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SUMMARY

We discuss explicit coupling schemes for fluid-structure interaction problems where the added mass effect is
important. Recalling the explicit method proposed in Comput. Methods Appl. Mech. Engrg. 198(5-8):766–
784, 2009 we make the observation that this scheme is stable under a hyperbolic type CFL condition, but that
optimal accuracy imposes a parabolic type CFL conditions due to the splitting error. In this paper we show
the close relation between coupling schemes using Nitsche’s method and a Robin-Robin type coupling. In
the latter case the method may be implemented either using boundary integrals of the stresses or the more
conventional discrete lifting operators. Two strategies to enhance the accuracy of the coupling scheme under
the hyperbolic CFL-condition are suggested, one using extrapolation and defect correction and one using a
penalty-free non-symmetric Nitsche method. Finally we illustrate the performance of the proposed schemes
on some numerical examples in two and three space dimensions. Copyright c© 2010 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Incompressible fluid-structure interaction (IFSI), that is, the coupling of an elastic structure with
an incompressible fluid, appears in a variety of engineering fields, from the aeroelasticity of bridge
decks and parachutes, to naval hydrodynamics and the biomechanics of blood flow. Over the last
decade, the development of efficient numerical methods for IFSI has been a very active field of
research and the subject of numerous works (see, e.g., [13, 26] for recent reviews).

This is due, in particular, to the fact that the coupling is known to be very stiff. So called explicit
(or loosely coupled, see [32, 33, 12]) schemes, where time advancement is obtained by first taking
one time-step in the fluid and then one in the structure, using the data from the fluid solve, are known
to be unstable for standard Dirichlet-Neumann coupling strategies where the amount of added-mass
in the system is strong (see, e.g., [7, 21]). In view of this, much research effort has gone into the
design of robust solvers for the solution of the more computationally onerous implicit and semi-
implicit coupling paradigms (see, e.g., [28, 23, 25, 16, 10, 9, 15, 35, 3, 27, 30, 2, 24, 22, 8, 31, 29]).

In order to pass to a fully explicit coupling scheme, the interface conditions must be treated
in a different fashion. In [6] we proposed a loosely coupled scheme for the solution of fluid
structure interaction problems using a Nitsche type weak coupling together with an interface
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2 E. BURMAN AND M.A. FERNÁNDEZ

pressure stabilization in time. It was shown that the combination of these two terms leads to an
unconditionally stable scheme independent of the added-mass effect in the system. In the case
of the coupling with a thin-walled structure, alternative stable explicit coupling schemes are the
Robin-Neumann methods proposed in [14, 18] which yield optimal first-order accuracy in time. A
preliminary extension of these methods to the case of the coupling with thick solid models has been
reported in [17], but in this case the splitting does not preserve first-order accuracy.

Similarly, the main drawback of the Nitsche based staggered scheme proposed in [6] is the
introduction of a splitting error that puts constraints on how the time-step must be chosen compared
to the space-step to obtain first-order accuracy. The conditions required for accuracy are often
stronger than those required for stability in these cases. The stability condition is related to the
hyperbolic nature of the elasticity problem whereas the accuracy relies on the resolution of the
coupling through the viscous term of the parabolic system.

Typically a formal error analysis for piecewise linear finite elements and a first order time-
discretization method results in an error of order

(hτ)
1
2︸ ︷︷ ︸

pressure stabilization

+
τ

h︸︷︷︸
Nitsche coupling

+ hs + τ︸ ︷︷ ︸
order of scheme

,

with s = 1 for error estimates on the stresses and s = 2 for L2-error estimates on structure
displacements or fluid velocities. Clearly to obtain O(h) accuracy, we need to choose τ = O(h2),
corresponding to a parabolic constraint on the time-step. Using a defect correction strategy, with k
correction steps (see [6, Section 5.4]), this error can be improved to

(hτ)
k+1
2︸ ︷︷ ︸

pressure stabilization

+
( τ
h

)k+1

︸ ︷︷ ︸
Nitsche coupling

+ hs + τ︸ ︷︷ ︸
order of scheme

and it follows that the choice τ = O(h2) leads to optimal convergence for the L2-error after one
correction step. One advantage of the explicit coupling scheme based on Nitsche’s method is that
it does not use any dissipation of the time discretization for stability. It is therefore in principle
possible to improve the time accuracy above to O(τ2), such an improvement is of little use if we
can not improve on the splitting error of order O(τ/h).

In this paper we wish to adress the question of how to improve the accuracy of the explicit
coupling scheme at a modest cost and study modifications that make the scheme easier to implement
in standard finite element codes. In particular we will study:

• The close relationship of the Nitsche based coupling method with Robin type coupling
methods and with the standard variational framework, where stresses are computed using
lifting operators and not using face-wise integrals. This results in loosely coupled algorithms,
containing fewer non-standard features than the original Nitsche-coupling scheme;

• The possibility of enhancing accuracy using extrapolation and defect correction;
• The possibility to reduce stabilization, in order to diminish the consistency errors. We suggest

one Robin based scheme without pressure stabilization term and a non-symmetric Nitsche
type scheme without penalty on the velocity.

There appears to be a wide range of possibilities to explore in the framework of explicit coupling
schemes and the aim of this paper is to show some variants, point to some of the difficulties
associated with explicit coupling and discuss some possible remedies. An outline of the paper is
as follows. First we introduce a linear model problem, then in Section 3 we recall the Nitsche based
explicit coupling procedure of [6] and show how it can be interpreted as a Robin type coupling
using face-wise or residual based coupling. In Section 4 we discuss some strategies for enhancing
accuracy. We illustrate the discussion with some numerical investigations in Section 5. Finally,
Section 6 draws the conclusions and a few lines for further investigation.
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EXPLICIT COUPLING SCHEMES FOR INCOMPRESSIBLE FSI 3

2. A LINEAR MODEL PROBLEM

We consider a low Reynolds regime and assume that the interface undergoes infinitesimal
displacements. The fluid is described by the Stokes equations, in a fixed domain Ωf ⊂ Rd, d = 2, 3,

Σ

Ωs

Ωf

Γn

Γd

Γin

Γout

Figure 1. Geometrical description

and the structure by the classical linear elasticity equations, in the solid domain Ωs ⊂ Rd. We denote
by Σ

def
= ∂Ωs ∩ ∂Ωf the fluid-structure interface and ∂Ωf

def
= Γin ∪ Γout ∪ Σ, ∂Ωs

def
= Γd ∪ Γn ∪ Σ,

are given partitions of the fluid and solid boundaries, respectively (see Figure 1). Our simplified
coupled problem reads as follows: Find the fluid velocity u : Ωf ×R+ → Rd, the fluid pressure
p : Ωf ×R+ → R, the structure displacement d : Ωs ×R+ → Rd and the structure velocity ḋ :
Ωs ×R+ → Rd such that 

ρf∂tu− divσ(u, p) = 0 in Ωf ,

divu = 0 in Ωf ,

u = uin on Γin,

σ(u, p)n = −poutn on Γout,

(1)


ρs∂tḋ− divσ(d) + βd = 0 in Ωs,

ḋ = ∂td in Ωs,

d = 0 on Γd,

σ(d)ns = 0 on Γn,

(2)

satisfying the interface coupling conditions{
u = ḋ on Σ,

σ(d)ns + σ(u, p)n = 0 on Σ
(3)

and the initial conditions u(0) = u0, d(0) = d0 and ḋ(0) = v0. Here, ρf and ρs stand for the fluid
and solid densities, σ(u, p)

def
= −pI + 2µε(u) for the fluid stress tensor, µ for the fluid dynamic

viscosity, ε(u)
def
= 1

2

(
∇u+ ∇uT

)
for the fluid strain rate tensor, uin for a given velocity profile,

pout for a given outlet pressure and n,ns for the exterior unit normal vectors to the boundaries
of Ωf and Ωs, respectively. The solid stress tensor is given by σ(d)

def
= 2L1ε(d) + (L2divd)I with

L1, L2 > 0 the Lamé constants. The zeroth-order term in (2)1, with β ≥ 0, allows to incorporate the
transversal membrane effects that appear in axisymmetric formulations.

3. TIME-DISCRETIZATION: EXPLICIT COUPLING PROCEDURES

We first recall the original loosely coupled algorithm introduced in [6] for the solution of (1)-
(3) and then show how a reduction of this scheme leads to a Robin-type coupling scheme, using
residual based stress computation. We also prove that the latter variant preserves the (added-mass
free) stability properties of the original scheme.
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4 E. BURMAN AND M.A. FERNÁNDEZ

3.1. The Nitsche based explicit coupling procedure

Let Vf,h ×Qh denote a conforming, inf-sup stable, finite element approximation of [H1(Ωf)]
d ×

L2(Ωf), and Vs,h a conforming finite element approximation of [H1
Γd(Ωs)]

d. We also introduce the

space Vf,Γin,h
def
= Vf,h ∩ [H1

Γin(Ωf)]
d. We consider a first order backward difference discretization

in the fluid and the structure, so that the fully discrete fluid and solid bilinear forms at time level n,
1 ≤ n ≤ N , are given by:

Af,τ

(
(unh, p

n
h), (vh, qh)

) def
= ρf

∫
Ωf

∂τu
n
h · vh +

∫
Ωf

σ(unh, p
n
h) : ε(vh) +

∫
Ωf

divunhqh

As,τ

(
(dnh, ḋ

n
h), (wh, zh)

) def
= ρs

∫
Ωs

∂τ ḋ
n
h ·wh + as(d

n
h,wh) +

∫
Ωs

(
ḋnh − ∂τdnh

)
· zh.

Here ∂τ denotes the first order backward difference operator, ∂τxn
def
= (xn − xn−1)/τ , τ > 0 the

time-step length and

as(d,w)
def
=

∫
Ωs

σ(d) : ε(w).

The original stabilized explicit coupling scheme, reported in [6], is presented in Algorithm 1.

Algorithm 1 Nitsche based stabilized explicit coupling (from [6]).

1. Solid sub-problem: find dnh, ḋ
n
h ∈ Vs,h such that

As,τ

(
(dnh, ḋ

n
h), (wh, zh)

)
+ γ

µ

h

∫
Σ

ḋnh ·wh = γ
µ

h

∫
Σ

un−1
h ·wh −

∫
Σ

σ(un−1
h , pn−1

h )n ·wh
(4)

for all wh, zh ∈ Vs,h.
2. Fluid sub-problem: find (unh, p

n
h) ∈ Vf,h ×Qh, with unh|Γin = unin, such that

Af,τ

(
(unh, p

n
h), (vh, qh)

)
+ γ

µ

h

∫
Σ

unh · vh −
∫

Σ

unh · σ(vh,−qh)n+
γ0h

γµ

∫
Σ

pnhqh

= γ
µ

h

∫
Σ

ḋnh · vh −
∫

Σ

ḋnh · σ(vh,−qh)n+
γ0h

γµ

∫
Σ

pn−1
h qh +

∫
Σ

σ(un−1
h , pn−1

h )n · vh

−
∫

Γout

pout(tn)vh · n (5)

for all (vh, qh) ∈ Vf,Γin,h ×Qh.

The stability properties of Algorithm 1 are stated in the following result, from [6, Theorem 9],
where

En
def
=

ρf

2
‖unh‖20,Ωf

+
ρs

2
‖ḋnh‖20,Ωs

+
1

2
as(d

n
h,d

n
h)

denotes the total discrete energy of the system at time level n and the symbols . and &
indicate inequalities up to a multiplicative constant (independent of the physical and discretization
parameters).

Theorem 1
Assume that the fluid-structure system is isolated, i.e., pout = 0 and uin = 0. Let
{(unh, pnh,dnh, ḋnh)}1≤n≤N be given by Algorithm 1. Then, under the following conditions

γ & Cti, γτ . h, γ0 & 1,

where Cti is a trace/inverse estimate constant, there holds

En . E0 + µ‖u0
h‖20,Σ + µ‖ε(u0

h)‖20,Ωf
+
γ0h

γµ
τ‖p0

h‖20,Σ
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EXPLICIT COUPLING SCHEMES FOR INCOMPRESSIBLE FSI 5

for 1 ≤ n ≤ N .

The main source of splitting error in Algorithm 1 comes from the penalty term

γ
µ

h

∫
Σ

un−1
h ·wh

in the right hand side of (4). Indeed this is the term that results in an error contribution of the form
O(τ/h) and hence the need for the time step to be chosen small enough compared to the space step.

3.2. Stabilized Robin-Robin explicit coupling

Nitsche’s method consists of three boundary terms, one term that guarantees consistency of the
formulation, one that penalizes the jump in the velocities between the fluid and the structure and
finally one term that is added in an ad hoc fashion to preserve the symmetry of the stress tensor on
the discrete level. The energy stability result of Theorem 1 still remains valid if in (5) we neglect
the viscous contribution of the ”symmetrizing” term

−
∫

Σ

(unh − ḋnh
)
· σ(vh,−qh)n,

resulting in the term

−
∫

Σ

qh(unh − ḋnh) · n,

which can be interpreted as a weak imposition of the non-penetration interface constraint

(unh − ḋnh) · n = 0 on Σ.

This yields the solution procedure reported in Algorithm 2.

Algorithm 2 Stabilized Robin-Robin explicit coupling.

1. Solid sub-problem: find dnh, ḋ
n
h ∈ Vs,h such that

As,τ

(
(dnh, ḋ

n
h), (wh, zh)

)
+ γ

µ

h

∫
Σ

ḋnh ·wh = γ
µ

h

∫
Σ

un−1
h ·wh −

∫
Σ

σ(un−1
h , pn−1

h )n ·wh

for all wh, zh ∈ Vs,h.
2. Fluid sub-problem: find (unh, p

n
h) ∈ Vf,h ×Qh, with unh|Γin = unin, such that

Af,τ

(
(unh, p

n
h), (vh, qh)

)
+ γ

µ

h

∫
Σ

unh · vh −
∫

Σ

unh · nqh +
γ0h

γµ

∫
Σ

pnhqh

= γ
µ

h

∫
Σ

ḋnh · vh −
∫

Σ

ḋnh · nqh +
γ0h

γµ

∫
Σ

pn−1
h qh +

∫
Σ

σ(un−1
h , pn−1

h )n · vh

−
∫

Γout

pnoutvh · n

for all (vh, qh) ∈ Vf,Γin,h ×Qh.

A salient feature of this reduced variant of Algorithm 1 is that it can be viewed as a space discrete
counterpart of the following Robin-Robin based explicit treatment of (3):

σ(dn)ns +
γµ

h
ḋn =

γµ

h
un−1 − σ(un−1, pn−1)n

σ(un, pn)n+
γµ

h
un =

γµ

h
ḋnh + σ(un−1, pn−1)n

 on Σ, (6)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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6 E. BURMAN AND M.A. FERNÁNDEZ

complemented with the following weakly-consistent interface compressibility treatment of the
continuity equation (1)2:

divun +
γ0hτ

γµ
∂τp

nδΣ = (un − ḋn) · nδΣ, (7)

where δΣ stands for the Dirac measure on the surface Σ. In other words, the constraint divun = 0 is
imposed in the volume Ωf and the constraint

un · n = ḋn · n+
γ0hτ

γµ
∂τp

n

is enforced on Σ.

Remark 1
The modified continuity equation (7) introduces an artificial compressibility in the spirit of [11],
but with two important differences. First, it is restricted to the interface and, second, it is weakly
consistent with the original continuous problem.

This novel interpretation of the Nitsche based coupling of Algorithm 1, raises two questions:

1. Can stabilized explicit coupling be appropriately implemented within a non-Nitsche’s
framework, that is, by using a variationally consistent formulation without face-wise interface
stress computations?

2. What is the minimal stabilization required to obtain a stable explicit coupling scheme?

As we shall see below the first question has an affirmative answer based on the stabilized explicit
coupling paradigm defined by (6)-(7). For the last question, in Section 3.3 we will discuss a modified
Robin-Robin coupling scheme where numerical experiences indicate that the pressure stabilization
term can be omitted entirely.

Σ

Σf,h

Figure 2. The fluid layer of elements, Σf,h, adjacent to the fluid-solid interface Σ.

For the sake of simplicity, we assume that the fluid and the solid discrete spacesVf,h,Vs,h match at
the interface Σ, that is, they share the same interface trace space Vh(Σ)

def
= TrΣ(Vs,h) = TrΣ(Vf,h).

Let then
Lh : Vh(Σ) −→ Vf,h ∩H1

∂Ωf−Σ(Ωf)

be the usual fluid-sided discrete lifting operator, such that

Lhξh|Σ = ξh, Lhξh|Ωf−Σf,h
= 0,

where Σf,h ⊂ Ωf stands for the fluid layer of elements adjacent to the fluid-solid interface Σ, see
Figure 2.
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EXPLICIT COUPLING SCHEMES FOR INCOMPRESSIBLE FSI 7

Algorithm 3 Stabilized Robin-Robin explicit coupling (without face-wise stress integration).

1. Solid sub-problem: find dnh, ḋ
n
h ∈ Vs,h such that

As,τ

(
(dnh, ḋ

n
h), (wh, zh)

)
+ γ

µ

h

∫
Σ

ḋnh ·wh

= γ
µ

h

∫
Σ

un−1
h ·wh −Af,τ

(
(un−1

h , pn−1
h ), (Lhwh, 0)

)
(8)

for all wh, zh ∈ Vs,h.
2. Fluid sub-problem: find (unh, p

n
h) ∈ Vf,h ×Qh, with unh|Γin = uin(tn), such that

Af,τ

(
(unh, p

n
h), (vh, qh)

)
+ γ

µ

h

∫
Σ

unh · vh −
∫

Σf,h

div
(
Lhunh

)
qh +

γ0

γµ

∫
Σf,h

pnhqh

= γ
µ

h

∫
Σ

ḋnh · vh +
γ0

γµ

∫
Σf,h

pn−1
h qh −

∫
Σf,h

div
(
Lhḋnh

)
qh

+Af,τ

(
(un−1

h , pn−1
h ), (Lhvh, 0)

)
−
∫

Γout

pnoutvh · n (9)

for all (vh, qh) ∈ Vf,Γin,h ×Qh.

We now propose to implement the splitting (6)-(7) in a standard variational framework (i.e.,
without face-wise stress computations) thanks to the lifting operator Lh. The resulting explicit
coupling scheme is reported in Algorithm 3.

Some observations are now in order. The solid sub-step (8) is nothing but the discrete counterpart
of (6)1. As usual, the interface integral∫

Σ

σ(un−1
h , pn−1

h )n ·wh

is here replaced by the variationally consistent residual approximation

Af,τ ((un−1
h , pn−1

h ), (Lhwh, 0)).

Similarly, the discrete counterpart of (6)2 corresponds to (9) with qh = 0. Finally, the discrete
counterpart of (7) is chosen as∫

Ωf

divunhqh +
γ0

γµ

∫
Σf,h

(pnh − pn−1
h )qh =

∫
Σf,h

div
(
Lh(unh − ḋnh)

)
qh. (10)

Note that all these terms are made of volume integrals. In particular, the weakly consistent
compressibility acts on the first layer of fluid (volume) elements Σf,h, while in (5) it works only on
the interface Σ. This explains the missing factor, h, in the compressibility scaling (actually hidden in
the width of the layer Σf,h). The derivation of (10) will be further elucidated in the stability analysis
reported in the next section.

3.2.1. Stability analysis. Below we will show that a stability analysis similar to that of [6] can be
carried out for Algorithm 3. To handle the residual terms we shall need the following continuity
estimates for the lifting operator Lh (see, e.g., [15] for a proof):

‖Lhξh‖0,Ωf
≤CLh

1
2 ‖ξh‖0,Σ,

‖∇Lhξh‖0,Ωf
≤CLh−

1
2 ‖ξh‖0,Σ

(11)

for all ξ ∈ Vh(Σ). The next result states the conditional energy stability of Algorithm 3.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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8 E. BURMAN AND M.A. FERNÁNDEZ

Theorem 2
Assume that the fluid-structure system is isolated, i.e., pout = 0 and uin = 0. Let
{(unh, pnh,dnh, ḋnh)}1≤n≤N be given by Algorithm 3. Then, under the following conditions

ρfC
2
Lh

2 . γτµ, γτ . h, C2
L . γ0, γ, (12)

there holds

En . E0 + ρf‖u0
h − u−1

h ‖
2
0,Ωf

+ C2
Lµ‖u0

h‖20,Σ + µ‖ε(u0
h)‖20,Ωf

+
γ0h

γµ
τ‖p0

h‖20,Σf,h
(13)

for all 1 ≤ n ≤ N .

Proof
Taking (vh, qh,wh, zh) = τ(unh, p

n
h, ∂τd

n
h, ∂τ ḋ

n
h) in (8)-(9) and adding the resulting expressions we

get

En +
ρf

2
‖unh − un−1

h ‖20,Ωf
+ 2µτ‖ε(unh)‖20,Ωf

+
γ0τ

2γµ
‖pnh − pn−1

h ‖20,Σf,h

+
γ0τ

2

2γµ
∂τ‖pnh‖20,Σf,h

+
γµτ

h

[∫
Σ

(unh − ḋnh) · unh +

∫
Σ

(ḋnh − un−1
h ) · ḋnh

]
︸ ︷︷ ︸

T1

− τ

[
Af,τ

(
(un−1

h , pn−1
h ), (Lh(unh − ḋnh), 0)

)
+

∫
Σf,h

∇ · Lh(unh − ḋnh)pnh

]
︸ ︷︷ ︸

T2

= 0. (14)

The first term is treated as in [6], which yields

T1 = ‖unh − ḋnh‖20,Σ +

∫
Σ

(unh − un−1
h ) · ḋnh

= ‖unh − ḋnh‖20,Σ +

∫
Σ

(unh − un−1
h ) · (ḋnh − unh) +

∫
Σ

(unh − un−1
h ) · unh

≥ 1

2
‖unh − ḋnh‖20,Σ +

τ

2
∂τ‖unh‖20,Σ.

Hence, (14) reduces to

En +
ρf

2
‖unh − un−1

h ‖20,Ωf
+ 2µτ‖ε(unh)‖20,Ωf

+
γ0τ

2γµ
‖pnh − pn−1

h ‖20,Σf,h

+
γ0τ

2

2γµ
∂τ‖pnh‖20,Σf,h

+
γµτ

2h
‖unh − ḋnh‖20,Σ +

γµτ2

2h
∂τ‖unh‖20,Σ + T2 ≤ 0. (15)

For the last term we first note that

T2 =

∫
Ωf

∂τu
n−1
h · Lh(unh − ḋnh)︸ ︷︷ ︸

T2,1

+ 2µ

∫
Ωf

ε(un−1
h ) : ε

(
Lh(unh − ḋnh)

)
︸ ︷︷ ︸

T2,2

+

∫
Σf,h

∇ · Lh(unh − ḋnh)(pnh − pn−1
h )︸ ︷︷ ︸

T2,3

.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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EXPLICIT COUPLING SCHEMES FOR INCOMPRESSIBLE FSI 9

Owing to (11), for the third term we have

T2,3 ≤ ‖pnh − pn−1
h ‖0,Σf,h

‖∇ · Lh(unh − ḋnh)‖0,Ωf

≤ ‖pnh − pn−1
h ‖0,Σf,h

CLh
− 1

2 ‖unh − ḋnh‖0,Σ

≤ 2C2
L

γµ
‖pnh − pn−1

h ‖20,Σf,h
+
γµ

8h
‖unh − ḋnh‖20,Σ.

Similarly, for the second we obtain

T2,2 ≤ 2µ‖ε(un−1
h )‖0,Ωf

‖ε
(
Lh(unh − ḋnh)‖0,Ωf

≤ 2µ‖ε(un−1
h )‖0,Ωf

CLh
− 1

2 ‖unh − ḋnh‖0,Σ

≤ 8C2
Lµ

γ
‖ε(un−1

h )‖20,Ωf
+
γµ

8h
‖unh − ḋnh‖20,Σ,

and, for the first term

T2,1 ≤ ρf‖∂τun−1
h ‖0,Ωf

‖Lh(unh − ḋnh)‖0,Ωf

≤ ρf

τ
‖unh − un−1

h ‖0,Ωf
CLh

1
2 ‖unh − ḋnh‖0,Σ

≤
(

2ρfC
2
Lh

2

γµτ

)
ρf

τ
‖unh − un−1

h ‖20,Ωf
+
γµ

8h
‖unh − ḋnh‖20,Σ. (16)

The estimate (13) then follows from (12) by inserting the last three bounds into (15) and then by
summing the resulting expression over m = 1, . . . , n.

At this point it is worth recalling that the energy stability of the original Nitsche based explicit
coupling (Algorithm 1) is independent of the choice of the time-marching in the fluid and in the
structure. The above stability analysis, however, makes explicit use of the numerical dissipation
provided by time-marching in the fluid (to control the first term in (16)). On the other hand no
assumption is made on the time-marching for the solid (as for Algorithm 1).

Remark 2
By imposing the stronger inverse CFL-condition

ρfC
2
Lh

2 . γτ2µ, (17)

in the right hand side of equation (16) and then applying Gronwall’s lemma, we can avoid the use of
the numerical dissipation provided by the fluid time-marching. The main drawback of this approach
is that the combination of the strengthened CFL-condition (17) with γτ . h and C2

L . γ0, leads to
stability conditions depending on the physical parameters.

3.3. Genuine Robin-Robin explicit coupling

The Robin-Robin schemes given by Algorithms 2 and 3, are not completely satisfactory since they
still involve some non-standard terms. In particular, it would be advantageous if the terms∫

Σ

(unh − ḋnh) · nqh +
γ0h

γµ

∫
Σ

(pnh − pn−1
h )qh (18)

and ∫
Σf,h

div
(
Lh(unh − ḋnh)

)
qh +

γ0

γµ

∫
Σf,h

(pnh − pn−1
h )qh, (19)

could be omitted in Algorithms 2 and 3, respectively. The first term in (18) and (19) adds weak
control of the difference (unh − ḋnh) · n|Σ, that is already controlled (at least for sufficiently viscous
flows) by the Nitsche penalty term and the other term is the interface pressure penalty term that is

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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10 E. BURMAN AND M.A. FERNÁNDEZ

introduced to stabilize the pressure fluctuations in time. We will now suggest a reduced coupling
scheme, reported in Algorithm 4, where these terms are eliminated. Thus, instead of (7), the standard
form of the continuity constraint, divun = 0, is considered. It should be noted that the underlying
this method is nothing but the fully discrete counterpart of (1), (2) and (6), hence the terminology
”genuine Robin-Robin”. Although the stability result of the previous section does not extend to
this case, the numerical experiments reported in Section 5 indicate that this method is as stable and
accurate as the ones of Algorithms 1-3.

Algorithm 4 Genuine Robin-Robin explicit coupling scheme.

1. Solid sub-problem: find dnh, ḋ
n
h ∈ Vs,h such that

As,τ

(
(dnh, ḋ

n
h), (wh, zh)

)
+ γ

µ

h

∫
Σ

ḋnh ·wh = γ
µ

h

∫
Σ

unh ·wh −
∫

Σ

σ(un−1
h , pn−1

h )n ·wh

for all wh, zh ∈ Vs,h.
2. Fluid sub-problem: find (unh, p

n
h) ∈ Vf,h ×Qh, with unh|Γin = unin, such that

Af,τ

(
(unh, p

n
h), (vh, qh)

)
+ γ

µ

h

∫
Σ

unh · vh = γ
µ

h

∫
Σ

ḋnh · vh +

∫
Σ

σ(un−1
h , pn−1

h )n ·wh

−
∫

Γout

pnoutvh · n

for all (vh, qh) ∈ Vf,Γin,h ×Qh.

4. ENHANCING ACCURACY

The splitting error is the main source of error in the explicit coupling schemes. This error appears
both in the consistency terms on the interface and in the penalty term. The pressure stabilization on
the boundary also introduces a consistency error but, as was noted in the introduction, this error is of
higher order than the consistency error in the penalty terms. One way of reducing the splitting error
is to introduce an extrapolated quantity in the coupling terms. This increases the formal order of the
scheme, but may have negative influence on the stability properties. It is therefore often helpful to
combine the extrapolation with a correction step.

The largest consistency error is due to the penalty term on the jump of the velocities over the
interface. This term can be omitted if the non-symmetric version of Nitsche’s method is used.
The stability of this scheme, without penalty, in the case of imposition of boundary conditions
for Poisson’s equation, was recently shown in [5] and for elasticity in [4].

4.1. Second-order extrapolation with first-order correction

To enhance the accuracy of Algorithm 1, we need to make the term γ µh
∫

Σ
un−1
h ·wh closer to

γ µh
∫

Σ
unh ·wh. Indeed the choice of un−1

h leads to the following consistency perturbation compared
to the implicit method:

γ
µ

h

∫
Σ

(ḋnh − un−1
h ) ·wh = γ

µ

h

∫
Σ

(ḋnh − unh) ·wh + γ
µτ

h

∫
Σ

∂tuh(τ̃) ·wh,

for some τ̃ ∈ [tn−1, tn]. The simplest way to achieve this is, for n ≥ 2 to replace the term
γ µh
∫

Σ
un−1
h ·wh in (4) by γ µh

∫
Σ
u∗h ·wh, where u∗h is chosen as a second order extrapolation,

typically u∗h = 2un−1
h − un−2

h . The idea behind the extrapolation is to obtain

γ
µ

h

∫
Σ

(ḋnh − u∗h) ·wh = γ
µ

h

∫
Σ

(ḋnh − unh) ·wh + γ
µτ2

h

∫
Σ

∂ttuh(τ̃) ·wh,

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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for some τ̃ ∈ [tn−2, tn]. This result in an improvement in the formal error from τ/h to τ2/h, or if k
corrections are used (see [6, Section 5.4]) from (τ/h)k+1 to (τ2/h)k+1. Then the choice τ = O(h),
imposed by the stability theorem leads to the error contributions h, for k = 0 and h2 for k = 1,
which is satisfactory for affine finite elements and second order time-discretization.

Numerical experimentation shows that the numerical scheme using extrapolation is unstable for
the base case k = 0. If on the other hand one or more correction steps are used (k ≥ 1) the method
is stable and the expected orders are observed. This will be illustrated in the numerical experiments
of Section 5. A potential disadvantage of this approach is that depending on the mesh parameters,
more than one correction may be needed to ensure robustness.

4.2. Non-symmetric penalty-free formulation

If the non-symmetric version of Nitsche’s method is used the penalty term on the velocities over the
interface may be dropped without loss of stability. The accuracy in the H1-norm is also the same,
but the error constant is often slightly larger than for the penalized formulation (provided a close
to optimal choice of the penalty parameter is made.) We give the algorithm of the explicit coupling
scheme resulting from the use of the non-symmetric penalty-free formulation in Algorithm 5.

Algorithm 5 Stabilized explicit coupling using a penalty free nonsymmetric Nitsche type method.

1. Solid sub-problem: find dnh, ḋ
n
h ∈ Vs,h such that

As,τ

(
(dnh, ḋ

n
h), (wh, zh)

)
= −

∫
Σ

σ(un−1
h , pn−1

h )n ·wh

for all wh, zh ∈ Vs,h.
2. Fluid sub-problem: find (unh, p

n
h) ∈ Vf,h ×Qh, with unh|Γin = unin, such that

Af,τ

(
(unh, p

n
h), (vh, qh)

)
+

∫
Σ

unh · σ(vh, qh)n+
γ0h

µ

∫
Σ

pnhqh =
γ0h

µ

∫
Σ

pn−1
h qh

+

∫
Σ

ḋnh · σ(vh, qh)n+

∫
Σ

σ(u∗h, p
∗
h)n · vh −

∫
Γout

pnoutvh · n

for all (vh, qh) ∈ Vf,Γin,h ×Qh. Here either (u∗h, p
∗
h) = (un−1

h , pn−1
h ) or (u∗h, p

∗
h) = (unh, p

n
h).

The interpretation of this scheme is that of a Neumann/Dirichlet coupling, where forces are
transmitted to the solid using a Neumann condition and a weak Dirichlet condition couples the
fluid velocities to the solid ones. The weak Dirichlet condition can be interpreted as a Lagrange-
multiplier coupling where the Lagrange multiplier spaces consists of the space of normal fluxes
constructed using the finite element spaces Vf,Γin,h ×Qh on the interface. Note that the part
σ(vh, 0)n corresponds to the imposition of the constraints due to the viscous forces and σ(0, qh)n
corresponds to the imposition of the non-penetration condition.

When applying an explicit coupling, the inconsistency in time due to the penalty term vanishes,
which leads to a method which has first order accuracy in time without any extrapolation/correction
steps.

Note that two choices are possible for the consistency part of the interface fluid stresses,∫
Σ
σ(u∗h, p

∗
h)n · vh, either (u∗h, p

∗
h) = (un−1

h , pn−1
h ) or (u∗h, p

∗
h) = (unh, p

n
h). In our numerical

experiments both approaches were stable and first order convergent in two-space dimensions. In
the three dimensional case however, the linear systems of the former case proved to ill-conditioned
for the iterative solver. Below we only present the results obtained with the more robust second
method. The main difference between the methods is in the error constant which is approximately
50% larger for the second method. As will be shown in the numerical section, in general, the error
constant is larger for the non-symmetric method (Algorithm 5) compared to the penalty based
methods (Algorithms 1–4). On the other hand, in our numerical experiments, the explicit coupling

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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12 E. BURMAN AND M.A. FERNÁNDEZ

scheme using the non-symmetric version proved to be stable and first order convergent without
resorting to extrapolation or correction steps, which makes the method cheaper for a fixed time-
step/mesh combination. We also observe that since the non-symmetric Nitsche method is related to
a Lagrange-multiplier method where the coupling acts on averages over macro-patches the effective
mesh-size on the boundary is increased.

4.3. Penalty free explicit coupling scheme using the non-symmetric Nitsche method without
pressure stabilization

It is tempting to combine the ideas of Section 3.3 and Section 4.2, into a method where the penalty
on the velocity jump across the interface is eliminated by the use of the nonsymmetric version of
Nitsche’s method (with (u∗h, p

∗
h) = (un−1

h , pn−1
h ) and the pressure stabilization is eliminated by the

omission of the term
∫

Σ
(unh − ḋnh) · σ(0, qh)n as was proposed in Section 3.3. In Algorithm 6 we

propose such a method. Numerical investigations indicate that the resulting scheme indeed is stable,

Algorithm 6 Stabilized explicit coupling using penalty free nonsymmetric Nitsche type method.

1. Solid sub-problem: find dnh, ḋ
n
h ∈ Vs,h such that

As,τ

(
(dnh, ḋ

n
h), (wh, zh)

)
= −

∫
Σ

σ(un−1
h , pn−1

h )n ·wh

for all wh, zh ∈ Vs,h.
2. Fluid sub-problem: find (unh, p

n
h) ∈ Vf,h ×Qh, with unh|Γin = unin, such that

Af,τ

(
(unh, p

n
h), (vh, qh)

)
+

∫
Σ

unh · 2µε(vh)n =

+

∫
Σ

σ(un−1
h , pn−1

h )n · vh +

∫
Σ

ḋnh · 2µε(vh)n−
∫

Γout

pnoutvh · n

for all (vh, qh) ∈ Vf,Γin,h ×Qh.

however since the non-penetration condition has been relaxed by the omission of the corresponding
term, the coupling relies solely on the interface term

∫
Σ

(unh − ḋnh) · σ(vh, 0)n, which will scale
linearly in the viscosity µ. Hence even for moderately small viscosities the control of the non-
penetration condition is dramatically reduced. Our numerical investigations (not reported here)
indicate that this has an immediate effect on the computational accuracy. To sum up: the fully
penalty-free method is stable and appears to be convergent, but the constant in the error estimate
constant scales as µ−1, leading to a numerical method that is not competitive in practice. For small
values of µ a similar effect is present in the method of Section 3.3, but in this case the problem can
be solved by choosing the velocity penalty parameter sufficiently large.

5. NUMERICAL INVESTIGATIONS

Here we will give some illustration of the performance of the various methods presented above. In
particular we will show that the formal orders discussed in the beginning are relevant and that the
explicit splitting scheme of Algorithm 1 alone is insufficient to obtain optimal accuracy under the
hyperbolic CFL. The approach using extrapolation and defect correction yields optimal convergence
under hyperbolic CFL, as does the non-symmetric method of Algorithm 5 automatically, without
resorting to any correction. We first give a detailed convergence study of a two-dimensional test case
where the approximations are compared to a reference solution computed with an implicit coupling
scheme on a very fine space-time grid (fully conformal spatial discretization). Here we investigate
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EXPLICIT COUPLING SCHEMES FOR INCOMPRESSIBLE FSI 13

the convergence properties of Algorithms 2, 4 and 5. In the three dimensional case, we illustrate the
accuracy of the methods in two fluid-structure examples from the literature.

5.1. Convergence study in a two-dimensional benchmark

In order to illustrate the accuracy of the proposed schemes, we have performed a series of
numerical tests in a two-dimensional IFSI benchmark (see, e.g., [2]). We consider the coupled
problem (1)-(3) with the fluid and solid domains given, respectively, by the rectangles Ωf =
[0, 6]× [0, 0.5] and Ωs = [0, 6]× [0.5, 0.6]. The interface is Σ = [0, 6]× {0.5} and we have Γd =
{0, 6} × [0.5, 0.6], Γn = [0, 6]× {0.6}, Γin = {0} × [0, 0.5] and Γout = {6} × [0, 0.5]. All units are
in the CGS system. A sinusoidal pressure of maximal amplitude 2× 104 is imposed in Γin during
5× 10−3 s, corresponding to half a period. Zero pressure is enforced on Γout and a symmetry
condition is applied on the lower wall y = 0. The fluid physical parameters are given by ρf = 1.0,

Figure 3. Snapshots of the fluid pressure and solid displacement at t = 0.003, 0.008, 0.015 (from top to
bottom). Algorithm 2 with the second-order correction, γ0 = 1, γ = 1000, τ = 10−4 and h = 0.05.

µ = 0.035. For the solid we have ρs = 1.1, L1 = 1.15× 106, L2 = 1.7× 106, β = 4× 106. Affine
finite elements are used for both the fluid and the structure (a pressure-stabilized formulation
is considered in the fluid). The computations have been performed with FreeFem++ [34]. For
illustration purposes, we have reported in in Figure 3 some snapshots of the fluid pressure and
deformed fluid and solid domains, obtained with Algorithm 2 (γ0 = 1, γ = 1000) and the second-
order extrapolation.

A reference solution has been generated using a fully implicit coupling scheme and a high grid
resolution (τ = 10−6 and h = 3.125× 10−3). We have first refined both in time and in space at the
same rate, with the following set of discrete parameters:

(τ, h) ∈
{(

5× 10−4

2i
,

10−1

2i

)}4

i=0

. (20)

Note that this allows to highlight the h-uniformity of the convergence in time.
In order to illustrate the O((τ/h)2) error perturbation introduced by the explicit treatment in

Algorithm 2 with one correction iteration, we present in Figure 4 the convergence histories of the
solid displacement error obtained with τ = O(h) (hyperbolic-CFL) and τ = O(h

3
2 ) (1.5-CFL). The

expected non-convergent behavior under the hyperbolic-CFL constraint is clearly visible. The figure
also shows that overall O(h) first-order accuracy can be achieved trough the strengthened CFL
constraint τ = O(h

3
2 ).

We now turn our attention to the accuracy of the schemes introduced in Section 4 under the
standard hyperbolic-CFL constraint τ = O(h). Figure 5 reports the convergence histories obtained
for computations of approximations of the model problem using Algorithms 2, 4 (with γ0 = 1,
γ = 1000) and Algorithm 5 (with (u∗h, p

∗
h) = (unh, p

n
h) and γ0 = 0.005). For reference we also

give the convergence of the implicit coupling scheme. In Algorithms 2 and 4 the second-order
extrapolation with the first-order correction was used. In all cases presented herein this was enough
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Figure 4. Solid displacement error convergence histories (in the relative elastic energy-norm) at time
t = 0.015, obtained from Algorithm 2 with and the first-order correction, for γ0 = 1, γ = 1000, τ = O(h)

(hyperbolic-CFL) and τ = O(h
3
2 ) (1.5-CFL).
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Figure 5. Solid displacement error convergence histories (in the relative elastic energy-norm) at time
t = 0.015 with τ = O(h).

to obtain robustness and accuracy. During numerical experimentation, not reported, we did however
observe that finer meshes may require a moderate increase in the number of correction steps. All the
methods seem to have similar first order convergence. The error constant in the curve corresponding
to the solutions produced using Algorithm 5 is approximately a factor two larger than for the other
methods. Note however that the method of Algorithm 5 does not use any extrapolation or correction
steps and is therefore cheaper for a fixed combination h and τ . Numerical experiments not reported
here show that the constant can be reduced by adding a correction term or by using an explicit
treatment of the fluid boundary stresses (i.e., (u∗h, p

∗
h) = (un−1

h , pn−1
h )).

The impact of the error constant is illustrated in Figures 6 and 7, where we have depicted the
final interface displacements obtained with the set of discretization parameters given by i = 2 and
i = 4 in (20). For the finest space-time resolution, Algorithms 2, 4 and 5 yield similar accuracy
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Figure 6. Comparison of the interface displacement at time t = 0.015 obtained with (τ, h) =

(5× 10−4, 10−1)/4.
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Figure 7. Comparison of the interface displacement at time t = 0.015 obtained with (τ, h) =

(5× 10−4, 10−1)/16.

as the implicit coupling scheme, while the quality of the approximations provided by Algorithm 5
degrades for the coarsest discretizations.

5.2. Three-dimensional test cases

Comparisons are made with a reference solution obtained with an implicit coupling scheme (solved
through a partitioned Dirichlet-Neumann interface Newton-GMRES algorithm, see e.g. [16]) and a
fully conformal spatial discretization.

5.2.1. Pressure wave propagation in a straight cylindrical vessel. In order to asses the proposed
algorithms in their non-linear versions we considered three-dimensional example proposed in [19]
(see also [20, Chapter 12]). The fluid domain is a straight tube of radius 0.5 and of length 5. All
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16 E. BURMAN AND M.A. FERNÁNDEZ

units are in the CGS system. The fluid is governed by the incompressible Navier-Stokes equations
in ALE formulation. The vessel wall has a thickness of 0.1 and is clamped at its extremities. The
vessel displacement is described by the linear elasticity equations.

Figure 8. Snapshots of the fluid pressure and solid deformation at t = 0.003, 0.007, 0.011 (from left to
right) obtained with Algorithm 3 (γ0 = 1, γ = 2500) with the second-order extrapolation and the first-order

correction.
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Figure 9. Comparison of the implicit, the Robin-Robin explicit coupling schemes without second-order
extrapolation and Algorithm 5: interface mid-point displacement magnitude vs. time.

The physical parameters for the fluid have been chosen as ρf = 1 and µ = 0.035. For the solid
we have ρs = 1.2, Young modulus E = 3× 106 and Poisson’s ratio ν = 0.3. The overall system is
initially at rest and, during the first 5× 10−3, an over pressure of 1.3332× 104 is imposed on the
inlet boundary. Simulations are carried out on 150 time-steps of size τ = 10−4. We have reported in
in Figure 8 some snapshots of the fluid pressure and deformed fluid and solid domains, obtained with
Algorithm 3 (γ0 = 1, γ = 2500) with the second-order extrapolation and the first-order correction
(see Section 4.1). The propagation of the pressure wave is clearly visible (for illustration purposes,
the deformation of the fluid and solid domains has been magnified by a factor 10).

In this example we consider Algorithm 2, Algorithm 3, Algorithm 4 and Algorithm 5 (with
(u∗h, p

∗
h) = (unh, p

n
h)). We also investigate the genuine Robin-Robin scheme (Algorithm 4) with

a residual based treatment of the coupling (as in Algorithm 3). In what follows, this scheme is
termed Algorithm 4/3. Figure 9 reports the interface mid-point displacement magnitudes obtained
with the Robin-Robin schemes (without second-order extrapolation and first-order correction),
Algorithm 5 and the implicit coupling. The results provided by the Robin-Robin schemes schemes
are practically indistinguishable. Their mismatch with the implicit coupling scheme is however
noticeable. On the other hand, Algorithm 5 is the only method which provides a physically correct
solution without resorting to corrections. In Figure 10, we have reported the results obtained with the
Robin-Robin schemes using a second-order extrapolation and the first-order correction. The second
order-extrapolation retrieves the accuracy of the implicit coupling scheme.
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Figure 10. Comparison of the implicit and Robin-Robin explicit coupling schemes with second-order
extrapolation: interface mid-point displacement magnitude vs. time.

5.2.2. A physiological test-case. We consider now the numerical fluid-structure simulations
reported in [1] (see also [36]) using in vitro aneurysm geometries. The fluid computational domain
is the idealized abdominal aortic aneurysm given in Figure 11 (left).
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Figure 11. Aneurysm geometry and in-flow rate data.

Figure 12. Snapshots of the fluid velocity and solid deformation at t = 0.2016, 0.336, 0.672 (from left to
right). The solid line represents the reference configuration of the solid.

The whole compliant wall has a uniform thickness of 0.17 and length of 22.95. All units are in the
CGS system. The physical parameters are given by E = 6× 106, ν = 0.3, ρs = 1.2, µ = 0.035 and
ρf = 1. Initially, the fluid is at rest. An in-flow rate corresponding to a cardiac cycle, see Figure 11
(right), is imposed on the inlet boundary. A resistive-like boundary condition is prescribed on the
outlet boundary, the value of the resistance being R = 6× 102. We have simulated 500 time-steps
of size τ = 1.68× 10−3, which corresponds to a complete cardiac cycle. Some snapshots of the
fluid velocity and deformed fluid and solid domains are presented in Figure 12, using Algorithm 4
(γ0 = 1, γ = 2500) with the second-order extrapolation and the first-order correction.
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Figure 13. Comparison of the implicit and Robin-Robin explicit coupling schemes without second-order
extrapolation: interface mid-point displacement magnitude vs. time.
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Figure 14. Comparison of the implicit and Robin-Robin explicit coupling schemes with second-order
extrapolation: interface mid-point displacement magnitude vs. time.

Figures 13 and 14 present the interface mid-point displacement magnitudes obtained with
Algorithms 3 and 4† without and with the second-order extrapolation, respectively. For comparison
purposes we have also reported the solution provided by the implicit coupling scheme. Once again,
the accuracy of the variants without second-order extrapolation is rather poor. The phase mismatch
with the implicit coupling scheme is particularly striking. As shown in Figure 14, the Robin-Robin
schemes with second-order extrapolation retrieve the overall dynamics of the solution provided
by the implicit coupling scheme. In spite of the relatively large time-step considered, phase and
amplitude are clearly improved.

†Algorithm 2 and Algorithm 4/3 give practically the same results.
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6. CONCLUSION

In this paper we have investigated several possible numerical schemes that allow for the staggered
computation of fluid-structure interaction problems where the added-mass effect is strong. A salient
feature of the methods suggested herein is that we observe optimal convergence order under a
standard hyperbolic CFL condition for first order time discretization schemes. After comparing
several numerical schemes our observations are that

– The explicit coupling can be implemented in a scheme using residual coupling terms instead
of the boundary integrals characteristic for Nitsche’s method.

– The main source of consistency error comes from the Nitsche penalty term, followed by the
pressure stabilization term.

– Accuracy of the methods can be enhanced by using extrapolation of explicit quantities
followed by one (or a few) correction step(s).

– Stability and accuracy are consequences of a careful balancing of the strength of the terms
imposing continuity across the interface and the pressure stabilization term relaxing the non-
penetration condition. A weaker coupling may lead to a more stable scheme, in need of less
stabilization. On the other hand it may result in a larger error constant and hence in reduced
accuracy for a given computational mesh.

We hope that the present paper will stimulate discussion on the topic of explicit coupling methods
in incompressible FSI. A field where there appears to be a number of open problems:

– High order in time: the design of an explicit coupling method of second-order remains an open
problem. The naive use of higher order time discretization and second-order extrapolation in
the coupling terms does not appear to be stable.

– Rigorous stability analysis: from the point of view of numerical analysis several challenging
problems remain open such as the stability of Algorithms 4 and 5.

– Accuracy of extrapolation/correction: how to prove the improved accuracy of the
extrapolation method with correction remains an open problem as well as the possible
dependence of algorithms on the mesh parameters and the dissipation introduced by the
numerical scheme.
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