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Abstract In this paper, we revisit the augmented Lagrangian method for a class of
nonsmooth convex optimization problems. We present the Lagrange optimality sys-
tem of the augmented Lagrangian associated with the problems, and establish its
connections with the standard optimality condition for the solution and the saddle
point condition of the augmented Lagrangian, which provides a powerful tool for
developing numerical algorithms. We employ a linear Newton method to the La-
grange optimality system, and obtain a novel algorithm for the nonsmooth convex
optimization problems. Under suitable conditions, the nonsingularity of the Newton
system is shown, and the local convergence and convergence rates of the algorithm
are provided. The algorithm is applicable to a wide range of problems in practical
applications, and illustrated on three common examples.
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1 Introduction

In this paper we consider the augmented Lagrangian method for solving a class of
nonsmooth convex optimization problems

min
x∈X

f (x)+φ(Λx), (1)
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where the function f : X → R is convex and continuously differentiable on a Banach
space X , φ : H → R+ is a proper, lower semi-continuous and convex function on a
Hilbert space H, and Λ is a bounded linear operator from X to H. We assume that
the proximity operator of the convex function φ has a closed form expression. This
problem class encompasses a wide range of optimization problems arising in practical
applications, e.g., inverse problems, variational problems, image processing, signal
processing and statistics to name a few [1–7].

The augmented Lagrangian method was proposed independently by Hestenes
[8] and Powell [9] for solving nonlinear programming problems with equality con-
straints. The method was studied in relation to Fenchel duality and generalized to
nonlinear programming problems with inequality constraints by Rockafellar [10,11].
Later it was further generalized to the problem (1) by Glowinski and Marroco [12]
where the augmented Lagrangian is given by

Lc(x,v,λ ) = f (x)+φ(v)+(λ ,Λx− v)+
c
2
‖Λx− v‖2.

The inner product (λ ,Λx− v) dualizes the equality constraint, and the quadratic
term penalizes the constraint violation for the following equality constrained prob-
lem equivalent to problem (1):

min
x∈X ,v∈H

f (x)+φ(v) subject to Λx = v.

A solution of problem (1) can be characterized, under certain conditions on f , φ

and Λ , as a saddle point of the augmented Lagrangian, and the strong duality the-
orem leads to first-order algorithms for the dual function θ(λ ) = infx,v Lc(x,v,λ ).
In practical implementation, the combination of the dualization and the penalization
alleviates the slow convergence for the ordinary Lagrangian methods and ill condi-
tioning as c→ ∞ for penalty methods. Due to these advantages over the standard
Lagrangian formulation and the penalty formulation, a large number of first order
algorithms based on the augmented Lagrangian Lc have been developed for a wide
variety of applications; see e.g., [1,13–15].

An alternative Lagrangian for (1) has been introduced by Fortin [16], which was
obtained by employing the partial conjugate of the augmented perturbation bifunction
Fc(x,v) = f (x)+φ(Λx− v)+ c

2‖v‖
2 due to Rockafeller [10]:

Lc(x,λ ) = min
v∈H

((v,λ )+Fc(x,v)) = min
v∈H

(
(v,λ )+ f (x)+φ(Λx− v)+

c
2
‖v‖2

)
= min

u∈H

(
(Λx−u,λ )+ f (x)+φ(u)+

c
2
‖Λx−u‖2

)
= f (x)+min

u∈H

(
φ(u)+(λ ,Λx−u)+

c
2
‖Λx−u‖2

)
= f (x)+φc(Λx+λ/c)− 1

2c‖λ‖
2,

where c is a positive constant and the function φc(z) is the Moreau envelope (see Sec-
tion 2 for the definition). It was shown that a saddle point of Lc is also a saddle point
of the standard Lagrangian and conversely [16, Thm. 2.1]. A first order algorithm
often referred to as the augmented Lagrangian algorithm, which is quite similar to



Lagrange optimality system for a class of nonsmooth convex optimization problems 3

the one developed in [12], was proposed for certain special cases of the function φ

[16, Thm. 4.1]. The augmented Lagrangian method was further studied by Ito and
Kunisch [17] for the following optimization problem

min
x∈C

f (x)+φ(Λx), (2)

where C is a convex set in X . One of their major achievements is the results con-
cerning the existence of a Lagrange multiplier for problem (2): It was shown that
under appropriate conditions Lagrange multipliers of a regularized problem defined
by the augmented Lagrangian Lc converge and the limit is a Lagrange multiplier of
problem (2). In addition to the valuable contribution, the augmented Lagrangian al-
gorithm by Fortin was extended to a more general class of convex functions φ , and
the convergence of the algorithm was established. It is noted that the problem can
be reformulated into problem (1), by redefining the convex function φ and the linear
map Λ by φ(x,y) := φ(x)+ χC(y) and Λx := (Λx,x), respectively, where χC is the
characteristic function of the convex set C. Hence, it shares an identical structure with
problem (1).

The augmented Lagrangian Lc is Fréchet differentiable, cf. Section 3, which mo-
tivates the use of the Lagrange optimality system

DxLc(x,λ ) = 0, and Dλ Lc(x,λ ) = 0, (3)

to characterize the saddle point and hence the solution of problem (1). This perspec-
tive naturally leads to the application of Newton methods for solving the nonlinear
system. However, the Moreau envelope involved in (3), cf. Proposition 3, is twice
continuously differentiable if and only if the same is true for the convex function φ

[18], and thus the standard (classical) Newton methods cannot be applied directly
to the Lagrange optimality system. Semismooth Newton methods and quasi-Newton
methods are possible alternatives for solving the Lagrange optimality system, but
there are some drawbacks in their applications to the Lagrange optimality system:
The inclusion appearing in the chain rule of a composite map makes it difficult to
theoretically identify a generalized or limiting Jacobian of Dx,λ Lc for semismooth
Newton methods, while the superlinear convergence of quasi-Newton methods holds
only when the system to be solved is differentiable at the solution [19]. We opt for in-
stead linear Newton methods [20] to solve the Lagrange optimality system (3), where
one replaces the generalized Jacobian of Dx,λ Lc in semismooth Newton methods with
a linear Newton approximation (LNA) of Dx,λ Lc. Calculus rules, which provide a sys-
tematic way of generating LNAs of a given map, reduce the construction of a LNA
of the Lagrange optimality system to the computation of the (Clarke’s) generalized
or limiting Jacobian of the proximity operator involved in the system, cf. Section 4.

The focus of this work is twofold. First, we present the Lagrange optimality sys-
tem, which was not provided in both [16] and [17], and establish its connection with
the standard optimality system of problem (1) and the saddle point condition of the
augmented Lagrangian. Second, on the basis of the Lagrange optimality system, we
develop a Newton type algorithm for problem (1). To the best of our knowledge, this
is the first work using the Lagrange optimality system systematically for developing
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Newton type algorithms for nonsmooth convex optimization (1). These two aspects
represent the essential contributions of this work.

The rest of the paper is organized as follows. In Section 2 we collect fundamental
results on the Moreau envelope and the promixity operator, which provide the main
tools for the analysis. In Section 3, we investigate the connection among the opti-
mality system for the problem (1), the Lagrange optimality system and the saddle
point of the augmented Lagrangian Lc. In Section 4, we develop a Newton method
for problem (1), which exhibits a local Q-superlinear convergence.

1.1 Notations

We denote by X a real Banach space with the norm | · |. The duality bracket between
the dual space X∗ and X is denoted by 〈·, ·〉X∗,X . For a twice continuously differ-
entiable function f , its derivative is denoted by D f (x) or Dx f (x), and its Hessian
by D2

x f (x). H is a Hilbert space with the inner product (·, ·), and the norm on H
is denoted by ‖ · ‖. The set of proper, lower semicontinuous, convex functions de-
fined on the Hilbert space H is denoted by Γ0(H). The effective domain of a function
φ ∈ Γ0(H) is denoted by D(φ) = {z ∈ H | φ(z) is finite}, and it is always assumed
to be nonempty. For a function φ ∈ Γ0(H), the convex conjugate φ ∗ is defined by
φ ∗(z∗) = supz∈H ((z∗,z)−φ(z)). A subgradient of φ at x ∈ H is g ∈ H satisfying

φ(y)≥ φ(x)+(g,y− x), ∀y ∈ H.

The subdifferentials of φ at x is the set of all subgradients of φ at x, and is denoted by
∂φ(x).

2 Moreau envelope and proximity operator

The central tools for analyzing the augmented Lagrangian approach are Moreau en-
velope and proximity operator. We recall their definitions and basic properties that
are relevant to the development of the Lagrange multiplier theory. We note that for
φ ∈ Γ0(H) the strictly convex function u→ φ(u)+ 1

2‖u− z‖2 admits a unique mini-
mizer.

Definition 1 Let φ ∈ Γ0(H) and c > 0. The Moreau envelope φc : H → R and the
proximity operator proxφ : H→ H are defined respectively as

φc(z) = min
u∈H

(
φ(u)+ c

2‖u− z‖2) ,
proxφ (z) = argmin

u∈H

(
φ(u)+ 1

2‖u− z‖2) ,
for z ∈ H.

By definition we have

prox φ

c
(z) = argmin

u∈H

(
φ(x)

c + 1
2‖u− z‖2

)
= argmin

u∈H

(
φ(u)+ c

2‖u− z‖2) ,
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and
φc(z) = φ(prox φ

c
(z))+ c

2‖prox φ

c
(z)− z‖2.

We refer interested readers to Tables 10.1 and 10.2 of [3] for closed-form expressions
of a number of frequently used proximity operators.

We recall well-known properties of the Moreau envelope and proximity operator.

Proposition 1 ([21]) Let z ∈ H and c > 0. Let φ ∈ Γ0(H).

(a) 0≤ φ(z)−φc(z) for all z ∈ H and all c > 0.
(b) limc→∞ φc(z) = φ(z) for all z ∈ H.
(c) The proximity operator prox φ

c
is nonexpansive, that is,

‖prox φ

c
(z)−prox φ

c
(w)‖2 ≤ (prox φ

c
(z)−prox φ

c
(w),z−w), ∀z,∀w ∈ H.

(d) The Moreau envelope φc is Fréchet differentiable and the gradient is given by

Dzφc(z) = c(z−prox φ

c
(z)), ∀c > 0,∀z ∈ H. (4)

(e) The gradient z→ Dzφc(z) ∈ H is Lipschitz continuous with a Lipschitz constant
c, i.e.,

‖Dzφc(z)−Dzφc(w)‖ ≤ c‖z−w‖, ∀z,∀w ∈ H.

(f) The Moreau envelope and the proximity operator of the conjugate of φ are related
with φc and prox φ

c
, respectively as

φc(z)+(φ ∗) 1
c
(cz) = c

2‖z‖
2, prox φ

c
(z)+ 1

c proxcφ∗ (cz) = z.

All the results are standard and the proofs can be found in e.g., [21]. Here we give an
alternative proof of (f) based on the duality theory.

Proof For z ∈ H, we define the function Lz : H×D(φ)→ R by

Lz(u, p) := (u, p)−φ(p)+ 1
2c‖u− cz‖2.

Clearly, Lz is convex in u and is concave in p. We claim that Lz posses a saddle point
on H×D(φ). Clearly, lim‖u‖→∞ Lz(u, p) = ∞ for all p ∈D(φ). Thus by [4, Chap. 6,
Prop. 2.3], we have

inf
u

sup
p

Lz(u, p) = sup
p

inf
u

Lz(u, p). (5)

Now we compute infu supp Lz(u, p) and supp infu Lz(u, p) separately. First, we observe

inf
u

sup
p

Lz(u, p) = inf
u

(
sup

p
((u, p)−φ(p))+ 1

2c‖u− cz‖2
)

= inf
u

(
φ
∗(u)+ 1

2c‖u− cz‖2)= (φ ∗) 1
c
(cz).

Meanwhile, we have

inf
u

Lz(u, p) = inf
u

( 1
2c‖u− cz‖2 +(p,u)

)
−φ(p) = 1

2c‖cp‖2 +(p,c(z− p))−φ(p)

= c(p,z)− c
2‖p‖2−φ(p) = c

2‖z‖
2−
(
φ(p)+ c

2‖p− z‖2) .
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Thus, we deduce

sup
p

inf
u

Lz(u, p) = sup
p

( c
2‖z‖

2−
(
φ(p)+ c

2‖p− z‖2))= c
2‖z‖

2−φc(z).

Therefore, from (5) we have

(φ ∗) 1
c
(cz) = inf

u
sup

p
Lz(u, p) = sup

p
inf

u
Lz(u, p) = c

2‖z‖
2−φc(z),

which shows the first relation. Differentiating both side of this equation with respect
to z and using (4) result in the second relation. �

The Moreau envelope and the proximity operator provide equivalent expressions
of the inclusion λ ∈ ∂φ(z).

Proposition 2 Let c > 0 be an arbitrary fixed constant and φ ∈ Γ0(H). Then the
following conditions are equivalent.

(a) λ ∈ ∂φ(z).
(b) z−prox φ

c
(z+λ/c) = 0.

(c) φ(z) = φc(z+λ/c)− 1
2c‖λ‖

2.

Proof Let the pair (z,λ ) satisfy the condition λ ∈ ∂φ(z). This can be expressed as

0 ∈ ∂φ(z)+ c(z− (z+λ/c)) = ∂x

(
φ(x)+

c
2
‖x− (z+λ/c)‖2

)
|x=z,

which is equivalent to z = prox φ

c
(z+λ/c). This shows the equivalence between (a)

and (b). Next we show that (b) implies (c). Suppose z−prox φ

c
(z+λ/c) = 0. Then by

definition of φc, it follows that

φc(z+λ/c) = φ(prox φ

c
(z+λ/c))+ c

2‖prox φ

c
(z+λ/c)− (z+λ/c)‖2

= φ(z)+ c
2‖z− (z+λ/c)‖2 = φ(z)+ 1

2c‖λ‖
2.

Finally, we show that (c) implies (a). By definition of the Moreau envelope, it follows
that

φc(z+λ/c)≤ φ(u)+
c
2
‖u− (z+λ/c)‖2, ∀u ∈ H,

which is equivalently written as

φ(z) = φc(z+λ/c)− 1
2c
‖λ‖2 ≤ φ(u)+

c
2
‖u− z‖2 +(u− z,−λ ), ∀u ∈ H.

This implies that the strictly convex function u→ φ(u) + c
2‖u− z‖2 + (u− z,−λ )

attains its minimum at z. Thus

0 ∈ ∂u

(
φ(u)+

c
2
‖u− z‖2 +(u− z,−λ )

)
|u=z = ∂φ(u)−λ ,

which proves that (c) implies (a). �
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3 The optimality systems

In the classical optimization problem for a smooth cost function with equality con-
straints by smooth maps, it is well known that saddle points are characterized by La-
grange optimality system of the (standard) Lagrangian associated with the optimiza-
tion problem. In this section, we show that the augmented Lagrangian Lc generalizes
the classical result to the nonsmooth convex optimization problem (1).

Proposition 3 Let c> 0, f be convex and continuously differentiable, and φ ∈Γ0(H).
The augmented Lagrangian Lc satisfies the following properties.

(a) Lc is finite for all x ∈ X and for all λ ∈ H.
(b) Lc is convex and continuously differentiable with respect to x, and is concave and

continuously differentiable with respect to λ . Further, for all (x,λ ) ∈ X ×H and
for all c > 0, the gradients DxLc and Dλ Lc are written respectively as

DxLc(x,λ ) = Dx f (x)+ cΛ
∗(Λx+λ/c−prox φ

c
(Λx+λ/c)), (6)

Dλ Lc(x,λ ) = Λx−prox φ

c
(Λx+λ/c). (7)

(c) DxLc(x,λ ) can be expressed in terms of Dλ Lc(x,λ ) by

DxLc(x,λ ) = Dx f (x)+Λ
∗ (λ + cDλ Lc(x,λ )) . (8)

Proof All the assertions follow directly from the differentiability and convexity of f ,
and Proposition 1. �

Theorem 1 Let c > 0, f be convex and continuously differentiable, and φ ∈ Γ0(H).
The following conditions on a pair (x̄, λ̄ ) are equivalent.

(a) (optimality system) A pair (x̄, λ̄ ) ∈ X×H satisfies the optimality system

Dx f (x̄)+Λ
∗
λ̄ = 0 and λ̄ ∈ ∂φ(Λ x̄). (9)

(b) (Lagrange optimality system) A pair (x̄, λ̄ ) ∈ X ×H satisfies the Lagrange opti-
mality system

DxLc(x̄, λ̄ ) = 0 and Dλ Lc(x̄, λ̄ ) = 0, (10)

where the gradients of Lc with respect to x and λ are given by (6) and (7), respec-
tively. More precisely, (x̄, λ̄ ) satisfies the nonlinear system:Dx f (x)+ cΛ ∗

(
Λx+λ/c−prox φ

c
(Λx+λ/c)

)
= 0

Λx−prox φ

c
(Λx+λ/c) = 0.

(c) (saddle point) A pair (x̄, λ̄ ) ∈ X×H is a saddle point of Lc:

Lc(x̄,λ )≤ Lc(x̄, λ̄ )≤ Lc(x, λ̄ ), ∀x ∈ X , ∀λ ∈ H. (11)
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Proof First we show the equivalence between (a) and (b). Suppose (a) holds, i.e.,
(x̄, λ̄ ) satisfies the optimality system. By Propostion 2, the inclusion λ ∈ ∂φ(Λx) can
be written as Λx = prox φ

c
(Λx+λ/c), and it holds independently of c > 0. Hence, it

follows from (7) that

Dλ Lc(x̄, λ̄ ) = Λ x̄−prox φ

c
(Λ x̄+ c−1

λ̄ ) = 0,

for all c > 0, and thereby from Proposition 3(c) and the first optimality system

DxLc(x̄, λ̄ ) = Dx f (x̄)+Λ
∗ (

λ̄ + cDλ Lc(x̄, λ̄ )
)
= Dx f (x̄)+Λ

∗
λ̄ = 0,

for all c > 0. Similarly, we can show that (b) for some c > 0 implies (a).
Next we show the equivalence between (b) and (c). Suppose that (x̄, λ̄ ) is a saddle

point of Lc. Then from [4, Chap. 6, Prop. 1.2] we have

min
x∈X

sup
λ∈H

Lc(x,λ ) = Lc(x̄, λ̄ ) = max
λ∈H

inf
x∈X

Lc(x,λ ).

The second equality implies that x̄ solves the convex optimization problem minx∈X Lc(x, λ̄ ),
and hence it follows that DxLc(x, λ̄ ) = 0 at x = x̄. The similar argument proves that
Dλ Lc(x̄, λ̄ ) = 0. Conversely, if (x̄, λ̄ ) satisfies the Lagrange optimality system, then
from the convexity Lc(x,λ ) with respect to x, we have

Lc(x, λ̄ )−Lc(x̄, λ̄ )≥ 〈DxLc(x̄, λ̄ ),x− x̄〉X∗,X = 0 ∀x ∈ X .

Similarly, by the concavity of Lc(x, ·), we deduce Lc(x̄,λ )≤ Lc(x̄, λ̄ ). �

Corollary 1 If one of the conditions in Theorem 1 holds, then x̄ is a solution of prob-
lem (1).

Proof Assume that there exists a pair (x̄, λ̄ ) satisfying the optimality system (9). The
system implies that 0 ∈ Dx f (x̄)+Λ ∗∂φ(Λ x̄). By [4, Chap. 1, Prop. 5.7]) we have

Λ
∗
∂φ(Λx)⊂ ∂ (φ ◦Λ)(x), ∀x ∈ X .

Therefore it follows that

0 ∈ Dx f (x̄)+Λ
∗
∂φ(Λ x̄)⊂ Dx f (x̄)+∂ (φ ◦Λ)(x̄) = ∂ ( f +φ ◦Λ)(x̄),

which shows that x̄ is a solution of the minimization problem (1). �

Remark 1 We refer to [7, Chap. 4] for a sufficient condition for the existence of a
pair satisfying the optimality system (9).

Corollary 2 The Lagrange optimality system can also be written as

Dx f (x̄)+Λ
∗
λ̄ = 0 and Λ x̄−prox φ

c
(Λ x̄+ λ̄/c) = 0. (12)

Proof It follows directly from Proposition 3, (7) and (8). �
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The Lagrange optimality system (10) is closely related to the optimality system de-
rived in [17,22] which is given by using the generalized Moreau-Yosida approxima-
tion ψc(z,λ ) defined by

ψc(z,λ ) = φc(z+λ/c)− 1
2c‖λ‖

2.

Let us assume that a pair (x̄, λ̄ )∈ X×Z satisfies the optimality system (9). It is shown
in [17, Thm. 4.5] that the pair satisfies the following optimality condition for every
c > 0.

x̄ = min
x

Lc(x, λ̄ ) and λ̄ = (Dxψc)(Λ x̄, λ̄ ).

The first relation implies the inequality Lc(x̄, λ̄ ) ≤ Lc(x, λ̄ ) for all x ∈ X , which is
the second inequality of (11). Meanwhile, by the definition of ψc(x,λ ) and Proposi-
tion 1(d), we have

(Dxψc)(Λx,λ ) = φ
′
c(Λx+λ/c)

= c(Λx+λ/c−prox φ

c
(Λx+λ/c))

= λ + c(Λx−prox φ

c
(Λx+λ/c)).

In view of the expression (7), the second relation implies Dλ Lc(x̄, λ̄ ) = 0, which is the
second equation of the Lagrange optimality system (10). Alternatively, the following
optimality condition in the form of equation is given in [22]:

Dx f (x̄)+Λ
∗
λ̄ = 0 and λ̄ = (Dxψc)(Λ x̄, λ̄ ).

Similarly, one can show that this optimality system is equivalent to (12).

4 Linear Newton method for the Lagrange optimality system

In this section, we present a linear Newton method for the nonsmooth optimization
problem (1) on the basis of the Lagrange optimality system. We also illustrate the
method on three elementary examples. To keep the presentation simple, we restrict
our discussions to finite-dimensional spaces.

4.1 Linear Newton method

We begin with the concept of linear Newton approximation, which provides a build-
ing block for designing Newton type algorithms for problem (1). For a comprehensive
treatment and for further references on the subject one may refer to [20].

Definition 2 Let Φ : Rm→Rn be locally Lipschitz continuous. We say that the map
Φ admits a linear Newton approximation (LNA) at ξ̄ ∈Rm if there exists a set-valued
map T : Rm ⇒ Rn×m such that:

(a) The set of matrices T (ξ ) is nonempty and compact for each ξ ∈ Rm;
(b) T is upper semicontinuous at ξ̄ ;
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(c) The following limit holds:

lim
ξ̄ 6=ξ→ξ̄

V∈T (ξ )

‖Φ(ξ )+V (ξ̄ −ξ )−Φ(ξ̄ )‖
‖ξ − ξ̄‖

= 0.

We also say that T is a linear Newton approximation scheme of Φ .

A linear Newton iteration for solving the nonlinear equation Φ(ξ ) = 0 is defined by

ξ
k+1 = ξ

k−V−1
k Φ(ξ k), with Vk ∈ T (ξ k). (13)

The local convergence of the iterate is ensured if the matrix Vk is singular for all k.

Theorem 2 ([20, Thm. 7.5.15] ) Let Φ : Rn → Rn be locally Lipschitz continuous
and admit a LNA T at ξ ∗ ∈ Rn such that Φ(ξ ∗) = 0. If every matrix V ∈ T (ξ ∗)
is nonsingular, then the iterate (13) converges Q-superlinearly to the solution ξ ∗

provided that ξ 0 is sufficiently close to ξ ∗.

In addition to the Newton iteration (13) we can also define inexact version of linear
Newton methods, the Levenberg-Marquardt (LM) method and the inexact version of
LM method, and establish their local convergence as well as characterize their con-
vergence rate, see. e.g., [20]. The linear Newton method for the Lagrange optimality
system, which we shall develop later in the section, can be extended for these methods
along similar lines, but we restrict ourselves to the basic Newton method (13).

To provide a class of Lipschitz maps that admit a LNA, we shall make use of
the notion of generalized Jacobian and semismoothness. Let Φ : Rm → Rn be a lo-
cally Lipschitz continuous map. Rademacher’s Theorem [23, Sect. 3.1.2] states that
a locally continuous map is differentiable almost everywhere. Denote by NΦ a set of
measure zero such that Φ is differentiable on Rm \NΦ . The limiting Jacobian of Φ

at ξ is the set

∂BΦ(ξ ) :=
{

G ∈ Rn×m | ∃{ξ k} ⊂ Rm \NΦ with ξ
k→ ξ ,DxΦ(ξ k)→ G

}
.

The (Clarke’s) generalized Jacobian ∂Φ(ξ ) of Φ at ξ ∈Rm is the convex hull of the
limiting Jacobian:

∂Φ(ξ ) = conv(∂BΦ(ξ )).

We denote by ∂BΦ the set valued map ξ → ∂BΦ(ξ ) for ξ ∈ Rm. The set valued map
∂Φ for the generalized Jacobian is defined analogously.

A possible choice for a LNA scheme of a locally Lipschitz map is the limiting or
generalized Jacobian of the map. This attempt, in the absence of additional assump-
tion on Φ , is doomed because both of them do not necessarily satisfy the approxima-
tion property of condition (c) in Definition 2. This drawback can be ameliorated by
employing the notion of semismoothness, which narrows down the class of Lipschitz
maps so that each of ∂Φ and ∂BΦ provides a LNA scheme of the map.
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Definition 3 Let Φ : Rm→ Rn be a locally Lipschitz map. We say that Φ is semis-
mooth at ξ̄ ∈ Rm if Φ is directionally differentiable near ξ̄ and the following limit
holds:

lim
ξ̄ 6=ξ→ξ̄→0

‖Φ ′(ξ ;ξ − ξ̄ )−Φ ′(ξ̄ ;ξ − ξ̄ )‖
‖ξ − ξ̄‖

= 0,

where Φ ′(ξ ;h) denotes the directional derivative of Φ at ξ ∈ Rm along the direction
h ∈ Rm.

Proposition 4 Assume that a locally Lipschitz map Φ : Rm → Rn is semismooth at
ξ ∈ Rm, then each of ∂Φ and ∂BΦ defines a LNA scheme of Φ at ξ .

Proof It follows from [20, Prop. 7.1.4] that the set valued map ∂Φ satisfies the con-
dition (a) and (b) of Definition 2, while, from [20, Thm. 7.4.3], the map also satisfies
the condition (c). We refer the proof for the limiting Jacobian to [20, Prop. 7.5.16].�

4.2 Linear Newton method for the Lagrange optimality system

We are ready to present a Newton algorithm for problem (1). Let the map Φc : Rn×
Rm→ Rn+m be defined by

Φc(x,λ ) =
[

DxLc(x,λ )
Dλ Lc(x,λ )

]
.

Proposition 3 shows that the map Φc is the difference of a smooth and nonsmooth
part

Φc(x,λ ) = Φs(x,λ )−Φns(x,λ ),

where

Φs(x,λ ) :=
[

Dx f (x)+ cΛ ∗Λx+Λ ∗λ
Λx

]
and Φns(x,λ )=

[
cΛ ∗prox φ

c
(Λx+λ/c)

prox φ

c
(Λx+λ/c)

]
.

The Jacobian of Φs(x,λ ) is

Dx,λ Φs(x,λ ) =
[

D2
x f (x)+ cΛ ∗Λ Λ ∗

Λ 0

]
,

and the (matrix valued) map Dx,λ Φs defines a LNA scheme of the smooth map Φs
at every point (x,λ ). By the sum rule (see, e.g., [20, Thm. 7.5.18]), a LNA scheme
of Φc is provide by T = Dx,λ Φs−Tns where Tns is a LNA scheme of Φns. The next
result shows that the task of determining Tns is reduced to the one of computing a
LNA scheme of the proximity operator.

Lemma 1 Let φ ∈ Γ0(Rm) and c > 0. Let Tp be a LNA scheme of the proximity oper-
ator prox φ

c
. Then the set-valued map

Tns(x,λ ) :=
{[

cΛ ∗

I

]
G
[
Λ c−1I

]
| G ∈ Tp(Λx+λ/c)

}
⊂ Rn+m,n+m

is a LNA of the map Φns.
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Proof Since Tp is upper semi-continuous and the set Tp(z) is compact by definition,
so is the set-valued map (x,λ )→ Tns(x,λ ), which implies that the Tns satisfies the
conditions (a) and (b) in Def. 2. One can verify that the set valued map Tns satisfies
the condition (c) in the definition by employing the sum rule ([20, Thm. 7.5.18]) and
the chain rule ([20, Thm. 7.5.17]). �

We now turn our attention to define a possible LNA scheme of a proximity op-
erator. By Proposition 1, the proximity operator is nonexpansive, and therefore it is
Lipschitz continuous. Hence the limiting Jacobian ∂B(proxφ/c)(z) is well-defined for
all z ∈ Rm, and so also is the generalized Jacobian ∂ (proxφ/c)(z). The next result,
due to [24, Thm. 3.2], gives the basic properties of the generalized Jacobian of the
proximity operator.

Proposition 5 For any φ ∈ Γ0(Rm), every G ∈ ∂ (prox φ

c
)(z) is a symmetric positive

semidefinite matrix with ‖G‖ ≤ 1.

Now we can specify a LNA scheme of the map Dx,λ Lc at (x,λ ).

Proposition 6 Let φ ∈ Γ0(Rm) and c > 0. Assume that the proximity operator prox φ

c

is semismooth. Then the set-valued map T : Rn×Rm ⇒ R(n+m)×(n+m) defined by

T (x,λ ) :=
{[

D2
x f (x)+ cΛ ∗(I−G)Λ ((I−G)Λ)∗

(I−G)Λ −c−1G

]
| G ∈ ∂ (prox φ

c
)(z)
}
, (14)

with z = Λx+λ/c, is a LNA scheme of the map Φc at (x,λ ) ∈ Rn×Rm.

Proof The symmetry of the generalized Jacobian of a proximity operator allows to
write Λ ∗G = (GΛ)∗ for G ∈ ∂ (prox φ

c
)(Λx+λ/c), which yields

[
D2

x f (x)+ cΛ ∗(I−G)Λ ((I−G)Λ)∗

(I−G)Λ −c−1G

]
=

[
D2

x f (x)+ cΛ ∗Λ Λ ∗

Λ 0

]
−
[

cΛ ∗

I

]
G
[
Λ c−1I

]
.

From Proposition 4 and the assumption that prox φ

c
is semismooth, it follows that

the generalized Jacobian ∂ (prox φ

c
)(z) is a LNA scheme of the proximity operator

prox φ

c
(z), which together with Lemma 1 shows that Tns(x,λ ) with Tp(Λx+λ/c) =

∂ (prox φ

c
)(Λx+λ/c) defines a LNA scheme of Φns at (x,λ ). Thus T = Dx,λ Φs−Tns

defines a LNA scheme of Φc at (x,λ ). �

Remark 2 One can replace the generalized Jacobian ∂ (prox φ

c
)(z) in (14) with the

limiting Jacobian ∂B(prox φ

c
)(z).

Remark 3 The class of semismooth maps is broad enough to include a variety of
proximity operators frequently encountered in practice, see, e.g., [24, Sect. 5].

The proposed algorithm is given in Algorithm 1.
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Algorithm 1 Linear Newton algorithm for the Lagrange optimality system.
1: Chose (x0,λ 0) ∈ Rn×Rm.
2: If Φc(xk,λ k) = 0, stop.
3: Let zk = Λxk +λ k/c, and compute an element Gk of the generalized Jacobian ∂ (prox φ

c
)(zk).

4: Compute a direction (dk
x ,d

k
λ
) by[

D2
x f (xk)+ cΛ ∗(I−Gk)Λ ((I−Gk)Λ)∗

(I−Gk)Λ −c−1Gk

][
dk

x
dk

λ

]
=−

[
DxLc(xk,λ k)
Dλ Lc(xk,λ k)

]
. (15)

5: Set xk+1 = xk +dk
x and λ k+1 = λ k +dk

λ
.

6: Go back to Step 2.

Remark 4 Proposition 4 allows to replace the generalized Jacobian ∂ (prox φ

c
)(z) with

the limiting Jacobian ∂B(prox φ

c
)(z).

Remark 5 A simple calculation using Theorem 3 shows that the update at Steps 4
and 5 can be replaced with[

D2
x f (xk) Λ ∗

(I−Gk)Λ −c−1Gk

][
xk+1

λ k+1

]
=

[
D2

x f (xk)xk−Dx f (xk)
prox φ

c
(zk)−Gkzk

]
. (16)

The local convergence of Algorithm 1 follows from Theorem 2, if every element of
T (x,λ ) defined by (14) is nonsingular. The next result gives one sufficient condition
for the nonsingularity.

Proposition 7 Assume that Λ is surjective, D2 f (x) is strictly positive definite, and
the norm is bound from below uniformly in x, that is, there exists a δ > 0 such that

(D2
x f (x)d,d)> δ‖d‖2 ∀d ∈ Rn.

Then every element of T (x,λ ) is nonsingular for all (x,λ ).

Proof A saddle point matrix of the form[
A B∗

B −C

]
,

where A is symmetric positive definite and C is symmetric positive semidefinite, is
nonsingular if and only if ker(C)∩ ker(B∗) = 0, see, e.g., [25, Thm. 3.1]. Note that
D2

x f (x) is symmetric positive definite by assumption, and G and I−G are symmetric
positive semidefinite, cf. Proposition 5. Hence the matrix D2

x f (x)+ cΛ ∗(I−G)Λ is
symmetric positive definite. Now let d ∈ ker(G)∩ker(((I−G)Λ)∗). We then have

Gd = 0 and ((I−G)Λ)∗d = 0.

Appealing again to the identity G∗ = G from Proposition 5, it immediately follows
that Λ ∗d = 0. Then the surjectivity of Λ implies d ∈ ker(Λ ∗) = Im(Λ)⊥ = 0. �

The local convergence of Algorithm 1 follows from Theorem 2, Propositions 6 and
Proposition 7.
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Theorem 3 Let f be smooth, φ ∈ Γ0(Rm), and c > 0. Let us assume there exits a
unique solution (x̄, λ̄ ) of the Lagrange optimality system (10). We also assume that the
assumptions on f and Λ in Proposition 7 are satisfied, and that the proximity operator
is semismooth on Rm. Then the Newton system (15) is solvable, and the sequence
(xk,λ k) generated by Algorithm 1 converges to the solution (x̄, λ̄ ) superlinearly in a
neighborhood of (x̄, λ̄ ).

4.3 Examples

We illustrate Algorithm 1 on three examples: bilateral constraints, `1 penalty and
total variation penalty. We begin with a useful result for computing the generalized
(limiting) Jacobian for (block) separable functions [24, Prop. 3.3]. Let (m1, . . . ,mN)
be an N partition of m, i.e., ∑

N
i=1 mi = m, and z ∈ Rm be decomposed into N blocks

of variables with zi ∈Rmi . The function φ ∈ Γ0(Rm) is said to be (block) separable if
φ(z) = ∑

N
i=1 φi(zi) for N functions φi ∈ Γ0(Rm).

Proposition 8 If φ ∈ Γ0(Rm) is (block) separable then every element of the general-
ized Jacobian ∂ (prox φ

c
)(x) is also a (block) diagonal matrix.

Example 1 Let us consider the following optimization problem with bilateral in-
equality constraints

min
x∈Rn

f (x) subject to a≤Λx≤ b,

where f is a smooth function, a,b ∈ Rm and Λ ∈ Rm×n.

The problem can be reformulated into (1) with φ(z) = IS(z), where IS(z) is the
characteristic function of the set S = {z ∈ Rm | a j ≤ z j ≤ b j, j = 1, . . . ,m}. Clearly,
the proximity operator prox φ

c
: Rm→ Rm is given by

prox φ

c
(z) = [max(a1,min(b1,z1)), . . . ,max(am,min(bm,zm))]

T .

Since the proximity operator is separable, a limiting Jacobian G ∈ ∂B prox φ

c
(z) is

diagonal matrix by Proposition 8:

G j, j =

 1 if a j < z j < b j,
{0,1} if z j ∈ {a j,b j},

0 otherwise.

Now let (x,λ ) be the current iterate, and z = Λx+ λ/c. We denote by o the index
set { j | G j, j = 0} ⊂ {1,2, . . . ,m}, and by i its complement. Then i∩ o = /0 and i∪
o = {1,2, . . . ,m}. We shall denote by xo the subvector of x, consisting of entries
of x whose indices are listed in o. The submatrix of Λ denoted by Λo is defined
analogously. For example, if o = {o1,o2, . . . ,o`} where ` is the number of elements
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of the set o, then xo is `×1 column vector, and Ao is `×n matrix given respectively
by

xo =


xo1
xo2
...

xom

 and Ao =


Ao1,1 Ao1,2 · · · Ao1,n
Ao2,1 Ao2,2 · · · Ao2,n

...
...

...
Ao`,1 Ao`,2 · · · Ao`,n

 .
With the new updates denoted by x+ and λ+, the Newton update (16) yields

λ
+
i = c(z−prox φ

c
(z))i,[

D2
x f (x) Λ ∗o
Λo

][
x+

λ+
o

]
=

[
D2

x f (x)x−Dx f (x)−Λ
∗
i λ

+
i

prox φ

c
(z)o

]
.

In this example, we have zi = prox φ

c
(z)i, and the Newton update is further simplified

as [
D2

x f (x) Λ ∗o
Λo

][
x+

λ+
o

]
=

[
D2

x f (x)x−Dx f (x)
prox φ

c
(z)o

]
and λ

+
i = 0.

In particular if f is a quadratic function f (x)= 1
2 (x,Ax)−(b,x), the algorithm reduces

to the primal-dual active set algorithm developed in [7,26]:

[
A Λ ∗o

Λo

][
x+

λ+
o

]
=

[
b

prox φ

c
(z)o

]
and λ

+
i = 0.

Example 2 Consider the following `1 type optimization problem

min
x∈Rb

f (x)+α|Λx|`1 ,

where f is smooth function, Λ ∈ Rm×n, |z|`1 is the `1 norm, and α > 0 is a regular-
ization parameter.

Let φ(z) = α|z|`1 . Its proximity operator prox φ

c
is the well known soft-thresholding

operator

prox φ

c
(z) = [prox α

c |·|
(z1), . . . ,prox α

c |·|
(zm)]

T,

prox α
c |·|

(s) = max(s− α

c ,min(s+ α

c ,0)), s ∈ R.

A limiting Jacobian G ∈ ∂B(prox φ

c
)(z) is diagonal matrix given by

G j, j =

1 if |z j|> α

c ,
{0,1} if |z j|= α

c ,
0 othewise.
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We denote by o the index set { j |G j, j = 0} ⊂ {1,2, . . . ,m}, and by i its complement,
and z = Λx+λ/c. We note that the relation c(z−prox φ

c
(z))i = c sign(zi) holds. An

argument similar to Example 1 yields the following Newton update
λ
+
i = c sign(zi),[
D2

x f (x) Λ ∗o
Λo

][
x+

λ+
o

]
=

[
D2

x f (x)x−Dx f (x)−Λ
∗
i λ

+
i

prox φ

c
(z)o

]
.

For the quadratic function f = 1
2 (x,Ax)− (b,x), we obtain a primal-dual active set

algorithm for `1 norm regularization
λ
+
i = c sign(zi),[
A Λ ∗o

Λo

][
x+

λ+
o

]
=

[
b−Λ

∗
i λ

+
i

prox φ

c
(z)o

]
.

Example 3 We consider the total variation denoising problem of recovering an image
from a given noisy image F ∈ Rn,n

min
u∈Rn2

1
2‖u− f‖2

Rn2 +αφ(Λu),

where f ∈ Rn2
stacks the columns of the two dimensional image F , and α is the

regularization parameter. Λ0u = [(D1u)T,(D2u)T]T ∈ R2n2
, where D1 = I ⊗D and

D2 = D⊗ I are finite difference matrices for y- and x-direction, respectively; D is the
one-dimensional finite difference matrix with periodic boundary condition; and I is
the identity matrix. The matrix Λ is defined as Λ = PσΛ0 where Pσ is the permutation
matrix associated with the permutation σ defined by

σ(i) =
{

2i−1, 1≤ i≤ n2,
2(i−n2), n2 +1≤ i≤ 2n2.

The regularization term φ is defined by

φ(z) = ∑
i=1,3,...,2n2−1

√
z2

i + z2
i+1 z ∈ R2n2

.

The proximity operator prox φ

c
for φ(z) is block-separable, and its i-th and (i+1)-th

components for i = 1,3, . . . ,2n2−1 are given by

([prox φ

c
(z)]i, [prox φ

c
(z)]i+1) =

{
(zi− zi

c′ri
,zi+1− zi+1

c′ri
) if c′ri ≥ 1

(0,0) if c′ri < 1

where c′ = c
α

and ri = (z2
i + z2

i+1)
1/2. A limiting Jacobian G ∈ ∂B(prox φ

c
)(z) for z ∈

R2n2
is block-diagonal: The i-th block 2 by 2 matrix, in other words the (i, i),(i, i+



Lagrange optimality system for a class of nonsmooth convex optimization problems 17

1),(i+1, i),(i+1, i+1) components of G ∈ R2n2×2n2
are given by

[
Gi,i Gi,i+1

Gi+1,i Gi+1,i+1

]
=

 I− 1
c′r3

i

[
z2

i+1 −zizi+1
−zizi+1 z2

i

]
if c′ri > 1

0 if c′ri < 1,

and any of these two matrices if c′ri = 1 (see e.g., [24, Sect. 5.2.3]). Hence, with
λ ∈R2n2

being the Lagrange multiplier and z =Λu+λ/c∈R2n2
, the Newton update

is give by

u++Λ
∗
λ
+ = f , (I−G)Λu+− c−1Gλ

+ = prox φ

c
(z)−Gz. (17)

Let o be the index set {2i− 1,2i | i-th block matrix of G is 0} ⊂ {1,2, . . . ,2n2}, and
i be its complement. We denote by Gi the block diagonal matrix composed of i-th
block for i ∈ i. Then the system (17) is written as

u++Λ
∗
o λ

+
o +Λ

∗
i λ

+
i = f ,

Λou+ = prox φ

c
(z)o, (Ii−Gi)Λiu+− c−1Giλ

+
i = prox φ

c
(z)i− (Gz)i.

Hence we arrive at a prima-dual active set algorithm for the total variation regular-
ization:

[
A+ cΛ ∗i G−1

i (Ii−Gi)Λi Λ ∗o
Λo 0

][
u+

λ+
o

]
=

[
f +Λ ∗i cG−1

i (prox φ

c
(z)i− (Gz)i)

prox φ

c
(z)o

]
,

λ
+
i = cG−1

i ((Ii−Gi)Λiu+−prox φ

c
(z)i +(Gz)i).

5 Conclusion

In this paper, we have developed the classical Lagrange multiplier approach to a class
of nonsmooth convex optimization problems arising in various application domains.
We presented the Lagrange optimality system, and established the equivalence among
the Lagrange optimality system, the standard optimality condition and the saddle
point condition of the augmented Lagrangian. The Lagrange optimality system was
used to derive a novel Newton-type algorithm. We proved the nonsingularity of the
Newton system and established the local convergence of the algorithm.

In order to make the proposed Newton-type algorithm applicable to real word
applications, a further study is needed on several important issues including: to con-
struct a merit function for the globalization of the algorithm; to develop efficient
solvers for the (possibly) large linear system (Newton update); to provide a stopping
criterion, and to report the numerical performance of the algorithm. These issues will
be investigated in future work.
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Model. Numer. Anal. 9, 41–76 (1975)

13. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlin-
ear Mechanics. SIAM, Philadelphia, PA (1989)

14. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1, 123–231 (2013)
15. Wu, C., Tai, X.C.: Augmented Lagrangian method, dual methods, and split Bregman iteration

for ROF, vectorial TV, and high order models. SIAM J. Imaging Sci. 3, 300–339 (2010)
16. Fortin, M.: Minimization of some non-differentiable functionals by the augmented Lagrangian

method of Hestenes and Powell. Appl. Math. Optim. 2, 236–250 (1975)
17. Ito, K., Kunisch, K.: Augmented lagrangian methods for nonsmooth, convex optimization in

Hilbert spaces. Nonlin. Anal. Ser. A Theory Methods 41, 591–616 (2000)
18. Lemaréchal, C., Sagastizábal, C.: Practical aspects of the Moreau-Yosida regularization: theo-

retical preliminaries. SIAM J. Optim. 7, 367–385 (1997)
19. Ip, C.M., Kyparisis, J.: Local convergence of quasi-Newton methods for B-differentiable equa-

tions. Math. Programming 56, 71–89 (1992)
20. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity

Problems. Vol. II. Springer-Verlag, New York (2003)
21. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert

Spaces. Springer, New York (2011)
22. Ito, K., Kunisch, K.: An active set strategy based on the augmented Lagrangian formulation for

image restoration. ESAIM: Math. Model. Numer. Anal. 33, 1–21 (1999)
23. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca

Raton, FL (1992)
24. Patrinos, P., Stella, L., Bemporad, A.: Forward-backward truncated Newton methods for convex

composite optimization. preprint, arXiv:1402.6655v2 (2014)
25. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer.

14, 1–137 (2005)
26. Bergounioux, M., Ito, K., Kunisch, K.: Primal-dual strategy for constrained optimal control

problems. SIAM J. Control Optim. 37, 1176–1194 (1999)


