numbers of nodes which appear together in the

detected communities, compared with whether they appeared together in the planted commu-

nities (adjusted for group sizes). The NMI takes the value 1 if the communities are perfectly

reproduced in the community detection, and 0 if they are not reproduced at all, and somewhere

in between if they are partially reproduced.

The results of the simulation study are shown in Figure 5.2. The accuracy of reproduction

of the ground-truth community structure is high, as long as the generative correlation coeffi-

cient rgen is high enough. Below this threshold the performance quickly deteriorates, as the

method described in Section 4.2.3 no longer detects any edges. This is because the non-zero

mean component of the generative mixture model becomes centred too close to zero, and so the

ẑij from this component become categorised together with those from the zero-mean mixture

component, with the model fitting effectively assigning all ẑij to the zero-mean component.

However, as long as the generative correlation coefficient rgen is high enough, the method per-

forms well even with fairly sparse within-community edge density in the ground-truth planted

communities. Typically, the method fails when rgen falls below 0.45, 0.35 and 0.25 for ν = 50,

ν = 100 and ν = 200, respectively. I also note that the performance actually decreases for

high ρin, as rgen becomes high. This can be explained by a combination of the limitation of the

asymptotic normality of the Fisher transformation, and a limitation of the performance of the

edge inference method described in Section 4.2.3 when there are many extreme values of ẑij .

I then repeated the simulation study, with one change to the generative model, to examine

the inferential performance under the model mis-specification described in Section 4.2.5. This

change is to replace the generated r̂ij with |r̂ij |, thus discarding the directionality information.

With this change, we now expect the calculated ẑij which arise from Aij = 0 to follow the

half-normal distribution described in Section 4.2.5. The results of this model mis-specification

simulation study are shown in Figure 4.2. When the within community edge-density, ρin, is

highest, interestingly the performance actually improves for lower values of the generative cor-

relation coefficient rgen, and is then only limited by the model mis-specification. Typically, the
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method now fails when rgen falls below about 0.2, 0.15 and 0.1 for ν = 200, ν = 100 and

ν = 50, respectively. The vertical brown lines show the mean and the mean plus one standard

deviation, of the half-normal distribution corresponding to the full-normal distribution of the

zero-mean component specified by the mixture model; the mean plus one standard deviation

line similarly corresponds to about 0.2, 0.15 and 0.1 for ν = 200, ν = 100 and ν = 50,

respectively. When ρin is highest, the NMI goes from approximately 1 to approximately 0 in

this region. However, as ρin decreases, the performance quickly becomes poor, for all values of

rgen. The reason that (as long as ρin is high enough) performance is better in the case of the mis-

specified model, is that now as rgen decreases, the non-zero mean mixture component overlaps

significantly with the half-normal component (which arises from the zero-mean component),

and the resulting density is not centred on zero. Hence, the model fit categorises most ẑij as

being from a non-zero-mean component, rather than being from the zero-mean component.

Although a reasonable number of edges are almost always detected when the model is mis-

specified, if the generative correlation coefficient rgen leads to a distribution which has much

overlap with the distribution of the half normal arising from the zero-mean mixture component,

many of the edges which are detected are false positives.

4.3.2 Comparison with popular clustering methods

The clustering problem is fundamentally different to that of community detection, although

there are nevertheless many similarities. The basic task of clustering is to group together entities

(usually variables or samples) which share some attributes, which may lead to more highly

correlated behaviour within the groups than between groups. When the entities being grouped

are nodes in a network, the problems of clustering and community detection become essentially

the same problem. In this study, I infer binary networks from continuous data before carrying

out community detection. However, a number of popular methods provide alternative means of

clustering entities into groups (which may be considered equivalent to communities), based on

continuous data.

A method of clustering which is very popular across the biological and social sciences,

is hierarchical clustering. In that method, variables or samples are grouped together according

to their ‘distance’ from one another. A popular measure of distance between a pair of such

variables or samples is simply 1 − r, where r is the absolute value of the Pearson correlation

coefficient between the pair. Hence, this method can be easily applied to data of the type

presented here (without carrying out the network inference presented in Section 4.2.3). I tested

this method on the simulated data presented in Section 4.3.1, by applying hierarchical clustering

to the generated sample correlation matrix r̂ before comparing the detected clusters with the
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Figure 4.1: Simulation study.
Normalised mutual information (NMI) compares detected community structure with ground-truth
planted communities. Each line corresponds to a different within-community edge-density; these are
set as ρin ∈ {0.81, 0.34, 0.15, 0.039} by setting θin ∈ {50, 30, 20, 10}. The degrees of freedom, ν, are
set as ν ∈ {200, 100, 50}. For each network, the number of nodes m = 3000, the ground-truth number
of communities is k = 20, and the between-community edge density is set as ρout = 0.0013 by setting
θout = 1. Dashed lines indicated quartiles.

planted communities. However, I found that in every case, the result of this comparison was a

value of the NMI close to 0. Therefore, we may conclude that hierarchical clustering performs

significantly worse than the methods presented here, on problems of this type.
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Figure 4.2: Simulation study, with model mis-specification.
Normalised mutual information (NMI) compares detected community structure with ground-truth
planted communities. Each line corresponds to a different within-community edge-density; these are
set as ρin ∈ {0.81, 0.34, 0.15, 0.039} by setting θin ∈ {50, 30, 20, 10}. The degrees of freedom, ν, are
set as ν ∈ {200, 100, 50}. For each network, the number of nodes m = 3000, the ground-truth number
of communities is k = 20, and the between-community edge density is set as ρout = 0.0013 by setting
θout = 1. Dashed coloured lines indicated quartiles. Vertical brown lines show the theoretical mean and
mean + 1 standard deviation for the half-normal distribution corresponding to the full-normal distribu-
tion of the zero-mean component in the mixture model. Hence, they are an illustration of the effect of the
model mis-specification discussed.

One of the most popular clustering methods is K-means, in which samples (which may be

thought of as equivalent to network nodes) are grouped into K clusters based on their location

in N -dimensional space. On its own, this method is fundamentally ill-suited to network data,
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Figure 4.3: Simulation study: spectral clustering without network thesholding.
Normalised mutual information (NMI) compares detected community structure with ground-truth
planted communities. Each line corresponds to a different within-community edge-density; these are
set as ρin ∈ {0.81, 0.34, 0.15, 0.039} by setting θin ∈ {50, 30, 20, 10}. The degrees of freedom, ν, are
set as ν ∈ {200, 100, 50}. For each network, the number of nodes m = 3000, the ground-truth number
of communities is k = 20, and the between-community edge density is set as ρout = 0.0013 by setting
θout = 1. Dashed lines indicated quartiles.

because of the high dimensionality of the problem. However, K-means clustering is often used

as the final stage in spectral clustering, which is the most common way of fitting the stochastic

blockmodel - and it is used by us here, for that purpose. Spectral clustering can also be used
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to cluster continuous data, and so for comparison, I have applied regular spectral clustering

(without carrying out the network inference presented in Section 4.2.3) to the simulated data

presented in Section 4.3.1. To do this, I applied spectral clustering as described at the start of

Section 4.3 directly to the absolute of the generated sample correlation matrix r̂ (i.e., continuous

data). The absolute values are used to ensure that the data is non-negative, as required for

spectral clustering (Von Luxburg, 2007). The results appear in Figure 4.3.

The result of applying spectral clustering applied directly to r̂ is somewhat successful (Fig-

ure 4.3). However, it does not perform as well as when the network inference/thresholding of

Section 4.2.3 is first applied. The most natural comparison with those results, relates to when

the model mis-specification described in Section 4.2.5 occurs (Figure 4.2), as in both cases the

absolute of the sample correlation matrix r̂ is considered. When spectral clustering with and

without the network thresholding of Section 4.2.3 both perform comparably well, it is when the

expected within-group correlation is highest (ρin = 0.81): i.e., when the presence of an edge

(i, j) in the generative network will likely lead to an entry r̂ij close to 1. However when ρin is

set lower, the performance becomes relatively worse for spectral clustering on continuous data

without network thresholding. Hence, we may conclude that the network inference presented in

Section 4.2.3 provides an improvement in performance over and above regular spectral cluster-

ing, on problems of the type presented here. Further, due to the restriction that the data must be

non-negative, when applying spectral clustering without such network thresholding/inference,

model mis-specification similar to that described in Section 4.2.5 becomes unavoidable.

4.3.3 Gene-expression example

I present an example of a practical application of these methods to a standard problem in gene-

expression analysis. Community detection can be used to infer groups of genes which comprise

functional subnetwork modules, or groups of co-regulated genes. Examples of such groups are

found in gene regulatory networks and protein signalling networks (Shen-Orr et al. , 2002).

Defining x(k) to be gene expression measurements for sample k for the genes x1, x2, ..., xm,

I calculate the covariance matrix according to equation 4.2, and carry out network inference

as described. I note that the network edges detected in this way may be transitive edges, i.e.,

they do not necessarily represent physical interactions between genes and gene products. To

determine this would require additional functional data, such as that relating to DNA binding

by gene products (e.g., transcription factors) (Jojic et al. , 2013). However, in general, the

groups of genes detected in this way can be expected to form biologically meaningful subnet-

work modules, generating biological hypotheses which may warrant further investigation by

experimental scientists.
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Figure 4.4: Detected communities in a lung cancer gene expression
data set.

Entries in the adjacency matrix equal to 1 (representing a network
edge) are coloured blue, and detected communities are outlined in
black.

I carried out this process

of network inference and com-

munity detection in gene ex-

pression data from 8 different

types of cancer: brain, breast,

colon, kidney, lung, ovarian,

rectal and uterine (data source:

The Cancer Genome Atlas

(Hampton, 2006)). Each data

set comprises gene expression

measurements for 17505 genes

(i.e., m = 17505). Figure 4.4

shows the inferred adjacency

matrix, after community detec-

tion, for the lung cancer data-set. The number of communities is estimated as 105 by the

network histogram method (Olhede & Wolfe, 2014) for this data-set, and the edge density is

ρ = 0.062 (which is typical of all 8 gene expression datasets).

I also tested the domain-relevance of the communities detected in the inferred networks.

I tested the overlap of the genes of each detected community, separately with each of 10295

known gene-groups (data source: http://www.broadinstitute.org/gsea/msigdb/ ). This is known

as ‘gene set enrichment analysis’ (GSEA) (Subramanian et al. , 2005). Table 4.1 shows the

percentage of the communities detected in each cancer data-set, which overlapped significantly

(Fisher’s exact test, FDR-adjusted p < 0.05) with at least one of these known gene-groups.

As a benchmark, I also sampled random groups of genes, from the 17505 genes represented

Breast Colon Brain Kidney Lung Ovarian Renal Uterine
97% 86% 87% 76% 89% 96% 76% 66%

Table 4.1: Domain-relevance of detected communities.
The table shows the percentage of the communities, detected in each cancer data-set, which overlap
significantly (Fisher’s exact test, FDR-adjusted p < 0.05) with at least one known gene group.

in the cancer data-sets, and tested them for overlap with the same 10295 known gene-groups.

The number of genes in each random sample was itself randomly sampled from the distribu-

tion of the sizes of the communities detected in the cancer data-sets. I took 1000 randomly

sampled groups of genes like this, of which 2% overlapped significantly (Fisher’s exact test,

FDR-adjusted p < 0.05) with at least one of the known gene-groups. These results show a
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high level of domain-relevance of the detected communities, in all 8 gene-expression data-sets

analysed here.

4.4 Discussion
In this chapter, I have presented a method which combines estimation of adjacency matrices

with community detection via stochastic blockmodel, based on sample covariance and correla-

tion matrices, and more generally matrices of arbitrary test statistics between pairs of variables.

I have described the theory behind this method, and provided practical details for its implemen-

tation. I have shown examples of successful applications of this methodology to a simulation

study, and to multiple gene-expression datasets. I have also shown that this methodology per-

forms better than popular clustering methods, for discovering latent groupings in data of the

type presented here. An important point to note, is that some network edges inferred from the

correlation structure of data as in the methodology proposed here, may be what are often re-

ferred to as ‘transitive edges’. I.e., an inferred edge may not correspond to a direct physical

real-life interaction, instead deriving from some indirect interaction which may alternatively be

mediated via a less direct route through the network, possibly also involving unobserved vari-

ables. An interesting extension to this methodology would be to consider overlapping blocks in

the stochastic blockmodel (Latouche et al. , 2011). Another interesting extension would be to

develop an online version of the method, as a computationally efficient approach to large and

growing data-sets (Zanghi et al. , 2010). This methodology would be expected to work equally

well in many other networks contexts. It could also be expected to work well in more general

contexts where the aim is to cluster together correlated variables. The number of communi-

ties or clusters can be estimated automatically using the network histogram method (Olhede &

Wolfe, 2014), allowing fully automated processing. This methodology is based on commonly

available and computationally efficient methods, and performs well on large datasets.



Chapter 5

Co-modularity and Co-community Detection

in Large Networks

5.1 Introduction

This chapter introduces the notion of co-modularity, to co-cluster observations of bipartite net-

works into co-communities. The task of co-clustering is to group together nodes of one type,

whose interaction with nodes of another type are the most similar. The novel measure of co-

modularity is introduced to assess the strength of co-communities, as well as to arrange the

representation of nodes and clusters for visualisation. The existing non-parametric understand-

ing of co-clustering is generalised in this chapter, by introducing an anisotropic graphon class

for realisations of bipartite networks. By modelling the smoothness of the anisotropic graphon

directly, it is possible to obtain a quantitative measure to determine the number of groups to

be used when fitting co-communities, subsequently using the co-modularity measure to do so.

I illustrate the power of the proposed methodology on simulated data, as well as an example

based on linked DNA methylation and gene-expression data.

Studying relationships between variables of the same type is naturally of great utility;

its simplest generalisation is to study relationships between variables of a different type; this

is known as the co-clustering problem (Flynn & Perry, 2012; Choi et al. , 2014; Madeira &

Oliveira, 2004). This problem can also be approached non-parametrically, as is made clear

in (Choi et al. , 2014). To achieve consistent estimation, assumptions have to be made regarding

the properties of the graphon function, where smoothness is standard (Olhede & Wolfe, 2014)

and stronger assumptions (Airoldi et al. , 2013) yield better estimation procedures when the

stronger assumptions are justified. Assumptions made for the symmetric graphon function in

the clustering problem need extension to the asymmetric graphon lying behind the biclustering

problem (Aldous, 1985). To enable understanding of nonparametric estimation, I introduce the

model of an anistropic graphon, called the anisotropic graphon model.
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Having provided a model for the set of relationships between two types of variables, we

now need to infer them. I shall start from the modularity approach to recognising commu-

nities (Girvan & Newman, 2002), realising that extending such understanding to variables of

different types is nontrivial (Aldous, 1985; Madeira & Oliveira, 2004). Having recognised

communities in both types of variables, we need to transform the clustering or grouping of both

types of variables, into an ordering of groups. This is not inherent to the formulation of the

Aldous-Hoover representation of the generating mechanism of the random array we are mod-

elling, but is important for visualisation purposes. I also use the modularity to make this choice

of visualisation.

To be able to use the modularity, we need to decide how many groups we are using in

both variable types. This will be based on the model of the anistropic graphon, and a choice of

smoothness for the graphon function. I extend the work of (Olhede & Wolfe, 2014) to select

the number of groups, adjusted for the anisotropic graphon model. All parameter choices are

determined from the data, and a fully specified method of group allocation is given.

Finally, to demonstrate the power of the newly proposed method, I carry out a simulation

study, and I analyse a relevant network data set which is based on linked DNA methylation and

gene expression data. These analyses show the power of the proposed analysis methods, and

enable us to discover both known and hitherto unknown characteristics of such data sets.

This chapter is organised as follows: Section 5.2 defines the stochastic block model, and

gives the representation of an arbitrary separately exchangeable array. It also defines the co-

modularity, and explains how the array data will be analysed. Section 5.3 describes how to

choose the number of co-communities, and section 5.4 shows how to determine them from

data. Section 5.5 gives examples to illustrate the performance of the proposed method, and the

derivations section provides all proofs of the chapter.

5.2 Co-modularity and co-community detection
I begin this section by defining the degree-corrected stochastic co-blockmodel (Rohe & Yu,

2012; Flynn & Perry, 2012; Choi et al. , 2014) together with notation; I then define a general-

isation of this model based on the notion of the graphon. Following these model definitions, I

give a definition of the Newman-Girvan modularity, and by analogy, I define a quantity which

I term the ‘co-modularity’, and I specify an algorithm for maximising this quantity. I then

show that under certain conditions, maximising the co-modularity in this way is equivalent to

maximising the model likelihood of the specified degree corrected stochastic co-blockmodel.
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Definition 3 (Degree-corrected stochastic co-blockmodel). For m, l ∈ N+, define the set of

X-nodes {1, ...,m}, and the set of Y -nodes {1, ..., l}. Denote an X-node grouping as g(X)
p ∈

G(X), p ∈
{

1, ..., k(X)
}

, and a Y -node grouping as g(Y )
q ∈ G(Y ), q ∈

{
1, ..., k(Y )

}
, where

G(X) andG(Y ) are exhaustive lists of mutually exclusiveX and Y -node groupings, respectively.

Define map functions z(X)(i) and z(Y )(j), such that g(X)
p =

{
i : z(X)(i) = p

}
, and g(Y )

q ={
j : z(Y )(j) = q

}
. Define co-community connectivity parameters θ ∈ [0, 1]k

(X)×k(Y )
, where

θz(X)(i),z(Y )(j) is the propensity of X-node i in group z(X)(i) to form a connection with Y -

node j in group z(Y )(j). Define also node-specific connectivity parameters π(X) ∈ Rm≥0 and

π(Y ) ∈ Rl≥0. Let the elements of the adjacency matrix A ∈ {0, 1}m×l follow the law of:

Aij ∼ Bernouilli
(
π
(X)
i π

(Y )
j θz(X)(i),z(Y )(j)

)
, 1 ≤ i ≤ m, 1 ≤ j ≤ l. (5.1)

Then, Aij is generated under the degree corrected stochastic blockmodel.

I note that the terminology ‘X-nodes’ and ‘Y -nodes’ is non-standard; I introduce it here, to

increase clarity. To improve identifiability of parameters of the model in Definition 5.2, I intro-

duce a specification favoured by many other authors (Newman, 2013), that θz(X)(i),z(X)(j) may

take only two values:

θp,q =


θin, if the pairing of X-node grouping g(X)

p with Y -node

grouping g(Y )
q is a co-community,

θout, otherwise.

(5.2)

We can also replace the Bernoulli model likelihood with a Poisson likelihood: because the

Bernoulli success probability is typically small, and the number of potential edges (i.e., pairings

of nodes) is large, a Poisson distribution with the same mean behaves very similarly, and so it

makes little difference in practice (Zhao et al. , 2012; Perry & Wolfe, 2012). Its usage greatly

simplifies the technical derivations. Hence, I calculate the model log-likelihood as follows

(assuming Aij ∈ {0, 1} and therefore Aij ! = 1 for all i, j):

`
(
θ,π(X),π(Y );G(X), G(Y )

)
=

m∑
i=1

l∑
j=1

Aij ln
(
π
(X)
i π

(Y )
j θz(X)(i),z(Y )(j)

)
− π(X)

i π
(Y )
j θz(X)(i),z(Y )(j). (5.3)

If we want to let the network grow, it would be impractical to fully specify more complicated

versions of the parametric model of Definition 3, which completely account for all effects. In-
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stead, we can make a non-parametric generalisation of this model incorporating more smooth-

ing, based on the notion of the graphon. The graphon is a latent, smooth function which sets

the probability between each pair of nodes, of a connection forming between that pair of nodes

(Wolfe & Olhede, 2013). In this setting, the graphon is not symmetric, due to the two different

types of nodes modelled.

Definition 4. For the Lipschitz-continuous graphon f ∈ L
(
(0, 1)2

)
, with A defined according

to Definition 3, define connectivity functions φ(X) ∈ L (0, 1) and φ(Y ) ∈ L (0, 1), and de-

fine latent orderings ξ(X)
i

i.i.d.∼ U (0, 1) and (independently) ξ(Y )
j

i.i.d.∼ U (0, 1) on the graphon

margins of X and Y -nodes i ∈ {1, ...,m} and j ∈ {1, ..., l} respectively. Then,

E (Aij) = f
(
ξ
(X)
i , ξ

(Y )
j

)
· φ(X)

(
ξ
(X)
i

)
· φ(Y )

(
ξ
(Y )
j

)
. (5.4)

The graphon f (Definition 4) can be considered an infinite-dimensional equivalent to θp,q (Def-

inition 3), up to a re-ordering of the nodes defined by the orderings ξ(X)
i and ξ(Y )

j (which are

always, to some extent, unidentifiable). The connectivity functions φ(X) and φ(Y ) (Definition

4) are then similarly equivalent to the node-specific connectivity parameters π(X) and π(Y )

(Definition 3). These functions φ(X) and φ(Y ) model the general variability of connectivity

strength throughout the network, whereas the graphon f models the tendency for regions of the

network to aggregate into specific co-communities. The model of Definition 4 is a more general

model which is specified similarly for any network size. However, as the networks I consider

here are of fixed size, the degree corrected stochastic co-blockmodel (Definition 3) may be a

more parsimonious choice. To estimate the generating mechanism of a bipartite network stably,

Definition 4 must be replaced by a model with a limited number of parameters, i.e., Definition

3.

The Newman-Girvan modularity (Newman & Girvan, 2004) measures, for a particular

partition of a network into communities, the observed number of edges between community

members, compared to the expected number of edges between community members without

the community partition. The Newman-Girvan modularity may be defined as follows:

Definition 5 (Newman-Girvan modularity). Define A ∈ {0, 1}n×n as a symmetric adjacency

matrix representing a unipartite network with nodes i ∈ {1, ..., n}, define d as the degree vector

of the nodes of this network, di =
∑n

j=1Aij , and define the normalising factor d++ as the total

number of edges, d++ =
∑n

i=1 di. Define a community, or grouping, of nodes as g ∈ G,

where G represents the set of all such groupings of nodes, define the map function z(i) such

that ga = {i : z(i) = a}, and let I [z(i) = z(j)] specify whether nodes i and j appear together
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in any community g, such that:

I [z(i) = z(j)] =


1, if nodes i and j are grouped together

in any community g ∈ G,

0, otherwise.

Then, the Newman-Girvan modularity QNG is defined as:

QNG =
1

d++

n∑
i=1

n∑
j=1

[
Aij −

didj
d++

]
· I [z(i) = z(j)] . (5.5)

The co-modularity is then defined by analogy with the Newman-Girvan modularity (Definition

5) as follows:

Definition 6 (Co-modularity). With A given by Definition 3, define d(X) and d(Y ) as the degree

vectors of theX and Y -nodes of the network, d(X)
i =

∑l
j=1Aij and d(Y )

j =
∑m

i=1Aij , and de-

fine the normalising factor d++ as the total number of edges, d++ =
∑m

i=1 d
(X)
i =

∑l
j=1 d

(Y )
j .

With g(X) and g(Y ), z(X) and z(Y ) also defined according Definition 3, let ct = {p, q} ∈ C,

t = {1, ..., T}, if T 6= 0. The enumeration of the pair {p, q} is arbitrary, and is to facilitate

ease of access of the co-blocks in a chosen order. If T = 0, then by definition, C = ∅. The

co-block ct specifies that the X-node grouping g(X)
p is paired with the Y -node grouping g(Y )

q ; I

refer to such a pairing as a ‘co-community’. Furthermore, let Ψ
(
C;G(X), G(Y ); i, j

)
∈ {0, 1}

specify whether nodes i and j appear together in any co-community c ∈ C, such that:

Ψ
(
C;G(X), G(Y ); i, j

)
=


1, if

{
z(X)(i), z(Y )(j)

}
= c : c ∈ C,

0, otherwise.

Then, the co-modularity QXY is defined as:

QXY =
1

d++

m∑
i=1

l∑
j=1

[
Aij −

d
(X)
i d

(Y )
j

d++

]
Ψ
(
C;G(X), G(Y ); i, j

)
. (5.6)

I note that for the co-modularity (unlike the Newman-Girvan modularity), we require a set of

pairings of X-node groupings with Y -node groupings C, such that each ct ∈ C is a pairing

of an X-node grouping g(X)
p ∈ G(X) with a Y -node grouping g(Y )

q ∈ G(Y ). Also, due to the

asymmetry of the co-clustering problem, ct = {p, q} 6= {q, p}. This separately specified set of

paringsC is not required in the case of the Newman-Girvan modularity, because in the unipartite
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network setting, there is only one type of node, and hence node groupings already ‘match-

up’ with one another. This can be visualised, in the unipartite network setting, as community

structure present along the leading diagonal of the adjacency matrix, if the nodes are ordered

by community. In the co-community setting, an X-node grouping g(X) may be paired in C

with many, with one, or with no Y -node groupings g(Y ) ∈ G(Y ), and equivalently a Y -node

grouping g(Y ) may be paired in C with many, with one, or with no X-node groupings g(X) ∈

G(X). Further, if theX-nodes and Y -nodes of the network are arranged in the adjacency matrix

according to the groupings g(X) and g(Y ), there is no reason co-communities should appear

along the leading diagonal. Hence, the function Ψ in Equation 5.6 generalises the role of the

indicator function in Equation 5.5. I also note that sometimes in practice, we must relax the

requirement of Ψ ∈ {0, 1}; the reason for this becomes clear in the technical derivations in

Derivation A which relate to Algorithm 1 (which follows next).

Community detection of k communities can be performed by fitting the degree-corrected

stochastic blockmodel. This is equivalent, under many circumstances, to spectral clustering

(Bickel & Chen, 2009; Riolo & Newman, 2012; Newman, 2013), which may be carried out by

grouping the nodes into k clusters in the space of the eigenvectors corresponding to the 2nd to

kth greatest eigenvalues of the Laplacian L = D−1/2AD−1/2, where D is the diagonal matrix

of the degree distribution. Co-community detection in a bipartite network of nodes attributed to

the variables X and Y (respectively, X-nodes and Y -nodes), can equivalently be performed by

degree-corrected spectral clustering (Dhillon, 2001).

A procedure to find an assignment of X and Y -nodes to k(X) X-node groupings (‘row

clusters’) and k(Y ) Y -node groupings (‘column clusters’) respectively, which finds a (possibly

locally) optimum value of the co-modularity QXY , is specified in Algorithm 1:

Algorithm 1. With A and QXY defined as in Definition 3, and d(X) and d(Y ) defined as in

Definition 6:

1. Calculate the co-Laplacian LXY (Dhillon, 2001) as:

LXY =
(
D(X)

)−1/2
A
(
D(Y )

)−1/2
, (5.7)

where D(X) and D(Y ) are the diagonal matrices of d(X) and d(Y ), respectively.

2. Calculate the singular value decomposition (SVD) of the co-Laplacian LXY .

3. Separately cluster the X and Y -nodes in the spaces of the left and right singular vectors

corresponding to the 2nd to k(X)th and 2nd to k(Y )th greatest singular values, respectively,
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of this SVD of LXY .

Technical derivations relating to Algorithm 1 appear in Derivation A, and are based on argu-

ments made previously in the context of unipartite (symmetric) community detection (Newman,

2013), extending them to this context of (asymmetric) co-community detection. I note in par-

ticular, that the notion of modularity assumes that within-community edges are more probable

than between-community edges, and therefore modularity maximisation is only consistent if

constraints are applied to ensure this assumption holds (Zhao et al. , 2012). In the community

detection setting, under suitable constraints, the solutions which maximise model likelihood

and modularity are identical (Bickel & Chen, 2009).

Proposition 1. The solution which maximises the model likelihood specified in equation 5.3,

subject also to the constraint of equation 5.2, is equivalent to the maximum co-modularity

assignment obtained via Algorithm 1.

Proof. The proof appears in Derivation B. It extends arguments made previously in relation to

community detection (Newman, 2013) to this context of co-community detection.

5.3 Selecting the number of co-communities

In order to use Algorithm 1 to carry out co-community detection, we must specify the number

of X-node groupings k(X), and the number of Y -node groupings k(Y ). The network histogram

method of fitting the stochastic blockmodel (Olhede & Wolfe, 2014) in the unipartite/symmetric

community detection setting provides a rule-of-thumb method for selecting the optimal number

of communities, or blocks, in the model. Fitted in this way, the blockmodel is a valid rep-

resentation of a network, whatever the generating mechanism of that network, as long as this

generating mechanism results in an exchangeable network. The network histogram approxi-

mates the graphon, which is a continuous function: the nodes correspond to discrete locations

along the graphon margins, ordered in an optimal way to satisfy the smoothness requirement

of the graphon. The graphon oracle (Wolfe & Olhede, 2013; Olhede & Wolfe, 2014) defines a

good ordering of the nodes, according to graphon smoothness, and community structure. This

information is not available in practice, but it can be used to bound the mean integrated squared

error of the network histogram approximation to the graphon. This ordering naturally corre-

sponds to community assignments, and the number of communities, or blocks, is determined

by the smoothness of the graphon. An intuition for this is by analogy with a wave: if there are

many peaks over a fixed distance (i.e., short wavelength), the maximum gradient of the wave

will be large, whereas if there are few peaks over the same fixed distance (i.e., long wavelength),
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the maximum gradient will be small. Similarly, the more communities, or peaks, that there are

in the graphon, the greater the maximum gradient of the graphon will be, and, correspondingly,

the less smooth it will be.

5.3.1 Finding the optimal numbers of X and Y -node groupings

In this section I define the anisotropic graphon, which allows us to determine an optimal number

of X and Y -node groupings, k(X) and k(Y ), from which co-communities can be identified.

This relates closely to the network histogram method in the symmetric unipartite community

detection setting (Olhede & Wolfe, 2014). In the unipartite community detection setting, the

graphon is a symmetric limit object bounded on (0, 1)2. It is symmetric because the in that

setting, the set of X-nodes is the same as the set of Y -nodes, and hence the smoothness is the

same with respect to the corresponding orthogonal directions on the graphon. In contrast, in

this co-community detection setting the graphon is asymmetric, having different smoothnesses

with respect to the X and Y -nodes. Hence, I refer to this as the ‘anisotropic graphon’, which is

similarly a limit object bounded on (0, 1)2. To aid the analyses, we can stretch the anisotropic

graphon so that it has the same smoothness with respect to the X-nodes, and with respect to the

Y -nodes. It is easy to see that such a transformation exists for all anisotropic graphons. I refer

to the result of stretching the anisotropic graphon in this way, as the ‘equi-smooth graphon’.

Without loss of generality, this transformation can be expressed as a stretch of scale-factor γ

with respect to the X-nodes, and a simultaneous stretch of scale-factor 1/γ with respect to the

Y -nodes. I refer to γ as the anisotropy factor. This is formalised as follows.

Definition 7. For the Lipschitz-continuous anisotropic graphon f ∈ L
(
(0, 1)2

)
defined ac-

cording to Definition 4, let the anisotropy factor γ define the linear-stretch transformation which

maps f onto the Lipschitz-continuous equi-smooth graphon f̃ ∈ L ((0, γ)× (0, 1/γ)). Then,

f(x, y) = f̃ (γx, y/γ) . (5.8)

Lipschitz-continuity, in this context, means that the smoothness of the graphon (anisotropic or

equi-smooth) is upper-bounded, and I use this bound to calculate the optimal number of X and

Y -node groupings.

To determine the optimal number of X and Y -node groupings, k(X) and k(Y ), I set these

k(X) and k(Y ) so as to minimise the mean integrated squared error (MISE) of the blockmodel

approximation of the graphon. Following a methodology which is closely related to the net-

work histogram estimator in the symmetric (unipartite) community detection setting (Olhede &

Wolfe, 2014), making use of the graphon oracle estimator, an upper bound can be calculated on
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this MISE, from a bias-variance decomposition, as follows:

Lemma 1. With A, m, l, g(X) ∈ G(X), and g(Y ) ∈ G(Y ) defined according to Definition 3,

let ρ be a deterministic scaling constant which specifies the expected number of edges in the

network, such that:

ρ = E

 1

ml

l∑
j=1

m∑
i=1

Aij

 ,

and define piecewise block-approximations to the adjacency matrix, for each pairing of a set of

X-nodes g(X) with a set of Y -nodes g(Y ), as:

Āp,q =

∑
i∈g(X)

p ,j∈g(Y )
q

Aij∣∣∣g(X)
p

∣∣∣ ∣∣∣g(Y )
q

∣∣∣
where |·| represents cardinality. With z(X) and z(Y )(j) defined according to Definition 3, ξ(X)

and ξ(Y ) defined according to Definition 4, and f defined according to Definition 7, define al-

ternative map functions z̃(X)(i′), i′ ∈ {1, ...,m}, and z̃(Y )(j′), j′ ∈ {1, ..., l}, which take the

ordered locations of the X and Y -nodes respectively along the graphon margins, as spec-

ified by ξ(X) and ξ(Y ), and return the corresponding X and Y -node groupings, such that

z̃(X)
(⌈
m · ξ(X)

i

⌉)
= z(X)(i), and z̃(Y )

(⌈
l · ξ(Y )

j

⌉)
= z(Y )(j). Define the graphon oracle

estimator as:

f̂(x, y) = ρ̂−1Āz̃(X)(dlxe),z̃(Y )(dmye), (5.9)

and let: ∫∫
(0,1)2

f(x, y)dx dy = 1. (5.10)

With f̃ and γ defined as in Definition 7, let M̃ be the maximum gradient of f̃ , and let h(X)

and h(Y ) be ‘bandwidth’ model parameters with respect to the X and Y nodes respectively.

Then, the graphon oracle upper bound on the MISE of the blockmodel estimate of the graphon

function f̂ is:

MISE
(

f̂
)
≤ M̃2

{
γ2 ·

(
h(X)

)2
m2

+
1

γ2
·
(
h(Y )

)2
l2

}

+ 2M̃2

{
γ2 · 1

4m
+

1

γ2
· 1

4l

}
{1 + o (1)}+

1

ρ · h(X) · h(Y )
{1 + o (1)} . (5.11)

Proof. See Derivation C.

I note that the sets of nodes represented by the groupings g(X) ∈ G(X) and g(Y ) ∈ G(X)

are contiguous along the graphon margins (corresponding to the canonical graphon ordering,
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Airoldi et al. (2013); Chan & Airoldi (2014)), but that these nodes are not contiguous along the

adjacency matrix margins. Thus, we need to specify how nodes map to the groupings g(X) and

g(Y ) in a different way for the graphon, as compared to the adjacency matrix. This difference

is accounted for by using different mapping functions: z̃(X)(i′) and z̃(Y )(j′) for the graphon,

and z(X)(i) and z(Y )(j) for the adjacency matrix. I.e., z̃(X)(i′) and z̃(Y )(j′) are required to

specify the (contiguous) ranges and locations of the X and Y -node groupings g(X) and g(Y ) on

the graphon margins, and equivalently z(X)(i) and z(Y )(j) for their (non-contiguous) locations

on the adjacency matrix margins.

Using the MISE formulation of Lemma 1, we can estimate the optimal numbers of X and

Y -node groupings, k(X) and k(Y ).

Proposition 2. With m and l defined as in Definition 3, and M̃ and ρ defined as in Lemma 1,

the optimal number of X and Y -node groupings, k(X) and k(Y ) respectively, are:

k(X) = γ · (ml)
1
4 ·
(

2ρM̃2
) 1

4 (5.12)

and

k(Y ) =
1

γ
· (ml)

1
4 ·
(

2ρM̃2
) 1

4
. (5.13)

Proof. The proof of this proposition is developed from the equivalent proof for the case of

the isotropic graphon (corresponding to community detection in unipartite networks) (Olhede

& Wolfe, 2014). The optimal bandwiths h(X)∗ and h(Y )∗ can be found by differentiating the

expression for the MISE of equation 5.11 with respect to h(X) and setting to zero, and doing the

same with respect to h(Y ), and combining the resulting equations. To calculate k(X) and k(Y ),

substitute these optimal bandwiths h(X)∗ and h(Y )∗ into k(X) = m/h(X)∗ and k(Y ) = l/h(Y )∗,

which leads to equations 5.12 and 5.13.

I note that the above proof of Proposition 2 implies constant group sizes for the X-nodes, and

constant group sizes for the Y -nodes. This assumption is relaxed in the practical implementa-

tion of this methodology I propose: this point is discussed further in Section 5.3.2.

5.3.2 Practical estimation of the number of X and Y -node groupings

I implement spectral clustering by including a standard k-means step, to group the X and Y -

nodes in the spaces of the left and right singular vectors corresponding to the 2nd to k(X)th and

2nd to k(Y )th greatest singular values, respectively, of the singular value decomposition of the

co-Laplacian LXY (equation 5.7). This k-means step does not produce identical group sizes,

however I note that the estimates of k(X) and k(Y ) defined according to equations 5.12 and



5.3. Selecting the number of co-communities 84

5.13 assume that the X and Y node groupings are the same size (i.e., that the blocks in the

blockmodel are all the same size with respect to the X-nodes, and separately with respect to

the Y -nodes). I relax this requirement in practice, because after examining several empirical

data-sets of the type presented in the next section, I observed that the group sizes produced

by this type of regularised degree-corrected spectral clustering, tend not to vary significantly

in size (there are no ‘giant clusters’). Further, this requirement of identical group sizes is not

physically realistic in the practical examples I present in the next section, and in many other

real scenarios.

To estimate M̃ and γ, I approximate the maximum slope of the graphon separately in

the directions corresponding to the X and Y -nodes, by considering the top component of the

singular value decomposition of the adjacency matrix A. This is equivalent to the rule-of-

thumb procedure in the network histogram method, in the symmetric/unipartite community

detection scenario (Olhede & Wolfe, 2014). The top left and right singular vectors are ordered,

and their gradients and values at their midpoints (the expected points of maximum slope) are

estimated as p̂X and b̂X respectively for the X-nodes, and p̂Y and b̂Y respectively for the Y -

nodes. By thinking of this singular value decomposition as a factorisation of the scaled, discrete-

sampled graphon (i.e., the ordered adjacency matrix), denoting the greatest singular value as ν,

leads to the linear approximations for the maximum gradient of the isotropic graphon M in the

directions of the X and Y -nodes, MX and MY respectively:

M̂X =
ν

ρ
p̂X b̂Ym, M̂Y =

ν

ρ
b̂X p̂Y l,

where m and l are the number of X and Y -nodes respectively (as previously defined). These

factors m and l take account of the fact that the isotropic graphon margins are bounded on

[0, 1], whereas the adjacency matrix margins take the values {1, ...,m} and {1, ..., l}, and the

edge density factor ρ (defined as in Lemma 1) normalises with respect to the adjacency matrix

realisation, such that the above estimates are independent of edge density ρ. The linear stretch

transformation γ defines the maximum gradients of the equi-smooth graphon as M̃X = γMX

and M̃Y = MY /γ respectively, and hence an estimate of the squared maximum gradient of the

isotropic graphon can be found as:

ˆ̃
M

2

= γ2 · M̂X
2

+
1

γ2
· M̂Y

2
=
ν2

ρ2

(
γ2 · p̂2X b̂2Ym2 +

1

γ2
· b̂2X p̂2Y l2

)
.

Using the assumption that the equi-smooth graphon is Lipschitz-continuous, with the same

upper-bound on its smoothness with respect to both the X and Y nodes, i.e., M̃X = M̃Y , =⇒
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γMX = MY /γ, we can estimate γ as:

γ̂2 =
M̂Y

M̂X

. (5.14)

5.3.3 Model simplifications

We can draw an analogy between bandwidth estimation in the anisotropic graphon, and the

anisotropic kernel (Wand & Jones, 1993; Duong & Hazelton, 2003). Similar to bivariate kernel

density estimation, we may be able to achieve a more parsimonious model, if we can justifiably

assume that the smoothness of the anisotropic graphon is the same with respect to both the X

and Y nodes. This is the same as saying that the anisotropy factor γ ≈ 1, and that MX ≈MY .

Proposition 3. With γ defined as in Definition 7, testing the following null and alternative

hypotheses:

H0 : γ = 1, H1 : γ 6= 1,

under the null, the estimated anisotropy constant γ̂ follows the law of:

γ2 ∼ N
(
1, τ2

)
,

where the variance τ2 is estimated from the linear model estimates of b̂X , p̂X , b̂Y and p̂Y , such

that:

τ̂2 =
V̂ar(b̂X)

b̂X
+

V̂ar(p̂Y )

p̂Y
+

V̂ar(p̂X)

p̂X
+

V̂ar(b̂Y )

b̂Y

+ 2
̂Cov(b̂X , p̂X)

b̂X p̂X
+ 2

̂Cov(b̂Y , p̂Y )

b̂Y p̂Y
.

Proof. See Derivation C.

If I fail to reject H0 in Proposition 3, then I take it that MX ≈ MY , and γ ≈ 1, and hence

we have that k(X) = k(Y ) = (ml)
1
4 ·
(

2ρM̃2
) 1

4 , i.e., there are the same number groupings of

X-nodes and of Y -nodes. This assumption is implicitly made in widely-used previous solutions

to the co-community detection problem, as in (Dhillon, 2001).

It is also worth noting that if the number of X and Y nodes, m and l respectively, are very

different, then this does not preclude γ ≈ 1: there are, in effect, two independent mappings,

which take place in getting from the adjacency matrix to the equi-smooth graphon. The first of

these linearly maps the adjacency matrix X-nodes i ∈ {1, ...,m} and Y -nodes j ∈ {1, ..., l},

onto the anisotropic graphon bounded on (0, 1)2. The second linearly stretches the anisotropic
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graphon by scale factor γ with respect to the X nodes, and 1/γ with respect to the Y -nodes,

giving the equi-smooth graphon.

A co-blockmodel approximates the graphon, which requires that k(X) and k(Y ) grow with

m and l, respectively. However, the co-blockmodel also allows us to model the scenario in

which k(X) and k(Y ) grow at different rates with respect to m and l, i.e., that the number of X

and Y -node groupings are unrelated.

5.4 Identification and comparison of co-communities

Fitting the stochastic co-blockmodel by spectral clustering as described in Algorithm 1, in-

volves using k-means to cluster the X and Y -nodes in the spaces of the left and right singular

vectors of the co-Laplacian (equation 5.7). However, as will be subsequently illustrated, this

leads to a problem of identifiability which does not arise when fitting the symmetric stochas-

tic blockmodel to unipartite networks by spectral clustering. This problem of identifiability is

precisely the question of estimating the set C (Definition 6) of pairings of X-node groupings

g(X) ∈ G(X) with Y -node groupings g(Y ) ∈ G(Y ).

Fitting the symmetric blockmodel in the unipartite community detection setting, there are

exactly k = k(X) = k(Y ) communities (because of symmetry). Each row grouping matches up

with exactly one column grouping, because the row and column groupings are the same thing.

On the other hand, fitting the asymmetric co-blockmodel by spectral clustering as in Algorithm

1 leads to k(X) and k(Y ) row and column clusters. Hence, these k(X) and k(Y ) row and column

clusters provide k(X) × k(Y ) potential co-communities. Which of these are significant? The

best-known solution to this problem (Dhillon, 2001), instead of clustering the X and Y -nodes

separately, instead normalises and concatenates the left and right singular vectors, and then

clusters all the nodes at once. However, this approach has serious limitations: it again requires

k(X) = k(Y ). Also, if the two types of nodes represent very different types of observations,

then in practice I have found that method to perform less well. For this comparison, I define

performance in terms of overlap with previously-defined groupings of nodes or variables.

So how should we assess and compare the k(X) × k(Y ) potential co-communities, each of

which is a different pairing of an estimated X-node grouping ĝ(X) ∈ Ĝ(X), with an estimated

Y -node grouping ĝ(Y ) ∈ Ĝ(Y ), to provide an assignment of the X-nodes and Y -nodes to

co-communities, which is in some sense optimal? In practice, I expect the number of co-

communities, T = |C| (where |·| represents cardinality), to be significantly less than k(X) ×

k(Y ). In the unipartite community detection setting, k(X) = k(Y ) = k, and hence in effect there

we have T = k =
√
k(X) × k(Y ).
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To estimate the set of co-communities, ct ∈ C, t = {1, ..., T}, in this bipartite network

setting, I calculate the ‘local co-modularity’ for each pairing ĝ(X) with ĝ(Y ), by considering a

relevant sub-part of the co-modularity matrix B (equation 5.15):

Definition 8 (Local co-modularity). With A given by Definition 3, with d(X), d(Y ) and d++

given by Definition 6, with

Bij = Aij −
d
(X)
i d

(Y )
j

d++
, B = A− 1

d++
d(X)

(
d(Y )

)>
, (5.15)

and with the set of X-node groupings and the set of Y -node groupings estimated according to

Algorithm 1 as Ĝ(X) and Ĝ(Y ) respectively, where
∣∣∣Ĝ(X)

∣∣∣ = k(X) and
∣∣∣Ĝ(Y )

∣∣∣ = k(Y ), where

|·| represents cardinality, for a particular pairing of estimated X-node grouping ĝ(X) ∈ Ĝ(X)

with estimated Y -node grouping ĝ(Y ) ∈ Ĝ(Y ), the local co-modularity QXY
(
ĝ(X), ĝ(Y )

)
is

defined as:

QXY

(
ĝ(X), ĝ(Y )

)
=

1

d++

∑
i∈ĝ(X)

∑
j∈ĝ(Y )

Bij . (5.16)

Each of the k(X) × k(Y ) possible pairings of ĝ(X) with ĝ(Y ) can be defined, or not, as a co-

community; doing so means that they are included in, or excluded from, the estimated set of

co-communities Ĉ (Definition 6). To consider all permutations, 2k
(X)×k(Y )

such assignments

would need to be considered, which would be computationally very demanding. However,

this problem can be avoided by defining summary statistics targeted for particular purposes.

The three such purposes which I consider here are described in the following subsections:

5.4.1 Comparing potential co-communities and assessing their strength; 5.4.2 Arranging the

co-communities for visualisation; 5.4.3 Defining an algorithmic objective function to be opti-

mised, when determining co-community partitions.

5.4.1 Comparing and assessing significance of co-communities

Under a null model of no co-community structure, θz(X)(i),z(Y )(j) = constant, for all i, j. There-

fore, referring to the log-linear model (Perry & Wolfe, 2012), equation 5.1 becomes:

Aij ∼ Bernouilli

(
π
(X)
i π

(Y )
j

π++

)
, (5.17)

where I have defined:

θz(X)(i),z(Y )(j) = 1/π++. (5.18)
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Hence under this null,

E (Aij) =
π
(X)
i π

(Y )
j

π++
=⇒ E (Bij) = 0.

I define the informal idealised quantities B̃ and Q̃XY in comparison with equations 5.15 and

5.16:

B̃ = A− 1

π++
π(X)

(
π(Y )

)>
, (5.19)

and

Q̃XY

(
ĝ(X), ĝ(Y )

)
=

1

π++

∑
i∈ĝ(X)

∑
j∈ĝ(Y )

B̃ij , (5.20)

where the empirical degree distributions d(X) and d(Y ) have been replaced by the theoretical

node connectivity parameters π(X) and π(Y ), and the empirical normalisation factor d++ is

also replaced by the theoretical normalisation factor π++.

If the pairing ofX and Y -node groupings ĝ(X) and ĝ(Y ) exhibit some co-community struc-

ture, then equation 5.18 no longer holds, and so the null model does not hold either. The stronger

this co-community structure is, the further we move from the null model, and the greater θ be-

comes relative to 1/π++. This corresponds to E (Aij) becoming larger than π(X)
i π

(Y )
j /π++,

which is equivalent to the observed number of edges in the co-community becoming greater

than the expected, under the null of no co-community structure. This in turn means that Q̃XY

also becomes more positive. In other words, the further we move from the null model, the

greater tendency of the X-nodes and Y -nodes of these groups to form connections with one

another (compared with their expected propensity to make connections with any nodes, of

the opposite type), and therefore constitute a strong co-community. Hence, a parsimonious

method of comparing potential co-communities is simply to compare their local co-modularity,

QXY
(
ĝ(X), ĝ(Y )

)
. This naturally leads to a ranking of potential co-communities according to

their strength.

An estimate of statistical significance of a potential co-community can also be made, as

follows. Noting that, with adjacency matrix A defined according to the Bernoulli distribution

of Definition 3, with fixed θz(X)(i),z(Y )(j) = 1/π++,

Var
(
B̃ij

)
= Var (Aij) =

(
π(X)π(Y )

π++

)(
1− π(X)π(Y )

π++

)
,

and assuming probabilities of observing links between different pairs of nodes are independent,
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the variance of Q̃XY
(
ĝ(X), ĝ(Y )

)
can be approximated as:

Var
(
Q̃XY

(
ĝ(X), ĝ(Y )

))
=

1

(π++)2

∑
i∈ĝ(X)

∑
j∈ĝ(Y )

(
π
(X)
i π

(Y )
j

π++

)(
1−

π
(X)
i π

(Y )
j

π++

)
, (5.21)

where the factor 1/ (π++)
2 is due to the factor 1/ (π++) in equation 5.20. Hence, assuming

d(X) p→ π(X), d(Y ) p→ π(Y ) and d++ p→ π++, and assuming the potential co-community

defined by ĝ(X) and ĝ(Y ) is comprised of sufficiently many nodes for a Gaussian approximation

to hold, we can test the significance of QXY
(
ĝ(X), ĝ(Y )

)
with a z-test, with zero mean and

with Var (QXY ) estimated as Var
(
Q̃XY

)
in equation 5.21, also replacing π(X)

i with d(X)
i ,

π
(Y )
j with d(Y )

j and π++ with d++. A pairing ĝ(X)
p and ĝ(Y )

q is then defined as a co-community

ĉ and included in Ĉ (Definition 6), i.e., {p, q} = ĉ ∈ Ĉ, if and only if this pairing ĝ(X)
p with

ĝ
(Y )
q is significant according to this z-test, at some significance level. I note that, in practice,

this is only a rough approximation of significance, also because by specifying in advance the

co-community node-groupings ĝ(X) and ĝ(Y ), we have introduced dependencies between the

X and Y -nodes of this co-community.

5.4.2 Arranging the co-communities for visualisation

A standard task in exploratory data analysis using variants of the stochastic block model, is ar-

ranging the detected communities so they can be visualised in a helpful way. This visualisation

is usually carried out by way of a heatmap representation of the adjacency matrix with the nodes

grouped into communities. In the symmetric/unipartite community detection scenario, the com-

munities occur along the leading diagonal of this ordered adjacency matrix. The communities

themselves are often ordered along the leading diagonal according to their edge densities. In

the bipartite co-community detection setting, co-communities may be present away from the

leading diagonal, and there is no longer a restriction on how many co-communities a node may

be part of - although I do not consider here the possibility of overlapping co-communities.

I propose then, that once the X-node groupings and Y -node groupings have been deter-

mined by spectral clustering as described above, a natural way to order these groups with respect

to one another, is via row and column co-modularities, which I define as follows.

Definition 9. With d++ given by Definition 6, and with B given by Definition 8, with with the

set ofX-node groupings and the set of Y -node groupings estimated according to Algorithm 1 as

Ĝ(X) and Ĝ(Y ) respectively, the row and column modularitiesQrow
(
ĝ(X)

)
andQcolumn

(
ĝ(Y )

)
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are defined, for ĝ(X) ∈ Ĝ(X) and ĝ(Y ) ∈ Ĝ(Y ), as:

Qrow

(
ĝ(X)

)
=

∑
ĝ(Y )∈Ĝ(Y )

∣∣∣∣∣∣ 1

d++

∑
i∈ĝ(X)

∑
j∈ĝ(Y )

Bij

∣∣∣∣∣∣ (5.22)

and

Qcolumn

(
ĝ(Y )

)
=

∑
ĝ(X)∈Ĝ(X)

∣∣∣∣∣∣ 1

d++

∑
i∈ĝ(X)

∑
j∈ĝ(Y )

Bij

∣∣∣∣∣∣ . (5.23)

Considering the absolute values of the local co-modularities in these sums serves to prioritise

the most extreme choices of divisions of nodes into co-communities, according to their local

co-modularities. On the other hand if absolute values were not considered here, the row and

column modularities would always be zero, because the rows and columns of B must always

sum to zero. The row and column co-modularities are the sums, respectively, of the absolute

values of the local co-modularities along the rows and columns respectively, of the ordered ad-

jacency matrix. Hence, they represent a measure of how extreme the co-community divisions

are, in each row and column, according to the groupings defined by Ĝ(X) and Ĝ(Y ). By order-

ing the X-node and Y -node groupings by decreasing Qrow
(
ĝ(X)

)
and Qcolumn

(
ĝ(Y )

)
respec-

tively, co-communities with the largest local co-modularities will tend to congregate towards

the top-left of the ordered adjacency matrix. This is a natural arrangement for visualisation as a

heatmap, because it tends to place the strongest co-communities together in this corner, and so

the attention is intuitively drawn to this region.

I note that there may be other equally effective ways of arranging the adjacency matrix for

visualisation as a heatmap. However, this method is effective, and it is a parsimonious solu-

tion in the context of co-modularity, because row and column modularities are very simply and

intuitively related to local co-modularity. In the case that there is no co-community structure

present, such as under the null model of equation 5.17, then Qrow and Qcolumn as defined in

Definition 9 would also tend to be close to zero, and the ordering would cease to be meaning-

ful. However, if there are even a few significant co-communities present, their corresponding

X and Y -node groupings ĝ(X) and ĝ(Y ) would stand out, as assessed by Qrow and Qcolumn.

Therefore these ĝ(X) and ĝ(Y ) would be placed at the top of the respective orderings, with

the co-community pairings tending towards in the top-left corner. The other rows and columns,

which do not contain significant co-communities, would have correspondingQrow andQcolumn

close to zero. Hence, these rows and columns would be naturally ordered according to their ir-

relevance. They would accordingly be placed further away from the top-left of the heatmap,

giving the intuition that they are unimportant.
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5.4.3 Defining an objective function for optimising the co-community partitions

Defining an objective function over the whole network, in terms of the assignments of the nodes

toX-node and Y -node groupings ĝ(X) and ĝ(Y ), allows optimisation of these node assignments.

It also provides a means of comparison of algorithmic parameters and other design choices in

the practical implementation of the methods. It would be most ideal, for a trial assignment

of nodes to Ĝ(X) and Ĝ(Y ), to estimate the set of co-communities Ĉ using the method of

Section 5.4.1, and then to calculate the co-modularity according to Definition 6. However, for

a large number of repetitions within an algorithm, or for an iterative search and optimisation,

this would be computationally inefficient. Instead, I define the global co-modularity to be used

as an objective function for such purposes, as follows:

Definition 10. With d++ given by Definition 6, and with B given by Definition 8, with with

the set of X-node groupings and the set of Y -node groupings estimated according to Algorithm

1 as Ĝ(X) and Ĝ(Y ) respectively, the global co-modularity is defined, for ĝ(X) ∈ Ĝ(X) and

ĝ(Y ) ∈ Ĝ(Y ), as:

Qglobal =
∑

ĝ(Y )∈Ĝ(Y )

∑
ĝ(X)∈Ĝ(X)

∣∣∣∣∣∣ 1

d++

∑
i∈ĝ(X)

∑
j∈ĝ(Y )

Bij

∣∣∣∣∣∣ . (5.24)

For a pairing ĝ(X) and ĝ(Y ), the local co-modularity QXY
(
ĝ(X), ĝ(Y )

)
represents the strength

of the co-community structure in that grouping of X-nodes and Y -nodes. If the absolute value

was not considered in the sum, Qglobal would always be zero. Hence, by prioritising a sum

of the absolute values of the local co-modularity of all pairings ĝ(X) with ĝ(Y ), I prioritise an

extreme division of the X-nodes and Y -nodes into co-communities, as measured by the local

co-modularity. This therefore corresponds to an extreme partition in terms of co-community

structure, as assessed by co-modularity.

Spectral clustering usually requires the nodes to be grouped in the spaces of the top singu-

lar vectors of the co-Laplacian, and this grouping is often carried out by k-means, as described

in Algorithm 1. Because k-means optimisation is not convex, the converged result may be a

local optimum. Hence, implementations of k-means often begin at a random start-point, with

the optimisation run several times from random start-points, choosing the result which is in

some sense optimal. In the community-detection setting, a natural statistic to maximise in this

optimisation is the Newman-Girvan modularity. An equivalent statistic here to maximise in this

co-community detection setting is hence the global co-modularity, which is intuitively linked

to the local co-modularity measure of co-community structure. In the community-detection
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setting, assignments to communities can also be optimised by carrying out node-swapping be-

tween communities, in order to maximise the Newman-Girvan modularity (Blondel et al. ,

2008). The global co-modularity is a statistic which could be equivalently maximised, in this

co-community detection setting.

5.5 Examples

I now present results of applying the above methodology to simulated data, and to linked DNA

methylation and gene expression data. I fit the degree-corrected stochastic co-blockmodel by

spectral clustering, as detailed above, with the following additional practical details.

In the context of community detection, fitting the degree-corrected stochastic blockmodel

using spectral clustering, when calculating the Laplacian it is advantageous to slightly inflate

the degree distribution (regularisation) (Qin & Rohe, 2013), a trick which made Google’s

original page-rank algorithm (Page et al. , 1999) so effective in web-searching. Here in the

co-community detection setting, correspondingly when calculating the co-Laplacian (equation

5.7), I inflate the diagonals of D(X) and D(Y ) by the medians of d(X) and d(Y ), respectively.

Further, when fitting variants of the stochatic blockmodel by spectral clustering with k-means,

nodes with small leverage score (which are usually low-degree nodes) can be excluded from the

k-means step (Qin & Rohe, 2013); this practice is also followed here. I note that these regulari-

sation steps have not previously been carried out in this co-community detection / co-clustering

setting.
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Figure 5.1: Convergence of the co-modularity.
The co-modularity converges well to a maximum,
within 250 runs of k-means, in the linked DNA
methylation and gene expression data. For refer-
ence, the co-modularity is consistently found to be
0 when calculated based on randomly assigned co-
community partitions of similar size.

I also note that while spectral clus-

tering is in general computationally inten-

sive, binary adjacency matrices such as those

dealt with in this setting tend to be very

sparse. Further, we only require k =

Max
(
k(X), k(Y )

)
components of the singu-

lar value decomposition, a number which

tends to be two or more orders of magnitude

smaller than the maximum dimension of the

adjacency matrix. Efficient computational

methods exist to find the top few components

in the singular value decomposition of large

sparse matrices (Sørensen, 1992; Lehoucq &

Sørensen, 1996), with implementations in Matlab and R, meaning that these methods are easy
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to implement and practical for large networks.

The k-means clustering algorithm begins with a random start-point, and hence it can pro-

vide a different result each time it is run. I therefore run the k-means step in the spectral

clustering several times, choosing the result which maximises the global co-modularity (equa-

tion 5.24). I run k-means repeatedly until the output is visually assessed to have stabilised, at

which point it can be seen from the convergence plot that there is very little, if any, improve-

ment in co-modularity achieved by further runs of k-means. An example of such convergence

in the linked DNA methylation and gene expression data is presented in Section 5.5.2 is shown

in Figure 5.1.

5.5.1 Simulation study

I carried out a simulation study, to evaluate the effectiveness of this co-community detection

methodology against generated networks with known ground-truth co-communities. A classic

generative model for exchangeable random networks with heterogenous degrees is the logistic-

linear model (Perry & Wolfe, 2012). I use a version here for bipartite networks, with additional

co-community structure. This additional co-community structure takes the form of ‘blocks’.

This block structure is very general: as noted in (Olhede & Wolfe, 2014) it can be used as a

model for community structure in relation to many real data-sets for which the true generative

mechanism of the community structure is not exactly such block structure. The generative

model for this simulation study is defined as:

Logit (pij) = α
(X)
i + α

(Y )
j + θij ,

where pij defines the probability of an edge being observed between nodes i and j. I choose to

use this model, because the parameters can take any real values, and the edge probabilities pij

will still be between 0 and 1. This model only deviates from the equivalent log model when the

parameter values become very large, which is what prevents pij from reaching (and exceeding)

1 (Perry & Wolfe, 2012). Further, the blockmodel approximates any smooth function, and

hence the model can be used purely in the sense of approximation (Olhede & Wolfe, 2014;

Choi et al. , 2014). The node-specific parameters α(X)
i and α(Y )

j are elements of parameter

vectors α(X) and α(Y ) which define power law degree distributions for the X and Y -nodes.

We would like power-law degree distributions for the nodes; this is a characteristic of scale-free

networks (Barabási & Oltvai, 2004), which are found to be physically realistic in a wide range

of scenarios, including biological networks (Wagner, 2002), and social networks (Barabási &

Albert, 1999). The parameters α(X)
i and α(Y )

j are each generated as the logarithms of samples
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taken from a bounded Pareto distribution as in (Olhede & Wolfe, 2012). I note that because

α
(X)
i and α(Y )

j are chosen to be random, the generated networks are exchangeable (Kallenberg,

2005), whereas if α(X)
i and α(Y )

j were defined deterministically, these networks would instead

be generated under the inhomogenous random graph model (Bollobás et al. , 2007). The co-

community parameter θij is allowed to take two values: θij = θin if i and j are in the same

co-community, and θij = θout otherwise, which is equivalent to the modelling constraint I

applied in equation 5.2. After generating the pij , the network is generated by sampling each

Aij ,

Aij ∼ Bernouilli (pij) .

I note that this is the correctly specified model, for the co-community detection which I describe,

and carry out in this chapter.

The co-communities themselves are planted in the network as randomly chosen groups of

150 of each type of node, with the maximum number of co-communities equal to k(X) × k(Y ).

By analogy with the unipartite/symmetric community detection setting, I choose to set the num-

ber of co-communities T as the square-root of this theoretical maximum, T =
√
k(X) × k(Y ).

As discussed in Section 5.4, in the unipartite community detection setting there is a constraint

on the number of communities, k = k(X) = k(Y ), because the X-node and Y -node group-

ings are the same thing. This constraint does not exist in the bipartite co-community detection

setting, and so the theoretical maximum number of co-communities is k(X) × k(Y ), i.e., the

square of the number of communities in the equivalent symmetric community detection setting.

However, I expect the number of co-communities to be significantly less than this in practice,

and so by default, I choose T =
√
k(X) × k(Y ) as the number of co-communities, although I

note that many other choices would also be valid here.

I test the methods on networks generated with k(X) and k(Y ) ranging from 8 and 6 re-

spectively up to 80 and 60 respectively (corresponding to values of numbers of nodes, m and l,

ranging from 1200 and 800 up to 12000 and 8000, respectively). I also test the methods on net-

works generated with values of θin from 10 to 50, which corresponds to within co-community

edge density ρin ∈ {0.039, 0.15, 0.34, 0.6}, and I set θout = 1, corresponding to outside or

between co-community edge density ρin = 0.0013. For each combination of parameters, I

carry out 50 repetitions of network generation and co-community detection, to enable assess-

ment of the variability of the accuracy of the co-community detection (with more repetitions,

the computational cost becomes prohibitive).

After generating the networks, I detect co-communities according to the methods described
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above, based on the same values of k(X) and k(X) that I used to generate the networks. I keep

these values the same, to understand specifically how the co-community detection methodology

is working. This means there are k(X) × k(Y ) potential co-communities, and I assess each in

terms of strength and significance, as discussed in Section 5.4.1. Hence, I define the estimated

set of co-communities Ĉ, as all combinations of detected X and Y -node groupings ĝ(X) ∈

Ĝ(X) with ĝ(Y ) ∈ Ĝ(Y ) which are significant according to a z-test with zero mean and variance

calculated as in Equation 5.21. I define significance according to FDR (false discovery rate)

corrected (Benjamini & Hochberg, 1995) p-value < 0.05. This tends to result in more co-

communities being detected than were originally planted (primarily due to some being split),

however I note that the main aim of this methodology is to find a good representation of the

underlying co-community structure (as assessed by co-modularity), rather than to reproduce it

exactly.

To compare detected co-communities with the ground-truth planted co-communities, I

use the normalised mutual information (NMI) (Danon et al. , 2005). The NMI compares the

numbers of nodes which appear together in the found co-communities, compared with whether

they appeared together in the planted co-communities (adjusted for group sizes). It has been

used previously in the co-community detection context (Larremore et al. , 2014), as well as

the unipartite community-detection context (Zhao et al. , 2012). The NMI takes the value 1 if

the co-communities are perfectly reproduced in the co-community detection, and 0 if they are

not reproduced at all, and somewhere in between if they are partially reproduced. The results,

together with examples of randomly generated adjacency matrices, are shown in Figure 5.2,

which shows that the method performs well as long as there is sufficient within-co-community

edge density, and performs well as the number of co-communities increases.

5.5.2 Application to linked DNA methylation and gene expression data

I present an example of a practical application of these methods to a challenging problem

analysing linked DNA methylation data and gene expression data. Much is still unknown about

the interaction between DNA methylation patterns and gene expression patterns (Jones, 2012).

It is of interest to uncover groups of genes with methylation patterns which are linked to the ex-

pression patterns of other groups of genes, to allow biological hypotheses to be formed, which

can then be investigated further, experimentally and computationally. Hence, this is a natural

scenario to be approached with co-community detection, as the method offers the potential to

uncover latent structure not easily identifiable otherwise.

As a measure of the DNA methylation (DNAm) pattern of each gene, I choose to consider

here intra-gene DNA methylation variability (IGV), as presented in chapter 2, as it is a per-gene
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Figure 5.2: Simulation study.
(a) Normalised mutual information (NMI) compares detected co-communities with ground-truth planted
co-communities. (b)-(e) Examples of generated networks all with nR = 1200, nC = 900, kR = 8,
kC = 6, and 7 planted co-communities; entries in the adjacency matrix equal to 1 (representing a
network edge) are marked in black; planted co-communities are outlined in colour. (b) θin = 40, within-
community edge density ρin = 0.6; (b) θin = 30, ρin = 0.34; (c) θin = 20, ρin = 0.15; (d) θin = 10,
ρin = 0.039. For all networks, θout = 1, outside/between co-community edge density ρout = 0.0013

measure of DNA methylation variance which is strongly associated with disease (as shown in

chapter 2). I denote the gene expression variables X(i), i = 1, ...,m and the DNAm variables

Y (j), j = 1, ..., l; i.e., X(i) and Y (j) refer to the measurements for particular genes of gene

expression and DNA methylation IGV respectively. I use Spearman correlation as a measure of

association between the DNAm and gene expression variables, such that there is one correlation

statistic for each pairing of X(i) with Y (j), for i = 1, ...,m and j = 1, ..., l, leading to an

m× l correlation matrix. Using the methodology presented in chapter 4, I then infer an m× l

binary adjacency matrix from this correlation matrix such that Aij ∈ {0, 1} for all i, j, which



5.6. Conclusion 97

is equivalent to setting Aij = 1 if variables X(i) and Y (i) are significantly correlated, and

Aij = 0 otherwise. When Aij = 1, I also record the directionality information, i.e., whether

the association between X(i) and Y (j) corresponds to a positive correlation (activation) or a

negative correlation (inhibition).

I carried out co-community detection on this data set according to the methods described

above (data source: The Cancer Genome Atlas (Hampton, 2006), breast cancer invasive car-

cinoma data set, basal tumour samples only). Figure 5.3(a) shows the adjacency matrix after

carrying out co-community detection, ordering theX and Y -node groupings by row and column

co-modularity (equations 5.22 and 5.23). Figure 5.3(b) (inlay) shows the same adjacency matrix

ordered along its margins alphabetically by gene name, i.e., without ordering the margins using

co-community detection. Hence, Figure 5.3(b) shows a baseline in which the nodes are essen-

tially randomly ordered, against which to compare the adjacency matrix after co-community

detection, and ordering based upon it. The co-community structure is clearly revealed in Figure

5.3(a), whereas no co-community structure is visible in Figure 5.3(b). I define a co-community

ĉ ∈ Ĉ as a combination of X-node grouping ĝ(X) ∈ Ĝ(X) with Y -node grouping ĝ(Y ) ∈ Ĝ(Y )

which is significant according to a z-test with zero mean and variance calculated as in equation

5.21, with significance defined by FDR-corrected p-value < 0.05. The numbers of X and Y -

node groupings, k(X) and k(Y ), are estimated according to equations 5.12 and 5.13 as 89 and

67 respectively, leading to 5963 potential co-communities, of which T̂ = 2018 are found to

be significant. I tested these 2018 significant co-communities for domain relevance, by testing

the overlap of the genes (nodes) of each co-community, separately with each of 10295 known

gene-groups (data source: http://www.broadinstitute.org/gsea/msigdb/ ). This type of analysis

is often called ‘gene set enrichment analysis’ (GSEA) (Subramanian et al. , 2005). I found

that 1340 (66%) overlap significantly (Fisher’s exact test, FDR-adjusted p < 0.05) with these

known gene-sets (including many gene-sets related to cancer biology, stem-cell biology and cel-

lular proliferation), confirming the domain relevance of this result, as well as indicating novel

findings which could be investigated further by experimental biologists.

5.6 Conclusion

I have introduced the notion of co-modularity. I have shown how it can be used to perform

co-community detection in bipartite networks, and how it fits with the notion of the stochastic

co-blockmodel. I have shown how co-modularity can be used to compare co-communities,

to calculate their strength and significance, to arrange them for visualisation, and to calculate

an algorithmic objective function for optimisation. I have introduced the anisotropic graphon
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Figure 5.3: Co-communities in the linked DNA methylation and gene expression data.
(a) Genes are ordered along the margins of the adjacency matrix, according to co-communities detected
by the methods presented here. Partitions between detected co-communities are shown with black lines.
(b) The same adjacency matrix ordered along its margins alphabetically by gene name, i.e., without
ordering the margins using co-community detection. Entries in the adjacency matrix equal to 1 (repre-
senting a network edge) are coloured, with green and red indicating positive and negative associations,
respectively.

class, and have shown how to use it to estimate the optimum number of groups into which to

divide the two types of nodes. I have also shown how this estimation can be simplified in certain

circumstances for a more parsimonious scheme, and how to test whether this simplification is
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justified. I have addressed practical points about the implementation of the methodology, and

have demonstrated its utility with a simulation study and application to linked DNA methylation

and gene expression data.

An interesting extension to this methodology would be to consider overlapping blocks in

the stochastic co-blockmodel, a problem which has already been successfully addressed in the

context of the stochastic blockmodel for unipartite networks (Latouche et al. , 2011), and in

co-clustering without fitting the stochastic blockmodel (Madeira & Oliveira, 2004). Another

interesting application would be to develop an online version of the method as a computation-

ally efficient approach to large and growing data-sets (Zanghi et al. , 2010). This methodology

could also be expected to work in even more general settings of bi-clustering or co-clustering, in

which the variables being clustered together are simply correlated, rather than having any tan-

gible interactive behaviour in the real world. These methods are based on commonly available

computationally efficient methods for large sparse matrices, and perform well on large datasets,

with large numbers of co-communities, often performing better than methods based on model

likelihoods.

5.7 Derivations

Derivation A: Derivation relating to Algorithm 1

Define m, l, A, B, d(X), d(Y ), d++, g(X), g(Y ), k(X), k(Y ), Ψ and QXY according to Defini-

tions 3 - 8. Specify that k(X) = k(Y ) = 2, that T = 2, that c1 = {1, 1}, and that c2 = {2, 2};

i.e., that there are two co-communities, the first of which consists of g(X)
1 paired with g(Y )

1 , and

the second of which consists of g(X)
2 paired with g(Y )

2 . Define co-community label vectors s

and r for the X and Y -nodes respectively, such that:

si =


1, if X-node i is in co-community 1,

−1, if X-node i is in co-community 2,
(5.25)

and

rj =


1, if Y -node j is in co-community 1,

−1, if Y -node j is in co-community 2.
(5.26)

Hence:

Ψ
(
C;G(X), G(Y ); i, j

)
=

1

2
(sirj + 1) ,
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and

QXY =
1

2d++

m∑
i=1

l∑
j=1

Bij (sirj + 1) .

Note that the rows of B sum to zero:

l∑
j=1

Bij =

l∑
j=1

Aij −
d
(X)
i

d++

l∑
j=1

d
(Y )
j = d

(X)
i −

d
(X)
i

d++
· d++ = 0.

Also, the columns of B also sum to zero, by a similar argument. Hence:

QXY =
1

2d++

m∑
i=1

l∑
j=1

Bijsirj . (5.27)

When (Newman, 2013) derives the properties of unipartite network community detection he

relaxes the constraint that the co-community labels take the values of ±1, to be able to arrive

at an algorithmic solution. Nodes are then assigned to one community or the other, according

to their sign (in the two-community scenario). A similar relaxation is made here, allowing

si ∈ R and rj ∈ R, subject also to the following elliptical constraints, which allow for degree

heterogeneity as in the degree corrected stochastic blockmodel:

m∑
i=1

d
(X)
i s2i = d++, (5.28)

l∑
j=1

d
(Y )
j r2j = d++. (5.29)

In the extreme scenario, in which si ∈ {−1, 1} and rj ∈ {−1, 1}, these constraints are equiva-

lent to d++ =
∑m

i=1 d
(X)
i =

∑l
j=1 d

(Y )
j (i.e., as per definition 6). This relaxation is equivalent

to saying that nodes may be partly in one group, and partly in another group. N.B., ultimately

each node will be assigned entirely to only the group it is most strongly associated with (ac-

cording to si or rj), and hence mixed membership does not occur in the final assignment of

nodes to groups. For homogenous degree distributions, the constraints of equation 5.28 and

5.29 prevent the co-modularity from becoming arbitrarily large, as nodes are assigned many

times over to many groups. For heterogenous degree distributions, the effect of the constraint

is equivalent, except that the constraint is weighted to give importance to high-degree nodes.

This is achieved by the constraints of equation 5.28 and 5.29 restricting the weighted sum of

the degrees (weighted by the assignment of nodes to groups) to be the equal to the total number

of edges.

We wish to find the community assignment vectors r and s which maximise the co-
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modularity, i.e., we want to maximise QXY with respect to both r and s. To do this, I employ

the Lagrange multipliers λ and µ, and equate the derivatives to zero, N.B., the partial derivatives

with respect to si′ and rj′ are used as the derivatives are taken with respect to these individual

i′ ∈ {1, ..., l}, and j′ ∈ {1, ...,m}.

∂

∂si′

 m∑
i=1

l∑
j=1

Bijsirj − λ
m∑
i=1

d
(X)
i s2i − µ

l∑
j=1

d
(Y )
j r2j

 = 0,

and
∂

∂rj′

 m∑
i=1

l∑
j=1

Bijsirj − λ
m∑
i=1

d
(X)
i s2i − µ

l∑
j=1

d
(Y )
j r2j

 = 0,

=⇒
l∑

j=1

Bijrj − 2λd
(X)
i si = 0, (5.30)

and
m∑
i=1

Bijsi − 2µd
(Y )
j rj = 0. (5.31)

Hence, taking D(X) and D(Y ) as the diagonal matrices with the degree vectors d(X) and d(Y )

respectively on their leading diagonals,

Br = 2λD(x)s (5.32)

and B>s = 2µD(y)r. (5.33)

Substituting for s, equation 5.33 in 5.32, gives:

(
D(y)

)−1
B>

(
D(x)

)−1
Br = 4λµr, (5.34)

=⇒
(
D(y)

)−1/2
B>

(
D(x)

)−1/2 (
D(x)

)−1/2
B
(
D(y)

)−1/2
r = 4λµr,

=⇒
((

D(x)
)−1/2

B
(
D(y)

)−1/2)>((
D(x)

)−1/2
B
(
D(y)

)−1/2)
r = 4λµr, (5.35)

=⇒ M>Mr = 4λµr, (5.36)

where

M =
(
D(x)

)−1/2
B
(
D(y)

)−1/2
.

By an identical argument, substituting 5.32 in 5.33 and re-arranging equivalently,

MM>s = 4λµs. (5.37)
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Hence, s and r are eigenvectors of MM> and M>M respectively, with 4λµ the corresponding

eigenvalue in both cases. Therefore, s and r are left and right singular vectors respectively of:

M =
(
D(x)

)−1/2
B
(
D(y)

)−1/2
,

with corresponding singular value 2
√
λµ.

Multiplying equation 5.30 by si/2d++, summing over i and referring to equation 5.28

gives:

1

2d++

m∑
i=1

l∑
j=1

Bijsirj =
2λ

2d++

m∑
i=1

d
(X)
i s2i =

2λ · d++

2d++
= λ,

hence referring to equation 5.27, we get:

QXY = λ. (5.38)

Then equivalently multiplying equation 5.31 by rj/2d++, summing over j and referring to

equation 5.29, and then referring to equation 5.27 gives:

QXY = µ. (5.39)

Therefore, referring again to equations 5.36 and 5.37, the maximum modularity solution is for

the left and right singular vectors of M which correspond to the greatest singular value 2λ.

Now substituting equation 5.15 in equation 5.33, we get:

s>
(

A− 1

d++
d(X)

(
d(Y )

)>)
= 2µr>D(y),

=⇒ s>A =
1

d++
s>d(X)

(
d(Y )

)>
+ 2µr>D(y). (5.40)

Post-multiplying equation 5.40 by 1 = (1, 1, 1...) leads to:

s>d(X) =
1

d++
s>d(X) · d++ + 2µr>d(Y )

∴ µr>d(Y ) = 0.

Assuming that there is co-community structure present in A, there must be positive co-

modularity, i.e., QXY > 0 =⇒ µ > 0 (referring back to equation 5.39), and therefore

r>d(Y ) = 0. By an identical argument, also s>d(X) = 0. Therefore, for eigenvectors r
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corresponding to QXY > 0,

Br =

(
A− 1

d++
d(X)

(
d(Y )

)>)
r = Ar

and so to find these eigenvectors with QXY maximised, instead of equation 5.35 we can con-

sider

((
D(x)

)−1/2
A
(
D(y)

)−1/2)>((
D(x)

)−1/2
A
(
D(y)

)−1/2)
r

= (2λ)2 r (5.41)

which, referring back to equation 5.7, can be written in terms of the co-Laplacian LXY as:

L>XY LXY r = (2λ)2 r.

By identical argument, we can also write:

((
D(x)

)−1/2
A
(
D(y)

)−1/2)((
D(x)

)−1/2
A
(
D(y)

)−1/2)>
s

= (2λ)2 s (5.42)

and

LXY L>XY s = (2λ)2 s.

Hence, the co-Laplacian LXY has left and right singular vectors s and r respectively, with

corresponding singular values 2λ. It can be seen that equation 5.41 has the eigenvector 1 =

(1, 1, 1, ...), as follows:

((
D(x)

)−1/2
A
(
D(y)

)−1/2)>((
D(x)

)−1/2
A
(
D(y)

)−1/2)
1 = (2λ)2 1

=⇒
(
D(y)

)−1
A>

(
D(x)

)−1
A1 = (2λ)2 1

=⇒
(
D(y)

)−1
A>

(
D(x)

)−1
d(X) = (2λ)2 1

=⇒
(
D(y)

)−1
A>1 = (2λ)2 1

=⇒
(
D(y)

)−1
d(Y ) = (2λ)2 1

1 = (2λ)2 1
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and hence the corresponding eigenvalue is (2λ)2 = 1, which by the Perron-Frobenius theorem,

must be the greatest eigenvalue (Hom & Johnson, 1991; Newman, 2013). An identical argument

can also be applied to s in equation 5.42. This means that the greatest singular value 2λ = 1

corresponds to these left and right singular vectors which are both 1 (of lengths m and l respec-

tively), however such singular vectors do not satisfy r>d(Y ) = 0 and s>d(X) = 0. Therefore,

to maximise the co-modularity in the case of two co-communities, we should divide the X and

Y -nodes according to the left and right singular vectors respectively which correspond to the

second greatest singular value.

The above explains how Algorithm 1 works for the case of two co-communities. An

equivalent extension to k communities has been made In the unipartite community detection

setting (Riolo & Newman, 2012). To do so, the community labels are identified with the vertices

of k − 1 simplicies, i.e., for detection of 3 communities, the co-community labels would be

the vertices of a triangle. Relaxing constraints equivalent to equations 5.28 and 5.29 means

allowing the nodes to move away from the vertices of the simplex. This amounts to clustering

the nodes in the space of the eigenvectors corresponding to the 2nd to kth greatest eigenvalues of

the Laplacian L. This clustering is conventionally done using k-means. The reader is referred

to (Riolo & Newman, 2012) for the detailed technical derivations relating to this. A similar

extension can naturally be made in this co-community detection setting. To detect k(X) X-node

groupings, and k(Y ) Y -node groupings, the X and Y -nodes can be separately clustered (using

k-means independently for the X and Y -nodes) in the spaces of the left and right singular

vectors (respectively) corresponding to the 2nd to k(X)th and 2nd to k(Y )th greatest singular

values, respectively, of the singular value decomposition of the co-Laplacian LXY .

Derivation B: Proof of Proposition 1

For the case of two co-communities, with θin and θout defined according to equation 5.2, with

the co-community labels ri and sj defined as in Derivation A / section 5.7 (equations 5.25

and 5.26), and with G(X) and G(Y ) defined according to Definition 3, I note (equivalently to

(Newman, 2013)) that:

θz(X)(i),z(Y )(j) =
1

2
(θin + θout + risj (θin − θout)) , (5.43)

and ln
(
θz(X)(i),z(Y )(j)

)
=

1

2

(
ln (θinθout) + risj ln

(
θin
θout

))
, (5.44)

N.B., equations 5.43 and 5.44 only hold because si ∈ {−1, 1} and rj ∈ {−1, 1}. Substituting

equations 5.43 and 5.44 into equation 5.3, and estimating the node-specific connectivity param-
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eters π(X) and π(Y ) by the degree distributions d(X) and d(Y ) leads to the profile likelihood:

`
(
θ; d(X),d(Y );G(X), G(Y )

)
=

m∑
i=1

l∑
j=1

[
Aij
2

(
ln (θinθout) + risj ln

(
θin
θout

))

−
d
(X)
i d

(Y )
j

2
(θin + θout + risj (θin − θout))

]

=⇒ `
(
θ; d(X),d(Y );G(X), G(Y )

)
=

1

2

m∑
i=1

l∑
j=1

[
Aij ln (θinθout)− d(X)

i d
(Y )
j (θin + θout)

+ ln

(
θin
θout

)(
Aij − d(X)

i d
(Y )
j · θin − θout

ln θin − ln θout

)
sirj

]
.

We seek to maximise `
(
θ; d(X),d(Y );G(X), G(Y )

)
with respect toG(X) andG(Y ) by choosing

the co-community labels si and rj . Therefore, we can drop the terms constant in si and rj to

give:

˜̀(θ; d(X),d(Y );G(X), G(Y )
)

=
m∑
i=1

l∑
j=1

(
Aij − d(X)

i d
(Y )
j · θin − θout

ln θin − ln θout

)
sirj ,

and defining:

η =
θin − θout

ln θin − ln θout
,

we therefore have:

˜̀(θ; d(X),d(Y );G(X), G(Y )
)

=

m∑
i=1

l∑
j=1

(
Aij − ηd(X)

i d
(Y )
j

)
sirj , (5.45)

which I note as equivalent to equation 22 in (Newman, 2013). Proceeding similarly to that

work, by applying to equation 5.45 the constraints of equations 5.28 and 5.29 with Lagrange

multipliers λ and µ and differentiating and equating to zero, we get:

∂

∂si′

 m∑
i=1

l∑
j=1

(
Aij − ηd(X)

i d
(Y )
j

)
sirj − λ

m∑
i=1

d
(X)
i s2i − µ

l∑
j=1

d
(Y )
j r2j

 = 0,

∂

∂rj′

 m∑
i=1

l∑
j=1

(
Aij − ηd(X)

i d
(Y )
j

)
sirj − λ

m∑
i=1

d
(X)
i s2i − µ

l∑
j=1

d
(Y )
j r2j

 = 0,
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=⇒
l∑

j=1

(
Aij − ηd(X)

i d
(Y )
j

)
rj − 2λd

(X)
i si = 0,

and
m∑
i=1

(
Aij − ηd(X)

i d
(Y )
j

)
si − 2µd

(Y )
j rj = 0,

∴

(
A− ηd(X)

(
d(Y )

)>)
r = 2λD(X)s, (5.46)

and
(

A> − ηd(Y )
(
d(X)

)>)
s = 2µD(Y )r. (5.47)

Combining equations 5.46 and 5.47 by substituting for s and r, and following simplification

identical to equations 5.34 to 5.35, gives:

W>Wr = 4λµr,

and WW>s = 4λµs,

where

W =
(
D(X)

)−1/2(
A− ηd(X)

(
d(Y )

)>)(
D(Y )

)−1/2
.

Hence s and r are left and right singular vectors of the singular value decomposition of W,

again with corresponding singular values 4λµ. Pre-multiplying 5.46 and 5.47 by 1 = (1, 1, 1...)

leads to:

r>d(Y )
(
1− d++η

)
= 2λs>d(X), (5.48)

and s>d(X)
(
1− d++η

)
= 2λr>d(Y ). (5.49)

Substituting for s>d(X) and r>d(Y ) in equations 5.49 and 5.48 gives:

s>d(X)
[(

1− d++η
)2 − 4µλ

]
= 0,

and r>d(Y )
[(

1− d++η
)2 − 4µλ

]
= 0,

and therefore because (1− d++η)
2 − 4µλ is not guaranteed to be zero,

s>d(X) = 0,

and r>d(Y ) = 0.
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Therefore, equations 5.46 and 5.47 reduce to:

Ar = 2λD(x)s

and A>s = 2µD(y)r,

and again combining these equations by substituting for s and r and following equivalent sim-

plification to equations 5.34 to 5.35, we hence find that s and r are left and right singular vectors

of the co-Laplacian (equation 5.7). Therefore, the choice of the co-community labels s and r

which maximises the model likelihood specified in equation 5.3, subject also to the constraint of

equation 5.2, is equivalent to the maximum co-modularity assignment obtained via Algorithm

1.

Derivation C: Proof of Lemma 1

Define A, k(X), k(Y ) according to Definition 3, define ξ(X) and ξ(Y ) according to Definition 4,

define f , f̃ and γ according to Definition 7, and define ρ and M̃ according to Lemma 1. Define

bandwidths h(X)
p =

∣∣∣g(X)
p

∣∣∣ and h(Y )
q =

∣∣∣g(Y )
q

∣∣∣, where |·| represents cardinality, define ω (p, q)

as the domain of integration over the block corresponding to the pairing of X-node grouping

g
(X)
p with Y -node grouping g(Y )

q , and define Āp,q as the corresponding block average,

Āp,q =

∑
j∈g(Y )

q

∑
i∈g(X)

p
Aij

h
(X)
p · h(Y )

q

.

Then, the bias-variance decomposition of the MISE of the blockmodel approximation of the

graphon function f̂ can be written as (Olhede & Wolfe, 2014):

MISE
(

f̂
)
≤ E

∫∫
(0,1)2

∣∣∣f(x, y)− f̂(x, y)
∣∣∣2 dx dy =

k(Y )∑
q=1

k(X)∑
p=1

∫∫
ω(p,q)


∣∣∣∣∣f(x, y)−

E
(
Āp,q

)
ρ

∣∣∣∣∣
2

+
Var

(
Āp,q

)
ρ2

 dx dy. (5.50)

As well as specifying groupings ofX and Y -nodes, g(X)
p and g(Y )

q imply mappings between the

adjacency matrix margins and the graphon margins, and the domain of integration ω (p, q) is

hence a contiguous region of the graphon, which maps to entries of the adjacency matrix which

are not necessarily contiguous.

Modelling the equi-smooth graphon f̃ as a linear stretch transformation of the anisotropic
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graphon f , by anisotropy factor γ, means that we can write:

f(x, y) = f̃ (γx, y/γ) .

I define the graphon oracle (Wolfe & Olhede, 2013; Olhede & Wolfe, 2014) ordering of the X

and Y -nodes according to ξ(X) and ξ(Y ) respectively. These are unobservable latent random

vectors, which map the locations of the X and Y nodes from the margins of the graphon to

the margins of the adjacency matrix. I.e., ξ(X)
i and ξ(Y )

j provide the locations on the graphon

margins which correspond to the X and Y -nodes i and j respectively, where i and j are the

adjacency matrix indices of these nodes. I define (i)−1 as a function which gives the rank of

ξ
(X)
i , 1 ≤ i ≤ m, and similarly (j)−1 as a function which gives the rank of ξ(Y )

j , 1 ≤ j ≤ l.

Therefore, (i)−1 and (j)−1 are functions which take the ordering along the adjacency matrix

margins, and return the ordering along the graphon margins. Hence, the inverses of these func-

tions, (i) and (j), take the ordering along the graphon margins, and return the corresponding

ordering along the adjacency matrix margins. Adapting the proof of Lemma 3 from (Olhede &

Wolfe, 2014) to the anisotropic graphon, by defining im = i/(m + 1) and jl = j/(l + 1), and

assuming that f̃ is Lipschitz-continuous, gives:

∣∣∣f (ξ(X)
(i) , ξ

(Y )
(j)

)
− f (im, jl)

∣∣∣ =
∣∣∣f̃ (γξ(X)

(i) , ξ
(Y )
(j) /γ

)
− f̃ (γim, jl/γ)

∣∣∣
≤ M̃

∣∣∣(γξ(X)
(i) , ξ

(Y )
(j) /γ

)
− (γim, jl/γ)

∣∣∣ .
Writing the variances and applying Jensen’s inequality as in (Olhede & Wolfe, 2014) we get,

Var
(
ξ
(X)
(i)

)
=
im(1− im)

m+ 2
≤ 1/4

m+ 2
,

Var
(
ξ
(Y )
(j)

)
=
jl(1− jl)
l + 2

≤ 1/4

l + 2
,

=⇒ Eξ(X),ξ(Y )

{
γ2
(
ξ
(X)
(i) − im

)2
+

1

γ2

(
ξ
(Y )
(j) − jl

)2} 1
2

≤
(
γ2Var

(
ξ
(X)
(i)

)
+

1

γ2
Var

(
ξ
(Y )
(j)

)) 1
2

≤
{
γ2 · 1

4(m+ 2)
+

1

γ2
· 1

4(l + 2)

} 1
2

,

∴ Eξ(X),ξ(Y )

∣∣∣f (ξ(X)
(i) , ξ

(Y )
(j)

)
− f (im, jl)

∣∣∣ ≤ M̃ {
γ2 · 1

4(m+ 2)
+

1

γ2
· 1

4(l + 2)

} 1
2

.

(5.51)
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Now adapting Lemma 2 from (Olhede & Wolfe, 2014), I apply the law of iterated expectations

to A(i)(j), to obtain:

E
(
A(i)(j)

)
= Eξ(X),ξ(Y )

[
EA|ξ(X),ξ(Y )

(
A(i)(j)

∣∣∣ξ(X), ξ(Y )
)]

= Eξ(X),ξ(Y )

[
ρf
(
ξ
(X)
(i) , ξ

(Y )
(j)

)]
,

(5.52)

then using Jensen’s inequality we get:

∣∣∣Eξ(X),ξ(Y )

[
ρf
(
ξ
(X)
(i) , ξ

(Y )
(j)

)]
− ρf (im, jl)

∣∣∣ ≤ ρEξ(X),ξ(Y )

[∣∣∣f (ξ(X)
(i) , ξ

(Y )
(j)

)
− f (im, jl)

∣∣∣] ,
(5.53)

and hence combining equations 5.51-5.53, we have:

∣∣E (A(i)(j)

)
− ρf (im, jl)

∣∣ ≤ ρM̃ {
γ2 · 1

4(m+ 2)
+

1

γ2
· 1

4(l + 2)

} 1
2

. (5.54)

Now applying the law of total variance to A(i)(j), as in Lemma 2 from (Olhede & Wolfe, 2014),

we obtain:

Var
(
A(i)(j)

)
=Eξ(X),ξ(Y )

[
VarA|ξ(X),ξ(Y )

(
A(i)(j)

∣∣∣ξ(X), ξ(Y )
)]

+ Varξ(X),ξ(Y )

[
EA|ξ(X),ξ(Y )

(
A(i)(j)

∣∣∣ξ(X), ξ(Y )
)]

=Eξ(X),ξ(Y )

[
ρf
(
ξ
(X)
(i) , ξ

(Y )
(j)

)(
1− ρf

(
ξ
(X)
(i) , ξ

(Y )
(j)

))]
+ Eξ(X),ξ(Y )

[
ρ2
(
f
(
ξ
(X)
(i) , ξ

(Y )
(j)

))2]
−
(
Eξ(X),ξ(Y )

[
ρf
(
ξ
(X)
(i) , ξ

(Y )
(j)

)])2
=Eξ(X),ξ(Y )

[
ρf
(
ξ
(X)
(i) , ξ

(Y )
(j)

)]
− Eξ(X),ξ(Y )

[
ρ2
(
f
(
ξ
(X)
(i) , ξ

(Y )
(j)

))2]
+ Eξ(X),ξ(Y )

[
ρ2
(
f
(
ξ
(X)
(i) , ξ

(Y )
(j)

))2]
−
(
Eξ(X),ξ(Y )

[
ρf
(
ξ
(X)
(i) , ξ

(Y )
(j)

)])2
=Eξ(X),ξ(Y )

[
ρf
(
ξ
(X)
(i) , ξ

(Y )
(j)

)]{
Eξ(X),ξ(Y )

[
1− ρf

(
ξ
(X)
(i) , ξ

(Y )
(j)

)]}
. (5.55)

From equation 5.51, we get:

Eξ(X),ξ(Y )

[
ρf
(
ξ
(X)
(i) , ξ

(Y )
(j)

)]
≤ ρf (im, jl)+ρM̃

{
γ2 · 1

4(m+ 2)
+

1

γ2
· 1

4(l + 2)

} 1
2

(5.56)

and

− Eξ(X),ξ(Y )

[
ρf
(
ξ
(X)
(i) , ξ

(Y )
(j)

)]
≤ −ρf (im, jl) + ρM̃

{
γ2 · 1

4(m+ 2)
+

1

γ2
· 1

4(l + 2)

} 1
2

,

(5.57)
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and hence also

Eξ(X),ξ(Y )

[
1− ρf

(
ξ
(X)
(i) , ξ

(Y )
(j)

)]
≥ 1−ρf (im, jl)−ρM̃

{
γ2 · 1

4(m+ 2)
+

1

γ2
· 1

4(l + 2)

} 1
2

(5.58)

and

−Eξ(X),ξ(Y )

[
1− ρf

(
ξ
(X)
(i) , ξ

(Y )
(j)

)]
≥ −1+ρf (im, jl)−ρM̃

{
γ2 · 1

4(m+ 2)
+

1

γ2
· 1

4(l + 2)

} 1
2

.

(5.59)

Now combining equation 5.56 with the negative of equation 5.59 and applying equation equa-

tion 5.55 we get:

Var
(
A(i)(j)

)
≤

[
ρf (im, jl) + ρM̃

{
γ2 · 1

4(m+ 2)
+

1

γ2
· 1

4(l + 2)

} 1
2

]

·

[
1− ρf (im, jl) + ρM̃

{
γ2 · 1

4(m+ 2)
+

1

γ2
· 1

4(l + 2)

} 1
2

]

and hence:

Var
(
A(i)(j)

)
≤ ρf (im, jl) [1− ρf (im, jl)]

+ ρM̃

{
γ2 · 1

4(m+ 2)
+

1

γ2
· 1

4(l + 2)

} 1
2

[
1 + ρM̃

{
γ2 · 1

4(m+ 2)
+

1

γ2
· 1

4(l + 2)

} 1
2

]
.

(5.60)

Similarly combining the negative of equation 5.57 with equation 5.58 and applying equation

equation 5.55 we get:

Var
(
A(i)(j)

)
≥

[
ρf (im, jl)− ρM̃

{
γ2 · 1

4(m+ 2)
+

1

γ2
· 1

4(l + 2)

} 1
2

]

·

[
1− ρf (im, jl)− ρM̃

{
γ2 · 1

4(m+ 2)
+

1

γ2
· 1

4(l + 2)

} 1
2

]
,

and hence:

Var
(
A(i)(j)

)
≥ ρf (im, jl) [1− ρf (im, jl)]

− ρM̃
{
γ2 · 1

4(m+ 2)
+

1

γ2
· 1

4(l + 2)

} 1
2

[
1− ρM̃

{
γ2 · 1

4(m+ 2)
+

1

γ2
· 1

4(l + 2)

} 1
2

]
,
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and therefore:

−Var
(
A(i)(j)

)
≤ −ρf (im, jl) [1− ρf (im, jl)]

+ ρM̃

{
γ2 · 1

4(m+ 2)
+

1

γ2
· 1

4(l + 2)

} 1
2

[
1− ρM̃

{
γ2 · 1

4(m+ 2)
+

1

γ2
· 1

4(l + 2)

} 1
2

]
≤− ρf (im, jl) [1− ρf (im, jl)] (5.61)

+ ρM̃

{
γ2 · 1

4(m+ 2)
+

1

γ2
· 1

4(l + 2)

} 1
2

[
1 + ρM̃

{
γ2 · 1

4(m+ 2)
+

1

γ2
· 1

4(l + 2)

} 1
2

]
,

and hence combining equations 5.60 and 5.61 we get:

∣∣Var
(
A(i)(j)

)
− ρf (im, jl) [1− ρf (im, jl)]

∣∣
≤ ρM̃

{
γ2 · 1

4(m+ 2)
+

1

γ2
· 1

4(l + 2)

} 1
2

·

[
1 + ρM̃

{
γ2 · 1

4(m+ 2)
+

1

γ2
· 1

4(l + 2)

} 1
2

]
.

(5.62)

Now referring to equation 5.54 and comparing it to equation 6 of Supporting Information Sec-

tion A in (Olhede & Wolfe, 2014), allows us to re-write the covariance expression in Lemma 2

of (Olhede & Wolfe, 2014) giving:

Cov
(
A(i)(j), A(i′)(j′)

)
≤ ρ2M̃2

{
γ2 · 1

4(m+ 2)
+

1

γ2
· 1

4(l + 2)

}
, (5.63)

i 6= i′, j 6= j′. We can then use equations 5.54, 5.62 and 5.63 to adapt Proposition 1 from

(Olhede & Wolfe, 2014), denoting the average values of f and f2 over the block corresponding

to the pairing of g(X)
p with g(Y )

q as f̄p,q and f̄2p,q respectively,

f̄p,q =
1

|ω (p, q)|

∫∫
ω(p,q)

f(x, y)dx dy (5.64)

and

f̄2p,q =
1

|ω (p, q)|

∫∫
ω(p,q)

f2(x, y)dx dy, (5.65)

where

|ω (p, q)| = h
(X)
p

m
· h

(Y )
q

l
,

to give: ∣∣E (Āp,q)− ρf̄p,q∣∣ ≤ ρM̃ {
γ2 · 1

4m
+

1

γ2
· 1

4l

} 1
2

{1 + o (1)} (5.66)
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and

∣∣∣∣∣Var
(
Āp,q

)
−
ρf̄p,q − ρ2f̄2p,q
h
(X)
p · h(Y )

q

∣∣∣∣∣
≤ ρM̃

h
(X)
p · h(Y )

q

{
γ2 · 1

4m
+

1

γ2
· 1

4l

} 1
2

{1 + o (1)}+ ρ2M̃2

{
γ2 · 1

4m
+

1

γ2
· 1

4l

}
, (5.67)

which is a conservative upper bound. Now substituting equation 5.67 back into equation 5.50,

we get:

MISE
(

f̂
)
≤

k(Y )∑
q=1

k(X)∑
p=1

∫∫
ω(p,q)

[∣∣{f(x, y)− f̄p,q
}

+
{
f̄p,q − E

(
Āp,q

)
/ρ
}∣∣2 +

f̄p,q − ρf̄2p,q
ρ · h(X)

p · h(Y )
q

+
M̃

ρ · h(X)
p · h(Y )

q

{
γ2 · 1

4m
+

1

γ2
· 1

4l

} 1
2

{1 + o (1)}+ M̃2

{
γ2 · 1

4m
+

1

γ2
· 1

4l

}]
dx dy,

then substituting equation 5.66, integrating and rearranging, leads to:

MISE
(

f̂
)
≤

k(Y )∑
q=1

k(X)∑
p=1

[∫∫
ω(p,q)

∣∣f(x, y)− f̄p,q
∣∣2 dx dy

+

(
2M̃2

{
γ2 · 1

4m
+

1

γ2
· 1

4l

}
{1 + o (1)}+

f̄p,q − ρf̄2p,q
ρ · h(X)

p · h(Y )
q

+
M̃

ρ · h(X)
p · h(Y )

q

{
γ2 · 1

4m
+

1

γ2
· 1

4l

} 1
2

{1 + o (1)}

)
· h

(X)
p

m
· h

(Y )
q

l

]
. (5.68)

Then, adapting the proof of Lemma 1 from (Olhede & Wolfe, 2014), we can write:

∣∣f̄p,q − f(x, y)
∣∣ =

∣∣∣∣∣ 1

|ω (p, q)|

∫∫
ω(p,q)

f(x′, y′)dx′ dy′ − f(x, y)

∣∣∣∣∣
≤ 1

|ω (p, q)|

∫∫
ω(p,q)

∣∣∣f̃(γx′, y′/γ)− f̃(γx, y/γ)
∣∣∣ dx′ dy′.

Assuming f̃ is Lipschitz continuous, it therefore follows that:

∣∣f̄p,q − f(x, y)
∣∣ ≤ 1

|ω (p, q)|

∫∫
ω(p,q)

M̃
∣∣(γx′, y′/γ)− (γx, y/γ)

∣∣ dx′ dy′
≤ 1

|ω (p, q)|

∫∫
ω(p,q)

M̃

√√√√
γ2 ·

(
h
(X)
p

)2
m2

+
1

γ2
·

(
h
(Y )
q

)2
l2

dx′ dy′
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=⇒
∣∣f̄p,q − f(x, y)

∣∣ ≤ M̃
√√√√
γ2 ·

(
h
(X)
p

)2
m2

+
1

γ2
·

(
h
(Y )
q

)2
l2

and therefore

1

|ω (p, q)|

∫∫
ω(p,q)

∣∣f̄p,q − f(x, y)
∣∣2 ≤ M̃2

γ2 ·
(
h
(X)
p

)2
m2

+
1

γ2
·

(
h
(Y )
q

)2
l2

 ,

and hence summing over all the blocks corresponding to all pairings of X-node groupings

g(X) ∈ G(X) with Y -node groupings g(Y ) ∈ G(Y ), and assuming h(X) and h(Y ) are both

constants, we get:

k(Y )∑
q=1

k(X)∑
p=1

∫∫
ω(p,q)

∣∣f̄p,q − f(x, y)
∣∣2 ≤ M̃2

{
γ2 ·

(
h(X)

)2
m2

+
1

γ2
·
(
h(Y )

)2
l2

}
. (5.69)

Recalling equation 5.64 and equation 5.10, i.e.,

∫∫
(0,1)2

f(x, y)dx dy = 1,

and noting that:
k(Y )∑
q=1

k(X)∑
p=1

f̄p,q − ρf̄2p,q
ρ · h(X)

p · h(Y )
q

≤
k(Y )∑
q=1

k(X)∑
p=1

f̄p,q

ρ · h(X) · h(Y )
,

we can see that:

k(Y )∑
q=1

k(X)∑
p=1

f̄p,q − ρf̄2p,q
ρ · h(X)

p · h(Y )
q

≤
k(Y )∑
q=1

k(X)∑
p=1

m · l
ρ ·
(
h(X)

)2 · (h(Y )
)2 · h(X)

m
· h

(Y )

l
· f̄p,q (5.70)

=
m · l

ρ ·
(
h(X)

)2 · (h(Y )
)2 k

(Y )∑
q=1

k(X)∑
p=1

∫∫
ω(p,q)

f(x, y)dx dy

=
m · l

ρ ·
(
h(X)

)2 · (h(Y )
)2 ∫∫

(0,1)2
f(x, y)dx dy

=
m · l

ρ ·
(
h(X)

)2 · (h(Y )
)2 .
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Now substituting 5.69 and 5.70 into 5.68, and rearranging, we get:

MISE
(

f̂
)
≤ M̃2

{
γ2 ·

(
h(X)

)2
m2

+
1

γ2
·
(
h(Y )

)2
l2

}

+ 2M̃2

{
γ2 · 1

4m
+

1

γ2
· 1

4l

}
{1 + o (1)}

+
1

ρ · h(X) · h(Y )
+

M̃

ρ · h(X) · h(Y )

{
γ2 · 1

4m
+

1

γ2
· 1

4l

} 1
2

{1 + o (1)}

and hence:

MISE
(

f̂
)
≤ M̃2

{
γ2 ·

(
h(X)

)2
m2

+
1

γ2
·
(
h(Y )

)2
l2

}

+ 2M̃2

{
γ2 · 1

4m
+

1

γ2
· 1

4l

}
{1 + o (1)}+

1

ρ · h(X) · h(Y )
{1 + o (1)} .

Derivation D: Proof of Proposition 3

We wish to compare the null hypothesis:

H0 : γ = 1

against the alternative hypothesis:

H1 : γ 6= 1

where γ2 = MY /MX . In practice, we can only compare the ratio of the estimates of the

gradients, which can be written as:

M̂Y

M̂X

=
b̂X p̂Y l

p̂X b̂Ym
=

(px + ε
(x)
p )(by + ε

(y)
b )

(bx + ε
(x)
b )(py + ε

(y)
p )
· l
m

=
pxby
bxpy

·
(1 +

ε
(x)
p

px
)(1 +

ε
(y)
b
by

)

(1 +
ε
(x)
b
bx

)(1 +
ε
(y)
p

py
)

· l
m
.

Applying a first-order Maclaurin expansion, and neglecting products of errors, gives:

γ̂2 =
M̂Y

M̂X

=
b̂X p̂Y

p̂X b̂Y
· m
l
≈ pxby
bxpy

·

(
1 +

ε
(x)
p

px
+
ε
(y)
b

by
+
ε
(x)
b

bx
+
ε
(y)
p

py

)
· l
m

and hence, assuming bx and by, px and py, bx and py, px and by are independent, we can test

against the null distribution

γ̂2 =
b̂X p̂Y l

p̂X b̂Ym
∼ N

(
1, τ̂2

)
,
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where

τ̂2 =
V̂ar(b̂X)

b̂X
+

V̂ar(p̂Y )

p̂Y
+

V̂ar(p̂X)

p̂X
+

V̂ar(b̂Y )

b̂Y

+ 2
̂Cov(b̂X , p̂X)

b̂X p̂X
+ 2

̂Cov(b̂Y , p̂Y )

b̂Y p̂Y
, (5.71)

where b̂X , p̂X , b̂Y , p̂Y and their variances and covariances are estimated from the linear model

fits as described.



Chapter 6

Intra-gene DNA Methylation Variability is a

Technically and Clinically Independent

Prognostic Marker in Women’s Cancers

6.1 Introduction

In this chapter, I investigate further IGV, or intra-gene DNA methylation variability (Bartlett

et al. , 2013), which was introduced in chapter 2, finding that it is independently prognostic, and

does not require data normalisation. Using IGV, based on raw data, I derive a robust gene-panel

prognostic signature for ovarian cancer (OC, n = 221), which validates in two independent

data sets from Mayo Clinic (n = 198) and TCGA (n = 358), with significance of p = 0.004

in both sets. The OC prognostic signature gene-panel is comprised of four gene groups, which

represent distinct biological processes. I show that the IGV of these gene groups is likely a sur-

rogate readout for transcription factor (TF) binding/activity. Using the methodology of chapter

5 to analyse linked DNA methylation and gene expression data, I also find co-clusters which

represent groups of genes with highly associated expression and IGV patterns, and provide a

starting-point for further investigation into the mechanistic roles of the observed IGV patterns in

disease. IGV is a self-calibrating measure of methylation variability which can be used to pre-

dict clinical outcome in patients individually, providing a surrogate read-out of hard-to-measure

disease processes.

Ovarian cancer (OC) and endometrial cancer (EC) are the most common gynaecological

cancers (Jemal et al. , 2011). Only one in three patients with advanced stage OC survive for

five years after their initial diagnosis (Greenlee et al. , 2001). Very little is known about OC

biology and how to manipulate this disease therapeutically. DNAm changes are important in

cancer (Widschwendter et al. , 2006); the epigenome is an interface between the genome and

the environment (Jirtle & Skinner, 2007; Feil & Fraga, 2012), and hence DNAm changes can
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measure exposure to environmental risk factors of cancer. DNAm biomarkers which represent a

surrogate for patterns of gene interaction have previously been associated with clinical outcome

in a wide variety of cancers (Bartlett et al. , 2014), as well as specifically in women’s cancers

(Zhuang et al. , 2012).

Robust clinical multi-gene signature markers, which are not dependent on the technical

variability of the system, are urgently required. IGV is more resistant to additive changes

in methylation levels than conventionally used measures of DNAm. This is because IGV is

calculated relative to the mean methylation level. Any overall additive changes in methylation

level will have a similar influence on the methylation level at individual CpGs loci (which

are aggregated together when calculating IGV) and the mean methylation level (Figure 6.1b,

comparing the different coloured lines). Therefore, while individual methylation levels, and the

mean methylation level, would record such an additive shift in methylation level, IGV would

not. Hence, I hypothesise that IGV can be considered a ‘self-calibrating’ measure, which is

much less dependent on DNAm data being properly normalised and batch corrected.

6.2 Results

6.2.1 Comparison of predictive robustness of per-gene methylation measures, in

raw and normalised data

To assess the effectiveness and robustness of IGV compared to mean methylation levels, in raw

and normalised data, I compared four per-gene methylation measures, based on mean methy-

lation level and IGV (Figure 6.1). For each gene, I calculated mean methylation level and

IGV, separately for the promoter (TSS200) and gene body regions, by using the Illumina In-

finium HumanMethylation450 platform specifications of the CpGs in these regions for each

gene. I considered different genomic regions separately, because methylation patterns vary

greatly from one genomic region to another, and the effect of methylation level on gene regula-

tion varies according to genomic region. The four measures I compared, are as follows:

• TSS200 mean methylation

• TSS200 IGV

• Gene body mean methylation

• Gene body IGV

In chapter 2, I found that the mean z-score was the most effective per-gene methylation mea-

sure, for discriminating cancerous from healthy tissue. However, the main ovarian cancer data-

set analysed in this chapter consists only of samples of cancerous tissue, and calculation of
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the mean z-score measure requires healthy samples on which to base the reference mean and

standard-deviation methylation profiles. Therefore, it is not possible to consider the mean z-

score measure in this chapter.

0.
0

0.
4

0.
8

Mean methj
β

Probes Genomic
region

(a)

0.
0

0.
4

0.
8 Meth varj=

1

n
∑ (βi,j−Mean methj)2

β

Probes Genomic
region

(b)

Figure 6.1: Per-gene methylation measures.
(a) The mean methylation level over a specific genomic region is calculated separately for the TSS200
(promoter) and gene body genomic regions. The blue curve indicates the new position of the red curve
after an additive global shift in methylation level, which might be due to technological or other experi-
mental factors, and the difference between the horizontal red and blue lines (mean levels) illustrates the
effect of this shift on the mean methylation level. (b) The intra-gene methylation variability (IGV) is cal-
culated from the variation around the mean methylation level, i.e., from the dashed vertical lines, and is
similarly calculated separately for the TSS200 and gene body genomic regions. The vertical green lines
are changed very little compared to the vertical red lines, illustrating that such a global additive shift in
mean methylation level has much less effect on IGV, which is therefore referred to as a ‘self-calibrating
measure’.

I obtained genome-wide DNAm profiles, via the Illumina Infinium HumanMethylation450

platform, from 218 primary OC samples. For each of the four measures described, for both

SWAN-normalised (Makismovic et al. , 2012) and raw (un-normalised) data, I used ‘Elastic

Net’ (Zou & Hastie, 2005; Simon et al. , 2011) to find a prognostic selection of genes. Elastic

net has been found to be an optimal linear modelling method to identify groups of genes which

act together as part of a common biological process (Jojic et al. , 2013). It is a regression method

which ‘chooses’ the set of genes which model the data best, trying to include as few genes in the

model as possible, whilst ensuring that the model predicts the outcome of interest as accurately

as possible. In doing so, it discards genes which do not provide useful information, or which

provide repeated information.

I assessed the effectiveness of the per-gene methylation measures as prognostic measures,

both using normalised and raw data, by randomly dividing the data into two portions: a ‘training

set’, and a ‘test set’. Elastic Net was used to select genes and fit a model to the training set,

and the ability of this gene selection and model to blindly predict patient survival outcome

(adjusted for clinical covariates) was assessed using the test-set. This was repeated 2001 times,

and significantly predictive selected groups of genes were defined according to false discovery

rate (FDR) adjusted (Benjamini & Hochberg, 1995) p-value (i.e., FDR q-value) < 0.1 (Figure

6.2a). As shown in Figure 6.2b, in normalised data, both promoter (TSS200) mean methylation
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level and gene body IGV have some predictive ability, however for raw data, only gene body

IGV predicts well - and far more so than any of the measures using normalised data. This

indicates that IGV is more resilient to technical and systematic variation in recorded methylation

levels (which usually necessitate normalisation). It also suggests that this normalisation actually

diminishes the capacity of IGV to derive true biological meaning (in the form of ability to

predict patient survival outcome).

(1.i) Randomly divide the data into 2 portions

(1.ii) Run ‘Elastic Net’ on the first portion (the 
‘training set’), to select genes with IGV predictive 

of survival, and fit linear model to these genes

(1.iii) Test significance (adjusted for clinical covariates)
of blind prediction of survival by these selected 

genes, in the second portion (the ‘test set’).

(a)

(1) Repeat (1.i) to (1.iii) 100 000 times with gene body IGV, 
recording chosen genes and p-values, to generate consensus

(2) Select 8281 significant model fits of the 100 000 total model
fits, according to q<0.1, and rank 10014 genes according 

to how many significant model fits they appear in

(3) Define prognostic signature: select the top 679 
genes as significant (q<0.05), under the null model 
that genes appear in model fits by random chance

(4) Cluster these 679 genes, according to similar patterns of IGV
across patients, reflective of common underlying biological 

         processes. Leads to four major clusters, comprising total 230 genes: 
       Hyper1: 56 genes; Hyper2: 110; Hypo1: 45; Hypo2: 19. Each cluster has
        a corresponding IGV cluster score (the mean IGV of the cluster genes)

(5) Fit a Cox-model to the four cluster IGV scores (adjusted for clinical 
covariates). This defines the IGV prognostic score for each patient.

Number of significant predictions / 2001
Per-gene measure Normalised data Un-normalised data
TSS200 mean methylation 23 3
TSS200 IGV 3 0
Gene body mean methylation 0 0
Gene body IGV 30 176

(i) Randomly divide the data into 2 portions

(ii) Run ‘Elastic Net’ on the first portion (the 
‘training set’), to select genes with IGV predictive 

of survival, and fit linear model to these genes

(iii) Test significance (adjusted for clinical covariates)
of blind prediction of survival by these selected 

genes, in the second portion (the ‘test set’).

Repeat (i) to (iii) 2001 times, with each of 
the four per-gene methylation measures, 

using both normalised and un-normalised data

(c)

(a)

(b)

Figure 6.2: Overview of methods.
(a) Methodology overview for comparison of the four per-gene methylation measures, with normalised
and raw data. (b) Results of this comparison. (c) Methodology overview for calculation of ovarian
cancer IGV prognostic score.

6.2.2 Derivation of an ovarian cancer prognostic signature, and IGV prognostic

score

I used IGV to derive an OC DNAm prognostic signature (Figure 6.2c), based on gene-body IGV

(from here on simply referred to as ‘IGV’), using only raw data. I did this by determining a

consensus on a set of genes predictive of survival, by following the same procedure of splitting

data into test and training sets, and then assessing the gene selection and fitted model for their

ability to blindly predict patient survival outcome (adjusted for clinical covariates) in the test

set. In order to ensure convergence to a stable result, I made 105 such partitions of the data,

each resulting in a predictive selection of genes. Of these, 8281 were found as significant (FDR

q < 0.1), and significance for each gene was then calculated based on the number of significant

models in which that gene appeared. 679 genes were selected like this for inclusion in the OC

prognostic signature at a significance level of FDR q < 0.05, with the least significant gene
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present in 1057 out of 8281 model fits. The top 85 most significant of these genes appear in

table 6.2.

Genes often act together as part of biological pathways, and processes. Hence, we can

expect that these 679 OC prognostic signature genes can be represented by a smaller number of

underlying biological processes, which are important to disease progression. Grouping genes

with similar experimental measurements by using clustering methodology is well established

as an effective approach for determining clinically relevant prognostic markers (Golub et al.

, 1999; Valk et al. , 2004). Hence, to uncover such groupings in the 679 genes of the OC

prognostic signature, I carried out consensus clustering (Monti et al. , 2003), to identify groups

of genes with similar patterns of IGV across patients. Each cluster identified in this way reveals

a different IGV trend, and therefore may correspond to a different underlying biological process,

which gives rise to the pattern of IGV observed in that cluster. The clustering was carried out

separately for genes which were individually associated with worse patient survival outcome

for increased IGV (‘hyper’ genes) and for decreased IGV (‘hypo’ genes). The result was four

clusters: two from the hyper genes, called clusters ‘hyper 1’ and ‘hyper 2’, and two from the

hypo genes, called clusters ‘hypo 1’ and ‘hypo 2’; they appear in 6.3 - 6.6. The mean IGV of

the genes of each of the four clusters gives an IGV ‘cluster score’, for each cluster and for each

patient, which are taken to be representative of the different IGV trends, and corresponding

underlying biological processes, within the OC prognostic signature.

I then calculated an IGV prognostic score, by fitting a multivariate Cox proportional haz-

ards model (accounting also for clinical covariates) to the four IGV cluster scores. It was not

possible to fit such a model to the full set of 10014 genes, because there are many more predic-

tor variables (genes) than samples (Vittinghoff & McCulloch, 2007), and doing so would have

resulted in over-fitting. This was the reason for using the Elastic Net penalised Cox regression

method, which does not have this limitation on the number of predictor variables. However, re-

ducing the prognostic signature to 4 cluster scores, i.e., 4 predictors, allows the Cox proportional

hazards model to be fitted. This results in a model coefficient for each cluster score/predictor;

these are used to calculate the IGV prognostic score. The IGV prognostic score is a one-number

prognostic indicator for a single sample/patient, and I note that it must be calculated based on

all four cluster scores, to be significantly prognostic.

The median of this IGV prognostic score was used to divide the patients of the main OC

data set into better and worse prognostic groups, shown in Figure 6.3a and 6.3b. The IGV

prognostic score was validated in two independent sets of cancers derived from the Mullerian

tract. A new OC set from the Mayo Clinic (n = 198) confirmed the prognostic capacity of the



6.2. Results 121

IGV prognostic score in both univariate (Figure 6.3c) and multivariate (Figure 6.3d) analyses.

In order to test whether the IGV prognostic score is only limited to OC, or whether it is also

predictive in other cancers which arise from the same embryological structure (i.e., the Mul-

lerian duct), I applied the prognostic score to a publically available uterine corpus endometri-

oid carcinoma (UCEC) set from The Cancer Genome Atlas (TCGA) (Collins & Barker, 2007)

(n = 358). Again, in both univariate (Figure 6.3e) and multivariate (Figure 6.3f) analyses, I

was able validate the IGV prognostic score.

6.2.3 Functional role of transcription-factor activity in IGV

In order to investigate the question, ‘what is IGV’, I examined TF binding to the gene body

regions of the OC prognostic signature genes, and tested the correlation of TF expression with

the IGV of the genes they bind to (in a TCGA set of basal breast cancers). I found that each

prognostic signature cluster shows its own distinctive pattern of TF binding (Figure 6.4a), which

we can hypothesise is associated with the biological processes responsible for the characteristic

pattern of IGV observed in that cluster.

Transcription factor binding site information, obtained from the ENCODE (Encyclopedia

of DNA Elements) project (Consortium et al. , 2004), was available for the gene body regions

of all the genes represented on the Illumina HumanMethylation 450K array, for 55 transcription

factors. I tested each of these 55 TFs, for significantly increased or decreased binding to the

genes of each prognostic signature cluster. Cluster hypo 2 only consists of 19 genes, and hence

we would not expect to see many significant correlations, due to small sample size. For cluster

hyper 2, we see that 20% (11/55) of the TFs tested show significantly more binding to these

genes than expected, whereas 16% show significantly less binding than expected. On the other

hand, for clusters hyper 1 and hypo 1, not a single TF showed higher than expected binding,

whereas 27% and 38% of TFs show lower than expected binding to the genes comprising cluster

hyper 1 and hypo 1, respectively. This indicates that, also referring to the ‘hyper’ and ‘hypo’

directionality information, the clusters each represent TF binding patterns which are distinct

from one another, and hence may be associated with different biological processes.

I also wanted to test the actual correlation of expression of the TFs with IGV of the genes

they bind to, and genes they do not bind to, genome-wide. To do this, I used a TCGA set of basal

breast cancers, for which 450k methylation data as well as expression data exist. It has been

comprehensively demonstrated by the TCGA consortium that high-grade serous ovarian and

uterine and BRCA basal cancers are extremely molecularly similar, and may share the same

molecular origin (Network et al. , 2012). Figures 6.4b and 6.4c show TFs with significantly

more positive, and more negative, correlation with IGV of the genes they bind to, compared
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HR (95%CI) p n
IGV prognostic score 2.8 (1.1-7.2) 0.04 308

Age 1.2 (0.5-2.9) 0.7 308
Stage 2.1 (0.8-5.5) 0.1 308
Grade 0.9 (0.3-2.9) 0.9 308

Residual disease 8.9 (3.1-26) < 0.001 308

HR (95%CI) p n
IGV prognostic score 4.1 (2.8-6.2) < 0.001 209

Age 1 (0.7-1.4) 1 209
Stage 5.2 (1.9-14.4) 0.002 209
Grade 0.9 (0.6-1.4) 0.7 209

Residual disease 1.4 (1-2) 0.05 209

HR (95%CI) p n
IGV prognostic score 1.9 (1.1-3.1) 0.01 149

Age 0.8 (0.5-1.3) 0.4 149
Stage 12.3 (1.5-99.2) 0.02 149
Grade 1.5 (0.5-4.2) 0.5 149

Residual disease 2.5 (1.4-4.4) 0.001 149
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Figure 6.3: IGV OC prognostic signature validation
(a), (c) and (e): Comparison of survival curves of groups defined by the IGV prognostic score, in: (a)
the main OC data set, (c) the Mayo Clinic OC validation set, (e) the uterine cancer TCGA validation
set. The groups are divided by the median IGV prognostic score derived in the main OC DNAm data-set.
The hazard ratio (HR) is displayed with 95% C.I. in brackets, with corresponding p-value calculated
by univariate Cox regression. (d), (e) and (f): Multivariate Cox regression comparing the same groups
defined by the IGV prognostic score.

to the genes they do not. It is interesting that the two most highly ranked transcription fac-

tors according to increased positive correlation of their expression with IGV in bound genes,
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Rad21 and Brg1 (SMARCA4), are both parts of chromatin modifying complexes with rele-

vance to stem cell identity (Nitzsche et al. , 2011; Attanasio et al. , 2014). In particular, Brg1

(SMARCA4) has been shown recently to have particular relevance to small-cell ovarian cancer

(Witkowski et al. , 2014; Ramos et al. , 2014; Jelinic et al. , 2014). The overlap between the TFs

which show significantly different binding patterns in relation to the OC prognostic signature

genes, and TFs which display significantly altered correlation of their expression with IGV of

genes they bind to, is shown in Figure 6.4d. Much relevant detail has already been reported

about most of these TFs (references noted in the figure): either their binding is influenced by

methylation (or vice-versa), or they are involved with chromatin remodelling in stem cells. The

TFs shown in Figure 6.4d are important to the processes underlying disease progression, which

are associated with the OC prognostic signature. Therefore I hypothesise that IGV, in the OC

prognostic signature gene panel, represents a surrogate measure for their activity and role in

disease transformation.

Genome-wide Analysis of Gene-Expression Correlation with IGV

I carried out a more general analysis of gene expression and IGV, again using the TCGA BRCA

data-set, basal samples. As in chapter 5, section 5.5.2, I calculated the Spearman correlation of

the IGV of each gene with the expression of every gene, genome wide, resulting in a matrix of

gene expression and IGV correlations. In this correlation matrix, each column represents the

correlation structure of the IGV of a particular gene with the gene expression patterns across

all genes. Correspondingly, each row in the matrix represents the correlation structure of the

expression of a particular gene with the IGV patterns across all genes. Also as in chapter 5,

section 5.5.2, I used the methodology developed in chapter 4 to infer an adjacency matrix from

this correlation matrix, in doing so identifying significant correlations (correponding to 1 in the

adjacency matrix), and discarding insignificant correlations (corresponding to 0 in the adjacency

matrix). Using the methodology developed in chapter 5, as in section 5.5.2, I co-clustered this

correlation matrix, to find groups, or co-clusters, with a large number of significant correlations

between IGV and gene expression. Co-clustering is most familiar in genomics in the scenario in

which gene expression patterns are compared with arrays or subjects, grouping both genes and

arrays/subjects simultaneously, and it can be used equivalently here to compare gene expression

and IGV patterns. Here, by co-clustering, we seek groups of genes with similar expression

patterns, while at the same time finding groups of genes with similar patterns of IGV. The only

way the IGV of one gene can ‘see’ that of another, is via the expression patterns of other genes

which it is correlated with, and similarly, the only way the expression pattern of one gene can

‘see’ that of another, is via the IGV patterns of other genes which it is correlated with.
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(a) Hyper1 Hyper2 Hypo1 Hypo2
BAF155 q=0.00053, OR=0.37 (0.2-0.67) q=5.3e-05, OR=2.5 (1.6-4) q=1.5e-06, OR=0.18 (0.07-0.38) q=0.65, OR=1.4 (0.49-4.1)
BAF170 q=0.053, OR=0.53 (0.27-0.98) q=0.0089, OR=1.8 (1.2-2.6) q=0.0075, OR=0.32 (0.13-0.7) q=0.64, OR=1.3 (0.47-3.6)

BCL3 q=0.56, OR=0.8 (0.41-1.5) q=0.01, OR=0.48 (0.28-0.79) q=0.29, OR=0.56 (0.24-1.2) q=0.56, OR=0.58 (0.14-1.8)
c-Fos q=0.89, OR=1 (0.57-1.9) q=0.0013, OR=0.42 (0.24-0.7) q=0.0037, OR=0.26 (0.08-0.66) q=0.29, OR=1.8 (0.66-5)

c-Myc q=0.00018, OR=0.34 (0.18-0.62) q=2.6e-07, OR=3.3 (2-5.4) q=5.6e-05, OR=0.25 (0.11-0.52) q=0.49, OR=1.5 (0.53-4.4)
CEBPB q=0.16, OR=0.59 (0.32-1.1) q=0.7, OR=0.91 (0.61-1.4) q=0.0043, OR=0.3 (0.12-0.66) q=0.7, OR=1.2 (0.44-3.4)

CTCF q=0.34, OR=0.7 (0.38-1.2) q=1.6e-05, OR=0.37 (0.23-0.58) q=0.54, OR=0.79 (0.41-1.5) q=0.34, OR=1.7 (0.64-5)
EBF q=0.088, OR=0.57 (0.31-1) q=0.44, OR=0.85 (0.57-1.3) q=0.041, OR=0.44 (0.22-0.86) q=0.14, OR=0.44 (0.14-1.2)

FOSL2 q=0.04, OR=0.5 (0.25-0.93) q=0.12, OR=0.72 (0.47-1.1) q=3e-05, OR=0.15 (0.039-0.41) q=0.12, OR=0.4 (0.096-1.2)
FOXP2 q=0.12, OR=0.19 (0.0047-1.1) q=0.023, OR=0.19 (0.023-0.72) q=0.06, OR=0 (0-0.92) q=1, OR=0.58 (0.014-3.7)
GABP q=0.012, OR=0.26 (0.051-0.79) q=0.0041, OR=2.1 (1.3-3.1) q=0.0054, OR=0.11 (0.0026-0.62) q=0.56, OR=0.53 (0.06-2.3)

GR q=0.052, OR=0.49 (0.21-1) q=0.029, OR=0.57 (0.33-0.93) q=0.029, OR=0.33 (0.1-0.83) q=0.029, OR=0.14 (0.0034-0.9)
HEY1 q=0.029, OR=0.52 (0.29-0.93) q=2.9e-11, OR=4.6 (2.8-8) q=2.5e-06, OR=0.18 (0.067-0.4) q=0.65, OR=1.3 (0.48-3.7)

HNF4A q=0.023, OR=0.44 (0.2-0.86) q=0.15, OR=0.7 (0.44-1.1) q=0.00039, OR=0.18 (0.046-0.49) q=0.48, OR=0.64 (0.18-1.9)
Ini1 q=7.6e-05, OR=0.33 (0.19-0.58) q=3.1e-08, OR=5.1 (2.6-11) q=3.1e-08, OR=0.17 (0.078-0.33) q=0.21, OR=2.4 (0.68-13)

JunD q=0.3, OR=0.71 (0.4-1.2) q=0.0058, OR=0.56 (0.37-0.84) q=0.0054, OR=0.35 (0.17-0.71) q=1, OR=1.1 (0.38-2.9)
Max q=0.0022, OR=0.42 (0.23-0.74) q=1e-04, OR=2.5 (1.6-4) q=0.00018, OR=0.28 (0.13-0.56) q=0.36, OR=1.6 (0.58-5.3)

NFKB q=0.008, OR=0.46 (0.26-0.81) q=1.4e-07, OR=5.6 (2.6-14) q=0.007, OR=0.41 (0.21-0.77) q=0.31, OR=2 (0.57-11)
NRSF q=0.0091, OR=0.44 (0.22-0.81) q=0.25, OR=0.8 (0.53-1.2) q=8e-04, OR=0.26 (0.11-0.58) q=0.15, OR=0.43 (0.12-1.3)
Pbx3 q=1, OR=0.88 (0.46-1.6) q=0.038, OR=0.55 (0.33-0.88) q=0.29, OR=0.57 (0.24-1.2) q=1, OR=1 (0.32-2.9)

POU2F2 q=0.0035, OR=0.39 (0.2-0.73) q=4e-04, OR=2.2 (1.4-3.3) q=0.3, OR=0.67 (0.34-1.3) q=0.65, OR=1.3 (0.48-3.7)
PU.1 q=0.46, OR=1.3 (0.76-2.5) q=0.083, OR=0.67 (0.45-0.99) q=0.023, OR=0.42 (0.21-0.81) q=0.82, OR=0.83 (0.3-2.3)

Rad21 q=0.84, OR=0.79 (0.44-1.4) q=1.7e-05, OR=0.37 (0.23-0.59) q=0.88, OR=0.93 (0.48-1.8) q=0.86, OR=1.4 (0.5-3.8)
Sin3Ak-20 q=0.034, OR=0.39 (0.14-0.92) q=0.0023, OR=2 (1.4-3.1) q=0.013, OR=0.24 (0.047-0.75) q=1, OR=0.88 (0.21-2.8)

STAT1 q=0.0064, OR=0.37 (0.18-0.72) q=0.38, OR=1.2 (0.8-1.8) q=0.044, OR=0.46 (0.21-0.93) q=0.23, OR=1.9 (0.7-5.4)
TAF1 q=0.34, OR=0.76 (0.43-1.3) q=3.8e-12, OR=5.8 (3.2-11) q=0.042, OR=0.48 (0.24-0.91) q=0.084, OR=2.9 (0.91-12)

TCF12 q=0.0021, OR=0.32 (0.14-0.65) q=0.92, OR=1 (0.69-1.5) q=0.33, OR=0.62 (0.3-1.2) q=0.92, OR=0.87 (0.29-2.4)
USF-1 q=0.024, OR=0.47 (0.23-0.91) q=0.0078, OR=0.51 (0.31-0.8) q=0.0084, OR=0.33 (0.12-0.74) q=1, OR=1 (0.34-2.8)

(b) Median bound Median unbound cor q-val
Rad21 0.09 0.035 1.1e-21

Brg1 0.12 0.076 1.6e-12
GABP 0.072 0.041 3.9e-10
c-Myc 0.043 0.025 4.6e-06

Nrf1 0.11 0.086 4.7e-06
BCL11A 0.069 0.049 1.7e-05

FOXP2 0.083 0.04 1e-04
Pbx3 0.016 0.0027 0.00038

CTCF 0.02 0.01 0.001
SRF 0.037 0.0075 0.005

SIX5 0.023 -0.0039 0.0076
HNF4A 0.015 0.0059 0.014

Sin3Ak-20 0.11 0.096 0.026

(c) Median bound Median unbound cor q-val
GR -0.22 -0.11 2.5e-51

BCL3 -0.19 -0.11 5.5e-28
PU.1 -0.18 -0.097 5.9e-27

NRSF -0.11 -0.062 1.8e-21
c-Jun -0.063 -0.037 3.7e-18
c-Fos -0.095 -0.048 2e-17
BATF -0.23 -0.14 4.1e-17
JunD -0.11 -0.067 5.6e-12

TCF12 -0.029 -0.0056 4e-11
RXRA -0.083 -0.049 1.2e-10

EBF -0.12 -0.093 1.9e-08
p300 -0.06 -0.042 3e-08

FOSL2 -0.11 -0.073 7.5e-08
STAT1 -0.12 -0.092 4.1e-06

IRF4 -0.13 -0.12 0.00012
NFKB -0.024 -0.013 0.0039

(d) Hyper1 Hyper2 Hypo1 Hypo2
Increased Binding,
Positive Correlation

with IGV

c-Myc (Gartel, 2006), GABP
(Yokomori et al. ,

1998), Sin3Ak-20 (Williams
et al. , 2011)

Increased Binding,
Negative Correlation

with IGV

NFKB (Kirillov et al. , 1996)

Decreased Binding,
Positive Correlation

with IGV

c-Myc (Gartel, 2006), GABP
(Yokomori et al. ,

1998), HNF4A, Sin3Ak-20
(Williams et al. , 2011)

CTCF (Nitzsche et al. ,
2011), FOXP2 (Zechner et al. ,
2012), Pbx3, Rad21 (Nitzsche

et al. , 2011)

c-Myc (Gartel, 2006), GABP
(Yokomori et al. ,

1998), HNF4A, Sin3Ak-20
(Williams et al. , 2011)

Decreased Binding,
Negative Correlation

with IGV

FOSL2, NFKB (Kirillov et al. ,
1996) , NRSF (Coulson,
2005), STAT1, TCF12

BCL3, c-Fos (Gustems et al. ,
2014), GR, JunD (Ng et al. ,

2013)

c-Fos (Gustems et al. ,
2014), EBF (Malone et al. ,

2001), FOSL2, GR, JunD (Ng
et al. , 2013), NFKB (Kirillov
et al. , 1996), NRSF (Coulson,

2005), PU.1 (Zhu et al. ,
2003), STAT1

GR

Figure 6.4: Transcription factor binding and expression correlation with IGV
(a) False discovery rate adjusted p-values and odds-ratios (OR) show enrichment of binding of specific
transcription factors (TFs), to the gene body regions of the genes of each cluster. TFs for which binding
is significantly over or under enriched (Fisher’s exact test, FDR q < 0.05) are coloured green and
red, respectively. (b) TFs which show significantly more positive correlation with IGV of the genes they
bind to, compared to the genes they do not bind to. (c) TFs which show significantly more negative
correlation with IGV of the genes they bind to, compared to the genes they do not bind to. (d) TFs which
are significant according to (a) and either (b) or (c); TFs with known relevance are indicated with a
reference to the relevant study. The lack of enrichment of TF binding to the genes of cluster hypo2, is a
reflection of the small number (19) of genes in this cluster.
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This co-clustering was carried out without any reference to the prognostic clusters, and the

result is shown in figure 6.5. Then, testing for association of these discovered co-clusters with

the OC prognostic signature clusters found previously, five of the IGV-groupings (columns) are

significantly enriched (Fisher’s exact test, FDR q < 0.05) by genes of those prognostic clusters.

The most significant of these prognostic co-clusters are are highlighted in blue; they represent

the most relevant co-clusters to the genes of the OC prognostic signature. Gene-set enrichment

analysis (Subramanian et al. , 2005) was carried out on the gene-expression groupings (rows)

of these blue prognostic co-clusters; many significant gene sets are found for each of these

groupings, including several which relate to known cancer, stem-cell, and immune function

gene sets. These prognostic-signature associated gene-expression groups (rows in figure 6.5) of

particular interest are:

• Groups 3, 10, 12, 14, 24, 37, 45, 49, 52, 54 and 67 contain many gene-sets relating to

stem-cells and differentiation processes, as well as many known cancer gene-sets, includ-

ing sets relating to breast and brain cancers.

• Groups 1 and 9 are related to many immune-function gene-sets.

• Group 74 is associated with three out of four of the OC prognostic signature IGV clus-

ters, and it is highly enriched for gene-sets relating to histone proteins, providing further

evidence for the link between IGV and chromatin modifying factors.

6.3 Discussion
I have found that IGV (a per-gene measure of intra-gene variability of DNAm) is a far more

robust prognostic marker tool than mean methylation levels, which can show considerable

technological and experimental variation (necessitating complicated normalisation and batch-

correction). Figure 6.2b indicates that gene body IGV has the potential to become a very effec-

tive prognostic tool, perhaps more so than measures of mean methylation. While it is true that

the Illumina HumanMethylation 450K array provides more measurements for the gene-body

than any other genomic region, and hence gene-body derived measures can potentially provide

more information than those derived from the promoter region when using this technology, this

is unlikely to be the whole explanation for its effectiveness in this study. I note that it has

previously been found that the most variably methylated CpGs occur more frequently in gene

bodies than in promoters (Consortium et al. , 2012). However, while it is well established that

promoter methylation in CpG-dense regions is associated with gene repression (Jones, 2012),

the effects of gene-body methylation are less clear. Gene body methylation has recently been
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Figure 6.5: Correlation of IGV patterns with genome-wide expression patterns.
Co-clustering was carried out, in order to group genes which are highly correlated, in terms of their
expression patterns, with the IGV of specific and different groups of genes, and vice-versa. Significant
positive and negative correlations are shown in green and red, respectively. The most significant co-
clusters which relate to the previously-defined OC prognostic signature clusters are outlined in blue.

shown to have a direct effect on gene expression level (Yang et al. , 2014), however it may

also be associated with other influences on transcription and translation, such as prevalence
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of alternatively spliced gene products (Jones, 2012). Findings are also starting to emerge that

gene-body methylation may be an effective therapeutic target in cancer (Yang et al. , 2014).

The OC prognostic signature which I have developed based on IGV is able to blindly

predict patient prognostic outcome in two independent data sets from studies by the Mayo

Clinic and TCGA (n = 198 and n = 358, respectively), with highly statistically significantly

different clinical outcomes between these groups (p = 0.004 in both data sets). Asking the

question, what is IGV, I examined binding of TFs and the correlation of their expression with

IGV of genes they bind to. This revealed a distinctive pattern of TF binding to different groups

of genes, and identified a panel of TFs which are highly associated with prognostic IGV. Using

linked DNA methylation and gene expression data, I also identified groups of genes with highly

associated expression and IGV patterns, providing a starting-point for further investigation into

the mechanistic roles of the observed IGV patterns.

I have conclusively demonstrated that the OC prognostic signature is an effective and ro-

bust prognostic tool, and I also hypothesise that it is an easy to measure surrogate for disease

processes mediated by specific transcription factors. IGV is an independent and robust prog-

nostic marker, which does not require complex data normalisation to be effective.

6.4 Methods

6.4.1 Data and preprocessing

The main ovarian cancer (OC) data set, which was used to derive the OC prognostic signature,

consists of 221 samples each of which was taken from a different patient, of whom 158 died

from the disease before the end of the study. For each sample, a DNA methylation profile

collected via the Illumina Infinium HumanMethylation450 platform was available, together

with information on the clinical variables survival status (alive or not), survival time (i.e., time

to last follow up or time to death), disease stage (I-IV), disease grade (1-3), and residual disease

status (present or not). 3 samples were removed due to missing clinical data, leaving the the n =

218 samples used to derive the OC prognostic signature. A further 9 samples were excluded

from the multivariate analysis of the IGV prognostic score, due to additional missing clinical

data.

An independent data set from a study of OC carried out by the Mayo Clinic was used

for validation of the OC prognostic signature. Data from this study similarly included a DNA

methylation profile for each sample collected via the Illumina Infinium HumanMethylation450

platform; clinical data was also available for this data set for the same variables as the main

OC data set. There were n = 198 samples in this data set, of whom 115 died from the disease
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before the end of the study. 49 samples were excluded from the multivariate analysis of the

IGV prognostic score, due to missing clinical data.

An additional independent data set from a study of uterine corpus endometrioid carci-

noma (UCEC) for further validation of the OC prognostic signature was downloaded with the

The Cancer Genome Atlas (TCGA) project (Collins & Barker, 2007). Data from this study

similarly included a DNA methylation profile for each sample collected via the Illumina In-

finium HumanMethylation450 platform, which was downloaded at level 3; clinical data was

also downloaded if possible for each sample for the same variables as the OC data set. There

were 358 samples in this data set, of whom 32 died from the disease before the end of the study.

50 samples were excluded from the multivariate analysis of the IGV prognostic score, due to

missing clinical data.

For the gene expression analysis in BRCA basal samples, I downloaded DNAm data for

breast cancer invasive carcinoma (BRCA) basal samples from TCGA (42 samples), again col-

lected via the Illumina Infinium HumanMethylation450 platform, and downloaded at level 3. I

also downloaded gene expression data for the same 42 samples from TCGA, at level 3.

Probes with non-unique mappings and which map to SNPs had already been removed from

the UCEC and BRCA TCGA DNAm data before they were downloaded, and these same probes

were also removed from the other DNAm data sets. Probes mapping to sex chromosomes were

also removed; in total 98384 probes were removed from the DNAm data sets, of the 482421

probes originally present on the array. After removal of these probes, 270985 probes with

known gene annotations remained. Individually for each data set, probes were then removed if

they had less than 95% coverage across samples; probe values were also replaced if they had

corresponding detection p-value greater than 5%, by KNN (k nearest neighbour) imputation

(k = 5).

A summary of the data-sets analysed here appears in Table 6.1.

Data-set Patients Deaths Removed
Main OC DNAm 221 158 12
Mayo OC DNAm 198 115 49

TCGA UCEC DNAm 358 32 50
TCGA BRCA basal DNAm 42 NA NA
TCGA BRCA basal Expr 42 NA NA

Table 6.1: Data-sets analysed
Abbreviations: DNAm, DNA methylation; OC, ovarian cancer; UCEC, uterine corpus endometrial car-
cinoma; BRCA, breast cancer invasive carcinoma.
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6.4.2 Per-gene methylation measures

Four per-gene measures were tested, as follows:

• TSS200 mean The mean methylation level of the probes annotated to the TSS200 re-

gion, which is the region within 200bp upstream of the TSS (transcriptional start site);

approximately the promoter region.

• TSS200 IGV The variance of the methylation level of the probes annotated to the TSS200

region.

• Gene body mean The mean methylation level of the probes annotated to the gene body.

• Gene body IGV The variance of the methylation level of the probes annotated to the

gene body.

To calculate these measures, annotation information specifying which probes map to each gene

and genomic region was used, as downloaded from Gene Expression Omnibus (GEO) (Edgar

et al. , 2002), and as part of the R / Bioconductor software package IlluminaHumanMethyla-

tion450k. The mean methylation was calculated for genes with any number of probes annotated

to the relevant genomic region (12970 and 15839 genes for TSS200 and gene body respec-

tively). The methylation variance was calculated for genes with at least 3 probes annotated to

the relevant genomic region (7557 and 10014 genes for TSS200 and gene body respectively).

6.4.3 Cross-validation to compare per-gene methylation measures and derive

OC prognostic signature

The samples (patients) of the main OC data-set were randomly split in to a ‘training set’ (2/3

of the data, 145 samples) and a ‘test set’ (the remaining 1/3 of the data, 73 samples). The

Elastic Net (Zou & Hastie, 2005; Simon et al. , 2011) was used to select a prognostic group

of genes and fit a predictive model to these genes based on the training set; this model was

then assessed using the test set. This was repeated 2001 times for each of the four per-gene

methylation measures and for both SWAN-normalised (Makismovic et al. , 2012) data and raw

(un-normalised) data.

As the aim here is to predict clinical outcome, the Elastic Net was used in its penalised

Cox regression form, as implemented in the R package GLMNET (Simon et al. , 2011). Cox re-

gression fits the model by setting the model coefficients so as to maximise the partial likelihood,

as defined by equation (6.1),

L(θ) =
∏
j∈S

eθ
>xj∑

j′∈Rj
eθ

>xj′
, (6.1)
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where θ denotes the vector of model coefficients (of dimension equal to the number of genes

considered, typically of the order of 10000), xj and xj′ are the vectors of predictor variable

values for samples j and j′ respectively (here, per-gene methylation measures), S is the set of

patients who died during the study, andRj is the set of samples ‘at risk’ during the time interval

when patient j died, defined as Rj =
{
j′
∣∣Yj′ ≥ Yj}, where Yj and Yj′ are the times of death

of patients j and j′ respectively. The Elastic Net penalises the log-likelihood corresponding

to equation (6.1), constraining it according to the magnitude of the model fit coefficients, by

subtracting this constraint from the likelihood; in doing so, it ‘chooses’ the best combination

of predictor variables (per-gene methylation measures), by adjusting the corresponding model

coefficients, and setting these coefficients to zero where the variables provide no useful informa-

tion or redundant information. The constraint is a combination of some multiples of the L1 and

L2 norms of the model fit coefficients; the severity and balance of the constraint is controlled

by the parameters λ (a ‘magnitude’ parameter) and α (a ‘blending’ parameter). Hence, the

Elastic Net Cox model is fitted by finding model coefficients θ̂ which maximise the penalised

log likelihood φ(θ, λ, α) in equation (6.2),

φ(θ, λ, α) =
2

N
l(θ)− λ

(
α‖θ‖L1 +

(1− α)

2
‖θ‖2L2

)
, (6.2)

where N is the number of samples, ‖ · ‖L1 and ‖ · ‖L2 are the L1 and L2 norms, and l(θ) =

log (L(θ)). The R package GLMNET used for these model fits sets the λ parameter internally

using ten-fold cross validation, and requires the user to set the α parameter (0 ≤ α ≤ 1),

which was in this case set by choosing the value which minimises the model error after trialling

values from 0 to 1 in evenly-spaced intervals of 0.1. Model fitting in this way leads to a set of

model coefficients θ̂ for a particular set of predictors (i.e., genome-wide per-gene methylation

measures), with one coefficient per predictor, defining those predictors which are present in the

model (i.e., predictors with corresponding non-zero coefficients), and their relative weightings.

The fitted model coefficients θ̂ calculated according to equations (6.1) and (6.2) and the

training set data were used to calculate a score θ̂
>

xj for each patient j, based on the corre-

sponding per-gene methylation measures xj . These scores were then used to divide the training

set into tertiles, defining high and low risk groups. The cutoffs defining the top and bottom

tertiles in the training set were then used to divide the test set into three portions, and those

most and least at risk (i.e., those test set patients with scores above the top cutoff, and below the

bottom cutoff) were compared by Mantzel-Haenszel test, stratified for age, stage and residual

disease, to assess the ability of this model fit to blindly predict patient survival, adjusted for
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significant clinical covariates. Disease grade was not included in this stratification because it

was not associated with survival for this data set, as assessed by multivariate Cox-regression.

This is likely to be because disease grade does not offer any significant predictive ability in

addition to other clinical covariates which are more strongly associated with survival outcome,

such as disease stage. Upper and lower tertiles were compared here as previously by other

authors (Zhuang et al. , 2012) for the OC prognostic signature generation, and the reasoning

for doing so in this discovery stage, rather than comparing two groups separated by the median

score, was in order to prioritise larger effect sizes. If the samples were split into two groups

divided by the median score, relatively small differences in the per-gene methylation measures

used to generate this score might result in patients being categorised as high or low risk, with

corresponding significant test results from this small variation between patients. Comparison of

upper and lower tertiles would be expected to be more robust / stable with respect to such small

differences in per-gene methylation measures.

Each randomly-selected training set which the Elastic Net model was fitted to lead to a

different set of genes being chosen. This is likely to be due to patient to patient heterogeneity

in the main OC data set which was used to generate the OC prognostic signature. In order to

infer a consistent OC prognostic signature from this data set, i.e., a consensus, the same process

of randomly partitioning the data and fitting the model was repeated a total of 105 times for the

gene-body IGV measure, with raw data. Of these, 8281 model fits were able to significantly

predict survival in the respective test set (FDR q < 0.1). To generate the OC prognostic signa-

ture, genes were first ranked by how many of these 8281 significant model fits they appeared

in. In the case of ties, genes were additionally ranked by, for each model fit, calculating the

proportion of the sum of the absolute coefficient values for that model, which each gene se-

lected as part of that model accounted for, and then comparing, for each tied gene, the mean

of these proportions for that gene, across all the models it was selected as part of. Genes were

assigned significance according to how many models they were selected as being part of, y,

out of the total k = 8281 models selected as significantly associated with survival, under the

null hypothesis that they were present in these observed y significant model fits by chance. If

there were the same number of genes selected as part of each of these 8281 model fits, then this

significance under the null hypothesis might be modelled by a binomial distribution, with the

probability pb of any gene being selected by chance as part of one model fit approximated by

pb = f/m, where f is the number of genes selected as part of each and every model fit, and m

is the total number of genes for which gene-body methylation variance information is available.

The probability of seeing a gene purely by chance in at least y model fits, out of a possible total
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of k, with constant probability pb of appearing in each of these k models, would then be given

by equation (6.3),

P (Y ≥ y) =
k∑
r=y

[(
k

r

)
prb (1− pb)(k−r)

]
. (6.3)

However, the number of genes selected, f , as part of each model, varies considerably (from

7 to 1697), and consequently pb cannot be assumed to be constant. Alternatively, pb could be

modelled as being variable and bounded on [0, 1], with a corresponding probability distribution

πb (pb). The distribution πb (pb) can be estimated as the observed distribution of f among the

k = 8281 significant model fits, again using pb = f/m. This leads to a modelled probability,

equation (6.4), of seeing any gene at least y times out of k model fits purely by chance, with pb

variable and with its distribution πb (pb) empirically estimated as π̂b (pb),

P (Y ≥ y) =
k∑
r=y


1∫

0

π̂b (pb)

[(
k

r

)
prb (1− pb)(k−r)

]
dpb

 , (6.4)

with the square brackets included in equation (6.4) to highlight the comparison with equation

(6.3). In practice, the integral in equation (6.4) is replaced with a sum over the observed values

of pb, as calculated from the observed values of f , which range between 7 and 1697. A kernel-

smoothed plot of π̂b (pb), the empirical probability density distribution of f and corresponding

pb, appears in figure 6.6.

6.4.4 Calculation of the DNAm IGV ovarian cancer prognostic score

Clustering was performed to identify groups of genes in the OC prognostic signature with sim-

ilar patterns of IGV across patients. The clustering was carried out separately for genes in-

dividually associated with worse patient survival outcome for increased IGV (‘hyper’ genes)

and for decreased IGV (‘hypo’ genes). Consensus clustering (Monti et al. , 2003) was used

for the clustering, with a hierarchical clustering inner loop, using 1 − ρ as the distance mea-

sure, where ρ is the Spearman rank correlation coefficient. The following additional settings

were used: probability of selecting a sample = 0.8, probability of selecting a feature = 1,

number of resamplings = 105, maximum number of clusters = 20.

The discovered clusters were then filtered (to remove noise, and uncertainty associated

with trends inferred from small groups of genes in these genome-wide data), retaining only

those clusters which contained at least 10 genes, and only those clusters with mean IGV signif-

icantly associated with patient survival outcome. After filtering, four clusters remained, for two

of which an increase in the cluster mean IGV was associated with worse patient survival out-

come (called ‘hyper 1’ and ‘hyper 2’), and for two of which a decrease in the cluster mean IGV
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Figure 6.6: Probability density distribution of the probabilities of a gene being included in a fitted model.
The plot shows a kernel-smoothed empirical estimate of the probability density distribution of the number
of genes included in each model, f , over the 8281 significant gene body methylation variance model fits,
with corresponding probability of a gene being included in a model pb = f/m, where m is the number
of genes with gene body methylation variance information available.

was associated with worse survival outcome (called ‘hypo 1’ and ‘hypo 2’). The IGV cluster

scores were then calculated, as the means of the IGV of the genes each of these four clusters.

In order to calculate the IGV prognostic score from these components, a Cox model (ad-

justed for clinical covariates) was fitted to these four IGV cluster scores. The coefficients for

this model (standardised by the variance of the predictors) are fairly similar for each of the

clusters (hyper 1: 0.22; hyper 2: 0.25; hypo 1: 0.23; hypo 2: 0.30), indicating that each cluster

is important to the model, and to the prognostic predictions. The median of the IGV prognostic

score calculated from this Cox model was used to divide the 218 patients in the main DNAm OC

data-set used to derive the OC prognostic signature, into better and worse prognostic groups.

6.4.5 Validation of the ovarian cancer prognostic signature

The DNAm prognostic signature derived from the OC data set was validated in two independent

DNAm data sets. The first of these data sets was taken from another study of OC (n = 198),

and was supplied by the Mayo Clinic. The second of these data sets was taken from a study

of uterine corpus endometrioid carcinoma (UCEC) (n = 358), and was downloaded from The

Cancer Genome Atlas (TCGA) project (Collins & Barker, 2007).

The IGV prognostic score was similarly calculated by fitting a Cox model to the four IGV

cluster scores in the main OC DNAm data set, adjusted for clinical covariates, then applying this
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model to the equivalent IGV cluster scores in the Mayo Clinic OC and the TCGA UCEC val-

idation sets. In order to make prognostic predictions in these independent data sets using only

the DNAm data, the model was used to calculate the IGV prognostic score for the samples in

the independent data sets from the fitted model coefficients corresponding to IGV cluster scores

only, and not the clinical covariates. This IGV prognostic score was used to define better and

worse prognostic groups in the independent data sets, separated by the median IGV prognostic

score in the main OC data set. These prognostic groups were then compared, assessing statisti-

cal significance with univariate and multivariate Cox regression (i.e., respectively without and

with adjustment for the clinical covariates).

6.4.6 Testing Transcription-factor binding correlation with IGV

I examined transcription factor binding to the OC prognostic signature genes, using the EN-

CODE (Encyclopedia of DNA Elements) chromatin immunoprecipitation (ChIP) data (Consor-

tium et al. , 2004), with the ANNOVAR software (Wang et al. , 2010). Transcription factor

binding site information was available, for the gene body regions defined, for 55 transcription

factors. Each of these TFs was tested for significant over or under enrichment binding to the

genes of each of the four prognostic signature clusters, with Fisher’s exact test. I also tested the

correlation of the expression level of each of these 55 TFs, with the IGV of genes the TF binds

to, and the genes the TF does not bind to. I used a Kolmogorov-Smirnov test to assess whether,

for each TF, there is significantly more positive, or more negative, correlation with IGV of the

genes it binds to, compared to genes it does not. For this expression correlation analysis, I used

the 42 TCGA BRCA basal samples with both expression and DNAm data available, because

it was comprehensively demonstrated by the TCGA consortium that high-grade serous ovarian

and uterine and BRCA basal cancers are extremely molecularly similar, and may share the same

molecular origin (Network et al. , 2012).
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6.5 Additional tables
Gene No. models sig, out of 8281 p-val q-val Chr Gene info
SEMA4A 8274 0 0 1 sema domain, immunoglobulin domain (Ig), transmembrane domain (TM)

and short cytoplasmic domain, (semaphorin) 4A
PYCARD 8196 0 0 16 PYD and CARD domain containing
RNF122 8129 0 0 8 ring finger protein 122
ALPL 8127 0 0 1 alkaline phosphatase, liver/bone/kidney
RIC3 8108 0 0 11 resistance to inhibitors of cholinesterase 3 homolog (C. elegans)
CXXC4 8075 0 0 4 CXXC finger protein 4
RSPH9 7945 0 0 6 radial spoke head 9 homolog (Chlamydomonas)
TMEM17 7877 0 0 2 transmembrane protein 17
PCTP 7869 0 0 17 phosphatidylcholine transfer protein
UBAP2L 7837 0 0 1 ubiquitin associated protein 2-like
PLDN 7652 0 0 15 biogenesis of lysosomal organelles complex-1, subunit 6, pallidin
ZNF727 7626 0 0 7 zinc finger protein 727
NRL 7583 0 0 14 neural retina leucine zipper
OBFC1 7488 0 0 10 oligonucleotide/oligosaccharide-binding fold containing 1
SERHL2 7245 0 0 22 serine hydrolase-like 2
FOXR1 7220 0 0 11 forkhead box R1
PROSC 7218 0 0 8 proline synthetase co-transcribed homolog (bacterial)
SLC50A1 7207 0 0 1 solute carrier family 50 (sugar transporter), member 1
PDE1B 7143 0 0 12 phosphodiesterase 1B, calmodulin-dependent
MEX3B 7109 0 0 15 mex-3 homolog B (C. elegans)
NOVA1 7003 0 0 14 neuro-oncological ventral antigen 1
EIF2C4 7002 0 0 1 argonaute RISC catalytic component 4
BK250D10 6945 0 0
SPATA13 6857 0 0 13 spermatogenesis associated 13
C14orf64 6854 0 0 14 chromosome 14 open reading frame 64
ACRBP 6849 0 0 12 acrosin binding protein
CLRN3 6846 0 0 10 clarin 3
ARL10 6839 0 0 5 ADP-ribosylation factor-like 10
PITHD1 6828 0 0 1 PITH (C-terminal proteasome-interacting domain of thioredoxin-like) domain containing 1
CGN 6761 0 0 1 cingulin
SEC14L4 6746 0 0 22 SEC14-like 4 (S. cerevisiae)
HOXB9 6742 0 0 17 homeobox B9
SEC14L2 6700 0 0 22 SEC14-like 2 (S. cerevisiae)
ANKRD13B 6681 0 0 17 ankyrin repeat domain 13B
NINL 6672 0 0 20 ninein-like
COMMD6 6641 0 0 13 COMM domain containing 6
TBC1D20 6589 0 0 20 TBC1 domain family, member 20
IL17REL 6573 0 0 22 interleukin 17 receptor E-like
ENG 6572 0 0 9 endoglin
GPC5 6557 0 0 13 glypican 5
SAMD10 6483 0 0 20 sterile alpha motif domain containing 10
SRC 6482 0 0 20 v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian)
EGR3 6481 0 0 8 early growth response 3
FAM26F 6436 0 0 6 family with sequence similarity 26, member F
TMEM185B 6338 0 0 2 transmembrane protein 185B
SYBU 6326 0 0 8 syntabulin (syntaxin-interacting)
C14orf126 6316 0 0 14 D-tyrosyl-tRNA deacylase 2 (putative)
WDR65 6307 0 0 1 WD repeat domain 65
RPF2 6286 0 0 6 ribosome production factor 2 homolog (S. cerevisiae)
SNRNP27 6277 0 0 2 small nuclear ribonucleoprotein 27kDa (U4/U6.U5)
ATG4D 6213 0 0 19 autophagy related 4D, cysteine peptidase
ABCB6 6158 0 0 2 ATP-binding cassette, sub-family B (MDR/TAP), member 6
IFNGR1 6133 0 0 6 interferon gamma receptor 1
SLC27A6 6132 0 0 5 solute carrier family 27 (fatty acid transporter), member 6
TLE4 6111 0 0 9 transducin-like enhancer of split 4 (E(sp1) homolog, Drosophila)
TCL6 6078 0 0 14 T-cell leukemia/lymphoma 6 (non-protein coding)
ECEL1P2 6047 0 0 2 endothelin converting enzyme-like 1, pseudogene 2
LOC100134259 6006 0 0 2 uncharacterized LOC100134259
ZNF300P1 5956 0 0 5 zinc finger protein 300 pseudogene 1
SP5 5944 0 0 2 Sp5 transcription factor
ICOSLG 5928 0 0 21 inducible T-cell co-stimulator ligand
CENPW 5699 0 0 6 centromere protein W
GAMT 5692 0 0 19 guanidinoacetate N-methyltransferase
IQCG 5655 0 0 3 IQ motif containing G
PIK3R3 5641 0 0 1 phosphoinositide-3-kinase, regulatory subunit 3 (gamma)
EGR2 5631 0 0 10 early growth response 2
GRASP 5628 0 0 12 GRP1 (general receptor for phosphoinositides 1)-associated scaffold protein
LOC391322 5608 0 0 22 D-dopachrome tautomerase-like
HRASLS5 5577 0 0 11 HRAS-like suppressor family, member 5
GPNMB 5576 0 0 7 glycoprotein (transmembrane) nmb
B4GALNT1 5542 0 0 12 beta-1,4-N-acetyl-galactosaminyl transferase 1
TCFL5 5518 0 0 20 transcription factor-like 5 (basic helix-loop-helix)
C1orf173 5501 0 0 1 chromosome 1 open reading frame 173
NOX4 5468 0 0 11 NADPH oxidase 4
ZBTB10 5461 0 0 8 zinc finger and BTB domain containing 10
VSTM5 5431 0 0 11 V-set and transmembrane domain containing 5
RPS7 5403 0 0 2 ribosomal protein S7
COL17A1 5360 0 0 10 collagen, type XVII, alpha 1
ZNF346 5324 0 0 5 zinc finger protein 346
CHSY3 5308 0 0 5 chondroitin sulfate synthase 3
ARMC7 5287 0 0 17 armadillo repeat containing 7
ARSA 5238 0 0 22 arylsulfatase A
PLA2G16 5232 0 0 11 phospholipase A2, group XVI
CD74 5226 0 0 5 CD74 molecule, major histocompatibility complex, class II invariant chain
GCM2 5202 0 0 6 glial cells missing homolog 2 (Drosophila)

Table 6.2: Ovarian cancer prognostic signature - top 85 genes.
Significance is assigned to genes according to the frequency with which they appear in model fits which
are significantly predictive of patient outcome (survival, adjusted for clinical covariates). Gene body
DNA methylation variance was used as a per-gene measure for the model fits.
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Symbol Rank in prog. sig. q-val Chr Info
1 SEMA4A 1 0 1 sema domain, immunoglobulin domain (Ig), transmembrane domain (TM)

and short cytoplasmic domain, (semaphorin) 4A
2 RSPH9 7 0 6 radial spoke head 9 homolog (Chlamydomonas)
3 C14orf64 25 0 14 chromosome 14 open reading frame 64
4 SRC 42 0 20 v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian)
5 C1orf173 73 0 1 chromosome 1 open reading frame 173
6 CHSY3 80 0 5 chondroitin sulfate synthase 3
7 MYO3A 94 0 10 myosin IIIA
8 PLK2 97 0 5 polo-like kinase 2
9 GPR137B 127 0 1 G protein-coupled receptor 137B

10 ABCA8 137 0 17 ATP-binding cassette, sub-family A (ABC1), member 8
11 HERC5 141 0 4 HECT and RLD domain containing E3 ubiquitin protein ligase 5
12 TMEM101 154 0 17 transmembrane protein 101
13 FAM162B 158 0 6 family with sequence similarity 162, member B
14 KANK1 161 0 9 KN motif and ankyrin repeat domains 1
15 TUBB2B 176 0 6 tubulin, beta 2B class IIb
16 PLK1 191 0 16 polo-like kinase 1
17 LHCGR 194 0 2 luteinizing hormone/choriogonadotropin receptor
18 C1QL3 225 0 10 complement component 1, q subcomponent-like 3
19 RHPN2 240 0 19 rhophilin, Rho GTPase binding protein 2
20 PARP15 298 1.1e-166 3 poly (ADP-ribose) polymerase family, member 15
21 IRF4 307 3.9e-152 6 interferon regulatory factor 4
22 COL6A5 326 7.1e-124 3 collagen, type VI, alpha 5
23 KBTBD8 335 1.4e-115 3 kelch repeat and BTB (POZ) domain containing 8
24 MLF1 345 6.8e-103 3 myeloid leukemia factor 1
25 PTH2R 359 3.6e-81 2 parathyroid hormone 2 receptor
26 ACHE 364 2e-74 7 acetylcholinesterase
27 C6orf97 379 1.3e-58 6 coiled-coil domain containing 170
28 GRB14 390 1.3e-47 2 growth factor receptor-bound protein 14
29 NPR3 416 8.2e-34 5 natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic peptide receptor C)
30 C20orf194 438 2.5e-24 20 chromosome 20 open reading frame 194
31 NID2 446 2.4e-21 14 nidogen 2 (osteonidogen)
32 KCNMB4 471 5.1e-11 12 potassium large conductance calcium-activated channel, subfamily M, beta member 4
33 B3GNT9 476 1.7e-10 16 UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 9
34 NPTX1 483 3.1e-09 17 neuronal pentraxin I
35 SHISA9 499 1.6e-06 16 shisa homolog 9 (Xenopus laevis)
36 ASIP 509 1.7e-05 20 agouti signaling protein
37 CCND2 519 0.00011 12 cyclin D2
38 SNX18 524 0.00021 5 sorting nexin 18
39 CPA2 529 4e-04 7 carboxypeptidase A2 (pancreatic)
40 PRR25 533 0.00047 16 proline rich 25
41 DUSP27 535 5e-04 1 dual specificity phosphatase 27 (putative)
42 CD302 546 0.00087 2 CD302 molecule
43 SLC12A8 549 0.001 3 solute carrier family 12 (potassium/chloride transporters), member 8
44 PHACTR3 553 0.0011 20 phosphatase and actin regulator 3
45 OTX2 569 0.0026 14 orthodenticle homeobox 2
46 CAV2 573 0.0035 7 caveolin 2
47 PALM3 577 0.004 19 paralemmin 3
48 SEZ6L2 578 0.0042 16 seizure related 6 homolog (mouse)-like 2
49 SUN3 601 0.01 7 Sad1 and UNC84 domain containing 3
50 EPHA6 612 0.013 3 EPH receptor A6
51 HLA-F-AS1 628 0.018 6 HLA-F antisense RNA 1
52 ALDH1A2 629 0.019 15 aldehyde dehydrogenase 1 family, member A2
53 TRPC1 637 0.022 3 transient receptor potential cation channel, subfamily C, member 1
54 TSHZ3 646 0.029 19 teashirt zinc finger homeobox 3
55 ITGA4 648 0.031 2 integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor)
56 NEGR1 653 0.033 1 neuronal growth regulator 1

Table 6.3: Prognostic signature, cluster ‘hyper 1’
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Symbol Rank in prog. sig. q-val Chr Info
1 RNF122 3 0 8 ring finger protein 122
2 PLDN 11 0 15 biogenesis of lysosomal organelles complex-1, subunit 6, pallidin
3 EIF2C4 22 0 1 argonaute RISC catalytic component 4
4 TBC1D20 37 0 20 TBC1 domain family, member 20
5 C14orf126 47 0 14 D-tyrosyl-tRNA deacylase 2 (putative)
6 RPF2 49 0 6 ribosome production factor 2 homolog (S. cerevisiae)
7 SNRNP27 50 0 2 small nuclear ribonucleoprotein 27kDa (U4/U6.U5)
8 TLE4 55 0 9 transducin-like enhancer of split 4 (E(sp1) homolog, Drosophila)
9 CENPW 62 0 6 centromere protein W

10 PIK3R3 65 0 1 phosphoinositide-3-kinase, regulatory subunit 3 (gamma)
11 RPS7 77 0 2 ribosomal protein S7
12 PLA2G16 83 0 11 phospholipase A2, group XVI
13 HNRNPA3 86 0 2 heterogeneous nuclear ribonucleoprotein A3
14 XRCC2 96 0 7 X-ray repair complementing defective repair in Chinese hamster cells 2
15 GOLPH3 100 0 5 golgi phosphoprotein 3 (coat-protein)
16 CHORDC1 110 0 11 cysteine and histidine-rich domain (CHORD) containing 1
17 GFPT1 120 0 2 glutamine–fructose-6-phosphate transaminase 1
18 CISD1 129 0 10 CDGSH iron sulfur domain 1
19 TRA2A 133 0 7 transformer 2 alpha homolog (Drosophila)
20 MKRN2 134 0 3 makorin ring finger protein 2
21 CAD 144 0 2 carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase
22 SPG11 157 0 15 spastic paraplegia 11 (autosomal recessive)
23 RNF34 177 0 12 ring finger protein 34, E3 ubiquitin protein ligase
24 SERINC3 188 0 20 serine incorporator 3
25 C3orf38 192 0 3 chromosome 3 open reading frame 38
26 MYC 203 0 8 v-myc myelocytomatosis viral oncogene homolog (avian)
27 RPE 204 0 2 ribulose-5-phosphate-3-epimerase
28 SNRPG 210 0 2 small nuclear ribonucleoprotein polypeptide G
29 HSF2 216 0 6 heat shock transcription factor 2
30 DSCR3 219 0 21 Down syndrome critical region gene 3
31 DEPTOR 226 0 8 DEP domain containing MTOR-interacting protein
32 SLC30A6 238 0 2 solute carrier family 30 (zinc transporter), member 6
33 SRP19 239 0 5 signal recognition particle 19kDa
34 YEATS4 252 3.4e-313 12 YEATS domain containing 4
35 PYGL 259 4.6e-296 14 phosphorylase, glycogen, liver
36 POLR3H 264 1.6e-280 22 polymerase (RNA) III (DNA directed) polypeptide H (22.9kD)
37 FAM65B 274 2.1e-220 6 family with sequence similarity 65, member B
38 PVALB 277 5.5e-217 22 parvalbumin
39 FAM98A 293 1.5e-180 2 family with sequence similarity 98, member A
40 RAB8A 294 1.7e-176 19 RAB8A, member RAS oncogene family
41 TTC17 301 2.3e-163 11 tetratricopeptide repeat domain 17
42 CWC25 308 4.1e-150 17 CWC25 spliceosome-associated protein homolog (S. cerevisiae)
43 EIF4EBP2 309 4.2e-146 10 eukaryotic translation initiation factor 4E binding protein 2
44 TXNL1 311 4.2e-146 18 thioredoxin-like 1
45 SPAG9 319 3.6e-132 17 sperm associated antigen 9
46 STXBP3 324 3.5e-125 1 syntaxin binding protein 3
47 CLIC4 331 1.1e-119 1 chloride intracellular channel 4
48 PSMC6 334 4.3e-117 14 proteasome (prosome, macropain) 26S subunit, ATPase, 6
49 ITM2B 336 2.7e-114 13 integral membrane protein 2B
50 SFT2D2 343 2.3e-104 1 SFT2 domain containing 2
51 CWF19L1 348 2.6e-95 10 CWF19-like 1, cell cycle control (S. pombe)
52 HMGN1 350 3.2e-93 21 high mobility group nucleosome binding domain 1
53 CYB5R1 351 1.6e-92 1 cytochrome b5 reductase 1
54 LOC153684 355 1.6e-87 5 uncharacterized LOC153684
55 NKX2-2 361 1.2e-75 20 NK2 homeobox 2
56 NDUFA11 363 1.3e-74 19 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 11, 14.7kDa
57 CDKN2C 366 3.7e-72 1 cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4)
58 LOC387647 370 9.4e-67 10 patched domain containing 3 pseudogene 1
59 MSH6 372 1.3e-64 2 mutS homolog 6 (E. coli)
60 NEMF 388 9.1e-48 14 nuclear export mediator factor
61 PAPOLA 398 1.1e-44 14 poly(A) polymerase alpha
62 C8orf38 399 2.3e-44 8 NADH dehydrogenase (ubiquinone) complex I, assembly factor 6
63 CCDC138 406 1.2e-40 2 coiled-coil domain containing 138
64 KIAA1429 407 1.8e-40 8 KIAA1429
65 HDAC2 408 2e-39 6 histone deacetylase 2
66 TNFSF9 411 5.7e-39 19 tumor necrosis factor (ligand) superfamily, member 9
67 CLTA 421 1.9e-32 9 clathrin, light chain A
68 MAPK12 424 1.2e-31 22 mitogen-activated protein kinase 12
69 SCFD1 428 4.8e-29 14 sec1 family domain containing 1
70 PARP11 440 7.1e-24 12 poly (ADP-ribose) polymerase family, member 11
71 UGGT1 442 5.7e-23 2 UDP-glucose glycoprotein glucosyltransferase 1
72 MICALCL 443 1.5e-22 11 MICAL C-terminal like
73 MPHOSPH8 457 1.5e-15 13 M-phase phosphoprotein 8
74 SUZ12P 466 1.1e-13 17 suppressor of zeste 12 homolog pseudogene 1
75 EPHX2 468 2.2e-13 8 epoxide hydrolase 2, cytoplasmic
76 MAT2B 490 1.1e-08 5 methionine adenosyltransferase II, beta
77 C6orf223 491 2.7e-08 6 chromosome 6 open reading frame 223
78 RARS 492 2e-07 5 arginyl-tRNA synthetase
79 BCAP29 496 6.4e-07 7 B-cell receptor-associated protein 29
80 BBS5 502 3.8e-06 2 Bardet-Biedl syndrome 5
81 DONSON 510 2.1e-05 21 downstream neighbor of SON
82 TEX14 543 0.00083 17 testis expressed 14
83 FAM21C 547 0.00097 10 family with sequence similarity 21, member C
84 L3MBTL2 560 0.0014 22 l(3)mbt-like 2 (Drosophila)
85 CLCN3 562 0.0017 4 chloride channel, voltage-sensitive 3
86 HFE 575 0.004 6 hemochromatosis
87 SRSF1 586 0.0072 17 serine/arginine-rich splicing factor 1
88 CCNB1 587 0.0073 5 cyclin B1
89 SLC30A1 588 0.0074 1 solute carrier family 30 (zinc transporter), member 1
90 POLR3B 591 0.0085 12 polymerase (RNA) III (DNA directed) polypeptide B
91 C9orf40 594 0.0089 9 chromosome 9 open reading frame 40
92 NFU1 595 0.0093 2 NFU1 iron-sulfur cluster scaffold homolog (S. cerevisiae)
93 KPNB1 597 0.0094 17 karyopherin (importin) beta 1
94 BLOC1S1 607 0.012 12 biogenesis of lysosomal organelles complex-1, subunit 1
95 LOC100132215 614 0.014 2 uncharacterized LOC100132215

Table 6.4: Prognostic signature, cluster ‘hyper 2’ (top 95 genes)
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Symbol Rank in prog. sig. q-val Chr Info
1 ZNF727 12 0 7 zinc finger protein 727
2 PDE1B 19 0 12 phosphodiesterase 1B, calmodulin-dependent
3 BK250D10 23 0
4 ANKRD13B 34 0 17 ankyrin repeat domain 13B
5 IL17REL 38 0 22 interleukin 17 receptor E-like
6 GPC5 40 0 13 glypican 5
7 ZNF300P1 59 0 5 zinc finger protein 300 pseudogene 1
8 EGR2 66 0 10 early growth response 2
9 GPNMB 70 0 7 glycoprotein (transmembrane) nmb

10 B4GALNT1 71 0 12 beta-1,4-N-acetyl-galactosaminyl transferase 1
11 KCNJ9 88 0 1 potassium inwardly-rectifying channel, subfamily J, member 9
12 LTF 102 0 3 lactotransferrin
13 FSCN2 105 0 17 fascin homolog 2, actin-bundling protein, retinal (Strongylocentrotus purpuratus)
14 GPRIN1 112 0 5 G protein regulated inducer of neurite outgrowth 1
15 ZDHHC22 116 0 14 zinc finger, DHHC-type containing 22
16 RGR 128 0 10 retinal G protein coupled receptor
17 UFD1L 130 0 22 ubiquitin fusion degradation 1 like (yeast)
18 AQP2 147 0 12 aquaporin 2 (collecting duct)
19 LPAR5 156 0 12 lysophosphatidic acid receptor 5
20 ECEL1 163 0 2 endothelin converting enzyme-like 1
21 CSF1R 202 0 5 colony stimulating factor 1 receptor
22 RALGAPA2 211 0 20 Ral GTPase activating protein, alpha subunit 2 (catalytic)
23 KHDRBS2 245 0 6 KH domain containing, RNA binding, signal transduction associated 2
24 TMEM26 258 2.2e-304 10 transmembrane protein 26
25 RQCD1 263 4.3e-287 2 RCD1 required for cell differentiation1 homolog (S. pombe)
26 ADAMTSL3 269 5.3e-239 15 ADAMTS-like 3
27 KCNS1 290 1.7e-188 20 potassium voltage-gated channel, delayed-rectifier, subfamily S, member 1
28 HOXA9 297 1.4e-167 7 homeobox A9
29 LECT1 317 4.7e-139 13 leukocyte cell derived chemotaxin 1
30 EPHX3 330 5.5e-121 19 epoxide hydrolase 3
31 C12orf56 360 1.5e-77 12 chromosome 12 open reading frame 56
32 CDO1 368 2.5e-69 5 cysteine dioxygenase, type I
33 LOC644172 382 8.9e-57 17 mitogen-activated protein kinase 8 interacting protein 1 pseudogene
34 FAM198B 397 1.1e-44 4 family with sequence similarity 198, member B
35 UBE2QL1 427 8.3e-30 5 ubiquitin-conjugating enzyme E2Q family-like 1
36 NPY 441 1.5e-23 7 neuropeptide Y
37 KLB 503 5e-06 4 klotho beta
38 PIF1 516 8e-05 15 PIF1 5’-to-3’ DNA helicase homolog (S. cerevisiae)
39 SLC10A4 527 0.00038 4 solute carrier family 10 (sodium/bile acid cotransporter family), member 4
40 ANXA6 558 0.0013 5 annexin A6
41 LINC00271 565 0.0022 6 long intergenic non-protein coding RNA 271
42 TSPAN32 625 0.017 11 tetraspanin 32
43 TRPM8 647 0.031 2 transient receptor potential cation channel, subfamily M, member 8
44 SPHKAP 656 0.034 2 SPHK1 interactor, AKAP domain containing
45 RCAN2 676 0.048 6 regulator of calcineurin 2

Table 6.5: Prognostic signature, cluster ‘hypo 1’

Symbol Rank in prog. sig. q-val Chr Info
1 NOX4 74 0 11 NADPH oxidase 4
2 CD74 84 0 5 CD74 molecule, major histocompatibility complex, class II invariant chain
3 DYRK1A 167 0 21 dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A
4 CPE 180 0 4 carboxypeptidase E
5 MT1F 267 1.7e-241 16 metallothionein 1F
6 SPEF2 276 4.9e-219 5 sperm flagellar 2
7 NFKBIZ 287 1e-191 3 nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, zeta
8 CDR2 295 3.1e-171 16 cerebellar degeneration-related protein 2, 62kDa
9 GINS1 302 3.8e-162 20 GINS complex subunit 1 (Psf1 homolog)

10 COPZ1 316 9.9e-141 12 coatomer protein complex, subunit zeta 1
11 CCDC110 338 5e-112 4 coiled-coil domain containing 110
12 NEK9 393 1.2e-45 14 NIMA-related kinase 9
13 TMEM170B 417 1.1e-33 6 transmembrane protein 170B
14 NRIP3 448 8e-21 11 nuclear receptor interacting protein 3
15 NAAA 464 3.4e-14 4 N-acylethanolamine acid amidase
16 PPAT 501 2e-06 4 phosphoribosyl pyrophosphate amidotransferase
17 VWDE 579 0.005 7 von Willebrand factor D and EGF domains
18 SLC16A11 642 0.027 17 solute carrier family 16, member 11 (monocarboxylic acid transporter 11)
19 JHDM1D 652 0.033 7 jumonji C domain containing histone demethylase 1 homolog D (S. cerevisiae)

Table 6.6: Prognostic signature, cluster ‘hypo 2’



Chapter 7

Detection of Epigenomic Network Community

Oncomarkers

7.1 Introduction

In this chapter, I present a DNA methylation-based measure of genomic interaction and associa-

tion, and I show how to use it to infer prognostic genomic networks. I then show how to identify

prognostic biomarkers from such networks, which I term ‘network community oncomarkers’.

As a cancer progresses, its signalling and control networks are re-arranged (‘re-wired’), and

this drives adaptive alterations in phenotype, which are advantageous for the cancer (Barabási

& Oltvai, 2004). Previous research by other authors (Taylor et al. , 2009) found that patient

survival outcome in breast cancer could be predicted well by network models of this re-wiring,

based on gene expression data. It has been previously shown that DNA methylation can serve

as a surrogate for activity at genomic-regulatory regions (Brocks et al. , 2014). Hence, DNA

methylation measurements are a natural basis from which to construct genomic regulatory and

associated networks, and such networks inferred from DNA methylation data are a promising

basis for prognostic biomarkers.

The DNA methylation-based measure of interaction or association between pairs of genes

which I present in this chapter is called the ‘DNA methylation network interaction measure’.

In the genomic networks which it is used to infer, an edge between a pair of genes/nodes in-

dicates that the interaction or association between those genes is associated with disease pro-

gression. I show how to identify prognostic biomarkers from such networks using commu-

nity detection to identify subnetwork modules within the network. These communities are

groups of nodes/genes amongst which there is a high density of prognostic interactive or asso-

ciative behaviour, and I term them ‘network community oncomarkers’. I show that within these

communities, the DNA methylation network interaction measure is highly associated with co-

regulatory behaviour linked to gene expression (at the mRNA level), giving functional relevance



7.2. Methods and models 140

to the findings. Each network community oncomarker can be used to calculate a one-number

prognostic score for each patient, based on DNA methylation data alone.

7.2 Methods and models
An overview of the methods presented here appears in Figure 7.1, following which the compo-

nent parts of this methodology are presented in detail.

(1) Calculate the DNAm network interaction measure 
for each pair of genes, and for each patient

(2) Calculate a Wald statistic (adjusted for clinical covariates) as a measure
of prognostic ability for each pair of genes, across all patients

(3) Infer the prognostic network, by fitting a mixture model to identify 
significantly non-zero Wald statistics, defining these 

prognostic interactions as network edges

(4) Detect network community oncomarkers, as groups of genes amongst 
      which there is a high density of prognostic interactions / network edges 

(5) Summarise the DNA methylation network interaction measures over
           the prognostic interactions / network edges of each network community 

oncomarker, to give a one-number prognostic score for each 
patient, for each network community oncomarker

Figure 7.1: Overview of methods.

7.2.1 DNA methylation network interaction measure

DNA methylation is a chemical modification to DNA, which may occur at numerous loca-

tions within a gene, typically at CpG di-nucleotides. Hence, the pattern of these modifications

within a gene forms a ‘DNA methylation profile’. Using canonical correlation analysis (CCA)

(Hotelling, 1936), I have developed a novel statistical measure (Bartlett et al. , 2014), of the

level of interaction or association between a pair of genes (network nodes) in a single sam-

ple/patient, based on DNA methylation profiles (Figure 7.2). This DNA methylation network

interaction measure quantifies the extent to which the DNA methylation profiles of a pair of

genes explain each other. It is based only on measurements of the DNA methylation profiles

of that pair of genes, and it acts as a surrogate for a measure of the extent to which this pair of

genes behave interactively or associatively. Such behaviour may include transcriptional regu-

lation or co-regulation, or other types of biochemical interaction, influencing gene expression

levels, isoforms and the presence of alternatively spliced gene products, amongst other phe-

nomena (Jones, 2012).

The DNA methylation network interaction measure is defined by analogy to CCA. CCA
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aims to discover linear combinations of variables of one type, and linear combinations of vari-

ables of another type, so that these combinations best explain each other. In this context, a

particular way of combining (by scaling and adding) the deviations from the mean methylation

profile at a number of locations within one gene might be particularly effective at explaining a

particular combination (again, by scaling and adding) of the deviations from the mean methy-

lation profile at a number of locations in another gene, and vice-versa. There will probably be

fewer ways in which the methylation levels of these genes covary across the samples, than there

are locations at which methylation is measured along the genes; this is because the methyla-

tion level is highly correlated at many locations along a particular gene. CCA finds the most

important components of this covariation across samples.

CCA seeks to find the vectors a and b, in the p and q dimensional spaces of variables

X = (x1, x2, ..., xp)
′ and Y = (y1, y2, ..., yq)

′ respectively, which maximise the correlation

ρ = cor (a′X,b′Y), defined according to equation 7.1:

ρ =
a′ΣXY b√

a′ΣXXa
√

b′ΣY Y b
, (7.1)

where ΣXX = E [(X− µX)(X− µX)′] and ΣY Y = E [(Y − µY )(Y − µY )′] are the co-

variance matrices of X and Y respectively, and ΣXY = E [(X− µX)(Y − µY )′] is the cross-

covariance matrix of X and Y.

Two genes X and Y have corresponding methylation profiles which are measured for

sample / patient k at p and q CpGs (loci) respectively along these genes. Denoting these mea-

surements by the variables x1, ...xp and y1, ..., yq for genes X and Y respectively, the DNA

methylation profiles for these genes, for patient k, can be represented by the vectors x(k) and

y(k), which have p and q entries respectively. A measure of DNA methylation network inter-

action ρXY (k), of the methylation profiles of genes X and Y for sample k, can then be defined

by analogy with equation 7.1, according to equation 7.2:

ρXY (k) =
x(k)T Σ̂

(h)
XY y(k)√

x(k)T Σ̂
(h)
XXx(k)

√
y(k)T Σ̂

(h)
Y Y y(k)

, (7.2)

where Σ̂
(h)
XX , Σ̂

(h)
Y Y and Σ̂

(h)
XY are estimated from healthy rather than cancer samples in the

methylation data set, according to equations 7.3 - 7.5,

Σ̂
(h)
XX =

1

nh

∑
k∈healthy

(
x(k)− µ̂(h)

X

)(
x(k)− µ̂(h)

X

)T
, (7.3)
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Σ̂
(h)
Y Y =

1

nh

∑
k∈healthy

(
y(k)− µ̂(h)

Y

)(
y(k)− µ̂(h)

Y

)T
, (7.4)

Σ̂
(h)
XY =

1

nh

∑
k∈healthy

(
x(k)− µ̂(h)

X

)(
y(k)− µ̂(h)

Y

)T
, (7.5)

where

µ̂
(h)
X =

1

nh

∑
k∈healthy

x(k),

and

µ̂
(h)
Y =

1

nh

∑
k∈healthy

y(k),

and nh is the number of healthy samples in the data set. When the DNA methylation net-

work interaction measure ρXY (k) is large (i.e., close to 1), the corresponding pair of genes

explain each other’s transcriptional or translational behaviour (as reflected in their methylation

profiles) well, or have otherwise well-correlated interactive or associative behaviour, for sam-

ple/patient k. Hence, ρXY (k) measures (according to their DNA methylation profiles) the level

of interaction or association between genes X and Y in tumour sample k, compared to typical

interactions between these genes in healthy tissue.

7.2.2 Prognostic network construction

To identify network oncomarkers, I consider a prognostic interaction network form genes. This

network is represented by the m × m adjacency matrix A, in which an edge is defined to to

be present (i.e., Aij = 1) if and only if the corresponding pair of genes (nodes) are prognostic

according to the DNA methylation network interaction measure. Otherwise, I set Aij = 0;

N.B., i and j are now redefined compared to the last section, so that they index genes rather

than methylation loci; this will not be problematic, because all subsequent analysis is carried

out at the level of genes rather than methylation loci. To identify these prognostic edges, for

each of the
(
m
2

)
pairs of genes in the network, I use the Cox proportional hazards model (Cox,

1972) to calculate a Wald-statistic zij . This quantifies the association of the DNA methylation

network interaction measure ρij for the pair of genes i and j (i = 1, ...,m and j = 1, ...,m)

with patient survival outcome across patients k (k = 1, ...n). I use a multivariate Cox model,

and hence these Wald statistics are adjusted for clinical covariates, in order to detect novel DNA

methylation biomarkers which are independent of known prognostic clinical features.

The Wald statistic is asymptotically normally distributed with unit variance (Harrell,

2001). We can therefore model the distribution of our observed Wald statistics, zij , as a mixture
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Figure 7.2: The DNA methylation network interaction measure.
A combination of the variation of the healthy methylation profiles in regions (a) and (b) of gene X explains
well / is well-explained by a combination of the variation of the healthy methylation profiles in regions
(c) and (d) of gene Y. The green cancer sample varies by a large amount about the mean methylation
profile and in a typical way in these regions in both genes. Hence, the green sample corresponds to
a high level of network interaction for this sample, ρXY = 1. The equivalent variations in the other
regions of these genes do not explain each other well, and so the red sample, which varies by a large
amount in these other regions and varies less and in an atypical way in regions (a) - (d), corresponds to
a low level of network interaction, ρXY = 0.07. Genes X and Y are likely to have different numbers of
methylation measurement locations (i.e., variables X and Y are of different dimension). The ordering of
the measurement locations has no influence on the calculation of ρ, as long as the ordering is consistent
across samples.

of Gaussians, as shown in chapter 4:

zij ∼


N
(
µij , σ

2
)
, if Aij = 1,

N
(
0, σ2

)
, if Aij = 0,

(7.6)

where N
(
µij , σ

2
)

is the normal distribution, and σ2 = 1. Hence, I fit a mixture model to
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each observed statistic zij , and then infer whether, given zij , it is more likely that µij = 0,

or µij 6= 0, leading to the estimates Âij = 0 or Âij = 1 respectively. I fit this model using

the empirical Bayes procedure of (Johnstone & Silverman, 2004), defining a mixture prior

distribution fprior (µij) over the µij of equation 7.6:

fprior (µij) = (1− w) δ (µij) + wγ (µij) , (7.7)

where w is the mixing parameter between the two components, which can also be interpreted

as w = E [p (Aij = 1)], and γ (·|a) is the Laplace probability density function,

γ (µij |a) =
a

2
exp (−a |µij |),

where I use a = 0.5, as in (Johnstone & Silverman, 2004). Taking the mixture components to

have Gaussian likelihoods, fN
(
·
∣∣µij , σ2), as in equation 7.6, it follows from equation 7.7 that

the posterior density over the observed prognostic Wald statistic zij is:

fposterior (µij |zij) =
(1− w) δ (µij) fN

(
zij
∣∣0, σ2)+ wγ (µij) fN

(
zij
∣∣µij , σ2)

fmarginal (zij)
, (7.8)

where the marginal density is:

fmarginal (zij) = (1− w)fN
(
zij
∣∣0, σ2)+ wg (zij) , (7.9)

where g (µij) is the convolution of the Laplace density with the standard normal density. If

the Laplace distribution in the prior, equation 7.7, were replaced with a Gaussian, then the

marginal distribution, equation 7.9, would be a mixture of Gaussians. However, as noted in

(Johnstone & Silverman, 2004), this empirical Bayes procedure requires a prior with tails that

are exponential or heavier. Hence, I similarly use the Laplace rather than Gaussian prior, in this

practical implementation, which is a slight model mis-specification.

Although a separate model is fitted to each observed Wald statistic zij , a common weight

wi is used for each gene/node i. This estimate of wi is found as the value which maximises

the marginal likelihood (equation 7.10) of the observed statistics zij over all the pairwise com-

parisons of i with j, j 6= i. This allows the model for each such pairwise comparison (i, j) to

‘borrow strength’ from all the other comparisons (i, j′), j′ 6= i, j′ 6= j:

ŵi = arg max
w

∑
j 6=i

log {(1− w)φ (zij) + wg (zij)} . (7.10)
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For a particular gene i, if the zij are mostly close to zero, then wi will be set low, which means

that fewer edges (Aij = 1) will be detected; this hence corresponds to i being a low-degree

node. If for a different gene i the zij are generally further from zero, then ŵi will be set high,

which corresponds more edges being detected; this hence corresponds to i being a high-degree

node. Therefore, setting ŵi separately for each gene i allows adaptation to a heterogenous

degree distribution in A. As in (Johnstone & Silverman, 2004), I use the posterior median to

obtain the estimate µ̂ij . Then I make a conservative estimate of A as follows:

Âij =1 if µ̂ij > 0 and µ̂ji > 0 or µ̂ij < 0 and µ̂ji < 0, (7.11)

Âij =0 otherwise.

7.2.3 Community and oncomarker detection

Network nodes can be grouped together according to their propensity to interact with each

other, for example groups of friends in a social network, or functional subnetwork modules

in a biological network. This statistical method is referred to as community detection (Girvan

& Newman, 2002; Newman, 2004). Hence, community detection allows us to find groups of

genes in our constructed prognostic network, which interact differently in cancer than in healthy

tissue, in a way which is predictive of how advanced the disease is. I term these ‘network

community oncomarkers’. Within such a detected network community oncomarker, the genes

may interact with each other more (relative to healthy tissue) the more serious the disease is

(as in Figure 7.6c), or they may interact with each other less the more serious the disease is,

(as in Figure 7.6a). I carry out community detection by fitting the degree-corrected stochastic

blockmodel (Holland et al. , 1983; Bickel & Chen, 2009), by regularised spectral clustering

(Qin & Rohe, 2013). I calculate the optimum number of communities to divide the network into

using the network histogram method (Olhede & Wolfe, 2014). Each community, or subnetwork

module, identified in this way represents a potential network community oncomarker.

For each network community oncomarker, a prognostic score can be calculated for each

patient, by summarising the DNA methylation network interaction measure over that commu-

nity. This prognostic score can be used as a one-number summary of disease prognosis for

that patient, according to the network community oncomarker. Some gene-gene interactions

will, with worse prognosis, correspond to increasingly negative DNA methylation network in-

teraction measure ρij (such as increased inhibitory gene regulation). Whereas some gene-gene

interactions will, with worse prognosis, correspond to increasingly positive ρij (such as in-

creased activatory gene regulation). This means that care must be taken when summarising the
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network interaction measure across the network community oncomarker. Further, the magni-

tude of the changes in the network interaction measure may be different for different prognostic

pairs of genes, for the same amount of prognostic information conveyed. To address these

points, I combine the ρij across the prognostic pairs of genes of the network community after

first multiplying them by the corresponding fitted Cox proportional hazards model coefficients

θ̂ij , obtained as described at the start of Section 7.2.2. Under the Cox proportional hazards

model, the fitted model coefficient θ̂ij for a predictor ij gives the log of the hazard-ratio (HR)

for that predictor in the model, i.e., log (HRij) = θ̂ij . The hazard ratio is the scale-factor

increase in probability of an event (e.g., death) occurring per unit time, relative to the base-

line hazard (e.g., compared to a control group). Hence, these coefficients are interpretable in

the same way, without scaling issues, across fitted models. This means that, for patient k, we

can combine the DNA methylation network interaction measures over a network community

oncomarker to generate a one-number prognostic score, as follows:

Scorek =
∑

i∈C,j∈C,i<j
Âij θ̂ijρij(k),

where C is the set of nodes in the network community oncomarker, Â is the inferred adjacency

matrix, ρij(k) is the DNAm network interaction measure for genes/nodes i and j and patient

k, and θ̂ij is the corresponding fitted Cox multivariate proportional-hazards model coefficient.

Network edges/DNA methylation network interaction measures ρij which increase with poor

prognosis (i.e., pairs of genes which interact more as the disease progresses, coloured green in

Figure 7.6), will will correspond to θ̂ij > 0. Hence, an increase in such a ρij will increase the

prognostic score. Equivalently, network edges/DNA methylation network interaction measures

ρij which decrease with poor prognosis (i.e., pairs of genes which interact less as the disease

progresses, coloured red in Figure 7.6), will will correspond to θ̂ij < 0. Hence, a decrease in

such a ρij will also increase the prognostic score.

7.2.4 An equivalent gene-expression interaction measure

To examine further the hypothesis that the DNA methylation network interaction measure is

a reflection of co-regulatory or co-regulated gene-expression patterns (amongst other genomic

effects), we need an equivalent measure of gene-gene interaction or association in terms of

gene expression. We can calculate such a measure, ρexpr
XY (k), for gene expression measurements
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xexpr(k) and yexpr(k) for the genes X and Y and patient k, as follows (equation 7.12):

ρ
expr
XY (k) =

(
xexpr(k)− µ̂(h)xexpr

)
σ̂
(h)
xexpr

·

(
yexpr(k)− µ̂(h)yexpr

)
σ̂
(h)
yexpr

(7.12)

where

µ̂
(h)
xexpr =

1

nh

∑
k∈healthy

xexpr(k) and µ̂
(h)
yexpr =

1

nh

∑
k∈healthy

yexpr(k),

(
σ̂
(h)
xexpr

)2
=

1

nh

∑
k∈healthy

(
xexpr(k)− µ̂(h)xexpr

)2
and

(
σ̂
(h)
yexpr

)2
=

1

nh

∑
k∈healthy

(
yexpr(k)− µ̂(h)yexpr

)2
.

The intuition of equation 7.12 is that when the gene expression measurements xexpr(k) and

yexpr(k) deviate in the same sample from the corresponding healthy mean expression levels,

this measure will be non-zero. When this occurs in the same samples as the DNAm network

interaction measure ρXY (k) is also non-zero, we will see a correlation between ρXY (k) and

ρ
expr
XY . These interaction measures for methylation and expression, ρXY (k) and ρexpr

XY , are equiv-

alent because they both measure deviation from typical interactive behaviour in healthy/control

samples. I note that, that while ρexpr
XY works satisfactorily for this comparison, it would not be

expected to be a sensitive statistic to use as a prognostic tool.

7.3 Results

I present the results of the described methodology, to a breast cancer invasive carcinoma

(BRCA) data-set, downloaded from the Cancer Genome Atlas (TCGA). I downloaded an initial

batch of DNA methylation data for tumour samples from 175 samples/individuals (the training

set), together with clinical data relating to patient survival outcome, and the covariates age, dis-

ease stage, and residual disease. I also downloaded corresponding DNA methylation data for

healthy tissue for 98 individuals, which define the reference DNA methylation profiles. These

data were used to detect potential network community oncomarkers. I then downloaded DNA

methylation data for a further 528 tumour samples (the test set), together with data for the same

clinical features: these independent samples were used to validate the potential network com-

munity oncomarkers. I also downloaded gene expression data for 216 of the tumours for which

DNAm data were also available.

I inferred the binary prognostic adjacency matrix A for the 175 samples of the BRCA

training data set according to the methods described. DNAm data were available for 14829

genes, and hence the number of nodes/genes m in the inferred adjacency matrix, Â, is m =

14829. The presence of an edge in Â, i.e., Âij = 1, implies that the interaction between
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genes i and j is, according to the DNA methylation network interaction measure, associated

with disease progression. The edge density of Â is 0.0035, i.e., p(Âij = 1) = 0.0035. I

then extracted the connected component from this inferred network, and on this carried out

community detection as described, resulting in 33 communities, ranging from 116 to 285 nodes

in size. The reduced adjacency matrix relating to these communities, with m = 5668 and

p(Âij = 1) = 0.023, is shown in Figure 7.3.

(a)

(b)

(c)
(d)

(e)

Figure 7.3: The inferred adjacency matrix, after community detection.
Entries in the adjacency matrix equal to 1 (representing a network edge) are coloured blue. Detected
communities are outlined. The potential network community oncomarkers which are analysed further in
Figures 7.4 - 7.7 and Tables 7.1 - 7.2 and 7.3 - 7.7 are indicated in red, and labelled (a) - (e).

I validated each of these 33 potential network community oncomarkers in the independent

528 tumour samples of the test/validation set. I note that these 528 samples were not used in

any way to identify the 33 potential network community oncomarkers shown in Figure 7.3.

To carry out this validation, I calculated the prognostic score for the 528 independent/unseen

samples of the test set, based on the inferred adjacency matrix Â and the fitted Cox multivariate

proportional hazards model coefficients θ̂ derived from the initial 175 samples of the training
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Figure 7.4: Network community oncomarkers: Kaplan-Meier plots for the training set.
Comparison of survival curves for the patient groups defined by the prognostic score for each network
community oncomarker. The groups are divided by the median prognostic score in the 175 samples of
the initial training data set. The hazard ratio (HR) is displayed with 95% C.I. in brackets, with the
corresponding p-value calculated by univariate Cox regression. (a) - (e) indicate network community
oncomarkers 1 - 5, as shown in Figure 7.3.

set. I calculated one prognostic score for each potential network community oncomarker for

each of the 528 unseen test-set samples. I then tested the prognostic score, for each potential
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Figure 7.5: Network community oncomarkers: Kaplan-Meier plots for the test / validation set.
Comparison of survival curves for the patient groups defined by the prognostic score for each network
community oncomarker. The groups are divided by the median prognostic score in the 175 samples of
the initial training data set. The hazard ratio (HR) is displayed with 95% C.I. in brackets, with the
corresponding p-value calculated by univariate Cox regression. (a) - (e) indicate network community
oncomarkers 1 - 4, as shown in Figure 7.3.

network community oncomarker, for association with patient survival outcome in these 528

unseen test-set samples. The five potential network community oncomarkers which validated
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most significantly in this way are outlined in red in Figure 7.3. The results of univariate and

multivariate Cox regression for these five best network community oncomarkers are shown in

Figures 7.4 and 7.5, and in Tables 7.1 and 7.2, for the training and test sets respectively. For the

multivariate analysis, samples with missing data for any of the clinical covariates were removed,

leaving 172 and 396 samples for the training and test sets, respectively.

HR (95%CI) p n
Prognostic Score 77.1 (10.5-567) <0.001 172

Age 1.79 (0.66-4.84) 0.249 172
Residual Disease 15.4 (4.68-50.9) <0.001 172

Stage 2.85 (0.96-8.46) 0.060 172

(a) Network community oncomarker 1.

HR (95%CI) p n
Prognostic Score 51.3 (8.35-315) <0.001 172

Age 1.42 (0.48-4.23) 0.53 172
Residual Disease 30.4 (5.82-158) <0.001 172

Stage 1.95 (0.68-5.54) 0.212 172

(b) Network community oncomarker 2.

HR (95%CI) p n
Prognostic Score 50.1 (9.77-256) <0.001 172

Age 2.16 (0.81-5.8) 0.125 172
Residual Disease 13.3 (4.54-39.1) <0.001 172

Stage 2.41 (0.81-7.18) 0.114 172

(c) Network community oncomarker 3.

HR (95%CI) p n
Prognostic Score 22.7 (5.52-93.1) <0.001 172

Age 3.49 (1.3-9.42) 0.0135 172
Residual Disease 16.3 (5.24-50.7) <0.001 172

Stage 1.05 (0.38-2.91) 0.928 172

(d) Network community oncomarker 4.

HR (95%CI) p n
Prognostic Score 46.0 (8.17-259) <0.001 172

Age 2.91 (1-8.44) 0.0493 172
Residual Disease 7.04 (2.68-18.5) <0.001 172

Stage 3.74 (1.23-11.4) 0.02 172

(e) Network community oncomarker 5.

Table 7.1: Network community oncomarkers - training set prognosis.
Multivariate Cox regression was used to test significance of the prognostic scores derived from the net-
work community oncomarkers. (a) - (e) indicate network community oncomarkers 1 - 5, as shown in
Figure 7.3.

Figure 7.6 shows the five network community oncomarkers which validated most sig-

nificantly. Green edges indicate gene-gene interactions which become stronger with disease

progression. Red edges indicate interactions which become weaker with disease progression.

Hence, the network community oncomarkers of Figure 7.6c and 7.6d can be considered to be

a functional subnetwork modules which becomes more active as the cancer progresses. On

the other hand, the network community oncomarker of Figure 7.6a can be considered to be a

functional subnetwork module which becomes less active as the cancer progresses. Then the

network community oncomarkers of Figures 7.6b and 7.6c appear to contain a mixture of these

effects. However, each of these network community oncomarkers represents a functional sub-

network module which is rewired in a way which is advantageous for the cancer, in favour of

proliferation, and against cell death and immune function. The genes/nodes of these network

community oncomarkers are shown in Tables 7.3 - 7.7; they list many genes related to cell pro-

liferation (e.g., CDKL1, NKAPL, MAPK6), developmental processes (e.g., HOXD10, HOXB9,

HOXC10, HOXA13, HOXC12, HOXD13), and immune function (e.g., VSIG2, IL36B, RBPJ).
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HR (95%CI) p n
Prognostic Score 4.89 (1.65-14.5) 0.00429 396

Age 3.52 (1.46-8.49) 0.00513 396
Residual Disease 12.5 (5.32-29.3) <0.001 396

Stage 1.62 (0.66-4) 0.294 396

(a) Network community oncomarker 1.

HR (95%CI) p n
Prognostic Score 5.07 (1.81-14.1) 0.00195 396

Age 3.67 (1.49-9.03) 0.00458 396
Residual Disease 8.72 (3.78-20.1) <0.001 396

Stage 1.47 (0.6-3.61) 0.406 396

(b) Network community oncomarker 2.

HR (95%CI) p n
Prognostic Score 2.63 (1.01-6.89) 0.0484 396

Age 2.07 (0.86-5) 0.106 396
Residual Disease 11.3 (4.97-25.5) <0.001 396

Stage 2.04 (0.76-5.45) 0.157 396

(c) Network community oncomarker 3.

HR (95%CI) p n
Prognostic Score 4.92 (1.8-13.5) 0.00189 396

Age 1.91 (0.78-4.69) 0.159 396
Residual Disease 17.2 (6.76-43.9) <0.001 396

Stage 0.92 (0.34-2.48) 0.871 396

(d) Network community oncomarker 4.

HR (95%CI) p n
Prognostic Score 2.5 (0.94-6.65) 0.0668 396

Age 2.23 (0.94-5.27) 0.0677 396
Residual Disease 8.17 (3.47-19.3) <0.001 396

Stage 1.59 (0.64-3.95) 0.321 396

(e) Network community oncomarker 5.

Table 7.2: Network community oncomarkers - test/validation set prognosis.
Multivariate Cox regression was used to test significance of the prognostic scores derived from the net-
work community oncomarkers. (a) - (e) indicate network community oncomarkers 1 - 5, as shown in
Figure 7.3.

I also examined further the hypothesis that the DNA methylation network interaction mea-

sure is a reflection of co-regulatory or co-regulated gene-expression patterns (amongst other

genomic effects). I did this by comparing the DNA methylation network interaction measure

ρXY for a pair of genes XY , equation 7.2, with an equivalent measure of interactive behaviour

of these genes in terms of their expression levels, ρexpr
XY , equation 7.12. Correlation test p-values

for the comparison between ρXY and ρexpr
XY appear in Figure 7.7. We see a concentration of sig-

nificant p-values close to zero, indicating there is strong association between ρXY and ρexpr
XY , for

each network community oncomarker. However, there are also many non-significant p-values

in these histograms, indicating that there are other genomic interactive effects present, which

cannot be explained in terms of gene expression (as assessed by mRNA levels) alone. Such

effects might include the influence of alternatively spliced products or isoforms (Jones, 2012),

or the interaction between non-coding transcripts and the epigenome (Lai & Shiekhattar, 2014).

7.4 Discussion

In this chapter, I have presented a measure of pairwise interaction between genes, based on DNA

methylation measurements. I have shown how to use this measure to infer prognostic genomic

networks, and how it is possible to identify prognostic biomarkers from such networks, using

community detection methodology. I call these ‘network community oncomarkers’; they are

groups of nodes/genes amongst which there is a high density of prognostic genomic interactive

or associative behaviour. I have shown that within these communities, the DNA methylation
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Figure 7.6: Detected network community oncomarkers.
(a) - (e) indicate network community oncomarkers 1 - 5, as shown in Figure 7.3.

network interaction measure is highly associated with co-regulatory behaviour linked to gene

expression (at the mRNA level), giving functional relevance to the findings. However, there

are also likely to be a range of genomic interactive effects present, which are measured by the

DNA methylation network interaction measure, but which are not reflected in mRNA levels.
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Figure 7.7: Correlation of DNAm with gene expression for the network community oncomarkers.
(a) - (e) indicate network community oncomarkers 1 - 5, as shown in Figure 7.3.

I have also shown how to derive a one-number prognostic score for a network community

oncomarker for each patient/sample. This prognostic score is a measure of disease progression

in that patient.

The field of epigenomics is progressing fast, and promises much in the way of insights
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into unexplained or undiscovered genomic phenomena, for example relating to the so-called

genomic ‘dark matter’ of the genome (Venters & Pugh, 2013). Epigenomics is also expected

to provide many new insights into disease progression: the discovery that some genomic loci

gain or lose methylation in ways which may be unique to cancer suggests that understanding

changes in DNA methylation machinery may be essential to understanding oncogenesis (Xie

et al. , 2013). Epigenomics may also provide profound new insights into evolutionary processes:

it has been suggested that epigenomic landscapes have shaped the evolution of the basic DNA

sequence (Zhu et al. , 2013). This is because introns of genes tend to have a higher density of

conserved non-coding sequence elements, compared to intergenic regions. These introns also

tend to have more accessible chromatin, whereas the chromatin of intergenic regions is more

likely to be epigenetically repressed.

The field of network science is also advancing rapidly. Networks are an efficient way

to represent and analyse large numbers of variables, which is particularly relevant in modern,

large-scale genomic studies. Networks of interactions are also a natural way to represent and

analyse genomic interactions, associations and processes. Therefore, the study of genomic

and epigenomic networks promises to be a productive field over the coming years, in terms of

biology, medicine, and statistics.

7.5 Data-set info

DNA methylation (DNAm) data from breast cancer invasive carcinoma (BRCA) tumour sam-

ples, collected via the Illumina Infinium HumanMethylation450 platform, were downloaded

from The Cancer Genome Atlas (TCGA) project (Hampton, 2006; Bonetta, 2006; Collins &

Barker, 2007) at level 3. These data were pre-processed by first removing probes with non-

unique mappings and which map to SNPs (as identified in the TCGA level 3 data); probes

mapping to sex chromosomes were also removed; in total 98384 probes were removed in this

way from all data sets. After removal of these probes, 270985 probes with known gene annota-

tions remained. Probes were then removed if they had less than 95% coverage across samples;

probe values were also replaced if they had corresponding detection p-value greater than 5%,

by KNN (k nearest neighbour) imputation (k = 5). The loci of analysed CpGs were mapped

to genes based on annotation information for the Illumina Infinium platform obtained from

the R / Bioconductor package ‘IlluminaHumanMethylation450k’. The data were also checked

for batch effects by hierarchical clustering and correlation of the significant principle com-

ponents with phenotype and batch: no significant batch effects (which would warrant further

correction) were found. I downloaded DNA methylation data for tumour samples from 175
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samples/individuals, from TCGA in July 2013, with clinical data available for patient survival

outcome, and the clinical covariates age, disease stage, and residual disease. At the same time,

I also downloaded corresponding DNA methylation data for healthy tissue for 98 individuals.

These data were used to detect potential network community oncomarkers. I then downloaded

DNA methylation data for a further 528 tumour samples from TCGA in September 2014, with

data for the same clinical features available. These independent samples were used to validate

the potential network community oncomarkers. I also downloaded gene expression data from

TCGA at level 3, for 216 of the tumours for which I also obtained DNAm data.
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7.6 Additional tables
Degree Gene/node Chr Gene info

93 POR 7 P450 (cytochrome) oxidoreductase
87 TTF1 9 transcription termination factor, RNA polymerase I
79 ZFPM2 8 zinc finger protein, FOG family member 2
79 ARHGAP21 10 Rho GTPase activating protein 21
77 VSIG2 11 V-set and immunoglobulin domain containing 2
74 P4HA1 10 prolyl 4-hydroxylase, alpha polypeptide I
73 MSLNL 16 mesothelin-like
71 COASY 17 CoA synthase
71 FBLL1 5 fibrillarin-like 1
68 ANXA2 15 annexin A2
65 CERS4 19 ceramide synthase 4
63 ZNF469 16 zinc finger protein 469
63 SYNGR3 16 synaptogyrin 3
63 FXYD1 19 FXYD domain containing ion transport regulator 1
63 IZUMO1 19 izumo sperm-egg fusion 1
61 EXOC2 6 exocyst complex component 2
60 RAP1GAP 1 RAP1 GTPase activating protein
60 PAK1 11 p21 protein (Cdc42/Rac)-activated kinase 1
59 DRD4 11 dopamine receptor D4
59 TAF5L 1 TAF5-like RNA polymerase II, p300/CBP-associated factor (PCAF)-associated factor, 65kDa
58 SHOX2 3 short stature homeobox 2
58 HOXB9 17 homeobox B9
57 TACR1 2 tachykinin receptor 1
57 DCHS1 11 dachsous cadherin-related 1
56 RTP3 3 receptor (chemosensory) transporter protein 3
55 DDX52 17 DEAD (Asp-Glu-Ala-Asp) box polypeptide 52
54 SNX32 11 sorting nexin 32
54 TLE1 9 transducin-like enhancer of split 1 (E(sp1) homolog, Drosophila)
53 CNNM4 2 cyclin M4
53 CNIH2 11 cornichon family AMPA receptor auxiliary protein 2
53 LOC400940 2 uncharacterized LOC400940
53 MAPK3 16 mitogen-activated protein kinase 3
52 RB1 13 retinoblastoma 1
52 FUCA1 1 fucosidase, alpha-L- 1, tissue
50 PPP2R5C 14 protein phosphatase 2, regulatory subunit B’, gamma
50 B3GALTL 13 beta 1,3-galactosyltransferase-like
48 JAK3 19 Janus kinase 3
47 SLC25A42 19 solute carrier family 25, member 42
46 TTC22 1 tetratricopeptide repeat domain 22
46 NPDC1 9 neural proliferation, differentiation and control, 1
45 ASB4 7 ankyrin repeat and SOCS box containing 4
45 ALDH2 12 aldehyde dehydrogenase 2 family (mitochondrial)
45 ZNF296 19 zinc finger protein 296
44 RBPJ 4 recombination signal binding protein for immunoglobulin kappa J region
44 NAT8L 4 N-acetyltransferase 8-like (GCN5-related, putative)
44 SMPDL3A 6 sphingomyelin phosphodiesterase, acid-like 3A
42 KLHL26 19 kelch-like family member 26
41 EBF4 20 early B-cell factor 4
41 SLAIN1 13 SLAIN motif family, member 1
41 GAMT 19 guanidinoacetate N-methyltransferase
41 SH2D3A 19 SH2 domain containing 3A
40 BLVRA 7 biliverdin reductase A
39 CD36 7 CD36 molecule (thrombospondin receptor)
39 BAZ1A 14 bromodomain adjacent to zinc finger domain, 1A
39 MLL5 7 lysine (K)-specific methyltransferase 2E
37 PIK3AP1 10 phosphoinositide-3-kinase adaptor protein 1
36 ITGB1BP1 2 integrin beta 1 binding protein 1
34 CMKLR1 12 chemokine-like receptor 1
33 TRIM71 3 tripartite motif containing 71, E3 ubiquitin protein ligase
31 SMAD3 15 SMAD family member 3
31 KIF13B 8 kinesin family member 13B
30 ARID3A 19 AT rich interactive domain 3A (BRIGHT-like)
30 F2R 5 coagulation factor II (thrombin) receptor
30 AMN1 12 antagonist of mitotic exit network 1 homolog (S. cerevisiae)
29 LOC100128239 11 uncharacterized LOC100128239
29 LRRC8B 1 leucine rich repeat containing 8 family, member B
29 ANKRD39 2 ankyrin repeat domain 39
29 ARFGAP3 22 ADP-ribosylation factor GTPase activating protein 3
29 RBM28 7 RNA binding motif protein 28
28 ABR 17 active BCR-related
28 CALU 7 calumenin
28 BRPF1 3 bromodomain and PHD finger containing, 1
28 C17orf104 17 chromosome 17 open reading frame 104
28 PAQR3 4 progestin and adipoQ receptor family member III
27 RGL2 6 ral guanine nucleotide dissociation stimulator-like 2
27 WAC 10 WW domain containing adaptor with coiled-coil
27 PMVK 1 phosphomevalonate kinase
27 PPP6R3 11 protein phosphatase 6, regulatory subunit 3
26 PPP2R1B 11 protein phosphatase 2, regulatory subunit A, beta
25 TOLLIP 11 toll interacting protein
25 RNASEH2A 19 ribonuclease H2, subunit A
24 RERE 1 arginine-glutamic acid dipeptide (RE) repeats
23 KRT27 17 keratin 27
21 B4GALNT2 17 beta-1,4-N-acetyl-galactosaminyl transferase 2
21 MYCBPAP 17 MYCBP associated protein

Table 7.3: Network Community Oncomarker 1 (Figure 7.3a) - gene/node info.
The 85 highest degree nodes only are shown.
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Degree Gene/node Chr Gene info
137 TMEM198 2 transmembrane protein 198
121 POMP 13 proteasome maturation protein
108 GLT25D1
107 HMOX1 22 heme oxygenase (decycling) 1
100 STK4 20 serine/threonine kinase 4

94 C1orf38
90 XPO4 13 exportin 4
83 SOX5 12 SRY (sex determining region Y)-box 5
82 ADRA1B 5 adrenoceptor alpha 1B
81 RIMKLB 12 ribosomal modification protein rimK-like family member B
80 SMG6 17 SMG6 nonsense mediated mRNA decay factor
72 PHLDB1 11 pleckstrin homology-like domain, family B, member 1
72 PLTP 20 phospholipid transfer protein
72 C10orf32 10 chromosome 10 open reading frame 32
71 DLG4 17 discs, large homolog 4 (Drosophila)
67 SLC27A3 1 solute carrier family 27 (fatty acid transporter), member 3
66 KIAA1462 10 KIAA1462
66 FES 15 feline sarcoma oncogene
66 NDEL1 17 nudE neurodevelopment protein 1-like 1
65 ERGIC1 5 endoplasmic reticulum-golgi intermediate compartment (ERGIC) 1
63 FTSJD2 6 cap methyltransferase 1
62 EEPD1 7 endonuclease/exonuclease/phosphatase family domain containing 1
61 KCNA3 1 potassium voltage-gated channel, shaker-related subfamily, member 3
60 BREA2 8 breast cancer estrogen-induced apoptosis 2
59 MAGI2 7 membrane associated guanylate kinase, WW and PDZ domain containing 2
59 NPFF 12 neuropeptide FF-amide peptide precursor
57 SPRYD3 12 SPRY domain containing 3
57 WDR48 3 WD repeat domain 48
56 UHRF1BP1L 12 UHRF1 binding protein 1-like
55 ID1 20 inhibitor of DNA binding 1, dominant negative helix-loop-helix protein
55 GABRA4 4 gamma-aminobutyric acid (GABA) A receptor, alpha 4
55 RNASE1 14 ribonuclease, RNase A family, 1 (pancreatic)
54 CDKL1 14 cyclin-dependent kinase-like 1 (CDC2-related kinase)
54 MAP4K1 19 mitogen-activated protein kinase kinase kinase kinase 1
54 TRADD 16 TNFRSF1A-associated via death domain
52 LOXL2 8 lysyl oxidase-like 2
52 CARS 11 cysteinyl-tRNA synthetase
51 NR3C1 5 nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor)
51 SPEF2 5 sperm flagellar 2
51 LSM14B 20 LSM14B, SCD6 homolog B (S. cerevisiae)
50 LRBA 4 LPS-responsive vesicle trafficking, beach and anchor containing
50 LOC440910 2 uncharacterized LOC440910
49 SELO 22 selenoprotein O
46 TAOK1 17 TAO kinase 1
46 DNPEP 2 aspartyl aminopeptidase
43 HOXD10 2 homeobox D10
43 HGSNAT 8 heparan-alpha-glucosaminide N-acetyltransferase
43 ERMAP 1 erythroblast membrane-associated protein (Scianna blood group)
43 PPAP2A 5 phosphatidic acid phosphatase type 2A
40 MAML3 4 mastermind-like 3 (Drosophila)
40 FBXO4 5 F-box protein 4
40 SFT2D1 6 SFT2 domain containing 1
39 RIN2 20 Ras and Rab interactor 2
38 SYCP1 1 synaptonemal complex protein 1
37 PLBD1 12 phospholipase B domain containing 1
36 PRKCG 19 protein kinase C, gamma
36 ANKMY1 2 ankyrin repeat and MYND domain containing 1
36 ADAM19 5 ADAM metallopeptidase domain 19
35 PARD3 10 par-3 family cell polarity regulator
35 EXOC3 5 exocyst complex component 3
33 TTYH3 7 tweety family member 3
33 PIGG 4 phosphatidylinositol glycan anchor biosynthesis, class G
33 PFDN1 5 prefoldin subunit 1
32 PCDH8 13 protocadherin 8
32 PCBD2 5 pterin-4 alpha-carbinolamine dehydratase/dimerization cofactor of hepatocyte nuclear factor 1 alpha (TCF1) 2
32 NR1H3 11 nuclear receptor subfamily 1, group H, member 3
32 CTAGE1 18 cutaneous T-cell lymphoma-associated antigen 1
31 SOX14 3 SRY (sex determining region Y)-box 14
31 LRRC41 1 leucine rich repeat containing 41
30 PTPLAD1 15 protein tyrosine phosphatase-like A domain containing 1
30 ARMC2 6 armadillo repeat containing 2
30 BMP2 20 bone morphogenetic protein 2
29 NKAPL 6 NFKB activating protein-like
28 CCDC17 1 coiled-coil domain containing 17
27 ARL5C 17 ADP-ribosylation factor-like 5C
27 CECR6 22 cat eye syndrome chromosome region, candidate 6
27 SH3BGRL3 1 SH3 domain binding glutamate-rich protein like 3
26 TMEM51 1 transmembrane protein 51
26 C1QL3 10 complement component 1, q subcomponent-like 3
26 GPANK1 6 G patch domain and ankyrin repeats 1
25 KIAA0226 3 KIAA0226
23 GGT7 20 gamma-glutamyltransferase 7
23 ZNF837 19 zinc finger protein 837
22 VPS13D 1 vacuolar protein sorting 13 homolog D (S. cerevisiae)
22 SLC12A4 16 solute carrier family 12 (potassium/chloride transporter), member 4

Table 7.4: Network Community Oncomarker 2 (Figure 7.3b) - gene/node info.
The 85 highest degree nodes only are shown.
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60 SOD2 6 superoxide dismutase 2, mitochondrial
56 ULK1 12 unc-51 like autophagy activating kinase 1
56 IL36B 2 interleukin 36, beta
47 GOLGA8A 15 golgin A8 family, member A
44 C14orf162
44 DDX27 20 DEAD (Asp-Glu-Ala-Asp) box polypeptide 27
44 MRPL35 2 mitochondrial ribosomal protein L35
43 ZNF202 11 zinc finger protein 202
43 JUND 19 jun D proto-oncogene
43 PAPD4 5 PAP associated domain containing 4
42 ASF1B 19 anti-silencing function 1B histone chaperone
41 SLC35E3 12 solute carrier family 35, member E3
41 USF1 1 upstream transcription factor 1
41 AXDND1 1 axonemal dynein light chain domain containing 1
40 PAFAH1B2 11 platelet-activating factor acetylhydrolase 1b, catalytic subunit 2 (30kDa)
39 ZNF2 2 zinc finger protein 2
39 KIF2C 1 kinesin family member 2C
37 SOX4 6 SRY (sex determining region Y)-box 4
37 CNIH4 1 cornichon family AMPA receptor auxiliary protein 4
37 TDRD12 19 tudor domain containing 12
36 IFNGR2 21 interferon gamma receptor 2 (interferon gamma transducer 1)
35 NMI 2 N-myc (and STAT) interactor
35 ADAM29 4 ADAM metallopeptidase domain 29
34 DNAJC16 1 DnaJ (Hsp40) homolog, subfamily C, member 16
32 GSR 8 glutathione reductase
32 RPL5 1 ribosomal protein L5
32 C16orf79
31 C13orf35 13 ATP11A upstream neighbor
30 SLC7A5 16 solute carrier family 7 (amino acid transporter light chain, L system), member 5
30 ATXN2 12 ataxin 2
30 KLC4 6 kinesin light chain 4
29 TMEM8A 16 transmembrane protein 8A
29 DCLRE1C 10 DNA cross-link repair 1C
28 ORAI1 12 ORAI calcium release-activated calcium modulator 1
28 MTHFS 15 5,10-methenyltetrahydrofolate synthetase (5-formyltetrahydrofolate cyclo-ligase)
27 GRIA4 11 glutamate receptor, ionotropic, AMPA 4
27 DDA1 19 DET1 and DDB1 associated 1
27 SDF2L1 22 stromal cell-derived factor 2-like 1
27 HIST1H2AB 6 histone cluster 1, H2ab
26 P2RX1 17 purinergic receptor P2X, ligand-gated ion channel, 1
26 SLC22A1 6 solute carrier family 22 (organic cation transporter), member 1
26 FBXL12 19 F-box and leucine-rich repeat protein 12
25 SCLY 2 selenocysteine lyase
25 HFM1 1 HFM1, ATP-dependent DNA helicase homolog (S. cerevisiae)
24 CHRM3 1 cholinergic receptor, muscarinic 3
23 ZNF764 16 zinc finger protein 764
23 LEO1 15 Leo1, Paf1/RNA polymerase II complex component, homolog (S. cerevisiae)
23 MARC1 1 mitochondrial amidoxime reducing component 1
22 CAPRIN1 11 cell cycle associated protein 1
22 RAB11A 15 RAB11A, member RAS oncogene family
22 CCNI 4 cyclin I
22 PARP14 3 poly (ADP-ribose) polymerase family, member 14
22 RIPK3 14 receptor-interacting serine-threonine kinase 3
22 VCP 9 valosin containing protein
21 SKAP2 7 src kinase associated phosphoprotein 2
21 AGTR1 3 angiotensin II receptor, type 1
21 TMEM45B 11 transmembrane protein 45B
21 NEFL 8 neurofilament, light polypeptide
21 TWF2 3 twinfilin actin-binding protein 2
21 C6orf141 6 chromosome 6 open reading frame 141
21 LOC442308
21 TRIM21 11 tripartite motif containing 21
20 ADSL 22 adenylosuccinate lyase
19 WDR54 2 WD repeat domain 54
19 GMPPB 3 GDP-mannose pyrophosphorylase B
19 RECK 9 reversion-inducing-cysteine-rich protein with kazal motifs
19 NDUFS5 1 NADH dehydrogenase (ubiquinone) Fe-S protein 5, 15kDa (NADH-coenzyme Q reductase)
18 SLC39A7 6 solute carrier family 39 (zinc transporter), member 7
17 CPT1C 19 carnitine palmitoyltransferase 1C
16 PAFAH2 1 platelet-activating factor acetylhydrolase 2, 40kDa
16 NOS2 17 nitric oxide synthase 2, inducible
15 ING3 7 inhibitor of growth family, member 3
14 HOXC10 12 homeobox C10
13 UPF1 19 UPF1 regulator of nonsense transcripts homolog (yeast)
13 PKHD1 6 polycystic kidney and hepatic disease 1 (autosomal recessive)
13 NCKAP5L 12 NCK-associated protein 5-like
12 CEBPE 14 CCAAT/enhancer binding protein (C/EBP), epsilon
12 USP20 9 ubiquitin specific peptidase 20
12 ST6GALNAC1 17 ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-acetylgalactosaminide alpha-2,6-sialyltransferase 1
11 ABHD16B 20 abhydrolase domain containing 16B
11 REXO1L2P 8 REX1, RNA exonuclease 1 homolog (S. cerevisiae)-like 2 (pseudogene)
10 NHP2L1 22 NHP2 non-histone chromosome protein 2-like 1 (S. cerevisiae)
10 GANAB 11 glucosidase, alpha; neutral AB
10 PKD1L2 16 polycystic kidney disease 1-like 2
10 CDR2 16 cerebellar degeneration-related protein 2, 62kDa

Table 7.5: Network Community Oncomarker 3 (Figure 7.3c) - gene/node info.
The 85 highest degree nodes only are shown.
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74 NOL3 16 nucleolar protein 3 (apoptosis repressor with CARD domain)
72 NAPRT1 8 nicotinate phosphoribosyltransferase domain containing 1
72 PAH 12 phenylalanine hydroxylase
69 POU2F3 11 POU class 2 homeobox 3
67 SNCA 4 synuclein, alpha (non A4 component of amyloid precursor)
66 HOXA13 7 homeobox A13
63 HOXC12 12 homeobox C12
60 WFDC12 20 WAP four-disulfide core domain 12
58 HMG20B 19 high mobility group 20B
51 SAMD3 6 sterile alpha motif domain containing 3
51 SLC10A2 13 solute carrier family 10 (sodium/bile acid cotransporter), member 2
49 ZNF804B 7 zinc finger protein 804B
48 NKX6-1 4 NK6 homeobox 1
48 TEX19 17 testis expressed 19
47 SLC32A1 20 solute carrier family 32 (GABA vesicular transporter), member 1
47 DSC3 18 desmocollin 3
47 CCDC134 22 coiled-coil domain containing 134
47 BDH2 4 3-hydroxybutyrate dehydrogenase, type 2
46 ABCG4 11 ATP-binding cassette, sub-family G (WHITE), member 4
46 VPS41 7 vacuolar protein sorting 41 homolog (S. cerevisiae)
45 SIX1 14 SIX homeobox 1
45 O3FAR1
45 MIR219-2 9 microRNA 219-2
44 LHX5 12 LIM homeobox 5
44 TARS 5 threonyl-tRNA synthetase
44 C6orf221
44 C1orf100 1 chromosome 1 open reading frame 100
43 PDX1 13 pancreatic and duodenal homeobox 1
42 VSX2 14 visual system homeobox 2
41 ACTR2 2 ARP2 actin-related protein 2 homolog (yeast)
41 ASZ1 7 ankyrin repeat, SAM and basic leucine zipper domain containing 1
40 E2F8 11 E2F transcription factor 8
40 DPPA2 3 developmental pluripotency associated 2
39 LINC00461 5 long intergenic non-protein coding RNA 461
38 AP4E1 15 adaptor-related protein complex 4, epsilon 1 subunit
38 GPR150 5 G protein-coupled receptor 150
37 LOC440461 17 Rho GTPase activating protein 27 pseudogene
37 C15orf55 15 NUT midline carcinoma, family member 1
37 WTH3DI 2 RAB6C-like
36 GAD1 2 glutamate decarboxylase 1 (brain, 67kDa)
36 TUBA1C 12 tubulin, alpha 1c
36 FAM123A
36 TULP2 19 tubby like protein 2
36 C19orf53 19 chromosome 19 open reading frame 53
35 LHX9 1 LIM homeobox 9
35 LINC00520 14 long intergenic non-protein coding RNA 520
34 HOXD13 2 homeobox D13
34 KCTD17 22 potassium channel tetramerization domain containing 17
33 HPX 11 hemopexin
32 CD8B 2 CD8b molecule
31 SH2D1B 1 SH2 domain containing 1B
30 GDNF 5 glial cell derived neurotrophic factor
30 RXFP3 5 relaxin/insulin-like family peptide receptor 3
30 CHMP4B 20 charged multivesicular body protein 4B
29 SPRED1 15 sprouty-related, EVH1 domain containing 1
29 MAPK6 15 mitogen-activated protein kinase 6
28 SLC15A1 13 solute carrier family 15 (oligopeptide transporter), member 1
28 HTR1D 1 5-hydroxytryptamine (serotonin) receptor 1D, G protein-coupled
27 VSTM2L 20 V-set and transmembrane domain containing 2 like
27 HIST3H2BB 1 histone cluster 3, H2bb
26 CLGN 4 calmegin
26 MCART2
25 DNAJC19 3 DnaJ (Hsp40) homolog, subfamily C, member 19
24 ZNF710 15 zinc finger protein 710
24 CDH7 18 cadherin 7, type 2
23 POLR2C 16 polymerase (RNA) II (DNA directed) polypeptide C, 33kDa
22 LIMS2 2 LIM and senescent cell antigen-like domains 2
22 ZSWIM6 5 zinc finger, SWIM-type containing 6
21 FAM174A 5 family with sequence similarity 174, member A
21 MIR130A 11 microRNA 130a
20 ZFAND6 15 zinc finger, AN1-type domain 6
19 ACTA1 1 actin, alpha 1, skeletal muscle
19 TXNDC11 16 thioredoxin domain containing 11
19 ARF3 12 ADP-ribosylation factor 3
19 SNAI1 20 snail family zinc finger 1
19 C11orf20
18 FAM195A 16 family with sequence similarity 195, member A
18 PPP1R3G 6 protein phosphatase 1, regulatory subunit 3G
17 ADAP2 17 ArfGAP with dual PH domains 2
16 PAQR5 15 progestin and adipoQ receptor family member V
16 GLTPD1 1 glycolipid transfer protein domain containing 1
16 SLC4A9 5 solute carrier family 4, sodium bicarbonate cotransporter, member 9
14 BMP7 20 bone morphogenetic protein 7
14 NOP58 2 NOP58 ribonucleoprotein
14 MPND 19 MPN domain containing

Table 7.6: Network Community Oncomarker 4 (Figure 7.3d) - gene/node info.
The 85 highest degree nodes only are shown.
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62 C3orf18 3 chromosome 3 open reading frame 18
49 FAR1 11 fatty acyl CoA reductase 1
43 DDAH1 1 dimethylarginine dimethylaminohydrolase 1
43 L3MBTL4 18 l(3)mbt-like 4 (Drosophila)
41 NOVA1 14 neuro-oncological ventral antigen 1
40 SPRY1 4 sprouty homolog 1, antagonist of FGF signaling (Drosophila)
39 MAP3K8 10 mitogen-activated protein kinase kinase kinase 8
39 SERTAD4 1 SERTA domain containing 4
38 TPPP3 16 tubulin polymerization-promoting protein family member 3
37 IGFLR1 19 IGF-like family receptor 1
35 KANSL1L 2 KAT8 regulatory NSL complex subunit 1-like
35 LOC100130417 1 uncharacterized LOC100130417
31 CCHCR1 6 coiled-coil alpha-helical rod protein 1
31 LOX 5 lysyl oxidase
31 PLK3 1 polo-like kinase 3
31 RSL1D1 16 ribosomal L1 domain containing 1
30 KIAA0825 5 KIAA0825
30 SEC22A 3 SEC22 vesicle trafficking protein homolog A (S. cerevisiae)
29 VGLL3 3 vestigial-like family member 3
29 MFN2 1 mitofusin 2
29 TRHR 8 thyrotropin-releasing hormone receptor
29 SIGLECP3
29 TAAR9 6 trace amine associated receptor 9 (gene/pseudogene)
28 LMO4 1 LIM domain only 4
28 POLE2 14 polymerase (DNA directed), epsilon 2, accessory subunit
27 SNX18 5 sorting nexin 18
26 PHACTR2 6 phosphatase and actin regulator 2
26 SCARB2 4 scavenger receptor class B, member 2
26 PGLS 19 6-phosphogluconolactonase
26 MIR365B 17 microRNA 365b
25 C16orf80 16 chromosome 16 open reading frame 80
25 CDK17 12 cyclin-dependent kinase 17
24 GPM6A 4 glycoprotein M6A
24 SLC35D1 1 solute carrier family 35 (UDP-GlcA/UDP-GalNAc transporter), member D1
24 PMM2 16 phosphomannomutase 2
24 C8orf45
23 SOAT1 1 sterol O-acyltransferase 1
22 KIFC1 6 kinesin family member C1
22 ZNF8 19 zinc finger protein 8
22 TXNDC15 5 thioredoxin domain containing 15
22 FLJ26850 19 FLJ26850 protein
21 STAT5A 17 signal transducer and activator of transcription 5A
21 ST6GALNAC6 9 ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-acetylgalactosaminide alpha-2,6-sialyltransferase 6
21 KCTD10 12 potassium channel tetramerization domain containing 10
20 ANKS1A 6 ankyrin repeat and sterile alpha motif domain containing 1A
20 XYLT2 17 xylosyltransferase II
20 NUCB1 19 nucleobindin 1
19 LOC440040 11 glutamate receptor, metabotropic 5 pseudogene
18 HBM 16 hemoglobin, mu
18 ENPP2 8 ectonucleotide pyrophosphatase/phosphodiesterase 2
18 SNX21 20 sorting nexin family member 21
18 KLF1 19 Kruppel-like factor 1 (erythroid)
17 HMGB2 4 high mobility group box 2
17 FOXD1 5 forkhead box D1
16 WDR43 2 WD repeat domain 43
15 STK10 5 serine/threonine kinase 10
15 GSX1 13 GS homeobox 1
14 GRM3 7 glutamate receptor, metabotropic 3
14 LOC285548 4 long intergenic non-protein coding RNA 1096
14 HIST1H4G 6 histone cluster 1, H4g
13 RTN3 11 reticulon 3
13 ATG14 14 autophagy related 14
13 TBC1D3C 17 TBC1 domain family, member 3C
12 FNDC3B 3 fibronectin type III domain containing 3B
12 DNAJC6 1 DnaJ (Hsp40) homolog, subfamily C, member 6
11 YWHAG 7 tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, gamma
11 NUPL1 13 nucleoporin like 1
10 FHL3 1 four and a half LIM domains 3
10 ANKRD34A 1 ankyrin repeat domain 34A
10 GNB3 12 guanine nucleotide binding protein (G protein), beta polypeptide 3
9 GABRA1 5 gamma-aminobutyric acid (GABA) A receptor, alpha 1
9 MLXIP 12 MLX interacting protein
9 ADORA3 1 adenosine A3 receptor
9 TRIM17 1 tripartite motif containing 17
9 MFGE8 15 milk fat globule-EGF factor 8 protein
9 FAM86C2P 11 family with sequence similarity 86, member A pseudogene
9 LACTB 15 lactamase, beta
8 CYB5R3 22 cytochrome b5 reductase 3
8 ATOH7 10 atonal homolog 7 (Drosophila)
8 PRKAA1 5 protein kinase, AMP-activated, alpha 1 catalytic subunit
7 ATXN7 3 ataxin 7
7 IGFN1 1 immunoglobulin-like and fibronectin type III domain containing 1
7 HDHD2 18 haloacid dehalogenase-like hydrolase domain containing 2
7 C14orf39 14 chromosome 14 open reading frame 39
6 VAMP3 1 vesicle-associated membrane protein 3

Table 7.7: Network Community Oncomarker 5 (Figure 7.3e) - gene/node info.
The 85 highest degree nodes only are shown.



Chapter 8

Conclusions

8.1 Summary

Epigenetic processes - including DNA methylation - are increasingly seen as having a funda-

mental role in chronic diseases like cancer. Traditionally, methylation levels at particular genes

or loci have been shown to differ between normal and diseased tissue. In chapter 2, I investi-

gated stochastic processes in intra-gene DNA methylation patterns. I considered whether the

intra-gene methylation architecture is corrupted in cancer and whether the variability of levels

of methylation of individual CpGs within a defined gene is able to discriminate cancerous from

normal tissue. I analysed 270985 CpGs annotated to 18272 genes in 681 normal and 3284 can-

cerous samples taken from 14 different cancer entities. I found novel differences in intra-gene

methylation pattern across phenotypes, particularly in those genes which are crucial for stem

cell biology; my measures of intra-gene methylation architecture are a better determinant of

phenotype than measures based on mean methylation level alone (K-S test p < 10−3 in all 14

cancer entities tested). These findings strongly support the view that in addition to mean methy-

lation levels of linked CpGs (as analysed in methylation specific PCR), intra-gene methylation

architecture has great clinical potential for the development of DNA-based cancer biomarkers.

Glioblastoma is a particularly aggressive cancer, with very poor prognosis. Gliobastomas

are thought to be driven by stem-like cells, motivating the study of epigenetic changes which

occur when gliolblastoma stem-like cells are caused to differentiate. In chapter 3, I developed

statistical network methodology to analyse DNA methylation time-course experimental data

from differentiating healthy human neural stem cells and human glioblastoma stem-like cells.

In doing so, I identified a characteristic differential epigenotype of glioblastoma stem-like cells,

which is normalised towards the epigenotype of healthy human neural stem-cells during dif-

ferentiation. This glioblastoma stem-like cell differential epigenotype contains several genes

which are very relevant to tumour, glioblastoma, and stem cell biology, including WT1, STAT3,
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HOXD4, EZH2, P73, PAX6, VIMENTIN, and CBP.

In chapter 4, I presented methodology to enable estimation of binary adjacency matrices,

from a range of measures of the strength of association between pairs of network nodes or,

more generally, pairs of variables. This strength of association can be quantified in terms of

sample covariance / correlation matrices, and more generally by test-statistics / hypothesis test

p-values from arbitrary distributions. Binary adjacency matrices inferred in this way are then

ideal for community detection, for example by fitting the stochastic blockmodel. I showed that

this methodology works well in a range of data-sets, including a simulation study, and several

gene expression data-sets. This methodology performs well on large datasets, and is based on

commonly available and computationally efficient algorithms.

In chapter 5, I introduced the notion of co-modularity, to co-cluster observations of bipar-

tite networks into co-communities. The task of co-clustering is to group together nodes of one

type, whose interaction with nodes of another type are the most similar. The novel measure of

co-modularity was introduced to assess the strength of co-communities, as well as to arrange the

representation of nodes and clusters for visualisation. The existing non-parametric understand-

ing of co-clustering was generalised in this chapter, by introducing an anisotropic graphon class

for realisations of bipartite networks. By modelling the smoothness of the anisotropic graphon

directly, it is possible to obtain a quantitative measure to determine the number of groups to

be used when fitting co-communities, subsequently using the co-modularity measure to do so.

I illustrated the power of the proposed methodology on simulated data, as well as an example

based on IGV (intra-gene variability of DNA methylation) data with linked gene expression

data.

In chapter 6, I further investigated IGV, finding that it is prognostic independently of known

clinical factors. Using IGV, based on raw data, I derived a robust gene-panel prognostic sig-

nature for ovarian cancer (OC, n = 221), which validated in two independent data sets from

Mayo Clinic (n = 198) and TCGA (n = 358), with significance of p = 0.004 in both sets. The

OC prognostic signature gene-panel is comprised of four gene groups, which may represent

distinct biological processes. I showed that the IGV of these gene groups is likely a surrogate

measure of transcription factor (TF) binding/activity. Analysing linked DNA methylation and

gene expression data, I also found co-clusters by using the methodology of chapter 5. These

represent groups of genes with highly associated expression and IGV patterns, and provide a

starting-point for further investigation into the mechanistic roles of the observed IGV patterns

in disease. I concluded that IGV is a self-calibrating measure of methylation variability which

can be used to predict clinical outcome in patients individually, providing a surrogate read-out
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of hard-to-measure disease processes.

In chapter 7, I presented a DNA methylation-based measure of genomic interaction and

association, called the ‘DNA methylation network interaction measure’. I showed how to use

the DNA methylation network interaction measure to infer prognostic genomic networks, and

how to identify prognostic biomarkers from such networks, which I term ‘network community

oncomarkers’. I also showed that the DNA methylation network interaction measure, between

a pair of genes, is highly associated with gene expression correlation between the same pair of

genes. However, it also appears likely that other genomic effects in addition to those measured

by gene expression may be included in the genomic interactive behaviour quantified by the DNA

methylation network interaction measure. The methods presented in this chapter represent a

foundation for the development of cancer biomarkers based on genomic networks derived from

DNA methylation data.

8.2 Discussion and directions for further work
In this thesis, I have developed novel statistical methodology, which is also useful as a tool

for use in cell biology, for discovering new molecular patterns and associations, and informing

biomarker development. However, much of what I have found using this methodology has only

suggested possible new associations between DNA methylation patterns and disease, without

proving biological mechanisms for the role of these observed patterns in disease. To do so

would require further experiments to be carried out, which are beyond the scope of this work.

However, I hope that some of what I have done here will provide motivation and direction for

others to carry out such experimental investigation. I also hope that this work will provide

mathematical tools with which others may inform the direction of their own experimental and

computational investigations.

DNA methylation is a conduit for environmental risk factors of disease. Although I have

found DNA methylation patterns which are associated with disease, I have not investigated

which environmental risk factors are associated with these observed DNA methylation pat-

terns. Similarly, I have not investigated how those environmental factors could give rise to

these observed DNA methylation patterns. Investigations of that type could provide valuable

information for understanding the relevance and importance of a range of environmental risk

factors in relation to disease. Such information could be very valuable from the perspective of

public health and disease prevention.
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