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Abstract

This paper develops a model in which a continuum of consumers choose from

a continuum of locations indexed by school quality. It computes equilibria

that are sustained by a price function that matches consumers to different

locations based on their willingness to pay for school quality. In equilibrium

each location is inhabited by a set of people with varying levels of education,

ability, intensity of preference for education, and income. The distributions of

characteristics within each location are determined by the structural elements

of the model.

The paper also develops a set of computational algorithms that solve sev-

eral complex numerical problems. These problems include the calculation of

a number of difficult integrals, the calculation of asymptotic approximations

to those integrals, the solution of an implicitly defined differential equation

that depends on the integrals previously calculated, and the maximization of

a likelihood function that depends on the solution of the differential equation.

Finally, this paper demonstrates how the equilibrium implications of a

structural economic matching model can be used to solve two important



econometric identification problems. First, it is likely that regressions that

seek to estimate the effects of school quality on educational outcomes produce

biased and inconsistent estimates because people choose where their children

go to school. The model in the paper solves this problem by using a consumer

location choice equation and an equilibrium pricing relation to create a valid

instrument for the school quality variable. Second, hedonic estimation prob-

lems in a single market are unidentified because the marginal price function

is unknown or collinear with the level of the product demanded. This pa-

per solves this problem by exploiting the restrictions that equilibrium in the

sorting economy imposes on the equilibrium price function. The equilibrium

price equation introduces a non-linearity into the system that is sufficient for

identification.
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1 Introduction

There is large empirical literature that seeks to measure the importance of

neighborhood characteristics in the production of individual outcomes. This

literature begins with the hypothesis that many outcomes are produced not

only by an individual’s observed and unobserved background characteristics,

but also by the characteristics of the neighborhood in which a person lives.

For instance, the average education of the residents of a community along

with an individual’s own parents’ education and the individual’s own abil-

ity might determine the educational outcome of that individual. Working

with similar hypotheses researchers have sought to use regression analysis to

explain a large number of social outcomes including educational outcomes,

job market outcomes, fertility behavior, and criminal behavior. Important

surveys of the results of this research can be found in Brock and Durlauf

(2000), Haveman and Wolfe (1995), and Jencks and Mayer (1991).

For the most part, researchers have sidestepped a major issue that affects

the interpretation of their empirical results. They have not dealt whole-

heartedly with the fact that people choose their location and that as a result

it is very likely that the unobservable characteristics that enter the produc-

tion functions for individual outcomes are correlated with observable neigh-
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borhood characteristics. If ability increases the productivity of neighborhood

quality in producing education, then people who know they have high ability

children will move to high quality neighborhoods. This could result in higher

mean unobserved ability in high quality neighborhoods. Alternatively, if par-

ents of low ability children perversely value education very highly, then they

will move to high quality neighborhoods, outbidding the parents of high abil-

ity kids. This could result in lower mean unobserved ability in high quality

neighborhoods. In short, when people choose where to live, there is little

that can be said about the distributions of unobservables across locations

unless one understands the sorting process.

Researchers have recognized that their empirical neighborhood effects

models lack a mechanism describing neighborhood sorting, but they have not

been able to specify an economic model that describes the location choices of

heterogeneous consumers and develop the implications that such a model has

for what types of people live in each location in equilibrium. Nor have they

been able to embed such an economic equilibrium framework in an empirical

setting.

In this paper, I tackle this problem by developing a model in which a

continuum of consumers choose from a continuum of locations indexed by
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school quality. I compute equilibria that are sustained by an equilibrium

price function that separates consumers into different locations based on

their willingness to pay for school quality. I show how sets of consumers are

sorted into locations so that in equilibrium, each location has a distribution

of people with varying levels of education, ability, intensity of preference

for education, and income. The distributions of characteristics within each

location are determined by the structural elements of the model.

An important component of the model is a set of computational algo-

rithms that solve several complex numerical problems. These problems in-

clude the calculation of a number of difficult integrals, the calculation of

asymptotic approximations to those integrals, the solution of an implicitly

defined differential equation that depends on the integrals previously calcu-

lated, and the maximization of a likelihood function that depends on the

solution of the differential equation. The algorithms I develop allow me to

analyze the theoretical and empirical properties of the equilibrium sorting

model. In addition, they stand on their own as one of the major contribu-

tions of this paper.

The model bears a significant resemblance to hedonic equilibrium models

developed by Tinbergen (1959), Sattinger (1981), Kniesner and Leeth (1995),
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Teulings (1995), Epple and Platt (1998), and Epple and Sieg (1999a,1999b).

These models also match consumers to locations and find prices that separate

people based on their willingness to pay for locational quality. An important

aspect of all of these models except Epple and Platt (1998) and Epple and

Sieg (1999a, 1999b) is that consumers’ valuations of the locations depend

on characteristics of the locations themselves, not on characteristics of the

equilibrium sets of people at the locations. In contrast, in this paper as

in Epple and Platt and Epple and Sieg, valuations of locations depend on

the sets of people at the various locations.1 This is a fundamental trait

of interactions-based models and as such is a fundamental element of the

analysis in this paper.

This theoretical analysis produces an equilibrium pricing function and

a spatial equilibrium that displays rich patterns of sorting across locations.

This equilibrium is valuable for several reasons. First, it yields important in-

sights about the determinants of patterns of neighborhood sorting. Second,

it clarifies the econometric issues involved in the identification of neighbor-

hood effects and location choice. Third, it produces restrictions that can be

1Epple and Platt and Epple and Sieg develop a model with a finite number of locations.
In their papers, locational quality depends on expenditures on a public good. The level
of expenditures is determined by the set of residents at each location through a voting
mechanism.
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exploited to achieve identification.

In addition to the pricing function, the equilibrium produces two empir-

ical equations. The first equation is the education production function that

describes the relation between individual educational outcomes, individual

background characteristics, and locational quality. As I discussed above, its

parameters cannot be consistently estimated because locational quality is

chosen by the consumer and hence is correlated with unobserved individual

traits. The second equation is the locational choice equation describing each

consumer’s choice of location as a function of the marginal price of the lo-

cation and the consumer’s individual characteristics. This equation can be

used to create an instrument for neighborhood quality in the first equation;

however, it must be estimated first. This requires solving a hedonic estima-

tion problem which may not be identified because both the choice variable

and the marginal price are endogenous and may by linearly related. Thus,

it is clear that solving the neighborhood effects estimation problem entails

solving two distinct econometric problems: the endogenous regressor problem

and the hedonic estimation problem.

First, consider the hedonic estimation problem. The difficulty lies in esti-

mating the structural parameters that describe demand for locational quality
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when that demand depends on a marginal price that varies with actual qual-

ity chosen. It is well known that when the price function is unknown and

the demand relationships are estimated using price data and an arbitrary

functional form to approximate the price function, the structural parameters

cannot be reliably estimated using single market data (see Rosen (1974),

Brown and Rosen (1981), Bartik (1987), Epple (1987), and Kahn and Lang

(1988)). In particular, if the demand equation is assumed to be linear in

neighborhood quality and the marginal price is also assumed to be linear,

the structural demand parameters cannot be identified from estimation of

the neighborhood choice equation. In this case, the empirical equation has

two endogenous variables which are perfectly collinear. If the marginal price

function is assumed to be non-linear, this aids identification by breaking the

collinearity. However, this identification is arbitrary since there is no guide

as to what non-linear functional form to use.

Ekeland, Heckman and Nesheim (2001) and this paper develop ways to

solve this identification problem. They observe that methods like the one

described above, do not use all the information that is available in a hedonic

equilibrium model; economic equilibrium imposes restrictions on the hedo-

nic pricing function that generically result in identification of the structural
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parameters of the demand relationship. Ekeland, Heckman, and Nesheim

show in a non-parametric setting with separable preferences that generically

the equilibrium marginal price function is not linear.2 Exploiting this non-

linearity is sufficient for identification. In the parametric model developed in

this paper, this only requires the numerical solution of an ordinary differen-

tial equation (ODE). This non-linearity is not arbitrary because it is derived

from the structure of the equilibrium of the model. The distributions of con-

sumer and supplier types that generate the non-linearity can be estimated

from data.

Ekeland, Heckman and Nesheim (2001) develops these ideas in the context

of a classical one-to-one matching hedonic equilibrium model. They focus

on using equilibrium restrictions to estimate the demand for differentiated

commodities. In this paper, I develop these ideas in the context of a one-to-

many matching hedonic equilibrium model with neighborhood effects. As in

Ekeland, Heckman and Nesheim (2001), I study how equilibrium restrictions

on the pricing function can be used to identify the parameters of the hedonic

location choice equation. Moreover, I show that this is possible even when

2That is, they show that the set of economies in which the equilibrium marginal price
function is non-linear is a countable intersection of open dense subsets of the space of
feasible economies.
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data on prices is not available.

I then extend the analysis to show how equilibrium restrictions not only

identify the hedonic demand equation, but simultaneously solve the endoge-

nous regressor problem and identify the parameters of the equation describing

the effect of neighborhood characteristics on individual outcomes. This re-

sult requires the analysis of a non-linear simultaneous equations system that

depends on the solution of a differential equation. I show that the condi-

tions under which this system is not identified are not generic in the sense

that small perturbations of the structure of the model (starting from a sys-

tem that is not identified) result in systems that are identified. In section

5.5, I demonstrate the efficacy of these methods by estimating the structural

parameters of a sorting economy using both synthetic and real data.

2 Overview

The outline of the paper is as follows. In section 3, I describe the supply and

demand conditions of the model and set out the specific economic environ-

ment facing the consumer. The model is a model of locational choice in which

consumers pay more to live in locations with higher levels of school quality.
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Consumers value locations with higher quality schools because school qual-

ity is an input into their child’s educational outcome. School quality in each

location depends on the set of people living there. I assume that the average

education of the parents in a location is the relevant measure of school qual-

ity.3 The specific assumptions made are aimed toward creating the simplest

possible model that has the rich sorting equilibrium described in the previous

section and that can be used for empirical work.

After setting out the basic assumptions, I describe the equilibrium con-

cept that is used in the model, and discuss some basic facts that are true of

equilibria in many general models of this type. The equilibrium is a Nash

equilibrium in which consumers treat the school quality in each location and

the price function as given, and choose their location accordingly. In equilib-

rium, the quality in each location is consistent with the quality they expect

when they make their location choice. I show that there is always a trivial

equilibrium in which every location has the same school quality and the same

price of zero. Then I show that if there are “separating” equilibria in which

3There is a great deal of controversy about what factors influence school quality (Betts
(1995), Card and Krueger (1992), Hanushek (1996), Heckman et al. (1996)). In this paper,
I remain agnostic about the results of this literature and note that the results in Table
1 show a positive correlation between average parental education at a child’s school and
the child’s subsequent schooling attainment. I seek to explain whether this correlation
indicates a causal relationship and how strong that relationship might be.
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consumers separate into locations with different average levels of education,

these equilibria can be partitioned into unique classes of equilibria that as-

sign each consumer to a unique quality of location. These “quality” sorting

equilibria are the central objects of study throughout the remainder of the

paper.

In section 4, I analyze the simplest example of the model developed in

section 3 and characterize the properties of its equilibrium. In this example,

utility is linear in consumption, and I derive a closed-form expression for

the equilibrium price function. I also derive a closed form expression that

describes the equilibrium distributions of consumer types within each neigh-

borhood. The simplicity of these results provide a clear illustration of how

different factors affect both the equilibrium price function and the equilib-

rium patterns of sorting that are observed in the economy. These results are

easy to understand and easy to compute.

After developing these results, I analyze the empirical equations result-

ing from the linear utility model in section 4.3. These equations are linear

functions of the logarithms of the data. They clearly illustrate the primary

econometric issues involved in estimating the model. The first issue is the

estimation of the hedonic location choice equation. The hedonic equation
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contains the logarithm of the neighborhood quality variable as well as the

logarithm of the marginal price variable. Both of these are endogenous and in

the linear utility model equilibrium both are linearly related. These problems

of endogeneity and collinearity must be addressed to estimate the hedonic

equation. The second issue is the endogeneity of the school quality variable

in the education production function. An instrument must be found for this

endogenous explanatory variable. The location choice equation can produce

a valid instrument for this variable if it can produce a predicted school quality

that is linearly independent of the other regressors in the education produc-

tion function. The location choice equation resulting from the linear utility

model fails this test.

This conclusion leads me to relax the assumptions imposed on the model.

In section 5, I study one relaxation in which utility is an exponential function

of consumption. This example has no closed form equilibrium price function

but allows for richer patterns of sorting than the simple linear example. The

equilibrium price function is the solution to a non-standard ordinary differ-

ential equation whose approximate solution must be computed using simple

but specialized numerical techniques. In computing these approximations, I

develop techniques to solve several difficult numerical problems.
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First, the differential equation itself depends on the ratio of two compli-

cated integrals that must be approximated quickly and accurately. Moreover,

the approximations must vary smoothly with the input parameters and with

the state variable of the differential equation. I develop an algorithm that

meets these criteria by carefully analyzing the integrand, making a change

of variable, and then using Gauss-Chebyshev integration formulas.4

Second, in some regions of the state space, the integrals entering the differ-

ential equation are not computable using the integration technique outlined

above. In these regions, the values of both integrals cannot be distinguished

from zero using a finite precision computer. To compute the solution of

the differential equation in these regions, I develop asymptotic expansions

that approximate the values of these integrals and use the ratios of these

approximations to compute the solution of the differential equation.4

Third, the differential equation can have singularity points at some points

in the state space. I show that when these singularity points exist, the

equilibrium price function is not twice continuously differentiable. I develop

an algorithm that tests whether singularity points exist, and computes a

piecewise twice continuously differentiable approximation to the equilibrium

4A comprehensive text discussing these techniques and their uses in economics is Judd
(1998).
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price function when they do.

Fourth, the approximate solution of the differential equation must be

computed quickly and must be smooth enough (as a function of the param-

eters) to be used in empirical work. Finite difference approximations to the

equilibrium price function do not meet these criteria. In particular, since

the differential equation is defined implicitly at each point in the state space,

finite difference methods require the solution of a non-linear equation at each

step of the integration. I develop a projection method approximation that is

many times faster.4This method approximates the solution of the ODE with

a piecewise polynomial that solves the ODE at a set of optimally chosen

points in the state space.

The result of these computations is an equilibrium price function and a

set of functions describing the distributions of education, income, preference,

and ability within each location. I trace several fundamental ways these

equilibrium functions differ from the equilibrium solutions of the linear utility

model. In general, they demonstrate that the model developed in section 5

can generate much more varied patterns of sorting than can be generated by

the linear utility model. These results cannot be obtained without developing

the computational tools discussed above.
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Equipped with these computational tools, I analyze the empirical equa-

tions resulting from the exponential utility model in section 5.4. The set

of empirical equations is very similar to the set of equations resulting from

the linear utility model. Both the hedonic location choice equation and the

education production function contain the same elements as in section 4.3.

Now, however, the logarithm of the marginal price and the logarithm of the

quality variable (the two endogenous variables that enter the location choice

equation) are not collinear. I show that this non-linearity is sufficient to iden-

tify the parameters of the location choice equation up to scale. Moreover, I

show that this is also sufficient to identify the parameters of the education

production function.

In section 5.5, I examine data generated from the equilibrium model and

find that maximum likelihood estimation recovers estimates of the structural

parameters with a high degree of precision. Very few of the estimates reject

the hypothesis that the true parameters are the values used to generate

the synthetic data. I also present preliminary empirical results analyzing

the NELS dataset. These estimates demonstrate the efficacy of the methods

developed in this paper. Future work will analyze alternative functional forms

and more flexible functional forms that can more accurately approximate the
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relationships observed in the data.

3 Model

There is a distribution of consumers in the economy each of whom chooses

a residential location based on the qualities of schools that are available in

different locations. Each consumer is characterized by a vector of traits that

affect the utility they obtain from schools of various qualities. I represent

these traits by the vector x = (ln s0, lnw0, ln a, lnβ, x5)
0 where s0 = ex1 is

parental education or schooling attainment, w0 = e
x2 is parental income or

wealth, a = ex3 is the ability of the consumer’s child in school, β = ex4 is

a preference parameter that measures how much the consumer cares about

their child’s schooling relative to their own consumption, and x5 is a shock to

the child’s educational process that is realized after the parent makes their

choice of location. Throughout the paper, I will use xi to indicate the i’th

component of x and will use X = R5 to indicate the set of all consumers.

I assume that the population distribution of the consumer characteristics

is log-normal, i.e. x ∼ N (µ,Σ). The distribution of consumer types is one of

the crucial determinants of the shape of the equilibrium because it determines
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both the relative demand for different locations in the economy as well as

the relative supply of different types of consumers.

The consumers choose their residential neighborhoods from a continuum

of locations indexed by z ∈ R+. Each location contains an inelastic supply

density of indivisible residential houses h (z) owned by competitive landlords

who rent to the consumers at the price q (z) per unit.5 In addition, each

location is characterized by the set of residents who live there. This is deter-

mined by the measurable equilibrium assignment function F (x) : X → R+

that assigns each person x to a location z. The set of all residents in each

location is {x : x ∈ F−1 (z)} where F−1 (z) is the preimage of the set {z}.

These residents determine the quality of the schools in location z. In particu-

lar, I assume that the quality of the schools in neighborhood z is determined

by the average schooling of the people living in z. Let S (z) represent the

average schooling in location z and define S (z) = E [ex1 |x ∈ F−1 (z)]. Note

that the population living in any set of locations Z ∈ B, where B is the Borel

5I assume that h (z) is a positive continuous density function and that
R
h (z) dz ≥

1. This ensures that the total supply of houses is sufficient to house the population of
consumers and that there are no neighborhoods that have a positive point mass of housing
supply.
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σ-algebra on R+, is then given by

P (Z) =

Z
F−1(Z)

φ5 (x, µ,Σ) dx

where φ5 (x, µ,Σ) is the five-dimensional normal probability density function

with mean µ and variance Σ . Further note that in equilibrium, this popula-

tion measure can have no mass points at any location since h (z) has no mass

points. Therefore, the equilibrium population measure can be represented as

P (Z) =
R
Z

dP (z) dz where dP (z) is the Radon-Nikodym derivative of the

measure P with respect to the Borel measure on R+.

School quality is important to consumers because it interacts with family

background characteristics to produce childrens’ educational outcomes. I

assume that a child’s educational outcome, which I denote by s1 for schooling

attainment, is a function of four inputs. It is a function of the average

parental schooling attainment in the neighborhood S (z) , parental schooling

attainment s0 = e
x1, the child’s ability a = ex3 , and the shock x5.

s1 = S (z)
η1 eη2x1+x3+x5 (3.1)

I assume that when a parent chooses their residential location, they know
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the quality of the neighborhood S, their own education ex1 , and their child’s

ability ex3 . These variables affect their residential decision. They do not know

the value of the variable x5. They only know the distribution from which it

is drawn. Income, w0 = ex2 and the preference parameter β = ex4 do not

directly affect the educational production function but may indirectly affect

educational outcomes through their affect on location choice.

Given the above information, I can state the consumer’s utility maxi-

mization problem. They treat the price function q (z) and the distribution

of types across neighborhoods F (x) as given and solve:

max
z

½
1− e−γ(ex2−q(z))

γ
+ ex4E (s1|z)

¾
(3.2)

where E (s1|z) = A0S (z)
η1 eη2x1+x3, S (z) = E [ex1 |x ∈ F−1 (z)] ,and A0 =

E (ex5) .

Utility is a function of consumption, ex2 − q (z), and the expected value

of the child’s schooling attainment, E (s1|z). The preference parameter ex4

measures the weight a parent puts on their child’s expected schooling.6

The maximization problem in (3.2) describes the utility function for one

6ex4 has two interpretations. It reflects parental altruism and parental perceptions
about their child’s expected return to education measured in utility units.
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consumer with a fixed set of characteristics, x = (ln s0, lnw0, ln a, ln β, x5)
0.

Its solution determines the demand correspondence for that individual con-

sumer, Z = d (x, F, q). Z is the set of locations that maximizes the utility

of the consumer with characteristics x when the distribution of consumers

across locations is described by the function F and the price schedule is q.

Using these objects, I can now define a locational equilibrium.

Definition 3.1 Let d (x, F, q) be the solution of (3.2) for consumer x. A

locational equilibrium of this economy is a pair of measurable functions (F, q)

such that F (x) : X −→ R+, q (z) : R+ −→ R+, and

1. if x ∈ F−1 (z), then z ∈ d (x, F, q) for all x ∈ X

2.
R
Z

(h (z)− dP (z)) dz ≥ 0 for all Z ∈ B

3.
R
Z

q (z) (h (z)− dP (z)) dz = 0 for all Z ∈ B

4. q (z) ≥ 0 for all z ∈ R+

The first condition requires that an equilibrium assignment of consumers

to neighborhoods assigns each consumer to one of his optimal locations. The

second and third conditions require that housing demand is never larger than

housing supply and equals housing supply in every neighborhood that has a
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positive price. The fourth condition requires that landlords profits are non-

negative. The equilibrium is a variation of a Nash equilibrium in that each

agent assumes that every other agent’s equilibrium choice is fixed when he

chooses his own optimal action. The Nash equilibrium consistency condition

that these assumptions are correct is then imposed by condition 1) in the

above definition.

The immediate question arises, under what conditions does an equilibrium

exist. A simple answer, is that a trivial equilibrium always exists. This

answer is given in the following theorem.

Theorem 3.1 Let S = E [ex1] be the average education in the economy. A

locational equilibrium (F, q) exists that satisfies:

E [ex1 |x ∈ F−1 (z) ] = S ∀z ∈ R+

q (z) = 0 ∀z ∈ R+

Proof. See appendix A.

In this equilibrium every location has the same quality and the same

price. This trivial equilibrium is not very interesting. More interesting are

separating equilibria in which different locations have different qualities and

prices. However, when these equilibria exist, they are not unique. Many
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different equilibrium assignments of consumers to locations are possible.

Lemma 3.2 Let (F, q) be a locational equilibrium. Let
³ bF, bq´ be a pair that

satisfies conditions 2-4 in definition (3.1).
³ bF, bq´ is a locational equilibrium

if it satisfies:

1. For all x0 ∈ X, if x0 ∈ F−1 (z1), S1 = E (ex1 |x ∈ F−1 (z1)), and x0 ∈
bF−1 (z2), then S1 = E ³ex1 |x ∈ bF−1 (z2)´

2. 2) For all z1, z2 ∈ R+, if

S1 = E
¡
ex1 |x ∈ F−1 (z1)

¢
andS1 = E

³
ex1 |x ∈ bF−1 (z2)´

then q (z1) = bq (z2) .
Proof. See appendix A.

If (F, q) is a locational equilibrium, any pair
³ bF , bq´that changes con-

sumers’ locations in z-space without changing their location in (S, p (S))space

is also a locational equilibrium if it maintains equilibrium in the housing sup-

ply market in every location. This type of reassignment can change the price

and quality at a particular location z but does not change the welfare of

any consumers. It amounts to a redistribution of wealth among landlords in

different locations.
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All equilibria satisfying lemma (3.2) share two traits. They maintain the

same quality price schedule and they assign the same sets of consumers to

each neighborhood quality level . In this sense, they belong to a unique class

of equilibria described by a common price schedule that assigns a unique price

to each neighborhood quality and by a common rule assigning consumers to

different quality neighborhoods. I call such a class of equilibria a “quality

sorting equilibrium class” or simply a “quality sorting equilibrium.”

Definition 3.2 A quality sorting equilibrium is a pair of measurable func-

tions (G, p) such that G : X → R+, p : G (X)→ R+, and

1. E [ex1 |x ∈ G−1 (S) ] = S, for all S ∈ G (X)

2. if G (x) = S, then S ∈ argmax
S0∈G(X)

U (w0 − p (S0) , S 0, x) for all x ∈ X

In the rest of this dissertation, I do not distinguish between equilibria

within a quality sorting equilibrium class since all equilibria in this class

have identical implications for consumers who are the primary subjects of this

study. Instead, I focus the analysis on quality sorting equilibria. This focus

is valid since, except in pathological examples, I can always find a location

sorting equilibrium consistent with a given quality sorting equilibrium.
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Theorem 3.3 Let B be the Borel σ-algebra on R+. Fix a quality sorting

equilibrium (G, p) . Using G define the measure µ on B via

µ (S) =
Z

G−1(S)

φ5 (x) dx

for all S ∈ B. If µ = µa + µd, where µa is an absolutely continuous measure

and µd is a discrete measure, then there is a locational sorting equilibrium

(F, q) that implements (G, p) such that

1. G (x) = S if and only if S (F (x)) = S for all x

2. if S = E [ex1 |x ∈ F−1 (z)] , then q (z) = p (S) for all z

Proof. See appendix A.

The questions of existence and uniqueness of a separating quality sorting

equilibrium are more complicated. They depend more closely on the partic-

ular parameters of the model studied. In sections 4 and 5, I study examples

in which a separating equilibrium exists. In both these examples, utility is

an exponential function of consumption. In section 4, I examine the simpler

limiting case in which γ, the coefficient of absolute risk aversion in the util-

ity function, is zero. In this limiting case, utility is linear in consumption

and there is a separating equilibrium if and only if the correlation between
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parental education and the parental willingness to pay for education is pos-

itive. In this case, people with more education are willing to pay more on

average for high quality locations. This differential willingness to pay is suf-

ficient to sustain a separating equilibrium with higher quality neighborhoods

having higher average education.

In section 5, I examine the more complicated case in which γ > 0 and

the exponential utility model does not reduce to a linear model. In this case,

no closed form analysis of the equilibrium is possible and exact conditions

necessary for the existence of a separating equilibrium are not available.

Instead, I analyze cases where conditions sufficient for the existence of a

separating equilibrium are satisfied.

4 Linear utility model

Here I develop a specific example of the general model described in section 3

and analyze its equilibrium. The equilibrium is a quality sorting equilibrium

as defined in definition 3.2. In the example, I impose that γ, the coefficient

of absolute risk aversion, is zero. This allows me to find a unique closed form

solution for the quality price function and for the conditional distributions of
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consumer types. The development of this result introduces many of the ideas

that are used in the analysis of the more complicated model in section 5. I

derive the price function and related results in sections 4.1 and 4.2. Then

after analyzing the results, I examine their empirical implications in section

4.3.

4.1 Equilibrium

Finding an equilibrium requires solving the following problem.

Problem 4.1 Let G be the set of measurable functions on X and let P =

C2 (R++)
T
C0 (R+)

7 be the set of twice continuously differentiable functions.

The problem is to find the pair (G, p) ∈ G × P that satisfy:

1. E [ex1 |x ∈ G−1 (S) ] = S for all S ∈ G (X)

2. For all x ∈ X, if S = G (x), then

S ∈ argmax
S0∈G(X)

©
ex2 − p (S0) +A0S 0η1eη2x1+x3+x4

ª
(4.1)

7C2 (R++) is the space of functions that are twice continuously differentiable everywhere
on the domain R++. C

0 (R+) is the space of functions that are continuous on the domain
R+.
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I solve the consumer’s maximization problem and then impose conditions

1 and 2 to find the equilibrium. The consumer treats (G, p) as exogenous

and solves the maximization problem (4.1) . For a particular consumer de-

scribed by a fixed vector of characteristics x, the solution to (4.1) describes

his optimal neighborhood choice, S, through the first-order condition:

pS = η1A0S
η1−1eη2x1+x3+x4 (4.2)

where pS denotes
dp
dS
.8 More importantly, for each fixed level of S, this

same first-order condition describes the set of people who choose to live in

each neighborhood. This set is simply the set of all people whose vector

of characteristics satisfy (4.2). Taking the logarithm of (4.2) , and defining

f (S) = ln pS − ln (A0η1) + (1− η1) lnS this set is

g (S, pS) = {x |f (S) = B0x} (4.3)

where B =

·
η2 0 1 1 0

¸0
.

8For the moment, I assume that every consumer’s second-order condition is globally
satisfied. After solving the equilibrium pricing equation, I will check that this assumption
is true.
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This expression illustrates how the sorting economy matches a one dimen-

sional index of location quality, f (S) , to a one dimensional index of consumer

willingness to pay (WTP), B0x. f (S) is an index that summarizes the effect

of locational quality and price on marginal utility. The consumer WTP index

B0x is a random variable that measures each consumer’s marginal valuation

of locational quality. The equilibrium partitions consumers into sets indexed

by f (S) by matching higher values of f (S) to higher values of WTP.

In equilibrium, assuming a unique maximum for each consumer, con-

dition 2 in problem 4.1 implies G−1 (S) = g (S, pS) . Combining this with

condition 1, the requirement that S = E [ex1 |x ∈ G−1 (S) ] for all S, results

in a differential equation describing the equilibrium price:

S = E [ex1 |x ∈ g (S, pS) ] (4.4)

An equilibrium price must satisfy (4.4) for all S.

I proceed to derive an explicit representation for the right side of equation

(4.4) . The definition of g (S, pS) implies that a consumer chooses location S

if f (S) = B0x. Recalling that x ∼ N (µ,Σ) , the distribution of education
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among the people who choose S is

(x1 |f (S) = B0x) ∼ N
¡
θs,Ψ

2
s

¢
(4.5)

where θs = µ1 + (B
0Σe1) (B0ΣB)

−1 (f (S)−B0µ) and Ψ2
s = σ11 − (B0Σe1)2

(B0ΣB) .

µ1 is the first component of µ and σ11 is the variance of x1. In words, the

distribution of parental schooling in the population within each neighborhood

is log-normal with mean θs and varianceΨ
2
s. As a result the average education

of those who live in neighborhood S is given by:

E [ex1 |x ∈ g (S, pS) ] = eθs+0.5Ψ2s (4.6)

This average is a function of µ, the mean characteristics in the population,

Σ, the covariance matrix of the population characteristics, η1 and η2, the

parameters of the education production function, and finally S and pS since

θS depends on S and pS through f (S). Moreover, substituting this formula

into (4.4) implies that an equilibrium price function must satisfy

S = L0p
L1
S S

L1(1−η1) (4.7)
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where L0 = e
µ1−L1(ln(η1A0)+Bµ)+0.5Ψ2s and L1 = (BΣe01) (BΣB

0)−1 .

L0 and L1 are constants that depend on the distribution of population

characteristics. L0 determines the level of the price premium consumers pay

to live in higher quality neighborhoods. L1 is the regression coefficient from

the regression of log-education on the WTP for neighborhood quality. It

determines the curvature of the price function.

Despite the fact that the price function must satisfy each person’s first-

order condition (4.2), equilibrium consistency and the population distribu-

tion of types of people impose the restriction that the price function must

identically satisfy the ordinary differential equation (4.7). This equation de-

fines a unique family of price functions that are consistent with equilibrium.

Adding the initial condition provided by the consideration that zero quality

neighborhoods must have a price of zero, pins down the solution.9

p (S) =
S
η1+

1
L1

(L0)
1
L1

³
η1 +

1
L1

´ (4.8)

9The price function is convex if η1 +
1
L1
≥ 1. The consumer second-order condition

for maximization is globally satisfied for every consumer as long as L1 > 0 and η1 > 0.
These conditions are satisfied if people with more education pay more for school quality
on average and if the marginal product of S is positive.
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The constants in (4.8) are functions of the parameters of the popula-

tion distribution of characteristics and of the parameters of the education

production function. η1 and L1 play primary roles. They are the sole deter-

minants of the elasticity of the price premium with respect to neighborhood

quality. η1 measures the elasticity of children’s schooling attainment with

respect to school quality. L1 measures the correlation between willingness

to pay for school quality and parents’ own schooling attainment. Thus, a

sorting equilibrium maps the importance of school quality in the production

of children’s education and the degree of correlation between parental educa-

tion and willingness to pay for neighborhood quality directly into percentage

price differences across neighborhoods. When η1 is large, school quality is

highly important for educational outcomes. Large percentage price differ-

ences across neighborhoods are required to segregate people into their pre-

ferred locations. Similarly, when the degree of correlation between parental

education and willingness to pay for neighborhood quality is high (so that

L1 is large), small price differentials are required to maintain the equilib-

rium segregation of people because people with similar willingness to pay are

relatively homogenous in education.
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4.2 Conditional distributions of consumer types

The model also predicts the equilibrium within-neighborhood distribution

of population characteristics. Since the predictions are analagous for all

characteristics, I only discuss log-schooling and log-ability in detail. Consider

the conditional distribution of log-schooling, x1 = ln s0. After substituting

the equilibrium price function into (4.5) , one can see that

(x1 |S ) ∼ N
¡
θs,Ψ

2
s

¢

where θs = lnS−0.5Ψ2
s and Ψ

2
s = σ11 (1− ρ21) . σ11 is the population variance

of log-education. ρ1 is the correlation between log-education and WTP for

neighborhood quality.10

Ψ2
s , the conditional variance of log-education is constant across neigh-

borhoods and is smaller than the population variance. Since people sort

based on common willingness to pay and since that willingness to pay is

correlated with parental education, individual neighborhoods are more ho-

mogenous in terms of education than the population at large. How much

more homogenous depends on ρ1, the correlation between log-education and

10This formula for Ψ2s is equivalent to that in (4.5).
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WTP. The larger is ρ1, the smaller is the within-neighborhood variance of

log-education.11

For instance, if Σ is a diagonal matrix and σii is the (i, i) component of

Σ, then

ρ21 =
η22σ11

η22σ11 + σ33 + σ44

Thus, ρ21 is large when the product of η2 and the population variance of

log-schooling (σ11) is large relative to the population variance of log-ability

(σ33) and log-preference (σ44) so that the variance of log-schooling, is the

predominant component of the variance of WTP in the population. In the

limit, as η2 or σ11 approach infinity, all of the variance of WTP is due to

the variance of log-education, ρ21 → 1, and the within-neighborhood variance

of log-schooling approaches zero as sorting based on willingness to pay is

equivalent to sorting based on parental education.

Similar results apply to the conditional distributions of log-ability, log-

preference, and log-income. Since all of these characteristics are components

of x, their distributions conditional on A (S) + B0x = 0 are also normal.

11Using the National Educational Longitudinal Survey of 1988 (NELS), I find that the
population variance of log-education is 0.035 while its within-school variance averages
0.023. This implies a value for ρ1 of 0.59.
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Recalling that x3 = ln a, the conditional distribution of log-ability is:

(x3 |S ) ∼ N
¡
θa,Ψ

2
a

¢

where θa = µ3 +
√
σ33ρ3√
σ11ρ1

(lnS − µ1 − 0.5Ψ2
s) and Ψ2

a = σ33 (1− ρ23) . σ33 is

the variance of log-ability and ρ3 is the correlation between log-ability and

WTP for neighborhood quality. Notice that while one might expect ρ3 to be

positive it could be positive or negative.

As with log-schooling, the correlation between log-ability and WTP de-

termines the ratio of the within-neighborhood variance of log-ability to the

population variance. The larger ρ23, the smaller the ratio. Also, holding other

things constant, increases in the variance of log-ability increase the correla-

tion of log-ability and WTP. This follows because these increases make log-

ability a larger and larger component of the variance of WTP. In the limit,

when log-ability and WTP are highly correlated, differences in WTP which

separate people in the housing market in essence separate them in terms of

ability.

These formulas also indicate how mean log-ability varies with neighbor-

hood quality. It varies linearly and is strictly increasing with neighborhood
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quality if ρ3 > 0 and ρ1 > 0.12 The more important ability is as a com-

ponent of the variance of, the more rapidly mean log-ability increases with

neighborhood quality. In the diagonal covariance matrix case

√
σ33ρ3√
σ11ρ1

=
σ33
η2σ11

Thus, when σ33 is large or when η2σ11 is small the conditional mean of log-

ability has a large slope. Intuitively, these facts illustrate the point that when

variation in WTP is more closely related to variation in log-ability than to

variation in log-education, there will be larger differences in mean abilities

across neighborhoods than when the reverse is true.

The conditional distributions of log-preference and log-income are anal-

ogous. For each trait, the key parameter governing the elasticity of the

conditional mean with respect to locational quality is the correlation of that

trait with WTP.13

12While one might expect ρ3 > 0, it could be negative. For instance, if parents of
low ability children value children’s educational outcomes very highly then ρ3 could be
negative.
13Though income plays no direct role in sorting, to the extent that it is correlated with

the other variables, its conditional distribution is a non-trivial function of neighborhood
quality.
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4.3 Empirical implications

The theoretical model from section 4 yields three empirical equations: the

education production function, (3.1) , the consumer first-order condition from

the neighborhood choice problem, (4.2) , and the equilibrium neighborhood

price equation, (4.8). Since the error terms in these equations (log-ability and

log-preference) can be freely correlated with log-education and log-income,

before rewriting the system, I decompose the unobservables into components

that are correlated with log-income and log-education and components that

are uncorrelated with these observable variables. I reparameterize the unob-

servables as follows:

x3 = α1 + α2x1 + α3x2 + ε3 (4.9)

x4 = β1 + β2x1 + β3x2 + ε4

Hence, ε3 and ε4 are the components of log-ability and log-preference that are

uncorrelated with log-education and log-income. Using these representations
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of the unobervables, the system of econometric equations is

ln s1 = α1 + η1 lnS + bα2x1 + α3x2 + z1 (4.10)

ln pS + (1− η1) lnS = α1 + β1 + ln (η1A0) + bη2x1 + bη3x2 + z2
p (S) =

S
η1+

1
L1

(L0)
1
L1

³
η1 +

1
L1

´
where bα2 = η2 + α2, bη2 = η2 + α2 + β2, bη3 = α3 + β3, z1 = ε3 + x5, and

z2 = ε3 + ε4.

x1 and x2 are the observable levels of log-education and log-income and

z1 and z2 are the components of the error terms that are orthogonal to the

observables. By assumption z1 and z2 are jointly normally distributed with

covariance matrix

Γ =

 σ33 + σ55 σ33 + σ34

σ33 + σ34 σ33 + σ44 + 2σ34

 .

The parameters I would like to estimate are the education production func-

tion parameters (η1 and η2) and the parameters describing the distribution

of consumer characteristics (αi,βi,Γ) for i = 1, 2, 3. Notice immediately that

while it is possible that bα2 = η2 + α2 can be identified, η2 and α2 cannot be
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independently estimated since they do not have linearly independent effects

on the outcome. A further instrument is needed to disentangle these two

effects. This however, is not the primary issue raised by the location choice

demand system. I will focus the remainder of the discussion on identification

of the remaining structural parameters.

The first equation in the system (4.10) is the typical equation estimated

in the neighborhood effects literature. It relates the child’s educational out-

come to school quality, observable parental data, and unobserved child and

family traits. Since lnS is correlated with z2, it is immediate that estimation

of this equation alone cannot identify the structural parameters unless z1

and z2 are uncorrelated; that is unless V ar (ε3) = −cov (ε3, ε4) . This condi-

tion can only be met if changes in the conditional mean log-preference across

neighborhoods exactly offset changes in the conditional mean log-ability. If

this condition is not met,then estimation of the education production func-

tion will produce biased parameter estimates. Moreover, the direction of the

bias is unknown since the bias depends on the covariance between lnS and

log-ability. As noted in the previous section, this covariance can be either

positive or negative.

The second and third equations in (4.10) are the hedonic demand equa-
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tion and the equilibrium price function. The classical approach to hedonic

estimation attempts to estimate these two equations by first fitting an arbi-

trary functional form to data on prices and characteristics of locations, and

then by using this fitted marginal price function in a second stage estima-

tion of the hedonic demand equation in (4.10). It is immediate that this

approach cannot succeed in this economy because equilibrium requires that

ln pS is collinear with lnS.

Next consider estimation of the system. After substituting the price func-

tion into the hedonic demand equation, the system (4.10) reduces to a set of

linear simultaneous equations

ln s1 = α1 + η1 lnS + bα2x1 + α3x2 + z1 (4.11)

lnS = L1bη0 + L1bη2x1 + L1bη3x2 + L1z2
where bη0 = −Bµ+µs+0.5Ψ2

s+(α1 + β1) . The first equation of the system is

not identified unless z1 and z2 are uncorrelated or α3 = 0 and β3 6= 0.14 Even

then, the structural parameters in the second equation are not identified. In

particular, L1, which measures the population correlation between parental

14Alternatively, it can be identified in a classical manner if another instrument that
determines location choice without affecting the production of education is available.
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education and WTP for school quality, cannot be separated from the bηi
which measure the direct effects of parental characteristics on location choice.

This failure of identification is a direct result of the equilibrium collinearity

between ln pS and lnS.

Nevertheless, as is clear from (4.11) , certain combinations of the param-

eters can be estimated with data on education, income, school quality, and

educational outcomes. Tables 1-5 display estimates of these combinations of

parameters obtained from an analysis of the National Educational Longitu-

dinal Survey (1988) assuming the linear utility model is the true model of

locational choice and educational production. Table 1 displays estimates of

the first equation in (4.11) alone. If z1 and z2 are uncorrelated, then these

estimates imply that the elasticity of children’s education with respect to

school quality is 0.328 (0.0302) and the elasticity with respect to parental

education is 0.376 (0.0189). Table 2 displays estimates of the second equation

in (4.11) alone. Education and income explain about 20% of the variation in

location choice.

Estimates of the reduced form of the system (4.11) are displayed in Ta-

ble 3. Since these parameter estimates combine the effects of several of the

structural parameters, the values estimated are hard to interpret. However,
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Tables 4 and 5, use these estimates to explore implications these estimates

have for values of the structural parameters. Table 4 shows the parameter

estimates that are obtained if I assume that the system is identified, i.e. if I

assume that α3 = 0. This assumption states that the partial correlation coef-

ficient between income and ability is zero. If this is true, then Table 4 shows

that η1, the elasticity of children’s education with respect to school quality,

is 0.540 (0.0936) and bα2, the elasticity of children’s education with respect to
their own parent’s education (controlling for the correlation between parental

education and child’s ability), is -0.0222 (0.0172).

These results depend on the assumption that α3 = 0. Table 5 investigates

how these results depend on the value of α3. If α3 is greater than about

0.007, then the estimate of η1 is negative. Therefore, I restrict the table to

values of α3 < 0.007. The smaller is α3, the larger is η1 and the smaller is

bα2. Nearly any values of the parameters are possible. Given this model, it
is impossible to infer whether parental background characteristics or school

quality are important determinants of children’s educational outcomes. This

is empirical confirmation that the equlibrium collinearity between ln pS and

lnS prevents identification of the model.
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5 A sorting economy with exponential utility

In deriving the equilibrium conditions in section 4, I showed that the two

determinants of the shape of the equilibrium pricing function are the indi-

vidual consumer demand functions (as determined by the utility function

and the educational production function) and the distribution of consumer

characteristics in the population. In the example solved, I made assump-

tions about these two factors that lead to a closed form solution. However,

small changes in the assumptions made about the utility function or the

distribution of consumer types lead to an equilibrium that does not have a

closed form solution. They also lead to an equilibrium that has more varied

patterns of sorting and pricing. These characteristics of an equilibrium of

models perturbed away from the un-identified state, lead to equilibria whose

empirical systems of equations are identified.

The simplest extension of the linear utility model that yields these results

relaxes the assumption that utility is linear in consumption. This general-

ization has three important benefits. Most simply, it allows income to play a

non-trivial role in sorting. Secondly, it results in an equilibrium price func-

tion that is not a constant elasticity function of neighborhood quality. This

increases the empirical power of the model because it destroys the linearity
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that prevented the model in section 4 from identifying the parameters. Fi-

nally, this extension results in much richer patterns of sorting in the economy.

5.1 Equilibrium with exponential utility

The conceptual approach is analogous to that in section 4. As before there

is a continuum of neighborhoods indexed by quality and a continuum of

consumers indexed by x. Consumers treat prices and location qualities as

fixed, and choose their optimal locations. I characterize the set of consumers

who choose to live in each location, impose a Nash equilibrium consistency

condition, and solve the ordinary differential equation that matches each

consumer to a set of consumers with the same willingness to pay for school

quality.

The problem is slightly more complex than the linear utility model for

two main reasons. First, numerical methods must be used to calculate the

average education in each location and to solve the equilibrium pricing equa-

tion. Second, I must allow for price functions that have a kink. For some

values of the parameters, a kinked price function is required to ensure that

all consumers second-order conditions are satisfied. Despite these complica-

tions, I am able to derive conditions characterizing equilibrium in the model,
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compute and analyze the equilibrium of the model, and use these results to

show that the system of empirical equations resulting from the equilibrium

can be used to estimate the structural parameters in the model.

The problem to be solved is the following.

Problem 5.1 Let G be the set of measurable functions on X = R5 , let S be

a finite set of points in R++, and let P = C2 (R++ \ S)
T
C0 (R+) be the set

of piecewise twice continuously differentiable functions on R+. Noting that

s0 = e
x1 and w0 = e

x2 , the problem is to find the pair (G, p) ∈ G × P that

satisfy:

1. E [ex1 |x ∈ G−1 (S) ] = S for all S ∈ G (X)

2. For all x ∈ X, if x ∈ G−1 (S), then

S ∈ argmax
S0∈G(X)

½
1− e−γ(ex2−p(S))

γ
+A0S

0η1eη2x1+x3+x4
¾

(5.1)

The equilibrium definition must allow for piecewise twice continuously

differentiable equilibrium price functions because for some parameter values,

no twice continuously differentiable function satisfies the equilbrium condi-

tions. I will discuss this point more in section 5.2.
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First, I characterize the set of people who choose each location. Given

a pair (G, p) , each consumer chooses an optimal location S. The consumer

first-order condition is

−e−γ(ex2−p)pS + η1A0S
η1−1eη2x1+x3+x4 = 0 (5.2)

Assuming that the second-order condition is globally satisfied for all con-

sumers, the set of people satisfying (5.2) is the set who choose location S.

Taking logarithms and defining

f (S, p, pS) = (1− η1) lnS + γp+ ln pS − ln (A0η1) (5.3)

this set can be written

g (S, p, pS) = {x |f (S, p, pS) = η2x1 + γex2 + x3 + x4} (5.4)

As in the previous section, this expression illustrates how the sorting

economy matches a one dimensional index of location quality, f (S, p, pS) ,

to a one dimensional index of consumer willingness to pay (WTP), η2x1 +

γex2+x3+x4. f (S, p, pS) is an index that summarizes the effect of locational
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quality and price on marginal utility. The consumer index of WTP (the right

side of (5.4)) is a random variable that measures peoples’ willingness to pay

(WTP) for neighborhood quality. The equilibrium partitions consumers into

sets indexed by f . This index plays a crucial role throughout the subsequent

analysis. In the theoretical section, it enables me to prove several facts about

the equilibrium price function. In the empirical section, it plays the role of

the choice variable in the consumer’s reduced form locational choice equation.

Given g (S, p, pS) , the set of people who choose to live in each location S,

condition 2 of problem 5.1 requires that g (S, p, pS) = G−1 (S) . Combining

this with condition 1 of problem 5.1 leads to the following differential equation

characterizing equilibrium

S = E [ex1 |x ∈ g (S, p, pS)] (5.5)

with initial condition p (0) = 0. This condition is analogous to the equilibrium

condition in the linear model. In contrast to the linear model, however, this

differential equation does not have an analytical solution. Instead, as detailed
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in appendix B, it reduces to an equation of the form

S − F (f (S, p, pS)) = 0 (5.6)

where f (S, p, pS) is defined in equation (5.3) ,

F (f) =
eµ1+

1
2
σ11
R
e
− 1
2
(z2−µ2−σ12)2

σ22
− 1
2
(q3(f)−τ13)2

τ33 dz2R
e
− 1
2
(z2−µ2)2

σ22
− 1
2
q3(f)

2

τ33 dz2

(5.7)

and where q3 (f) = f − η2ξ1 − ξ3 − ξ4 − γez2 .15 F (f) is the average educa-

tion of the people who choose a location with quality index f (S, p, pS). An

equivalent way to write it is

F (f) = E (ex1 |WTP = f )

whereWTP = η2x1+γe
x2+x3+x4. I analyze this equation and the associated

equilibrium further in the next section.

There are four non-standard and non-trivial difficulties involved in analyz-

ing equations (5.6) and (5.7) . First, the integrals appearing in equation (5.7)

cannot be accurately computed without careful analysis. The integrands are

15The parameters in equation (5.7) and in the definition of q3 (f) are defined in appendix
B.
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highly concentrated and have extremely steep peaks. I solve this problem

by developing a change of variables formula that maps the integrand into a

less concentrated integrand without steep peaks that can be accurately (and

quickly) approximated by Gauss-Chebyshev quadrature. Details are given in

appendix C.

Second, the technique described above fails when f is either very small

or very large. In both cases, numerical underflow is a problem; F (f) cannot

be directly evaluated because neither the numerator nor the denominator

can be distinquished from zero by a finite precision computer. I solve this

difficulty by deriving a Laplace type approximation for each integral and then

computing the ratio of these two approximations.16 The ratio of these two

approximations can be computed for all f. Details of these approximations

are given in appendix D.

Third, equation (5.6) can have singularities at points where dF (f)
df

= 0.

Near such points standard finite difference algorithms fail to converge to the

solution of the differential equation. Fourth, related to the problem just

described, equation (5.6) can have multiple local solutions. These multiple

solutions make calculating an approximate global solution difficult because

16See Judd (1998) chapter 15 for a recent discussion on computing Laplace
approximations.
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any successful numerical algorithm must avoid converging to a solution that

is not a global solution. For some parameter values these last two problems

do not arise since dF (f)
df

> 0 for all f. In these cases, the equilibrium price

function is twice continuously differentiable, every consumer’s second-order

condition is globally satisfied, and the equilibrium population density has

no mass points in quality space. In these cases the equilibrium price func-

tion can be reliably approximated with a standard numerical approximation

technique. For other parameter values, however, dF (f)
df
≤ 0 for some values of

f. In these cases, there exists no p ∈ C2 (R++)
T
C0 (R+) that satisfies the

differential equation for all S. I show below that in these cases, the deriva-

tive of the equilibrium price function must have at least one discontinuity

point. Moreover, positive masses of people locate at the discontinuity points.

Standard approximation techniques fail because they fail to recognize that

the true solution has a discontinuous first derivative. I develop an algorithm

that recognizes when the true solution must have discontinuous derivative,

finds the points of discontinuity, and then approximates the equilibrium price

function piecewise using standard numerical techniques on subdomains where

the marginal price function is continuous and imposing continuity of the so-

lution at the discontinuity points.

48



5.2 Further analysis of the equilibrium equation in the

model with exponential utility

The equilibrium pricing equation is given in (5.6) . It is not clear that a unique

solution exists. When dF (f)
df

> 0 for all f, the following theorem proves that

a unique separating equilibrium exists.

Theorem 5.1 If dF (f)
df

> 0 for all f ∈ R, then there is a unique non-trivial

equilibrium pricing function p ∈ C2 (R++)
T
C0 (R+) .

Proof. The proof demonstrates that the equilibrium equation is equiv-

alent to an ordinary differential equation with a unique solution. Moreover,

given this solution every consumer’s maximization problem has a unique so-

lution. See appendix A for details.

By construction F (f) is the average education of the people who have

willingness to pay measured by f. The condition dF (f)
df

> 0 requires that

groups with higher average willingness to pay have higher average education.

This guarantees that an equilibrium can be sustained in which groups with

higher average education are willing to pay more for high quality locations

than those with lower average education. The condition is similar to the

condition L1 > 0 required for sorting equilibrium in the linear model. Both
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conditions imply that on average people who are willing to pay more for

school quality have higher average levels of education. Thus, both conditions

imply that an equilibrium can be supported in which people pay more to live

in locations with higher average education.

The similarity of the two conditions can also be seen by examining dF (f)
df

>

0 for small f. Lemma D.1 in appendix D shows that when f << 0

F (f) ∼= L0eL1f (5.8)

where L0 and L1 are the constants defined in equation (4.7). When f << 0,

dF (f)
df

> 0 is equivalent to L1 > 0.

Thus, L1 > 0 is a necessary condition for the application of theorem 5.1.

However, L1 > 0 does not imply that
dF (f)
df

> 0 for all f. In fact, there are

other examples where dF (f)
df

< 0 for some f. In these examples, theorem 5.1

does not apply. However, even in these cases, there is a separating equilibrium

if L1 > 0.

Theorem 5.2 If L1 > 0, but dF (f)
df

< 0 for some f, there is a non-trivial

equilibrium pricing function p ∈ C2 (R++ \ S)
T
C0 (R+) where S is a finite

non-empty subset of R++.
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Proof. See appendix A.

When theorem 5.2 applies, the proof in appendix A demonstrates how

to construct a piecewise twice continuously differentiable price function that

satisfies the equilibrium conditions. The main idea is that when dF (f)
df

< 0,

there is no continuous function f (S) that satisfies S−F (f) = 0 for all S and

satisfies the consumer second-order conditions for all consumers. Hence, the

equilibrium index f (S) must be discontinuous. This implies that the slope

of the price function must be discontinuous. This further implies that a mass

of people will choose to locate at the point of discontinuity in equilibrium.

5.3 Computed solutions to equilibrium pricing func-

tion

I simulate a baseline model in which dF (f)
df

> 0 for all f.17 The general shapes

of the price function and its slope are shown in figures 1 and 2 for various val-

ues of γ. The γ = 0 case is displayed for comparison. When γ = 0, the price

function is a constant elasticity price function. This is clearly apparent in

17In this section, I compute approximate solutions to the equilibrium pricing equation
(5.6) using finite difference approximations. Later, in the empirical section when I must
compute the solution of the equilibrium pricing equation many times, I use a projection
method to approximate the price function with a piecewise polynomial approximation.
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the logarithmic shaped curves in figures 1 and 2. When γ > 0, a qualitative

change occurs. For low levels of S, the slope of the price function is steeper

than the γ = 0 case. As S increases to moderate levels, it flattens out, before

rising sharply for high values of S.When γ > 0 demand for the lowest quality

neighborhoods is high relative to an economy with γ = 0. People have dimin-

ishing marginal utility of consumption. Some of them substitute towards low

quality locations driving up the price of those locations relative to the γ = 0

baseline price. But, since some people shift to the low quality neighbor-

hoods, this reduces the demand for the moderate quality neighborhoods. At

these moderate levels of locational quality, average income and consumption

are relatively modest and population sizes are small. Moreover, the average

marginal utility of consumption is nearly constant. However, as locational

quality increases diminishing marginal utility of consumption again becomes

an important factor for a large fraction of the population. This results in a

surge of demand leading to the sharp increase in the equilibrium prices at

high values of S.

Figures 3 and 4 show the conditional means of log-income and log-ability

when γ = 0 and when γ > 0.18 For very low quality locations, all conditional

18z2 =
ε3+ε4√
ω22
, is the sum of the components of log-ability and log-preference that are
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mean functions behave very much like the γ = 0 case. For large values of

S, the conditional mean of income increases much more quickly when γ > 0.

When γ > 0, income is an important determinant of location choice. On

the other hand, while the conditional mean of z2 increases with S when S is

small, it declines with S when S is large. Thus, the unobserved component

of ability does not increase monotonically with neighborhood quality.

Figures 5 - 7 display further characteristics of equilibrium in this model.

Figure 5 shows that the variance of log-schooling initially decreases to about

95% of the baseline level before surging to 99% of the baseline level. This

behavior contrasts with the flat conditional variance of log-schooling in the

γ = 0 economy. Similarly, figure 6 shows that the conditional variance of

log-income is sharply different in the γ > 0 economy. It reaches a peak

near the mode of the quality distribution. Low and high quality locations

both have low variance of log-income while medium quality locations have

high variances of log-income. Figure 7 shows that the variance of z2 falls

dramatically from a peak in the lowest quality neighborhoods, reaches a

minimum, and then rises again in the high quality locations.

These examples illustrate some of varied ways in which the conditional

uncorrelated with education and income. See (4.9) and (5.9) .
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distributions of consumer characteristics can behave in this sorting economy.

The patterns are clearly much richer than those found in equilibrium in the

linear utility model. In the next section, I show that this flexibility in the

patterns of sorting and in particular in the shape of the price function is

sufficient for identification.

5.4 Empirical analysis of the model with exponential

utility

As in section 4.3, the equilibrium yields three empirical equations: the edu-

cation production function, (3.1) , the consumer’s first-order condition (5.2),

and the equilibrium pricing equation (5.6) . Reparameterizing the model as

in equations (4.9) and substituting f (S) into the consumer first-order con-

dition, these equations are

ln s1 = α1 + bα2x1 + α3x2 + η1 lnS + z1 (5.9)

f (S)√
ω22

=
bη2√
ω22
x1 +

bη3√
ω22
x2 +

γ√
ω22
ex2 + z2

S = F (f (S) ,bη2,bη3, γ,√ω22)
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where f (S) is defined in (5.3) , F (f) is defined in (5.7) , ω22 is the variance

of ε3 + ε4, bη2 = η2 + α2 + β2, bη3 = α3 + β3, bα2 = η2 + α2, z1 = ε3 + ε5, and

z2 =
ε3+ε4√
ω22
.

x1 and x2 are log-schooling and log-income. They are observable. z1 and

z2 are the unobservable error terms. By assumption z1 and z2 are joint

normally distributed with mean zero and covariance matrix

Γ =

 ω11 ω12

ω12 1


As in section 4.3, α2 and η2 cannot be separately identified; only the

linear combination bα2 = α2 + η2 can be identified. In this section, the

pricing equation implicitly defines the function f (S) . Importantly, this index

only depends on the four parameters: bη2, bη3, γ, and ω22. I want to identify

these four parameters in the hedonic location choice equation as well as the

parameters that enter the education production function.

First, consider the location choice equation from system (5.9) . In this

equation, f
¡
S,bη2,bη3, γ,√ω22¢ is the piecewise continuous solution to the

pricing equation given by the third equation in the system. An immediate

result is that this function is homogenous of degree one in the parameters.
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Lemma 5.3 f
¡
S,bη2,bη3, γ,√ω22¢ = √ω22f ³S, bη2√

ω22
, bη3√

ω22
, γ√

ω22
, 1
´
for ω22 >

0.

Proof. This can be checked using equations (B.11) and (B.10) in ap-

pendix B.

Thus, if the parameters in the location choice equation are identified,

they are only identified up to scale and the variance of the error term in the

location choice equation cannot be identified.

Consider further the remaining three parameters in the location choice

equation. Abusing notation let bη2, bη3, and γ represent the values of these pa-

rameters scaled by
√
ω22. In terms of these scaled parameters, the likelihood

for this equation is

lnL (bη2,bη3, γ) = −1
2

X
i

(f (bη2,bη3, γ)− bη2x1 − bη3x2 − γex2)2 +(5.10)

X
i

ln

¯̄̄̄
df (Si,bη2,bη3, γ)

dS

¯̄̄̄

If γ = 0, the model reduces to the linear utility model in which ln pS and lnS

are collinear. In this case, I already showed in section 4.3 that the remaining

parameters are not identified; the Hessian of the likelihood equation is sin-

gular. When γ > 0 however, the model does not reduce to the linear utility
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model and the Hessian of the likelihood equation is non-singular. Hence, the

scaled hedonic location choice parameters bη2, bη3, and γ are identified. The

computational results in the next section illustrate this fact.

Next consider estimation of the education production function. Since lnS

is endogenous, I need to use the location choice equation to produce a valid

instrument for lnS. In the linear utility model, this is not possible since the

system of empirical equations is linear and both equations contain the same

set of exogenous variables. Here however, the set of equations is not linear.

lnS, the consumer’s choice of location, depends on x1 and x2 in a non-linear

way. The set of equations can be estimated either jointly or by creating an

instrument for lnS by projecting lnS on high order polynomials in x1 and

x2. By construction, this instrument is independent of z2 and is not a linear

function of x1 and x2.

Thus, the non-linearity in the econometric system induced by the equi-

librium restrictions solves both the hedonic estimation problem and the en-

dogenous regressor estimation problem. Moreover, this non-linearity is not

arbitrary but is produced by the structure of the model. Different structures

that result in different non-linearities of this type can be tested against the

data and can be used to derive valid inferences about the structural param-

57



eters defining the economy.

5.5 Empirical results

To test the identification results from the previous section, I simulated datasets

in economies in which γ > 0, and then estimated the structural parameters

using maximum likelihood. The likelihood equation depends on the solution

to the pricing equation. In order to make this calculation computationally

feasible, I computed the solution to the pricing equation using a projection

method.19 Details of the method used are given in appendix E.

Some results are given in Tables 6-9. Tables 6 and 8 show results when I

assume that ln s1, the child’s educational outcome is observed. Tables 7 and

9 show results when I assume that the data is censored so that I observe ln s1

only if s1 ≤ 12. Otherwise I observe (s1 ≥ 12) . These tables are included to

show how the model performs when the available data are censored.

All parameter estimates are within two standard deviations of the true

parameter values. The method successfully estimates the structural param-

eters of the model using synthetic data.

Table 10 displays preliminary results from an analysis of the National Ed-

19See Judd (1998).
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ucational Longitudinal Study. These preliminary results show that although

the method produces parameter estimates, it is likely that the specification

used in this paper is not general enough to match the data. As seen in Table

10, the parameter estimates are implausible. The elasticity of children’s ed-

ucational attainment with respect to school quality is much too large. Two

generalizations of the specification developed in this paper that could ac-

count for these implausible estimates are that the distribution of consumer

traits are not normally distributed or that the education production func-

tion is not a constant elasticity function. Nesheim (2002) is pursuing these

generalizations to test whether these richer specifications better match the

data.

6 Conclusion and future work

I developed a theoretical model in which heterogeneous consumers sort into

locations based on the average education of the residents in those locations.

The model provides a rich theoretical and empirical basis to analyze peoples’

location choices. I find sufficient conditions for an equilibrium to exist in this

model and analyze some of the patterns that result in an equilibrium of this
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model.

I examined two versions of this model to gain an understanding of their

theoretical and empirical properties. Both of these examples shed light on the

issues that affect identification in more general hedonic estimation problems

and in neighborhood effects estimation problems. In the restricted model in

which utility is linear in consumption, I find that the model is not identified

and discuss how this identification result is related to the hedonic estimation

literature. I estimate the model in this case and trace out the subspaces of

the parameter space that are consistent with the data. Few restrictions on

the underlying parameters result.

In the more general version, I find that the model is identified. In par-

ticular, knowledge of the non-linear functional form of the equilibrium price

function is used to show that the system is identified. This result illustrates

how specification of the structure of a hedonic economy and imposition of the

equilibrium restrictions implied by such an economy can be used to achieve

identification of the structural parameters describing the economy. I test the

model with synthetic and real data and find that the estimation procedure

produces reliable estimates of the underlying structural parameters.

Ongoing work in Nesheim (2002) extends this model to test two kinds of
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specification errors. First, it tests alternate functional forms for the educa-

tion production and the utility function to see how robust the results are to

changes in the functional forms tested. Second, it tests alternate distributions

of the consumer traits to see how robust the results are to assumptions about

these distributions. All of these tests are implemented with the theoretical

and computational methods developed in this dissertation.

Other future work is needed to analyze more complicated models in which

consumers’ choice of location depends not only on a one-dimensional index of

neighborhood quality but rather on a multi-dimensional index. This work will

require further development of the methods developed in this dissertation.
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A Proofs

Proof of Theorem 3.1. The proof is by construction. Let µ1 and σ11 be

the mean and variance of x1 and let f (z) be the solution to the following

differential equation:

f 0 (z) =
h (z)

φ (µ1 + f, µ1,σ11) + φ (µ1 − f, µ1, σ11)
f (0) = 0

Since the right side is positive and satisfies a Lipschitz condition, the differ-

ential equation has a unique, strictly increasing global solution. Let F (x) =

f−1
¡¯̄
x1 − µ1 − 1

2
σ11
¯̄¢
and let q (z) = 0 for all z. Then E [ex1 |x ∈ F−1 (z) ] =

S for all z. Moreover, conditions 1, 3, and 4 in definition 3.1 are trivially sat-

isfied, and condition 2 is satisfied because h (z) = dP (z) almost everywhere.

Proof of Lemma 3.2. I must prove that condition 1 of definition 3.1

holds for
³ bF, bq´. Define

S = ©S ¯̄S = E £ex1 ¯̄x ∈ F−1 (z) for some z ¤ª
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and define bS analogously for bF. First, I show that S = bS. If S1 ∈ S, then
by definition S1 = E [ex1 |x ∈ F−1 (z1)] for some z1. Therefore, F−1 (z1) 6=

∅. Let x1 ∈ F−1 (z1) and let z2 = bF (x1) , then by assumption 1 S1 =

E
h
ex1 |x ∈ bF−1 (z2)i and so S1 ∈ bS. Now suppose S1 ∈ bS. By definition,

S1 = E
h
ex1 |x ∈ bF−1 (z1)i for some z1 and bF−1 (z1) 6= ∅. Let x1 ∈ bF−1 (z1)

and suppose S1 /∈ S. Let z2 = F (x1) , then S1 6= S2 = E [ex1|x ∈ F−1 (z2)].

But by assumption 1), this implies that S2 = E
h
ex1 |x ∈ bF−1 (z1)i contra-

dicting the supposition that S1 = E
h
ex1 |x ∈ bF−1 (z1)i .

Now define

p (S) =

½
q (z) if S = E [ex1 |x ∈ F−1 (z)]

¾

and define bp analogously for ³ bF, bq´ . Assumption 2 guarantees that p (S) =
bp (S) for all S ∈ S.
Finally, by assumption 1 if equilibrium (F, q) assigns a consumer x to a

location with quality S1, then
³ bF , bq´ also assigns the consumer to a location

with quality S1. Since (S1, p (S1)) was optimal when the consumer faced the

set of choices S with price schedule p, it remains optimal under
³ bF , bq´ since

S = bS and p = bp. Thus, condition 1 in definition 3.1 is satisfied and
³ bF , bq´
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is a locational equilibrium.

Proof of Theorem 3.3. Let S1 = {S |µd (S) > 0} . Then S1 is a

countable set and µd (S1) ≤ 1. Assuming S1 is non-empty, define z−1 = 0

and for each Si ∈ S1 define zi (Si) recursively so that

ziZ
zi−1

h (z) dz = µd (Si)

Then, on the domain [zi−1, zi] define fi (z) to be the solution to

f
0
i (z) =

h (z)
φ(ln(Si+fi(z)))

Si+fi(z)
+ φ(ln(Si−fi(z)))

Si−fi(z)
fi (zi−1) = 0

Since the right side is positive and satisfies a Lipschitz condition, the dif-

ferential equation has a unique, strictly increasing global solution. For x ∈

G−1 (Si) , let F (x) = f−1i (|ex1 − Si|) and let q (z) = p (Si) for all z ∈ [zi−1, zi].

Of course, if S1 is empty, the above construction is superfluous.

Next let dµa (S) represent the density of µa and consider

S2 = {S |dµa (S) > 0}
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S2 can be represented by a countable union of connected intervals with non-

overlapping interiors. Let
£
Saj−1, S

a
j

¤
be the j0th such interval, let za−1 =

max
i
{zi} and let

zajZ
zaj−1

h (z) =

SajZ
Saj−1

dµa (S) dS

On the domain,
£
zaj−1, z

a
j

¤
let gj (z) solve

g0j (z) =
h (z)

dµa (gj (z))

gj
¡
zaj−1

¢
= Saj−1

For all x ∈ G−1 ¡£Saj−1, Saj ¤¢ , define F (x) = g−1j (G (x)) and for z ∈ £zaj−1, zaj ¤
define q (z) = p (gj (z)) .

By construction, (F, q) is a locational equilibrium and satisfies conditions

1 and 2 given in the statement of the theorem.

Proof of Theorem 5.1. Lemmas D.1 and D.2 in appendix D imply

that lim
f→−∞

F (f) = 0 and lim
f→∞

F (f) = ∞. Since dF (f)
df

> 0 and since F ∈

C2 (R) , the implicit function theorem then implies that there exists a unique

bf (S) ∈ C2 (R++) satisfying S − F (f) = 0 where F (f) is defined in (5.7)
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such that d bf(S)
dS

> 0. Furthermore, this implies that lim
S→0

bf (S) = −∞ and

lim
S→∞

bf (S) =∞. As a result, the differential equation
bf (S) = (1− η1) lnS + γp+ ln pS − ln (A0η1)

p (0) = 0

has a unique solution bp ∈ C2 (R++)TC0 (R+) . By construction bp satisfies
the equilibrium condition (5.6) for all S ≥ 0. Moreover, given this price

function, every consumers’ maximization problem has a unique solution. To

see this substitute bf (S) into the first-order condition (5.2) to obtain the
equivalent condition

−e−γ(ex2−bp)bpS ³1− h (x) eγex2− bf(S)´ = 0
where h (x) = eη2x1+x3+x4 . Since bpS > 0, lim

S→0
bf (S) = −∞, lim

S→∞
bf (S) = ∞,

and d bf(S)
dS

> 0, the equation has a unique solution S∗ (x) for every consumer

x. In addition, marginal utility is positive for all S < S∗ (x) and marginal

utility is negative for all S < S∗ (x) .

Proof of Theorem 5.2. I will construct a discontinuous function bf (S)
that in turn defines a price function that satisfies the equilibrium conditions
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given in problem 5.1.

Since L1 > 0, lemma D.1 implies that
dF (f)
df

> 0 when f << 0. Further-

more lemma D.2 implies that dF (f)
df

> 0 when f >> 0. Therefore, dF (f)
df

has

a least two zeros. Assume for the moment that there are only two zeros, f1

and f2 where f1 < f2. Then
dF (f)
df

> 0 for all f ∈ (−∞, f1)
S
(f2,∞) . By

the implicit function theorem, there is a unique function bf1 (S) that satis-
fies S = F (f) for all S < F (f1) . This function satisfies bf1 (S) < f1 for all
S < F (f1) and bf1 (F (f1)) = f1. Moreover,

d bf1(S)
dS

> 0 for all S < F (f1) .

Similarly, there is a unique function bf2 (S) that satisfies S = F (f) for

all S > F (f2) . This function satisfies bf2 (S) > f2 for all S > F (f2) and

bf2 (F (f2)) = f2. Also, d bf2dS > 0 for all S > F (f2) . Since F (f2) < F (f1) , the
equation S = F (f) has multiple solutions for every S ∈ [F (f2) , F (f1)] .

Let bf (S) be a function of the form

bf (S) =

bf1 (S) S < S0

bf2 (S) S > S0

 (A.1)

where S0 ∈ [F (f2) , F (f1)] . By construction, such a function satisfies the

pricing condition S − F (f) = 0 for all S 6= S0; where F (f) is given in

(5.7) . At the point, S0, however, this pricing condition does not characterize
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the equilibrium because bf (S) jumps from bf1 (S0) to bf2 (S0) where bf1 (S0) <
bf2 (S0) . Looking back at the consumer first-order condition (5.2), the function
bf (S) is an equilibrium if

F
³ bf1 (S0)´ = E hex1 ¯̄̄g0 ³ bf1 (S0) , x´ ≤ 0 ≤ g0 ³ bf2 (S0) , x´i (A.2)

The left side of (A.2) is a continuous function of the single variable S0

defined on the compact domain [F (f2) , F (f1)]. Let S1 = F (f1) . For all

f ∈
³ bf1 (S1) , bf2 (S1)´ ,

E [ex1 |g0 (f, x) = 0] = F (f) < F
³ bf1 (S1)´

implying that

F
³ bf1 (S1)´ > E hex1 ¯̄̄g0 ³ bf1 (S1) , x´ ≤ 0 ≤ g0 ³ bf2 (S1) , x´i

On the other hand, let S2 = F (f2) . For all f ∈
³ bf1 (S2) , bf2 (S2)´ ,

E [ex1 |g0 (f, x) = 0] = F (f) > F
³ bf2 (S2)´
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implying that

F
³ bf2 (S2)´ < E hex1 ¯̄̄g0 ³ bf1 (S2) , x´ ≤ 0 ≤ g0 ³ bf2 (S2) , x´i

Thus, by the intermediate value theorem, there must be an S0 ∈ [S2, S1] that

exactly satisfies (A.2) .

By construction, the function bf (S) defined by (A.1) with discontinuity
point S0 defined by (A.2) satisfies the conditions for an equilibrium. The

associated price function is bp (S) where

bp (S) =

bp1 (S) if S ≤ S0

bp2 (S) if S ≥ S0


and bp1 (S) solves

bf1 (S) = (1− η1) lnS + γp+ ln pS

p (0) = 0
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for all S ≤ S0 and bp2 (S) solves
bf2 (S) = (1− η1) lnS + γp+ ln pS

p (S0) = bp1 (S0)
for all S ≥ S0.

If dF (f)
df

has more than two zeros, the same arguments can be repeated

possibly resulting in a larger number of discontinuity points.

B Derivation of the equilibrium ODE in the

exponential utility model

As in section 5.1, let

f = γp + ln pS + (1− η1) lnS − ln (A0η1)

be an index of neighborhood quality and price. The equilibrium differential

equation is

S = E [ex1 |g0 (f, x) = 0] (B.1)
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where g0 (f, x) = f − η2x1 − γex2 − x3 − x4. This section derives a formula

for the right side of (B.1).

First, define the inverse transformation

x1 = z1

x2 = z2

x3 = z3

x4 = z4 + f − η2z1 − γez2 − z3

with Jacobian

¯̄̄̄
∂ (x1, x2, x3, x4)

∂ (z1, z2, z3, z4)

¯̄̄̄
=

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄

1 0 0 −η2

0 1 0 −γez2

0 0 1 −1

0 0 0 1

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄
= 1

Then, since x ∼ N (µ,Σ) , z has the probability density function

ψ (z1, z2, z3, z4) = φ4 (z1, z2, z3, z4 + f − η2z1 − γez2 − z3, ν,Ω)
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where φ4 (·, ν,Ω) is the four-dimensional normal probability density function

with mean ν and variance Ω and ν and Ω are the mean and variance of the

first four components of the vector x.

In terms of the variable z, the right side of the differential equation (B.1)

is equivalent to

E [ez1 |z4 = 0] (B.2)

which by using the definition of conditional density can be written

E [ez1 |z4 = 0] =
RRR

ez1φ4 (z1, z2, z3, g, ν,Ω) dz1dz2dz3RRR
φ3 (z1, z2, z3, g, ν,Ω) dz1dz2dz3

(B.3)

where g = f − η2z1− γez2 − z3. Factoring the normal density, equation (B.3)

becomes

E [ez1 |z4 = 0] =
R
φ (z2, ν2,ω22)

¡RR
ez1φ3 (z1, z3, g, ξ,Λ) dz1dz3

¢
dz2R

φ (z2, ν2,ω22)
¡RR

φ2 (z1, z3, g, ξ,Λ) dz1dz3
¢
dz2

(B.4)

where

ξ =

µ
ν1 +

ω12
ω22

(z2 − ν2) , ν3 +
ω23
ω22

(z2 − ν2) , ν4 +
ω24
ω22

(z2 − ν2)

¶0
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and

Λ =


ω11 − ω212

ω22
ω13 − ω12ω23

ω22
ω14 − ω14ω24

ω22

ω13 − ω12ω23
ω22

ω33 − ω223
ω22

ω34 − ω23ω24
ω22

ω14 − ω14ω24
ω22

ω34 − ω23ω24
ω22

ω44 − ω224
ω22


Let I1 (z2) represent the inner pair of integrals in the numerator of (B.4) .

I1 (z2) can be rewritten as

I1 (z2) =

ZZ
z1,z3

ez1−0.5qf
0Q0Λ−1Qq

(2π)1.5 |Λ|0.5 dz1dz3 (B.5)

where q = (z1 − ξ1, z3 − ξ3, f − η2ξ1 − γez2 − ξ3 − ξ4)
0 and

Q =


1 0 0

0 1 0

−η2 −1 1



Letting T = Q−1Λ (Q0)−1 and factoring the integrand, this integral can be
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further simplified to

I1 (z2) =
e
−0.5 q23

τ33√
2πτ33

ZZ
z1,z3

ez1φ2 (z1, z3,π,χ) dz1dz3 (B.6)

where π =
³
ξ1 +

τ13
τ33
q3, ξ3 +

τ13
τ33
q3

´0
and χ =

 τ 11 − τ213
τ33

τ 12 − τ13τ23
τ33

τ 12 − τ13τ23
τ33

τ 22 − τ223
τ33

 .
This integral reduces to the analytic expression

I1 (z2) =
e
−0.5 q23

τ33
+π1+0.5χ11

√
2πτ 33

(B.7)

Thus, the conditional expectation in equation (B.3) reduces to the ratio

of two one-dimensional integrals

E [ez1|z4 = 0] =
R
e
− 12

(z2−ν2)2
ω22

+π1+
1
2χ11− 12

q23
τ33

2π
√
ω22τ33

dz2R
e
− 12

(z2−ν2)2
ω22

− 12
q23
τ33

2π
√
ω22τ33

dz2

(B.8)

or

E [ez1 |z4 = 0] = eν1+
1
2
ω11
R
e
− 1
2
(z2−ν2−ω12)2

ω22
− 1
2
(q3−τ13)2

τ33 dz2R
e
− 1
2
(z2−ν2)2

ω22
− 1
2

q23
τ33 dz2

(B.9)

where
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q3 = f − η2ξ1 − ξ3 − ξ4 − γez2

f = γp+ ln pS + (1− η1) lnS − ln (A0η1)

ξ1 = ν1 +
ω12
ω22
(z2 − ν2)

ξ3 = ν3 +
ω23
ω22
(z2 − ν2)

ξ4 = ν4 +
ω24
ω22
(z2 − ν2)

τ 13 = η2Λ11 + Λ12 + Λ13

τ 33 = η22Λ11 + 2η2 (Λ12 + Λ13) + Λ22 + Λ33 + 2Λ23

Thus, the differential equation (B.1) can be written as

S − F (f (S, p, pS)) = 0 (B.10)

where

F (f) =
eν1+

1
2
ω11
R
e
− 1
2
(z2−ν2−ω12)2

ω22
− 1
2
(q3(f)−τ13)2

τ33 dz2R
e
− 1
2
(z2−ν2)2

ω22
− 1
2
q3(f)

2

τ33 dz2

(B.11)

and where q3 (f) = f − η2ξ1 − ξ3 − ξ4 − γez2 and

f (S, p, pS) = (1− η1) lnS + γp+ ln pS − ln (A0η1)

75



C Computation of the integrand

Consider integration of the integral appearing in the numerator in (5.7) and

(B.11) . This integral is

I (f) =

∞Z
−∞

e
− 1
2
(z2−ν2−ω12)2

ω22
− 1
2
(q3(f)−τ13)2

τ33 dz2 (C.1)

Since the integrand resembles the kernel of a Gaussian density and since the

range of integration is doubly infinite, the most obvious transformation of

variables is z2 =
√
2σ (f) z3 + ν (f) where ν (f) = argmaxz2 {J (z2, f)} ,

J (z2, f) = −1
2

(z2 − ν2 − ω12)
2

ω22
− 1

2

(q3 (f)− τ 13)
2

τ 33
(C.2)

and σ (f) =
q

d2J(ν,f)

dz22
. Using this transformation the integral can be rewritten

as

I (f) =

∞Z
−∞

e−z
2
3 ·
³√
2σ (f) ez

2
3+J(

√
2σ(f)z3+ν(f),f)

´
dz3 (C.3)

This transformation allows use of Gauss-Hermite integration techniques, cen-

ters the bulk of the computational effort around the peak of the integrand,

and seeks to transform the integrand into a less steeply peaked integrand.
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This transformation did not perform well in practice since the integrand

often has two peaks. So I tried another transformation which performed much

better. Consider the transformation z2 = c1 (f) ln
³
1+z3
1−z3

´
+ c2 (f) where c1

and c2 are chosen conservatively so that (ν (f)− 2σ (f) , ν (f) + 2σ (f)) is

mapped into (−0.5, 0.5) .20 This transformation flattens the integrand, maps

most of the mass of the integrand into the range (−0.5, 0, 5) and proved

successful in practice. The Jacobian of the transformation is 2c1(f)

1−z23 and the

integral I (f) in (C.1) becomes

I (f) =

1Z
−1

2c2 (f)p
1− z23

eJ(z2,f)p
1− z23

dz3 (C.4)

A similar transformation applies to the denominator. With these trans-

formations equation (5.7) can be approximated quickly and accurately. More-

over, the calculated integral is a smooth function of both the parameters and

f.

20An alternative transformation is z2 =
c1z3√
1−z23

+ c2 where c1 > 0.
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D Laplacian approximation to F (f)when |f |→

∞

The function to be approximated is

F (f) =
N (f)

D (f)
(D.1)

where

N (f) = eν1+
1
2
ω11

Z
z2

e
− 1
2
(z2−ν2−ω12)2

ω22
− 1
2
(q2(f)−τ12)2

τ22 dz2

D (f) =

Z
z2

e
− 1
2
(z2−ν2)2

ω22
− 1
2
q2(f)

2

τ22 dz2

and

q2 (f) =
f−bη2³ν1−ω12

ω22
ν2
´
−k1z2−γez2√

ω33

f = (1− η1) lnS + γp+ ln pS − bη0
bη0 = 1

2
ω55 + ln η1 + α1 + β1

k1 = bη3 + bη2 ω12ω22

bη2 = η2 + α2 + β2
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bη3 = α3 + β3

τ 12 =
bη2√
ω33

Λ11

τ 22 =
bη22
ω33

Λ11 + 1

Λ11 = ω11 − ω212
ω22

Throughout this section I assume that bη2 > 0 and k1 > 0. These condi-
tions are economically plausible since they imply that both parental educa-

tion and income have a net positive effect on children’s schooling.

When |f | → ∞ both N (f) → 0 and D (f) → 0. Therefore, a direct

approximation of F (f) is impossible and a Laplace type approximation is

required. I develop this approximation in this section.

The numerator N (f) in (D.1)can be rewritten as

N (f) = LN

∞Z
−∞

e−g
N (f,z2)dz2 (D.2)

where

LN = e
ν1+

1
2
ω11

gN (f, z2) =
(z2−n0)2
2ω22

+

³
n1(f)− k1√

ω33
z2− γ√

ω33
ez2

´2
2τ22

n0 = ν2 + ω12

n1 (f) =
f−bη2³ν1−ω12

ω22
ν2
´

√
ω33

− τ 12
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k1 = bη3 + bη2 ω12ω22

In the limit as f → −∞, n1 (f) approaches −∞. Moreover, the mini-

mizer of gN (f, z2) approaches −∞, gN (f, z2) is nearly quadratic near this

minimizer, and the minimizer is increasing in f . Away from its minimum,

gN (f, z2) grows at least as fast as z
2
2 and so e

−gN (f,z2) shrinks at least as

quickly as e−z
2
2 . Therefore, we can approximate the integral when f is small

with a Laplace type approximation. A Taylor approximation of gN around

its minimizer is

egN (f, z2) = gN0 (f) +
1

2
gN2 (f) · (z2 − zN )2 + (D.3)

1

6
gN3 (f) · (z2 − zN )3 +

1

24
gN4 (f) · (z2 − zN)4

where zN is the minimizer of gN (f, z2) and g
N
i (f) is the i

0th derivative of

gN (f, z2) with respect to z2 evaluated at zN . Using this Taylor approxima-

tion, letting z3 = z2 − zN , and further taking a sixth-order Taylor approx-

imation to e−
1
6
gN3 (f)z

3
3− 1

24
gN4 (f)z

4
3 , an approximation to the integral in (D.2)
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is

eN (f) = LNe−gN0 (f) ∞Z
−∞

e−g
N
2 (f)

z23
2

 1− gN3 (f) z
3
3

6
−

gN4 (f)
z43
24
+
¡
gN3 (f)

¢2 z63
72

 dz3 (D.4)

Using the transformation z =

q
gN2 (f)

2
z3 this is equivalent to

eN (f) = √2LNe−gN0 (f)p
gN2 (f)

∞Z
−∞

e−z
2



1−

gN3 (f)
³

2
gN2 (f)

´1.5
z3

6
−

gN4 (f)
³

2
gN2 (f)

´2
z4

24
+¡

gN3 (f)
¢2 ³ 2

gN2 (f)

´3
z6

72


dz (D.5)

which reduces to

eN (f) = √2πLNe−gN0 (f)p
gN2 (f)

Ã
1− gN4 (f)

8 (gN2 (f))
2 +

5

24

¡
gN3 (f)

¢2
(gN2 (f))

3

!
(D.6)

Formulas for the functions gNi (f) are available from the author upon request.

The denominator D (f) in (D.1) is approximated in a similar way. The
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denominator is

D (f) =

∞Z
−∞

e−g
D(f,z2)dz2 (D.7)

where

gD (f, z2) =
(z2−d0)2
2ω22

+

³
d1(f)− k1√

ω33
z2− γ√

ω33
ez2

´2
2τ22

d0 = ν2

d1 (f) =
f−bη2³ν1−ω12

ω22
ν2
´

√
ω33

k1 = bη3 + bη2 ω12ω22

I form the Taylor approximation

egD (f, z2) = gD0 (f) +
1

2
gD2 (f) · (z2 − zD)2 + (D.8)

1

6
gD3 (f) · (z2 − zD)3 +

1

24
gD4 (f) · (z2 − zD)4

where zD is the minimizer of g
D (f, z2) and g

D
i (f) is the i

0th derivative of

gD (f, z2) with respect to z2 evaluated at zD. Then letting z3 = z2 − zD, an

approximation to the integral in (D.7) is

eD (f) = e−gD0 (f) ∞Z
−∞

e−g
D
2 (f)

z23
2

 1− gD3 (f) z
3
3

6
−

gD4 (f)
z43
24
+ gD3 (f)

2 z63
72

 dz3 (D.9)
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Making the change of variable z =

q
gD2 (f)

2
z3, this is equivalent to

eD (f) = √2e−gD0 (f)p
gD2 (f)

∞Z
−∞

e−z
2



1−³
2

gD2 (f)

´ 3
2
gD3 (f)

z3

6
−³

2
gD2 (f)

´2
gD4 (f)

z4

24
+³

2
gD2 (f)

´3
gD3 (f)

2 z6

72


dz (D.10)

which reduces to

eD (f) = √2πe−gD0 (f)p
gD2 (f)

Ã
1− gD4 (f)

8gD2 (f)
2 +

5

24

gD3 (f)
2

gD2 (f)
3

!
(D.11)

Formulas for the functions gDi (f) are available from the author upon request.

Using the approximations eN (f) and eD (f) , the approximation to the
function F (f) is

eF (f) = LNe
−gN0 (f)√
gN2 (f)

³
1− gN4 (f)

8gN2 (f)
2 +

5
24

gN3 (f)
2

gN2 (f)
3

´
e−g

D
0 (f)√
gD2 (f)

³
1− gD4 (f)

8gD2 (f)
2 +

5
24

gD3 (f)
2

gD2 (f)
3

´ (D.12)

The limit of this approximation is characterized by the following two lemmas.
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Lemma D.1 Let F (f) be as given in equation (D.1). Then

lim
f→−∞

F (f) =

lim
f→−∞

h
L0e

ν1+
1
2
ω11+L1f

i
= 0

where

L0 = e

−1
2

µ
τ12+

k1√
ω33

ω12

¶2
τ22+

k21
ω22

ω22

−−
µ
τ12+

k1√
ω33

ω12

¶
(bη2ν1+bη3ν2)√

ω33

τ22+
k21
ω33

ω22

L1 =
τ12 +

k1√
ω33

ω12

τ22 +
k21
ω33

ω22

µ
1√
ω33

¶

Proof. By construction F (f) can be made arbitrarily close to the func-

tion eF (f) given in equation (D.12) by choosing f small enough. Moreover,
when f → −∞ then d1 (f) → −∞. Analysis of (D.12) and the functions

gDi (f) and g
N
i (f) (formulas available upon request) shows that in the limit

eF (f) reduces to
eF (f) = LNegD0 (f)−gN0 (f) (D.13)
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where

gD0 (f) =
(zD (f)− d0)2

2ω22
+

³
d1 (f)− k1√

ω33
zD (f)− γ√

ω33
ezD(f)

´2
2τ22

gN0 (f) =
(zN (f)− n0)2

2ω22
+

³
n1 (f)− k1√

ω33
zN (f)− γ√

ω33
ezN (f)

´2
2τ22

and

d0 = ν2

d1 (f) =
f−bη2³ν1−ω12

ω22
ν2
´

√
ω33

n0 = d0 + ω12

n1 (f) = d1 − τ 12

zD (f) =
d0τ22+

k1√
ω33

ω22d1(f)

τ22+
k21
ω33

ω22

zN (f) =
n0τ22+

k1√
ω33

ω22n1(f)

τ22+
k21
ω33

ω22

Evaluating gD0 (f)− gN0 (f) gives

eF (f) = L0eL1f (D.14)
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where

L0 = e
ν1+

1
2
ω11−1

2

µ
τ12+

k1√
ω33

ω12

¶2
τ22+

k21
ω22

ω22

−
µ
τ12+

k1√
ω33

ω12

¶
(bη2ν1+bη3ν2)√

ω33

τ22+
k21
ω33

ω22

L1 =
τ12 +

k1√
ω33

ω12

τ22 +
k21
ω33

ω22

µ
1√
ω33

¶

Since I assume bη2 > 0 and k1 > 0, this implies that lim
f→−∞

eF (f) = 0.
Lemma D.2 lim

f→∞
F (f) =∞ and lim

f→∞
dF (f)
df

> 0.

Proof. By construction lim
f→∞

F (f) = eF (f) where eF (f) is given in equa-
tion (D.12) . Also, by definition of d1 (f) when f → ∞, d1 (f) → ∞. Anal-

ysis of eF (f) and the functions gDi (f) and gNi (f) (formulas available upon
request) shows that in the limit eF (f) reduces to

eF (f) = LNegD0 (f)−gN0 (f) (D.15)

where

gD0 (f) =
(zD − d0)2
2ω22

+

³
d1 − k1√

ω33
zD − γ√

ω33
ezD
´2

2τ22
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gN0 =
(zN − n0)2
2ω22

+

³
n1 − k1√

ω33
zN − γ√

ω33
ezN
´2

2τ 22

and

d0 = ν2

d1 (f) =
f−bη2³ν1−ω12

ω22
ν2
´

√
ω33

n0 = d0 + ω12

n1 (f) = d1 − τ 12

Let z0D = ln
³√

ω33d1
γ

´
and let z0N = ln

³√
ω33n1
γ

´
then when f is large

gD0 =
(zD − d0)2
2ω22

+

³
d1z

0
D −

³
k1√
ω33
+ d1

´
zD
´2

2τ 22
(D.16)

gN0 =
(zN − n0)2
2ω22

+

³
n1z

0
N −

³
k1√
ω33
+ n1

´
zN

´2
2τ 22
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and therefore

zD ∼=
τ 22d0 + ω22z

0
Dd1

³
k1√
ω33
+ d1

´
τ 22 + ω22

³
k1√
ω33
+ d1

´2
zN ∼=

τ 22n0 + ω22z
0
Nn1

³
k1√
ω33
+ n1

´
τ22 + ω22

³
k1√
ω33
+ n1

´2
As a result,

gD0 =
1

2

³
d1z

0
D −

³
k1√
ω33
+ d1

´
d0

´2
τ 22 + ω22

³
k1√
ω33
+ d1

´2 (D.17)

gN0 =
1

2

³
n1z

0
N −

³
k1√
ω33
+ n1

´
n0

´2
τ22 + ω22

³
k1√
ω33
+ n1

´2
and

gD0 − gN0 =
1

2

³
d1z

0
D −

³
k1√
ω33
+ d1

´
d0
´2

τ 22 + ω22

³
k1√
ω33
+ d1

´2 − (D.18)

1

2

 (d1 − τ12) z
0
N−³

k1√
ω33
+ d1 − τ 12

´
(d0 + ω12)


2

τ 22 + ω22

³
k1√
ω33
+ d1 − τ 12

´2
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Letting b = k1 + d1, this is equivalent to

gD0 − gN0 =
1

2

(d1z
0
D − bd0)2

τ22 + ω22b2
− (D.19)

1

2

 (d1 − τ12) z
0
N−

(b− τ12) (d0 + ω12)


2

τ 22 + ω22 (b− τ12)
2

which when expanded becomes a fourteen term expression. Twelve of the

fourteen terms equal zero. The remaining two are non-zero and the final

expression is

lim
f→∞

£
gD0 (f)− gN0 (f)

¤
= (D.20)

lim
f→∞

·
ω12z

0
N (f)

ω22
− 1

2

(2d0ω12 + ω212)

ω22

¸
= ∞
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E Computing approximate solutions to f (S)

The function to be approximated f (S, θ) solves

S − F (f, θ) = 0

defined on the domain S ∈ R+. The equation F (f) is defined in (5.7). For

a slow pointwise approximation to this equation one can use any nonlinear

equation solver. However, for empirical purposes a fast smooth functional

approximation is desirable. To calculate this approximation, I approximated

f (S) by a piecewise polynomial function and used Chebyshev collocation to

calculate the coefficients of the approximating polynomial.

I first truncated the domain so that S ∈ [SL, SH ] . Since the approxima-

tion is used for empirical work no values of f (S) are needed for S < SL

and S > SH . Then I decomposed this domain into several (typically 5) sub-

domains. I summarize the approximation for a typical subdomain. Let its

endpoints be SA and SB and let S
0 be a vector whoseM components are the

M zeros of the derivative of the degreeM+1 Chebyshev polynomial adapted

to the interval [SA, SB] . In particular, S
0 (1) = SA and S

0 (M) = SB. Let

T (S 0 (i)) be the vector whose row m is the degree m Chebyshev polynomial
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evaluated at the point S 0 (i) . Let a1 be a vector of real numbers of length m.

Define the approximation

bf (S0 (i)) = a01T (S0 (i)) (E.1)

The coefficients of the approximation are then computed by finding the vector

a1 that solves the system of m nonlinear equations

f0 = a01T (SA) (E.2)

f1 = a01T (SB)

S 0 (i) = F (a01T (S
0 (i))) for i = 2, ...,m− 1
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F Figures

Figure 1: Equilibrium price function
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Figure 2: Slope of equilibrium price function
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Figure 3: Conditional mean of log-income

6 8 10 12 14 16 18 20
-5

0

5

10

Quality of neighborhood

M
ea

n 
of

 lo
g-

in
co

m
e

gamma = 0    
gamma = 0.01 
gamma = 0.098

97



Figure 4: Conditional mean of z2
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Figure 5: Conditional variance of log-schooling
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Figure 6: Conditional variance of log-income
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Figure 7: Conditional variance of z2
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