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Abstract

Organconfined prostate cancer represents a commonly diagnosed cancer among men
rendering an early diagnosis and screening a neces$igyprostate laparoscopic surgery
using theda Vinci systemis a minimally invasive computer assisted arichageguided
surgery application thaprovides surgeonswith (i) navigational assistance by displaying
targeting lesion®f the intraoperative prosie anatomynto alignedpreoperative higtiield
magnetic resonance imaging@ Y ‘Oscans of the pelvisand (i) an effective clinical
management of intrabdominal cancers in real timBuch an image guidance system can
improve both functinal and oncalgical outcomes as well asigment the learning curve of

the process increasing simultaneously the eligibility of patients for surgical resection.

By segmentingd 'Y "®cans intocO modelsof intraprostatic anatomypreoperatively and
overlaying themonto cO stereoendoscopic imagesquiredintraoperativelyusing theda
Vinci surgicalsystem,a graphical representation of intraoperative anata@any beprovided
for surgical navigation The preoperatived 'Y "Gurfaces are fulldO models and the
stereoendscopic images represent partD views of the prostate due to occlusidtence
achieving an accuratenontrigid imageregistrationof full prostate surfaces onto occluded
onesin real timebecomes of critical importance, especially for use intraopehatwigh the

stereoendoscopic and'Y ‘ithaging modalities

This work explois the registration accuracthat can be achieved from the applicatmh
selectedstateof-the-art nonrigid registration algorithmandin doing so identifies the most
accurae techniqués) for registration offull prostate surfaces onto occluded greseries of
rigorous computationalregistrationexperimentsis performedon synthetictarget prostate
datg which are aligned manuallpnto the 0 'Y "Qrostate models before regstration is
initiated This effort extends taisingreal targetprostatedataleadingto visually acceptable
norrigid registration resultsA great deal of emphasis placed orexaminingthe capacity of

the selected nerigid algorithmsto recover the dermation of theintraoperativeprostate
surfacesthe deformationof prostatecan become pronounced during the surgical intervention

due to surgicainduced anatomical deformiti@ndpathological oother factors

The warping accuracy of the noigid registration algorithmss measureavithin the space of

common overlagestablishedetween the fulb Y "@odel andhe targesceng and beyond



From theresults of the registrationis occluded and deformeatostate surfasHin the space
beyond commonoverlap it is concluded thatthe modified versions of theKernel
Correlation/Thiaplane Spline 0 &"YD ™and Gaussian Mixture Model/Thiplane Spline
"00 OI'YD "¥nethodologiescan provide the clinical accuracy required forageguided
prostate srgery proceduregperformed by theda Vinci system) as long as the size of the

target scene is greater thaa 30% of the fullb 'Y "Surface

For the modified0 6F'YO ahd @ 0 FYO Ronrigid registration techniques to be clinically
acceptablevhenthe measurement noigealso includedn the simulations(i) the size othe
target model mudte greater tharca. 38% of the fulld 'Y "€urface (ii) the standard deviation
, Of thecontributingGaussian noismust beless than 0.34%r* 1T and(iii) the observed
deformation mushot be characterized bgxcessivelyincreased complexityOtherwise the
contribution of Gaussiannoise must be explicitly parameterizedn the objective cost

functiors of these nomigid algorithms.

The Expectation Maxirization/Thinplane Spline ‘O 0F'Y0 “Y nonrigid registration
algorithm cannot recover the prostate surface deformation accuratelyllimodetto-
occludedmodel registrations due to the way that the correspondences are estimated.
However, O 07'Y0O T more accurate than 6 " ™and 00 O “YD '™ recovering the

deformation of the prostate surfacefui-modetto-full-modelregistrations
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Chapter 1

Introduction

1.1 Why is this work important from a clinical perspective?

Prostate cancer has become one ofntlest common cancers among men in the UK and the
United States [1, 2] with an increasing incidence due to an aging population [1]. Radical
prostatectomy, aalreadyestablished technique for cancer treatment, contributes the most in

increasing the survivahtes [3].

Radical prostatectomy can be performed by open surgery (retropubic or perineal) and by
minimally invasive approaches (laparoscopic and raisststed laparoscopic techniques) [4,

5]. The former ones result in increased blood losslamger hapital stay.The laparoscopic
methods are constrained byc® visualization of the surgery scene, reduced instrument
motion and lack of haptic feedback [6]. The robassisted laparoscopic techniques,
especially thosgerformed with the aid othe da Vnci Surgical System g¢ee Figure 1)1

which has superior stereasion capabilities anadan provide higkresolutiondigital video
endoscopyexhibit competitive advantagese., they provide: i) motionscaling and tremor

loss, a wider range of motion feurgical instruments as well as advanced ergonorais;

(if) o0 vision [6]. While all surgical modalitiemay cause nerve damage and other functional

injuries [6], the potential of robotiassisted technologie h ayetleéntfully exploited [
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Figure 1.1: The Intuitive Surgical'sda VincP Surgical System (Intuitive Surgical,
Sunnyvale, Cl#ornia). From left to right: min console where the surgeon
operates from;four interactive robotic arms; widescreen higldefinition
monitor view of the operating surgical field; a view of the main surgeon

console from a different angle. Taken from Rgef.

Reduced depth perception and limited field of view Bgical operative drawbacksf
minimally invasive surgeryTheycan beaddressd by computerassisted technologiesich

as Augmented Reality0o 'Y systems[9, 10]: (i) segmentedocO medical imagemodels
[ultrasound “Y"Y, computed tomographyd “Yor 0 'Y]Qare first constructedo serve as
virtual representations of anatomicdtuctures and pathological features; and thigrtiey

are projected onto correspondid@® data views opatient structurewith the aid of(manual

or automatic)imageregistration In doing so the hidden part of the anatomical structures
below the expsed tissue surface (as displayed in the camera, vée®@ Figure 1)2is
(virtually) revealed.Processesi) and (i) can effectively enhance the intraoperative

navigation during surgery.

This work focuses omonrigid image registration of prostate sacésandon providing a
reliable dO O "Yenvironment for image guidance in rolassisted (via thda Vinci System)
minimally invasive prostatelaparoscopicsurgical interventions such as prostatectceng
prostate cancer managemght] (see Figure 2). ThecO 0 'Y Tthaginghas beenchosen as
the preoperative imaging modalitfhe mechanism 06O measurement in thda Vinci
System is based 00O surface (sterewision) reconstruction of intraoperatively acquired
(left and right)video images of prostate surfatkis leads to ad’O intraoperativepoint-cloud

representation of the prostate

Soft prostate tissue movement and deformatloe to patient position, tumour growth or

other physiological aspects, breathihgartbeatas well as surgical instrument mobilization
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of prostate rake it a challenging task to achieve chnically accurate realime 0 'Y
registration in the operating theat@ne of he main objective of this hesis is toexploit
extensivelytheimpact of thedeformationof the prostate surfaam the norrigid registration

accuracy byimulating all possible clinical case scenarios
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Figure 12.  Preoperatively constructedgO 0 "Y'Omodels overlaid onto cO
stereoendoscopic camera veewn robotassisted imagguided prostate
surgical treatment poedures. Such 0 'Y "Osuperimpositions enhance
considerably the visualization and identification of relevant subsurface
structuresas well agntraprostaticand periprostatic anatomiesnproving the
precision of surgical interventions: (a) Dorsain ligaion; (b) Dissection of
the lymph node; (c) Dissection of the bladder neck; (d) Dissection of the
seminal vesicle; (e) Posterior dissection of Denonvilliers' fascia; (f) Nerve

sparing prostatectomy; and (g) Prostatbilization. Taken from Ref. 11

Preoperative0 'Y "@naging is preferred over other imaging modalities for imageded
surgery U 'Yimaging of the prostate produces an optimal image represensatitatcurate
definition of the gland, its marginganceous foci and adjacent structures as well &s i
substructure dertral gland and peripheral zon&ee Refsl, 12-14 and Figure 1.3 for an
example0 'Y "®car). It is routinely performed by ab 'Y "‘@diologist as part of surgical

planning.0 Yimaging exceeds in quality “Y¥maging as the lattelechniquefails to provice
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adequate accuracy in definiqgostate substructure as well as the inferior and rgupe
borders of the prostate [15,]16
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Figure 1.3 A conventionalaY 6 Y6 '© 'Y ‘@can The anatomical boundaries of the
prostate and adjacent anatomical structame be identifiedTaken from Ref.
1.

The principal objective of th work is to enhance the surgical accuracy and oncological cu
of prostate canceumour performed byhe da Vincisurgical system. Aa roboticassisted
image guidance systent can display the complicated environment of the pelvic anatomy in
real time, and has the potential to perfamaccuratemacroscopic excision of the visible
growth (reduang positive cancer margindp doing so, injuries of the external sphincter and
of the neurovascular bundle (see Figutesand1.5) can beavoided,guidance for bladder
neck dissection can lpeovidedanda rediction of rectal injuries [117] can be achieved
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Figure 1.4 The basic and postsurgical anatomies of prostate.
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Figure 1.5 Intraprostatic and periprostatic anatomies.
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1.2 Literature review on image registration

Sectionl.2.1definesandprovidessome gneral information about image registration so that
its uses in various medical contexts throughout the literature review ceonpehended
This section also gives an example of rigmdy registrationpresents the four categories that
the nonrigid image registration methods can be classifiedto, and highlights their

applications in computeaided surgery

As the available literature on the topic of Fagid registration of prostate surfaces is sparse,
the present reviewn Sections (1.2-:1.25) has extended to include relevant work for other
organs. While some of this material is not strictly linked to the sté@ston endoscopic
robotic surgery technique, which is the method of choice irdéh®inci System, it is still
very useful as it pnmades further insight into the registration process ifsiié clinical

practicesand the challenges encountered

Section 1.2.2 describes three representdtivémageguidance technologieshere thed Y O
(or 6 "Yimaging modality is fused with intraoperative stereo viewihige first twooverlay
systemsare applied taadical prostatectomy and the last ot partial nephrectomyThe
registratiors are conducted without accountingpr the nonlinear deformation of theoft

tissue structures

Section 1.2.3outlines a nonrigid image surface matching registration schewteere a
deformablemodel (constructed byreoperatived Y Thages of the prostgdtés non-linearly
registeed onto intraoperativ® 'Y ‘@lumetric images Anotherimageguidedtechnique(for
hepatic tumour resectipthat also uses the 'Y "@r 6 "Yimaging modalitypreoperatively is
presentedn this section It is combined with the |& range scanning technology whiish
used toproducesurface representations of the liver intraoperativEhe preoperative image

volume is registered onto the target using both rigid anerigmhregistration methodologies.

Section 1.2.4lescribes an'Y visualizationsystem forradical prostatectomyhich is used to
superimpose atransrectal ultrasonography”Y'Y "Y"¥Ynodel of prostate anatomy onto
stereoendoscopic videimmages The process of registratiors based upon a rigid spatial
transformationschemeand is conductedvith the aid of navigation aiddn anothero’Y
imageguidanceapplication (forpartial nephrectonjya preoperatived “¥mnageof thekidney

is rigidly aligned onto stereoendoscopic video images
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In Section 1.2.5details about a"Y'Y Y™Yuided biopsy systen(for prostate cancer
managemedtare given. It involves the application 8Y'Y Y YY'Y "YiMid surface and
imagebased (or intenty-based) registration schemes to address prostate motion, and
YYTYYY'Y "Widnrigid surface andimagebased registration methottstreatboth prostate

motion and deformatioaffects.Section 1.2.6 provides a concluding summary of this review.
1.2.1 General information about image registration

Image registration cabe defined as the rpcess of geometric transformation or spatial
mapping between two or moimages ¢O feature point dataseis this work) taken at
different times from different viewpointand withusually different image sensonshich
brings themnto a common globabO coordinate systerandcauses all intersecting sections

to overlap completely

Image registration may be classifiad (i) multi-temporalwhere imagelata from the same
patient (.e., intrasubjecj are registered using a single imaging modality but at different times
(e.g, for monitoring tumour growth)and (i) multi-modalwhereimagedata from the same
patient are registered using various imaging modaligeg, € “Y0 'Y “@xd Y Yor structural
analysis)as in the current studymage data obtained from a single imagingpdality but
from different patientsie., intersubject can be registered to produce an atlas which in turn
can beusedfor image registratin and imageuided surgery.

Image registration was initially applied ¢ images and involved rigid (translation and/or
rotation) or affine transformations (rigid plus shearing and/or scalingd.t 6 s t ake
example theigid-body cO pointbasedimageto-patient registratiorwhich is onetype of
00O-to-cO volume registrationThe spatial motion observed in the rididdy transformation

can befully modelled by combinations of linear transformatiofise registratiortakes place
between point-cloud representationsof preoperative surfacegthe source model) and

intraoperatively acquiredatient surface@hetargetmodel)[18, 19].

The patientsurfacesnay be obtained via laser range scanning or stergon reconstruction
methods.During the surgal planning step, intrinsic anatomical structueexl features
extrinsic fiducial markersi.e., implanted fixecexternal landmarks) attached near anatomical
regions of interesbr security margins around tumours, surgical trajector¢s , are
identified in preoperativasO image 0 "™and/orU 'Y)3&egmentationsf the relatively rigid

structures.
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The 0O point positions ofthe distinct intrinsicfeaturesor extrinsicfiducial markersof the
preoperative imageare matched against theorrespondecesin the intraoperative patient
volumetric images. The geometric transfatian parameters required to rigidiggister the
source model onto the target model can be computed directly as d@eipoint
correspondences are already known. Cldseah andytical solutions have been developed
for point-basedrigid registrations 20]. The intrinsicand extrinsic landmarks can be usasl
navigation aids [1920] as they can be easily tracked by external tracking devices

intraoperativelyandin reaktime [21, 22].

While a rigidbody registration caaccuratelydescribea shiffofanfund e f oorgag & | e O
nortrigid (elastic)body transformation would be more suitafie softtissue structurese(qg,
prostate, kidney, liver) aselimaged target anatomy inves nonlinearorgan deformations
between image acquisitionBatient position orautine tissue manipulation such as incision

of organs and clamping of vessels can cause a change in the shape of an unconstaained org
or on theconstellationof neighboumg organg23]. Organ shifts mayimultaneouslytake

placedue to cardiac motion, respiration or laparoscapsufflation [24.

To describe the complex (periodic and Ameriodic) motion of the orgamne approach could
beto first applyarigid-body regstration andhen ircludeall residual errorsi., corrections
due to spatial distortion) arising frothe nontlinear organ deformatiorj25, 26]. A more

rigorous approach woulbde to warpcO preoperative images to matd® intraoperatively

acquired paent images in real timg7].

The available navigational systems and technologies are not always accurate in the
registration of deformable organs (often obtaining clinically unacceptable values of
registration accuracy) which in turn highlights the ardnt difficulties of combining
preoperative with intraoperative imaging modalities in a-ngid registration scheme [28].

As it is computationally expensive to conduct rigorous and exact simulations -tisso&
behaviour (despite the advantage of iagimg an accurate registration), only simplified
registration frameworks can be considered for surgical intervention and navigation [29].

However the use of such approximations leads to important registration errors [28, 30].

The nonrigid registraion process between two medical images is formulated ibythé
identification of correspondences between the images;the nonlinear transformation
function which maps the source model onto the target model so that anatomically

homologous locationsfdhe two feature datasets can be overlapped completely. Due to the
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high dimensionality introduced by)(and (i) in dO, the nonrigid registration becomes a

difficult problem especially in the presence of outliers and noise.

During the norrigid registation the deformation takes place with constraings., (the
deformation is regularized) while a distance metric is simultaneously minimized. The non
linear transformation functions used can recover local deformations in contrast to rigid or

affine transbrmations which can operate only globally.

The nonrigid medical image registration methods can be grouped in four categayies: (
pointbased (i) surfacebased (iii ) intensitybased and (v) modetbased

The nonrigid-body point-based registration nethods (similar to rigid-body point-based
registrations)nvolve the (manual or seraiutomatic) identification of a set of homologous
landmarks between the images that are registered. These must be identifiable by the imaging
modality used andcanbg{(nt r i nsi ¢ features of the patien
can be extracted directly from the imaging datajiprektrinsic markers which can further be

classified into internal fiducial markersg(, surgically inserted coils prior to imaging) and

external fiducial markersi.¢., objects attached to a rigid structure). Hencepthiet-based

methods can be categorised into intrinsic and extrinsic @i¢sTheir main advantage over

the surface and intensitybased registration approaches is in spead the number of

landmark pairs required is smaller in comparison to the number of pixels or voxels in the

imaging data, which expedites the calculation of the transformation function.

The surfacebased registration methods involve the segmentationsoffaces from raw
imaging data followed by the extraction of equivalent surfaces from the segmented medical
images [22]. Consequently, the accuracy of the surface segmentation has an impact on the
accuracy of registratiorsurfacebasedregistration is usally combined with other techniques

such aspointbased registration Bl]. Some comparative studies have highlighted the
superiority ofintensitybasedregistration techniques oveurfacebasedmethods [32, 3].
Surfacebasedregistration is more suitadlthan pointbasedregistration for some well
defined anatomical structures]3

Theintensity or voxetbasedregistration methods operate directly on the grey values of the
whole images bypassing any geometrical features of the anatomical strucfuties.nist
popular intensitybased nonrigid registration methods are those that incorporate mutual

information as a nmesurement of image similarity [38B]. In some studies the image
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similarity measure was combined with regularization of deformation tenotimization of
the transformation function was conducted in such a way that the similarity metric could

obtain a true global maximum93

The modelbasedregistration methods depend upon models of deformation fields which in
turn are based on thehysical characteristics of the tissues or organs of interest. These
techniques are more computationally expensive than other registration methods due to the
nonparametric nature of the involved transformatiares, (the deformation of each voxel is
computed directly). Simplified approximations of the physical system are usually used
instead to expedite the process of registration, which however, reduces the registration

accuracy.

The finite element mdel "O0 0 technique is an example of rmodetbasedregistration
approach. The area of interest is divided into an interconnected collection of elements each of
which is characterised by a distinct set of physical properties. Deformations are described by
displacement of nodes produced by exerting an exténfluence onto the system. They are
modelled subject to a constraint imposed by an energy function which depends on the
properties of each node. TH@O Utechnique has beeapplied to image registration [401}4

and to the validation of other mediamage registration methods24

Non-rigid registration covers a wide range of applications such)asuigical planning and
training where multmodal medical images can be registered and visualized as part of
operation planning or for educational purposes; ands(rgical navigation, imagguided
surgery and treatment where image registration between preoperative and intraoperative

images is critial for an accurate guidance of surgical instruments and tools.

1.2.2 Registration of preoperatively acquired MRI (or CT) image volumes

of prostate (or other organ) surfaces onto stereoscopic videmages

Cohenet al.[1] exploited theusefulness and apghbility of an0 Yimage guidanceystem
for minimally-invasive laparoscopic prostatectomysing theda Vinci system. Thredesla
0 'Y "Tnaging of the pelvis wassed as th@reoperative imaging modality. Thé 'Y "€cans
were segmented in®cO imageof the pelvic anatomywhich wascalibrated and scaled to
adjust to the magnifation observed intraoperativelfhe segmented imageas manually
registered onto stereoendoscopic still images of a recordedas&isted surgery, in @ost

processing opetive modefor retrospective evaluation by the surgeon (see Figuéet.9).
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Fusing thedO U 'Y "reoperative imaging modality withiO intraoperative stereo viewing is a
relatively new imag@verlay technology which caprovide visualization and identification

of intraprostatic and periprostatic subsurface structures and anatomiesqdeguats 12).

Third party copyright image removed

Figurel6: oOlaparoscopic perative viewof the surgeon. Taken from Ref. 1.

This work aimed more ateterminingthe clinical efficacy d an image guidance system for
roboticassisted prostatectomyhe prostate tissue deformation due to pneumoperitoneum
and surgical mabsation of the prostatavas not accounted for by the transformation
function Reconstruction, registration and trackiwgre done manually designating an early

stage of development for the proposed immggelance technology.
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Figurel.7:  An overlay of thepelvic anatomyThe structure is dour coded based on the
following scheme: mstate (green), seminal vesicles (pink), -&fted
neurovascular bundle (yellow) and pelvic bony structure (white/gray). The
anatomical structureghat are important to identify atkey stages of
prostatectomy & prostate, bladder, urethra, vas deferens, seminal vesicles,

rectum, neurovascular bundles and ureters. Taken from Ref. 1.
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Figurel.8:

Figurel.9:
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Operative view of the dorsal ecomplex before ligation Taken from Ref. 1.
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0 "“Yoverlayincludingthe dorsal vein compleXhe overlail pelvic anatomy is
colour coded based on the following scheme: prostate (green), seminal
vesicles (pink), lefsided neurovascular bundle (yellow) and pelvic bony
structure (white/gray). (See also Figuré@.LAside from the bony pelvithe
structures arenot accurately aligneddue to pneumoperitoneum.The
neurovascular bundle @early defined in th@ "Yoverlay but nobn the video

screenshot. Taken from Ref. 1.
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The latest work on robessisted radical prostatectomy involved the desigo &fimage
guidance systems for abdominal lapagysc surgery in real time4f]. Simple "X
weightedd YOO slices of the prostate anatonsu¢h as those shown in Figutd 0, see
also Ref. 4% were useds preoperative image$he prostate, the tumour location, and the
neurovascular ndles were identifiedrothe 'Y 'hages by a radiologist. The preapgive

imageswerethenoverlaid onto the stereoendoscopic intraoperative camera view
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Figurel1.10: On the left: operative view of the surgeon. On the right: preopera@vet

weightedd 'Y ‘fhages overlaid onto theisgical view. Taken from Re#i3.

The registration was conducted using two methogsby manually (visually) aligning an
ordered set of points selected from the inner surface of the pubiaratatentifiedn the¢O

0 Y @nage scan onto the surgical scesee Figure 11); and {i) by incorporating a

6 mode "Y"Yprobe which could percutaneously image the pelvic bone throughout the

surgery.

The selectedwireframe data structure ii)) could only be obsrved in the surgical scene
during the Iat stages of the surgeryltrasonographyin (i), despiteats accuracyintroduced

significant computational complexity in the registration

Both methods usedi)(the pelvic bone structure as a referencenfiarimizing registration
errorsas the prostate is near its centroid plus it is visibleampteratively and io 'Y ‘hages
and (i) an optical tracking system toatk the laparoscope camera lens whiobnever
reduced system accuracy in determining anatomical prostate points. Both metlobasdinv

large registration errorghe first one amounted t@a. 20 mmand the'Y"Y basedechniqueo

32



7 mmdueto the fact that neither of thessethods accounted foine nonlinear deformation

of the prostate tissue.
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Figurel.11: On the left:a misaligned overlay o& wireframeof selected pointever the
surgical scene. On the right:(aanually)registered wireframe overlaid onto
the surgical scen@he wireframe data structure was created by an ordered set
of 42 points selected from the inner surface of the pubic arch and manually
identified inthecO 0 'Y 'thage scanTaken from Ref43.

Prattet al. [45] introduced a manual registration interface for imggeled intraoperative
robotic da Vincilntuitive Surgical System robot) partial nephrectowherelive 0 "Ynmodels
could be overlaidbnto ¢'O endoscope video in real time. The system architecture for image

guidance was based on they "'O'OCQDadro Digital Video Pipeline (see Figurd 2).

0 "™and0 'Y "&cans of kidneys were segmented and the produced meshes were subsequently
smoothed. Adistinctfeature {e., a landmark on the target model surface) was located in the
left stereo capture image, its stereo correspood was tracked manually, and via relevant

ray intersectionshe same feature wgmanually located on the surface of tl# source

mesh geometryor the rigid registration of these tw@O correspondencpointsthe source

model was translatet the target image featuemndthe rotational degrees of freedom were

manualy adjused
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Figurel.12: System architecturéor image guidanceaisingthe 0 w ‘OO@uiadro Digital
Video Pipeline. The stereo video feed originating indheVincistack is split
via a distribution amplifieinto two identical stereo video streamsie and
greenin the figur§. The primary inpus of a pair of autestandby video
switches receive a video stream directly from the distribution amplifiesris
further fed into the da Vinci consoleas raw stereo video signal.hdir
secandary inputs receive the augmented stereo fgeduced bythe digital
video pipelinethis canalsobe displayed on theéa Vinciconsole. Taken from
Ref.45.

Despite the successful implementation of lweYoverlay systems for image guidance
visualization of tumour and adjacent anatomy well ashilar vessel localisation,hé
proposed registration methaglbased upon a rigid spatial transformation scheme. Hence it
cannotaccount for soft tissue defoation: he average registration ernvas as high as 4.76

mm, a level of accuracthatis not acceptable for clinical applications.
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1.2.3 Registration of preoperatively acquired MRI (or CT) image volumes
of prostate (or other organ) surfaces onto imagesecorded using

other imaging modalities

Bharathaet al. [14] used rigid and nengid image registration techniques to match
(0 'Y "Oguided brachyterapy) preoperative 1f&sla Y "X, weighted endorectal coil Y
images of the prostate with® “YO 'YX weighted intraopeative image dataTheir goal

was to enhancethe accuracy of intraprocedure naatign under realime guidance.As
Figure1.13 depicts, the central gid and peripheral zone of the preoperative images and the

total gland of the intraoperative images of the prostate were manually segmented.
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Figurel.13: Rigid and norrigid registration processes between preoperg®eY0 Y O
image data and intraoperative® Y 0 'Y 'Omage data in prostate

brachytherapy. Taken from Ref. 14.
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A rigid registration stepifvolving translationonly) that roughly aligned the preand
intraoperativey segmented total glandO modelswas followed by a rigorous nengid

image matching registration schefdescribetextensivelyin Refs.46 and 47.

This schemeinvolves the following steps:i)(a dO mesh represeation of an"O0 dis
constructedusingthe p® “Ypreoperativelysegmergd imageof the peripheral zone and the
central glad; (ii) asthese structurescan bedistinguishedin the tetrahedral mesh model
distinct material properties can besigmedin each regior{seeFigure1.14). The total gland
surface of the preoperativenage is considered an elastic membydnig an active image
surface matching algorithif#8] is incorporatedo nonlinearly register (automatically)he
deformable model of (i) onto the prostate boundary surface of the segmemi@dyY
intraoperative total gland modgdlv) a volumetric deformation field is computéwm the
surface deformation displacements of the preoperative total gtzagkisurfacen (iii). The
deformation fieldserves asa boundary conditiom these calcations; and\{) the computed
volumetric deformation fieldfrom (iv) may be applied tahe original segmented(or
grayscale) preoperative 'Yimage to produce deformed preoperative prostate label images of
the totalgland.

The "O0 Owas constructedssuminga linearly elastic materialna an isotropic framework

[46]. To describe the deformatioa, di sti nct pair of elastic pro
and Young6s ewasatribiuted tdheosdgménted iilnages of thentral gland

and peripheral zoneBy registering the preoperative total gland image onto the lower
resolution intraoperative image the central gland, the peripheral zone and their boundary were
revealed and their relative positions were defined.
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Figurel.14: JO OO0 Uof the central gland (in red) and peripheral zone (in dark blue) of the
prostate It was constructedisingoriginal p& "YU 'Yimaging data. Additional
structure of pelvic anatomy is included: bladded aureter (in blue); vas
deferens and seminal vesicles (in yellow); endorectal coil (in black) and

rectum (in brown). Taken from Ref. 14.

Whether the prostate tissue exhibits an isotropic behaviour or not is not certain. An elastic
model would become mer appropriate in the limit of diminishing prostaterfaoe
deformations The best values for the elastic propertieseath of the twomodel materials

were choseron the basis ofan image match qualityi.e., bestanatomic resemblance)
between théntraopeatively segmented structure and the registered preoperative, iaftage

a number of experimental trial registratioh in vivo studies were conducted to determine
biomechanicaprostatetissue propertiesThe experimentalparameters cannot represeng th
microscopic properties of ¢hprostate tissuéor arigorous analysis further validatiamould

be requiredncorporating higher resolution imaging and enhanced image contrast.

Figures1.15 and 1.16 outline the nosrigid registration process. Figaid.15 highlights the
met hod6s d.e,rnhe abilith toacdurately overlay the central gland/peripheral zone
(and their boundary) segmentation interface onto theget prostate surface. Figurl16
displays original and deformedpreoperativegrayscale images and intraoperativeones
demongrating the good match of imagarface contourafter registration

Non-negligible segmentation errors were incurred due tovémmbility in the segmentation
of preopeative and intraoperative image datdnich led toimportantregistration errors. fie

rigid registration was restricted to translation and matching the centres of mass of the
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segmented total gland structures of the intraoperative and preoperative datasets. Any rotation

t hat wa s n 6arentwas $ranted as geforangtipn.
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Figurel.15: (a) Segmented preoperatip® “Yimage data before deformation. The central
glad is depicted by gragnd the peripheral zone by white; (b)egmented
intraoperativer® “Yimage data. The data shown in (b) and the data shown in
(a) are viewed aoss an axial slice plane; (c@fdormed p® “Yimage data. Note
the additional structure (central gland, peripheral zone and their boundary)
inferred due to the interpolation of the computed volumetric deformation field;
(d) same as (b)The (manually) segmented structure of the central gldned
peripheral zone and their boundame overlaid onto the intraoperative image
data of (b) (done indepernutty by a human observer andn beconsideredas
the ground truthSee also Figuré.16). Taken from Ref. 14.
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Figurel.16:
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(a) Original preoperative® “Ygrayscale imagelhe segmentation dfigure
1.15(a) was derived frontheseimage data; (b) e@formed preoperativp® “Y
grayscale image computersing the "O0 Uvolumetric deformation maprhe
deformed structure dfigurel1.15(c) was derived fronthesedata; (c) aiginal
intraoperativer® “Ygrayscale imageThe segmentations dfigures1.15(b)
and (d) were derived fronthesedata. (d)- (f) represent another series of
preoperative and intraoperative imadasa different patientThey are ranked

in correspondence t(@) - (c). The anatomical boundary between the central
gland and the peripheral zonannot be delineated in the intraoperative image
data of (f)due to poorer spatial resolution and soft tissue contrastiever,
the total gland, cerdl gland, peripheral zone contowsdtumourfoil can be
identified by incorporatingpreoperativep® “Y“Y, weighted endorectaloil

0 'Yimaging Taken from Ref. 14.
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Cashet al. [49] examined the feasibility of imagguided (open abdominal) hepatic tumour
resection procedures. Prewatived “Yor 0 'Yimaging) volumes were manually segmented
to produe oO surfacesourcemodels Thesewere further refined to provide smoother

anatomical representations of the liver surface

Intraoperative dense surface representatioh liver were obtained using tHaser range
scaning technology By capturig cO surface points using optical triangulation) and
combiningthis input with the video image of the sceraecO texturemapped point cloudan
be producedThe preoperative tomographic image volume was then registered onto the so
produced target featel datasetusing the iterative closest pointO8 Osurface matching

algorithm

When the range scanner captures (near) planar regions, multiple registrations may become
equally validwhich in turn carlead to falséOd fegistration matchesTo overcane these
problems the "08 vegistration was performed with respect to anatomical landmarks and

geometrically unique featuréisat weradentified by the surgeon

The surfacéO06 rfegistration error fell within the range between 2 and 6 mm. Thisticaria

was attributed to the intraoperativeoft-tissue deformation, the liver motion due to
respirationthe quality of intraoperative surface data, the size of the exposed surface region
acquired by the range scanner, and surgetyced deformities.

An "D U of the liver wasalsoconstructed(i) therigidly registeredoreoperative volumetric
mesh served as a reference model; andtife incurred intraoperative deformatiomvas
represented by set ofdisplacements from this reference structumed wassimulated by

solving a system of partial differential equati@ubject tdooundary conditions.

A better alignmentbetweenthe preoperative image surface and intraoperative data was
achievedvhenthe™O0 6 carectionswere includedas theseaptured rach of the observed
intraoperative deformati on. The requirement

however, a major disadvantage of the laser range scanning technology.
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1.2.4 Registration of preoperatively acquired image volumes (using o#r
imaging modalities) of prostate (or other organ) surfaces onto

stereoendoscopicmages

Simpfendorferet al. [50] implemented am "Wisualization andhavigation system thaiould
supeimposea virtual model of prostate anatononto laparoscopic videanagesduring
radical prostatectomy and in real tifeee Figurel.17). Navigation needles/ere inserted
into the prostate and a segnteddO Y'Y "Yiodel of the prostate was obtainéthe
navigation aids served as points of riade registration between these two imaging

modalities.

The (rigid) manual regi sbuatitomc®RiCeanefaorr éf e
pose estimati ono, was calculated frogOthe (
projections of thesO "Y"Ymage navigation aids and tlq® laparoscopic video image ones.

The target visualization error "Yw ‘Q defined as the average offset betweahe back

projected registeredO image points (redefined in th# domain) and the manually defined

onesin the"Y'Y "Y&® volume, was found as low 48.55 + 0.2 mm.

While this 0 'Yvisualization approaclovercomes the problem of tissue shift,cannot
compensate for organ deformation, especially when an extended change prostate
morphologyis involved. Aside from being invasive, thiechniqueds heavily dependenipon

the use of navigation aidBy inserting themin the target surgical aathetarget registration
error "Y'Y Qs reducedHowever, theemoval ofcancer focbecomes problematadue to the

introduced needle occlusion.
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Figurel.17: Endoscopic view ofhe prostate: [A] Wthout 0 "Yvisualization. Five neeel
shaped navigation aids with coloured heads are shown;wiBj 0 'Y
visualization. The O “Y'Y "Yiwage is superimposed. The neurovascular
bundles are depicted by blue, the virtual navigation aids by yellow and the
green colour designates the bordetha prostateThe virtual navigation aids
are superimposed onto the real onéBhe tissue deformation was
approximatedby the changes in the spatial configuration of the igation

aids. Taken from Re&0.

Another study[51] on robotassisted laparaspic partial nphrectomyusedo "Yoverlays of
preoperativegO kidney models for surgical guidanag.”¥nages were manually segmented
leading toa 0O surface model of the kidney amgmour (or stone) (see Figulel8). After
calibration of segments of the recorded stereoendoswajgo donein a post processing
mode), the preoperativ@O segmented kidney model was overlaid and manually aligned onto

the stereoscopic view.

This manual registration was further refined using an automatic stbésesl registration

algorithm. ®lectal poirts (by the operating surgeon) thfe kidney surface served as fixed
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reference pointsBy estimating theirdO positions viastereo triangulatiorand stereo
reconstructiorthe orientation and position of tli#® mesh overlayould bedeterminedThe
automatic registration could byrther augmentedy means ot 6O-to-00 "06 Kegistration.
Due to occlusion of the kidney,nly part of thecO preoperative kidney modetould

participate irthe 00 egistration

While an accuratesO-to-cO registation presupposes an accurate segmentation of the
preoperatived “¥mage of the kidney and no major errors due to stezeonstruction, it is
largely affected by anatomical deformations during the surdérgsewere not addressed

this work

Third party copyright image removed

Figurel.18: Process flow chart describing the registration process undergone to align a

preoperativéd “¥nage onto stereoensicopic video. Taken from Re51.
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1.2.5 Registration of preoperatively acquired image wlumes (sing other
imaging modalities) of prostate (or other organ) surfaces onto images

recorded from other intraoperative techniques

A cO "Y'Y "Yg¥ided biopsy system was develogéd] that can record and display to®©
locations of biopsy cores hE transducer probmn acquie a cO image of the prostaie real
time by reconstruction of 18Q0 "Y'Y "Viifages.The segmentegrebiopsycO image (see
Figure 1.19) can thenbe used for needle guidancBy registering lhe prebiopsied image
reattime 0O imagesthe correspondeces for the segmented biopsgrgetscan be maintained

throughouthe biopsy procedure.

Theprostate segmentatipas Figure 1.18hows,was performed semiautomaticalgn initial
segmented contour of a prostate cross sectj@nti@ansverse prostate ig@) was generated
and used aa dynamically deformable model. This model would radiplypagateslice by
slice through 180 degrees to provitlee initial platform forsegmentation of adjacent slices

matchng the boundaries of the prostateoughout therocess.

0O-"Y'Y ™M¥cO-"Y'Y Yigid surface and imagebasedregistration schemewere used to
address prostate motion cO-"Y'Y "\it¥aO-"Y'Y Y Wonrigid surface and imagebased
registration methods weraso applied to treat both prostate motion ateformation The
rigid surfacebased registration was performed wiltte {06 @&lgorithm while the nomigid

one incoporated the thiplane spline Y0 “deformation model.

The prostate source and targi® surfaces were represented by triangle meshehe Y0 Y
registration. Teir initial rigid alignment(using "06)twas followed byan equal ray angle
parameterization of the targegO prostate surface. Th&#O intersection points between each
ray and each one of the two prostate surfdedsed the correspondences between the source
and target images. Th&D source image was registered to the target inbggaterpolation.

See also Section 2.1 for more details aboutYiie formation model

The rigid imagebased (or intensithased) egistration algorithm is dependent upon the
intensity information contained in the imagdss.is driven by a block matching approach

where each source ima&gblock (rectangular region) imatched against each target image
block according to a regularized ater field that is specifically constructed to perform this

transformation.This processaims at the optimization of an imag®image metric. Itis
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iterated reducing the block sizach timeto obtain a finer image resolution registration
between the sooe and target imageaccording toa multiresolutiorimagepyramid

approach.

The imagebased noirigid registration isalsobuilt upon an imagéo-image metric concept.

A 0O grid of 6 spline control points was used to describe the observed prostate
defamation of the moving image: an optimizer was used to estimate an optimal set of
0 spline parameterthat canyield the best match between the moving image and the fixed
image.These parameteere used to describe the prostate deformatitnch isencockd in

the spatial configuration ohed spline grid control points.

The registration errors were determirfesin anatomicaifeature misalignments between the
registered source and target imaggése “Y'Y Wvas determined by computinge squared
Euclidean distances between tb®© positionsof prostate calcifications (see Figure 1.20)

the transformed source image aheéir correspondences the target imagend averaging

the resulting valuesThe specific anatomical featuresvere used only for registtion
evaluation purposes (as target points of reference) and not for the registration process per se

due to the increased tinnequiredto accurately locatdhemin theimage pairs

The "O0 ‘@nd theimpact of segmentatiorvariability on registration @uracy were also
estimated. ThéO0 B linked to the statistically defined variability (variance) in locating the
00 position of a fiducial markefThe variability of prostate segmentation caused variability
of "Y'Y @alues Their standard deviatiowas used to measure the variability in registration
due to variability in segmentatiomhis test was conducted for various volumesoQi

prostate'Y'Y "MiYages
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Figurel.19: (a) Initial outlined contar of a¢O transverse prostate image) the initial
contour of (a) isused as input contour fahe adjacent prostate slicandis
dynamically deformed to matcitis boundaries This processis repeated
radially slice by slice through 180 degreékhis figure shows nmiltiple
contoursthathave been segmented in this waheir projections appeanto

the faces of a cube; (c) complete prossagmentation. Taken from Ré&R.

Third party copyright image removed

Figure1.20: Three calciications in acO cross section of @O "Y'Y “Yprostate image.

Taken from Ref52.
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The rigid imagebased registratioproduceda smalleraverage Y'Y @by 0.39 mm)compared
to the one generatedy the rigid surfacédased registration. he nonrigid imagebased
averge Y'Y @rned out to be smaller (by 0.59 mm) than the-ngil surfacebasedaverage
"Y'Y OThe average”Y'Y Oproduced by the rigid and neigid surface and imagebased
registrations were less thann®n, which canbe considerecs an acceptablepper bound

valueof accuracyor clinical applications

An improvemenf only 0.24 mmin registration accuracy (measureddserage Y'Y Q was

achieved in going from rigid (1.74 = 0.84 mm) to ragid imagebasedregistration (1.50 +
0.83 mm).An improvementby 0.04 mmwas achieveah going from rigid (2.13 = 0.80 mm)
to nonrigid surfacebasedregistration (2.09 + 0.77 m). The computedO0 ‘@as so small

that hadho critical impacbon the overallY'Y O

The impact of segmentation variability orhé computedY'Y @ surfacebased registration
was found substantial leading to pronounced ermpo®r image quality led to erroneous
segmentationsind large prostate sizeintroduced shadowing effectt was concluded that
imagebased registration ctiyield more accurate results within a shorter timeframe, and
that performing rigid registration in nesral time may be sufficient for thecO

Y'Y "Y™Yuidedprostate biopsy procedise
1.2.6 Summary

An extended range afmage registratiottechniques rad technologiegor prostate and other
organs and indifferent operating theatre settings, has been used in much of the previous
work. For an accuratelyperformed imageguided prostatectomyor prostate cancer
managementthe preoperativadO image must cbsely mimic the observed intraoperative
prostate tissue deformations. Thisturn necessitates the needusing accurate nomigid
registration frameworks and suitable deformation models that can achieveclinically
acceptablaegistrationaccuracies fothe prostate surface®efinitive progress along tke

lineshas not yet taken plaegdth regards to prostate cancer research.

1.3 Identifying stateof-the-art candidate algorithms for prostate surface

non-rigid registration

The surface of the prostate in general smooth and featureless containing no convoluted

topologies It may become syéct to complexand pronouncedeformatios. Therefore the
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search for unambiguous correspondences becomes more difficult especially in the presence
of noise and outrs or missing data. A reliable mechanism for prostate surface registration

would also rely on a suitable regularizatimechanisnio controlthe deformation process.

In the following a number of nengid registration algorithms are reviewed with themss
purpose of selecting the best candidates for registration of prostate suffase®view is
also useful in terms of providing ideas fenhancing existing algorithms qyossible

algorithmic reformulations gbromisingregistration frameworks

Jan and Vemuri $3, 54] implemented a nongid pointset registration method for
unstructured data addressing the presence of outliers and noise in the target point cloud.
There are no explicitly defined prior poitd-point correspondences for such deédaurce

and target point sets are represented by Gaussian Mixture Models  where each
mixture componentorresponds teach poinof the point set(seeSection 2.2)The idea of
using:!' ' i has been extensively applied and widely studied in theatitexr p3-60].
Pointset registration is formulateds the process adligning two :! !  densities by
minimizing the0 distancebetween themThe 0 distance is minimized based on a robust

parametric estimation algorithmamely the0 ‘O[61].

The"Y0 @nhdGaussiarradiatbasisfunction "O'Y 6 "@eformationmodelswere considereth
this study The "Y0 tvansformation may be decoupled into a linear affine motion and a
nonlinear partvhich ischaracterizety a set of YO Warping coeficients. The regularization

termof the objective cost functiois relatedto the bending energy of thi¥0 Tynction

In another studyd?2], which extendedhe work by Jian and Vemurthe 0 ‘O estimatorwas
adaptedby explicitly parameterizing theontribution of noise using a Gaussian normal

di stribution with zero mean and G standard
in the R@roducing Kernel Hilbert SpaceY 0 "O”YThe transformation was expressed as an
expansion of kernel repregations over a set of control points with the size of their
neighbourhoods determining the width of the range of interactions betinegource points.

As 0 Ois differentiable withrespecto the coefficients of expansion, the transformation can

be estimated via numerical optimization techniques, and the overall computational

complexity becomes linear in the number of correspondences.

Tsin and Kanade5p] formulated pointset registration as the process of maximizing the

Kernel correlationfi i configuration of the two point sets that are registéoedny choice
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of deformation mode(see Section 2.3While this straightforwardmethodologyhas often
been utilized in the literatur®3d, 55, 6365], its performance as a registration technique has
not been sufficiently measured on clinical daBue to its multiply-linked as well as
i s mo ot ikej whendGaussian kernels are usedchanism, it may provi® bea robust

technique in addressing noise and outlesgecially for prostate surfaces

Chui and Rangarajam a pioneering workJ7] formulated the registration problem as an
expectation maximization ! processusing:! ! (. The proposed algorithm is capable

of jointly solving for the correspondences and the geomefiigid or nonrigid)
transformatiorwithin a deterministic annealing schefsee Section 2.4)ts performance has
been testedn ¢O and 0O data leading to satisfactory results even in the presence of noise

and outliers, which makes this algorithm a good candidate dstgie surface registration.

Amberget al.[66], following an approactsimilar to the one taken inf[7], extended thé06 0
framework to nonrigid registration by incorporating a regularization teatinvolved both
linear and nonlinear deformatiorrhe registration was parameterized by assigning one affine

transformation matrix per source template vertex.

The objective cost function was expressed as the weighted siinaftlistance ternwhich
minimizes the distance between the deformed sourceldtangnd the target (botinodels
definedin O mesh representations)i)(a local affine stiffness term which regularizes the
local deformation isotropically by penalizing weighted differences between the affine
transformation matrices assignedrteighbouring source vertices (in doingtee rotdional

and skew pastof the deformation are balanced against the tasioslal part) and (i) an
optional landmark term which resembles the distance term afd can beised to initialize

the registratiorior a given set of landmarks.

As the cost faction s expressed in a quadratic fortrcan be solved directly and exactly;
howeverit involves 12n variableswherem corresponds tthe number of points in the source
model. The optimization becomes more costly as the number of source point thgigtartic
in the registration approaches

The registration loops over a series@b @ycles.In each cyclereliminary correspondences
are first estimatedfrom a nearespoint search and thean optimal deformation of the

template is computeoased upothe stiffness term
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The weight ofthe stiffness ternis successively decreasiradter each’O6 Bycle As the
stiffness weight determines the amount of acceptable deformatiaanitincrementally
recoverthe whole range of deformatisim going from a songly regularized one, where a
global rigid alignmenttakes place to lower stiffness weights, where more localized
(nonlinear) deformations can be described, even when significant shape variations are

involved.

Missing parts of the target surface che recovered due to the stiffness tewhich
incorporateshe geometric information encoded in the source template mesh to propagate a

regularized deformation into regions without correspondence.

The nonrigid registration algorithms proposed by Jianand Vemuri; {{) Tsin and Kanade;
and (i) Chui and Rangarajan are based on superior techniques for establishirig-point
correspondenseand can be combined with any ¢ "@nodel for the description of

deformationTheir C++ implementations are gdidly available (8].

From some computational registration experiments that were conducte® @and cO
synthetic and reatlinical data, one can deductarmeritsfor these techniquds terms of
registration accuracy and capacity to remoronrigidy deformed surfacessuchcapabilities
makethem strong candidaegor application to prostatghich may undergo a large variation

in shapen the presence damportantamounts of noise and outliers.

Thesealgorithmswere, however, developed foegistraton between fulldO models To
make them applicable for futhodetto-partiakmodel registrationwhich is central to this
thesis some of the concepts used in the work by Amizrgl. will be implemented after
adjustmentshaving in mind thaturther modifications othesealgorithms mayalsobecome
necessaryn the procesgjepending on the level of registration accuracy achiesteth as(i)

the need to explicitly parameterize the contribution of nf@&g or (i) modify the objective

cost function by substitutingonstituent terms witimore accuratemathematical expressions

or by adding moreelevantterms The ultimate goa(setwithin a restricted timeframas to
reformulate thesatateof-the-art nonrigid algorithms to make them applicable and more
accurate fo nonrigid prostate surface registration as well as extend them to accurately

recover deformation in occluded target scenes.

50



1.4 Estimating the accuracy of registration

Section 1.4.1 outlines the general methods that are conventionally used toentleasorage
registration accuracy iriducial-based rigiebody registrations. Within this context, the
fiducial localization error thefiducial registration errorand thetarget registration errorare
defined and their relationship is discussed usingiekm@nalytical expressianfrom the
literature. Methods for measurirthe accuracy fononrigid-body registrations aréeriefly
summarized focusing on thmeansquaressimilarity metric as well ason the target
registration erroand its caveatas definedvithin the context of nomigid registrations in the
present studySection 1.4.2 details the methodology used to evaluatemthge regigation

accuracyachieved irthe numerical simulations of Chapter 3.
1.4.1 General methods formeasuringthe image raistration accuracy

The pointbased rigiebody registration (as described in Section 1.2.1) is guidedhéy
geometrical positions dfducial markers which areommonlytermed fiducial pointand are
established by some fiducial localization proc&sn-based registratiofor rigid structures
aims atidentifying thatrigid-body transformation that can britige localizedfiducial points

in a clinically acceptable alignmertiiowever, this process is subject to registration errors
which deermine the levé of image registration accuracy that can detainedin the
registration systenirhe accuracy of poirbased rigid registteon methods can be measured
[69] by thefiducial localization errarthe fiducial registration error artdetarget registration

emor.

The fiducial registration error'O’Y Ois defined as the rogheansquare Y 0 "Ydistance
between homologouBducial pointsafter rigidbody pointbased registrationOY @an be
expressed?Q] by

"OYO UB AYw 0 WA
whered and’Y designate, ingspect, th@O translation andotation required to rigidly aliga
set of § fiducial points @WHQ pMB Ay (localized inthe preoperatively prepared patient
volumetric imagg with their correspondenceés the set ®AQ pHB M) (identified in the

intraoperatively acquiregatient image) such that thé0 ™f the displacements acrossl
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correspondence pairs is minimizddowever the process of fiducial localization incurs an

error.

The fiducial localization error'O0 Qs defined in thditerature [70] as the displacement of a
localized fiducial point from its true fiducial position measured before registra@on'@an
be rigorously determined via experimental measurements with phantoms for the given

imaging modality.

The egistration error in thefiducial pointbased rigiebody alignmentis determined ¥ the
number of fiducial pointand by théO0 ‘Qricurredin the localization of the exact positions

of the fiducial pointsThis has been shown in a past stud¥{
BOY® p 2 000 @

wherethe expected square®'Y Qepresented bFO'Y ‘@) designates measuref overall
fiducial alignmentand 600 ‘@is the expected squared value thé "O0 ‘@r a set of(
fiducial points and incO. The geometrial positions of the fiducials (termetiducial
configuration)haveno effect on the value of tH®Y O'he OY @& also independent of the
particular rigid object that ibeing registeredDue to the’O0 ‘Qthe value of théO'Y ©an

never be zero

The registration error of any target at a spatial positioiY'Y® is defined as the
geometrical distance betweénand the position of its correspondence in the transforming
image after rigiebody pointbased registration (in others wordlse "Y'Y ‘©orresponds to the
distance between homologous points other than the fiducizly) The "Y'Y® hereis
measuredvith respect toa known fiducial configuration comprised of fiducial markers,

which already have accrué@d ‘On the processf their geometrical identification.

Errors in the registration @urgerytargetssuch as tumoursannot be measured directly from
the registration systemn fiducial-based rigid-body registratios. They can only be
statistically predicted incorporatinthe estimatedO0 Qithe fiducial configuration and
(relative to it) the geometrical position of the target itseln analytical approximate
expression for théY'Y © statistichas beemlerived in the study by Fitzpatriek al.[70]:

P

-
V)

gyvyol O 8600 @
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wheredY'Y Oi Gtorresponds tdhe expected value of the squarddY @ , 00 ‘Qis the
expected value dhe squaredO0 ,M is the number of fiducial pointandthe mathematical
expression representshe fiducial coniiguration and its spatiaklationship with a particular
target.For a given fiducial configuration the optimal positiofor a target corresponds to the
centroid of the configuration of fiducial poin{n rigid-bodyfiducial-based registration both
statistics6O'Y @andd'Y'Y Oi GHepend on th800 ‘).

The second most important egpsion that was derived in tlegidy[70] is given by
6OY® 600 @ §YY Q@

wheredO'Y @¥epresents the expect squaredO’Y ‘©f an individual fiduciapoint 'Q600 ‘@
is the expected value of the squaféd ‘@nd Y'Y @is the expected value of the squared
“Y'Y'© . This relationship highlights thgignificanceof using the'Y'Y ‘@s areliablemeasure
of image registration accuracy fiducial-based rigiebody transformationghis expression
revealscounterintuitive situatiors where small values 60'Y ‘Oarisefrom poor registrations

(caused by poor fiducial configuratigrwhich arecharacterized by large values™sfY Q.

The accuracy of nengid registration methods can l@ssessedising a variety ofimage
similarity metrics [22, 36, 7Z4] such as those of mutual information, normalised mutual

information correlation coefficient, mean squar@s”Y, etcé

The 0 “Ymetric, which is the metric of choide this study, is defined as the mean squared
difference between imagésando

0 "Yohs A 0 A

L
0
whereA , 0 represent the position of tlieh point or intensity of théth voxel ofo andd,

respectively, and is the number of points or voxels that are compared.

In the present study the image registration accuracy is measured bMi@hich evaluates
the 'Y 0 ™istances betweehomologoustarget pointsafter registration(see Section 1.4.2)
without however,the aid offiducial configurationsas described in thigducial-based rigie
body registrations. &t the norrigid pointbased registrationg is conjecturedthat the

transformation function itse(Emphasizing on its capacity to recover deformation accurately)
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will also have an impact on thalue of thecomputedY'Y @side fromthe number of targets
andthe™00 .0

This working hypothesis can & exploited by addressing the following questions in the
numerical simulations of Chapter 8 does theé' Y'Y ‘©hangesignificantly in going tahigher
numbes of (randomly chosen) targegioints of registration?Or does it show no major
dependence on thumber of targets@&nd(ii) in the computational experiments ©hapter 3
a(large)set of (random) configurations ¢d fixed number gftarget points is produced and a
“Y'Y @alue is estimatetbr each element of thiset(see Section 1.4.2)s the conputed”YY O
dependent uporithe target configuratich The "O0 Oin localizing the targetpoints of

registrationareby definition zero in theomputatioal experiments o€hapter3.

1.4.2 Methodology for evaluating the nonrigid registration accuracy in the

presentstudy

The evaluation protocol for assessing the accuracy of registration algorithms consists of the
following three steps:i) all necessary input parameters of the image registration technique
being examined and associated experimentedlsas relevant image data sets are specified,;

(ii) the registration output is compared with ground truth data. This comparison is based on
defined evaluation metrics which measure the quality of registration in relation to the gold
standard; andii() it is then determined whether the registration technique meets clinical
requirements or not by ways of a statistical analysis process.

The evaluation of image registration accuracy in this study follows, after some modifications,
the approach taken by Gebal [75]:

@) The preoperativedO 0 Y ‘Gegmented prostate gland is the source model of
registration.For the computational registration experiments of this wir, target
model is represented by (a) synthetic prostate data in Chapter 3, which simulate the
output from the surface ecenstruction of stereendoscopically acquired images; and
(b) real medical imaging data in Chapter 4. The intraoperative prostate images are
collected in real time and reveal prostate shape deformatoasto externally
induced physical disturbances amdihtrinsic processes such as peristalige target

prostate surface usually involves more perturbations such as noise and outliers.
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(i)

(iii)

(iv)

v)

(vi)

(vii)

1.5

A number of pointQwill be randomly selected from the source. Thesearcepoints

and their true correspondences in the tawgétnot participate in the registration
process. [Their positions in the registered source model will be comfrotadthe
estimated transforman functionandwill be compared to their (nemcludedin the
registration but knownactualcorrespondences in the target model, which represent
the ground truth.] The selected poiritem the sourcewi | | be quoted

markersor pointsof regist at i on o .

The source will be (nonigidly) registered to the (synthetic or real) target models
using a norrigid registration algorithm. The newdgnsformed positions of the target

markers will be calculated from the transformation function.

The "Y'Y Qvill then be computed after registratiarsing “Y'Y O V0 Y The'Y D Y
distances will be computed between the-ngrdly transformed target markers and
their correspondences in the ground truth.

Steps i) - (iv) will be repeated eachntie for a different spatial configuration ©f

target markers.

The mean and standard deviation of teY Owill be calculated to determine the

suitability of the examined registration algorithm for clinical applications.

Steps if) - (vi) will be repeated each time for a different algorithm. The corresponding
mean Y'Y Oand s$andard deviations will becompared and the most accurate

registration algorithm will be identified and proposed for clinical applications.

Problem statement: thesis objectives and challenges

Objective of work to exploit and proposmedical imageegistration algorithm# cO that

can produce an accuratenrigid registration Y'Y & 3 mm) between a preoperatively

constructed) 'Y 'frostate stface modelthe sourcgand an intraoperatively acquired (via the

da Vinci Robot System) prostate surface modéke (targe} for 6 'Yimage guidance and

navigation in prostate surgery.

A

In particularstateof-the-art techniques will bdestedto measureheir sensitivity to
prostate surface deformation and other effacidmodified toaccount for occlusion
and combined effecia the target model
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A Synthetic prostate data simutadia wide range of real medical imagidata will be
designed and the algot hms 6 behaviour wunder different
A A series of validation mechanisms will be designed to determine registration
accuracy.
A The solution space for the most accurate algostiwiti be definedby examiningthe
impact ofdeformation, oise, outliers, occlusion and combined effeats warping
accuracy
A The a | g euitabilityh im Gesms of requirectlinical accuracy for thed 'Y

application in question will be determined.

Of particular importance is to obtaam accuratespatialalignment of the prostate gland, its
substructure (central gland and peripheral zone) and margins as well as cancer foci, as
robustly identified on the source surface, onto the target. An accurate macroscopic excision
of the visible growtHor prostatectory) will then become possible with "Yguidance to avoid
injuries of the pelvic anatomy. While past work on rebssisted prostate laparoscopic
surgery also incorporatesl 'Yimage guidance, it did not address prostate tissue deformation

resulting in large registration errors.

Challerges (i) the target model corresponds to a deformed subset of the source and the
region of overlap is not knowan priori; (ii) the size and type of the deformation is not known
a priori; (iii) no explicit pointto-point correspondences are provided befeggstration;and

(iv) the target model may be subject to noise and/or may include autliers
1.6 List of contributions

1. This thesis extended thstateof-the-art nonrigid registration algorithms
introduced byi( Jian and Vemuri;i{) Tsin and Kanadg(jii) Chui and Rangarajaio

address occlusion @O surfaces.

2. These registration techniquesere appliedto synthetic prostate feature
dataset@and he best algorithsfor the application system at hanereidentified on
the basis of best performam in registration accuracyhe performance of the best
algorithns was further exploitedby visual inspectionusing real medical imaging

data.
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3. A comprehensiveseries of algorithms were developed with the express
purpose of designingnd constructingsuitable syntheticprostate test dagats for
simulation of an extensive rae of real case scenarioStructured tests were
developed that could evaluate all candidate algorithms under a wide range of input

datasets and parametéesignating inparalld ach al gor it hmés sol ut

4, The importance of using rigorous validation schemes for assessing the
warping accuracy ohonrigid pointsetwarping methodsvas demonstratedia an

extensive series of computatioexiperiments

5. Developed asoftwae application that can be used for the manndilal

alignment of the prostate surfaces before registration.

6. The output from this work can be used as a reference guide for
implementation ob "Ysupportsystemgor image guidance and navigation in prostate
surgery and future development of more advanced mimid registration 6 Y

platforms
1.7 Organization of material

This chapter has highlighted the importance of the work at handafrdmical point of view
It gave some background information abeigid and nonrigid registration techniques
presented an overview of past work on regis
identified suitable candidates for application tmgtate surface outlined the general
met hodol ogies used to measure the i mage reg
approach in evaluating the noigid prostatesurface registration accuracyhe remainder of

this thesis is organized as follew

Chapter 2 gives a brief overview of radidlasis functions focusing dhe thinplate spline
in the context of nomigid registrationin ¢O andcO. The theoretical methodologies and the

modifications of the selected naoigid algorithms are also dedoed.

Chapter 3 focuses on the design of synthdégstdata and presents the computational results

on registration accuracy of the nagid techniques described in Chapter 2 using these data.

Chapter 4 presents the output of registration on real prestaqging data.
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Chapter 5 discusses the computational results of Cha@eand identifies the best

registration algorithmfor the application system at hand.

Chapter 6 concludes this thesis with a summary of the work accomplisheduplure work.
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Chapter 2

Theory

2.1 Thin-plate sdines: a class of radial-basis functions for non-rigid

registration

2.1.1 Introduction

This section starts by providiragbrief overview of the radial basis functiong 6 "@nd their
methodologyemphaizing their usefulness for application ¥@rious systems includingon

rigid registrationin ¢O and dO. Section 2.1.1.2 applies thé 6 "@rmalismin ¢O using a
special class ofY 6 "Giermed thirplate splinesThe deformation field of &'O non-rigid
registrationis parametrically computed by usiriy0 dnctions The optimization problem
within the context of the’O"Y0 Titerpolation schemis outlined.Section 2.1.1.2 introduces
the definition ofthe bending energy of a thin metal plate;O which is further detailed and
generalized in Section 2.1.1I8. Section 2.1.2He"Y0 Thterpolation schemis expanded to
00. The conditions for an accurate and reliaid@non-rigid registration are derived. Section
2.1.3 presents a mathematitechnique that will be extensively used in the present study to
simplify the computational problem of Section 2.1.2. The notation used throughout Section

2.1 is given ilAppendixX .1.
2.1.11 Radial basis functions

Approximations of mathematical fatons(termed approximants) are usually used instead of
their exact mathematical for@approximands)This takes place mainffpr functions thai(i)
are represented by an infinite expansiofii) may betoo computationally expensiver(
demanding irtermsof computer memory and tim&) evaluateand (iii) areunknownor not

completely known

Let 6 s as siuan@ inanumbes)tiscretedata @ definedin a space ofl T
dimensionsi.e.,, wBh Oa .No assumption @ismadéwhictishape

means that the dat@ ¥ a1 can be scatteredAssume alsoa set™O comprised of he
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correspondingknownfi f un ct i on mulavhriatersabvalued funetionQ Qo N
a,ie,0O QMHY Oasa. The function'Qis assumed to be definddw™ s and its
mathematical form isnknown Aside from theexplicit function valuesthanare contained in
"Ono other values are knowmhe objective is to find a suitable approximagg © a to
approximatethe unknown approximand@js © a (which is different from findingan

approximant d, © ato™@, © a).

One class of mthods that are used fsuchfunctional approximations are based rawliat
basisfunction Y 6 "Capproaches [76]a suitableapproximanf can be derivedy using
interpolation i.e., the functionf can be expressed as an interpolaver all elementsof @
where according to théy 6 "@ethodologyit is explicitly required thathe interpolanf is
matching each "Q, w N @ exactly Within the context of'Y 6 "@pproximations (or
interpolations}the approximant can beexpressedy afinite linear combination of Ao
WA where « represents a radially symmetrisasis function andgy @w4is the Euclidean

distance betweet N ®andanywn A

T o ' | A WA ¢P 8
The term’ @ in Equation (2.1) is polynomiand the 6 s reakvaued coefficientsNote
that the datab ¥ a1 play a twofold role in Equation (2.1)) these are the points where the
function values of the interpolarnt and approximad "Qmust match exactly; andiij they
form displacement vectorglt is also possible to approximate a veetatued approximand
Oda © a ,0 p, bytaking a componentise approach. See Section 2.1.1.20or U
¢ and Sectior2.1.2for0 0 o8

The 'Y 6 "@hethodlogy can be applied to different occasions (suchg@sand cO image
mappings,neuralnetwork learning processesieasurements of temperature or potential on
the earthés surface até¥ycdepemd tiwhighecangae ol o g i

various forms:

A The biharmonic splinec i i

A The triharmonic splines i i

! The basis function is by definition radially symmetric when its function value depends
only on the Euclidean distance of the func
invariant to rotation).
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A The thinplate spline (irgO): « i i 1T1ic
A The Gaussian i  Q

A The multiquadric: « i N 8

In the above equationis represents Euclidean distance anand®arepositive parameters
2.1.12 Thin-plate splinesin

The theoretical foundan for the thinrplate splinesvasset by Duchorj77], Meinguet[78,
79] and Wahba[8(0]. Other applications can be found Refs. 76, 81 and 82As the
smoothest interpolatorf80, 82] the spline functions aresually invoked in the no#igid

registration ofgO medical imaging data.

Let 6s as s weurfage asdoaeformedversion of it which is termed thiarget.
Assume a set of (¢ in number)discrete Cartesian¢O points 0 oho | ie,

0B Osa .L e tabsdefine thevectorvalued multivariate function ™ Q = "Qafto N

s whosemathematical form isinknown The function"Q has known function values only
for the set Theseare contained in the set "Q M HQ Osa . Let the unknown
"Qafto be the function thanodek the deformation observed in tq® target surface and the
set: be a colletion of known(not necessarily regularly spaceg) points ofthe deformed

target surface

The set can be selected to be avglid [76] reference grid of discreteq’O points such that

t :. By letting the original source model act as refmecO space andhe set be
comprised othe mathing counterparts of thanown ¢O target(termedcontrol) points onto
the undeformed source datagée function'Qbecomes a transformation function describing
the transition from the undeformed seermodel to the deformed target surface®[33].

In generalhe set of target control points may consist of ptiintsof the deformed surface

or a subset of thelfscatteredr regularly spaceds in the current case

The"Y0 Methodology came used for encapsuilag coordinate mappings and fmodelling
deformation of surfaces igO [83]. Let OO s be the domain ofQ The vectorvalued
unknown approximand@®O© a can be approximated by ampproximant™@QO©O s

througha"Y0 Tivterpolationscheme [83] which is expressed by
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where the set of scalarsoh H H h represert the affine transformtion
(translation +rotation) coefficients the set of real numbers F K K MhH K
corresponds to th&Y)"Ywarping coefficients £afto ~ @who & refers to the Euclidean
distancebetweenthe pointd whd from the set of the & source (controlg’O points
and anyCartesian poind ¥ O. (Note thatO represents the set of gD Cartesiarpoints of
the undeformedsource surfaceThecO"Y0 Bésis functionepresents a generalization of the
pO cubic splinexs [83]. The”YU Dasis function irgO, as was mentioned in Section 2.1.1.1

(see also Section 2.1.24& more detaily takes the following form:

«i i 11718
Within the context b'Y 6 "@terpolations it is explicitly required tha® "Q | 0O n
Only when this requirement is satisffethnthe approximantQof Equation (2.2) (based on
an optimized set of affine ant’0 ‘Parameterspncapsulateccuately the “YO Témooth)
multivariateinterpolation of the wholé source surfacei . le0. , ofto ¥ ‘O over a fixed
set of¢ source control pointsd e f i ned by0 B Re ostethe deformed target

surface yhich can only then beappioximatedaccuratelyby a correspondingset of "'Q

@ w valuey.

Equation (2.2) defines a general class¥ ‘terpolants’Qin ¢O. Let N be the space of
such interpolantsEach of heseforms of 'Qis differentiablel 0 ofo v 'O [80, 83]andis

characterized by a distinct setaifine transformatiomnd”¥ “Ywarpingcoefficients

2 These constiins lead to an optimized set of affine aid "Warameters making the
approximant'Qof Equation (2.2) an accuratgO "YO Titerpolator for the sourem-target
transformation [83].

% Specifically, whilethe source control pointre required tanath thetarget control points
exactlyall otherc’O source Cartesian points are mapped to their correspondences in the target
by smootH' Y0 Tivterpolation
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Within the context of th&YD T¥rmulation [76, 8082, 83] the bending energy of a thinetal

plate at a point ¢fw is proportional to the quaity — ¢ — — at that

point in ¢O. The physical net bending energy of a thin metal pla@! 0  «fwo ¥ Ois
defined (see Section 2.1.1.3) the space integral of the squaretioé second ordgpartial

derivatives ofQ

‘ocQ — C ;7 — — QwQw C® 8
A
For a given sourcdo-target transition, mly thatform of "Q¥ N thatcan minimize uniquely
‘0QdO° a can be considerechaccuratespatial mapping solutiormhis takes place dyn

when the set of interpolation conditicils "Q ! 0 v  are satisfied83].

However, satisfying such ¢ o n s tis natialways a straightforward taske., when only

the source control points are known and no prior ploHpoint correspondences are assumed.
The optimized form ofQfor a given sourceto-target transformatiom this case willarise

from identifying the mostprobable correspondencefkthe source control poinis the target

Only when the true target correspondences are determinedhwi(imeasurableenergy
functional '0Q ! 0 ofto ¥ 'O be uniquely minimized. This optimization process
presupposs a good initial alignment between the undeformed source model and the

deformed target model.

Summarizing, le optimization proceswithin the context of thecO"YD "Mterpolation

schemean beoutlinedby the following:

(1) For a giversystem ofc’O source and targetodelsassume thathe set of sourceO
control points is knownandthe set of target’O control points: is unknown. No
prior pointto-point correspondences are assumed.

(2) Letthe senh  represent the affineansformatiorand 0 "Ywarpingcoefficients ofthe
optimized form ofQ

(3) The bending functionaD'Q can beapproximatedy Equation (2.3).

(4) The optimization takes places) ofo N ‘OwhereO represents the domain @1

(5) A good initial alignment between the sousral the target is assumed.

The optimization problem is posed:by AOCIETOQ i&8™Q ™Q! 0~ 8
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2.1.13 Thin-plate bending functional

A few words of explanation with regards to the definitionhed bending functionalD'Q in

Equation (2.3) are in ordelcet Qdesignate the number whagingdimensions and denote

the total order of the partial derivatives gQwhich obtain the forms— | E

| a with| being positive integers [thegecome——— | | a forQ (.

The thinplate penalty functional fd2 ¢ and generad is given [80] by

0 Q ¢ 1T 2 Heoo 8
0 Tolo G
Aa

which obtains the form of Equation (2.8r & ¢. The thinplate penalty functional for
generaldh is given [8Q 87 by
0 Q 4 A 8 r o Q ® 8
. | Al A Tro8r” °
When choosingy and'Q the conditioncd 'Q 1 must besatisfied[80, 82]. For Q
od ¢ i .@. /,Q p 1 the thinplate pendy functional becomes

"0

The "YU Basis functio, as was mentioned in Section 2.1.5a& a special class &f & "Oi

Their linear combinations are used to minimize the physical bending energy of a thin metal
plate subject tdnterpolation conditins[76, 77, 82].The"Y0 DBasisfunctionsdepend solely

upon thetotal orderd of the partial derivatives oRdin "O "Q and the number of imaging
dimensionsQ [SeeRef. 80 pp. 3132 and Ref. 82 pp. 19395 for an explicit mathematical
presemation.] The (unique) solution of minimizing the functional in (2.5) igiven in

AppendixX .2 based on the mathematical work in Wal&@] and Rohr [82].

Table 2.1 lists the formof the "YO ‘Basis functios for various & iQ combinations.For

Q chd ¢ and neglecting constantsi i 1 TiQwhich is the same form 6¥0 Désis
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function that was used in Section 2.1.1Lthear combinations of suclvd “Yiere used in

that section to minimize the bending functbrof Equation (2.3) (wlth wasderived for

Q chd  ¢). Upon going to higher values & and forQ ¢ i&&da Q 7 the
bending functionalO "Q of Equation (2.4) obtains more accurate energy expressions which
in turn require different forms 60 "¥is shown in Tdk 2.1 (and could nominally lead to

more accurate optimizatioms the formdescribed at the end of Section 2.1)1.2

The following ®ction extends the'YO "Yormulation in dO as this work involves

transformations tdeformedoO prostatesurfaces.

2P Q c Q o Q T
a P P ¢
a ¢ ppci pm‘ii'rig pw“,
0Pk [CPoeyt T Pap! Pyt 117iC
T Ponndn| Crond 111G Poyph [(Ppygel 1TiC
Table 2.1:  "Y0 'Masis functionse i across an increasingtal orderd of the partial

derivatives of Qin "O "Q [see Equation (2)p and an increasing number of

imaging dimension§ Taken from Ref82.

2.1.2 Thin-plate splinesin

Let & s e ansrslefanmedO source moded comprised ofd in number)]  afudt
points whichin matrix formcan beexpressedy 0 AMBM ~Na . Suppose that
the target modelYrepresents deformed version ob suchthaty oM N 4
whereoN a  depicts a point of the deformed surfadeThe set of { in number) source
control pointsis denoted by OB P MM whered ohdh do

pHB FE represents a source control point
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The vectorvalued function "Qafuftr M 51 is the unknown transformation function that
causeshe) © "Ytransition Thedomait! of ‘QisdefinedbyO A MM Osa .The set
of ¢ target control points is denoted by "Q B HQ P “Ywhere'Q Qo ho hx h

I 0 N . The elements of are the onlknown functionvalues ofQ

The vectorvalued unknown approximand®O© a can be approximated by an
approximant"@0O©° s by way of "YO “Wterpolation in dO. The O nonrigid YO "Y

coordinatemappingis encapsulatetly
“Q A |V rl": (b (b d

| >

]

|
(b(bd” ! I ] W 8 d):-:_ B _.:. 8(
S PR ‘
i 11U oSSy
wherewd «m 04& « aothh owhohlx ,! 0~ and for anyg™ O. The

"YO Pasis function incO and ford ¢ takes the form, neglecting the constant,

i (see Table 2.1)The quantity dfudhg & ho hx  is the Euclidean ditance between
the pointd o o ix O pfB e from the set of the¢ source (controlgO points
and any point) ¥ ‘O. The global affine (linear) transformatiocomponent ofQin Equation
(2.7) is described by the sef realvalued coefficientss h hh B A BH K §
andthe local nonlinear (nonrigid) deformation componens$ depicted by the set of scalars
— h— h— B h— h— h— which correspond to th&Yd Warping coefficientsSee also
Figure 2.1.

Equation (2.7) can be rewrittéri ™ 1 8 ) by

W oW oa. p o O . | |

o, ll ~ \ C0 [l
— |P‘) w a ] IP w (f) g |.'|II T T >
Qu N w an 1Ip W w Q |’|T I I I,I

g & én 16 & & @én' o 1

w ® al p ® o « v

“In general the functiofQmay be defined dfud ¥ a . In this section the mathematical
formulation is tailored specifically to nenigid registration between fufO prostate surfaces.
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Q]

where™ « i 0 .Amore compact form of Equation (2.8) can be given by

~

Q0 0 pY O YO

M S
i gp,
P- = P P P P]_ ! ____:._:_-:' ; .".'-{--".‘_r
L (xf» ’yl ’ZL) ':_..'.__1_1________..-—-' : . J Ao
R 5 :
el
p—— —i :
Py e,

&N

vi. 2l )=ge,

Source control points: {Py, P, ..., P,} Target control points: {gpl, ...,gpn}

Figure 2.1: The source modal andits deformed versiorthe target modelY The source

control points are depicted By and the target control points &9 (only four

pairs of control pointsare shown The general number of pairs of control

pointsthat is assumed in the teist¢). The approximantQencapsulates the

"YU iMterpolationof the source surfacé over a fixed set of source control

points onto the deformed target sw#a"Y Within the context of YO Y

interpolations it is explicitly required th&® "Q | 0 ~

text for details.

where thed  omatrix0 defined by
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W W a.
oy, , , L
. Ip‘) w ql’l
) I(‘O (b dl’l C@T[
L1é é én
w o a

denotesan approximatiorof the target O model “Y(it represerd the transformedource

model in on-rigid point set registrationjhed 1T matrix p  relates to

P ® W a.
v . , 1
|p w w Y
p i O 0 aa ¢® ph
& é e én
p o o ol

the o 1 matrix O which representsthe affine transformation coeffents

t rans|l aptliuosn riot ia assooiated with

o | 1 I I ¢® ch

thed & matrix "Ywhich is termed basis matreorresponds to

Y %Y %Y E Y
~ Y E E E 7Y
Y & E E E &8 ® o
Y %Y Y E Y
and the¢ o matrix0 which containghe”Y0 Parameterss given by
~ T
11T — —
~ 11 )
) I: _,.? _,\, 5 C$) T8
1e e en
— — —U

The dO YD ‘Mterpolation schemef Equation (28) is subject to the constraint®  "Q

| 0 N . Supposehat theaffine transformatioromponenof the”YO &hergy functiodQof

Equation (2.8)s zero Equation (2.8) theh 0 N becomes
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Equation (2.15) can be written in a more compact way by
Y0 SN0
where he ¢ o matrix "Yincludes the coordinates of tharget control poinfs "Q or
o o M 1 pB R andis expressed by
M WA
Idb (b q "
e 11 " ~
Y I(lb (b (:x 1 c@ Xh
1é é €
w w o U
the matrix0 is given by Equation (2.34ind the matrix N s is definedby
i i i E «i
i E E E «i
& E E E & ®u
i i i E «i
where 0 «i andi 0 0O o fro o o . Note
that « i E i mand « i i . The matrix of Equation (2.1Bis a"Y0 Y

kernel matrix in dO (symmetri¢ conditionally positivedefinite and hencénvertible).

describes the internal structure of the source control point set.

If the affine transformatiorcomponentof the "Y0 "&hergy functionQof Equation (2.8)is

zerq then heé¢ o matrix 0 of the”YD Parameters may be computeidectly considering

Note thatQao ho Qo o wh i 10~ 8
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that 0 “Y+ O "Y If the affine part of Qis nonzergthentheé¢ T matrix 0 given

by

oy W W (:xl’l
PO W a-n N
6 p o @ an pPD P w
1e e e e-’:
pw o w au

must be incorporatédThe ¢ o matrix 0 in (2.19) represents source control points.
Speci fi cdefiné[88]thelee t 6 s€ T matrix

5
0O ™ & m
where O represesta T T zero matrix. The last four rows of make sure thahe function
"Qof Equation (2.8)is regularized at infinityj.e., the affine subspace of tHi¥0 Warping
space vanishes atfinity separating from th@on-affine subspace (sdeef. 83 andSection

2.1.3).Let usalsodefinethe¢ 1 o matrixwhy

oy Ll
IT T T n
1+ — 1
118 é én
® :J’— — — & p

I
LI 1
ITI ! 1
) f Y
U I Y

where the firstt rows of w correspond to the matriv of Equation (214) while the
remaining four rows are the afé transformation coefficients (translatipius rotation) as
defined inmatrix ‘O (specificallyO for an exact correspondenad)Equation (2.12).Finally
lett he f aug me nYokEduatioh (@.17)rbe deffined [83] by the T o matrix

~
\

®Note that the set0 oo d '@ pMB R represents source control points
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Thusthe following gstem of linear equatiori®lds

W w C§ o8

The ¢ 1 omatrixwin (2.23) produceddy solving the system of equations via standard
routines, satisfieshe set ofconstraintsQ  "Q ! O © for the general case of a ron
vanishing affine component dfof Equation (2.8). For these values of affine &Na Y
parameters the functioif2is guaranteed to uniquely minimize the bending functional of

Equation (6) whereQ ocanda ¢.
2.1.34 |} fron-rigid transformation model in

Note that'©O "Q®8 t r ac e0 [83. Note also that is a ®nditionally positivedefinite
matrix [8C], i.e, — — 1! —O whereO —| dB — 1. By satisfying the
boundary condition

~ ~

60 06 0 p» ™ ] T
the affine subspace of thH&0 "Warping vanishes at infinity and is guaranteed to be
conditionally psitive definite (si nce, for theéh tohoBdsvebaors

B — B — m).To simplify the computational part of the problem the null space of

0, Nulol, (or equivalently theeft null space ofd) must be found. The following
approach is proposed in the literatuig:sgparation of th&YD Warping space into its affine

and nonraffine subspaces:

X hd

0 [ cg v
where, for € being the number of source control pointsy s relates to the nen
affine part and N s represents the left null space 6f[ 6 1 and is
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associated with the affine subspace of thé “Warping; followed by i{) full rank ~ °

decomposition of the rectangular matniX84]:
0 ’ S ' Q0

where™ N q contains the first four [= rank(] columns of the orthogonal & matrix

T,ToNg corresponds to the last 1 columns of” and’ N g
represents an upper triangular matrix with N a . Also ~ ~ T ‘O and
. . . 0

It follows, by theorem, that the& 1 columns of” correspond to the left null space@mf
e, @ Q®Q° “ . Theg columns of ™ make an orthonormal set of basis vectors for
the column space ab, 6 0 , and specifically those that are contd in~ satisfy the

boundary condition in ¢& Tt. Hence,

8
Equatc@oum QO 0

pd Y
where it becomes apparent that the total number of unknowns amounts o

2.2 Gaussian mixtures model incorporated in thenon-rigid point set

registration framework

2.2.1 Introduction

This sectionprovides a brief overview of thet ' and highlights its merits as a means of
representing source and target input point sets inrigah registration frameworks. The
current wok expands on that algorithmic variab8] that formulates nomigid registration as

the process of aligning two Gaussian input models by minimizing tlsemilarity (distance)
measure between them. Therwin [53] was motivated by the closddrm expression of)

and, due to this, the computational efficiency of the produmatiply-linked registration
scheme.The modified version of the registration algorithm will be tested on synthetic
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prostate data and will be extensively validated througéris of computational experiments

in Chapter 3.
2.2.2 Gaussian mxture model

Let™ Hh Ng such that the source model point “set A M  and the

moving or transformed source model'set 0 MR ,and N 5 be the target set
O  where in an asymmetric point matching case i. Each member of

~ h h s treated as a collection of unstructured Cartesian points bearing no prior

information beyond their spatial coordingite

The objective is to compute that nogid body transformation functiondg © a that
yields the optimal alignment betwéen =~ I}—and’ following an iterating cycle of
processes that augment accuracy of registration, until convergeagestration does not
depend upon the establishment explicit prior point correspondensedetween and’

The parameterized spatial transformatjois modelled by Y0 Tnctions(see Section 2.1).

Let the training setsb RQ pM hx and o RQ pM H be constructed from (or
~ ) and °, respectively, whereb and 0 represent random variables. Let
O xMul ti nomi ale DBster iwhered ¢ o'ne Bh  represents the
probability that the random variable will obtain each of the possible discrete values,
. 06 o N, m - p, and B e p. The bivariate joint probability

distribution for the discrete variabled Fo  is given by
00 OO o0 00 ¢® B
We assume that the & are distributedO"Ofindependently and identically distributed)
according to theO multivariate normal distribution
0 O o N h x~ “h & w
where ~ denotes thedensity of the vectevalued random variabley  which is

conditioned on the randomly chosen, fromsked B 0 0 andis given by

50 0 oNh —e—0antu
oYoT] G
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‘Q(bhgb b ¢ @

¢" s 8
where for the mean vector N a it holds thatO v ‘. N9 represents the

covariance matrix and is symmetric and pwositsemidefinite. Hence eaclv can be

distributed as a mixture of Gaussian distributions by the probability density function

Ca
C
s |
¢
¢
[ ]
C
C
(@)
(@)
-
0%«

¢“ s s G
This model is called mixtures of Gaussians.

Due to the independence assumption orvtheg the likelihood function becomes

~

befR 0" MidRR

NN RN

C

00 NPHA & ¢8

The maximum likelihood principle requires a maximum valué eff h orl T0G i h

aeHh 1 T0G R h
| TCO0 NHA
1 T0Q N HA
[ e: 00 6 Nh 006 n ¢® o8
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However, the maximum likelihood estimates of tedt h  parameters cannot be obtained
in closed form by setting to zero the derivatives 083pwith respect tos if h  unlessthe

association betwean @&@ando ais known in advance, in which case:
Eqc® oC a«hh 1100 o Nh 110 N d T
which in turn leads to the following solutions (derived in Appeﬁd&):

p . .
- (0] (0]
P P

where, fo the indicator functions, it holds thatT r u epandp Fal s®
2.2.3 The minimization of thed distance

Let™ * h depict aQdimensional Gaussian distribution @ffits cO form is given by

Equation (230)]. Then the productbetween theGaussian densitieS ‘ h and

~ * h (whicharenot normalizedjnay be written [8pas

Qon =
¢

T Y h & L

where

Hence
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Jian and Vemur[53] represented discrete point sets dpnvexcombinations of @ussian
component densities where each component density corresponds to each point in the sets.
This approach is derived from the description of Section 2.2.2 if we assume that for any
discrete point set it holds that k ' ¢ and that theeb & areassociated with thed &
oneonone. As a consequence the right part of Equatior31)2is reduced to only one
component, namely, the =1 term, and for eacpoint of thei points The vector in the

reduced form ofEquation (231) corresponds to the location of the poitTaking linear
combinations of such Gaussian components is merely a mathematical convenience as will be

shown below.

Assume two mixtures of Gaussians: one representing the moving source mauel Hed
other thefixed target model set with density functioms n ~ k' opHh and
M N © k1 olph foo , respectivelyThey can be described by

" ofph h W 0ah Cd Y
1 owh o W 0 o] ho C® w
whered ] h Q- o ° w0

The0 distance measures the similarity betweentwa i and may be expressed by
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0 hn MR N7 MAn S Qw

MAan T M= wMAn Qw ¢8m

~

The nonrigid point set registration process becomes an optimization problem where the
statigical dissimilarity between a nemgidly deforming point set and a fixateformedtarget

set is minimized over a (usually regularized and) continuously optimizing transformation
space. Th& distance function of Equation @&) represents a cost fulmn which produces

an optimized set of parametersatits minimal value. Thé distance between oiwh h

and 1 ofpPH hw can take a closefbrm expression by incorporating Equation 3@,

namely:
. S R
O 'mMm (,X_ i_ Qw
' ) . -] !
— Qw — Qw ¢ —Qw
a | a i
B B wwbdm *h 8
a

j=xi

c __ : [ C8 p8

Equation (241) can be simplified by assuming that the Gaussian componentarain are
weighted equally and that they all shdre same sphericgisotropic) covariance matrix,e.,
all of the componentare spherical Gaussians with a uniform sgaléThe latter assumption
has been shown to be sufficient in most of th@mined cases3f] as well as in the
computational experiments of Chapter 3.) Hence,

. , m A
EquatcEBru‘h ' dﬂUHh, \UL—'QC‘OI)]S— c8 ¢8
(G )
Thed ' P ‘T h T® T terms of Equation (21) become
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™, Qwn—-——— ¢80

since To y k , "OAlso, thel integral term of the inner product of the fixed !  with

itself, i.e, . 1 'Qis a constant and thus it can be left out from the opétitn of the

P

0 h M cost function.
2.2.4 The minimization of the energy cost function

By choosing”YD ¥ a deformation model (see Section 2.1.3) and letting o Ao

represent a set éfsource control points where
10 M 8 1

the objective cost function — may be expressed by the following regularized energy

functional

g . .
e — Qw — Qw trdace g v
e 4 q oy _ a [ q

whereO corresponds to the bending energy & TS warping function,' represents the
transformed source model point set warped_bwynd _ 1 controls the strength of the
regularization. As the value of becomes smaller the transformation becomes arigah
topical one. A very large valuef _ yields a nearly pure affine transformation as a larger
extent of optimizations requiredfor thet r ac e = [ to become smallefFor a fixed

_, there exists a unique 0 p) O Y [ that minimizes Equationcg v.
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2.2.5 Derivatives ofn with respect to the motion parameters

Equation (245) can be written
& ¢

' a
a a i
The derivatives of the cost functionwith respect to the affine aritYd Parameters can be

written in analytical expressions:

. .0 1.1,
Tr T 1T
T0 T a
— — 8 x8
T 1T o8 X
Based on the fact that
T o . . . . . . .
=T r [ S [ c8 8
. 2.]48 o _ o o
Equatc&g%q ( T”“) Y O3  c_ [ 8 w
where
|
] 10 '

Similarly, the derivative af with respect to the affine parameters can be described by

S L N P o 3 8
10 .10
represents a spatial transformation d® and given the assumption that e

As
Qe q, —2Q dthen
C® ¢



5.,, 6 & & va  c&o8

Assume that refers to each point of the transformed model set; tienpr8 4 it holds
that

3 540 P QR ——— & @ @ T
11 Tn )
G a7 '
u U
- Pt 1 ‘_ 11
J ;.0 'pa Qoo:' - 0 W cd L
G o 7 ' T g’
u U
- ~ 1 ‘_ 11
5.0 — P oeh—— T4 & e
A 11 Tu )
ST e "
u U

An optimized set of affine andYD "Marameters can be obtained as a minimum energy
solution of Equation (26) with the aid of gradieAbased numerical optimization techniques
applied to Equations (2.4Pand (251).

2.2.6 Modification of the algorithm

Based on the information of Section 2.2.3 and specifichkylast term of the right side of
Equation (241), it becomes obvious that the ) algorithm cannot be applied to
the case where the registration pair point sets deviate significantly in number of points. The

registration scheme is still appropriate for i aslong ast .

The algorithm was modified according to Figur2 . account for registration betweenudl f

o0 source modél and an occludedO target model . The initial correspondences
between these two point sets are identified on the basisoné#-one nearest neighbour
correspondence criterion and by setting a maximum distéuneshold as thepper limit of

all possible correspondences. The initial approximation of considering every closest point
pair to be a correspondence pair is a valid starting point so lofjthe two point sets are

already placed (with a good initial transformation) dapproximate registration before the
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iterating nonrigid registration process of Figure2ds initiated and (i) the majority of the
extracted points from the source hawge correspondences in the occluded target surface
This configuration is an idéatarting point as it maximizes the probability of finding the
correct correspondences during the process of registration. However, obtaining a satisfactory

initial transformation is a nontrivial problem.

Note that the — multiply-linked objective casfunction of Equation (25) is defined
globally and not on nearest neighbouring points. Thus, it isdneecost function that is
optimized as the source model point configuration dynamically evolves in each step of the
minimization, which in turn allaates the problem of correspondence error due to potential
point mismatches. The overall correspondence error tends to further reduce wteegehe
surface (and hence thdentified overlap between the registration surfaces considesed
increased sincéhenthe number otrue correspondence pairs, identified in the process of
registrationjs also increased (which helps in discriminating against outliers and overcoming

the effect of noise)The "YD ‘&eformation carthenbe computed based on a largeteinal
structure of control pointsThe contribution ofO BB a w terms in the

distance cost function (whera is the Gaussian distance functioiy increased. fe
probability of overall correct point assignments ahw@rgence of the algorithns also
increased so long dke number ofrue correspondence pairs prevails effect the topology

of theavailabletarget scene has a major effect on the correspondence error and by extension
on the final output of the regrstion process depicted in Figure22Pauly et al. [87]
combined pointo-point and pointo-plane metrics in order to avoid penalizing
correspondences due to large featureless regions. While this formulation is very useful for
registration of smooth swat€es, the currentt ! methodology follows a more rigorous and

superior approach.

The output produced fr omindguwe 22 lednsissshof they c or |
extracted source model point €801 r and the extracted target model pointced i

These datasets take part in'a'! R registration process where for the set of control

pointsA it holds thath ¢ o r. Theassociated , , and"Ymatrices are computefdr

the extracted source model (wherék “Y) and the energyast function of Equation (25) is

minimized producing a set of optimized parameter®nce thé Ymatrix iscomputed for the

full model  takingc ot r to serve ag1, the set of control points of , (the matrix

hence remains the sana)d giventhe estimated—parameters [which populate the matrices
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‘O and[ ; see Equation (27)], the nonrigid transformation is applied to . The output

from this process overwrites the moving model, narfielyh =~ [P , and the overall
registration proess repeats itself until a stopping criterion is satisfied. An increased number
of correspondences is expectedhich has been observed in the computational experiments
of Chapter 3) in each iteration as a consequence of the graduagidodeformation éthe

moving model.

Modified Algorithm.

Input: The original source model Set , the occluded target model seaind the nosrigid

parameterizedY0 thansformation model.

Output: Themoving modél registerednto the target scere

Initialize the registration: M = M,
Repeat

Full 3D Source Model: M Occluded 3D Target Model: &

Establish Correspondences

Extracted Points from Source:
Corr(M) Cc M

Extracted Points from Target:
Corr($) C &

[i] Obtain optimized TPS and affine parameters 6
from alignment between Corr(M’) and Corr(5):

0 <« argming£(0); [ii] Apply M = F(M; @) where
C := Corr(M)

Until the requested number of iterations is reached

Figure 22:  Modifications of the:! ! ) learning algorithm for fll-modelto-

occludedsurface nofrigid registration.
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2.3 The kernel correlation technique applied to norrigid point set

registration

2.3.1 Introduction

In this Section the concept of Kernel Correlatidni is defined and its usefulness with
regardsa pointset registration is outlined. Natyid registration is formulated as the process
of aligning two point sets by maximizing tfiei configuration dynamically between them
[53, 55]. This is a similarity measure that can be described by a cfosedexpression
leading toa computationally efficienmultiply-linked registration algorithm. This nergid
algorithm is modified and further validated in the current work. The accuracy di the
registration process is empirically studied in Chapter 3 nfans of computational

experiments.
2.3.2 Kernel correlation
Suppose two points,i N a ;theirfi i [88]is given by

fii{f fi i i i Qi c® X

wherefi if ; corresponds to &ernel function defined for the vectorsandi y, and
centred af y . The Gaussian Kernel function is used in this implementation which is-a non

negative and symmetric functio8g in consistency with the requirements of tfiei

registraton techniqueGiven the normalized form of thfanction incO

fi in ‘e Qwn ——— ¢® Yh

Equat®ghfii ih c“, QR ——— d w

where, corresponds to the Gaues Kernel scale. Equation (2)6€an be taken as a measure

of closeness betwedn andi ; it is going to ¢*,, wheni andi are coming closer

while it is gang to zero whem andi are moving further apart.
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To obtain a proximity measure between a discrete point i BH and the rest of

the points of the set, the following quantity is estimated

Y .. pA i~

fii ihy ¢“, Qwn T & T
and by extensioh { fi

fii Y fii iAY ¢ fii iH ¢ p
makingfi i "Y a conpactness measure of the point %fThe larger the affinity between
points across all pairs of points®ofthe largeffi i Y becomes.

2.3.3 The maximization of the correlation between kernel densities

Assume the moving model = N 0 MW and the target model
OB R  defined in Section 2.2.2 whefe A M . Their kernel density
estimates are defined by

C® o8

The objective is to solve for the parameter®f the nonrigid transformation  that can

cause the largest minimization of the energy of the following normalized cost function

6 0,

Qw ,O,OQoo

Qw ¢

0 0
(O] (O]

o=

O 0 Q® CH T

where the final output of Equation ¢4) arises due to the normalization terms

0 0 Qw C®H v
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(0 0 Qo C®H ¢3

Equaa®dpcod 0 Qw fi ¢ch AN Qo

fi ch NN Quw ¢ fi ch NN Ji ah NN Qw

ac¢, ~ fit~ C&® X8
Similarly, c9o°i 0 Bguiatjonfii C®H ysB
While fi i ~ is not invariant under nergid registration,fi i ° is a constant. The

following relationships are produced:
Equatqggooh scp x© O © fii ~ CH w
Equatdqg®opn sc@ Y© 08 fi i ° ¥ ™8

To further exploit Equation (84)

2
cA
e}
s-

P - , .
i fiit  AM-h

P .- -
i h - & p

The energy of the cost function of Equation§2. is minimizedas the correlation between
® and0 is maximized or equivalently as tfiei multiply-linked registration cost function

", which represents the sum of all pairwise kernel correlations between the moving model

and the fixed target model point sets, is minimized. Hence,
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Eq. 8 0 o . ¢~ hn-
Equatc® o nuuu o 0 Qw ¢ ai oo C& ¢8

2.3.4 The minimization of. and analytical expressions af

Following a similar process to the one described in Section 2.2.4

6 — ¢ Qo _t r ac &
- — o — O W _ ac &
¢ B B fii _ gn- ..
S T 5 — 9o trace T C¥ o8

To simplify the computation of derivatives.of note that maximizing

is the same as minimizing

. .. .0 0Qw
U QW ——"—
b Qw
or, for a fixedd , equivalent toninimizing
.0 0 Qn
5 Qo

By following a similar pattern of work to the one described in Section 2.2.5

e . ¢ w ..
¢ g5 ¥ _ i C& T
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Assume that refers to each point of the transformed model set; tienpr8 4 it holds
that

0 p |‘| -6 - .
J e —5 Qi ——> W W_ g w
N a - 11 C” .’:
! u v
- ~ 1 :‘_ 11
P 0 L
J, .0 —5— QO —— 0 ®_ Tt
” a —_ 11 c” |"|
| u X,
- ~ ’ :‘_ 11
R 6 p . . |‘| (6] 2. , ,
Dz — g Qo ———> o _ & p8
" a - 11 C” .’:
! u v
2.3.5 Modifications
The:! ! . andfi i algorithmsare bothbased ormultiply-linked nonrigid

registraion methods The “1'0aterm of theDd distance (see Section 2.2.@8hd the

_ 0 0 Qaterm of Equation (24) are similar. The sameseries of modifications were
performed on thefi i registration algorithmfor recovering deformation in an

occluded target surfaaes specificallypresented in Section 2.2.6 andgnically outlined in
Figure 2.2
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2.4 Gaussian mixtures model andn™ incorporated in the nonrigid

point set registration framework

2.4.1 Introductio n

The:' ' X ' formalism[57] is combined with th&YD &éformation model and is applied
to nonrigid point registration. In the following, the fundamental principles of this technique

are reviewed followed by relevant modifications of the algorithm.

2.4.2 The expectation maximization formalism applied to Gaussian

mixture models

This Section has been prepared as an extension of Section 2.2.2; it follows the exact
definition of : ' * including then™ formalism and its implicationsand caveats on
optimizaton. For example, Equation @) represents the probabilistic distribution of the
transformed source model points across the set of fixed target pbitit® association
between the) @& and thed @®is knownin advance then it is a sightforward task to
evaluatethe solutions of Equation @3), which, however, is not possible in poesst
registration.

This is a mixture density estimation problenheln” iterative algorithm implements an
efficient technique for the maximum likelibd estimation. It consists of two stepd:then-

step where the most probable assignments ofotheeto the 0 @@ are made (producing
optimizedX & see Equationc® ¢ below) and (i) the” -step where the maximum

likelihood estimates dhe « H h  parameters are updated using the best guessgs of
Then- and -steps iterate until (guaranteed) convergence to a local maximum of Equation
(2.33). It is because of the-step thathe « H h  parameters of the! ! of Equation

(2.31) can be obtained in closed form inthe-step.
n stdgp

X hoo O 0 NeHA ¢

88



M
>4

oy = ey
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e X E N O
| ogodN v T
X Y
1 N a
- stgp
. P
. h,— N (0}
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HB N U
4 - C .[
B X d
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h c& u8
B X

By applyi ng Bay st the dasslpestertoroprobbability distribution of the

0 &given theb acan be written

c o o - o0 6 o6 Nh 06 o6 Ne
" ° N EGLL
o0 6 o6 Nh 06 o6 Ne
. —— ‘ o
B 00 D o Nh vo o e
wheretheclassprio8 6 6 Ne ¢ and
o0 6 o Nh
P __qanlo o cap X8
¢" § S S
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Hence,

. —2 _oqonly oo
. ¢“ § S S
X h 5 0 & ys
B - —E—o0onfo oo
CH

The numerator and denominator of the output of Equa{®86) and (2.8) contain similar

terms.

According to the literature() N N 1 whi ch i mplies Odtasdignd gue.

technique $0-92] is based on this choicer (i) X N 1ip which indicates single best

guessesif. see solutions of Equation32.in Section 2.22). Appendip .l presents the
mathematical derivation of the maximum likelihoodirestes of thee H h  parameters.
Appendix p .2 andappendixp .3 give details about the convergence property of the
algorithm and the combined! ' and. ' formalism that led to Equationg@ ¢

c& v, respectively.

2.4.3 The minimization of the logposterior cost function via the I~

algorithm

It is mathematically convenient to assume that the target model points are the ones that

undergo the notinear transformation . Equation (232) of Section 2.2.2 can then be written

P o P . , .
-“:Qoor]—n 0 N n 0 N Y w
¢" § S S

since the transformedtarget set points irfEquation (2.8) serve as centres of Gaussian

clustersand hence [ 0 .
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To address outliers in the fixed source model pointasBttitious Gaussian cluster centre,

‘Q i p,canbantroducedEquation (2.8) then becomes
0 NhkHh
P i~ x P . , .
e ——————0Qwn -1 0 I+ n 0 I+ ¢80 18
¢“ 88 S

Consider thgosterior probability distribution efgiven

e 00 shbkhh 0—
05 FRAR -

where the class prior densily— is expressed by

’ 2 8o ¢8

The value ofQ in Equation (202) represents the likelihood of havirgwhile 'O— and
_have their usual meaning (see also Equatiof6f2of Section 2.2.5)¥ _ is a partition
normalization functiond — corresponds to a normalized probabilitg., TL 0 —L p

andB 0 — p.
It can be proved (see Appendgix4) that

AOGCIOA® P HN

o n .0 = n . o0 = -
e AOCI ET X : XN 1 17eC
OoNX L N L L
— N N
c C c SGs \ NG
_O0— C8 o

where! "#Qdx N Tip,B X pforp "Q a,andm B X a.
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The term n n 0 N+ n 0 I+ of Equation ¢c& ois the
Mahalanobisdistance,i.e., the distance ofy from *‘ given . The term >
B B N | INC represents a measurestétistical uncertaintwhich makessure that

theX values of thematrix of posterior probabilitie3 areaway from zero or one9f] (at

the beginningand dumg the alternatingin  and s t eptimization). Note thatnow

oNg . Only when the transformation starts to converge to an optimal solution

(towards the end of the optimizatjonill the X ' &art acquiring binary values.

Theupdate ruleof them s t which optimizes th& ' is summarized now by

C=—=0ongn Lo L6 e
N h CBT
B L4 ¢—!Q(bh§r’] R b n— f] n 0 n—
CH

and is applied X N D. The (continuousalued) matrixd corresponds initially to &uzzy

approximation of the (discretelued) correpondence matrix or 1\ which has a binary

classification character. The energy function of Equatiqio o is well behaved a3 © ~

owing to the continuous characterxf

In thé s t Eqgoation ¢& ois minimizedw.rt—and « h  using the computefiiom
then st matrix D, which iskeptfixed in this step As the’ ' are not considered free

parameters they are not optimized irfthe s t .@&pwever, treating thes h as free
parameters of the optimizati can increase the number of local minima of Equati@ o,

i.e.,, various norrigid pointset transformations may become valid solutions given the
0fl exibilityd provided in the optimization

presence ofygnmetrybreaking random noise.

Consider the following approximation

c®B v
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and that"Y the temperature parameter, as defined in Equati@ v is subject to linear

deterministic annealin®[L, 92, 94-96]. As the magnitude ofYbecomes larger, the elements

of N dp Q alp Q i p tend to take the— valug which implies a global point

matching process. As the magnitudést 1, theset N dp Q afp Q { acqiires

a binary charactei,e., thery ' argassigned to the close&aussian clusters centred at
_ 0 I which implies a local point matching proce3se case foiQ i pis reserved
for the class of outliers in the source model; it isoaable to choose a large constant value
for the temperature parametee,, Y Y, and let the fictitious  be the centre of mass of

O N—Mh o N—.

The other free parameter, hcan be chosespecifically for noarigid point set registratioto
be

@

Equation ¢8> @ summarizeshe followingtwo choices: i) anotheffictitious Gaussian cluster
centre;Q & p,isintroduced to address outBen the moving target point set. Thus the

matrix> becomes

E X N
éy E Yy
ry ', - p p ~ .
D A~ € é E é é » | 83
N N E X &
oN N E X O

XN NT1ipfor Qd panmd Qi p, exNcepktT

XN p }Q pRiBR 8

The cluster of target model outliers is centred at the fictitfpus which corresponds to the

centre of mass of) F8 j , and for’'Y "Y; and (i) from Equation ¢& o of thé step
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The row normalization of the affinity matrix in (ii) is particularly usefufor non-rigid point
matchingthat involves outliers in the target moaelpoints of the target metifor which no
reliable andnostprobable correspondencesnbe establishedvith points ofthe sourcdrom
the onsetf registration

An example is those points of the target that have true correspondences in the source but
cannot immediately, right fra the onset of registration, be assigned to them with a large
probability in them st @.@, in the registration between the original full source and an
occluded, extensively deformed and noisy target surfaceDue to the continuous
classification character o and the row summation constraint, they may initially be
considered mar as outliers (by some probability value) in the s t ef thealgorithm and
gradually converge to their trumrrespondenceas the source as the registration progresses

and the deformation is recovered

In the absence of row normalization, as specifjodéfined in thissection, such points (or in
general any outliers of the target) will be forced by the column normalizatian tof
erroneous correspondences with the source (including potential outliers of theisdiee
absence of column normalizan) during the optimization. This leads to the calculation of an
erroneous transformation functiodefived exclusively from thestablishedorrespondence

pairs, see Equation .00 later on in the te}tthat not only reinforces the mismatched
correspodences but also causes the creation of new erroneous correspondences (which in

turn are further reinforced in the next cycle of iterations oftheand stigp

Similar arguments can be raised for dodumn normalization of the affinity matrix which
has been extended to explicitly treat outliers indberce it does not favour the assignment
of outliers of the source to target pointac{uding potential outliers of the target the
absence of row normalizatipriThe case where the source points h&ve correspndences
in the target buthesecannot bereadily determinedin the m s t atphe beginning of
registration(due to extreme eformation of the target surface)addressed by theolumn

summation constrairtndthe continuous classification characterof

The common overlapetween the original full source and an occluded and deformed target

surface or an occluded, deformeddamoisy target surfaceannot always be determined
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precisely,.e., the extracted surface from the original full source may contain points that have
no true correspondences in the extracted target surface (whidhitloarbe identical to the
original occlided target modedr be a subset of)iand cannot be rejected as outliefhis
depends upon the distance threshold that was imposed in the extraction of the common
overlap combined with the extent of deformation in the occluded target and the chdracter o
the registering surface itself (which is quite smooth for prost@ely when the extracted
sourcesurfaceconsists ofpoints with true correspondences in the taeget points that can

be qualified as outliersan the ! methodology be useir full-modetto-occluded

model norrigid registration.

The row normalizatiorof D is another constraint of the algorithm that must be satisfied
| 'Oy pltfB i . Consider te example of Figure 2. It showsthe converged form of

whichis the bnary from linearassignment) correspondence matrix

4| N R A | A | A |E | A |Centreof target outliers: a;
< 1/0(0|0(O0 0
< 0/ 0j0|0| O 1
< 0/ 0(1,0|O0 0
é E| €| €| €| € é
< 0lo|0]|0] o0 1
Centre of source outliersHy | O | 1|0 |[E | 1 0

Figure 23:  The binary correspondence matfix Taken from Ref. $7] and modified

accordingly for the purposes of this presentation.

The 6fuzzy correspondenced matrix is defined
XN E N
€ E €& 8
X E X

The row and column summation constraints guarafifee oneto-one correspondence

between transformed target points and fixed source poamd (i) the identification of

95



outliers inthe source and target modelp on convergence of 213, ( shown

following a graduated assignment scheme.

The row normalization ad plays a major role inthR s t a&spt quantifies the presence of
outliers in the set of target poinas well as augments the overall process of correct point
matching. Ithas howevera minor impact on the optimization of Equatiogdo o of the

s t .énmeneral thevalues o | " plgMB A areoptimizedin thé s t leaped
on Equation ¢& o where the value oB N arising from each of thé rows of "Yis
indirectly dictatedwithin the context of nomigid point set registratior)y the normalization

ofthex ' af each of thax columns ofYinthen st.ep

The energy cost function is given by (see Appempd)

) , 5 , :
SR LI - X n . 0 =
q q
N c Y - T1ICY =X i
v Ox i \&
%
Y X 1 1xC XN 111G N1 IxC
_v— 80 x8

The termof Equation (27)

Y O Y X 1 1IxC

Y X1 IxC N TN X1 IxC

representsiow the fuzziness oJ .

Let 6s "4 s"6 Thelenefit matrixO is evaluated inhen s t &ngis used as input in

thé s t whereA O CI Bih—. The computed transformation is then applied to the set
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of target pointdeading to an updated target madghen and s t sewl be repeated
until pre-specified stopping criteria are satisfifithe target model is traftsmed during the
optimization of 2 h— for a given temperaturé/ Hence his algorithm producea distinct set

of 2 h— parametersipon convergencéor Y Y as a result of a sequential alternating
optimization processlhe converged—parametes at”Y canbe applied tothe original target
modelto produce the registergdrget surface in one steps(the—parameters produced by
the: ! ! R andfi i algorithmsat convergence were applied onto the original
source model t@enerate the registered source surfaca given_). The next round of
optimizations in then  and s t dapesplacdor Y Y , according to @eterministic
linear annealing schedulend so forthAs the nonrigid transformation_ is regulaized by

_ '\ Equation (X27), _ can now be considered a constant.

Summarizing, e M~ algorithm, embedded within a deterministic annealing mechanism,

optimizes the following two steps:

n stdgp
Theoptimization oP is initiatedby (i) the column normalizatioof> B X P
——=00 Gy L0 = h o -
X h . By
B —L—=0oifn .o A4 o n
C“ Y c
N dp Qéafp Qi p
where”Y “Y and* ‘ for Q i p; (i) followed by the row normalizatioof D
B X P
__P 0 p . . .
——Q w1 cyﬂ .0 M= n . 0 M=
'Y
N h 5 5 CB W
L U N

X dp Qa pip Qi
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where”Y “Y andnfy k n for Q & p. Equations (2.9) and (2.9) were derived
assuming that is constant " pBH p and! " pB hx p, respectivelyThe
benefit matrixd will be affected bythe output fromthe optimization of thenonrigid

transformatiorfunctionof thé st.ep

) stgp

The process of EL 2h— comes into play and the following leagjuares problens

solved for thecorrespondence paimsstablished inthe st e p

i Ed oh— 1 EI —

i ET N _o— CPH T

i ET ‘ - 0— CPH TP

where! v pfBH d B X 1 . The sole purpose af is to simplify he

mathematical problem.

There are two types of nergid registration that are being considered in this study: (
registrationbetween full source and full target modelherei ¢ & [the maximum number
of correspondence pairis equal tod Q& i ]; and (i) registration between fullosirce and
occluded target mode(the total number ofpointsin the common overlap wildefine the

maximum number oforrespondence paiys

As discussed earlier theffective number ofcorrespondence pairsiay notalways be the
maximum possiblet canbe reduced bgpurious pointsn the target or in the source model
These pointwill have no impact orhe calculation of duringi EL — in the present
implementationOnly the linear motion ofsuchtargetpointswill be affected {letermined by
thecomputed )whi ch wonét d i <aptinairlg itof bgspuriobisgpomntsif theo m

movingtarget model
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2.44 Integration of the 4 [ {deformation model in the 2~ =~ A"

algorithm
The objectiveof thé s t i fo minimize w.rt—
] 0 . .
- — AC i _tYrace r ¢P TG

for any given ¢émperature’Yduring the linear annealing schedyle hereis specifically
defined as thdeft null space of ps  where’ refers to the original target modét;is
assumed that k AT T ®® 1E|ise@ @lso Equation (D5 belowand text ér detail$ or to
minimize. w.r.t—

] 0 . .
. — - i _trace [ ¢pmno

as the reduction of temperatuf¥ which controls the transition from rigid to noigid
registration hasan impact orthe benefit matrixo and hence must be associated with the

N st.ep

Based on Equatior;& ¥ of Section 2.1.3

R

. " ps O Y7 ¢TI
ps O T ¢P U

where' is the transformed target modeljs the”YO Rérnelmatrix, "Yis the basis matrix,
relates to the nomffine subspace of th&YD "Warping, and’O represents the affine
transformationEquation ¢® 1 wvas produced by selecting to be theset ofcontrol points
which means thatyk N a and is the left null space ofps  (see also Appendix
P .6). This choice is applicable to neaigid point setregistration betweea full sourcemodel

andafull target modelvherei e « .

Letthe setofl ' | & pHB H be represented by N s
] ] 1 ]

é é é é
1 1 1 ]
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wherel ;5 B X 1 ;4 ., isthe correspondence matand refers to the

original source model

The objective cost function of Equationi@3) can beewritten into (see Appendix.6)

V'3 v 0 "IT&A c¢trace T
A [ - &£ £ OF ctracdg -~ Y0 T
ctrace T PR
Also,
I EJ Oh o .0~ ¢ Ty
i EJ Of o = v - TT P Mw

where” and’ arise from thdull rank™ ° decomposition ofpS  according to

o ppB

aANc

psS

Once the correspondences are established imths t ,ehp leassquares cost function of
Equation ¢® 11 Xis minimizedw.r.t.[ based on Equatior® 1T yand therw.r.t. O based

on Equation ¢® 1t dbor a given temperaturdhe transforming target modeltisen updated
andthis alternating process ispeated until convergence. The same joint optimization over
the correspondence matrixand transformation parametef® i  takes placeagainfor a
lower temperaturestarting from the last updated target modi@lowing a predefined linear

deterninistic annealing mechanisrand so forth

To account for the possibility of choosiagset of control points from , the objective cost

function of Equation (203 can be rewritten fory into (see Appendip .7)
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. Oh A ' 0 WY T A ctrace T

d
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ctrdace 7o Ppp

where Q=N 4 represents the affine transformation.YN s is the basis matrix,
N oq is the"YD Rérnel matrix,” and’ arise from theull rank™~ * decomposition

of ps according to Equation (210),] N A relates to the noeaffine subspace of

the "YO "Warping,” VN A represents the left null space gis N s and

0 B I corresponds to the set of the original target control points.

Also,

I EX Oh oo T YT P p¢
where” =YY o ©  and
i ET. Oh o v - Yo7 cPppa

2.4.5 Modifications

The available C++ algorithm6g] was rewritten using the output from thematrematical
derivations of Sections 2.4.3 and 2.4A4.the perturbation from spurious points in the target
or in the source model was not accountedih the codes, Equations (2.98) and (2.60
Section 2.4.3 were implemented for an extended affinity matr{see Figure 3). This
modificationis necessary for the neigid point set registration between a full souncedel
and an occluded anextensivelydeformed target surfaband other casess described in
Section 2.4.3.

The energy cost function ofghation ¢&® 11 xwas derivedby selectingthe original target
model to be the set of control points.€, "Yk ) which affords higher accuracy of
registration Equation ¢® p @s produced by selectirthe set of control points to be a subset
of the origiral target modefi.e., Y ). While the: ! ' X ' formalism as presented in
this studyis consistent withrelevant machingearning concepts and specifically the work
published in Ref.J7], there is discrepancy betwedfquations (15), (16and (17) ofRef.
[57] andtheresultsof this work
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One way to perform nerigid point set registration between a full source niodel and an
occluded target modél using the modified algorithm may ty transforming onto

where’ k c o n p o o. Theseliability of registration depends upon the quality of the
correspondence matrixwhich is constructed at tiie s t . g matrix is of good quality
when the true correspondences anéy identified and the remainder from is treatel as
outliers of the sourceConsidering the morphology of the prostate surface, this optiost

be rejected.

A second approach is to register onto’ . By imposing tight nosrigid registration
conditions,all points of the source withalid correspondencen the targetan- theoretically

- be discriminated againghe remainde(which is treated as outlieos the sourcgat the end

of the annealing processBy using this set ofsource pointsas control pointsof the
registrationand applymg the computed onto the remainder fothe full source can be
transformedaccordingly. Determining this set &fource control pointsis however not
possible in ourcalculationsThis way is also not promising considering the smooth topology

of theprostate surfaces.

Another approachis to first obtainthe oneonone nearesteighbour correspondences
between and " by setting a maximum distance threshold as the upper limit of all
correspondencess Figure 2 shows The wo point setsnust bein approximate registration
before the nomigid registration process of Figure.42is initiated and the initial
correspondences must be produced from the closest poin{lpairaposing a low value for
the maximum distance threshald)

The outputf r o m 6 e srteadstineighltoicrog r e s p dmFRigere 24 eomdists of
the extracted source model point bt r and the extracted target model point set
cof rThec ot r dataseis aligned ontac o i rbased on thenodified:' ' X !
registrationalgorithmwhere for the set of control pointsit holds thath ¢ o™r r.

The initial value for temperaturéy, of the deterministic annealing mechanismst be so
large as the largest squared distance that can be computedlfppomtpair combinations
betweenc or r andc o f r In doing so all possible correspondences betvwikentwo
datasets become equally probablethe m s t.eThe correspondence matrixis then

characterized by a high degree of fuzziness.
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In thé s t ,ehp energy cost function of Equation1(@7) is minimizedw.r.t —given the
estimated inthen st acpording to Equations (2.80and (2.19). The Y and
matrices, which are also required in the calculatiansestimated. The dataseto™ r is
updated using the optimizetrd "dnd affine parameters— The final set of optimized

parameters—at”Y is obtained after a series of alternating and S t eppmizations.

The temperature is then reduced (by a fixed annealitey aad the same process is repeated
for the already transformed datageb™r r. As the temperature is gradually reduced the
correspondences are further fitumed recovering the local structures,is®xpected from
Equations (2.98) and (2.R9

The ptimized"Y0 "ahd affine parameters-obtained at the end of the annealing schedule
will then be used to calculate the nogid transformation that will be applied fo . The
"Ymatrix for the full modél is computed taking ot r to be the setfacontrol points of

. The output from this process overwrites the moving model, ndmelly, ~ [P , and
the overall procests repeatedintil a stopping criterion is satisfied. An increased number of
correspondences is expectiuk to the gradual nemgid deformation of the moving model
This approach can lead teeliable norrigid registrationresults between full models and
occluded surfaces only if the extracted source surface consists of points with true
correspondences in the extracted targetel(plus possible outliershencet is worthwhile

further exploiting it.
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Modified Algorithm.

Input: The originalfull source model set , the original occluded (and deformed and

noisy) target model sét and the nofrigid parameteried”Y0 tvansformation model.

Output: Themoving modél registerednto the target scere.

Initialize the registration: M = M,

Repeat
Full 3D Source Model: M Occluded 3D Target Maodel: S,

Establish Nearest Neighbour Correspondences

Extracted Points from Source: Extracted Points from Target:
Corr{M)C M Corr{S) C &

Obtain alignment between Corr{:M’} and Corr{5) using the GM M /EM + F rps algorithm

Initialize the temperature: T =T,
Repeat by reducing tempemture accordingto a finear annealing schedule

' Repeat

Maodified £ — step

M — step

[i] Obtain optimized TPS and affine parameters @ from @ « argmin:£;(0);
[ii] Apply M := F(M;8) where € := Corr(M)
Until the requested number of iterations is reached

Figure 24:  Maodifications of the:* ' XL ' learning algorithm for fulimode}

to-occludedsurface nosrigid registration.

2.5 Summary

The stateof-the-art registration algorithms proposed by Jian and Vemuii53, 54} (ii) Tsin
and Kanadg55]; and {ii) Chui and Rangarajajd7] wereformulatedexclusively for non
rigid registrationb et we e n  figerenal pslirffaceée @ or 00). These techwjuesare
subject to the condition that the registratipsr dataets must not deviate significantly in
number of points In this work the algorithmsare modified to account fornonrigid
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registration betweeroO full prostate surfacesand occluded onesA mechanism for
producing valid initial correspondences betwéaemis designedand invokedas the initial

stage before thegistrationprocess is initiated usirajl three types of algorithms

For () and {i) the emphasiss placed on designing and imepmenting a suitable process for
achieving reliable final correspondencestween thetransformedfull source and the
occluded targett is designechaving in mind the multiphlinked character of the associated
(globally defined)objectivecost functionsThe approach of performingpnrigid registration
between thextracted datasets from the full source and occluded tartggted|t is because

of the multiplylinked nature of theelevantenergyfunctions that the overall corresptence

error canbe considerablyreduced during the nemgid registration of the extracted source
and targepoint dataets (whichin turnis based on the originalgorithmicformulationof the
nontrigid registration models ofi) and (i)). The prostate surfaces camdego a large
variation in shape in the presence of important amounts of noise and oliie@gsvide a
accuratenontrigid registration schemspecifically for the smooth and(often extensively)
perturbedorostate surface¢a) the complete set of extradtsource points is chosen to serve

as the set of control points in the ragid registration with the extracted target point dataset;
and p) the complete set of extracted source pofmtisich is gradually increasing in size as
the deformation is incremally beingrecovered) ihosen to serve as control points for the
calculation of théYD ®¢formation of theemainder of theegisteringfull source modelAs a
consequence higher levels of registration accuracy between the full prostate soura and th
partial deformed view of it (which also bears the effects of additional perturbations) are

achieved.

For (ii), aside from the proposeagkneralmethodology thats applied to ) and (i), which
has been suitably adjustea series of algorithmic refoutationsare performed. Thesare
based on &) the exactmathematical expressiorthat are derivedn this work and (b)
implementation®f relevant terms which were not part of the available algorithmif6@ieir
optimal formsuch aghe mathematical gxessions for the column and row normalization of

an extended affinity matrix asspecifically derivedn Section2.4.3
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Chapter 3

Design of synthetic test prostate data and assessment of
registration accuracy of selected nAogid algorithms via

computational experiments

3.1 Introduction

The sensitivity of the selected nogid algorithms, defined by registration accuracy, with
respect to a series of perturbation effects must be measured. And for that purpose suitable
synthetic prostate dataere carefully designed to simulate a wide varietyaadilablereal

medical imaginglata

The preparation of prostate synthetic data was guided by a large volume of real prostate data
that were collected intraoperatively via the aid ofdaevinciSurgcal SystemClinical cases

of deformed prostate surfaces characterized by geometric features winelgjgéncy details

(i.e., a shap creases) were observé&dnumber of other synthetic prostate surfaces were also
constructed spanning unobserved butsfme clinical scenariosThe familiar geometric

structure of the prostate surface was maintained simalilations

A number of validation schemes for assessing the registration accuracy of thigichon
algorithms were also developed and tested an extensive series of computational
experiments. The registration accuracy was determined by computiriy ¥h@using the

approach of Section 12.

Sections 3-3.6 refer to registration betwedunll O models while 3.7 and 318 full-modet
to-partial-model registration. The computationagistrationexperiments were conducted
after an optimalinitial manualalignment between the source and the target m(sis
Section 3.2) As was mentioned in Chapter 2, no prior pdoipoint correspondares are
assumed betweethem Also, the identification othe final correspondencelsetween the
registering source and the target arises from an optimization pr@sesaplemented in the
registration algorithms)which isinitiated by an approximate maalalignmentbetween the
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datasetsThemo r e @ u nr endidl alignment isthe mobre deteriorated the nagid
registration accuracy wilbe computedif. the estimated final correspondencesuld
further deviate fronthe true ones)ven for andeal initial alignment between the source and
the target, it is not guaranteed that the examined algorithithsdentify the exactfinal
correspondence@vhich isa particularly challenging task considering the smoothness of the
prostate surfacesnd tha no intrinsic features or extrinsic markers are used to guidedite
rigid registration (see Section 1.2.1f) the true correspondencesuld beidentified by the
examined algorithmghat wouldimply "YY ‘O 11) By performing an optimal initial alignment
before registrationye set the condition for establishifidne best warping accuracies that can
be computed using the given algorithm&r measuringtheir capacity to identify the true
final correspondencgs This output can be used as benchmark agast which the
improvement of accuracy should be aimedstirting fromlessoptimal cases ofinitial
alignmentconsidering thathe computational experiments this workwereconductedased

onan extensive series oépresentative simulations of real nealiimaging data

The 0O prostate surface mesh of Figure 3.1 was used in these expefin@msC++
computer algorithms #t are presented in this Chapteere developed with the aid of the
Visualization Toolkit ¥ TK, version 5.8.0. See Ref. [§7 The computational registration
experiments were conducted at the Computer Science cluster of UCL (Sun N1 Grid Engine
6.1. See Ref. @) by submitting batch jobs.

Figure 3.1: In the left panel: th&O prostatesegmented image vohe. In the right panel:

the 0O point-cloud representation of the prostate surfaesh

"TheD 'Y rostate segmentation was provided by Yipeng Hu and was prepared by a
radiologist at University London College Hospital (UCLH). ThéY '§cans were acquired at
UCLH with local ethical approval for the research purpose.
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3.2 Initial alignment of the source model onto the target surface

A softwareapplicationwas implemented for the manual alignment of the source model onto
the targetscene before the natgid registration is initiatedsee Figure 3.2)The graphical
user interface"O"Y"@as developed usinipe 0 dibrary [99] and the visualization utility is

managed byb "Y@nd0 6 [100]. The main features of the software:ar

A The ability to scaleand superimpose the source model onto the target smetige
target onto the sourcand save the new orientation@)d size(s)pf the manually

registeredcolourcoded model(s) into a designated directory

A The option of downsamiplg feature datasets using Y@r0 6.0

A The option of producing augfacereconstructed point cloud usiog”YD

A Crop a full model to produce a partial view of it

A Load three (or two or one)O images and view them in the same geometrical
coordinatesystem

A Produce synthetitestdata

A Calculate théY' YOl

Svsommcondicied pord doucs.

Figure 3.2:  Screenshot of théO Y '@eveloped for the initial manual alignment of the

source model onto the target scene

108



3.3 Deformation effects and their impact ord| 4

The capabilities of the nonrigid algorithms to recover deformation are tested by
systematically increasing the size and the extent of thdimear transformation applied onto
the source. This is a very critical examination considering the smoothness@ite surface
and that it is lacking distinctive features. Algorithm 1 shows the pseudocode for a routine

which implements a way of producing warped prostate surfaces for registration.

Algorithm 1: Generation ofull target models of registration byplication of a8 YO Warp

onto the source.

Input: The originalfull source model sét ; number of elementS of a subset 6f
call it , which serves as the source model of registration; minimunmand maximun
number ofpoints selected randomly from to serve as source control points for the
(random)"Y0 tvansformation applied orito  to produce. -~ M— and™ ,~ ,and

which represent, respectively, the upper limits ofa@lwaiform distributions with lower

limits zero.

Output: Theé  model set andhe difference ~ which provides the
mar k e r s dY'Yf@aleulations éedlgorithm 2); =~ I+, . ~ I+, and

. B

1 Randomly select points from to produce

2: Identify the labels of those points of that formm  and exclude them from the list

of point labels 6f  to generate

3 QL LT 0k C by

4. Randomly selecipoints from to form the set of source control points required

for the calculation of the affine and&vd "Yansformation parameters of . The

complexityof deformation acroSs is governed by the variabl@

oh® G;oh o oandd h & &

109

C

<



where whohi represents theO "Gcontrol point which, by application of
the”YD thansformation  onto whohy of , will be mapped exactly to

its correspondenceg., the QOBtarget point whohy . OO represents a
set of random numbers each of which arises from a distinct uniform
distribution (one for each dimension). Each of the three distributions is lying
between zero and an upper value which is: (for thewdimensia); =~  (for

the o dimension); and”™  (for the ¢ dimension).Hence ® ¥ 1

ON T ;and® N TH  8This step determineswhohi | i.e, the set

of all (Arandoml yoof thefYd dé&foomatib), whickareg et p «
also required for the calculation of the affine afdd "Wansformation
parameters of . The size of deformation acrdss is governed by
- F]_a F]..;

6: [OXIN o

7: Calculate théYD thansformation  and applyitonfo  to produce ~ M.

8: Identify the correspondences of and those 6f ~ in_ 7 I}to produce

the target model of registration =~ M—andthese of MAdef ormedo t ar

-

R ~ I}, respectively.

9: Qe 0V i

Ten different sets of computational registration experiméts, ‘O w g were conducted
for each registration algorithm amar fixed |~ o @ points,” ¢ and” ¢ TUTT
while™ ,7 , and”™ were varied.The tests inOw® andOw® ‘OwyYsimulate as
close as possible the available clinical datariousothercombinations of input parameters
that could lead teossible instancesf prostate deformatiowerealso testedSee Tale 3.1
and Figures 3.3 and 3.4
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Fea 10| 10 | 10
Fos= 9| 9|9
F® == 8 8 8
e wm 7 7 7
Fe®w= 6 6 6
F®a= 5 5 5
Fom 4 4 4
Fems] | 4| 4| 8
Fowm 4 | 8 | 4
Foum 8 | 4 | 4

Table 3.1: Ten different sets of deformed target models of registration are produced from
Algorithm1 by varying ,” ,and . See also Figures 3.3 and,3ad text

for details.
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Figure 3.3  Examples of synthetic prostate datasets which represatinearlydeformed
target models of registration and were produced fAdgorithm 1. ThecO

point-cloud representatiorage not in scaléSee Table 3.1 and text for details.
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Exp A

FMy — M 6) FLMy — M 8) FLE (Mg — M 6) FIEMy — 0 6) FUO( — s 6) FUP (A — o 6) FUM M — M 6) FUO(AG — A0 6)

Figure 3.4 Examples of sets of original andi def or medo t ar @@f. mar ke
These sets were produced frofdgorithm 1 and are used in thé&Y'Y 'O
calculations.The cO datasets ar@ot in scale. See Table 3.1 and text for

details.

The registration takes place bewsn~ and eachelement of = =~ I} of each

experiment producing as output a set of affine &Nd "Wansformation parameters

O h aswellas, ~ I} .Sincé serves as the set of control points in the
"YO ansformation it holds thatYk . The "Y0 “ransformation, constructed based
upon O h , IS then applied onfo ~ according to Equation¢®& x of Section

2.1.3 wheré is also used as control points in thiansformation This leads tahe set

N . See also Figur&.5 for a graphical representation of an example

~

registration experiment.
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FEO (M, — M)
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Figure 3.5 Registration between and _ ~ M~ of Owd@. The average'Y'YO

computed with théD0 “YO ‘ethod and fo® p vis (0.2812 + 0.2108

mm. See text for details.

The "Y'Y Qalculations are conducted by randomly pooling a number of points from

- -

N and comparing them to theirrcespondencies in = ~ . This

~

process takes place between each element of~ ~ I+ and its counterpart in

- ~ I+ and for different numbers of randomly selected target markers (and for

~

each experimant and nosrigid registration method), aslgorithm 2 demonstrates below:

Algorithm 2: Calculation of Y'Y O

Input: Thé ~  model set;  ~ - N+ and .~ -~ I+ wheré is

the number of elements in easét;  is the number of times that a fixed number of target

markerd% ofvfp fp vis randomly selected frém

Output: Consider a list of Y'Y Oéach arising from a random configuration Bftarget

markers drawn from ~ ; theyare computed by first identifying their correspondences

in - " Mand, -~ ~ '+ and then using the relationship

~
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"Y'Y'O,E - T = . B b o oP

P

where =~ M— represent theO Cartesian target marker coordinates of e

pair of spatial correspondences. A distinct list\6% ‘Odan be produced for each element of

M— and its counterpartni .~ " N~ for a fixed®™ The same

A

process can be repeate®~  chip 1p v.

1: Qi M chipfpunumber of target markers

2 Q€ | p 0¢&¢~ p

3: MQET O p & 7 ODho p

4: Randomly selec® points fronT ~ and identify their point
labels.

5: MQEL = p o¢ W «h= »p

6: Find the correspondences of the target marker in

- - Mtand, -~ ~ I} based on its already
identified point label.

~

7: Calculate the squared distance between the two
correspondencesnd add the result to a running total.
8: Q¢ V¢ |

9: Divide the sum of the computed squared distaripev by ®
take the square root of the output to compute YHhé,Gand append the

result onto a list specifically linked {9

10: Qe V€|
11: Qe 0 i
12: Q& 0 |
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Consider the average value and the standard deviation"8Y &¥ioriginating in  random

configurations oM target markers drawn from ~ ~ I} as described in the output

section ofAlgorithm 2. A list of average values and standard deviationsYof Odan be

produced by iterativelyx@amining each element of ~ ~ I+ and its counterpart
in 7 " I+ for afixed®and for all experiments and registration methods.
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Figure 7.1: K1=100, k2=100, d=15 EM+TPS. Only a subset of the availableiglata
graphically presented.

Figures 3.6 Average’Y'Y Cdomputed with th®© 0 "YU Pethodto determine sensitivity
to deformation” 100, p m,rand®  p v Only a subset of the
available data is graphically presented.

8 The"Y'Y Gshowed no significant dependence on the (random) configuration of target
markers as can be seen in Figures33&%
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