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Abstract

In this thesis, we prove various results on canonical metrics in Kähler geometry, such

as extremal metrics or constant scalar curvature Kähler (cscK) metrics, and discuss

connections to the notions of algebro-geometric stability of the underlying manifold.

After reviewing the background materials in Chapter 1, we discuss in Chapter 2

the extension of Donaldson’s quantisation to the case where the automorphism group is

no longer discrete. This is achieved by considering a new equation ∂̄grad1,0
ω ρk(ω) = 0;

the (1,0)-part of the gradient of the Bergman function is a holomorphic vector field.

The main result of this thesis is the existence of a solution to this equation for all

large enough k, assuming the existence of extremal metrics. We also prove that the

sequence {ωk}k of these solutions approximates the extremal metric for k� 1, and

that the solvability of the equation implies that a polarised Kähler manifold admitting

an extremal metric is asymptotically weakly Chow polystable relative to any maximal

torus in the automorphism group; this stability result was originally proved by Mabuchi

using a different method.

In Chapter 3 we discuss Kähler metrics with cone singularities along a divisor.

We provide the first supporting evidence for the log Donaldson–Tian–Yau conjecture

for general polarisations, and study various properties of the log Donaldson–Futaki

invariant computed with respect to conically singular metrics.

In Chapter 4 we discuss canonical metrics on the blow-up of manifolds with

canonical metrics. This problem is well-understood when we blow up points, but few

examples are known when we blow up higher dimensional submanifolds. We prove

that the projective spaces blown up along a line, BlP1Pn, cannot admit cscK metrics

in any polarisations, but admit an extremal metric in each Kähler class that is close to

the pullback of the Fubini–Study class, with an explicit formula in action-angle coor-

dinates.
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Chapter 1

Introduction

1.1 Canonical metrics on a Kähler manifold and Cal-

abi’s proposal

The existence of a “canonical” Riemannian metric, as in the uniformisation theorem

for Riemann surfaces, is a central problem in differential geometry. Since this prob-

lem usually takes the form of a nonlinear PDE problem in Riemannian metrics, it is

extremely difficult to solve on a general Riemannian manifold. However, we have

a significant simplification of the problem on Kähler manifolds by virtue of the ex-

istence of “potential functions”; if (X ,ω) is a compact Kähler manifold1, the set

of Kähler metrics in the cohomology class [ω] ∈ H2(X ,R) can be identified with

{φ ∈ C∞(X ,R) | ω +
√
−1∂ ∂̄φ > 0}. Moreover, we will often assume that X admits

an ample line bundle L, often called polarisation, and focus on the Kähler metrics in

c1(L) ∈ H2(X ,Z). The motivation for this will be explained in §1.2. Throughout in

what follows, we shall consider the pair (X ,L) as a primary object of study, and call it

a polarised Kähler manifold.

In 1982, Calabi [23] posed the following question.

Question 1.1.1. (Calabi’s proposal [23]) Given a cohomology class2 κ ∈ H2(X ,Z)

which contains a Kähler metric, can one find a Kähler metric ω ∈ κ which (locally)

1We shall often identify the Kähler form ω with its associated Riemannian metric g = ω(·,J·), where
we write J throughout to denote the complex structure on X .

2Although we assume in this thesis that κ is in the integral cohomology class, Calabi’s proposal
makes sense for κ ∈ H0(X ,R) in general.
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minimises the Calabi energy

Cal(ω) :=
∫

X
S(ω)2 ωn

n!
,

where S(ω) is the scalar curvature of ω?

The Euler–Lagrange equation of Cal(ω) is known [23] to be equal to

∂̄grad1,0
ω S(ω) = 0,

where grad1,0
ω S(ω) denotes the (1,0)-part of the gradient vector field gradωS(ω) and

∂̄ is the (0,1)-part of the Chern connection on T X defined by ω . The Kähler metrics

satisfying the above equation, called extremal metrics, will be the central theme of this

thesis. It is important to note some special subclasses of extremal metrics. If there exists

no nontrivial holomorphic vector field3 on X , we necessarily have grad1,0
ω S(ω) = 0

which implies gradωS(ω) = 0 by taking the real part. Hence we get d(S(ω)) = 0,

which is equivalent to S(ω) = const. A metric ω with S(ω) = const will be called a

constant scalar curvature Kähler metric, and abbreviated as a cscK metric. Further

special cases are when ω ∈ c1(KX), ω ∈ −c1(KX), or c1(KX) = 0, where KX is the

canonical bundle of X ; in these cases, basic Hodge theory shows that ω being cscK is

equivalent to ω being Kähler–Einstein, i.e. satisfies Ric(ω) = λω for some constant

λ which is −1 if c1(KX) > 0, +1 if c1(KX) < 0, and 0 if c1(KX) = 0. We summarise

the above as follows.

Definition 1.1.2. A Kähler metric ω is called extremal if its scalar curvature S(ω)

satisfies ∂̄grad1,0
ω S(ω) = 0. It is called cscK if it satisfies S(ω) = const. A cscK metric

is called Kähler–Einstein if it satisfies Ric(ω) = λω for some constant λ .

We thus see that the class of extremal metrics subsumes the classes of cscK and

Kähler–Einstein metrics, and that Calabi’s proposal can be regarded as providing a

unifying framework for working with these classes of “canonical” Kähler metrics, if

they exist.4

3This hypothesis can be slightly weakened; see Lemma 1.4.5.
4It is known that there does exist a Kähler manifold (e.g. certain iterated blow-ups of P2 [71]) which

does not admit any extremal metric.
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Remark 1.1.3. It is well-known that these canonical metrics are unique in each Kähler

class, up to automorphisms [10, 12, 14, 22, 40, 83, 127].

Remark 1.1.4. Recall now that, in their celebrated work, Aubin [10] and Yau [127]

(resp. Yau [127]) have proved the existence of Kähler–Einstein metrics on a compact

Kähler manifold for the case c1(KX)> 0 (resp. c1(KX) = 0). The case c1(KX)< 0 lead

to a deep conjecture which was only recently solved [28, 29, 30]; this will be discussed

in §1.2 (see in particular Theorem 1.2.10).

Remark 1.1.5. Since ω ∈ c1(L) and S(ω)ωn = nRic(ω)∧ωn−1 ∈−nc1(KX)c1(L)n−1

by Chern–Weil theory, the average S̄ of S(ω) is determined as

S̄ =

∫
X S(ω)ωn

n!∫
X

ωn

n!
=
−n
∫

X c1(KX)c1(L)n−1∫
X c1(L)n .

If we write S(ω) in terms of local holomorphic coordinates (z1, . . .zn) (where n =

dimCX), we get

S(ω) =−
n

∑
i, j=1

gi j̄ ∂ 2

∂ zi∂ z̄ j
logdet(gkl̄),

and hence the csck equation S(ω) = const is a fully nonlinear fourth order PDE in the

Kähler potential φ , with respect to which the metric tensor gkl̄ can be locally written

as gkl̄ =
∂ 2φ

∂ zk∂ z̄l
. This means that the extremal equation ∂̄grad1,0

ω S(ω) = 0 is a fully

nonlinear sixth order PDE. Thus, finding a cscK or extremal metrics is equivalent to

solving a fourth or sixth order fully nonlinear PDE, which is a very difficult problem

in full generality. However, it is conjectured, and in some important cases proved, that

the existence of these metrics are in fact equivalent to the stability of the underlying

manifold, as we discuss in §1.2 (see in particular Conjecture 1.2.6); a difficult nonlinear

PDE problem as discussed above can be translated into a purely algebro-geometric one,

which is potentially more tractable.

1.2 K-stability and Donaldson–Tian–Yau conjecture

1.2.1 Statement of the conjecture

Inspired by the Kobayashi–Hitchin correspondence for vector bundles, Yau [128] con-

jectured that the existence of Kähler–Einstein metrics should be related to a notion
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of “stability” in algebraic geometry. Later, Tian [125] introduced the notion of K-

stability as an appropriate stability condition for this problem. This was later refined

by Donaldson [41], who also extended its scope to include cscK metrics and not just

Kähler–Einstein metrics.

We first recall the notion of test configurations, in order to define K-stability in

Definition 1.2.5.

Definition 1.2.1. A test configuration for a polarised projective scheme (X ,L) with

exponent r ∈ N is a projective scheme X together with a relatively ample line bundle

L over X and a flat morphism π : X → C with a C∗-action on X , which covers the

usual multiplication in C and lifts to L in an equivariant manner, such that the fibre

π−1(1) is isomorphic to (X ,L⊗r).

Remark 1.2.2. We recall the following important and well known observations.

1. By virtue of the (equivariant) C∗-action on X , all non-central fibres Xt :=

π−1(t) (t ∈ C∗) are isomorphic and the central fibre X0 := π−1(0) is naturally

acted on by C∗.

2. We will exclusively focus on the case when X is a smooth manifold, but we

remark that, even when the noncentral fibres are smooth, the central fibre X0 of

a test configuration is usually not smooth. In fact, X0 is a priori just a scheme

and not even a variety.

3. A test configuration (X ,L ) is called product if X is isomorphic X ×C. Note

that this isomorphism is not necessarily equivariant, so X may have a nontrivial

C∗-action (cf. Remark 1.3.4). (X ,L ) is called trivial if X is equivariantly

isomorphic to X×C, i.e. with trivial C∗-action on X .

Remark 1.2.3. A well-known pathology found by Li and Xu [72] means that we may

have to assume that X is a normal variety when (X ,L ) is not product or trivial.

Alternatively, we may have to assume that the L2-norm of the test configuration (as

introduced by Donaldson [42]) is non-zero to define the non-triviality of the test con-

figuration, as proposed by Székelyhidi [119, 121]. See also [16, 37, 113].
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Let (Xt ,Lt) be any fibre of a test configuration (X ,L ) with the polarisation

given by Lt := L |Xt . If t 6= 0, we can use the Hirzebruch–Riemann–Roch formula

and Kodaira–Serre vanishing to show

dimH0(Xt ,L
⊗k

t ) =
∫

X
ch(L⊗rk)TdX

=
kn

n!

∫
X

c1(L⊗r)n− kn−1

2(n−1)!

∫
X

c1(KX)c1(L⊗r)n−1 +O(kn−2)

for k� 1, where ch is the Chern character and TdX is the Todd class of TX . We define

a0,a1 ∈ Q as a0 := 1
n!
∫

X c1(L⊗r)n and a1 := − 1
2(n−1)!

∫
X c1(KX)c1(L⊗r)n−1. Observe

that the flatness condition implies that

dk := dimH0(Xt ,L
⊗k

t ) = a0kn +a1kn−1 +O(kn−2)

does not depend on t.

On the other hand, the C∗-action on the central fibre (X0,L0) induces a rep-

resentation C∗ y H0(X0,L
⊗k

0 ). Let wk be the weight of the representation C∗ y∧max H0(X0,L
⊗k

0 ). Equivariant Riemann–Roch theorem (cf. [41]) shows that

wk = b0kn+1 +b1kn +O(kn−1)

with b0,b1 ∈Q. Now expand

wk

kdk
=

b0

a0
+

a0b1−a1b0

a2
0

k−1 +O(k−2).

Definition 1.2.4. The Donaldson–Futaki invariant DF(X ,L ) of a test configuration

(X ,L ) is a rational number defined by DF(X ,L ) = (a0b1−a1b0)/a0.

Definition 1.2.5. A polarised projective scheme (X ,L) is K-semistable if DF(X ,L )≥

0 for any test configuration (X ,L ) for (X ,L). (X ,L) is K-polystable if DF(X ,L )≥

0 with equality if and only if (X ,L ) is product, and is K-stable if DF(X ,L ) ≥ 0

with equality if and only if (X ,L ) is trivial.

We see that the sign of DF(X ,L ) is unchanged when we replace L by L ⊗r.

Therefore, once X is fixed, we may assume that the exponent of the test configuration
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is always 1 with L being very ample.

We can now state the following conjecture, usually referred to as the Donaldson–

Tian–Yau conjecture, which has been a central problem in Kähler geometry for many

years.

Conjecture 1.2.6. (Donaldson [41], Tian [125], Yau [128]) (X ,L) admits a cscK metric

in c1(L) if and only if it is K-polystable.

Remark 1.2.7. There is also a “relative” version of this conjecture which is more suited

to extremal metrics; see [116].

1.2.2 Brief review of some known results

We now briefly review some results concerning Conjecture 1.2.6. This is by no means

exhaustive, and we will only mention the results that will be referred to later, and several

other results that are closely related to them.

By considering a lower bound of Cal(ω), Donaldson [42] proved the following

foundational result.

Theorem 1.2.8. (Donaldson [42]) (X ,L) is K-semistable if it admits a cscK metric in

c1(L).

This theorem was later improved by Stoppa [111] as follows, establishing one

direction of Conjecture 1.2.6. Let Aut0(X ,L) be the identity component of the group

of holomorphic transformations of X which lifts to the total space of the line bundle L

(cf. §1.3).

Theorem 1.2.9. (Stoppa [111]) Suppose that Aut0(X ,L) is trivial, which holds e.g. if

(X ,L) has no nontrivial holomorphic vector fields. Then, (X ,L) is K-stable if it admits

a cscK metric in c1(L).

A sharper version of this theorem is available for Fano manifolds, with L =−KX ,

as proved by Berman [13]. See also the work of Mabuchi [78, 79].

Although the above theorems provide sufficient conditions for K-stability, proving

K-(poly)stability of a given variety (X ,L) is in general tremendously difficult; as of

now, we do not even know how to prove P2 is K-polystable without using the fact

that it admits a Kähler–Einstein metric. However, proving K-instability is sometimes
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possible thanks to the weaker and more explicitly computable stability notion called

slope stability, introduced by Ross and Thomas [102]. This will be recalled in §4.2.1,

to which the reader is referred for more details. Being a weaker notion of K-stability,

we have slope instability implying K-instability (cf. Theorem 4.2.4), and hence in some

cases we can prove the non-existence of a cscK metric by showing slope instability,

thanks to Theorem 1.2.8.

In general, not much is known about the other direction of Conjecture 1.2.6, i.e.

whether K-stability implies the existence of cscK metrics. However, there are several

important cases where this direction is also established. Perhaps the most important

result is the following theorem for Fano manifolds that was recently proved by Chen,

Donaldson, and Sun [28, 29, 30].

Theorem 1.2.10. (Chen–Donaldson–Sun [28, 29, 30]) Let X be a Fano manifold. If

(X ,−KX) is K-polystable, then X admits a Kähler–Einstein metric ω ∈ −c1(KX).

Conjecture 1.2.6 is also known for toric surfaces [41, 46], and on certain iterated

blow-ups of ruled surfaces [101, 100].

1.3 Automorphism groups of polarised Kähler mani-

folds and product test configurations
We discuss product test configurations and the automorphism group of (X ,L) in de-

tail in this section. In this case, the Donaldson–Futaki invariant admits a differential-

geometric formula as given in Theorem 1.3.5, which is called the (classical) Futaki

invariant. We first briefly review the automorphism group of (X ,L); the reader is re-

ferred to [53, 67, 70] for more details on what is discussed here.

We write Aut(X) for the group of holomorphic transformations of X , consisting

of diffeomorphisms of X which preserve the complex structure J, and Aut0(X) for the

connected component of Aut(X) containing the identity.

Definition 1.3.1. A vector field v on X is called real holomorphic if it preserves the

complex structure, i.e. LvJ = 0 where Lv is the Lie derivative along v. A vector field

Ξ is called holomorphic if it is a global section of the holomorphic tangent sheaf TX ,

i.e. Ξ ∈ H0(X ,TX).
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Remark 1.3.2. Observe that aut(X) := LieAut0(X) is exactly the set of all real holo-

morphic vector fields. Recall also that v ∈ aut(X) if and only if Jv ∈ aut(X) (as J is

integrable, cf. Proposition 2.10, Chapter IX, [68]).

Remark 1.3.3. It is well-known (cf. Proposition 2.11, Chapter IX, [68]) that there

exists a one-to-one correspondence between the elements in aut(X) and H0(X ,TX); the

map f 1,0 : aut(X) 3 v 7→ v1,0 ∈H0(X ,TX) defined by taking the (1,0)-part and the map

f Re : H0(X ,TX) 3 Ξ 7→ Re(Ξ) ∈ aut(X) defined by taking the real part are the inverses

of each other.

We now write Aut(X ,L) for the subgroup of Aut(X) consisting of the elements

whose action lifts to an automorphism of the total space of the line bundle L, and

write Aut0(X ,L) for the connected component of Aut(X ,L) containing the identity.

Aut0(X ,L) is in fact equal to the maximal connected linear algebraic subgroup in

Aut0(X), and it is equal to the kernel of the Jacobi homomorphism from Aut0(X) to

the Albanese torus [53], and that the Lie algebra of Aut0(X ,L) is the set of all real

holomorphic vector fields on X that have a zero. Moreover, it is also known that for

any v ∈ LieAut0(X ,L) and Kähler metric ω on X there exists f ∈C∞(X ,C) such that

ι(v1,0)ω =−∂̄ f ,

called the holomorphy potential of v1,0 with respect to ω , where ι denotes the interior

product. Conversely, if a holomorphic vector field Ξ∈H0(X ,TX) admits a holomorphy

potential, its real part Re(Ξ) lies in LieAut0(X ,L). The reader is referred to Theorem 1

in [70], and Theorems 9.4 and 9.7 in [67] for more details.

Remark 1.3.4. It is immediate that a (nontrivial) product test configuration for (X ,L)

is exactly a choice of 1-parameter subgroup C∗ in Aut0(X ,L), where we recall that the

C∗-action has to lift to the total space of the line bundle L to define a test configuration

(cf. Definition 1.2.1). If we write v ∈ LieAut0(X ,L) for the generator of this subgroup

C∗≤Aut0(X ,L), the above argument shows that v1,0 ∈H0(X ,TX) admits a holomorphy

potential, and that conversely Ξ ∈ H0(X ,TX) admitting a holomorphy potential defines

a 1-parameter subgroup C∗ ≤ Aut0(X ,L) under the correspondence in Remark 1.3.3.

To summarise, a product test configuration is exactly a choice of Ξ ∈ H0(X ,TX) which

admits a holomorphy potential.
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Finally, we recall the following theorem.

Theorem 1.3.5. (Donaldson [41], Futaki [54]) Let f ∈ C∞(X ,C) be the holomorphy

potential of a holomorphic vector field Ξ f on X with respect to a Kähler metric ω ∈

c1(L). If (X ,L ) is the product test configuration generated by Ξ f , the Donaldson–

Futaki invariant can be written as

DF(X ,L ) =
1

4π

∫
X

f (S(ω)− S̄)
ωn

n!
,

where S(ω) is the scalar curvature of ω and S̄ is the average of S(ω) over X. The

integral in the right hand side

Fut(Ξ f , [ω]) :=
∫

X
f (S(ω)− S̄)

ωn

n!
,

called the Futaki invariant or classical Futaki invariant, does not depend on the spe-

cific choice of Kähler metric ω , i.e. is an invariant of the cohomology class [ω].

1.4 Extremal metrics and the Lichnerowicz operator
We define an operator Dω : C∞(X ,C)→C∞(T 1,0X⊗Ω0,1(X)) by

Dωφ := ∂̄ (grad1,0
ω φ)

where grad1,0
ω φ is the T 1,0X-component of the gradient vector field gradωφ of φ with

respect to ω and ∂̄ is the (0,1)-part of the Chern connection on T X . Thus Dωφ = 0 if

and only if grad1,0
ω φ is a holomorphic vector field. Writing D∗ω for the formal adjoint

of Dω with respect to ω , we have the following formula (cf. [70])

D∗ωDωφ = ∆
2
ωφ +(Ric(ω),

√
−1∂ ∂̄φ)ω +(∂S(ω), ∂̄ φ)ω , (1.1)

where (,)ω stands for the pointwise inner product on the space of differential forms

defined by ω , and ∆ω is the negative ∂̄ -Laplacian−∂̄ ∂̄ ∗− ∂̄ ∗∂̄ . Note that this is a fourth

order self-adjoint elliptic operator, but may not be a real operator; D∗ωDωφ may be a

C-valued function even when φ is a real function, due to the third term (∂S(ω), ∂̄ φ)ω of

D∗ωDω . On the other hand, note the obvious kerD∗ωDω = kerDω , since X is compact.
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We define another operator D∗ωDω : C∞(X ,R)→C∞(X ,R) by

D∗ωDωφ = ∆
2
ωφ +(Ric(ω),

√
−1∂ ∂̄φ)ω +

1
2
(dS(ω),dφ)ω . (1.2)

This is a 4-th order self-adjoint elliptic operator, which we call the Lichnerowicz op-

erator.

We observe that we can write D∗ωDω = 1
2(D

∗
ωDω +D∗ωDω), where the operator

D∗ωDω is defined by D∗ωDωφ = ∆2
ωφ +(Ric(ω),

√
−1∂ ∂̄φ)ω +(∂̄S(ω),∂φ)ω . Thus

the kernels of D∗ωDω and D∗ωDω may not have anything to do with each other when we

consider C-valued functions in general, but we have the following well-known lemma

for the real functions.

Lemma 1.4.1. A real function φ ∈C∞(X ,R) satisfies D∗ωDωφ = 0 if and only if Dωφ =

0.

Proof. We first observe that, since φ is real, we have

D∗ωDωφ =
1
2
(D∗ωDωφ +D∗ωDωφ) =

1
2
(D∗ωDωφ +D∗ωDωφ).

Thus, Dωφ = 0 implies D∗ωDωφ = 0. Observe also that we have

∫
X

φD∗ωDωφ
ωn

n!
=

1
2

(∫
X
|Dωφ |2ω

ωn

n!
+
∫

X
|Dωφ |2ω

ωn

n!

)
,

and hence D∗ωDωφ = 0 implies Dωφ = 0.

Suppose now that we consider a Hamiltonian vector field vφ generated by φ ∈

C∞(X ,R) with respect to ω . We use the sign convention ι(vφ )ω =−dφ for the Hamil-

tonian. We observe that we can write

gradωφ =−Jvφ , (1.3)

where J is the complex structure on T X . Recall that grad1,0
ω φ being a holomorphic

vector field is equivalent to gradωφ being a real holomorphic vector field (cf. Remark

1.3.3), and that a vector field vφ is real holomorphic if and only if Jvφ is real holomor-

phic (cf. Remark 1.3.2). We thus get the following well-known result.
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Lemma 1.4.2. Suppose that φ ∈ C∞(X ,R) satisfies ∂̄grad1,0
ω φ = 0 (or equivalently

D∗ωDωφ = 0). Then the Hamiltonian vector field vφ generated by φ with respect to ω

is a real holomorphic vector field. Conversely, if the Hamiltonian vector field vφ is real

holomorphic, we need to have ∂̄grad1,0
ω φ = 0 (or equivalently D∗ωDωφ = 0).

Remark 1.4.3. Note that, since ω is Kähler, a Hamiltonian real holomorphic vector

field must preserve the associated Riemannian metric g = ω(·,J·), and hence is neces-

sarily a Hamiltonian Killing vector field with respect to g.

Suppose now that ω is an extremal metric, so that grad1,0
ω S(ω) is a holomorphic

vector field. By the above argument and the equation (1.3), JgradωS(ω) is a real holo-

morphic vector field equal to to the Hamiltonian vector field vs generated by S(ω).

Definition 1.4.4. The Hamiltonian real holomorphic vector field vs generated by the

scalar curvature S(ω) of an extremal metric ω , satisfying ι(vs)ω = −dS(ω), is called

an extremal vector field.

By taking the (0,1)-component of the equation ι(vs)ω = −dS(ω), we have

ι(v1,0
s )ω = −∂̄S(ω), i.e. S(ω) is the holomorphy potential of v1,0

s , and hence vs ∈

LieAut0(X ,L) by the argument given in §1.3. This implies that if Aut0(X ,L) is trivial,

we have vs = 0 and hence an extremal metric is necessarily a cscK metric. Also, Calabi

[24] proved that an extremal metric is cscK if and only if the Futaki invariant is 0. We

summarise these observations in the following.

Lemma 1.4.5. (cf. [70, 24]) Suppose that ω is an extremal metric. Then

1. ω is cscK if Aut0(X ,L) is trivial,

2. ω is cscK if and only if the Futaki invariant evaluated against the (1,0)-part of

the extremal vector field vs is zero, i.e. Fut(v1,0
s , [ω]) = 0.

If Aut0(X ,L) is not trivial, an extremal metric need not be cscK. Indeed, Calabi

[23] explicitly constructed a non-cscK extremal metric on the total space of a projec-

tivised bundle P(OPn−1(−m)⊕C) over Pn−1 for all n,m ∈ N in every Kähler class, as

we shall see in §4.1.3.1 (cf. Theorem 4.1.7).





Chapter 2

Quantisation of extremal Kähler

metrics

2.1 Introduction

2.1.1 Donaldson’s quantisation

Donaldson’s work on the constant scalar curvature Kähler (cscK) metrics and the pro-

jective embeddings [40, 43] is undoubtedly one of the most important results in Kähler

geometry in the last few decades. It states that, if the automorphism group Aut(X ,L) of

a polarised compact Kähler manifold (X ,L) is discrete (cf. §2.2.1.1) and (X ,L) admits

a cscK metric ω ∈ c1(L), then for all large enough k there exists a balanced metric at

the level k (cf. Definition 2.2.13). Our starting point is a naive re-interpretation of the

cscK metric as satisfying ∂̄S(ω) = 0 and the balanced metric as satisfying ∂̄ ρk(ω) = 0,

where ρk(ω) is the Bergman function (cf. Definition 2.2.10). We also observe that

Aut(X ,L) being discrete is equivalent to the connected component Aut0(X ,L) contain-

ing the identity of Aut(X ,L) being trivial, where we note that Aut0(X ,L) will be used

more frequently in what follows. We record Donaldson’s theorem in this form here.

Theorem 2.1.1. (Donaldson [40]) Suppose that the connected component of the auto-

morphism group Aut0(X ,L) of a polarised Kähler manifold (X ,L) is trivial and (X ,L)

admits a Kähler metric ω ∈ c1(L) satisfying ∂̄S(ω) = 0. Then for any large enough k

there exists a Kähler metric ωk ∈ c1(L) satisfying ∂̄ ρk(ωk) = 0 and ωk→ ω in C∞ as

k→ ∞.

Theorem 2.1.2. (Donaldson [40]) If a sequence of Kähler metrics {ωk}k, each of which
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satisfies ∂̄ ρk(ωk) = 0, converges to a Kähler metric ω∞ ∈ c1(L) in C∞, then the limit

ω∞ satisfies ∂̄S(ω∞) = 0.

We note that Theorem 2.1.2 does not assume the existence of a cscK metric or

the triviality of Aut0(X ,L), unlike Theorem 2.1.1. The importance of Donaldson’s

theorem, in one direction, is that Theorem 2.1.1 provides the first general result on

the existence of cscK metric implying algebro-geometric “stability”, along the line

conjectured by Yau [128], Tian [125], and Donaldson [39], and also extending the

previous works of Tian [125] on Kähler–Einstein metrics to the cscK metrics. Namely,

we have the following corollary.

Corollary 2.1.3. (Zhang [131], Luo [76], Donaldson [40]) If a polarised Kähler mani-

fold (X ,L) with trivial Aut0(X ,L) admits a cscK metric ω ∈ c1(L), it is asymptotically

Chow stable.

This follows from the theorem of Luo [76] and Zhang [131] stating that (X ,L)

is Chow stable at the level k if and only if L admits a balanced metric at the level

k (cf. Theorem 2.6.2), combined with the above Theorem 2.1.1, where the reader is

referred to Definition 2.6.1 for the definition of (asymptotic) Chow stability.

In another direction, Theorem 2.1.1 provides an approximation scheme for the

cscK metrics. Recall now that the existence of many cscK metrics (e.g. Calabi–Yau

metrics on compact Kähler manifolds) is guaranteed only by abstract existence theo-

rems and explicit formulae for these metrics are in general extremely difficult to obtain.

However, we can in fact find a numerical algorithm for finding a balanced metric as

explained in [43] and [106], and hence it is (in principle) possible to numerically ap-

proximate a cscK metric. Various mathematicians have used this method to attack this

problem of “explicitly” approximating a cscK metric, and there already seems to be a

substantial accumulation of research. We only mention here [18, 19, 47, 49, 66], which

actually implemented the above algorithm.

That such a numerical algorithm should exist could be seen intuitively from

the following fact. Suppose that we choose a basis {Zi} for H0(X ,Lk) (for large

enough k) so as to have an isomorphism H0(X ,Lk)
∼→ CNk and an embedding ι : X ↪→

P(H0(X ,Lk)∗) ∼= PNk−1. We then consider the moment map for the U(Nk)-action on

PNk−1, and integrate it over the image ι(X) of X to get the centre of mass µ̄X (see §2.2.2
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for the details); namely µ̄X is defined as

µ̄X :=
∫

ι(X)

hFS(Zi,Z j)

∑
Nk
l=1 |Zl|2FS

ωn
FS

n!
∈
√
−1u(Nk)

where hFS is the Fubini–Study metric on OPNk−1(1). We can move the image ι(X) by

an SL(Nk,C)-action on PNk−1, and we write µ̄X(g) for the new centre of mass when

we move ι(X) by g ∈ SL(Nk,C) to ιg(X), say. It is well-known (cf. [76, 131], see also

Theorem 2.2.19) that there exists a balanced metric at the level k if and only if there

exists g ∈ SL(Nk,C) such that µ̄X(g) is equal to a constant multiple of the identity.

Thus, the seemingly intractable PDE problem ∂̄ ρk(ω) = 0 can in fact be reduced to a

finite dimensional problem on the vector space H0(X ,Lk).

Given the above, we may interpret Theorem 2.1.1 as associating an essentially

finite dimensional problem on P(H0(X ,Lk)∗) to a differential-geometric problem of

solving ∂̄S(ω) = 0 on (X ,L), with an “error” which goes to 0 as k→ ∞ (cf. Theorem

2.3.7). This is often called quantisation, by regarding H0(X ,Lk) as a set of quantum-

mechanical wave functions and
√

k as the inverse of Planck’s constant, so that the limit

k→ ∞ corresponds to the semiclassical limit.

Remark 2.1.4. We now recall that the hypothesis of Aut0(X ,L) being trivial is essential

in Theorem 2.1.1. Indeed, Della Vedova and Zuddas [32] showed (Example 4.3, [32])

that P2 blown up at 4 points, all but one aligned, is Chow unstable at the level k for all

large enough k with respect to an appropriate polarisation, although a well-known theo-

rem of Arezzo and Pacard [7] (see in particular Example 7.3 in [7]) shows that it admits

a cscK metric in that polarisation. We also recall that Ono, Sano, and Yotsutani [93]

showed that there exists a toric Kähler–Einstein Fano manifold that are asymptotically

Chow unstable (with respect to the anticanonical polarisation, even after replacing K−1
X

by a higher tensor power).

2.1.2 Statement of the results

Our aim is to find how Theorems 2.1.1, 2.1.2, and Corollary 2.1.3 can extend to the

case where Aut0(X ,L) is no longer trivial. Since Theorem 2.1.1 (and hence Corollary

2.1.3) does fail to hold when Aut0(X ,L) is nontrivial (cf. Remark 2.1.4), we need a

new ingredient. Suppose now that we replace ∂̄ by an operator ∂̄grad1,0
ω (cf. §1.4) and
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consider the equation ∂̄grad1,0
ω S(ω) = 0, i.e. ω is an extremal metric, which can be

regarded as a “generalisation” of cscK metrics when Aut0(X ,L) is no longer trivial

(cf. §1.4).

Now, when we change ∂̄S(ω) = 0 to ∂̄grad1,0
ω S(ω) = 0, the corresponding equa-

tion ∂̄ ρk(ωk) = 0 changes to

∂̄grad1,0
ωk ρk(ωk) = 0, (2.1)

and this seems to suggest that this is the equation which “quantises” the extremal met-

ric, when Aut0(X ,L) is no longer trivial; observe that when Aut0(X ,L) is trivial and

hence (X ,L) admits no nontrivial holomorphic vector field, the above equation implies

ρk(ωk) = const and hence we recover the balanced metric.

The aim of this chapter is to establish an “extremal” analogue of Theorems 2.1.1

and 2.1.2 by using the equation (2.1). First of all, an analogue of Theorem 2.1.2 can be

established as follows.

Theorem 2.1.5. If a sequence of Kähler metrics {ωk}k in c1(L), each of which satisfies

∂̄grad1,0
ωk ρk(ωk) = 0, converges to a Kähler metric ω∞ ∈ c1(L) in C∞, then the limit ω∞

satisfies ∂̄grad1,0
ω∞

S(ω∞) = 0, i.e. is an extremal metric.

Proof. By recalling the well-known expansion1 of the Bergman function (Theorem

2.3.7), we have 0 = ∂̄grad1,0
ωk 4πkρk(ωk) = ∂̄grad1,0

ωk (S(ωk)+O(1/k)). Since {ωk}k

converges to ω∞ in C∞ as k→ ∞, we have S(ωk)→ S(ω∞) in C∞ and ∂̄grad1,0
ωk F →

∂̄grad1,0
ω∞

F in C∞ for any fixed smooth function F . Thus

0 = ∂̄grad1,0
ωk 4πkρk(ωk) = ∂̄grad1,0

ωk (S(ωk)−S(ω∞))+ ∂̄grad1,0
ωk S(ω∞)+O(1/k),

and hence we get ∂̄grad1,0
ω∞

S(ω∞) = limk→∞ ∂̄grad1,0
ωk S(ω∞) = 0.

An important aspect of the equation (2.1) is that, similarly to the case when

Aut0(X ,L) is trivial, we can find an equivalent characterisation in terms of the cen-

tre of mass µ̄X , so that solving the equation (2.1) can be reduced to an essentially finite

1Note in particular that the expansion is uniform when the metric varies in a family of uniformly
equivalent metrics which is compact with respect to the C∞-topology (Theorem 2.3.7).
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dimensional problem (cf. §2.4); we shall see (Proposition 2.4.5 and Corollary 2.4.16)

that the equation (2.1) holds if and only if there exists g∈ SL(Nk,C) such that2 µ̄X(g)−1

generates a holomorphic vector field on P(H0(X ,Lk)∗)∼= PNk−1 that is tangential to the

image ι(X) of X .

Let K := Isom(ω)∩Aut0(X ,L), where Isom(ω) is the isometry group of the ex-

tremal metric ω (cf. §2.2.1.2). We now state our main result as follows; it is an ana-

logue of Theorem 2.1.1 when Aut0(X ,L) is nontrivial.

Theorem 2.1.6. Suppose that (X ,L) admits an extremal metric ω ∈ c1(L). Replacing

L by Lr for a large but fixed r ∈ N if necessary, for each l ∈ N, there exists kl ∈ N such

that for all k ≥ kl there exists a smooth K-invariant Kähler metric ωk,l ∈ c1(L) which

satisfies ∂̄grad1,0
ωk,l ρk(ωk,l) = 0 and converges to ω in Cl as k→ ∞.

The reader is referred to Remark 2.5.18 for comments on the dependence on l,

and the possibility of the convergence ωk,l→ω in C∞. Combined with Theorem 2.6.10

proved by Mabuchi [82, 86], we obtain an alternative proof of the following result that

was first obtained by Mabuchi.

Corollary 2.1.7. (cf. Mabuchi [82, 84, 85]) Suppose that (X ,L) admits an extremal

metric in c1(L). Replacing L by Lr for a large but fixed r ∈ N if necessary, (X ,L)

is asymptotically weakly Chow polystable relative to any maximal torus in K ≤

Aut0(X ,L).

As explained in Remark 2.6.13, Corollary 2.1.7 does not imply Theorem 2.1.6.

The reader is referred to §2.6.2 for the discussion on (weak) Chow stability relative to

a torus, as well as the proof for how Corollary 2.1.7 follows from Theorem 2.1.6.

Remark 2.1.8. That we have to replace L by a large enough tensor power is a new

phenomenon which did not appear in the case where Aut0(X ,L) is discrete [40, 43].

This essentially comes from the need to linearise Aut0(X ,L)-action on X to the total

space of L, which may not be possible unless we raise L to a higher tensor power

(cf. Lemma 2.2.1, Remark 2.2.2).

Finally, recalling the characterisation of the equation (2.1) in terms of the centre

of mass (Proposition 2.4.5), we hope that Theorem 2.1.6 may potentially provide a

numerical approximation to the extremal metrics, as in the cscK case.
2See Lemma 2.2.20 for the perhaps surprising appearance of the inverse sign in µ̄X (g)−1.
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2.1.3 Comparison to previously known results

We recall that, in fact, the problem of “quantising” the extremal metrics has been con-

sidered by several mathematicians3, notably by Mabuchi [82, 84, 85, 86], Sano–Tipler

[107]. The work of Apostolov–Huang [5] is also related, and contains a neat survey

of Mabuchi’s work. These notions of “quantised” extremal metrics will be reviewed in

§2.6.4.

An important special case of Theorem 2.1.6 is when Aut0(X ,L) is nontrivial but

the centre Z(K) of K is discrete. As is well-known, if ω is extremal, the Hamiltonian

vector field vs generated by S(ω) has to belong to the centre z := Lie(Z(K)) of the Lie

algebra k := Lie(K) (cf. Lemma 2.3.4). Thus, Z(K) being discrete implies vs = 0, and

hence ω is cscK. On the other hand, if Z(K) is discrete and a K-invariant Kähler metric

ωk satisfies ∂̄grad1,0
ωk ρk(ωk) = 0, then Lemmas 2.2.21 and 2.3.4 show that the Hamil-

tonian vector field v generated by ρk(ωk) has to lie in z; thus Z(K) being discrete and

Theorem 2.1.6 implies that ρk(ωk) has to be constant, i.e. ωk is a balanced metric for all

large (and divisible) k, and hence by a theorem of Zhang [131], (X ,L) is asymptotically

Chow semistable (cf. Remark 2.6.3).

This is in fact an easy consequence of the results proved by Futaki [55] and

Mabuchi [81, 84], which we now recall. If (X ,L) is cscK, Mabuchi [81] proved

that there exists an obstruction for (X ,L) being asymptotically Chow polystable when

Aut0(X ,L) is nontrivial, and also showed that the vanishing of these obstructions is suf-

ficient for a cscK (X ,L) to be asymptotically Chow polystable [84]. Futaki [55] proved

that the vanishing of Mabuchi’s obstructions is equivalent to the vanishing of a series of

integral invariants, which may be called “higher Futaki invariants”. We can show that

they all vanish when (X ,L) is cscK and Z(K) is discrete as follows; since the higher

Futaki invariants are Lie algebra characters defined on LieAut0(X ,L) = k⊕
√
−1k (by

Matsushima–Lichnerowicz theorem, cf. Theorem 4.1.5), the centre of k being trivial

implies that these higher Futaki invariants are all equal to 0, and hence that (X ,L)

is indeed asymptotically Chow polystable, which in particular implies that (X ,L) is

asymptotically Chow semistable.

We saw in Remark 2.1.4 the example of cscK, or even Kähler–Einstein, manifolds

3We also mention the work of Bunch and Donaldson [21] for the toric case, and also note that Berman
and Witt Nyström [15] and Takahashi [122] treat similar problems in the context of Kähler–Ricci soli-
tons.
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that are asymptotically Chow unstable even after replacing L by a large enough tensor

power. However, Theorem 2.1.6 and Corollary 2.1.7 imply that it is still possible to

find a Kähler metric ωk with ∂̄grad1,0
ωk ρk(ωk) = 0 on these manifolds, and hence they

are asymptotically Chow stable relative to any maximal torus in K.

Finally, we recall the theorem of Stoppa and Székelyhidi [114], which states that

the existence of extremal metrics implies the K-polystability relative to a maximal torus

in the automorphism group, where the notion of relative K-stability was introduced by

Székelyhidi [116].

Remark 2.1.9. Recalling Corollary 5 of [40], it is natural to expect that Theorem 2.1.6

implies the uniqueness of extremal metrics in c1(L) up to Aut0(X ,L)-action. Indeed,

we set up the problem of finding the solution to (2.1) as a variational problem of finding

the critical point of the modified balancing energy Z A on a finite dimensional manifold

BK
k , where A is essentially equal to gradωk

ρk(ωk); see §2.4 and §2.5 for more details.

It is clear from the convexity (cf. Remark 2.5.2, Theorem 2.5.3) of Z A that the critical

point of Z A is unique up to Aut0(X ,L)-action for each fixed A. However, the problem is

that we do not know whether there exist two metrics ω1 and ω2 in c1(L), both satisfying

∂̄grad1,0
ω1 ρk(ω1) = 0 and ∂̄grad1,0

ω2 ρk(ω2) = 0, but with gradω1
ρk(ω1) 6= gradω2

ρk(ω2).

The existence of such ω1 and ω2 would imply that we cannot prove the uniqueness of

the “quantised” approximant (as in Theorem 1, [40]) of extremal metrics, and hence

the uniqueness of extremal metric itself. On the other hand, the uniqueness of extremal

metrics itself was established by Mabuchi [83], Berman and Berndtsson [14].

2.1.4 Organisation of the chapter

The strategy of the proof of Theorem 2.1.6, which occupies most of what follows, is es-

sentially the same as in [40]; we construct an approximate solution to ∂̄grad1,0
ωh ρk(ωh) =

0, reduce the problem to a finite dimensional one, and use the gradient flow on a finite

dimensional manifold to perturb the approximate solution to the genuine one.

After reviewing in §2.2 some well-known results on the automorphism group of

polarised Kähler manifolds and Donaldson’s theory of quantisation, we construct ap-

proximate solutions in §2.3; after some preliminary work in §2.3.1, we establish the

main technical result Proposition 2.3.13 and its consequence Corollary 2.3.15. We es-

tablish in §2.4 the characterisation of the equation ∂̄grad1,0
ωh ρk(ωh) = 0 in terms of the
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centre of mass µ̄X , so as to reduce the problem to a finite dimensional one; the main

results of the section are Proposition 2.4.5, Corollaries 2.4.11 and 2.4.16. We set up the

problem as a variational one in §2.5.1 by introducing the “modified” balancing energy

Z A, so that the solution of ∂̄grad1,0
ωh ρk(ωh) = 0 can be obtained by finding the critical

point of Z A. By recalling the well-known estimates on the Hessian of the balancing en-

ergy in §2.5.2, we run the gradient flow (2.41) in §2.5.3 driven by Z A. Unfortunately,

the nontrivial automorphism group Aut0(X ,L) means that the limit of the gradient flow

does not achieve the critical point of Z A (cf. Proposition 2.5.13). However, in §2.5.4

we set up an inductive procedure to (exponentially) decrease δZ A, which is shown to

converge, so as to give the critical point of Z A (Proposition 2.5.15); the trick is in fact

to perturb the auxiliary parameter A to decrease δZ A.

Finally, we consider the connection to the stability of (X ,L) in §2.6, where we also

discuss the relationship to the previously known results, particularly by Sano–Tipler

[107] and Mabuchi [82, 84, 85, 86]; in particular, we provide the proof of Corollary

2.1.7 at the end of §2.6.2.

Notation 2.1.10. In this chapter, we shall consistently write N =Nk for dimCH0(X ,Lk),

and V for
∫

X c1(L)n/n!.

2.2 Background

2.2.1 Further properties of automorphism groups of polarised

Kähler manifolds

2.2.1.1 Linearisation of the automorphism group

This section is a review of well-known results, and the reader is referred to [53, 67,

70, 89] for more details on what is discussed here. Let (X ,L) be a polarised Kähler

manifold i.e. a Kähler manifold X with an ample line bundle L over X . By taking r ∈N

to be large enough, we may assume that Lr is very ample and also have the surjection⊗m
i=1 H0(X ,Lr)� H0(X ,Lrm) for any m ≥ 1. We now have the embedding ι : X ↪→

P(H0(X ,Lr)∗). We write Aut(X) for the group of holomorphic transformations of X ,

and Aut0(X) for the connected component of Aut(X) containing the identity. We also

write Aut(X ,Lr) for the subgroup of Aut(X) consisting of the elements whose action

lifts to an automorphism of the total space of the line bundle Lr, and write Aut0(X ,Lr)
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for the connected component of Aut(X ,Lr) containing the identity. We now recall the

well-known fact that Aut0(X ,Lr) is equal to the maximal connected linear algebraic

subgroup in Aut0(X), equal to the kernel of Jacobi homomorphism from Aut0(X) to the

Albanese torus [53], and that the Lie algebra of Aut0(X ,Lr) is the set of all holomorphic

vector fields on X that have a zero (cf. Theorem 1 of [70]). Given these remarks, we

shall (abusively) write Aut0(X ,L) for Aut0(X ,Lr), for any r > 0.

Suppose that we write f̃ for the automorphism of the total space of the line bundle

Lr obtained by lifting f ∈ Aut0(X ,L), where we note that such f̃ is well-defined only

up to an overall constant multiple (acting as a fibrewise multiplication). Thus, the lift

f 7→ f̃ gives a map Aut0(X ,L)→ GL(H0(X ,Lr)), acting by pull-back, which is well-

defined only up to an overall constant multiple, since we only have f̃1◦ f̃2 = a f̃1 ◦ f2 for

some constant a ∈C∗ (cf. proof of Theorem 9.2 in [67]). In other words, the lift f 7→ f̃

gives a well-defined homomorphism θ : Aut0(X ,L)→ PGL(H0(X ,Lr)). Considering

the action PGL(H0(X ,Lr))yP(H0(X ,Lr)∗) given by the dual representation, it is easy

to see that θ( f ), f ∈Aut0(X ,L), defines an element in PGL(H0(X ,Lr)) which fixes the

image ι(X) of X under the Kodaira embedding.

Conversely, a well-known theorem (Theorem 9.4 of [67]) asserts that, for ev-

ery element f of Aut0(X ,L), there exists a unique projective linear transformation

g ∈ PGL(H0(X ,Lr)) which fixes the image ι(X) of X under the Kodaira embedding,

such that f is the restriction of the action of g on P(H0(X ,Lr)∗) to the image ι(X) of

X in P(H0(X ,Lr)∗); in other words, we have g◦ ι = ι ◦ f as an equality between maps

X → P(H0(X ,Lr)∗) (cf. p84, [67]). Note also that ι being an embedding means that θ

is injective. Summarising the argument as above, we now have an injective homomor-

phism θ : Aut0(X ,L)→ PGL(H0(X ,Lr)) which satisfies θ( f )◦ ι = ι ◦ f .

However, we will often need θ( f ) to be a “genuine” linear transformation rather

than a projective linear transformation. It is well-known (cf. Proposition 9.3 [67]) that,

by replacing L by LrR where R := dimCH0(X ,Lr), this representation θ can indeed be

“lifted” to a linear transformation on the ambient vector space; namely there exists a

faithful representation θ : Aut0(X ,LrR)→ SL(H0(X ,LrR)), which we still denote by θ

by abuse of notation. From now on, we replace L by LrR in the above. Summarising

the above argument and also recalling the surjection
⊗m

i=1 H0(X ,Lr)�H0(X ,Lrm), we

obtain the following well-known result.
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Lemma 2.2.1. By replacing L by a large tensor power if necessary, we have a unique

faithful group representation

θ : Aut0(X ,L)→ SL(H0(X ,Lk))

for all k ∈ N, which satisfies

θ( f )◦ ι = ι ◦ f (2.2)

for the Kodaira embedding ι : X ↪→ P(H0(X ,Lk)∗).

Proof. Since the existence follows from the above discussion, we only have to show the

uniqueness. Suppose that we have two faithful representations θ and θ ′, both satisfying

(2.2). Observe that we have θ(g)◦θ ′(g)−1 ◦ ι = θ(g)◦ ι ◦g−1 = ι ◦ (gg−1) = ι for all

g ∈ Aut0(X ,L) by (2.2). Since the image ι(X) of X cannot be contained in any linear

subspace of P(H0(X ,Lk)∗), the above equation implies that θ(g) ◦ θ ′(g)−1 = νN(g)I,

where νN(g) is an N-th root of unity (which may depend on g) and I is the identity

in SL(H0(X ,Lk)). Since Aut0(X ,L) is connected and θ(e) = θ ′(e) for the identity

e ∈ Aut0(X ,L), we get νN(g) = 1 for all g ∈ Aut0(X ,L), i.e. θ(g) = θ ′(g) for all g ∈

Aut0(X ,L).

Remark 2.2.2. Recalling that Aut0(X ,L) is the maximal connected linear algebraic

subgroup in Aut0(X), Lemma 2.2.1 is simply re-stating the well-known fact that, for

any connected linear algebraic group G acting on X , L admits a G-linearisation after

raising it to a higher tensor power, say Lr, if necessary (cf. Corollary 1.6, [89]). In

other words, having θ as above in Lemma 2.2.1 is equivalent to fixing an Aut0(X ,L)-

linearisation of the line bundle L, by replacing L by Lr if necessary. It is well-known

that we cannot always take r = 1 (§3, [89]). It is also well-known that a linearisation of

a G-action on a projective variety X is unique up to the fibrewise C∗-action (cf. pp105-

106 in [38], Proposition 1.4 in [89]).

2.2.1.2 Automorphism groups of extremal Kähler manifolds

Now, suppose that (X ,L) contains an extremal Kähler metric ω . As we remarked in

§1.4, we have gradωS(ω) = −Jvs, where vs is the Hamiltonian vector field generated

by S(ω) with respect to ω . The vector field vs is called the extremal vector field.
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Lemmas 1.4.1 and 1.4.2 (and also Remark 1.4.3) imply that vs is a Hamiltonian Killing

vector field of ω . On the other hand, a well-known theorem of Calabi [24] asserts that

the identity component of the isometry group Isom(ω) of an extremal metric ω is a

maximal compact subgroup of Aut0(X). We now set and fix K := Isom(ω)∩Aut0(X ,L)

once and for all4 as the (connected) maximal compact subgroup of Aut0(X ,L). The

above discussion means that we have vs ∈ k := Lie(K). In fact, vs lies in the centre of k

by Lemma 2.3.4, which means, in particular, that the identity component Z(K)0 of the

centre Z(K) of K must be nontrivial if X admits a non-cscK extremal metric.

Recall that we can write Aut0(X ,L) = KC n Ru as a semidirect product of the

complexification KC of K and the unipotent radical Ru of Aut0(X ,L) (recalling that it

is a linear algebraic group, cf. [53, 57]).

Notation 2.2.3. We summarise our notational convention as follows.

1. G := Aut0(X ,L) and θ : G→ SL(H0(X ,Lk)) is the faithful representation of G

as defined in Lemma 2.2.1, and we write θ∗ : Lie(G)→ sl(H0(X ,Lk)) for the

induced (injective) Lie algebra homomorphism,

2. K ≤ G is the group of isometries of the extremal Kähler metric ω inside G;

K := Isom(ω)∩G. This is a maximal compact subgroup of G and we write

G = KCnRu as a semidirect product of the complexification KC of K and the

unipotent radical Ru of G,

3. g := Lie(G), k := Lie(K), and z := Lie(Z(K)); we may also write sl for

sl(H0(X ,Lk)).

In what follows, we occasionally confuse G with θ(G) ≤ SL(H0(X ,Lk)), and g

with θ∗(g)≤ sl(H0(X ,Lk)).

2.2.1.3 Some technical remarks

Let K be a maximal compact subgroup of Aut0(X ,L). By Lemma 2.2.1, we can con-

sider the action of K on H0(X ,Lk) afforded by θ , and hence it makes sense to consider

K-invariant (or more precisely θ(K)-invariant) hermitian forms on H0(X ,Lk). Observe

now the following lemma.

4Some results (e.g. the ones in §2.2.1.3 or §2.2.3), however, will hold for any fixed choice of maximal
compact subgroup K in Aut0(X ,L). Still, it may be convenient to have a specific choice of K in mind.
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Lemma 2.2.4. If f ∈ K, θ( f ) is unitary with respect to any K-invariant positive

hermitian form on H0(X ,Lk), and A ∈ θ∗(
√
−1k) is a hermitian endomorphism with

respect to any K-invariant positive hermitian form on H0(X ,Lk). Conversely, if

A ∈ θ∗(k⊕
√
−1k) is hermitian with respect to a K-invariant hermitian form, then

A ∈ θ∗(
√
−1k).

In what follows, we shall confuse a positive definite hermitian form 〈,〉H with a

positive definite hermitian endomorphism H, by fixing a reference 〈,〉H0 . It is con-

venient in what follows to use a 〈,〉H0-orthonormal basis as a “reference” basis for

H0(X ,Lk). Although it is simply a matter of convention, this certainly enables us to fix

a “reference” once and for all.

Notation 2.2.5. In what follows, we shall write Bk for the set of all positive definite

hermitian forms on H0(X ,Lk). Observe Bk
∼= GL(N,C)/U(N) and that the tangent

space of Bk at a point is the set Herm(H0(X ,Lk)) of all hermitian endomorphisms

on H0(X ,Lk). We shall also write BK
k for the θ(K)-invariant elements in Bk, and

Herm(H0(X ,Lk))K for the tangent space at a point in BK
k , which is the set of all her-

mitian endomorphisms on H0(X ,Lk) commuting with the elements in θ(K).

Finally, since the action of G on X is holomorphic, observe

v ∈ k⇒ Jv ∈
√
−1k. (2.3)

2.2.2 Review of Donaldson’s quantisation

We now recall the details of Donaldson’s quantisation, namely the maps Hilb (“quantis-

ing map”) and FS (“dequantising map”), following the exposition given in [43]. Heuris-

tically, it aims to associate the projective geometry of P(H0(X ,Lk)∗) to the differential

geometry of (X ,Lk), up to an error which decreases as k→ ∞ (“semiclassical limit”),

thereby hoping that a difficult PDE problem in differential geometry (e.g. ∂̄S(ω) = 0

or ∂̄grad1,0
ω S(ω) = 0) can be reduced to a finite dimensional problem on H0(X ,Lk) up

to an error of order k−1, say (cf. Theorem 2.3.7). Let H (X ,L) be the space of all

positively curved hermitian metrics on L, which is the same as the set of all Kähler

potentials K = {φ ∈ C∞(X ,R) | ω0 +
√
−1∂ ∂̄φ > 0} in c1(L) (where ω0 ∈ c1(L) is
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a reference metric). We may confuse h ∈H (X ,L) with the associated Kähler metric

ωh ∈K when it seems appropriate.

Definition 2.2.6. The map Hilb : H (X ,L)→Bk, where Bk is the set of all positive

definite hermitian forms on H0(X ,Lk), is defined by

Hilb(h) :=
N
V

∫
X

hk(,)
ωn

h
n!

(recalling Notation 2.1.10), and the map FS : Bk→H (X ,L) is defined by the equation

N

∑
i=1
|si|2FS(H)k = 1 (2.4)

where {si} is an H-orthonormal basis for H0(X ,Lk). FS(H) may also be written as

hFS(H). Observe that, fixing a reference hermitian metric h0 on L and writing FS(H) =

e−ϕh0, the equation (2.4) implies ϕ = 1
k log

(
∑

N
i=1 |si|2hk

0

)
. Thus, the equation (2.4)

uniquely defines a hermitian metric hFS(H) on L, and hence the map FS is well-defined.

Remark 2.2.7. The reader is referred to §5.2.2, Chapter 5, [77] for the proof of the

well-known fact that hk
FS(H) agrees with the pullback by the Kodaira embedding X ↪→

P(H0(X ,Lk)∗) of the hermitian metric h̃FS(H) on OP(H0(X ,Lk)∗)(1) defined by H ∈Bk.

The author believes that some of the following results (Lemmas 2.2.8 and 2.2.9)

should be well-known to the experts, although he could not find an explicitly written

proof in the existing literature.

Lemma 2.2.8. Suppose that Lk is very ample. Then Hilb : H (X ,L)→Bk is surjective.

Proof. The main line of the argument presented below is almost identical to §2 in the

paper by Bourguignon, Li, and Yau [17].

Since Lk is very ample, we have the Kodaira embedding ι : X ↪→ P(H0(X ,Lk)∗)
∼→

PN−1. First of all pick homogeneous coordinates {Zi} on PN−1; all matrices appearing

in what follows will be with respect to this basis {Zi}. This then defines a hermitian

metric h̃ := h̃FS(I) on OPN−1(1) and the Fubini–Study metric ωF̃S(I) on PN−1. Suppose

that we write dµZ for the volume form on PN−1 defined by ωF̃S(I), and dµBZ for the

one defined by ωF̃S(H)
where H := (B−1)tB−1 and B ∈ GL(N,C) (cf. Remark 2.2.17).



38 Chapter 2. Quantisation of extremal Kähler metrics

Suppose that we write

J ◦ := {B ∈ GL(N,C) | B = B∗, B > 0}/{B∼ αB | α > 0},

which we compactify to J by adding a topological boundary ∂J := {B∈GL(N,C) |

B = B∗, B≥ 0, rankB≤ N−1}/{α > 0}. We also write

H := {N×N positive semi-definite hermitian matrices with trace 1},

with the interior H ◦ consisting of positive definite ones, and the boundary ∂H con-

sisting of those with rank ≤ N−1. Note dimRJ ◦ = dimRH ◦ = N2−1 and that J ◦

and H ◦ can be identified with a connected bounded open subset in RN2−1.

Now, noting dµ(αB)Z = dµBZ , consider a map Ψ0 : J ◦→H ◦ defined by

Ψ0(B)i j :=

(∫
PN−1

∑l |Zl|2h̃
∑l |∑m BlmZm|2h̃

dµBZ

)−1 ∫
PN−1

h̃(Zi,Z j)

∑l |∑m BlmZm|2h̃
dµBZ,

where Ψ0(B)i j stands for the (i, j)-th entry of Ψ0(B). Writing ξB : PN−1 ∼→ PN−1 for

the biholomorphic map induced from B ∈J ◦, we note

Ψ0(I)i j =

(∫
PN−1

dµZ

)−1 ∫
PN−1

h̃(Zi,Z j)

∑l |Zl|2h̃
dµZ

=

(∫
PN−1

(ξ ∗BdµZ)

)−1 ∫
PN−1

ξ
∗
B

(
h̃(Zi,Z j)

∑l |Zl|2h̃

)
(ξ ∗BdµZ)

=

(∫
PN−1

dµBZ

)−1 ∫
PN−1

∑l,m h̃(BilZl,B jmZm)

∑l |∑m BlmZm|2h̃
dµBZ

and hence, recalling tr(Ψ0(B)) = 1 and writing Bt for the transpose of B, we get

Ψ0(B) =
(Bt)−1Ψ0(I)(Bt)−1

tr((Bt)−1Ψ0(I)(Bt)−1)
.

We claim that it defines a diffeomorphism between J ◦ and H ◦. It is easy to check

that Ψ0 is a smooth bijective map from J ◦ to H ◦. Its linearisation δΨ0|B at B can be
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computed as

δΨ0|B(A)

=−(Bt)−1At
Ψ0(B)−Ψ0(B)At(Bt)−1 + tr((Bt)−1At

Ψ0(B)+Ψ0(B)At(Bt)−1)Ψ0(B)

where A is a hermitian matrix which is not a constant multiple of B. Observe that

δΨ0|B(A) = 0 holds if and only if

fB(A) :=−(Bt)−1At
Ψ0(B)−Ψ0(B)At(Bt)−1

is a constant multiple of Ψ0(B). Noting that Ψ0(B) is a positive definite hermitian ma-

trix, we can show by direct computation that fB(A) cannot be a constant multiple of

Ψ0(B) unless A is a constant multiple of B. Thus the linearisation of Ψ0 is nondegener-

ate at each point in J ◦, and hence Ψ0 defines a diffeomorphism between J ◦ and H ◦

with a nontrivial degree at every point in H ◦. We also see that, using Ψ0(B) =Ψ0(αB)

for α > 0, Ψ0 extends continuously to the boundary, mapping elements of ∂J into

∂H , such that the degree of the map Ψ0 : ∂J → ∂H is nontrivial.

Now suppose that we write ι∗X(dµBZ) for the measure induced from dµBZ which

is supported only on ι(X) ⊂ PN−1, and consider a continuous map Ψ : J ◦ →H ◦

defined by

Ψ(B)i j :=

(∫
PN−1

∑l |Zl|2h̃
∑l |∑m BlmZm|2h̃

ι
∗
X(dµBZ)

)−1 ∫
PN−1

h̃(Zi,Z j)

∑l |∑m BlmZm|2h̃
ι
∗
X(dµBZ).

We first show that Ψ extends continuously to the boundary. Recall that ι∗X(dµBZ) is, as

a measure on X , equal to ι∗(ωn
F̃S(H)

/n!), and observe

∫
PN−1

h̃(Zi,Z j)

∑l |∑m BlmZm|2h̃
ι
∗
X(dµBZ) =

∫
ι(X)⊂PN−1

h̃(Zi,Z j)

∑l |∑m BlmZm|2h̃

ωn
F̃S(H)

n!

= ∑
r,s
(B∗)−1

ri B−1
js ∑

p,q

∫
ι(X)⊂PN−1

h̃(BrpZp,BsqZq)

∑l |∑m BlmZm|2h̃

ωn
F̃S(H)

n!

= ∑
r,s
(B∗)−1

ri B−1
js

∫
ξB◦ι(X)⊂PN−1

h̃(Zr,Zs)

∑l |Zl|2h̃

ωn
F̃S(I)

n!
,
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since (ξB ◦ ι)∗(Zi) = ∑p Bipι∗(Zp). Writing Φ(B) for the matrix defined by

Φ(B)rs :=
∫

ξB◦ι(X)⊂PN−1

h̃(Zr,Zs)

∑l |Zl|2h̃

ωn
F̃S(I)

n!
,

we have Ψ(B) = (Bt)−1Φ(B)(Bt)−1/tr((Bt)−1Φ(B)(Bt)−1). If {Bν} is any sequence

in J ◦ converging to a point in ∂J , we immediately see Ψ(limν Bν) = limν Ψ(Bν)

since Φ(limν Bν) = limν Φ(Bν). As Φ(limν Bν) is positive semi-definite, the formula

Ψ(B) = (Bt)−1Φ(B)(Bt)−1/tr((Bt)−1Φ(B)(Bt)−1) also proves that Ψ maps a sequence

{Bν} in J ◦ approaching ∂J to a sequence which accumulates at a point in ∂H .

We can now define a 1-parameter family of continuous maps Ψt := J →H by

Ψt(B) := tΨ(B)+ (1− t)Ψ0(B) (this can be viewed as using a measure tι∗X(dµZB)+

(1− t)dµBZ in the integrals above). By what we have established above, Ψt is a con-

tinuous 1-parameter family of maps between J and H which maps ∂J into ∂H .

Since Ψ0 is a diffeomorphism between J ◦ and H ◦ and has a nontrivial degree on

the boundary and Ψ maps sequences approaching ∂J to sequences accumulating at

points in ∂H , Ψ : ∂J → ∂H has a nontrivial degree. We thus see that Ψ is surjective

since the degree of a continuous map is a homotopy invariant (cf. Theorems 12.10 and

12.11, [4]).

Finally, we recall that ι∗X(dµBZ) = ι∗(ωn
F̃S(H)

/n!) is equal to knωFS(H)/n!. Note

also that, writing hk for ι∗h̃, we have

Ψ(B)i j =

(∫
X

∑l |sl|2hk

∑l |∑m Blmsm|2hk

ωn
FS(H)

n!

)−1 ∫
X

hk(si,s j)

∑l |∑m Blmsm|2hk

ωn
FS(H)

n!
.

where we wrote si := ι∗Zi. Observe also that there exists β ∈ C∞(X ,R) such that

ωn
FS(H) = eβ ωn

h . We have thus proved that, fixing a basis {si} for H0(X ,Lk), for any

positive definite hermitian matrix G there exists a function φ ∈C∞(X ,R) such that

N
V

∫
X

eβ+φ hk(si,s j)
ωn

h
n!

= Gi j.

We thus aim to find a function f ∈C∞(X ,R), such that e− f hk is positively curved and

Hilb(e− f hk)(si,s j) =
N
V
∫

X eβ+φ hk(si,s j)
ωn

h
n! , to finally establish the claim. For this, it is
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sufficient to solve for f the following nonlinear PDE:

(
ωh +

√
−1

2πk
∂ ∂̄ f

)n

= e f+β+φ
ω

n
h ,

which is solvable by the Aubin–Yau theorem (cf. Theorem 4, p383 [127]).

Lemma 2.2.9. Suppose that we choose k to be large enough, and that H,H ′ ∈ Bk

satisfy FS(H)k = (1+ f )FS(H ′)k with supX | f | ≤ ε for ε ≥ 0 satisfying N
3
2 ε ≤ 1/4.

Then we have ||H−H ′||op≤ 2N2ε , where || · ||op is the operator norm, i.e. the maximum

of the moduli of the eigenvalues (cf. §2.2.1.3). In particular, considering the case ε = 0,

we see that FS is injective for all large enough k.

Proof. We now pick an H-orthonormal basis {si} and represent H (resp. H ′) as a matrix

Hi j (resp. H ′i j) with respect to the basis {si}. Hi j is the identity matrix, and replacing

{si} by an H-unitarily equivalent basis if necessary, we may further assume H ′i j =

diag(d2
1 , . . . ,d

2
N) for some di > 0. Recall that the equation (2.4) implies that we can

write FS(H ′)k = e−ϕFS(H)k with ϕ = log
(

∑
N
i=1 d−2

i |si|2FS(H)k

)
. Thus the equation

FS(H)k = (1+ f )FS(H ′)k implies 1+ f = ∑i d−2
i |si|2FS(H)k , and hence, by recalling

(2.4),

(1+ f )∑
i
|si|2hk = ∑

i
d−2

i |si|2hk , (2.5)

with respect to any hermitian metric h on L, by noting that we may multiply both sides

of (2.5) by any strictly positive function ekφ . We now fix this basis {si}, and the operator

norm or the Hilbert–Schmidt norm used in this proof will all be computed with respect

to this basis.

We now choose N hermitian metrics h1, . . . ,hN on Lk as follows. Recall now

that, by Lemma 2.2.8, for any N-tuple of strictly positive numbers ~λ = (λ1, . . . ,λN)

there exists φ~λ
∈ C∞(X ,R) such that the hermitian metric h′ := exp(φ~λ )h satisfies∫

X |si|2(h′)k
ωn

h′
n! = λi. We thus take ~λi = (e−k, . . . ,e−k,1,e−k, . . . ,e−k) with 1 in the i-th

place, and choose φi ∈C∞(X ,R) appropriately (cf. Lemma 2.2.8) so that hi := exp(φi)h

satisfies

~λi =

(∫
X
|s1|2hk

i

ωn
hi

n!
,
∫

X
|s2|2hk

i

ωn
hi

n!
, . . . ,

∫
X
|sN |2hk

i

ωn
hi

n!

)
.
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Now consider the matrix

Λ :=


~λ1

...

~λN


and observe that the modulus of each entry is at most 1, and that ||Λ||op ≤ 2 and

||Λ−1||op ≤ 2 if k is large enough. Then, multiplying both sides of (2.5) by exp(kφi)

and integrating over X with respect to the measure ωn
hi
/n!, we get the following system

of linear equations

(Λ+F)


1
...

1

= Λ


d−2

1
...

d−2
N

 ,

where F is a matrix defined by

Fi j :=
∫

X
f |s j|2hk

i

ωn
hi

n!

whose max norm (i.e. the maximum of the moduli of its entries) satisfies ||F ||max ≤

supX | f | ≤ ε since the modulus of each entry of Λ is at most 1. We thus get


d−2

1 −1
...

d−2
N −1

= Λ
−1F


1
...

1

 .

Thus, noting ||Λ−1F ||op ≤ ||Λ−1||op||F ||op ≤ 2||F ||HS ≤ 2N||F ||max ≤ 2Nε , we get

|d−2
i −1| ≤

√
∑

i
|d−2

i −1|2 ≤ 2N1+ 1
2 ε.

Thus we get 1−2N
3
2 ε ≤ d−2

i ≤ 1+2N
3
2 ε , and by the assumption N

3
2 ε ≤ 1/4 we have

1−2N2
ε < 1− 2N

3
2 ε

1+2N
3
2 ε

≤ d2
i ≤ 1+

2N
3
2 ε

1−2N
3
2 ε

< 1+2N2
ε

as required.

In order to describe the map FS ◦Hilb : H (X ,L) → H (X ,L) (cf. Theorem

2.2.11), we introduce the following function which is important in complex geome-
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try and complex analysis.

Definition 2.2.10. Let h∈H (X ,L), and let {si} be a
∫

X hk(,)
ωn

h
n! -orthonormal basis for

H0(X ,Lk). The Bergman function or the density of states function ρk(ωh) is defined

as

ρk(ωh) :=
N

∑
i=1
|si|2hk .

We will also use a scaled version of ρk(ωh) defined as

ρ̄k(ωh) :=
V
N

ρk(ωh),

where the scaling is made so that the average of ρ̄k(ωh) over X is 1.

It is easy to see that ρk(ωh) depends only on the Kähler metric ωh rather than h

itself, i.e. is invariant under the scaling h 7→ ech for any c∈R. Recall now the following

theorem, which easily follows from the definition (2.4) of FS.

Theorem 2.2.11. (Rawnsley [98]) FS(Hilb(h)) = (ρk(ωh)V/N)−1/kh for any h ∈

H (X ,L) and large enough k > 0 such that Lk is very ample.

Remark 2.2.12. Suppose in general that we are given an embedding ι : X ↪→ PN−1

of X (not necessarily defined by sections of an ample line bundle) such that ι(X) is

not contained in any hyperplane. It is possible to define the Bergman function in this

situation by using Theorem 2.2.11.

An obvious corollary of Theorem 2.2.11 is that FS(Hilb(h)) = h if and only if

ρk(ωh) = const = N/V , and h ∈H (X ,L) satisfying this is called balanced.

Definition 2.2.13. A hermitian metric h ∈H (X ,L) is called balanced at the level k if

it satisfies the following two equivalent conditions.

1. ρk(ωh) = N/V or ρ̄k(ωh) = 1,

2. FS(Hilb(h)) = h.

An important point is that we have an “extrinsic” characterisation of balanced met-

rics, in terms of the Kodaira embedding. For this, we fix some basis {Zi} for H0(X ,Lk),
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which may be called a reference basis.5 With this choice of basis, it is possible to iden-

tify H0(X ,Lk) with its dual, and also with CN , and hence P(H0(X ,Lk)∗)∼= PN−1. Note

then that the Kodaira embedding ι can be written as

ι : X 3 x 7→ [evxZ1 : · · · : evxZN ] ∈ PN−1

where evx is the evaluation map at x. This embedding may be called a reference em-

bedding, and will always be denoted by ι from now on. It is important to fix some

reference basis for the identification P(H0(X ,Lk)∗) ∼= PN−1, but a different choice of

reference basis will only result in moving (the image of) X inside PN−1 by an SL(N,C)-

action (cf. Remark 2.2.17).

Definition 2.2.14. Defining a standard Euclidean metric on CN which we write as the

identity matrix I, we define the centre of mass as

µ̄X :=
∫

ι(X)

h̃FS(Zi,Z j)

∑l |Zl|2F̃S

ωn
F̃S

n!
=
∫

X

hk
FS(si,s j)

∑l |sl|2FSk

knωn
FS

n!
∈
√
−1u(N)

where hk
FS is (the pullback by the Kodaira embedding of) the Fubini–Study metric h̃FS

on PN−1 induced from I on CN covering PN−1 (see also Notation 2.2.16 below).

Remark 2.2.15. Note that the equation (2.4) implies that we in fact have µ̄X =∫
X hk

FS(si,s j)
knωn

FS
n! .

Notation 2.2.16. As a matter of notation, we will often write {Zi} for a basis for

H0(X ,Lk) when we see it as an abstract vector space and {si} when we see it as a

space of holomorphic sections on X ; thus we can write ι∗Zi = si by using the Kodaira

embedding ι . We also write h̃FS for the Fubini–Study metric on OPN−1(1) induced from

I on CN covering PN−1, and write ωF̃S for the corresponding Kähler metric on PN−1.

We can now move the image of X in PN−1 by the SL(N,C)-action on PN−1 (or

rather on the CN covering it). Writing ξg : PN−1 ∼→ PN−1 for the biholomorphic map

induced from g ∈ SL(N,C), note that moving the image ι(X) of X by g ∈ SL(N,C) is

equivalent to considering the embedding ιg := ξg ◦ ι : X ↪→ PN−1, and the effect of ξg

is such that Zi changes to Z′i := ∑ j gi jZ j, where gi j is the matrix for g represented with

5We may take this to be an orthonormal basis for the reference 〈,〉H0 in §2.2.1.3.



2.2. Background 45

respect to the basis {Zi}. Thus, the Fubini–Study metric ωFS = ι∗
√
−1

2πk ∂ ∂̄ log(∑ |Zi|2)

changes to (ξg ◦ ι)∗
√
−1

2πk ∂ ∂̄ log(∑ |Zi|2) = ι∗
√
−1

2πk ∂ ∂̄ log(∑ |Z′i |2), which we can see is

equal to ωFS(H), i.e. (the pullback by ι of) the Fubini–Study metric on PN−1 induced

from the hermitian form H := (g−1)tg−1 on CN .

Thus, writing µ̄X(g) for the new centre of mass after moving the image of X by g,

namely the centre of mass of X with respect to the embedding ιg = ξg ◦ ι , we have

µ̄X(g) =
∫

ιg(X)

h̃FS(Zi,Z j)

∑l |Zl|2F̃S

ωn
F̃S

n!

=
∫

ι(X)

h̃FS(H)(Z′i ,Z
′
j)

∑l |Z′l |2F̃S(H)

ωn
F̃S(H)

n!
=
∫

X

hk
FS(H)(s

′
i,s
′
j)

∑l |s′l|2FS(H)k

knωn
FS(H)

n!
.

Remark 2.2.17. Suppose that we have another choice of reference basis, say {Z′i},

to compute the centre of mass, say µ̄ ′X . Since we can write Z′i = ∑ j gi jZ j for some

g ∈ SL(N,C), we see that choosing a new reference basis is simply moving the image

of X inside PN−1 (with respect to the old reference basis) by g ∈ SL(N,C); namely

µ̄ ′X = µ̄X(g).

Observe that the new basis {Z′i} is an H-orthonormal basis where the hermitian

form H is defined by H = (g−1)tg−1.

Definition 2.2.18. The Kodaira embedding ι : X ↪→ PN−1 is called balanced if there

exists g ∈ SL(N,C) such that µ̄X(g) is a multiple of the identity in
√
−1u(N); equiva-

lently, µ̄X(g) is in the kernel of the natural projection
√
−1u(N)�

√
−1su(N).

Note that the definition of being balanced does not depend on the choice of refer-

ence basis that we chose to have P(H0(X ,Lk)∗)
∼→ PN−1, by Remark 2.2.17.

A fundamental result is the following, which easily follows from Lemma 2.2.9,

Definition 2.2.10, and Remark 2.2.15.

Theorem 2.2.19. (Luo [76], Zhang [131]) Kodaira embedding ι : X ↪→P(H0(X ,Lk)∗)∼=

PN−1 is balanced if and only if L admits a balanced metric at the level k.

The reader is referred to §2.6.1 (in particular Theorem 2.6.2), for its connection to

a stability notion in algebraic geometry.

Finally, we prove the following general lemma, which also applies to the case of
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general embedding ι : X ↪→ PN−1 as discussed in Remark 2.2.12. The author thanks

Joel Fine for pointing it out to him.

Lemma 2.2.20. Let F be the Hamiltonian for the vector field on PN−1 generated by
√
−1knµ̄X(g)−1 with respect to the Kähler metric ωF̃S(H)

, where H = (g−1)tg−1. Then,

ρk(ωFS(H)) = ι∗F.

Proof. Let {si} be an H-orthonormal basis and {s′i} be a
∫

X hk
FS(H)(,)

ωn
FS(H)

n! -

orthonormal basis. Let P be the change of basis matrix from {si} to {s′i}. This

implies

∑
l,q

P∗liPjq(µ̄
′
X)lq = ∑

l,q
P∗liPjq

∫
X

hk
FS(H)(sl,sq)

knωn
FS(H)

n!
= kn

δi j,

which implies µ̄ ′X = kn(P∗P)−1, where µ̄ ′X is the centre of mass defined with respect to

the basis {si}. Note µ̄ ′X = µ̄X(g) by Remark 2.2.17. Note also that

ρk(ωFS(H)) = ∑
i
|s′i|2FS(H)k = ∑

i,q,l
P∗liPiqhk

FS(H)(sl,sq) = ∑
q,l
(P∗P)lqhk

FS(H)(sl,sq),

and hence we get

ρk(ωFS(H)) = ∑
i, j
(kn

µ̄X(g)−1)i jhk
FS(H)(si,s j). (2.6)

Now, using the homogeneous coordinates {Zi} on PN−1 corresponding to {si},

i.e. ι∗Zi = si, we have

∑
i, j
(µ̄X(g)−1)i jhk

FS(H)(si,s j) = ι
∗

(
∑
i, j
(µ̄X(g)−1)i j

ZiZ̄ j

∑l |Zl|2

)
. (2.7)

Recall that for A ∈ u(N) regarded as a Hamiltonian vector field on PN−1, the

Hamiltonian FA for A with respect to ωF̃S(H)
is given by (cf. p88, [119])

FA =−
√
−1∑

i j
Ai j

ZiZ̄ j

∑l |Zl|2
. (2.8)

Thus, taking A =
√
−1knµ̄X(g)−1 ∈ u(N), we get the claimed statement from the equa-

tions (2.6), (2.7), and (2.8).
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2.2.3 A general lemma and its consequences

We prove the following general lemma.

Lemma 2.2.21. For any f ∈ Aut0(X ,L),

1. f ∗ρk(ωh) = ρk( f ∗ωh),

2. Hilb( f ∗h) = θ( f−1)∗Hilb(h)θ( f−1),

3. f ∗FS(H) = FS(θ( f−1)∗Hθ( f−1)) .

Remark 2.2.22. We recall now that we have θ : Aut0(X ,L)→ SL(H0(X ,Lk)) as in

Lemma 2.2.1 (by replacing L by a large enough tensor power if necessary) which im-

plies that we have a “consistent” choice of the lift f̃ of f ∈ Aut0(X ,L) to the automor-

phism of the total space of the bundle L so that f̃1 ◦ f̃2 = f̃1 ◦ f2 (i.e. fixed linearisation

of the action; see Remark 2.2.2). For a hermitian metric h on L, f ∗h in the above

statement is meant to be f̃ ∗h for this choice of f̃ .

Proof. Note the elementary

∫
X

hk(s,s′)
ωn

h
n!

=
∫

X
f ∗(hk(s,s′))

f ∗ωn
h

n!
=
∫

X
( f ∗hk)(θ( f )s,θ( f )s′)

f ∗ωn
h

n!

for any two sections s and s′, by recalling (2.2). This means that, if {si} is a Hilb(h)-

orthonormal basis, then {∑ j θ( f )i js j} is a Hilb( f ∗hk)-orthonormal basis where θ( f )i j

is the matrix for θ( f ) represented with respect to {si}. We thus have f ∗ρk(ωh) =

∑i |∑ j θ( f )i js j|2f ∗hk = ρk( f ∗ωh).

For the second part of the lemma, we just recall that {∑ j θ( f )i js j} is a Hilb( f ∗h)-

orthonormal basis to see Hilb( f ∗h) = θ( f−1)∗Hilb(h)θ( f−1).

For the third part of the lemma, apply f ∗ to the defining equation ∑ |si|2FS(H)k = 1

for FS(H) (equation (2.4)), where {si} is an H-orthonormal basis. We then get

∑i |∑ j θ( f )i js j|2f ∗FS(H)k = 1, which means that f ∗(FS(H)) = FS(H ′) with H ′ having

{∑ j θ( f )i js j} as its orthonormal basis, i.e. H ′ = θ( f−1)∗Hθ( f−1). Thus f ∗FS(H) =

FS(θ( f−1)∗Hθ( f−1)).
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Lemma 2.2.21 proves the following observation of Sano and Tipler.

Lemma 2.2.23. (Sano–Tipler, §2.2.1 of [107]) If H is θ(K)-invariant, then FS(H) is

K-invariant. Conversely, if the Kähler metric ωh is K-invariant, then Hilb(h) defines a

θ(K)-invariant hermitian form on H0(X ,Lk).

Proof. The first statement is an obvious consequence of the third item of Lemma

2.2.21. To show the second statement, observe first that ωh being K-invariant means

that we have f ∗hk = echk with some c = c( f ) ∈ R for any f ∈ K (with respect to the

fixed linearisation of the action, as we saw in Remark 2.2.22). Recall also

f ∗(hk(s,s′)) = ( f ∗hk)(θ( f )s,θ( f )s′) = echk(θ( f )s,θ( f )s′)

for any two s,s′ ∈ H0(X ,Lk). Since f ∗ωh = ωh, we thus have Hilb(h) =

ecθ( f )∗Hilb(h)θ( f ) by noting

Hilb(h)(s,s′)=
N
V

∫
X

hk(s,s′)
ωn

h
n!

=
N
V

∫
X

f ∗(hk(s,s′))
f ∗ωn

h
n!

= ec N
V

∫
X

hk(θ( f )s,θ( f )s′)
ωn

h
n!

.

We now take the determinant of both sides of the equation Hilb(h)= ecθ( f )∗Hilb(h)θ( f )

to conclude c = 0, by recalling θ( f ) ∈ SL(H0(X ,Lk)). We then have Hilb(h) =

θ( f )∗Hilb(h)θ( f ), i.e. Hilb(h) is θ(K)-invariant.

2.3 Construction of approximate solutions to

∂̄grad1,0
ωk

ρk(ωk) = 0

2.3.1 Preliminaries

For the sake of convenience, we decide to have the following naming convention.

Definition 2.3.1. We say that ωφ is ρ-balanced if it satisfies D∗ωφ
Dωφ

ρk(ωφ ) = 0.

Suppose now that (X ,L) admits an extremal metric ω ∈ c1(L), and that K stands

for Isom(ω)∩Aut0(X ,L) from now on. ω being extremal, its scalar curvature S(ω)

generates a Hamiltonian Killing vector field vs ∈ k. The first step of the proof of Theo-

rem 2.1.6 is to construct a metric ω ′ which “approximately” satisfies ∂̄grad1,0
ω ′ ρk(ω

′) =

0. We thus consider the following problem.
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Problem 2.3.2. Starting with an extremal metric ω satisfying D∗ωDωS(ω) = 0, can one

find for each m ∈N a sequence {Hm(k)}k with Hm(k) ∈BK
k so that ω(m) := ωFS(Hm(k))

satisfies ||ω(m)−ω||Cl ,ω < cm,l/k for some constant cm,l > 0 for each l ∈N and all large

enough k, and also

∣∣∣∣∣∣D∗ω(m)
Dω(m)

ρ̄k(ω(m))
∣∣∣∣∣∣

Cl
<Cm,l(ω)k−m−2

for each l ∈ N, with a constant Cm,l(ω) that depends only on m, l and ω?

As in the usual cscK case, the construction of approximately ρ-balanced metrics

will crucially depend on the well-known asymptotic expansion of the Bergman function

(cf. Theorem 2.3.7), so that D∗ω(m)
Dω(m)

ρ̄k(ω(m)) is going to be zero “order by order”

in the powers of k−1. For this purpose, it turns out that it is easier to work with a pair

of equations (cf. (2.10)) that is equivalent to D∗ωφ
Dωφ

ρ̄k(ωφ ) = 0, which we discuss

shortly.

Before doing so, we briefly recall the explicit formula for describing how the

Hamiltonian for the extremal vector field vs changes when we change the Kähler metric

from ω to ωφ := ω +
√
−1∂ ∂̄φ . We have a general lemma as follows.

Lemma 2.3.3. (cf. Lemma 4.0.1 of [8]) Suppose that v ∈ k= Lie(K) is a Hamiltonian

Killing vector field, with Hamiltonian F̃ with respect to ω . Suppose also that the Lie

derivative of φ ∈C∞(X ,R) along v is zero. Then F̃ + 1
2(dF̃ ,dφ)ω is the Hamiltonian

of v with respect to ω +
√
−1∂ ∂̄φ . Namely,

ι(v)(ω +
√
−1∂ ∂̄φ) =−d

(
F̃ +

1
2
(dF̃ ,dφ)ω

)
.

Proof. Since the complex structure J is K-invariant (since K ≤ Aut0(X ,L)), we have

Lv(Jdφ) = 0, where Lv is the Lie derivative along a vector field v ∈ k = Lie(K). In

other words, ι(v)(dJdφ) =−d(ι(v)Jdφ) = d(Jv(φ)), where we recall that J acts on a

1-form α by Jα(ξ ) =−α(Jξ ) for any vector field ξ , which also implies

Jι(v)ω(ξ ) =−ω(v,Jξ ) = ω(Jv,ξ ) = ι(Jv)ω(ξ ) (2.9)

for any vector field ξ . Recall also that dJdφ = 2
√
−1∂ ∂̄φ (cf. §3.1, [8]). We thus have
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ι(v)
√
−1∂ ∂̄φ = 1

2d(Jv(φ)). Note also that, when v is generated by F̃ , we have −Jv =

gradω F̃ , and hence Jv(φ) = −gradω F̃(φ) = −(dF̃ ,dφ)ω where (,)ω is the pointwise

norm on the space of 1-forms defined by the metric ω .

In what follows, we shall apply the above lemma to the case where v is the extremal

vector field vs and F̃ = S(ω). Observe also the following well-known fact.

Lemma 2.3.4. Suppose that ωh is K-invariant. Then the Hamiltonian vector field v

generated by a K-invariant function F̃ commutes with the action of any element in K.

In particular, if v is a Hamiltonian Killing vector field with respect to ωh, v lies in the

centre z of k. In particular, the extremal vector field vs lies in z.

Proof. Applying f ∈K≤G to the equation ι(v)ωh =−dF̃ , we have ι(( f−1)∗v) f ∗ωh =

−d f ∗F̃ . Since ωh and F̃ are K-invariant, this yields ι(( f−1)∗v)ωh = ι(v)ωh. Since

ωh is non-degenerate, we have ( f−1)∗v = v, which is equivalent to saying that the 1-

parameter subgroup generated by v commutes with the action of any element in K.

We now consider a pair of equations

S(ω)+ 1
2(dS(ω),dφ)ω = 4πkρ̄k(ωφ )+ f

D∗ωφ
Dωφ

f = 0

to be solved for a pair of K-invariant functions (φ , f ), which we will be concerned with

from now on. The following lemma shows that solving this equation is equivalent to

having a ρ-balanced metric.

Lemma 2.3.5. Suppose that ω is an extremal metric and write ωφ = ω +
√
−1∂ ∂̄φ .

There exists a K-invariant function φ which satisfies D∗ωφ
Dωφ

ρ̄k(ωφ ) = 0 if and only if

we can find a pair of K-invariant functions (φ , f ) which satisfies

S(ω)+ 1
2(dS(ω),dφ)ω = 4πkρ̄k(ωφ )+ f

D∗ωφ
Dωφ

f = 0.
(2.10)
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Remark 2.3.6. It is important to note that, in (2.10), we need D∗ωφ
Dωφ

f = 0 and not

D∗ωDω f = 0. This will cause an extra complication in the construction of approxi-

mately ρ-balanced metric, which did not happen in the cscK case (cf. Remark 2.3.14).

Note that ω being an extremal metric is essential in the above lemma. We also

remark that the real holomorphic vector field v f , generated by the Hamiltonian f in the

above, precisely represents the discrepancy between the vector field vs generated by

S(ω) and the vector field v generated by 4πkρ̄k(ωφ ), as we shall see in the proof.

Proof. Suppose that we can find a pair (φ , f ) of K-invariant functions satisfying (2.10).

Then, recalling Lemma 2.3.3, we have

ι(vs)(ω +
√
−1∂ ∂̄φ) =−d

(
S(ω)+

1
2
(dS(ω),dφ)ω

)
=−d

(
4πkρ̄k(ωφ )+ f

)
.

Since f satisfies D∗ωφ
Dωφ

f = 0, there exists a real holomorphic vector field v f

such that ι(v f )(ω +
√
−1∂ ∂̄φ) = −d f . Thus we get ι(vs − v f )(ω +

√
−1∂ ∂̄φ) =

−d
(
4πkρ̄k(ωφ )

)
. Since vs − v f is a real holomorphic vector field, we have

D∗ωφ
Dωφ

ρ̄k(ωφ ) = 0 by Lemma 1.4.2.

Conversely suppose D∗ωφ
Dωφ

ρ̄k(ωφ ) = 0. Then there exists a real holomorphic

vector field v such that ι(v)ωφ = −d4πkρ̄k(ωφ ). Then, writing v = (v− vs)+ vs, we

have

−d
(
4πkρ̄k(ωφ )

)
= ι(vs)ωφ + ι(v− vs)ωφ

=−d
(

S(ω)+
1
2
(dS(ω),dφ)ω

)
−d f

where we put f := 4πkρ̄k(ωφ )− S(ω)− 1
2(dS(ω),dφ)ω in the third line. Note

that Lemmas 1.4.2 and 2.3.3 imply D∗ωφ
Dωφ

(S(ω) + 1
2(dS(ω),dφ)ω) = 0. Recall-

ing D∗ωφ
Dωφ

ρ̄k(ωφ ) = 0 in our assumption, we thus have D∗ωφ
Dωφ

f = 0. Note that

f = 4πkρ̄k(ωφ )−S(ω)− 1
2(dS(ω),dφ)ω is K-invariant if φ is K-invariant by Lemma

2.2.21. This gives us an equation 4πkρ̄k(ωφ ) = S(ω)+ 1
2(dS(ω),dφ)ω + f + const.

Replacing f + const by f , we get the equation (2.10).
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2.3.2 Perturbative construction by using the asymptotic expansion

We now recall the following famous theorem, which will be of fundamental importance

for us. We refer to [77] (in particular to Theorem 4.1.2) for more detailed discussions.

Theorem 2.3.7. (Tian [123], Yau [129], Ruan [104], Zelditch [130], Catlin [27], Lu

[75], Ma–Marinescu [77]) The Bergman function ρk(ωφ ) admits the following asymp-

totic expansion in k−1

ρk(ωφ ) = kn + kn−1b1 + kn−2b2 + · · ·

with b1 = 1
4π

S(ωφ ), and each coefficient bi = bi(ωφ ) can be written as a polynomial

in the curvature Riem(ωφ ) of ωφ and its derivatives of order ≤ 2i−2, and the metric

contraction by ωφ .

More precisely, there exist smooth functions bi such that, for any m, l ∈ N there

exists a constant Cm,l such that for any k ∈ N we have

∣∣∣∣∣
∣∣∣∣∣ρk(ωφ )− kn−

m

∑
i=1

bikn−i

∣∣∣∣∣
∣∣∣∣∣
Cl

<Cm,lkn−m−1.

Moreover, the constant Cm,l can be chosen independently of ωφ provided it varies in a

family of uniformly equivalent metrics which is compact with respect the C∞-topology.

Remark 2.3.8. In what follows, we shall often use the standard shorthand notation for

the asymptotic expansion to write ρk(ωφ ) = kn + kn−1b1 + kn−2b2 +O(kn−3) to mean

the above statement.

Remark 2.3.9. Since φ is K-invariant and K acts as an isometry of ω , each coefficient

bi appearing in this expansion is K-invariant.

Remark 2.3.10. Theorem 2.3.7 and the Riemann–Roch theorem immediately implies

the asymptotic expansion ρ̄k(ωφ ) = 1+ 1
k (b1− b̄1)+

1
k2 (b2− b̄2)+ · · · , where b̄i is the

average of bi over X with respect to ωφ , which is determined by the Chern–Weil theory

(and hence depends only on (X ,L) and not on the specific choice of the metric). For

notational convenience, we will often use this in the form

ρ̄k(ωφ ) = c1 +
1
k

b1 +
m

∑
i=2

1
ki (bi− b̄i)+O(k−m−1),
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with the constant c1 := 1− b̄1/k, in what follows.

We now recall S(ωφ ) = S(ω)+Lωφ +O(φ 2) where Lω is an operator defined by

Lωφ :=−∆
2
ωφ − (Ric(ω),

√
−1∂ ∂̄φ)ω

with ∆ω being the negative ∂̄ -Laplacian −∂̄ ∂̄ ∗− ∂̄ ∗∂̄ . Recall the well-known identity

(equation (2.2) in [70])

D∗ωDωφ =−Lωφ +
1
2
(dS(ω),dφ)ω .

Given these remarks, we now study how the equation (2.10) will be perturbed

when we perturb the metric ω to ω(1) := ω +
√
−1∂ ∂̄φ1/k. First of all we expand

S(ω(1)) in φ1/k, which leads to the following asymptotic expansion

S(ω(1)) = S(ω)+
1
k
Lωφ1 +O(k−2) (2.11)

in k−1.

Note also that each coefficient bi in the asymptotic expansion of the Bergman

function changes as

bi(ω(1)) = bi(ω)+O(1/k), (2.12)

noting that bi(ω(1)) can be written as a polynomial in the curvature Riem(ω(1)) and its

derivatives, with the metric contraction by ω(1).

Remark 2.3.11. Note that this also implies that each coefficient of the powers of k−1

in the above expansions (2.11) and (2.12) is K-invariant, if we can choose φ1 to be

K-invariant.

Thus we have ρk(ω(1)) = kn + kn−1

4π
S(ω) + kn−2

4π
(Lωφ1 +4πb2(ω)) + O(kn−3),

which means

4πkρ̄k(ω(1)) = 4πkc1 +S(ω)+
1
k

(
Lωφ1 +4πb2(ω)−4π b̄2

)
+O(k−2).

Note that, for any fixed φ ′, we have D∗ω(1)
Dω(1)φ

′ = D∗ωDωφ ′+O(1/k) by recall-

ing the formula (1.2) and expanding it in 1/k. Note also that the second O(1/k) term
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can be estimated by C(φ ′;ω,φ1)/k, where C(φ ′;ω,φ1) is a constant which depends

only on the C4-norm of φ ′ and the C∞-norm of ω and φ1. In what follows, we shall

(rather abusively) refer to this fact by saying that “we have D∗ω(1)
Dω(1) = D∗ωDω + 1

k D,

where D is some differential operator of order at most 4 which depends on ω and φ1”.

Thus the equation (2.10) to be solved becomes, up to the order 1/k,

S(ω)+ 1
2k(dS(ω),dφ1)ω

?
= 4πkc1 +S(ω)+ 1

k

(
Lωφ1 +4πb2(ω)−4π b̄2

)
+ f +O(k−2)

D∗ω(1)
Dω(1) f ?

= 0.

We write f0 := −4πkc1 and decide to find f that is of order 1/k, i.e. decide to find f1

independent of k such that f = f1/k. Namely, we re-write the above equation as
1
2k(dS(ω),dφ1)ω

?
= 4πkc1 + f0 +

1
k

(
Lωφ1 +4πb2(ω)+ f1−4π b̄2

)
+O(k−2)

= 1
k

(
Lωφ1 +4πb2(ω)+ f1−4π b̄2

)
+O(k−2)

D∗ω(1)
Dω(1)( f0 + f1/k) = 1

kD
∗
ω(1)

Dω(1) f1
?
= 0,

by noting that constant functions generate a trivial holomorphic vector field. We note

that by Remark 2.3.11, each coefficient of the powers of k−1 in the above asymptotic

expansion is K-invariant, if we choose φ1 to be K-invariant.

We now wish to solve this equation up to the leading order, i.e. the order O(1/k).

Namely, we wish to find a K-invariant φ1 such that

−Lωφ1 +
1
2
(dS(ω),dφ1)ω = 4πb2(ω)−4π b̄2 + f1

for some f1 which satisfies D∗ωDω f1 = 0 and is K-invariant. Recalling that the left-hand

side of this equation is equal to D∗ωDωφ1 (cf. (1.2)), we are now in place to apply some

well-known results concerning the Lichnerowicz operator, collected in the appendix.

By applying Lemma A.0.12, we can certainly have a pair (φ ′1, f ′1) of C∞-functions on X

which satisfies D∗ωDωφ ′1 = 4πb2(ω)−4π b̄2 + f ′1

D∗ωDω f ′1 = 0.

It remains to prove that φ ′1 and f ′1 are both K-invariant. We now recall that ω is invariant
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under K, and hence D∗ωDω and b2(ω) are both invariant under K. Thus, we may take

the average over K of the above equation as

D∗ωDω

∫
K g∗φ ′1dµ = 4πb2(ω)−4π b̄2 +

∫
K g∗ f ′1dµ

D∗ωDω

∫
K g∗ f ′1dµ = 0.

(2.13)

where g ∈ K, and dµ is the normalised Haar measure on the compact Lie group K.

Thus, setting φ1 :=
∫

K g∗φ ′1dµ and f1 :=
∫

K g∗ f ′1dµ , we find a pair (φ1, f1) of K-

invariant functions which satisfies D∗ωDωφ1 = 4πb2(ω)−4π b̄2+ f1 and D∗ωDω f1 = 0.

Note that φ1 and f1 as constructed above are independent of k.

This means that, going back to the equation (2.10), we have found a metric ω(1) =

ω +
√
−1∂ ∂̄φ1/k and f1 such that

S(ω)+ 1
2k(dS(ω),dφ1)ω = 4πkρ̄k(ω(1))+ f0 + f1/k+O(k−2)

D∗ωDω( f0 + f1/k) = 0.

where we recall f0 =−4πkc1. Note that, knowing that φ1 is K-invariant means that ω(1)

is K-invariant, and hence each coefficient of the powers of k−1 in the above asymptotic

expansion is K-invariant.

It is important to note that we only have D∗ωDω f1 = 0 and not D∗ω(1)
Dω(1) f1 = 0

(cf. Remarks 2.3.6 and 2.3.14). However, noting D∗ω(1)
Dω(1) = D∗ωDω + 1

k D with some

differential operator D of order at most 4 which depends only on ω and φ1, we still

have

D∗ω(1)
Dω(1)( f0 + f1/k) =

1
k
D∗ω(1)

Dω(1) f1 = O(k−2)

and the main point of what we prove in the following (Proposition 2.3.13 and Corollary

2.3.15) is that this is enough for solving Problem 2.3.1 by an inductive argument.

Our aim now is to repeat this procedure inductively to get an improved estimate.

We thus wish to find a sequence of K-invariant smooth functions (φ1,k, . . . ,φm,k) such

that the metric ω(m) := ω +
√
−1∂ ∂̄ (∑m

i=1 φi,k/ki) is approximately ρ-balanced. Unlike

the cscK case, we will not be able to have each φi,k independently of k (see Remark

2.3.14 below), and we will only be able to show6 that each φi,k converges to some φi,∞

6Recall on the other hand that we could certainly choose (φ1, f1) independently of k.
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in C∞ as k→ ∞, if i≥ 2. This convergence property is obviously of crucial importance

in ensuring that ω(m) converges to ω as k→ ∞ (in C∞-topology), from which it also

follows that we can apply Theorem 2.3.7 for each of {ω(m)}m as they only vary within

a compact subset with respect to the C∞-topology, when k is large enough.

Remark 2.3.12. In what follows, we allow each coefficient Bi = Bi,k of the asymptotic

expansion to depend on k as long as it converges to some Bi,∞ in C∞ as k→ ∞.

For notational convenience, we decide to write φ(m) := ∑
m
i=1 φi,k/ki for a sequence

of K-invariant functions (φ1,k, . . . ,φm,k), each φi,k converging to some φi,∞ in C∞, and

ω(m) := ω +
√
−1∂ ∂̄φ(m). We also write D∗(m)D(m) for the Lichnerowicz operator

D∗ω(m)
Dω(m)

with respect to ω(m). Given all these remarks, the main technical result

of this section can be stated as follows.

Proposition 2.3.13. Suppose that for m ≥ 1 there exist sequences (φ1,k, . . . ,φm,k) and

( f1,k, . . . , fm,k) of K-invariant real functions with the following properties: each φi,k

(resp. fi,k) converges to some φi,∞ (resp. fi,∞) in C∞ as k→∞, and the pair (φ(m), f(m)),

with φ(m) = ∑
m
i=1 φi,k/ki and f(m) = ∑

m
i=1 fi,k/ki satisfies

S(ω)+ 1
2(dS(ω),dφ(m))ω = 4πkρ̄k(ω(m))+ f0 + f(m)+O(k−(m+1))

D∗(m−1)D(m−1) f(m) = 0

such that each coefficient of the powers of k−1 in the asymptotic expansion is K-

invariant and converges in C∞ as k→∞, with f0 =−4πkc1 =−4πk(1− b̄1/k) being a

constant. Then we can find a pair of K-invariant real functions (φm+1,k, fm+1,k), each

converging to some (φi,∞, fi,∞) in C∞ as k→∞ such that the pair φ(m+1) = ∑
m+1
i=1 φi,k/ki

and f(m+1) = ∑
m+1
i=1 fi,k/ki satisfies

S(ω)+ 1
2(dS(ω),dφ(m+1))ω = 4πkρ̄k(ω(m+1))+ f0 + f(m+1)+O(k−(m+2))

D∗(m)D(m) f(m+1) = 0

such that each coefficient of the powers of k−1 in the asymptotic expansion is K-

invariant and converges in C∞ as k→ ∞.
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Remark 2.3.14. We note that φi,k and fi,k (i≥ 2) cannot be chosen to be independent of

k, and can only prove the existence of families of functions {φi,k}k, { fi,k}k converging

to some smooth functions φi,∞ and fi,∞ in C∞ as k→ ∞. In particular, φi,k’s and fi,k’s

vary in a bounded subset of C∞(X ,R) for all large enough k. This is an important part

of the induction hypothesis, where we also note that it was certainly satisfied in the

base case m = 1, where φ1 and f1 could be chosen independent of k.

This is inevitable, since when we solve the equation D∗(m)D(m)φi = B′i for some B′i

as we will do in the proof, the solution φi = φi,k will depend on k as D∗(m)D(m) depends

on k (even when we have B′i independently of k).

We note that this problem did not happen in the cscK case [40], where we could

solve D∗ωDωφ = const at each order to get an approximately balanced metric, with

respect to the fixed (cscK) metric ω . This should be fundamentally related to the fact

that ∂̄ in the cscK condition ∂̄S(ω) = 0 (or the corresponding “quantised” equation

∂̄ ρ̄k(ω) = 0) is independent of the metric ω , whereas ∂̄grad1,0
ω in ∂̄grad1,0

ω S(ω) = 0 (or

the corresponding ∂̄grad1,0
ω ρ̄k(ω) = 0) does depend on ω .

Before we start the proof, we see the consequence of it.

Corollary 2.3.15. Problem 2.3.2 can be solved affirmatively.

Proof. Proceeding by induction on m, where we recall that we have established the base

case m = 1 at the beginning of this section, we find ω(m) for each m ∈ N which satis-

fies the properties claimed in Proposition 2.3.13. We now compute D∗(m)D(m)ρ̄k(ω(m)).

Note that S(ω)+ 1
2(dS(ω),dφ(m))ω is the Hamiltonian of the real holomorphic vec-

tor field vs with respect to ω(m) so D∗(m)D(m)(S(ω) + 1
2(dS(ω),dφ(m))ω) = 0. Since

D∗(m−1)D(m−1) f(m) = 0, D∗(m)D(m) = D∗(m−1)D(m−1)+O(k−m), and f(m) = O(k−1), we

have D∗(m)D(m) f(m)=O(k−m−1). This means D∗(m)D(m)ρ̄k(ω(m))=O(k−m−2), and ω(m)

is K-invariant since each of (φ1,k, . . . ,φm,k) is K-invariant.

Now, arguing as in the appendix of [47], for any ν ∈ N there exists some

H = Hν ,m ∈Bk such that ω(m) = ωFS(H)+O(k−ν). Note that ω(m) being K-invariant

implies that each coefficient in the expansion of ρk(ω(m)) is K-invariant. Thus, us-

ing Lemma 2.2.23 in applying the argument in the appendix of [47], we see that H

is in fact θ(K)-invariant, i.e. H ∈ BK
k . Thus, taking ν = 2m for example, we have

D∗(m)D(m) = D∗ωFS(H)
DωFS(H)

+ O(k−2m) and ρ̄k(ω(m)) = ρ̄k(ωFS(H)) + O(k−2m), and
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hence

D∗ωFS(H)
DωFS(H)

ρ̄k(ωFS(H)) = O(k−m−2). (2.14)

This means that, without loss of generality, we may assume in what follows that ω(m)

is of the form ωFS(H) for some H ∈BK
k .

We now prove Proposition 2.3.13. Some technical results, which are used in the

proof, about the Lichnerowicz operator are collected in the appendix.

Proof of Proposition 2.3.13. We invoke Theorem 2.3.7 to have the asymptotic expan-

sion

4πkρ̄k(ω(m+1))+ f0

= S(ω(m+1))+
4π

k

(
b2(ω(m+1))− b̄2

)
+ · · ·+ 4π

ki

(
bi+1(ω(m+1))− b̄i+1

)
+ · · ·+O(k−(m+2))

where i ≤ m+1, which is valid as long as each of φ1,k, . . . ,φm+1,k varies in a bounded

subset of C∞(X ,R), as ensured by the induction hypothesis. We then expand each

coefficient S(ω(m+1)) and bi(ω(m+1)) (2 ≤ i ≤ k+ 1) in φm+1,k/km+1. They are of the

form

S(ω(m+1)) = S(ω(m))+ k−(m+1)Lω(m)
φm+1,k +O(k−2(m+1))

and

bi(ω(m+1)) = bi(ω(m))+O(k−(m+1)).

Since ω and (φ1,k, . . . ,φm,k) are K-invariant, the same argument as in Remark 2.3.11

implies that each coefficient of the powers of k−1 in the above expansions is K-invariant

and converges to some smooth function in C∞ as k→ ∞ once we know that φm+1,k is

K-invariant and converges to some φm+1,∞ in C∞ as k→ ∞.

We can thus write

4πkρ̄k(ω(m+1))+ f0 = S(ω(m))+
1

km+1Lω(m)
φm+1,k +

4π

k

(
b2(ω(m))− b̄2

)
+ · · ·

+
4π

ki

(
bi+1(ω(m))− b̄i+1

)
+ · · ·+O(k−(m+2))

= 4πkρ̄k(ω(m))+ f0 +
1

km+1Lω(m)
φm+1,k +O(k−(m+2)). (2.15)
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By the induction hypothesis,

(
S(ω)+

1
2
(dS(ω),dφ(m))ω

)
= 4πkρ̄k(ω(m))+ f0 + f(m)+O(k−(m+1)),

and there exists a family of K-invariant functions {Bm+1,k}k, converging to some K-

invariant function Bm+1,∞ in C∞ as k→ ∞, such that

(
S(ω)+

1
2
(dS(ω),dφ(m))ω

)
= 4πkρ̄k(ω(m))+ f0+ f(m)+k−(m+1)Bm+1,k+O(k−(m+2)).

(2.16)

Thus, combining (2.15) and (2.16),

4πkρ̄k(ω(m+1))

=

(
S(ω)+

1
2
(dS(ω),dφ(m))ω

)
− f(m)+

1
km+1 (Lω(m)

φm+1,k−Bm+1,k)+O(k−(m+2))

=

(
S(ω)+

1
2
(dS(ω),dφ(m+1))ω

)
− f(m)

+
1

km+1 (Lω(m)
φm+1,k−

1
2
(dS(ω),dφm+1,k)ω −Bm+1,k)+O(k−(m+2)).

Note that, since φ(m) = ∑
m
i=1 φi,k/ki = O(1/k) implies (dLωφ(m),dφm+1,k)ω =

O(1/k) and (dS(ω(m)),dφm+1,k)ω(m)
= (dS(ω(m)),dφm+1,k)ω +O(1/k), we have

Lω(m)
φm+1,k−

1
2
(dS(ω),dφm+1,k)ω

= Lω(m)
φm+1,k−

1
2
(dS(ω(m)),dφm+1,k)ω +

1
2
(dLωφ(m),dφm+1,k)ω +O(k−2)

= Lω(m)
φm+1,k−

1
2
(dS(ω(m)),dφm+1,k)ω(m)

+O(k−1)

=−D∗(m)D(m)φm+1,k +O(k−1).

Thus

4πkρ̄k(ω(m+1)) =

(
S(ω)+

1
2
(dS(ω),dφ(m+1))ω

)
− f(m)

+
1

km+1 (−D∗(m)D(m)φm+1,k−Bm+1,k)+O(k−(m+2)). (2.17)

Observe that, in all the expansions above, each coefficient of the powers of k−1 is

K-invariant and converges to some smooth function in C∞ as k→∞ once we know that
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φm+1,k is K-invariant and converges to some φm+1,∞ in C∞ as k→ ∞.

Our aim now is to find K-invariant functions φm+1,k and fm+1,k such that

D∗(m)D(m)φm+1,k +Bm+1,k = fm+1,k

D∗(m)D(m) f(m+1) = 0.

Recall first that we have D∗(m−1)D(m−1) f(m) = 0 by the induction hypothesis. Since

D∗(m)D(m) = D∗(m−1)D(m−1)+
1

km D with some differential operator D of order at most

4 which depends only on ω and (φ1,k, . . . ,φm,k), and recalling f(m) = ∑
m
i=1 fi,k/ki =

O(1/k), we have D∗(m)D(m) f(m) = O(k−(m+1)). We first aim to find { f ′m+1,k}k which

satisfies D∗(m)D(m)( f(m)+ f ′m+1,k/km+1) = 0 and also converges to a smooth function in

C∞ as k→ ∞.

Let Fk := km+1( f(m)− pr(m) f(m)) where pr(m) : C∞(X ,R)� kerD∗(m)D(m) is the

projection onto the kernel of D∗(m)D(m) in terms of the L2-orthogonal direct sum decom-

position C∞(X ,R) = kerD∗(m)D(m)⊕kerD∗(m)D
⊥
(m). We write Gk := D∗(m)D(m)Fk. Since

fi,k (1 ≤ i ≤ m) converges to a smooth function in C∞ as k→ ∞, ω(m)→ ω in C∞ as

k→ ∞, and D∗(m)D(m) f(m) = O(k−m−1), Gk converges to a smooth function, say G∞, in

C∞ as k→ ∞. Now we observe that Fk is the solution to the equation D∗(m)D(m)Fk = Gk

with the minimum L2-norm.

We now aim to show that Fk converges in C∞ as k→ ∞. We aim to use Lemma

A.0.14 in the end, but we first have to establish G∞ ∈ imD∗ωDω to do so. By using the

L2-orthogonal direct sum decomposition C∞(X ,R) = kerD∗(m)D(m) ⊕ kerD∗(m)D(m)
⊥

and recalling the standard elliptic regularity, for each p ∈ N there exists a constant

Cp(ω,{φi,k}) which depends only on ω and φi,k (1 ≤ i ≤ m) such that ||Fk||L2
p+4

<

Cp(ω,{φi,k})||Gk||L2
p
, with the Sobolev norm || · ||L2

p
for a fixed but large enough p. By

noting that each φi converges in C∞ as k→ ∞ and Gk converges in C∞ as k→ ∞, we

can find a uniform bound on ||Fk||L2
p+1

as ||Fk||L2
p+4

< C′p(ω,{φi,∞})||G∞||L2
p

which is

independent of k. Thus there exists a subsequence {Fkl} of {Fk} which converges in

the Sobolev space L2
p+3 by Rellich compactness. Let F∞ be its limit in L2

p+3. Now,

recalling D∗(m)D(m)Fkl = Gkl , consider

D∗ωDωFkl −Gkl = D∗(m)D(m)Fkl −Gkl −
1
kl

D(Fkl) =−
1
kl

D(Fkl)
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where we wrote D∗(m)D(m) =D∗ωDω + 1
kl

D with some differential operator D of order at

most 4, which depends only on ω and φi,kl (1≤ i≤m). Thus, since each φi,kl (1≤ i≤m)

converges in C∞ by the induction hypothesis, we have

||D∗ωDωFkl −Gkl ||L2
p−1
≤

C′′p(ω,{φi,∞})
kl

||Fkl ||L2
p−5

,

and hence by taking the limit kl → ∞, we have the equation D∗ωDωF∞ = G∞ in

L2
p−1. Since G∞ ∈C∞(X ,R) we have F∞ ∈C∞(X ,R) by elliptic regularity, and hence

D∗ωDωF∞ = G∞ in C∞(X ,R) shows G∞ ∈ imD∗ωDω . Lemma A.0.13 shows prωF∞ = 0,

and hence F∞ is the L2-minimum solution to the equation D∗ωDωF∞ = G∞. We can now

apply Lemma A.0.14 to conclude that {Fk} converges to F∞ in C∞ (we note that the

convergence holds for the whole sequence {Fk} and not just for the subsequence {Fkl}

that we used).

Now setting f ′m+1,k :=−Fk =−km+1( f(m)−pr(m) f(m)), we have D∗(m)D(m)( f(m)+

f ′m+1,k/km+1) = 0 and that f ′m+1,k converges in C∞ as k→ ∞. Also, we note that f ′m+1,k

is K-invariant because D∗(m)D(m) and f(m) are both K-invariant.

For this choice of f ′m+1,k, we solve

D∗(m)D(m)φm+1,k +Bm+1,k = f ′m+1,k

modulo some function f ′′m+1,k with D∗(m)D(m) f ′′m+1,k = 0, i.e. we solve for φm+1,k the

equation

D∗(m)D(m)φm+1,k +Bm+1,k = f ′m+1,k + f ′′m+1,k

for some f ′′m+1,k with D∗(m)D(m) f ′′m+1,k = 0. This is possible by Lemma A.0.12, where

we also recall that f ′′m+1,k is in fact −pr(m)( f ′m+1,k−Bm+1,k), where pr(m) : C∞(X ,R)�

kerD∗(m)D(m). Thus we have

D∗(m)D(m)φm+1,k = ( f ′m+1,k−Bm+1,k)−pr(m)( f ′m+1,k−Bm+1,k).

f ′m+1,k converges in C∞ as we saw above, and Bm+1,k converges in C∞ since φi,k (1≤ i≤

m) converges in C∞ and by the induction hypothesis. Thus, by Lemma A.0.13, the right

hand side of the above equation is a smooth function, with parameter k, that converges,
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say to G∞, in C∞ as k→ ∞, which is in the image of D∗ωDω . Thus, writing φm+1,∞

for the solution to the equation D∗ωDωφm+1,∞ = G∞, we can apply Lemma A.0.14 for

Gk := ( f ′m+1,k−Bm+1,k)−pr(m)( f ′m+1,k−Bm+1,k) to conclude that φm+1,k converges to

φm+1,∞ in C∞ (since without loss of generality we may assume that they are all L2-

minimum solutions).

Noting that f ′′m+1,k := −pr(m)( f ′m+1,k − Bm+1,k) is K-invariant since D∗(m)D(m),

Bm+1,k, and f ′m+1,k are all K-invariant, we can take the average over K of φm+1,k as

we did in (2.13). Thus φm+1,k can be chosen to be K-invariant.

We then note that D∗(m)D(m)( f(m) + ( f ′m+1,k + f ′′m+1,k)/km+1) = 0 so we define

fm+1,k := f ′m+1,k + f ′′m+1,k which is K-invariant and converges to some smooth func-

tion as k→∞. For this choice of fm+1,k, we thus have two K-invariant functions φm+1,k

and fm+1,k with D∗(m)D(m) f(m+1) = 0 and D∗(m)D(m)φm+1,k +Bm+1,k = fm+1,k each con-

verging to a smooth function in C∞ as k→ ∞.

Now, going back to the equation (2.17), we find

4πkρ̄k(ω(m+1)) =

(
S(ω)+

1
2
(dS(ω),dφ(m+1))ω

)
− f(m)−

1
km+1 fm+1,k +O(k−(m+2))

=

(
S(ω)+

1
2
(dS(ω),dφ(m+1))ω

)
− f(m+1)+O(k−(m+2))

with f(m+1) satisfying D∗(m)D(m) f(m+1) = 0. As remarked just after the equation (2.17),

each coefficient of the powers of k−1 in the above asymptotic expansion is K-invariant

and converges to some smooth function in C∞ as k→ ∞ since φm+1,k is K-invariant

and converges to some φm+1,∞ in C∞ as k→ ∞. Since φm+1,k and fm+1,k are both K-

invariant functions that converge to smooth functions in C∞ as k→ ∞, the sequences

(φ1,k, . . . ,φm+1,k) and ( f1,k, . . . , fm+1,k) satisfy all the requirements stated in the induc-

tion hypothesis in Proposition 2.3.13 for the induction to continue.

It is immediate that for each l ∈ N there exists Cl,m > 0 so that ||ω(m)−ω||Cl ,ω <

Cl,m/k. The equation (2.14) and the standard elliptic regularity mean that we can find

Fm,k ∈C∞(X ,R), for each k, such that

D∗(m)D(m)(4πkρ̄k(ω(m))+Fm,k/km+1) = 0
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and that for each p∈N the L2
p-norm of {Fm,k}k is bounded uniformly of k. In particular,

observe that supX |Fm,k| is bounded uniformly of k. Moreover, since ω(m) and D∗(m)D(m)

are both K-invariant, we may choose Fm,k to be K-invariant, as we did in (2.13). This

means that the vector field v(m) defined by

ι(v(m))ω(m) =−d
(

ρ̄k(ω(m))+
Fm,k

4πkm+2

)
(2.18)

is real holomorphic and lies in the centre z of k by Lemmas 2.3.4 (recall also that

Lemma 2.2.21 shows that ρ̄k(ωh) is indeed K-invariant if K ≤ Isom(ωh)).

Remark 2.3.16. Note further that d
(
ρ̄k(ω(m))

)
= 1

4πk dS(ω(m))+O(k−2)= 1
4πk dS(ω)+

O(k−2), and that Fm,k is of order 1 in k−1 imply that 4πkv(m) converges to the extremal

vector field vs generated by S(ω). In particular, if we use the (pointwise) norm | · |kω

on T X defined by kω , we have supX |Jv(m)|2kω
≤ const/k. This fact will be important in

Lemma 2.4.8.

2.4 Reduction to a finite dimensional problem
Recall that the equation ∂̄ ρk(ωh) = 0 (or equivalently ρk(ωh) = const) is equivalent to

finding a balanced embedding, i.e. the embedding where µ̄X(g) is a constant multiple

of the identity (cf. Theorem 2.2.19). This means that the seemingly intractable PDE

problem ∂̄ ρk(ωh) = 0 can be reduced to a finite dimensional problem of finding the

balanced embedding. The main result (Corollary 2.4.16, see also Proposition 2.4.5) of

this section is to establish this reduction in the “relative” setting, namely to establish a

connection between the equation D∗ωh
Dωhρk(ωh) = 0 and the projective embedding in

terms of the centre of mass µ̄X .

In what follows, we shall be mostly focused on the Kähler metrics of the form

ωFS(H) with H ∈ Bk or H ∈ BK
k . To simplify the notation, we will often write as

follows.

Notation 2.4.1. We will often write ωH for ωFS(H), and D∗HDH for D∗ωFS(H)
DωFS(H)

.

2.4.1 General lemmas and their consequences

We start with the following general lemmas.
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Lemma 2.4.2. (cf. equation (5.3) in [97]) For any f ∈Aut0(X ,L) and any H ∈Bk, we

have

f ∗ωH = ωH +

√
−1

2πk
∂ ∂̄ log(∑

i
|∑

j
θ( f )i js j|2FS(H)k), (2.19)

where {s j} is an H-orthonormal basis for H0(X ,Lk).

Proof. Suppose that we write (at first) {Z′i} for an H-orthonormal basis for H0(X ,Lk),

giving an isomorphism H0(X ,Lk) ∼= CN and hence defining an embedding ι ′ : X ↪→

PN−1. By recalling θ( f )◦ ι ′ = ι ′ ◦ f (the equation (2.2)), we have

f ∗ωH = f ∗ι ′∗
√
−1

2πk
∂ ∂̄ log

(
∑

i
|Z′i |2

)

= ι
′∗
√
−1

2πk
∂ ∂̄ log

(
∑

i
|∑

j
θ( f )i jZ′j|2

)

where θ( f )i j is the matrix for θ( f ) represented with respect to {Z′i}. We can write the

above as (cf. equation (5.3) in [97])

f ∗ωH = ωH + ι
′∗
√
−1

2πk
∂ ∂̄ log

(
∑i |∑ j θ( f )i jZ′j|2

∑i |Z′i |2

)
,

where we note that
∑i |∑ j θ( f )i jZ′j|2

∑i |Z′i |2
is a well-defined function on PN−1 as it is a ratio of

two homogeneous polynomials in the homogeneous coordinates. Pick now any her-

mitian metric h̃ on OPN−1(1). We now observe that, by choosing a local trivialisation

of OPN−1(1) and writing h̃ = e−φ locally, multiplying both the denominator and the

numerator by e−φ yields

∑i |∑ j θ( f )i jZ′j|2

∑i |Z′i |2
=

∑i |∑ j θ( f )i jZ′j|2h̃
∑i |Z′i |2h̃

,

by noting that any ambiguity in choosing the local trivialisation in the denominator

is cancelled by the one in the numerator. Thus, choosing h̃ to be the hermitian metric

h̃FS(H) on OPN−1(1) induced from H (so that ι ′∗h̃FS(H) = hk
FS(H)) and writing si := ι ′∗Z′i ,

we have

ι
′∗√−1∂ ∂̄ log

(
∑i |∑ j θ( f )i jZ′j|2

∑i |Z′i |2

)
=
√
−1∂ ∂̄ log

(
∑i |∑ j θ( f )i js j|2FS(H)k

∑i |si|2FS(H)k

)
.
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On the other hand, ∑i |si|2FS(H)k is constantly equal to 1 since {si} is an H-orthonormal

basis, by the definition (2.4) of FS(H). Thus we finally have (2.19).

Lemma 2.4.3. Suppose that ψ is a Hamiltonian of the Killing vector field v ∈ k with

respect to ωH , H ∈BK
k , so that we have ι(v)ωH =−dψ and D∗HDHψ = 0.

Suppose also that we write (cf. (2.3)) A := θ∗(Jv) ∈ θ∗(
√
−1k) for the real

holomorphic vector field Jv and the (injective) Lie algebra homomorphism θ∗ :

g = LieAut0(X ,L)→ sl(N,C). Then, writing {si} for an H-orthonormal basis for

H0(X ,Lk), we have

ψ =− 1
2πk ∑

i, j
Ai jhk

FS(H)(si,s j)+ const (2.20)

where Ai j is the matrix for A represented with respect to {si}.

Proof. Take the 1-parameter subgroup {σ(t)} ≤Aut0(X ,L) generated by Jv. Then, by

Lemma 2.4.2, we have

σ(t)∗ωH = ωH +

√
−1

2πk
∂ ∂̄ log

(
∑

i
|∑

j
θ(σ(t))i jsi|2FS(H)k

)

for an H-orthonormal basis {si}. We observe θ(σ(t)) = etA by the definition A =

θ∗(Jv). We now see

LJvωH = lim
t→0

σ(t)∗ωFS(H)−ωFS(H)

t

= lim
t→0

√
−1

2πk

∂ ∂̄ log
(

∑i |∑ j θ(σ(t))i js j|2FS(H)k

)
t

=

√
−1

2πk
∂ ∂̄

(
d
dt

∣∣∣∣
t=0

log(∑
i
|∑

j
(etA)i js j|2FS(H)k)

)

=

√
−1

πk
∂ ∂̄

(
∑
i, j

Ai jhk
FS(H)(si,s j)

)
,

by noting that A is hermitian since H is θ(K)-invariant (cf. Lemma 2.2.4).

Note on the other hand that, since ψ is the Hamiltonian for v, we have, by using

the Cartan homotopy formula,

LJvωH = dι(Jv)ωH = dJι(v)ωH =−dJdψ =−2
√
−1∂ ∂̄ψ



66 Chapter 2. Quantisation of extremal Kähler metrics

where we used (2.9) in the second equality. We thus have ψ =− 1
2πk ∑i, j Ai jhk

FS(H)(si,s j)+

const as claimed.

Remark 2.4.4. Conversely, given A ∈ θ∗(
√
−1k), it immediately follows that ψ as

defined in (2.20) satisfies D∗HDHψ = 0, generating a real holomorphic vector field

v := J−1θ−1
∗ (A).

Suppose now that H ∈BK
k satisfies D∗HDH ρ̄k(ωH) = 0. Then Lemma 2.4.3 and

(2.4) implies

ρ̄k(ωH) =C− 1
2πk ∑

i, j
Ai jhk

FS(H)(si,s j) = ∑
i, j

(
CI− 1

2πk
A
)

i j
hk

FS(H)(si,s j) (2.21)

for A := θ∗(−gradρ̄k(ωH)) ∈ θ∗(
√
−1k) and some constant C ∈ R which can be deter-

mined by integrating both sides of the equation, so that the average over X of both sides

is 1. We now have the following proposition, pointed out to the author by Joel Fine,

which distills the essential point of our main result Corollary 2.4.16 to be proved later.

Proposition 2.4.5. The equation D∗HDH ρ̄k(ωH)= 0 (or equivalently ∂̄grad1,0
ωH ρk(ωH)=

0) holds if and only if µ̄X(g)−1 generates a holomorphic vector field on PN−1 that is

tangential to ι(X)⊂ PN−1, where H = (g−1)tg−1.

This proposition also applies to the embedding ι : X ↪→ PN−1 in general, as dis-

cussed in Remark 2.2.12.

Proof. Lemma 2.4.3 and Remark 2.4.4 imply that ∂̄grad1,0
ωH ρk(ωH) = 0 is satisfied

if and only if ρk(ωH) =
N
V

(
CI− 1

2πk A
)

i j hk
FS(H)(si,s j), where C ∈ R is some con-

stant and A = θ∗(−gradρk(ωH)) ∈ θ∗(
√
−1k). Combined with (2.6), we see that

∂̄grad1,0
ωH ρk(ωH) = 0 holds if and only if

∑
i, j

(
kn

µ̄X(g)−1− N
V

(
CI− 1

2πk
A
))

i j
hk

FS(H)(si,s j) = 0,

which holds if and only if µ̄X(g)−1 = N
V kn

(
CI− 1

2πk A
)

by arguing as in the proof of

Lemma 2.2.9.

We are thus reduced to proving the following: if µ̄X(g)−1 generates a holomor-

phic vector field on PN−1 that is tangential to ι(X) ⊂ PN−1, then its trace-free part
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(µ̄X(g)−1)0 must lie in θ∗(
√
−1k). Observe first that by Lemma 2.2.1, µ̄X(g)−1 gener-

ates a holomorphic vector field on PN−1 that is tangential to ι(X) ⊂ PN−1 if and only

if (µ̄X(g)−1)0 ∈ θ∗(g). Write g = (k⊕
√
−1k)⊕π n, where n := Lie(Ru) is a nilpo-

tent Lie algebra and ⊕π is the semidirect product in the Lie algebra corresponding

to G = KCnRu (cf. Notation 2.2.3). Then, noting that µ̄X(g)−1 is hermitian, the n-

component of (µ̄X(g)−1)0 must be zero by the Jordan–Chevalley decomposition, and

Lemma 2.2.4 implies that the trace-free part of µ̄X(g)−1 must lie in θ∗(
√
−1k).

Note that the above proof implies that CI− 1
2πk A is always positive definite, and

in particular invertible. However, for the later argument (cf. Remark 2.4.7), it will be

necessary to have more precise estimates on the operator norm ||A||op of A (i.e. the

maximum of the moduli of the eigenvalues of A) and |C|. In particular, we shall need

to focus on the case where ||A||op is bounded uniformly of k. First of all, we see that

|C| can be bounded in terms of ||A||op as follows. Note from (2.4) that we have∣∣∣∣C− 1
2πk
||A||op

∣∣∣∣≤∑
i, j

(
CI− 1

2πk
A
)

i j
hk

FS(H)(si,s j)≤C+
1

2πk
||A||op. (2.22)

By assuming that ||A||op is bounded uniformly for all large enough k, we have C−
1

2πk ||A||op > 0 for all large enough k. We now take the average of (2.22) over X with

respect to ωH to get 1− 1
2πk ||A||op ≤C ≤ 1+ 1

2πk ||A||op, and get the following.

Proposition 2.4.6. Suppose now that H ∈ BK
k satisfies D∗HDH ρ̄k(ωH) = 0 and the

operator norm of A := θ∗(−gradρ̄k(ωH)) is bounded uniformly of k. Then we can write

ρ̄k(ωH) = ∑
i, j

(
I +CAI− 1

2πk
A
)

i j
hk

FS(H)(si,s j),

where CA is a constant which satisfies − 1
2πk ||A||op ≤CA ≤ 1

2πk ||A||op, and hence is of

order 1/k, in particular.

Remark 2.4.7. The uniform bound for ||A||op will be crucially important in §2.4.2 and

§2.5. In what follows, we shall discuss some sufficient conditions under which we can

assume the bound ||A||op < const uniformly of k. It turns out that these conditions are

always satisfied for our purpose (cf. Corollary 2.4.11 and (2.31)).
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We now discuss the operator norm of A. In what follows, we occasionally write

H(k) ∈BK
k for H ∈BK

k , just in order to make clear its dependence on k.

Lemma 2.4.8. Suppose that we have a real holomorphic vector field v ∈
√
−1k on X

and a sequence {H(k)}k with H(k) ∈BK
k , which satisfy |v|2kωH(k)

= O(1/k), where | ·

|kωH(k)
is a pointwise norm on T X defined by kωH(k). Then ||θ∗(v)||op≤ const uniformly

for all large enough k.

Proof. Recall now the equation (2.2) so that we can write

eθ∗(v) ◦ ι = ι ◦ ev. (2.23)

Since ι is an isometry if we choose the metrics kωH(k) on X and H(k) on CN ∼=

H0(X ,Lk) covering PN−1, the assumption |v|2kωH(k)
= O(1/k) implies |ι∗ ◦ v|2H(k) =

|v|2kωH(k)
= O(1/k), where | · |kωH(k)

(resp. | · |H(k)) is a pointwise norm on T X given

by kωH(k) (resp. on TPN−1 by H(k)). This means that for all point p ∈ X we have

distH(k)(ι(e
v(p)), ι(p))→ 0 (2.24)

as k → ∞, where distH(k) is the distance in PN−1 given by the Fubini–Study metric

defined by H(k).

Suppose now that ||θ∗(v)||op→ +∞ as k→ +∞ (by taking a subsequence if nec-

essary) and aim for a contradiction. Then for each (large enough) k there exists a vector

wk in CN ∼= H0(X ,Lk) such that

||θ∗(v)wk||H(k)

||wk||H(k)
→+∞,

where || · ||H(k) is the norm on H0(X ,Lk) defined by H(k). Since X is not contained in

any proper linear subspace of PN−1, this means that there exists a constant δ > 0 such

that for all large enough k there exists a point qk ∈X with distH(k)(eθ∗(v)◦ι(qk), ι(qk))>

δ . Recalling the equation (2.24), this contradicts (2.23).

We apply Lemma 2.4.8 to prove the following.
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Lemma 2.4.9. Suppose that we have a reference metric ω0 and a sequence {H(k)}k

with H(k) ∈BK
k which satisfies

sup
X
|kωH(k)− kω0|ω0 < R′ (2.25)

for some constant R′ > 0 uniformly of k, and A = θ∗(v) for v∈
√
−1k such that |v|2kω0

=

O(1/k) where | · |kω0 is a (pointwise) norm on T X defined by kω0. Then ||A||op <C(R′)

for some constant C(R′)> 0 which depends only on R′ and is independent of k.

Remark 2.4.10. Note that the hypothesis (2.25) of the lemma is slightly different from

each H(k) having R′-bounded geometry (as defined in Definition 2.5.5).

Proof. Note that supX |kωH(k)− kω0|ω0 < R′ uniformly of k, combined with |v|2kω0
=

O(1/k), implies |v|2kωH(k)
= O(1/k). Thus we can just apply Lemma 2.4.8.

In what follows, we take the reference metric ω0 to be the extremal metric ω .

Recalling Remark 2.3.16, we thus obtain the following corollary of Proposition 2.4.6.

Corollary 2.4.11. Suppose that we have a sequence {H(k)}k with H(k) ∈BK
k , each

of which satisfies D∗H(k)DH(k)ρ̄k(ωH(k)) = 0 and supX |kωH(k)− kω|ω < R′ for some

constant R′ > 0 uniformly of k. Then we can write

ρ̄k(ωH(k)) = ∑
i, j

(
I +CAI− 1

2πk
A
)

i j
hk

FS(H(k))(si,s j), (2.26)

where A := θ∗(−gradρ̄k(ωH(k))) ∈ θ∗(
√
−1k) satisfies ||A||op < C(R′) uniformly of k,

and CA is a constant which satisfies − 1
2πk ||A||op ≤CA ≤ 1

2πk ||A||op, so that the average

over X of both sides of (2.26) is 1.

Remark 2.4.12. Note that Lemmas 2.2.21 and 2.3.4 imply that A in fact lies in

θ∗(
√
−1z)≤ θ∗(

√
−1k).

Remark 2.4.13. Recalling that the centre of mass µ̄ ′X with respect to the basis {si}

is given by (µ̄ ′X)i j := kn ∫
X hk

FS(H(k))(si,s j)
ωn

H(k)
n! , we integrate both sides of the equation

(2.26) to find knV = ∑i, j
(
I +CAI− 1

2πk A
)

i j (µ̄
′
X)i j. Noting tr(µ̄ ′X) = knV which follows

from (2.4), we thus get CA explicitly as CA = 1
2πkn+1V tr(Aµ̄ ′X).
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By replacing {si} by an H-unitarily equivalent basis if necessary, we may assume

that I+CAI− A
2πk is diagonal: I+CAI− A

2πk = diag(a1, . . . ,aN) with each ai ∈ R satis-

fying ai = 1+O(1/k), by Corollary 2.4.11, thus ai > 0 for k� 1. This implies

ρ̄k(ωH) = ∑
i

ai|si|2FS(H)k = ∑
i
|
√

aisi|2FS(H)k . (2.27)

Writing H ′ for the hermitian form
∫

X hk
FS(H)(,)

ωn
H

n! on H0(X ,Lk) and {s′i} for an H ′-

orthonormal basis, we thus have

ρ̄k(ωH) =
V
N ∑

i
|s′i|2FS(H)k = ∑

i
|
√

aisi|2FS(H)k ,

where the first equality is the definition of ρ̄k (cf. Definition 2.2.10) and the second

equality is provided by (2.27). This means that the basis {√aisi} must be H ′-unitarily

equivalent to {
√

V/Ns′i} by the following lemma.

Lemma 2.4.14. Suppose that we write H ′ for the hermitian form
∫

X hk
FS(H)(,)

ωn
FS(H)

n! on

H0(X ,Lk) and that {s′i} is a H ′-orthonormal basis. If we have ρk(ωH) = ∑i |s′i|2FS(H)k =

∑i |s̃i|2FS(H)k for another basis {s̃i}, then {s̃i} is H ′-unitarily equivalent to {s′i}.

Proof. We now write hFS(H) = eφ hFS(H ′) for some φ ∈ C∞(X ,R). Multiplying both

sides of the equation ∑i |s′i|2FS(H)k = ∑i |s̃i|2FS(H)k by e−kφ , we get 1 = ∑i |s′i|2FS(H ′)k =

∑i |s̃i|2FS(H ′)k since {s′i} is an H ′-orthonormal basis (cf. the equation (2.4)). Since FS is

injective (Lemma 2.2.9), this means that {s̃i} must be H ′-unitarily equivalent to {s′i}.

We thus obtain the following (cf. Remark 2.4.4).

Proposition 2.4.15. Suppose that we have a sequence {H(k)}k with H(k) ∈BK
k , each

of which satisfies D∗H(k)DH(k)ρ̄k(ωH(k)) = 0 and supX |kωH(k)−kω|ω < R′ uniformly of

k. Then, writing {si} for an H(k)-orthonormal basis and A := θ∗(−gradρ̄k(ωH(k))) ∈

θ∗(
√
−1k), the basis {s′i} defined by

s′i :=

√
N
V

(
I +CAI− A

2πk

)1/2

i j
s j, (2.28)

is a
∫

X hk
FS(H(k))(,)

ωn
H(k)
n! -orthonormal basis, where CA is some constant of order 1/k
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and
(
I +CAI− A

2πk

)
i j is the matrix for I +CAI− A

2πk represented with respect to {si}.

Conversely, if the basis {s′i} as defined in (2.28) is a
∫

X hk
FS(H(k))(,)

ωn
H(k)
n! -

orthonormal basis, then H(k) satisfies D∗H(k)DH(k)ρ̄k(ωH(k)) = 0.

In particular, we get the following results (cf. Remark 2.4.12) that improve Propo-

sition 2.4.5.

Corollary 2.4.16.

1. Suppose that we have a sequence {H(k)}k with H(k) ∈BK
k , each of which sat-

isfies D∗H(k)DH(k)ρ̄k(ωH(k)) = 0 and supX |kωH(k)−kω|ω < R′ for some constant

R′ > 0 uniformly of k. Then there exists g ∈ SL(N,C) such that

µ̄X(g) =
V kn

N

(
I +CAI− A

2πk

)−1

, (2.29)

where A := θ∗(−gradρ̄k(ωH(k))) ∈ θ∗(
√
−1z) satisfies ||A||op <C(R′) uniformly

of k and CA ∈ R is some constant which satisfies CA = 1
2πkn+1V tr(Aµ̄X(g)).

2. Conversely, if there exist a basis {s′i} for H0(X ,Lk) defining a θ(K)-invariant

hermitian form H(k) ∈BK
k , A ∈ θ∗(

√
−1z), and some constant CA, which satisfy

µ̄ ′X = V kn

N

(
I +CAI− A

2πk

)−1
, then H(k) ∈BK

k satisfies

D∗H(k)DH(k)ρ̄k(ωH(k)) = 0

with θ∗(−gradρ̄k(ωH(k))) = A.

Remark 2.4.17. Suppose that we have µ̄X(g) = V kn

N (I +CAI− A
2πk)

−1 for some con-

stant CA. Then multiplying both sides by µ̄X(g)−1 and taking the inverse, we have
V kn

N I = µ̄X(g) +CAµ̄X(g)− µ̄X (g)A
2πk , and hence by taking the trace, we have CA =

1
2πkn+1V tr(Aµ̄X(g)), by noting tr(µ̄X(g)) = knV for any g. Thus, recalling Remark

2.4.13, CA for which the trace is consistent in (2.29) is the same as the one for which

the averages are consistent in (2.26).

The appearance of the inverse on the right hand side of (2.29) may look surprising,

but this essentially comes from the one in Lemma 2.2.20; see also Proposition 2.4.5.

On the other hand, this inverse will be the essential obstruction for proving the relative
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asymptotic Chow polystability of (X ,L) admitting an extremal metric (cf. Conjecture

2.6.16). We shall discuss some stability notions that are appropriate to (X ,L) with

an extremal metric in §2.6, and the reader is in particular referred to §2.6.4 for more

discussions on this issue, and also to Question 2.6.15.

2.4.2 Approximate solutions to ∂̄grad1,0
ωk ρk(ωk) = 0 in terms of the

centre of mass

Now take the approximately ρ-balanced metric ω(m), as obtained in Corollary 2.3.15,

which satisfies (2.18). By Lemma 2.4.3, we have

ρ̄k(ω(m))+
Fm,k

4πkm+2 =− 1
2πk ∑

i j
Ai jhk

(m)(si,s j)+ const (2.30)

where A := θ∗(Jv(m)) and we recall that h(m) is of the form FS(H) and that {si} in

the above formula is an H-orthonormal basis. Noting that ω(m) satisfies (for all large

enough k)

sup
X
|kω(m)− kω|ω < const.|∂ ∂̄φ1|ω < R′, (2.31)

say, and recalling Remark 2.3.16, we find that ||A||op < C(R′) by Lemma 2.4.9 (by

taking ω0 to be the extremal metric ω).

Remark 2.4.18. In this section, the Hilbert–Schmidt norm || · ||HS will be with respect

to H which defines ω(m) by ωH , as obtained in Corollary 2.3.15.

Suppose that we write P for the change of basis matrix from {si} to a∫
X hk

FS(H)(,)
ωn

H
n! -orthonormal basis {s′i}, so that we have µ̄ ′X = kn(P∗P)−1, where µ̄ ′X

is the centre of mass defined with respect to the basis {si} (cf. the proof of Lemma

2.2.20).

Now re-write the equation (2.30) as

∑
i, j

(
V
N

P∗P−C0I +
A

2πk

)
i j

hk
(m)(si,s j) = 1−

Fm,k

4πkm+2 ,

where the constant C0 can be determined by taking the average of both sides; namely

C0 can be determined by the equation 1− 1
V ∑i, j

(
C0I− A

2πk

)
i j

∫
X hk

(m)(si,s j)
ω(m)

n! = 1+
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O(k−m−2). Arguing as in (2.22), we see that C0 can be estimated as

|C0| ≤
||A||op +1

2πk
(2.32)

for all sufficiently large k, which is of order 1/k since ||A||op is uniformly bounded by

(2.31). We thus have, by noting ∑i |si|2hk
(m)

= 1,

∑
i, j

(
V
N

P∗P−C0I +
A

2πk

)
i j

hk
(m)(si,s j)−

(
1−

Fm,k

4πkm+2

)
∑

i
|si|2hk

(m)
= 0, (2.33)

with some constant C0 that is of order 1/k. Since V
N P∗P−C0I + A

2πk is a hermitian

matrix, we can replace {si} by an H-unitarily equivalent basis so that V
N P∗P−C0I +

A
2πk = diag(d1, . . . ,dN), with di ∈R, with respect to the basis {si}. We can thus re-write

the equation (2.33) as

∑
i

(
di−

(
1−

Fm,k

4πkm+2

))
|si|2hk

(m)
= 0.

Hence, arguing exactly as we did in the proof of Lemma 2.2.9, we find

|di−1| ≤ 1
2π

N2 sup
X
|Fm,k|k−m−2 = O(k2n−m−2),

by recalling that supX |Fk| is bounded uniformly of k (see the discussion preceding the

equation (2.18)).

We thus see that there exists a hermitian matrix E with ||E||op = O(k2n−m−2) such

that V
N P∗P = I +C0I− A

2πk +E, or

µ̄X = kn(P∗P)−1 =
V kn

N

(
I +C0I− A

2πk
+E

)−1

.

Define

E ′ :=
(

I +C0I− A
2πk

)−1

E,

which has ||E ′||op = O(k2n−m−2) by ||A||op <C(R′) and (2.32). We may take m and k
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to be large enough so that ||E ′||op < 1/2, say. We thus have

(µ̄ ′X)i j =
∫

X
hk
(m)(si,s j)

(kω(m))
n

n!
=

V kn

N

[(
I−E ′+(E ′)2 + · · ·

)(
I +C0I− A

2πk

)−1
]

i j

=
V kn

N

(
I +C0I− A

2πk

)−1

i j
+(E ′′)i j

where E ′′ ∈ THBK
k is a hermitian matrix defined by

E ′′ :=
V kn

N

(
−E ′+(E ′)2 + · · ·

)(
I +C0I− A

2πk

)−1

which satisfies ||E ′′||op =O(k2n−m−2) (by ||A||op <C(R′) and (2.32)). Since m could be

any positive integer, and recalling ||E ′′||HS = tr(E ′′E ′′)≤
√

N||E ′′||op, we may replace

m by m+2n+n/2 so as to have ||E ′′||HS = O(k−m) (for notational convenience).

We now show that by perturbing C0 slightly, we can assume that tr(E ′′) = 0. More

precisely, we have the following.

Lemma 2.4.19. Suppose ||E ′′||HS = O(k−m), ||A||op ≤ const, and C0 = O(1/k). Then

there exists a constant δ ∈ R with |δ |< 4N−1/2||E ′′||HS = O(k−m−n/2) such that

V kn

N

(
I +C0I− A

2πk

)−1

+E ′′− V kn

N

(
I +(C0 +δ )I− A

2πk

)−1

is a trace free hermitian endomorphism which has the Hilbert-Schmidt norm of order

k−m; more precisely, we have∣∣∣∣∣
∣∣∣∣∣V kn

N

(
I +C0I− A

2πk

)−1

+E ′′− V kn

N

(
I +(C0 +δ )I− A

2πk

)−1
∣∣∣∣∣
∣∣∣∣∣
HS

≤

1+8

∣∣∣∣∣
∣∣∣∣∣
(

I +C0I− A
2πk

)−1
∣∣∣∣∣
∣∣∣∣∣
op

 ||E ′′||HS = O(k−m). (2.34)

Proof. We show that the map U : R→ R defined by

U(δ ) := tr

((
I +(C0 +δ )I− A

2πk

)−1
)

is a local diffeomorphism with a particular lower bound on its linearisation. Writing
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I +C0I− A

2πk

)
= diag(a1, . . . ,aN) by unitarily diagonalising it, where ai = 1+O(1/k)

by ||A||op < C(R′) and (2.32), we have U(δ ) = ∑i(ai + δ )−1 = ∑i a−1
i (1+ δ/ai)

−1,

whose linearisation at 0 is DU |0(δ ) =−δ ∑i a−2
i .

Since ai = 1+O(1/k) implies |DU |0|> N/2 if k is sufficiently large, we see that

U is indeed a local diffeomorphism whose linearisation can be bounded from below by

N/2.

Thus, by using the quantitative version of the inverse function theorem (see

e.g. Theorem 5.3 in [50]), we can show that there exists some δ ∈ R so that we have

tr

(
V kn

N

(
I +(C0 +δ )I− A

2πk

)−1
)

= tr

(
V kn

N

(
I +C0I− A

2πk

)−1
)
+ tr(E ′′),

which satisfies

|δ |< 4
|tr(E ′′)|

N
≤ 4N−1/2||E ′′||HS = O(k−m− n

2 ) (2.35)

since |tr(E ′′)| ≤
√

N||E ′′||HS.

We now estimate the Hilbert–Schmidt norm of the trace free hermitian matrix

V kn

N

(
I +C0I− A

2πk

)−1

+E ′′− V kn

N

(
I +(C0 +δ )I− A

2πk

)−1

= E ′′+
V kn

N
δ

(
I +C0I− A

2πk

)−2

− V kn

N
δ

2
(

I +C0I− A
2πk

)−3

+ · · · .

Recalling
∣∣∣∣∣∣(I +C0I− A

2πk

)−1
∣∣∣∣∣∣

op
≤ const independently of k, we find

∣∣∣∣∣
∣∣∣∣∣δ
(

I +C0I− A
2πk

)−2

− V kn

N
δ

2
(

I +C0I− A
2πk

)−3

+ · · ·

∣∣∣∣∣
∣∣∣∣∣
op

= O(k−m− n
2 )

for all sufficiently large k, and hence has Hilbert–Schmidt norm of order k−m. Recalling
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||E ′′||HS = O(k−m), we finally see∣∣∣∣∣
∣∣∣∣∣V kn

N

(
I +C0I− A

2πk

)−1

+E ′′− V kn

N

(
I +(C0 +δ )I− A

2πk

)−1
∣∣∣∣∣
∣∣∣∣∣
HS

≤ ||E ′′||HS +
√

N

∣∣∣∣∣
∣∣∣∣∣δ
(

I +C0I− A
2πk

)−2

− V kn

N
δ

2
(

I +C0I− A
2πk

)−3

+ · · ·

∣∣∣∣∣
∣∣∣∣∣
op

≤ ||E ′′||HS +2
√

N

∣∣∣∣∣
∣∣∣∣∣
(

I +C0I− A
2πk

)−1
∣∣∣∣∣
∣∣∣∣∣
op

|δ |

≤

1+8

∣∣∣∣∣
∣∣∣∣∣
(

I +C0I− A
2πk

)−1
∣∣∣∣∣
∣∣∣∣∣
op

 ||E ′′||HS = O(k−m),

where we used || · ||HS≤
√

N|| · ||op in the first inequality and (2.35) in the last inequality.

Summarising the argument above, we obtain the following.

Corollary 2.4.20. For any m ≥ 1 and any large enough k� 1 there exists a θ(K)-

invariant hermitian form H = Hm(k) ∈BK
k and a traceless hermitian θ(K)-invariant

endomorphism Ẽ = Ẽm(k) on H0(X ,Lk) which satisfy the following: there exists an

element A∈ θ∗(
√
−1z) with ||A||op < const uniformly of k and a constant C0 ∈R which

is of order 1/k such that the equation

(µ̄ ′X)i j =
∫

X
hk

FS(H)(si,s j)
(kωFS(H))

n

n!
=

V kn

N

(
I +C0I− A

2πk

)−1

i j
+(Ẽ)i j

holds with respect to an H-orthonormal basis {si}, with ||Ẽ||HS ≤ const.k−m where the

Hilbert–Schmidt norm || · ||HS is defined with respect to H.

Remark 2.4.21. Since H is θ(K)-invariant, µ̄ ′X is θ(K)-invariant. This means that Ẽ

is θ(K)-invariant and hermitian, since µ̄ ′X − V kn

N (I +C0I− A
2πk)

−1 is.

Henceforth we write H0 for Hm(k) above, and Ẽ0 for Ẽm(k) above.

2.5 Gradient flow

2.5.1 Modified balancing energy Z A

Recall first of all that in the cscK case, i.e. when Aut0(X ,L) is trivial, balanced

metrics are precisely the critical points of a functional Z : Bk → R called the bal-
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ancing energy, defined for a geodesic {H(t)} in Bk, where H(t) = etBH(0) with

B ∈ TH(0)Bk
∼= Herm(H0(X ,Lk)), as

Z (H(t)) := I ◦FS(H(t))+
V kn

N
tr(logH(t)).

In the above, I : H (X ,L)→ R is defined for a path {eφt h} in H (X ,L) by

I(eφt h) :=−kn+1
∫

X
φt

n

∑
i=1

(ωh−
√
−1∂ ∂̄φt)

i∧ω
n−i
h ,

where h is some reference metric, and changing the reference metric h will only result

in an overall additive constant.

The original argument for finding the balanced metric (in the cscK case) in [40]

was to find an approximately balanced metric, which is very close to attaining the

minimum of Z , and then perturb it to a genuinely balanced metric (i.e. the minimum

of Z ) by driving it along the gradient flow of Z to attain the global minimum. The

reader is referred to [40] for the details. The crucial point is that Z is convex along

geodesics in Bk (with respect to the bi-invariant metric), as we recall in Theorem 2.5.3.

We now consider the following functional, which is more appropriate for our pur-

pose of finding ρ-balanced metrics.

Definition 2.5.1. We define a functional Z A : BK
k → R by

Z A(H(t)) := I ◦FS(H(t))+
V kn

N
tr

((
I +CAI− A

2πk

)−1

logH(t)

)
,

for some fixed A ∈ θ∗(
√
−1z) and some fixed constant CA ∈ R. We call Z A the modi-

fied balancing energy.

Remark 2.5.2. Note that the Hessian7 of Z is equal to the Hessian of Z A, since their

difference

Z (H(t))−Z A(H(t)) =
V kn

N
tr(logH(t))− V kn

N
tr

((
I +CAI− A

2πk

)−1

logH(t)

)
,

with H(t) = etBH(0), is linear in t. Thus, we see that Z A is convex along geodesics in

7More precisely, the Hessian of Z |BK
k

.
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BK
k (cf. Theorem 2.5.3).

Similarly to the usual balanced case (cf. Lemma 3 of [43]), the first variation of

Z A can be computed as follows

δZ A(H(t)) =−
∫

X
hk

FS(H(t))(s
H(t)
i ,sH(t)

j )
knωn

FS(H(t))

n!
+

V kn

N

(
I +CAI− A

2πk

)−1

i j
,

where {sH(t)
i } is an H(t)-orthonormal basis and,

(
I +CAI− A

2πk

)−1
i j in the above is the

hermitian endomorphism
(
I +CAI− A

2πk

)−1
represented with respect to {sH(t)

i }. This

implies that δZ A(H(t)) = 0 if and only if {sH(t)
i } defines an embedding with µ̄ ′X =

V kn

N

(
I +CAI− A

2πk

)−1
. Summarising the discussion above, the solution of the equation

µ̄ ′X = V kn

N (I +CAI− A
2πk)

−1 can be characterised as the critical point of the functional

Z A, which is convex along geodesics in BK
k .

2.5.2 Hessian of the balancing energy

We now recall the Hessian of the (usual) balancing energy Z , following the expo-

sition given in [51, 52]. Fixing H(t) ∈ BK
k for the moment, consider now the or-

thogonal decomposition ι∗TPN−1 = T X ⊕Nt (as C∞-vector bundles on X) with re-

spect to the Fubini–Study metric ωF̃S(H(t)) (or more precisely ι∗ωF̃S(H(t))) on PN−1

induced from H(t) (cf. p703, [96]). Given a hermitian endomorphism ξ ∈ TH(t)B
K
k
∼=

Herm(H0(X ,Lk))K , we write Xξ for the corresponding holomorphic vector field on

PN−1. Write πNt (Xξ ) for the projection of Xξ on the Nt-factor in ι∗TPN−1 = T X⊕Nt ,

and πT (Xξ ) for the one on the T X-factor. We thus get a map P : TH(t)B
K
k →C∞(Nt)

defined by P(ξ ) := πNt (Xξ ). Write P∗ for the adjoint of P defined with respect to

the inner product tr(ξ1ξ2) on TH(t)B
K
k and the L2-metric defined by ωF̃S(H(t)) on the

fibres and kωH(t) on the base. Note that the inner product tr(ξ1ξ2) is nothing but the

Hilbert–Schmidt inner product defined with respect to H(t), since ξ1,ξ2 ∈ TH(t)B
K
k .

Theorem 2.5.3. (Lemma 17, Fine [51]) Writing P : TH(t)B
K
k → C∞(Nt) defined by

P(ξ ) := πNt (Xξ ), as above, we have Hess(Z (H(t))) = P∗P. In particular,

tr(ξ1Hess(Z (H(t))ξ2) = (πNt (Xξ1
),πNt (Xξ2

))L2(t)

=
∫

X
Re(πNt (Xξ1

),πNt (Xξ2
))ι∗ωF̃S(H(t))

knωn
H(t)

n!
.
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Remark 2.5.4. The “diagonal” elements of Hess(Z (H(t))) are in fact computed by

Phong and Sturm [95, 96] and implicitly by Donaldson [40]. We will later need to

know some of the off-diagonal terms of Hess(Z (H(t))) = Hess(Z A(H(t))).

We now wish to estimate ||πNt (Xξ )||2L2(t). This was done originally by Donaldson

[40] and improved by Phong and Sturm [96] when the connected component Aut0(X ,L)

of the automorphism group was trivial. In our situation we cannot assume this hypoth-

esis, but we now invoke the following trick used by Mabuchi [84, 85]. Recall that,

by Lemma 2.2.1, Aut0(X ,L) (with the Lie algebra g) is a subgroup of SL(H0(X ,Lk))

(with Lie algebra sl= sl(H0(X ,Lk))), and hence we have sl= g⊕g⊥t , where g⊥t is the

orthogonal complement of g in sl with respect to the L2-inner product defined by the

Fubini–Study metric on PN−1 given by H(t), i.e. with respect to the metric (,) defined

by (ξ1,ξ2) := (Xξ1
,Xξ2

)L2(t), where the L2-product is defined by ωF̃S(H(t)) on the fibres

and kωFS(H(t)) on the base, as we mentioned above. Note that this L2-product does

define a metric on sl since X is not contained in any proper linear subspace of PN−1.

Writing ξ = α + β where α ∈ g and β ∈ g⊥t , we obviously have πNt (Xξ ) =

πNt (Xβ ). An intuitive idea is that, if ξ ∈ sl is contained in the g⊥t -factor, we can

apply the well-known estimate (Theorem 2.5.6) due to Donaldson, Phong–Sturm, and

Fine, to get the lower bound of the eigenvalues of the Hessian of Z A(H(t)) (restricted

to g⊥t ) so that we can run the downward gradient flow on the space of positive definite

K-invariant hermitian matrices BK
k driven by pr⊥,t(δZ A(H(t))); see §2.5.3 for the

details.

We now recall the following notion from [40].

Definition 2.5.5. A metric ω̃ ∈ kc1(L) has R-bounded geometry if it satisfies the fol-

lowing conditions: fixing an integer l ≥ 4 and a reference metric ω0 ∈ c1(L), ω̃ satisfies

ω̃ >R−1kω0 and ||ω̃−kω0||Cl ,kω0
<R where || · ||Cl ,kω0

is the Cl-norm on the space of 2-

forms defined with respect to the metric kω0. The basis {si} is said to have R-bounded

geometry if the hermitian endomorphism H(t) which has {si} as its orthonormal basis

has R-bounded geometry.

With these preparations, we can now state the following theorem (cf. Theorem 2

in [96]).
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Theorem 2.5.6. (Donaldson [40], Phong–Sturm [96], Fine [52]) Suppose that

Aut0(X ,L) is trivial. Suppose also that we have a basis {si} with respect to which

µ̄ ′X = Dk +Ek, where Dk is a scalar matrix with Dk→ I as k→ ∞. For any R > 0 there

exists a positive constant CR depending only on R and ε < 1/10 such that, for any k, if

the basis {si} for H0(X ,Lk) has R-bounded geometry and if ||Ek||op < ε , then

||πNt (Xξ )||2L2(t) >CRk−2||ξ ||2HS(t),

where the L2-metric || · ||L2(t) on the vector fields on X is defined by the Fubini-Study

metric of the hermitian form H(t) which has {si} as its orthonormal basis, and the

Hilbert-Schmidt norm || · ||HS(t) is defined by the hermitian form H(t) which has {si}

as its orthonormal basis.

Remark 2.5.7. The hypothesis µ̄ ′X = Dk + Ek is satisfied when we have µ̄ ′X =

V kn

N

(
I +C0I− A

2πk

)−1
+ Ẽ with ||Ẽ||HS =O(k−m), as in Corollary 2.4.20, by noting that

we can define Dk := 1
N tr
(

V kn

N

(
I +C0I− A

2πk

)−1
)

I, which does converge to I as k→∞,

and that the operator norm of Ek := µ̄ ′X −Dk is of order 1/k, since ||A||op < const and

C0 = O(1/k) by (2.32).

We now recall the proof of this theorem, where we closely follow the exposition

given in pp702-710 [96]. The theorem is a consequence of the following three esti-

mates:

||ξ ||2HS(t) ≤C′Rk||Xξ ||2L2(t) (2.36)

||Xξ ||2L2(t) = ||πT (Xξ )||2L2(t)+ ||πNt (Xξ )||2L2(t) (2.37)

CR||πT (Xξ )||2L2(t) ≤ k||πNt (Xξ )||2L2(t) (2.38)

The second equality (2.37) is an obvious consequence of the orthogonal decomposition

ι∗TPN−1 = T X ⊕Nt with respect to ωF̃S(H(t)), and the first inequality (2.36) does not

use the hypothesis that Aut0(X ,L) is trivial, and hence carries over word by word to the

case when Aut0(X ,L) is not trivial.

The hypothesis of Aut0(X ,L) being trivial was crucially used in the third estimate

(2.38), which relies on the following estimate ((5.12) in [96]) for an arbitrary smooth
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vector field W on X

||W ||2L2(t) ≤ const.||∂̄ (W )||2L2(t) (2.39)

which is true if and only if Aut(X) is discrete8. Phong–Sturm’s argument was to apply

this inequality to W = πT (Xξ ) and combine it with the estimate ((5.15) in [96])

||πNt (Ṽ )||2L2(t) ≥CR||∂̄ (πNt (Ṽ ))||2L2(t)

which holds for any holomorphic vector field Ṽ on PN−1 (which we take to be Xξ ),

irrespective of whether Aut(X) is discrete or not. Observe that ∂̄Ṽ = 0 = ∂̄ (πT (Ṽ ))+

∂̄ (πNt (Ṽ )) implies cR||∂̄ (πT (Ṽ ))||L2(t) ≤ ||πNt (Ṽ )||L2(t). Thus, by applying this and

the estimate (2.39) applied to W = πT (Xξ ), we get (2.38).

Thus, the only hindrance to extending Phong–Sturm’s theorem to the case where

Aut0(X ,L) is not trivial is the lack of (2.39), which is substantial. However, the de-

composition sl = g⊕ g⊥t means that the estimate (2.39) holds for the (smooth) vector

fields of the form πT (Xβ ) where β ∈ g⊥, since the elements α ∈ g are precisely the

ones that generate Xα with ∂̄ (πT (Xα)) = 0, i.e. the kernel ker ∂̄ is precisely the image

{Xα |α ∈ g} of g. Since the image {Xβ |β ∈ g⊥t } of g⊥t is precisely the L2-orthogonal

complement of ker ∂̄ in sl, recalling that g⊥t is defined as an orthogonal complement

of g with respect to the L2 metric induced from ωF̃S(H(t)), ∂̄ is invertible on the set of

vector fields πT (Xβ ) with β ∈ g⊥t , with the estimate (2.39).

Thus we have the following estimate.

Lemma 2.5.8. (cf. Mabuchi; p235 in [84], p130 in [85]) Suppose that we have the

same hypotheses as in Theorem 2.5.6, apart from that Aut0(X ,L) is no longer trivial.

We have

||πNt (Xβ )||2L2(t) ≥CRk−2||β ||2HS(t) (2.40)

for any β ∈ g⊥t .

2.5.3 Gradient flow

Let H0 be the approximately ρ-balanced matrix as obtained in Corollary 2.4.20. We

now aim to perturb this matrix to a genuinely ρ-balanced one by using a geometric

8It is possible to modify the argument for the case Aut(X) being discrete to the case where we only
know Aut(X ,L) is discrete, as done by Phong and Sturm [96]
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flow on a finite dimensional manifold BK
k . In this section, we show that such flow does

converge, but also show that Aut0(X ,L) being nontrivial implies that the limit of the

flow is not quite the (genuine) ρ-balanced metric that we seek (cf. Proposition 2.5.13);

it will be obtained in Proposition 2.5.15, §2.5.4, by an iterative construction.

Recall the decomposition sl= g⊕g⊥t with respect to H(t) ∈BK
k , as introduced in

§2.5.2. Suppose that we write prg : sl� g for the projection onto g and pr⊥,t : sl� g⊥t

for the projection onto g⊥t . We consider the following ODE

dH(t)
dt

=−pr⊥,t
(

δZ A(H(t))
)

(2.41)

on the finite dimensional symmetric space BK
k , with the initial condition H(0) = H0.

This is well-defined, since at t = 0, δZ A(H0) is K-invariant and hermitian by Corollary

2.4.20, and hence pr⊥,t
(
δZ A(H(0))

)
is indeed K-invariant (since K acts on g and

hence preserves sl= g⊕g⊥t , by noting that the orthogonality is defined by a K-invariant

metric F̃S(H(t))) and hermitian, defining a vector in TH0B
K
k . By exactly the same

argument, along the flow (2.41), pr⊥,t
(
δZ A(H(t))

)
remains K-invariant and hermitian

for t > 0 since H(t) ∈BK
k .

Moreover, we can multiply the right hand side of the equation (2.41) by a cutoff

function that is supported on a compact neighbourhood of radius 1 around H0 without

changing the flow; this will be justified in (2.44) and (2.45), as they state that the the

flow is contained in this neighbourhood for all time if we start from H0. Then the

vector field on the right hand side of (2.41) is compactly supported, and the flow can be

extended indefinitely by the standard ODE theory, i.e. the solution to (2.41) exists for

all time.

Note

d
dt

(
δZ A(H(t))

)
=Hess(Z A(H(t)))· dH(t)

dt
=−Hess(Z A(H(t)))·pr⊥,t

(
δZ A(H(t))

)
.

and recall that the Hessian of Z A is exactly the same as that of Z , the usual bal-

ancing energy (cf. Remark 2.5.2), and that the Hessian of Z is degenerate along the

g-direction, as we saw in Theorem 2.5.3. This means that we have a block diagonal
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decomposition of Hess(Z A(H(t))) as

Hess(Z A(H(t))) =

0 0

0 P̃t

 ,

according to the decomposition sl= g⊕g⊥t , where P̃t is a positive definite matrix whose

lowest eigenvalue can be estimated as in (2.40). In particular, we obtain the following.

Lemma 2.5.9.
d
dt

prg
(

δZ A(H(t))
)
= 0

along the flow H(t) defined by (2.41).

Suppose that we write G A(t) for pr⊥,t
(
δZ A(H(t))

)
in order to simplify the nota-

tion. We then have

1
2

d
dt
||G A(t)||2HS(t) =

1
2

d
dt

tr(G A(t)G A(t)) =−tr
(
G A(t) ·Hess(Z A(H(t))) ·G A(t)

)
,

by recalling that tr(G A(t)G A(t)) is equal to ||G A(t)||2HS(t). Recall (cf. Remark 2.5.2)

that Z A(H(t)) is convex along geodesics for all t. Thus, the above equation means

that, along the flow, ||G A(t)||HS(t) is monotonically decreasing. Combined with Lemma

2.5.9 and Lemma 2.5.14 to be proved later, this means that the hypotheses in Theorem

2.5.6 are always satisfied along the flow. Thus we can apply the estimate given by

Theorem 2.5.6 along the flow for all t > 0. Theorem 2.5.3 and the estimate (2.40)

imply that we have

1
2

d
dt
||G A(t)||2HS(t) ≤−λ1||G A(t)||2HS(t),

where we wrote

λ1 :=CRk−2 > 0 (2.42)

for the lowest eigenvalue of Hess(Z A(H(t))) restricted to g⊥t , as estimated in (2.40).

It easily follows that we have

||G A(t)||HS(t) ≤ e−λ1t ||G A(0)||HS(0). (2.43)
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We now evaluate the length of the path {H(t)}with respect to the bi-invariant met-

ric. Namely, we compute dist(H(t1),H(t2)) :=
∫ t2

t1 ||H
′(s)||HS(s)ds for t1 > t2. Observe

first of all that

∫ t2

t1
||H ′(s)||HS(s)ds =

∫ t2

t1
||G A(s)||HS(s)ds

≤ 1
λ1

(e−λ1t1− e−λ1t2)||G A(0)||HS(0), (2.44)

where we used H ′(t) = −G A(t), which is just (2.41), and the estimate (2.43). Thus,

given an increasing sequence {ti}i of positive real numbers, we see that the sequence

{H(ti)}i is Cauchy in BK
k with respect to the bi-invariant metric. Thus the limit exists

in BK
k , and the distance from the initial metric H0 to the limit can be estimated as

dist(H(∞),H(0)) =
∫

∞

0
||H ′(s)||HS(s)ds =

∫
∞

0
||G A(s)||HS(s)ds

≤ 1
λ1
||G A(0)||HS(0) = O(k−m+2). (2.45)

Remark 2.5.10. Observe that (2.45) implies that we can write H(∞) = eξ H(0) with

ξ ∈ TH(0)B
K
k satisfying ||ξ ||HS(0) ≤ ||G A(0)||HS(0)/λ1 = O(k−m+2). We thus get

1
2
|| · ||HS(0) ≤ || · ||HS(∞) ≤ 2|| · ||HS(0) (2.46)

for all large enough k.

In particular, since the limit H(∞) exists, we get limt→∞ G A(t) = 0 from (2.43).

Thus, combined with Lemma 2.5.9, we get the following.

Lemma 2.5.11. The limit H1 := H(∞) of the gradient flow (2.41) exists and satisfies

pr⊥,∞(δZ A(H1)) = 0 and prg(δZ A(H1)) = prg(δZA(H(0))). In other words, the flow

(2.41) annihilates the g⊥t -component of δZ A(H(t)).

This means δ (Z A(H1)) ∈ θ∗(g), but we can prove the following more precise

result.

Lemma 2.5.12. We have δZ A(H1) ∈ θ∗(
√
−1z) at the limit of the flow H(t).

Proof. Write G for Aut0(X ,L) and g for its Lie algebra. By Lemma 2.5.11, we have

δZ A(H1)∈ θ∗(g) at the limit H1 of the gradient flow (2.41). Suppose that δZ A(H1) =
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Ã1 ∈ θ∗(g). Since δZ A(H1) is a K-invariant hermitian matrix (as H1 ∈BK
k ), Ã1 must

be a θ(K)-invariant hermitian matrix in θ∗(g). This means that θ( f )∗Ã1θ( f ) = Ã1 for

any f ∈ K, and hence Ã1 commutes with any element in θ∗(k). Thus Ã1 is contained

in the Lie algebra Lie(ZG(K)) of the centraliser ZG(K) of K in G. If G is reductive,

we see that ZG(K) is equal to the complexification of the centre Z(K) of K. Thus

Ã1 ∈ θ∗(z⊕
√
−1z), but Ã1 being hermitian implies Ã1 ∈ θ∗(

√
−1z) by Lemma 2.2.4.

If G is not reductive, we write g=
(
k⊕
√
−1k

)
⊕π n where n := Lie(Ru) is a nilpotent

Lie algebra and ⊕π is the semidirect product in the Lie algebra corresponding to G =

KC nRu (cf. Notation 2.2.3). Since Ã1 = δZ A(H1) is hermitian, Jordan–Chevalley

decomposition immediately tells us that the n-component of Ã1 is zero, and hence

Ã1 ∈ θ∗(k⊕
√
−1k). Thus, exactly as in the case when G is reductive, Ã1 commuting

with any element in θ∗(k) and Ã1 being hermitian implies Ã1 ∈ θ∗(
√
−1z) by Lemma

2.2.4.

Summarising these results, we get the following.

Proposition 2.5.13. At the limit H1 of the gradient flow (2.41), we have

∫
X

hk
FS(H1)

(si,s j)
(kωFS(H1))

n

n!
=

V kn

N

(
I +C0I− A

2πk

)−1

i j
+

V kn

N
(Ã1)i j

where V kn

N Ã1 ∈ θ∗(
√
−1z) is equal to −prg

(
δZ A(H(0))

)
, and {si} is an H1-

orthonormal basis.

2.5.4 Iterative construction and the completion of the proof of The-

orem 2.1.6

Although Proposition 2.5.13 does not provide us with the ρ-balanced metric that we

seek, we can use it to construct an iterative procedure which converges to one, as we

discuss in the following.

We first need to estimate the Hilbert–Schmidt norm of Ã1 (in Proposition 2.5.13)

in terms of the one of Ẽ0.

Lemma 2.5.14. There exists a constant C′(R,ε) which depends only on R and ε as in
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Theorem 2.5.6 such that

||Ã1||HS(t) ≤C′(R,ε)k1/2||Ẽ0||HS(t),

where || · ||HS(t) is defined in terms of H(t).

Proof. The equation (5.10) in [96], together with the hypothesis µ̄ ′X = Dk + Ek, Dk

being a scalar matrix with Dk→ I as k→∞ and ||E||op < ε (cf. Remark 2.5.7), implies

||Xξ ||2L2(t) ≤C(R,ε)||ξ ||2HS(t)

for any ξ ∈ sl in general. On the other hand, the estimate (2.36) (cf. (5.7) of [96])

implies

||ξ ||2HS(t) ≤C′Rk||Xξ ||2L2(t) (2.47)

for any ξ ∈ sl in general.

Since Ẽ0 = −δZ A(H(0)) and V kn

N Ã1 = −prg
(
δZ A(H(0))

)
, it is sufficient to

bound ||α||HS(t) in the decomposition ξ = α +β (according to sl= g⊕g⊥t ) in terms of

||ξ ||HS(t). Then, noting

||Xα+β ||2L2(t) = ||Xα +Xβ ||2L2(t) = ||Xα ||2L2(t)+ ||Xβ ||2L2(t)

since g⊥t is defined with respect to the L2-metric induced from H(t) (cf. §2.5.2), we

have

||Xα ||2L2(t)+ ||Xβ ||2L2(t) ≤C(R,ε)||ξ ||2HS(t). (2.48)

Thus, by (2.47) and (2.48), there exists a constant C′(R,ε)> 0 such that

1
C′(R,ε)k

(
||α||2HS(t)+ ||β ||

2
HS(t)

)
≤ ||ξ ||2HS(t) = ||α +β ||2HS(t).

which implies ||α||2HS(t) ≤C′(R,ε)k||α +β ||2HS(t) ≤C′(R,ε)k||ξ ||2HS(t) as required.

In what follows, we write || · ||HS,0 for the Hilbert–Schmidt norm defined with

respect to H0 and || · ||HS,1 for the one with respect to H1 (which is equal to the limit

H(∞) of the flow (2.41)).
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In particular, Lemma 2.5.14 and (2.46) imply that we have

||Ã1||HS,1 ≤ 2||Ã1||HS,0 ≤ 2C′(R,ε)k1/2||Ẽ0||HS,0 = O(k−m+ 1
2 ). (2.49)

Now, writing A1 = A+2πkÃ1, we observe

V kn

N

(
I +C0I− A

2πk

)−1

+
V kn

N
Ã1 =

V kn

N

((
I +C0I− A1

2πk
+ Ã1

)−1

+ Ã1

)

and noting that all the matrices appearing here commute (as A, Ã1 ∈ θ∗(
√
−1z)), we

have

(
I +C0I− A1

2πk
+ Ã1

)−1

+ Ã1 =

(
I +C0I− A1

2πk

)−1

−
(

I +C0I− A1

2πk

)−2

Ã1 + Ã1

+ terms at least quadratic in Ã1

=

(
I +C0I− A1

2πk

)−1

+2
(

C0Ã1−
A1Ã1

2πk

)
+ higher order terms in k

by recalling (2.32), ||A||op ≤ const, and (2.49). Now the Hilbert–Schmidt norm of

Ẽ ′1 :=
(

I +C0I− A1

2πk
+ Ã1

)−1

+ Ã1−
(

I +C0I− A1

2πk

)−1

= 2
(

C0Ã1−
A1Ã1

2πk

)
+ higher order terms in k

with respect to H1 can be estimated as

||Ẽ ′1||HS,1 ≤ 4
∣∣∣∣∣∣∣∣C0Ã1−

A1Ã1

2πk

∣∣∣∣∣∣∣∣
HS,1

(2.50)

≤ 8
∣∣∣∣∣∣∣∣C0I− A

2πk

∣∣∣∣∣∣∣∣
op
||Ã1||HS,1 ≤ 8C′(R,ε)k1/2

∣∣∣∣∣∣∣∣C0I− A
2πk

∣∣∣∣∣∣∣∣
op
||Ẽ0||HS,1

≤ 8C′(R,ε)
||A||op +1

k1/2 ||Ẽ0||HS,0 = O(k−m− 1
2 ), (2.51)

for all large enough k, by recalling the estimate (2.32), ||A||op ≤ const, and (2.46); we

also used (cf. Proposition 2.5.13) ||Ã1||2op ≤
√

tr(Ã1Ã1) = ||Ã1||HS,1. We then modify

the constant C0 to make Ẽ1 term trace free, by arguing as we did in Lemma 2.4.19. This
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will change C0 by a constant of order k−m− 1
2−

n
2 , to C1 say, satisfying the bound

|C0−C1|< 4N−1/2||Ẽ ′1||HS,1 ≤ 8N−1/2||Ẽ ′1||HS,0 (2.52)

as in (2.35). Hence there exists a trace free hermitian matrix Ẽ1 which satisfies

V kn

N

(
I +C0I− A1

2πk

)−1

+
V kn

N
Ẽ ′1 =

V kn

N

(
I +C1I− A1

2πk

)−1

+ Ẽ1

and ||Ẽ1||HS,1 can be bounded by

||Ẽ1||HS,1 ≤

1+8

∣∣∣∣∣
∣∣∣∣∣
(

I +C0I− A1

2πk

)−1
∣∣∣∣∣
∣∣∣∣∣
op

V kn

N
||Ẽ ′1||HS,1 (2.53)

≤ 4

1+8

∣∣∣∣∣
∣∣∣∣∣
(

I +C0I− A1

2πk

)−1
∣∣∣∣∣
∣∣∣∣∣
op

∣∣∣∣∣∣∣∣C0I− A1

2πk

∣∣∣∣∣∣∣∣
op
||Ã1||HS,1 (2.54)

≤ 16C′(R,ε)k1/2

1+8

∣∣∣∣∣
∣∣∣∣∣
(

I +C0I− A
2πk

)−1
∣∣∣∣∣
∣∣∣∣∣
op

∣∣∣∣∣∣∣∣C0I− A
2πk

∣∣∣∣∣∣∣∣
op
||Ẽ0||HS,1

≤ 32C′(R,ε)k1/2

1+8

∣∣∣∣∣
∣∣∣∣∣
(

I +C0I− A
2πk

)−1
∣∣∣∣∣
∣∣∣∣∣
op

 ||A||op +1
k

||Ẽ0||HS,0 (2.55)

= O(k−m− 1
2 ) (2.56)

where we used (2.34) in the first line, (2.50) in the second line, Lemma 2.5.14 and

(2.49) in the third line, and (2.32) in the fourth line.

Recalling Proposition 2.5.13, the above calculations mean that we get

∫
X

hk
FS(H1)

(sH1
i ,sH1

j )
(kωFS(H1))

n

n!
− V kn

N

(
I +C1I− A1

2πk

)−1

i j
= (Ẽ1)i j

where Ẽ1 ∈ TH1B
K
k is a trace free hermitian matrix which satisfies ||Ẽ1||HS,1 =

O(k−m− 1
2 ) by (2.56). We now return to the gradient flow (2.41), starting at H1, apart

from that it is now driven by pr⊥,t(δZ A1(H(t))), replacing A by A1; namely we run

the new gradient flow

dH(1)(t)
dt

=−pr⊥,t
(

δZ A1(H(1)(t))
)

(2.57)
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starting at H(∞) := H1, where we observe that the error term Ẽ1 (at t = 0) has now been

improved to ||Ẽ1||HS,1 = O(k−m− 1
2 ) by (2.56), as opposed to ||Ẽ0||HS,0 = O(k−m) that

we initially had in Corollary 2.4.20. Also note that now the projection pr⊥,t : sl� g⊥t is

onto the L2-orthogonal complement of g in sl with respect to the Fubini–Study metric

induced from H(1)(t).

We summarise what we have achieved as follows. We started with an ap-

proximately ρ-balanced metric H0 ∈ BK
k , obtained in Corollary 2.4.20 which sat-

isfies δZ A(H0) = Ẽ0 with ||Ẽ0||HS,0 ≤ const.k−m; ran the gradient flow (2.41)

to annihilate pr⊥,t(δZ A), so that at the limit H1 ∈ BK
k of the flow we have

pr⊥,∞(δZ A(H1)) = 0; set Ã1 := − N
V kn prg(δZ A(H1)) ∈ θ∗(

√
−1z) and replaced

A by A1 := A + 2πkÃ1, to consider the functional Z A1 with a new constant C1,

which differs from C0 by O(k−m− 1
2−

n
2 ); wrote Ẽ1 := −δZ A1(H1) with Ẽ1 satisfy-

ing ||Ẽ1||HS,1 ≤ const.k−1/2||Ẽ0||HS,0 = O(k−m− 1
2 ) as given in (2.55), i.e. H1 is an

approximately ρ-balanced metric of order k−m− 1
2 . We then go back to the first step,

by replacing H0 with H1. We repeat the above process inductively, as in the following

proposition.

Proposition 2.5.15. Suppose that we run the iterative procedure, starting with i = 0, to

find ρ-balanced metrics as follows:

Step 1 start with an approximately ρ-balanced metric Hi ∈BK
k of order k−m−i/2;

Step 2 run the gradient flow

dH(i)(t)
dt

=−pr⊥,t
(

δZ Ai(H(i)(t))
)

to annihilate pr⊥,t(δZ Ai), so that at the limit H(i)(∞) =: Hi+1 ∈BK
k of the flow

we have pr⊥,∞(δZ Ai(Hi+1)) = 0;

Step 3 set Ãi+1 :=− N
V kn prg(δZ Ai(Hi+1))∈ θ∗(

√
−1z) and replace Ai by Ai+1 := Ai+

2πkÃi+1, to consider the functional Z Ai+1 with a new constant Ci+1, which differs

from Ci by O(k−m−(n+i)/2);

Step 4 observe that Hi+1 satisfies ||δZ Ai+1(Hi+1)||HS,i+1 = O(k−m−(i+1)/2), where || ·

||HS,i+1 is the Hilbert–Schmidt norm defined with respect to Hi+1 i.e. Hi+1 is an

approximately ρ-balanced metric of order k−m−(i+1)/2;
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Step 5 go back to the step 1, with an improved error term (i.e. the approximately ρ-

balanced metric Hi+1 now has order k−m−(i+1)/2);

so that, by repeating these steps, we get a sequence {(Ai,Ci,Hi)}i in θ∗(
√
−1z)×R×

BK
k .

Then, as i→ ∞, Ai, Ci, and Hi converges to A∞ ∈ θ∗(
√
−1z), C∞ ∈ R, and H∞ ∈

BK
k , respectively.

The proof is given in the following two lemmas, which rely on the estimates that

we have established so far. We first prove the existence of A∞ and C∞.

Lemma 2.5.16. A/k+ 2πÃ1 + 2πÃ2 + · · · converges, and hence A∞ := A+ 2πkÃ1 +

2πkÃ2 + · · · exists. Also C∞ exists.

Proof. We first claim that there exist some constants γ1,γ2 > 0 such that ||Ãi||HS,i ≤

k−m+1(k−1/2γ1)
i and |Ci −Ci−1| ≤ N−1/2k−m(k−1/2γ2)

i. Observe that ||Ãi||HS,i ≤

k−m+1(k−1/2γ1)
i implies ||Ãi||HS,0 ≤ k−m+1(2k−1/2γ1)

i by inductively using (2.46).

Note that these estimates are satisfied when i = 1; more specifically, Lemma

2.5.14, (2.46), and ||Ẽ0||HS,0 = O(k−m) imply that there exists a constant γ > 0 such

that

||Ã1||HS,1 ≤ 2C′(R,ε)k1/2||Ẽ0||HS,0 ≤ γC′(R,ε)k−m+ 1
2 ,

and (2.51), (2.52) imply

|C0−C1| ≤ 4N−1/28C′(R,ε)
||A||op +1

k1/2 ||Ẽ0||HS,0≤ 32N−1/2
γC′(R,ε)(||A||op+1)k−m− 1

2 .

In what follows, we assume C′(R,ε)≥ 1 and γ ≥ 1 without loss of generality.

We argue by induction; suppose that the statement holds at the (i− 1)-th step.

Combined with Lemma 2.5.14 and (2.46), the argument in (2.54) at the i-th step implies

||Ãi||HS,i ≤C′(R,ε)k1/2||Ẽi−1||HS,i

≤ 8C′(R,ε)k1/2

1+8

∣∣∣∣∣
∣∣∣∣∣
(

I +Ci−2I− Ai−1

2πk

)−1
∣∣∣∣∣
∣∣∣∣∣
op

∣∣∣∣∣∣∣∣Ci−2I− Ai−1

2πk

∣∣∣∣∣∣∣∣
op
||Ãi−1||HS,i−1

for all i≥ 2. Then the induction hypothesis and (2.32) imply 1+8
∣∣∣∣∣∣∣∣(I +Ci−2I− Ai−1

2πk

)−1
∣∣∣∣∣∣∣∣

op
≤
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2
(

1+8
∣∣∣∣∣∣(I +C0I− A

2πk

)−1
∣∣∣∣∣∣

op

)
and

∣∣∣∣∣∣Ci−2I− Ai−1
2πk

∣∣∣∣∣∣
op
≤ ||A||op+1

k (cf. (2.55)). Thus

||Ãi||HS,i ≤ 16C′(R,ε)

1+8

∣∣∣∣∣
∣∣∣∣∣
(

I +C0I− A
2πk

)−1
∣∣∣∣∣
∣∣∣∣∣
op

 ||A||op +1
k1/2 ||Ãi−1||HS,i−1

(2.58)

for all large enough k. We can thus take

γ1 := max

16C′(R,ε)

1+8

∣∣∣∣∣
∣∣∣∣∣
(

I +C0I− A
2πk

)−1
∣∣∣∣∣
∣∣∣∣∣
op

(||A||op +1), γC′(R,ε)

 .

We also have

|Ci−Ci−1| ≤ 4N−1/2||Ẽ ′i ||HS,i ≤ 16N−1/2
∣∣∣∣∣∣∣∣Ci−1−

Ai

2πk

∣∣∣∣∣∣∣∣
op
||Ãi||HS,i

by arguing as in (2.50) and (2.52). The induction hypothesis and (2.58) imply that

|Ci−Ci−1| ≤ 32N−1/2
∣∣∣∣∣∣∣∣C0−

A
2πk

∣∣∣∣∣∣∣∣
op

γ
i
1k−m+1− i

2 ≤ 16N−1/2(||A||op +1)γ i
1k−m− i

2

where we used (2.32) and ||A||op≤ const, and hence we can take γ2 := 16C′(R,ε)(||A||op+

1)γ1, by noting 16C′(R,ε)(||A||op +1)γ i
1 < γ i

2.

Having established the claim as above, we thus have

||A/k+2πÃ1+2πÃ2+· · · ||HS,0≤
(

γ1

k
+ k−m+1(2γ1k−1/2)+ k−m+1(2γ1k−1/2)2 + · · ·

)
<∞

for all large enough k, and

|C∞| ≤
(

γ2

k
+N−1/2k−m(γ2k−1/2)+N−1/2k−m(γ2k−1/2)2 + · · ·

)
< ∞.

We now prove the existence of H∞.

Lemma 2.5.17. Repeating the procedure as given in Proposition 2.5.15 infinitely many

times moves H0 by a finite distance in BK
k with respect to the bi-invariant metric,

i.e. dist(H∞,H0)< ∞.
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Proof. Consider first the case i = 1. Recall that we use the limit H1 = H(∞) of the

first gradient flow (2.41) as the initial condition for the second gradient flow (2.57). By

proceeding as we did in (2.45), we get

dist(H2,H0)≤
1
λ1

(
||G A(0)||HS,0 + ||G A1(0)||HS,1

)
.

Recalling G A(0)= Ẽ0 and G A1(0)= Ẽ1, we get dist(H2,H0)≤ 1
λ1

(
||Ẽ0||HS,0 + ||Ẽ1||HS,1

)
.

Inductively continuing as described in Proposition 2.5.15, we have dist(Hi+1,H j) ≤
1
λ1

(
||Ẽ j||HS, j + · · ·+ ||Ẽi||HS,i

)
for i > j, and also

dist(Hi+1,H0)≤
1
λ1

(
||Ẽ0||HS,0 + ||Ẽ1||HS,1 + · · ·+ ||Ẽi||HS,i

)
. (2.59)

Now the estimates as in (2.53)-(2.55) at the i-th step (and also Lemma 2.5.16) implies

that we have

||Ẽi||HS,i ≤ 32C′(R,ε)

1+8

∣∣∣∣∣
∣∣∣∣∣
(

I +C0I− A
2πk

)−1
∣∣∣∣∣
∣∣∣∣∣
op

 ||A||op +1
k1/2 ||Ẽi−1||HS,i−1

and hence

||Ẽi||HS,i ≤

32C′(R,ε)

1+8

∣∣∣∣∣
∣∣∣∣∣
(

I +C0I− A
2πk

)−1
∣∣∣∣∣
∣∣∣∣∣
op

 ||A||op +1
k1/2

i

||Ẽ0||HS,0.

(2.60)

Thus we find that there exists a constant c > 0, independent of k, such that

||Ẽi||HS,i ≤ (ck−1/2)i+1||Ẽ0||HS,0, and hence we get

dist(Hi+1,H j)≤ k2||Ẽ0||HS,0

(
(ck−1/2) j + · · ·+(ck−1/2)i

)
for i > j, and

dist(Hi+1,H0)

≤ 1
λ1

(
||Ẽ0||HS,0 + ck−1/2||Ẽ0||HS,0 + c2k−1||Ẽ0||HS,0 + · · ·++(ck−1/2)i||Ẽ0||HS,0

)
= O(k−m+2) (2.61)
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for all large enough i, where we recall ||Ẽ0||HS,0 = O(k−m) (cf. Corollary 2.4.20) and

(2.42). Thus the sequence {Hi}i is Cauchy in BK
k with respect to the bi-invariant metric,

and hence the limit H∞ ∈BK
k exists.

We finally see that (2.61) implies ||H∞−H0||HS,0 =O(k−m+2) (cf. Remark 2.5.10).

We claim ||ωH∞
−ω(m)||Cl ,ω = O(k−m+n+l+1), recalling the definitional ωH0 = ω(m).

To make explicit the dependence on k and m, we write H∞(k,m) for H∞ ∈ BK
k and

H0(k,m) for H0 ∈BK
k . By taking a suitable H0(k,m)-orthonormal basis {si}, we may

assume that H0(k,m) is the identity matrix and H∞(k,m) is given by diag(d2
1 , . . . ,d

2
N).

||H∞(k,m)−H0(k,m)||HS,0 = O(k−m+2) implies that we have d2
i − 1 = O(k−m+2),

which in turn implies d−2
i −1 = O(k−m+2). Observe that we can write

ωH∞(k,m) = ω(m)+

√
−1

2πk
∂ ∂̄ log

(
∑

i
d−2

i |si|2FS(H0(k,m))k

)
.

We may choose local coordinates (z1, . . . ,zn) and reduce to local computation. The

equation (2.4) and d−2
i − 1 = O(k−m+2) imply that we have ∑i d−2

i |si|2FS(H0(k,m))k =

1+O(k−m+n+2), and hence it suffices to evaluate its derivatives.

We fix a local trivialisation of the line bundle L to write hFS(H0(k,m)) = e−φm,k , and

regard each si as a holomorphic function. Observe that (2.4) implies ∑i |si|2 = ekφm,k .

We then apply ∂ 2

∂ z j∂ z̄ j
on both sides to find

∑
i

e−kφm,k

∣∣∣∣ ∂

∂ z j
si

∣∣∣∣2 ≤ k2C1(φm,k),

for a constant C1(φm,k) which depends only on (first and second derivatives of) φm,k.

Higher order derivatives can be similarly bounded in terms of Cl-norms of φm,k; namely

we get ∑i e−kφm,k

∣∣∣ ∂ l

∂ z j1 ···∂ z jl
si

∣∣∣2 ≤ k2lC2(φm,k, l) for a constant C2(φm,k, l) which depends

only on the C2l-norm of φm,k. In particular, we have

e−kφm,k/2
∣∣∣∣ ∂ l

∂ z j1 · · ·∂ z jl
si

∣∣∣∣≤ klC3(φm,k, l)

for each i = 1, . . . ,N and j1, . . . , jl ∈ {1, . . . ,n}.
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Observe that (2.4) implies e−kφm,k/2|si| ≤ 1. Thus we get, again using (2.4),

∂

∂ z j
∑

i
d−2

i |si|2FS(H0(k,m))k =
∂

∂ z j
∑

i
(d−2

i −1)e−kφm,k |si|2

=−k
∂φm,k

∂ z j
∑

i
(d−2

i −1)e−kφm,k |si|2 +∑
i
(d−2

i −1)e−kφm,k s̄i
∂ si

∂ z j
,

and hence ∣∣∣∣∣ ∂

∂ z j
∑

i
d−2

i |si|2FS(H0(k,m))k

∣∣∣∣∣≤ k−m+n+3C4(φm,k).

Thus, inductively continuing, we get∣∣∣∣∣ ∂ r

∂ z̄ j1 · · ·∂ z̄ jr

∂ l

∂ z j1 · · ·∂ z jl
∑

i
d−2

i |si|2FS(H0(k,m))k

∣∣∣∣∣≤ k−m+n+l+r+2C5(φm,k, l + r).

Thus we get ||ωH∞
−ω(m)||Cl ,ωH0(k,m)

≤C6(φm,k, l)k−m+n+(l+2)−1.

Writing h = e−φ for the hermitian metric corresponding to the extremal metric ω

(i.e. ω = −
√
−1∂ ∂̄ logh), we have φm,k → φ in C∞ as k→ ∞ (cf. the proof of Corol-

lary 2.3.15). Thus we get ||ωH∞
−ω(m)||Cl ,ωH0(k,m)

≤Clk−m+n+(l+2)−1 for a constant Cl

which depends only on l, as claimed.

We thus get

||ωH∞(k,m)−ω||Cl ,ω ≤ 2||ωH∞(k,m)−ωH0(k,m)||Cl ,ωH0(k,m)
+ ||ωH0(k,m)−ω||Cl ,ω

≤ C̃l(k−m+n+l+1 + k−1).

Thus, given l ∈N, we can choose m to be large enough so that the sequence {ωH∞(k,m)}k

converges to ω in Cl , establishing all the statements claimed in Theorem 2.1.6.

Remark 2.5.18. It is tempting to say that, given such ωH∞(k,m)’s, there exists a sequence

{ωk}k which converges to ω in C∞ by diagonal argument. However, k must be chosen

to be large enough for ωH∞(k,m) to be well-defined, and how large k must be depends

on m (cf. §2.3), and hence on l. Thus, by diagonal argument, we can only claim the

existence of ωk’s (with ωk → ω in C∞) satisfying ∂̄grad1,0
ωk ρk(ωk) = 0 for infinitely

many k’s rather than for all sufficiently large k’s.

We finally note that, if we have the uniqueness theorem as mentioned in Remark

2.1.9, it follows that ωH∞(k,m) = ωH∞(k,m′) for all m and m′, and hence we can say that
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the sequence converges in C∞ (cf. §4.2 of [40]).

2.6 Stability of (X ,L)

2.6.1 Chow stability

This is a review of classical theory, and we refer the reader to §1.16 of Mumford’s paper

[90] and §2 of Futaki’s survey [56] for the details on the materials presented here. Con-

sider a polarised Kähler manifold (X ,L) with dimCX = n and degree dk :=
∫

X c1(Lk)n,

and the Kodaira embedding ι : X ↪→ P(H0(X ,Lk)∗). Writing Vk := H0(X ,Lk), observe

that n+1 points H1, . . . ,Hn+1 in P(Vk) determines n+1 divisors in P(V ∗k ), and that

{(H1, . . . ,Hn+1) ∈ P(Vk)×·· ·×P(Vk) | H1∩·· ·∩Hn+1∩ ι(X) 6= /0 in P(V ∗k )}

is a divisor in P(Vk)×·· ·×P(Vk). The polynomial ΦX ,k ∈ (Symdk(V ∗k ))
⊗(n+1) defining

this divisor, or the point [ΦX ,k] in P((Symdk(V ∗k ))
⊗(n+1)) is called the Chow form of

X ↪→ P(H0(X ,Lk)∗). It is a classical fact [90, 105] that [ΦX ,k] corresponds bijectively

to a subvariety in P(H0(X ,Lk)∗) of dimension n and degree dk.

Chow stability of (X ,L) is nothing but the GIT stability of the point [ΦX ,k] ∈

P((Symdk(V ∗k ))
⊗(n+1)) with respect to the SL(V ∗k )-action on (Symdk(V ∗k ))

⊗(n+1). More

precisely, it can be defined as follows.

Definition 2.6.1. A polarised Kähler manifold (X ,L) is said to be:

1. Chow polystable at the level k if the SL(V ∗k )-orbit of ΦX ,k is closed in

(Symdk(V ∗k ))
⊗(n+1),

2. Chow stable at the level k if it is Chow polystable and ΦX ,k has finite isotropy,

3. Chow semistable at the level k if the SL(V ∗k )-orbit of ΦX ,k does not contain

0 ∈ (Symdk(V ∗k ))
⊗(n+1),

4. Chow unstable at the level k if it is not Chow semistable,

5. asymptotically Chow stable (resp. polystable, semistable) if there exists k0 ∈N

such that it is Chow stable (resp. polystable, semistable) at the level k for all

k ≥ k0.
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We recall the following fundamental theorem.

Theorem 2.6.2. (Luo [76], Zhang [131]) Suppose that Aut0(X ,L) is trivial. Then

(X ,L) is Chow stable at the level k if and only if it admits a balanced metric at the

level k.

Remark 2.6.3. Zhang [131] also proved that, even when Aut0(X ,L) is nontrivial, the

existence of balanced metric at the level k implies that (X ,L) is Chow semistable at the

level k (cf. Theorem 3.2, [131]).

Remark 2.6.4. It is well-known that asymptotic Chow stability is closely related

to K-stability. For example, it is known that asymptotic Chow stability implies K-

semistability [103]. More intuitively, asymptotic Chow stability can be seen as a ver-

sion for varieties of Gieseker stability, and K-stability as corresponding to Mumford

stability9 [103].

2.6.2 Chow polystability relative to a torus

We now review the version of Chow stability which is “relative” to the automorphism

group G = Aut0(X ,L), as introduced by Mabuchi [82]. The reader is referred to the

survey given in Apostolov–Huang [5] for further discussions. Since we have the G-

linearisation of L (or θ in Lemma 2.2.1, cf. Remark 2.2.2), choosing a real torus T in

K = Isom(ω), we can consider the representation θ |T c : T c y H0(X ,Lk) where T c is

the complexification of T . We then consider a subspace

Vk(χ) := {s ∈ H0(X ,Lk) | θ(t) · s = χ(t)s for all t ∈ T c}

of H0(X ,Lk), where χ ∈ Hom(T c,C∗) is a character. We then have a decomposition

H0(X ,Lk) =
r⊕

ν=1

Vk(χν) (2.62)

for mutually distinct characters χ1, . . . ,χr ∈ Hom(T c,C∗). We then define

Gc
T :=

{
diag(A1, . . . ,Ar) ∈

r

∏
ν=1

GL(Vk(χν))

∣∣∣∣∣ r

∏
ν=1

det(Aν) = 1

}
9The reader is referred to e.g. [103] for the definition of Gieseker stability and Mumford stability

(called slope stability in [103]), defined for vector bundles.
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for the “elements in SL(H0(X ,Lk)) that commute with the T c-action”, and

Gc
T⊥ :=

{
diag(A1, . . . ,Ar) ∈

r

∏
ν=1

GL(Vk(χν))

∣∣∣∣∣ r

∏
ν=1

det(Aν)
1+log |χν (t)| = 1 for all t ∈ T c

}

for the “subgroup of Gc
T that is orthogonal to the T c-action”. See §1.3 of [115] for the

motivation for these definitions. We then define the relative Chow stability as follows.

Definition 2.6.5. A polarised Kähler manifold (X ,L) is said to be Chow polystable at

the level k relative to T if the Gc
T⊥-orbit of ΦX ,k is closed in (Symdk(V ∗k ))

⊗(n+1).

On the other hand, we can consider an action of a smaller group G̃c
T⊥ :=

∏
r
ν=1 SL(Vk(χν)); observe G̃c

T⊥ ≤ Gc
T⊥ . This leads to the notion of “weak” stability

as follows (cf. [82, 5]).

Definition 2.6.6. A polarised Kähler manifold (X ,L) is said to be weakly Chow

polystable at the level k relative to T if the G̃c
T⊥-orbit of ΦX ,k is closed in

(Symdk(V ∗k ))
⊗(n+1).

Recall that in the case Aut0(X ,L) is trivial, Chow stability corresponds to the exis-

tence of balanced metrics, as proved by Luo [76] and Zhang [131] (cf. Corollary 2.1.3).

The notion of “balanced” metrics in the relative setting was proposed by Mabuchi [82]

as follows.

Definition 2.6.7. A hermitian metric h ∈H (X ,L) is said to be balanced at the level

k relative to T if Hilb(h) is T -invariant and satisfies the following property: writing

{sν ,i}ν ,i for a Hilb(h)-orthonormal basis for H0(X ,Lk), where each {sν ,i}i is a Hilb(h)-

orthonormal basis for Vk(χν), there exist positive constants (b1, . . . ,br), bν > 0, such

that

∑
ν ,i

bν |sν ,i|2hk = 1.

A fundamental theorem is the following.

Theorem 2.6.8. (Mabuchi [82, 86]; see also Theorems 2 and 4 of Apostolov–Huang’s

paper [5]) (X ,L) is Chow polystable at the level k relative to T if and only if it admits
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a hermitian metric balanced relative to T with each bν satisfying10

bν = 1+ log |χν(t)| (2.63)

for some t ∈ T c, i.e. bν ’s are the eigenvalues of I +A for some A ∈ θ∗(Lie(T c)).

Corollary 2.6.9. (cf. §2 of Apostolov–Huang [5]) (X ,L) is Chow polystable at the level

k relative to T if and only if there exists g∈ SL(N) which commutes11 with the elements

in θ(T ) such that

µ̄X(g) =
V
N

I +A

for some A ∈ θ∗(
√
−1Lie(T )). In other words, the trace free part of µ̄X(g) generates a

holomorphic automorphism of PN−1 which preserves the image of X under the Kodaira

embedding.

Proof. Suppose that we have a metric balanced at the level k relative to T , satisfying

∑ν ,i bν |sν ,i|2hk = 1 with bν ’s satisfying (2.63). We then see that h can be written as

h = FS(H) with H having {
√

bνsν ,i}ν ,i as its orthonormal basis (cf. equation (2.4)),

and that H is T -invariant (cf. Definition 1 of [5] and the argument that follows; see also

Lemma 2.2.21). Then, the centre of mass µ̄ ′X with respect to this basis can be computed

as

µ̄
′
X =

V
N

I +
V
N

diag(log |χ1(t)|idVk(χ1), . . . , log |χr(t)|idVk(χr))

=
V
N

I +
V
N

logθ(t),

and we simply define A := V
N logθ(t) ∈ θ∗(

√
−1Lie(T )).

Conversely, writing A = V
N logθ(t) for some t ∈ T c/T , suppose that we have

µ̄ ′X = V
N I + V

N logθ(t). Diagonalising logθ(t), and defining bν ’s as in (2.63), we see

that {
√

b−1
ν s′

ν ,i}ν ,i is a Hilb(h)-orthonormal basis, when {s′
ν ,i}ν ,i is an H-orthonormal

basis. We thus get

1 = ∑
ν ,i
|s′ν ,i|2hk = ∑

ν ,i
bν

∣∣∣∣√b−1
ν s′ν ,i

∣∣∣∣2
hk

as required.
10Note that in our setting, diag(log |χ1(t)|idVk(χ1), . . . , log |χr(t)|idVk(χr)) will be a trace free matrix,

and hence 1+∑
r
ν=1 dimVk(χν) log |χν(t)|/N = 1.

11This corresponds to the θ(K)-invariance of the hermitian matrix H = (g−1)tg−1; see Remark 2.2.17.
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2.6.3 Proof of Corollary 2.1.7

We now recall the following “weak” version of Theorem 2.6.8.

Theorem 2.6.10. (Mabuchi [82, 86]; see also the discussion preceding Definition 5 of

[5]) (X ,L) is weakly Chow polystable at the level k relative to T if and only if it admits

a hermitian metric balanced relative to T with some bν > 0, not necessarily satisfying

(2.63).

Corollary 2.6.11. (X ,L) is weakly Chow polystable at the level k relative to T if and

only if there exists g ∈ SL(N) which commutes with θ(K)-action such that

µ̄X(g) = diag(b1idVk(χ1), . . . ,bridVk(χr))

with respect to the decomposition H0(X ,Lk) =
⊕r

ν=1Vk(χν), for some bν > 0 (not

necessarily satisfying (2.63)).

Proposition 2.6.12. If FS(H), H ∈BK
k , satisfies D∗HDHρk(ωH) = 0, which is equiv-

alent (by Lemma 2.4.3 and also (2.21)) to ρ̄k(ωH) = ∑i, j
(
CI− 1

2πk A
)

i j hk
FS(H)(si,s j),

and if CI− 1
2πk A is positive definite, then FS(H) is balanced at the level k relative to

any maximal torus in K for some bν > 0 (not necessarily satisfying (2.63)).

Proof. By Proposition 2.4.15, writing {si} for an H-orthonormal basis, we see that

s′i :=

√
N
V

(
CI− A

2πk

)1/2

i j
s j, (2.64)

where
(
CI− A

2πk

)
i j is the matrix for CI − A

2πk represented with respect to {si}, is

a
∫

X hk
FS(H)(,)

ωn
H

n! -orthonormal basis. Moreover, by replacing {si} by an H-unitarily

equivalent basis if necessary, we may assume that A is diagonal. For notational conve-

nience, we write {sν ,i}ν ,i (resp. {s′
ν ,i}ν ,i) for {si}i (resp. {s′i}i) for the rest of the proof,

according to the decomposition (2.62), just to make explicit which sector Vk(χν) each

basis element si belongs to. A ∈ θ∗(
√
−1z) implies that we may write

Ai j = diag(a1idVk(χ1), . . . ,aridVk(χr)),
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since the centre Z of K is contained in any maximal torus of K. Thus we can write

(
CI− A

2πk

)
i j
= diag(b−1

1 idVk(χ1), . . . ,b
−1
r idVk(χr))

for some bν > 0. In particular, (2.64) can be re-written as s′i,ν =
√

N
V b−1/2

ν si,ν . This

means that we can write

∑
ν ,i

bν |s′ν ,i|2FS(H)k =
N
V ∑

ν ,i
|sν ,i|2FS(H)k = const (2.65)

by the equation (2.4), as required. Observe also that these bν ’s in the above equation

are the eigenvalues of (CI− A
2πk)

−1, and not of CI− A
2πk , so a priori does not satisfy the

equation (2.63).

Remark 2.6.13. The proof above in fact shows that ωH satisfies D∗HDHρk(ωH) = 0

if and only if it satisfies the equation (2.65) with bν ’s being the eigenvalues of (CI−
A

2πk)
−1 for some A ∈ θ∗(

√
−1z) (cf. Theorem 2.6.8).

Recalling that Z is contained in any maximal torus in K, we have the following.

Corollary 2.6.14. If there exists a sequence of hermitian metrics {FS(H(k))}k,

H(k) ∈ BK
k , on (X ,Lk) which satisfies D∗H(k)DH(k)ρk(ωH(k)) = 0 with the bound

||θ∗(gradρ̄k(ωH(k)))||op < const uniformly of k, then (X ,L) is asymptotically weakly

Chow polystable relative to any maximal torus.

We finally prove Corollary 2.1.7.

Proof of Corollary 2.1.7. This follows from Theorem 2.1.6, Lemma 2.4.9, and Corol-

lary 2.6.14.

2.6.4 Relationship to previously known results and further ques-

tions

Suppose now that we can answer the following question in the affirmative.

Question 2.6.15. For any A∈ θ∗(
√
−1z) and any positive constant C > 0 so that CI+A

is positive definite, does there exist A′ ∈ θ∗(
√
−1z) and a positive constant C′ > 0 such

that

CI +A =C′eA′?
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Conversely, for any A′ ∈ θ∗(
√
−1z) and any positive constant C′ > 0, does there exist

A ∈ θ∗(
√
−1z) and a positive constant C > 0 such that

C′eA′ =CI +A?

Setting C := 1+CA in (2.29), we would then have

N
V kn µ̄X(g) =

(
CI− A

2πk

)−1

= (C′eA′)−1 = (C′)−1e−A′ =C′′+A′′

for some constant C′′ > 0 and some A′′ ∈ θ∗(
√
−1z), and hence would show that (X ,L)

is relatively Chow polystable (by recalling Corollary 2.6.9), rather than weakly rela-

tively Chow polystable. In other words, the affirmative resolution of Question 2.6.15

would prove the following conjecture (cf. Conjecture 1, [5]).

Conjecture 2.6.16. The existence of extremal metrics in c1(L) implies asymptotic

Chow polystability of (X ,L) relative to any maximal torus.

The affirmative resolution of Question 2.6.15 would have another consequence

that we discuss now. Recall the following notion proposed by Sano and Tipler [107].

Definition 2.6.17. A Kähler metric ωh is said to be σ -balanced if there exists σ ∈

Aut0(X ,L) such that ωFS(Hilb(h)) = σ∗ωh.

By Lemma 2.4.2 and Theorem 2.2.11, we have

(σ−1)∗ωFS(Hilb(h)) = ωFS(Hilb(h))+

√
−1

2πk
∂ ∂̄ log

(
∑

i
|∑

j
θ(σ−1)i jsi|FS(Hilb(h))k

)

= ωh +

√
−1

2πk
∂ ∂̄ log

(
∑

i
|∑

j
θ(σ−1)i jsi|hk

)
.

for a Hilb(h)-orthonormal basis {si}. Thus, being σ -balanced is equivalent to

∑i |∑ j θ(σ−1)i jsi|hk being constant for a Hilb(h)-orthonormal basis {si}. Arguing as

in the proof of Proposition 2.6.12, we see that this is equivalent to h being balanced rel-

ative to a torus containing σ−1, at the level k, with the index bν being the eigenvalues

of θ(σ−1)∗θ(σ−1). If the answer to Question 2.6.15 is affirmative, it would thus imply

that a Kähler metric ωFS(H), H ∈Bk, is σ -balanced in the sense of Sano–Tipler if and

only if it satisfies D∗ωh
Dωhρk(ωh) = 0.
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Remark 2.6.18. Note also that if ωh is σ -balanced, Lemma 2.2.21 implies ωh =

(σ−1)∗ωFS(Hilb(h)) = ωFS(Hilb((σ−1)∗h)), and hence h must be necessarily of the form

FS(H ′) for some H ′ ∈Bk. Given the above argument, it seems natural to expect the

following: if ω ∈ c1(L) satisfies D∗ωDωρk(ω) = 0, then it is necessarily of the form

ω = ωFS(H) for some H ∈Bk.

Remark 2.6.19. For the toric case, Bunch and Donaldson [21] introduced the notion

of “balanced” metrics for toric manifolds. It seems natural to expect that either of the

above conditions, ωFS(Hilb(h)) = σ∗ωh or D∗ωh
Dωhρk(ωh) = 0, should be equivalent to

their notion of balanced metrics when X is a toric Kähler manifold.



Chapter 3

Scalar curvature and Futaki invariant

of Kähler metrics with cone

singularities along a divisor

3.1 Introduction and the statement of the results

3.1.1 Kähler metrics with cone singularities along a divisor and log

K-stability

Let D be a smooth effective divisor on a polarised Kähler manifold (X ,L) of dimension

n. Our aim is to study Kähler metrics that have cone singularities along D, which can

be defined as follows (cf. §2 of [64]).

Definition 3.1.1. A Kähler metric with cone singularities along D with cone angle

2πβ is a smooth Kähler metric on X \D which satisfies the following conditions when

we write ωsing = ∑i, j gi j̄
√
−1dzi ∧ dz̄ j in terms of the local holomorphic coordinates

(z1, . . . ,zn) on a neighbourhood U ⊂ X with D∩U = {z1 = 0}:

1. g11̄ = F |z1|2β−2 for some strictly positive smooth bounded function F on X \D,

2. g1 j̄ = gi1̄ = O(|z1|2β−1),

3. gi j̄ = O(1) for i, j 6= 1.

Although this definition makes sense for any β ∈R, we are primarily interested in

the case 0 < β < 1 (cf. [48]). On the other hand, we sometimes need to consider the
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case β > 1 (cf. Remark 3.3.5), while some results (e.g. Theorem 3.1.15) will hold only

for 0 < β < 3/4. We thus set our convention as follows: we shall assume 0 < β < 1 in

what follows, and specifically point out when this assumption is violated.

Remark 3.1.2. We recall that the usual (cf. [28, 64, 110] amongst many others) def-

inition of the conically singular Kähler metric ωsing is that ωsing is a smooth Kähler

metric on X \D which is asymptotically quasi-isometric to the model cone metric

|z1|2β−2√−1dz1∧dz̄1 +∑
n
i=2
√
−1dzi∧dz̄i around D, with coordinates (z1, . . . ,zn) as

above. The above definition is more restrictive than this usual definition, but will in-

clude all the cases that we shall treat in this chapter (cf. Definition 3.1.10).

Remark 3.1.3. We can regard a conically singular metric ωsing as a (1,1)-current on

X , and hence can make sense of its cohomology class [ωsing] ∈ H2(X ,R).

Kähler–Einstein metrics that have cone singularities along a divisor were studied

on Riemann surfaces by McOwen [88] and Troyanov [126], and on general Kähler

manifolds by Tian [124] and Jeffres [63]. They have attracted renewed interest since the

foundational work of Donaldson [48] on the linear theory of Kähler–Einstein metrics

with cone singularities along a divisor, and since then, there has already been a huge

accumulation of research on such metrics. Precisely, a conically singular metric ωh

is said to be Kähler–Einstein with cone singularities along D ∈ |−λKX | with cone

angle 2πβ , where λ ∈ N is some fixed integer, if it satisfies the following complex

Monge–Ampère equation

ω
n
h = |s|2β−2

hλ
Ωh

on X \D, where a hermitian metric h on −KX defines the Kähler metric ωh and the

volume form Ωh on X , and s is a section of −λKX which defines D by {s = 0}.

We now recall the log K-stability, which was introduced by Donaldson [48] and

played a crucially important role in proving the Donaldson–Tian–Yau conjecture (Con-

jecture 1.2.6) for Fano manifolds [28, 29, 30] (cf. Theorem 1.2.10); see also Remark

3.2.6. We first recall (cf. Theorem 1.3.5) that the notion of K-stability can be regarded

as an “algebro-geometric generalisation” of the vanishing of the Futaki invariant1

Fut(Ξ f , [ω]) =
∫

X
f (S(ω)− S̄)

ωn

n!
=
∫

X
f
(

Ric(ω)− S̄
n

ω

)
∧ ωn−1

(n−1)!
,

1In what follows, we prefer to use the second expression using the Ricci curvature.
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in the sense that Fut(Ξ f , [ω]) = 0 is equivalent to DF(X ,L ) = 0 for the product test

configuration (X ,L ) generated by Ξ f (cf. Remark 1.3.4). Looking at the product log

test configurations, we have an analogue of the Futaki invariant in the log case, which

was first introduced by Donaldson [48]. It is written as

FutD,β (Ξ f , [ω])=
1

2π

∫
X

f (S(ω)− S̄)
ωn

n!
−(1−β )

(∫
D

f
ωn−1

(n−1)!
− Vol(D,ω)

Vol(X ,ω)

∫
X

f
ωn

n!

)
,

and may be called the log Futaki invariant (cf. §3.2, particularly Theorem 3.2.7). As

in the case of the (classical) Futaki invariant, FutD,β is expected to vanish on Kähler

classes which contain a Kähler–Einstein or constant scalar curvature Kähler metric with

cone singularities along D with cone angle 2πβ .2

Now, in view of the work of Donaldson [39, 40, 41], we are naturally led to the idea

of replacing the ample−KX by an arbitrary ample line bundle L, on a manifold X that is

not necessarily Fano, and consider the constant scalar curvature Kähler metrics in c1(L)

with cone singularities along a smooth effective divisor D (cf. Remark 3.1.3). Conically

singular metrics having the constant scalar curvature can be defined as follows.

Definition 3.1.4. A Kähler metric ωsing with cone singularities along D with cone angle

2πβ is said to be of constant scalar curvature Kähler or cscK if its scalar curvature

S(ωsing), which is a well-defined smooth function on X \D, satisfies S(ωsing) = const

on X \D.

Remark 3.1.5. We now note that all the results on the conically singular Kähler metrics

mentioned above are about Kähler–Einstein metrics with the anticanonical polarisation,

and there seem to be very few results concerning the conically singular metrics along a

divisor in a general polarisation. To the best of the author’s knowledge, we only have

[36, 65, 73, 92] treating general polarisations.

An important point, unlike in the Fano case where D ∈ |−λKX | for some λ ∈ N

was natural, is that D and L can be chosen completely independently; D can be any

smooth effective divisor in X and the corresponding line bundle OX(D) does not even

have to be ample.

2This certainly holds for Kähler–Einstein metrics on Fano manifolds; see Theorem 2.1, [110] and
also Theorem 7, [30].
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Remark 3.1.6. In general, if ωsing is a metric with cone singularities along D (as in

Remark 3.1.2), then it follows that any f ∈C∞(X ,R) is integrable with respect to the

measure ωn
sing on any open set U ⊂ X \D; this is because there exist positive constants

C1,C2 such that

C1|z1|2β−2
n

∏
i=1

√
−1dzi∧dz̄i ≤ ω

n
sing ≤C2|z1|2β−2

n

∏
i=1

√
−1dzi∧dz̄i

locally around D, and |z1|2β−2√−1dz1∧dz̄1 = 2r2β−1drdθ , z1 = re
√
−1θ , is integrable

over the punctured unit disk in C. This fact will be used many times in what follows.

In particular, the volume
∫

X\D ωn
sing of X \D is finite. By regarding ωn

sing as an

absolutely continuous measure on the whole of X , we shall write Vol(X ,ωsing) :=∫
X\D ωn

sing in what follows.

3.1.2 Momentum-constructed metrics and log Futaki invariant

The study of cscK metrics is considered to be much harder than that of Kähler–Einstein

metrics, since there is no analogue of the complex Monge–Ampère equation which

reduces the fourth order fully nonlinear PDE to a second order fully nonlinear PDE.

However, when the space X is endowed with some symmetry, it is often possible to

simplify the PDE by exploiting the symmetry of the space X . One such example, which

we shall treat in detail in what follows, is the momentum construction introduced by

Hwang [61] and generalised by Hwang–Singer [62], which works, for example, when

X is the projective completion P(F ⊕C) of a pluricanonical bundle F over a product

of Kähler–Einstein manifolds (see §3.3.1 for details). The point is that this theory

converts the cscK equation to a second order linear ODE, as we recall in §3.3.1.

Moreover, it is also possible to describe the cone singularities in terms of the

boundary value of the function called momentum profile; a detailed discussion on this

can be found in §3.3.2. This means that we have on X = P(F ⊕C) a particular class

of conically singular metrics, which we may call momentum-constructed conically

singular metrics, whose scalar curvature is easy to handle.

By using the above theory of momentum construction, we obtain the following

main result of this chapter. Suppose that (M,ωM) is a product of Kähler–Einstein Fano

manifolds (Mi,ωi), i = 1, . . . ,r, each with b2(Mi) = 1, and of dimension ni so that
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n−1 = ∑
r
i=1 ni. Let F :=

⊗r
i=1 p∗i K⊗li

i , li ∈ Z, Ki be the canonical bundle of Mi, and

pi : M�Mi be the obvious projection. The statement is as follows.

Theorem 3.1.7. Let X := P(F ⊕C), and write D for the ∞-section of P(F ⊕C) and

Ξ for the generator of the fibrewise C∗-action. Then, each Kähler class [ω]∈H2(X ,R)

of X admits a momentum-constructed cscK metric with cone singularities along D with

cone angle 2πβ ∈ [0,∞) if and only if FutD,β (Ξ, [ω]) = 0.

The reader is referred to §3.3.1 for more details on this statement, including where

the various hypotheses on X came from. Simple examples to which the above theorem

applies are given in Remark 3.3.5.

Remark 3.1.8. Note that the value of β for which this happens is unique in each Kähler

class [ω] ∈ H2(X ,R), given by the equation FutD,β (Ξ, [ω]) = 0 which we can re-write

as

β = 1−Fut(Ξ, [ω])

(∫
D

f
ωn−1

(n−1)!
− Vol(D,ω)

Vol(X ,ω)

∫
X

f
ωn

n!

)−1

,

where f is the holomorphy potential of Ξ; the denominator in the second term is equal

to Q(b)(b−B/A) in the notation of (3.25), which is strictly positive. We also need to

note that we do not necessarily have 0 < β < 1; although we can show β ≥ 0, there are

examples where β > 1. See Remark 3.3.5 for more details.

Remark 3.1.9. A naive re-phrasing of the above result is that each rational Kähler class

(or polarisation) of X = P(F ⊕C) admits a momentum-constructed cscK metric with

cone singularities along D with cone angle 2πβ if and only if it is log K-polystable

with cone angle 2πβ with respect to the product log test configuration generated by

the fibrewise C∗-action on X . As far as the author is aware, this is the first supporting

evidence for the log Donaldson–Tian–Yau conjecture (Conjecture 3.2.5) for the polari-

sations that are not anticanonical.

3.1.3 Log Futaki invariant computed with respect to the conically

singular metrics

Although the log Futaki invariant is conjectured to be related to the existence of coni-

cally singular cscK metrics, the log Futaki invariant itself is computed with respect to

a smooth Kähler metric in c1(L). We now consider the following question: what is the
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value of the log Futaki invariant if we compute it with respect to a conically singular

Kähler metric?3 Namely, we wish to compute the following quantity

FutD,β (Ξ f ,ωsing) =
∫

X
f
(

Ric(ωsing)−
S(ωsing)

n
ωsing

)
∧

ω
n−1
sing

(n−1)!

−2π(1−β )

(∫
D

f
ω

n−1
sing

(n−1)!
−

Vol(D,ωsing)

Vol(X ,ωsing)

∫
X

f
ωn

sing

n!

)
,

where S(ωsing) := 1
Vol(X ,ωsing)

∫
X Ric(ωsing)∧

ω
n−1
sing

(n−1)! . However, this is not a priori well-

defined for any conically singular metric ωsing; first of all
∫

D f
ω

n−1
sing

(n−1)! does not naively

make sense as ωsing is not well-defined on D, and it is not obvious that the integral∫
X Ric(ωsing)∧

ω
n−1
sing

(n−1)! or
∫

X f Ric(ωsing)∧
ω

n−1
sing

(n−1)! makes sense.4

In what follows, we do not claim any result on this problem that is true for all

conically singular metrics, and restrict our attention to the case where the conically

singular metric ωsing has some “preferable” form. By this, we mean that ωsing is either

of the following types.

Definition 3.1.10.

1. Let OX(D) be the line bundle associated to D and s be a global section that

defines D by {s = 0}. Giving a hermitian metric h on OX(D), we define

ω̂ := ω + λ
√
−1∂ ∂̄ |s|2β

h which is indeed a Kähler metric if λ > 0 is chosen

to be sufficiently small. Metrics of such form have been studied in many papers

([20, 25, 48, 64] amongst others), but, due to the apparent lack of the naming con-

vention in the existing literature5, we decide to call such a metric ω̂ a conically

singular metric of elementary form.

2. When X is a projective completion P(F ⊕C) of a line bundle F over a Kähler

manifold M, with the projection map p : F →M, we can consider a momentum-

constructed metric (as we mentioned in §3.1.2; see also §3.3.1 for the details).

We have an explicit description of cone singularities, as we shall see in §3.3.2.

3Auvray [11] established an analogous result for the Poincaré type metric, which can be regarded as
the β = 0 case.

4Note that Vol(X ,ωsing) does make sense by Remark 3.1.6.
5Calamai and Zheng [25] in fact call it a model metric, but we decide not to use this terminology in

order to avoid confusion with the model cone metric that appeared in Remark 3.1.2.
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What is common in these two classes of metrics is that they can be written as a

sum of a smooth differential form on X and a term of order O(|z1|2β ), together with

some more explicit estimates on the second O(|z1|2β ) term, which will be important

for us in proving that these metrics enjoy some nice estimates on the Ricci (and scalar)

curvature (cf. §3.3.2, §3.4.1); see also Remark 3.4.8.

For these types of metrics, ω̂ and ωϕ , we first show that Ric(ω̂)∧ ω̂n−1 and

Ric(ωϕ)∧ωn−1
ϕ define a current that is well-defined on the whole of X . In fact, we

can even show that they are well-defined as a current on any open subset Ω in X , as

stated in the following. They are the main technical results that are used in what follows

to compute the log Futaki invariant.

Theorem 3.1.11. Let ω̂ be a conically singular Kähler metric of elementary form ω̂ =

ω +λ
√
−1∂ ∂̄ |s|2β

h with 0 < β < 1. Then the following equation

∫
Ω

f Ric(ω̂)∧ ω̂n−1

(n−1)!
=
∫

Ω\D
f S(ω̂)

ω̂n

n!
+2π(1−β )

∫
Ω∩D

f
ωn−1

(n−1)!

holds for any open set Ω⊂ X and any f ∈C∞(X ,R), and all the integrals are finite.

Theorem 3.1.12. Let p : F →M be a holomorphic line bundle with hermitian metric

hF over a Kähler manifold (M,ωM), and ωϕ be a momentum-constructed conically

singular Kähler metric on X := P(F ⊕C) with a real analytic momentum profile ϕ

and 0 < β < 1. Then the following equation

∫
Ω

f Ric(ωϕ)∧
ωn−1

ϕ

(n−1)!
=
∫

Ω\D
f S(ωϕ)

ωn
ϕ

n!
+2π(1−β )

∫
Ω∩D

f
p∗ωM(b)n−1

(n−1)!

holds for any open set Ω ⊂ X and any f ∈ C∞(X ,R), and all the integrals are finite,

where ωM(b) is as defined in (3.3).

Remark 3.1.13. We note that Theorems 3.1.11 and 3.1.12 bear some similarities to

the equation (4.60) in Proposition 4.2, proved by Song and Wang [110]. The main

difference is that our theorems show that Ric(ω̂)∧ ω̂n−1 (resp. Ric(ωϕ)∧ωn−1
ϕ ) is

a current well-defined over any open subset Ω in X , as opposed to just computing∫
X Ric(ω̂)∧ ω̂n−1 (resp.

∫
X Ric(ωϕ)∧ωn−1

ϕ ); indeed our proof is quite different to

theirs, although we have in common the basic strategy of doing the integration by parts

“correctly”.
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Recalling (cf. Theorem 3.2.7) that the log Futaki invariant FutD,β is defined as

a sum of the classical Futaki invariant (cf. Theorem 1.3.5) and a “correction” term,

we first compute the classical Futaki invariant with respect to the conically singular

metrics, of elementary form and momentum-constructed, as follows. Theorem 3.1.11

enables us to make sense6 of the following quantity

Fut(Ξ, ω̂) :=
∫

X
Ĥ
(

Ric(ω̂)− S̄(ω̂)

n

)
∧ ω̂n−1

(n−1)!
,

where Ĥ is the holomorphy potential of Ξ with respect to ω̂ . Similarly, Theorem 3.1.12

enables us to make sense of Fut(Ξ,ωϕ) computed with respect to the momentum-

constructed conically singular metric ωϕ with real analytic momentum profile ϕ . The

result that we obtain is as follows.

Corollary 3.1.14.

1. Suppose that Ξ is a holomorphic vector field on X which preserves D. Write

H for the holomorphy potential of Ξ with respect to ω , and Ĥ for the one with

respect to a conically singular metric of elementary form ω̂ with 0< β < 1. Then

we have

Fut(Ξ, ω̂) =
∫

X\D
Ĥ(S(ω̂)−S(ω̂))

ω̂n

n!

+2π(1−β )

(∫
D

H
ωn−1

(n−1)!
− Vol(D,ω)

Vol(X , ω̂)

∫
X

Ĥ
ω̂n

n!

)
,

where S(ω̂) is the average of S(ω̂) over X \D and all the integrals are finite.

2. Writing Ξ for the generator of the fibrewise C∗-action on X = P(F ⊕C), and τ

for the holomorphy potential with respect to a momentum-constructed conically

singular metric ωϕ with 0 < β < 1, we have

Fut(Ξ,ωϕ) =
∫

X\D
τ(S(ωϕ)−S(ωϕ))

ωn
ϕ

n!

+2π(1−β )

(
bVol(M,ωM(b))− Vol(M,ωM(b))

Vol(X ,ωϕ)

∫
X

τ
ωn

ϕ

n!

)
,

6In fact, there is also a subtlety involving the asymptotic behaviour of the holomorphy potential Ĥ,
cf. §3.4.3.1 and §3.4.3.2.
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where D is the ∞-section defined by τ = b, and ωM(b) is as defined in (3.3); see

§3.3.1. All the integrals in the above are finite.

We finally compute the log Futaki invariant, as stated in the following theorem; a

key result is that the “distributional” term in Fut(Ξ, ω̂) (resp. Fut(Ξ,ωϕ)) exactly can-

cels the “correction” term in the log Futaki invariant (cf. Corollary 3.5.3 (resp. Corol-

lary 3.5.7)). We also prove a partial invariance result for the Futaki invariant, when it

is computed with respect to these classes of conically singular metrics. For the smooth

metrics, that the Futaki invariant depends only on the Kähler class is a well-known

theorem of Futaki [54] (cf. Theorem 1.3.5), where the proof crucially relies on the in-

tegration by parts. When we compute it with respect to conically singular metrics, we

are essentially on the noncompact manifold X \D, and hence cannot naively apply the

integration by parts. Still, we can claim the following result.

Theorem 3.1.15. Suppose 0 < β < 3/4.

1. The log Futaki invariant computed with respect to a conically singular metric

of elementary form ω̂ , evaluated against a holomorphic vector field Ξ which

preserves D and with the holomorphy potential Ĥ, is given by

FutD,β (Ξ, ω̂) =
1

2π

∫
X\D

Ĥ(S(ω̂)−S(ω̂))
ω̂n

n!
,

and it is invariant under the change ω̂ 7→ ω̂ +
√
−1∂ ∂̄ψ for any smooth function

ψ ∈C∞(X ,R) with ω̂ +
√
−1∂ ∂̄ψ > 0 on X \D, i.e.

FutD,β (Ξ, ω̂ +
√
−1∂ ∂̄ψ) = FutD,β (Ξ, ω̂) =

1
2π

∫
X\D

Ĥ(S(ω̂)−S(ω̂))
ω̂n

n!
.

In particular, if ω̂ is cscK, FutD,β (Ξ, ω̂ +
√
−1∂ ∂̄ψ) = 0 for any ψ ∈C∞(X ,R)

with ω̂ +
√
−1∂ ∂̄ψ > 0 on X \D.

2. Suppose that the σ -constancy hypothesis (cf. Definition 3.3.1) is satisfied for our

data, and let D be the ∞-section of X = P(F ⊕C). Then the log Futaki invariant

computed with respect to a momentum-constructed conically singular metric ωϕ ,
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evaluated against the generator Ξ of fibrewise C∗-action, is given by

FutD,β (Ξ,ωϕ) =
∫

X\D
τ(S(ωϕ)−S(ωϕ))

ωn
ϕ

n!
,

and it is invariant under the change ωϕ 7→ ωϕ +
√
−1∂ ∂̄ψ for any smooth func-

tion ψ ∈C∞(X ,R) with ωϕ +
√
−1∂ ∂̄ψ > 0 on X \D.

Remark 3.1.16. The author conjectures that the result should be true for 0 < β < 1 in

general.

3.1.4 Organisation of the chapter

We first review the basics on log K-stability and log Futaki invariant in §3.2.

§3.3 discusses in detail the momentum-constructed conically singular metrics and

log Futaki invariant, in particular our main result Theorem 3.1.7; §3.3.1 is a general in-

troduction, and §3.3.2 discusses some basic properties of momentum-constructed met-

rics that have cone singularities. §3.3.3 is devoted to the proof of Theorem 3.1.7.

§3.4 and §3.5 discuss in detail the log Futaki invariant computed with respect to

conically singular metrics, as presented in §3.1.3. After collecting some basic estimates

on conically singular metrics of elementary form in §3.4.1, we prove in §3.4.2 that the

current Ric(ω̂)∧ ω̂n−1 (and Ric(ωϕ)∧ωn−1
ϕ ) is well-defined on the whole of X , as

stated in Theorems 3.1.11 and 3.1.12. Corollary 3.1.14 is proved in §3.4.3.

§3.5 is concerned with the proof of Theorem 3.1.15; the main result of §3.5.1 is

Corollary 3.5.3 (see also Remark 3.5.4), which reduces the claim (for the conically

singular metrics of elementary form) to the computations that we do in §3.5.2 along

the line of proving the invariance of the classical Futaki invariant (i.e. the smooth case).

§3.5.3 establishes the claim for the momentum-constructed conically singular metrics.

3.2 Log Futaki invariant and log K-stability
Donaldson [48] introduced the notion of log K-stability, in the attempt to solve Con-

jecture 1.2.6 for the Fano manifolds; see also Remark 3.2.6. This is a variant of K-

stability that is expected to be more suited to conically singular cscK metrics. We refer

to [48, 92] for a general introduction.

This purely algebro-geometric notion can be defined for an n-dimensional po-
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larised normal variety (X ,L) together with an effective integral reduced divisor D⊂ X ,

but we will throughout assume that (X ,L) is a polarised Kähler manifold and D⊂ X is

a smooth effective divisor as this is the case we will be exclusively interested in. We

write ((X ,D);L) for these data.

Suppose now that we have a test configuration (X ,L ) for (X ,L). As in §1.2.1,

the equivariant C∗-action on X induces an action on the central fibre X0, and hence

an action on H0(X0,L
⊗k|X0) for any k ∈ N. We write dk for dimH0(X0,L

⊗k|X0)

and wk for the weight of the C∗-action on
∧max H0(X0,L

⊗k|X0). As we saw in §1.2.1,

these admit an expansion in k� 1 as

dk = a0kn +a1kn−1 + · · ·

wk = b0kn+1 +b1kn + · · ·

where ai, bi are some rational numbers.

The C∗-action on X naturally induces a test configuration (D ,L |D) of (D,L|D)

by supplementing the orbit of D (under the C∗-action) with the flat limit. Similarly to

the above, writing D0 for the central fibre, we write d̃k for dimH0(D0,L
⊗k|D0) and w̃k

for the weight of the C∗-action on
∧max H0(D0,L

⊗k|D0). We have the expansion

d̃k = ã0kn−1 + ã1kn−2 + · · ·

w̃k = b̃0kn + b̃1kn−1 + · · ·

exactly as above, where ãi, b̃i are some rational numbers.

Thus a test configuration (X ,L ) and a choice of divisor D ⊂ X gives us two

test configurations (X ,L ) and (D ,L |D). We call the pair (X ,L ) and (D ,L |D)

constructed as above a log test configuration for the pair ((X ,D);L), and write

((X ,D);L ) to denote these data. We now define the log Donaldson–Futaki in-

variant

DF(X ,D ,L ,β ) :=
2(a0b1−a1b0)

a0
− (1−β )

(
b̃0−

ã0

a0
b0

)
, (3.1)

analogously to Definition 1.2.4.

We now consider a special case where the log test configuration ((X ,D);L ) is
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given by a C∗-action on X which lifts to L and preserves D. We then have isomor-

phisms X ∼= X ×C and D ∼= D×C, and in particular the central fibre X0 (resp. D0)

is isomorphic to X (resp. D). Note that the above isomorphisms are not necessarily

equivariant, and hence the central fibres X0 ∼= X and D0 ∼= D could have a nontrivial

C∗-action. In this case the log test configuration ((X ,D);L ) is called product. In

the more restrictive case where the above isomorphisms are equivariant, i.e. when C∗-

action acts trivially on the central fibres X0∼=X and D0∼=D, the log test configurations

is called trivial.

Remark 3.2.1. As in Remark 1.3.4, a product log test configuration is exactly a choice

of Ξ ∈H0(X ,TX) that admits a holomorphy potential and preserves D (i.e. is tangential

to D).

With these preparations, the log K-stability can now be defined as follows.

Definition 3.2.2. A pair ((X ,D);L) is called log K-semistable with cone angle 2πβ

if DF(X ,D ,L ,β ) ≥ 0 for any log test configuration ((X ,D);L ) for ((X ,D);L).

It is called log K-polystable with cone angle 2πβ if it is log K-semistable with cone

angle 2πβ and DF(X ,D ,L ,β ) = 0 if and only if ((X ,D);L ) is product. It is called

log K-stable with cone angle 2πβ if it is log K-semistable with cone angle 2πβ and

DF(X ,D ,L ,β ) = 0 if and only if ((X ,D);L ) is trivial.

Remark 3.2.3. We need some restriction on the singularities of X and D to define log

K-stability (cf. Remark 1.2.3), when the log test configuration is not product or trivial

(cf. [92]), but we do not discuss this issue since only the product log test configurations

will be important for us later.

Remark 3.2.4. While we shall see later (cf. Corollary 3.5.3 and Remark 3.5.4 that

follows) in differential-geometric context how the “extra” terms (1− β )
(

b̃0− ã0
a0

b0

)
in (3.1) (or the corresponding terms in (3.2)) come out, they come out naturally in the

blow-up formalism [92] in algebraic geometry (cf. Theorem 3.7, [92]).

The following may be called the log Donaldson–Tian–Yau conjecture. This

seems to be a folklore conjecture in the field, and is mentioned in e.g. [36, 65].

Conjecture 3.2.5. ((X ,D);L) is log K-polystable with cone angle 2πβ if and only if X

admits a cscK metric in c1(L) with cone singularities along D with cone angle 2πβ .



3.2. Log Futaki invariant and log K-stability 115

Remark 3.2.6. When X is Fano with L =−λKX (for some λ ∈ N) and D ∈ |−λKX |,

this conjecture was affirmatively solved by Berman [13] and Chen–Donaldson–Sun

[28, 29, 30]. Berman [13] first proved that the existence of conically singular Kähler–

Einstein metric with cone angle 2πβ implies log K-stability of ((X ,D);−λKX) with

cone angle 2πβ , and Chen–Donaldson–Sun [28, 29, 30] proved that the log K-stability

with cone angle 2πβ implies the existence of the conically singular Kähler–Einstein

metric with cone angle 2πβ , in the course of proving the “ordinary” version of the

Donaldson–Tian–Yau conjecture (Conjecture 1.2.6) for Fano manifolds.

Let f ∈C∞(X ,C) be the holomorphy potential, with respect to ω , of the holomor-

phic vector field Ξ f on X which preserves D. Recall that we use the sign convention

ι(Ξ f )ω = −∂̄ f for the holomorphy potential. Let ((X ,D);L ) be the product log

test configuration defined by Ξ f (cf. Remark 3.2.1). In this case, a straightforward

adaptation of the argument in §2 of [41] shows the following.

Theorem 3.2.7. (Donaldson [41, 48]) The log Donaldson-Futaki invariant reduces to

the following differential-geometric formula

DF(X ,D ,L ,β ) = FutD,β (Ξ f , [ω])

:=
1

2π
Fut(Ξ f , [ω])− (1−β )

(∫
D

f
ωn−1

(n−1)!
− Vol(D,ω)

Vol(X ,ω)

∫
X

f
ωn

n!

)
,

(3.2)

defined for some (in fact any) smooth Kähler metric ω ∈ c1(L), when the log test con-

figuration ((X ,D);L ) is product, defined the holomorphic vector field Ξ f on X which

preserves D. In the formula above, Vol(D,ω) :=
∫

D
ωn−1

(n−1)! and Vol(X ,ω) :=
∫

X
ωn

n! are

the volumes given by the smooth Kähler metric ω ∈ c1(L).

We may call the above FutD,β the log Futaki invariant, where the fact that

FutD,β (Ξ f , [ω]) depends only on the Kähler class [ω] (and not on the specific choice of

the metric) can be shown exactly as the classical case; see e.g. §4.2, [119].
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3.3 Momentum-constructed cscK metrics with cone

singularities along a divisor

3.3.1 Background and overview

Consider a Kähler manifold (M,ωM) of complex dimension n−1 together with a holo-

morphic line bundle p : F →M, endowed with a hermitian metric hF with curvature

form γ :=−
√
−1∂ ∂̄ loghF . We first consider Kähler metrics on the total space of F ,

which can be regarded as an open dense subset of X := P(F ⊕C); we shall later im-

pose some “boundary conditions” for these metrics to extend to X . Consider a Kähler

metric on the total space of F of the form7 p∗ωM +ddc f (t), where f is a function of

t, and t is the log of the fibrewise norm function defined by hF serving as a fibrewise

radial coordinate. A Kähler metric of this form is said to satisfy the Calabi ansatz.

This setting was studied by Hwang [61] and Hwang–Singer [62], in terms of the

moment map associated to the fibrewise U(1)-action on the total space of F . Suppose

that we write ∂

∂θ
for the generator of this U(1)-action, normalised so that exp(2π

∂

∂θ
) =

1, and τ for the corresponding moment map with respect to the Kähler form ω f :=

p∗ωM + ddc f (t). An observation of Hwang and Singer [62] was that the function

|| ∂

∂θ
||2ω f

is constant on each level set of τ , and hence we have a function ϕ : I→ R≥0,

defined on the range I ⊂ R of the moment map τ , given by

ϕ(τ) :=
∣∣∣∣∣∣∣∣ ∂

∂θ

∣∣∣∣∣∣∣∣2
ω f

which is called the momentum profile in [62].

An important point of this theory is that we can in fact “reverse” the above con-

struction as follows. We start with some interval I ⊂ R (called momentum interval in

[62]) and τ ∈ I such that

ωM(τ) := ωM− τγ > 0, (3.3)

and write {p : (F ,hF )→ (M,ωM), I} for this collection of data. We now consider a

function ϕ which is smooth on I and positive on the interior of I. Proposition 1.4 (and

7We shall use the convention dc :=
√
−1(∂̄ −∂ ).
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also §2.1) of [62] shows that the Kähler metric on F defined by

ωϕ := p∗ωM− τ p∗γ +
1
ϕ

dτ ∧dc
τ = p∗ωM(τ)+

1
ϕ

dτ ∧dc
τ (3.4)

is equal to ω f = p∗ωM + ddc f (t) satisfying the Calabi ansatz, where ( f , t) and (ϕ,τ)

are related in the way as described in (2.2) and (2.3) of [62].

We now come back to the projective completion X =P(F⊕C) of F , and suppose

that ω f = p∗ωM +ddc f (t) extends to a well-defined Kähler metric on X . In this case,

without loss of generality we may write I = [−b,b] for some b > 0; τ = b (resp. τ =

−b) corresponds to the ∞-section (resp. 0-section) of X = P(F ⊕C), cf. §2.1, [62].

Hwang [61] proved8 that the condition for ωϕ defined by (3.4) to extend to a well-

defined Kähler metric on X is given by the following boundary conditions for ϕ at ∂ I:

ϕ(±b) = 0 and ϕ ′(±b) =∓2. We can thus construct a Kähler metric ωϕ on X from the

data {p : (F ,hF )→ (M,ωM), I}, and such ωϕ is said to be momentum-constructed.

We recall the following notion.

Definition 3.3.1. The data {p : (F ,hF )→ (M,ωM), I} are said to be σ -constant if the

curvature endomorphism ω
−1
M γ has constant eigenvalues on M, and the Kähler metric

ωM(τ) (on M) has constant scalar curvature for each τ ∈ I.

The advantage of assuming the σ -constancy is that the scalar curvature S(ωϕ) of

ωϕ can be written as

S(ωϕ) = R(τ)− 1
2Q

∂ 2

∂τ2 (ϕQ)(τ) (3.5)

in terms of τ , where

Q(τ) :=
ωM(τ)n−1

ω
n−1
M

(3.6)

and

R(τ) := trωM(τ)Ric(ωM) (3.7)

are both functions of τ by virtue of the σ -constancy hypothesis. Note that (3.5) means

that the cscK equation S(ωϕ) = const is now a second order linear ODE.

In what follows, we assume that (M,ωM) is a product of Kähler–Einstein mani-

folds (Mi,ωi), and F :=
⊗r

i=1 p∗i K⊗li
i , where li ∈Z, pi : M�Mi is the obvious projec-

8See also Proposition 1.4 and §2.1 of [62]. The boundary condition of ϕ at ∂ I = {±b} will be
discussed later in detail.
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tion, and Ki is the canonical bundle of Mi (we can in fact assume li ∈Q as long as K⊗li
i

is a genuine line bundle, rather than a Q-line bundle). It is easy to see that this satisfies

the σ -constancy. We also assume that each Mi is Fano, as in [61]; this hypothesis is

needed in the Appendix A of [61], which will also be used in §3.3.3.1.

We now recall the work of Hwang (cf. Theorem 1, [61]), who constructed an

extremal metric on X = P(F ⊕C) in every Kähler class.

Theorem 3.3.2. (Hwang [61], Corollary 1.2 and Theorem 2) The projective completion

P(F ⊕C) of a line bundle F :=
⊗r

i=1 p∗i K⊗li
i , over a product of Kähler–Einstein Fano

manifolds, each with the second Betti number 1, admits an extremal metric in each

Kähler class.

Remark 3.3.3. We also recall that the scalar curvature of these extremal metrics can

be written as S(ωϕ) = σ0 +λτ where σ0 and λ are constants (cf. Lemma 3.2 [61]).

Whether this extremal metric is in fact cscK depends on the (classical) Futaki

invariant, by recalling Lemma 1.4.5. Hwang’s argument, however, gives the following

alternative viewpoint on this problem. The above formula S(ωϕ) = σ0 + λτ for the

scalar curvature of the extremal metric of course implies that ωϕ is cscK if and only if

λ = 0, and hence the question reduces to whether there exists a well-defined extremal

Kähler metric ωϕ such that S(ωϕ) has λ = 0. As Hwang [61] shows, the obstruction for

achieving this is the following boundary conditions for ϕ at ∂ I = {−b,+b}: ϕ(±b) =

0 and ϕ ′(±b) = ∓2. They are the conditions that must be satisfied for ωϕ to be a

well-defined smooth metric on X ; ϕ(±b) = 0 means that the fibres “close up”, and

ϕ ′(±b) =∓2 means that the metric is smooth along the ∞-section (resp. 0-section).

It is not possible to achieve λ = 0, ϕ(±b) = 0, ϕ ′(±b) =∓2 all at the same time if

the Futaki invariant is not zero. On the other hand, however, we can brutally set λ = 0

and try to see what happens to ϕ(±b) and ϕ ′(±b). In fact, it is possible to set λ = 0,

ϕ(±b) = 0, and ϕ(−b) = 2 all at the same time9, as discussed in §3.2 [61] and recalled

in §3.3.3.1 below. Thus, we should have ϕ ′(b) 6=−2 if the Futaki invariant is not zero.

A crucially important point for us is that the value −πϕ ′(b) = 2πβ is the angle of the

9It is possible to set ϕ(b) = −2 instead of ϕ(−b) = 2 in here, and in this case ωϕ will be smooth
along the ∞-section with cone singularities along the 0-section; this is purely a matter of convention.
However, just to simplify the argument, we will assume henceforth that ωϕ is always smooth along the
0-section with the cone singularities forming along the ∞-section.
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cone singularities that the metric develops along the ∞-section, if ϕ is real analytic on

I. This point is briefly mentioned in p2299 of [62] and seems to be well-known to the

experts (cf. Lemma 2.3 of [73]). However, as the author could not find an explicitly

written proof in the literature, the proof of this fact is provided in Lemma 3.3.6, §3.3.2,

where the author thanks Michael Singer for the instructions on how to prove it.

What we prove in §3.3.3.1 is that it is indeed possible to run the argument as above,

namely it is indeed possible to have a cscK metric on X in each Kähler class, at the cost

of introducing cone singularities along the ∞-section. An important point here is that

the cone angle 2πβ is uniquely determined in each Kähler class; we can even obtain

an explicit formula (equation (3.22)) for the cone angle.

We compute in §3.3.3.2 the log Futaki invariant. The point is that the computation

becomes straightforward by using the extremal metric, afforded by Theorem 3.3.2. It

turns out that the vanishing of the log Futaki invariant gives an equation for β to satisfy

(equation (3.26)); in other words, there is a unique value of β for which the log Futaki

invariant vanishes. The content of our main result, Theorem 3.1.7, is that this value of β

agrees with the one for which there exists a momentum-constructed conically singular

cscK metric with cone angle 2πβ (equation (3.22)).

Remark 3.3.4. The hypothesis b2(Mi) = 1 in Theorem 3.1.7 is to ensure that each

Kähler class of X can be represented by a momentum-constructed metric, as we now

explain. Observe first that b2(Mi) = 1 implies H2(M,R) =
⊕

iR[p∗i ωi], by recalling

that every Fano manifold is simply connected (cf. [31]). Thus recalling the Leray–

Hirsch theorem, we have

H2(X ,R) = p∗H2(M,R)⊕Rc1(ξ ) = p∗
(⊕

i

R[p∗i ωi]

)
⊕Rc1(ξ ),

i.e. each Kähler class on X can be written as ∑
r
i=1 αi p∗[p∗i ωi]+αr+1c1(ξ ) for some αi >

0, where ξ is the dual of the tautological bundle on X . We can now prove (cf. Lemma

4.2, [61]) that each Kähler class can be represented by a momentum-constructed metric

ωφ = p∗ωM−τ p∗γ+ 1
φ

dτ∧dcτ as follows. Observe now that the form−τ p∗γ+ 1
φ

dτ∧
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Figure 3.1: Graph of β as a function of b for F = p∗1(K
−1
P1 )⊗ p∗2(K

2
P1) on M = P1×P1.

dcτ is closed. Thus its cohomology class can be written as

[
−τ p∗γ +

1
φ

dτ ∧dc
τ

]
=

r

∑
i=1

α
′
i p∗[p∗i ωi]+α

′
r+1c1(ξ )

for some α ′i > 0. We shall prove in Lemma 3.3.9 that any momentum-constructed

metric with the momentum interval I = [−b,b] has fibrewise volume 4πb. This

proves α ′r+1 = 4πb. Thus, writing ωM = ∑
r
i=1 α̃iωi, we see that [ωφ ] = ∑

r
i=1(α

′
i +

α̃i)p∗[p∗i ωi]+4πbc1(ξ ). Thus, given any Kähler class in κ ∈H2(X ,R), we can choose

α̃i and b appropriately so that [ωφ ] = κ .

Remark 3.3.5. We do not necessarily have 0 < β < 1 in Theorem 3.1.7; although

β ≥ 0 always holds, as we prove in §3.3.3.1, there are examples where β > 1. Indeed,

when we take M = P1× P1, ωM = p∗1ωKE + p∗2ωKE for the Kähler–Einstein metric

ωKE ∈ 2πc1(−KP1) and F = p∗1(−KP1)⊗ p∗2(2KP1), we always have β > 1 as shown

in Figure 3.1, by noting that 0 < b < 0.5 gives a well-defined momentum interval.

On the other hand, as shown in Figure 3.2, F = p∗1(−2KP1)⊗ p∗2(KP1) with M

and ωM as above, 0 < b < 0.5 implies 0.3. β < 1; in particular Theorem 3.1.7 is not

vacuous even if we impose an extra condition 0 < β < 1.

The author could not find an example where β = 0 is achieved.
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Figure 3.2: Graph of β as a function of b for F = p∗1(K
−2
P1 )⊗ p∗2(KP1) on M = P1×P1.

3.3.2 Some properties of momentum-constructed metrics with

ϕ ′(b) =−2β

We do not assume in this section that the σ -constancy hypothesis (cf. Definition 3.3.1)

is necessarily satisfied, but do assume that ϕ is real analytic.

We first prove that ϕ ′(b) = −2β does indeed define a Kähler metric that is coni-

cally singular along the ∞-section. The author thanks Michael Singer for the instruc-

tions on the proof of the following lemma.

Lemma 3.3.6. (Singer [109]; see also Li [73], Lemma 2.3) Suppose that ωϕ is a

momentum-constructed Kähler metric on X = P(F ⊕C) with the momentum inter-

val I = [−b,b] and the momentum profile ϕ that is real analytic on I with ϕ(±b) = 0,

ϕ ′(−b) = 2, and ϕ ′(b) = −2β . Then ωϕ is smooth on X \D, where D = {τ = b} is

the ∞-section, and has cone singularities along D with cone angle 2πβ . Moreover,

choosing the local coordinate system (z1, . . . ,zn) on X so that D = {z1 = 0} and that

(z2, . . . ,zn) defines a local coordinate system on the base M, b− τ can be written as a

locally uniformly convergent power series

b− τ = A0|z1|2β

(
1+

∞

∑
i=1

Ai|z1|2β i

)
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around D = {τ = b} = {z1 = 0}, where Ai’s are smooth functions which depend only

on the local coordinates (z2, . . . ,zn) on M, and A0 > 0 is in addition bounded away

from 0.

Thus ϕ(τ) can be written as a locally uniformly convergent power series around

D

ϕ(τ) = 2βA′1|z1|2β +
∞

∑
i=2

A′i|z1|2β i, (3.8)

where A′i’s are smooth functions which depend only on the local coordinates (z2, . . . ,zn)

on M, and A′1 > 0 is in addition bounded away from 0. This means that the metric gϕ

corresponding to ωϕ satisfies the following estimates around D:

1. (gϕ)11̄ = O(|z1|2β−2),

2. (gϕ)1 j̄ = O(|z1|2β−1) ( j 6= 1),

3. (gϕ)i j̄ = O(1) (i, j 6= 1),

i.e. ωϕ is a Kähler metric with cone singularities along D with cone angle 2πβ (cf. Def-

inition 3.1.1).

Proof. Since Lemma 2.5 and Proposition 2.1 in [61] imply that ωϕ is smooth on X \

D, we only have to check that the condition ϕ ′(b) = −2β implies that ωϕ has cone

singularities along D with cone angle 2πβ .

Writing t for the log of the fibrewise length measured by hF , we have

dt =
dτ

ϕ(τ)
, (3.9)

by recalling the equation (2.2) in [62]. We now write ϕ as a convergent power series in

b− τ around τ = b as

ϕ(τ) = 2β (b− τ)+
∞

∑
i=2

a′i(b− τ)i, (3.10)

since we assumed that ϕ is real analytic, where a′i’s are real numbers. Note that the

coefficient of the first term is fixed by the boundary condition ϕ ′(b) =−2β . This gives

t =
1
2

loghF (ζ ,ζ ) =− 1
2β

log(b− τ)+
∞

∑
i=2

a′′i (b− τ)i−1 + const
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with some real numbers a′′i , where ζ is a fibrewise coordinate on F →M.

On the other hand, since ζ is a fibrewise coordinate on F →M, it gives a fibrewise

local coordinate of P(F ⊕C)→M around the 0-section; in other words, at each point

p ∈ M, ζ gives a local coordinate on each fibre P1 in the neighbourhood containing

0 = [0 : 1] ∈ P1. Since τ = b defines the ∞-section of P(L⊕C)→ M, it is better to

pass to the local coordinates on P1 in the neighbourhood containing ∞ = [1 : 0] ∈ P1 in

order to evaluate the asymptotics as τ → b. The coordinate change is of course given

by ζ 7→ 1/ζ =: z1, and hence we have

1
2

loghF (ζ ,ζ ) =
1
2

φF −
1
2

log |z1|2 =−
1

2β
log(b− τ)+

∞

∑
i=2

a′′i (b− τ)i−1 + const

by writing hF = eφF locally around a point p ∈ M. This means that there exists a

smooth function A = A(z2, . . . ,zn) which is bounded away from 0 and depends only on

the coordinates (z2, . . . ,zn) on M such that

|z1|2 = A(b− τ)
1
β

(
1+

∞

∑
i=1

a′′′i (b− τ)

)
,

with some real numbers a′′′i and hence, by raising both sides of the equation to the

power of β and applying the inverse function theorem, we have

b− τ = A0|z1|2β

(
1+

∞

∑
i=1

Ai|z1|2β i

)
(3.11)

as a locally uniformly convergent power series around D = {τ = b}= {z1 = 0}, where

each Ai = Ai(z2, . . . ,zn) is a smooth function which depends only on the coordinates

(z2, . . . ,zn) on M, and A0 > 0 is in addition bounded away from 0. In particular, we

have b− τ = O(|z1|2β ), and combined with the equation (3.10), we thus get the result

(3.8) that we claimed.

We now evaluate 1
ϕ

dτ ∧dcτ in ωϕ = p∗ωM−τ p∗γ + 1
ϕ

dτ ∧dcτ . The above equa-

tion (3.11) means

∂ (b− τ) = A0β |z1|2β−2z̄1B1dz1 + |z1|2β
n

∑
i=2

B2,idzi
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and

∂̄ (b− τ) = A0β |z1|2β−2z1B1dz̄1 + |z1|2β
n

∑
i=2

B2,idz̄i,

where we wrote B1 := 1+∑
∞
i=1 iAi|z1|2β i and B2,i := ∂

∂ zi

(
A0 +A0 ∑

∞
j=1 Ai|z1|2β j

)
. We

thus have

dτ ∧dc
τ = d(b− τ)∧dc(b− τ)

= 2A2
0B2

1β
2|z1|4β−2√−1dz1∧dz̄1 +2β |z1|4β−2z̄1A0B1

n

∑
i=2

B2,i
√
−1dz1∧dz̄i

+ c.c.+O(|z1|4β ).

(3.12)

where O(|z1|4β ) stands for a term of the form

|z1|4β × (smooth function in (z2, . . . ,zn))

× (locally uniformly convergent power series in |z1|2β ).

We now estimate the behaviour of each component (gϕ)i j̄ of the Kähler met-

ric ωϕ = ∑
n
i, j=1(gϕ)i j̄

√
−1dzi ∧ dz̄ j in terms of the local holomorphic coordinates

(z1,z2, . . . ,zn) on X . The above computation with ϕ(τ) = O(|z1|2β ) means that

(gϕ)11̄ = O(|z1|2β−2), (gϕ)1 j̄ = O(|z1|2β−1) ( j 6= 1), (gϕ)i j̄ = O(1) (i, j 6= 1) as it ap-

proaches the ∞-section, proving that ωϕ has cone singularities of cone angle 2πβ along

D.

We also see that the above means that the inverse matrix (gϕ)
i j̄ satisfies the fol-

lowing estimates.

Lemma 3.3.7. Suppose that gϕ is a momentum-constructed conically singular Kähler

metric with cone angle 2πβ along D = {z1 = 0}, with the real analytic momentum

profile ϕ . Then, around D,

1. (gϕ)
11̄ = O(|z1|2−2β ) ,

2. (gϕ)
1 j̄ = O(|z1|) if j 6= 1 ,
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3. (gϕ)
i j̄ = O(1) if i, j 6= 1.

Thus, ∆ωϕ
f = ∑

n
i, j=1(gϕ)

i j̄ ∂ 2

∂ zi∂ z̄ j
f is bounded if f is a smooth function on X. Also,

if f ′ is a smooth function on X \D that is of order |z1|2β around D, then ∆ωϕ
f ′ =

O(1)+O(|z1|2β ). In particular, ∆ωϕ
f ′ remains bounded on X \D.

We now prove the following estimates on the Ricci curvature and the scalar cur-

vature of ωϕ around the ∞-section, i.e. when τ → b.

Lemma 3.3.8. Choosing a local coordinate system (z1, . . . ,zn) on X so that z1 is the

fibrewise coordinate which locally defines the ∞-section D by z1 = 0 and that (z2, . . . ,zn)

defines a local coordinate system on the base M, we have, around D,

1. Ric(ωϕ)11̄ = O(1)+O(|z1|2β−2),

2. Ric(ωϕ)1 j̄ = O(1)+O(|z1|2β−1) ( j 6= 1),

3. Ric(ωϕ)i j̄ = O(1)+O(|z1|2β ) (i, j 6= 1),

for a momentum-constructed metric ωϕ with smooth ϕ and ϕ ′(b) =−2β . In particular,

combined with Lemma 3.3.7, we see that S(ωϕ) is bounded on X \D if 0 < β < 1.

Proof. First note that (cf. Lemma 3.3.6, the equation (3.4), and p2296 in [62]) ωn
ϕ =

n
ϕ

p∗ωM(τ)n−1∧dτ ∧dcτ is of order

ω
n
ϕ = |z1|2β−2F p∗ωM(τ)n−1∧

√
−1dz1∧dz̄1,

where F stands for some locally uniformly convergent power series in |z1|2β that is

bounded from above and away from 0 on X \D (this follows from Lemma 3.3.6).

Writing ω0 := p∗ωM+δωFS for a reference Kähler form on X =P(F⊕C), where

ωFS is a fibrewise Fubini-Study metric and δ > 0 is chosen to be small enough so that

ω0 > 0, we thus have
ωn

ϕ

ωn
0
=

p∗ωM(τ)n−1

p∗ωn−1
M

|z1|2β−2F ′

with another locally uniformly convergent power series F ′ in |z1|2β on X \D, which

is bounded from above and away from 0 (note also that the derivatives of F ′ in the

z1-direction are not necessarily bounded on X \D due to the dependence on |z1|2β ;
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they may have a pole of fractional order along D). Recalling (3.3), we see that

p∗ωM(τ)n−1/ω
n−1
M depends polynomially on τ . We thus have a locally uniformly con-

vergent power series

ωn
ϕ

ωn
0
= |z1|2β−2

(
F0 +

∞

∑
j=1

Fj|z1|2β j

)
(3.13)

with some smooth functions Fj depending only on the coordinates (z2, . . . ,zn) on M,

where F0 is also bounded away from 0.

Choosing a local coordinate system (z1, . . . ,zn) on X so that D = {z1 = 0} and

that (z2, . . . ,zn) defines a local coordinate system on the base M, we evaluate the or-

der of each component of the Ricci curvature Ric(ωϕ) = −
√
−1∂ ∂̄ log

(
ωn

ϕ

ωn
0

)
around

the ∞-section, i.e. as τ → b. Writing Ric(ωϕ)i j̄ = − ∂ 2

∂ zi∂ z̄ j
log
(

ωn
ϕ

ωn
0

)
and noting

∂ 2

∂ zi∂ z̄ j
log |z1|2 = 0 on X \D for all i, j, we see that Ric(ωϕ)11̄ = O(1)+O(|z1|2β−2),

Ric(ωϕ)1 j̄ = O(1)+O(|z1|2β−1) ( j 6= 1), and Ric(ωϕ)i j̄ = O(1)+O(|z1|2β ) (i, j 6= 1).

In particular, we see that S(ωϕ) is bounded if 0 < β < 1.

3.3.3 Proof of Theorem 3.1.7

3.3.3.1 Construction of conically singular cscK metrics on X = P(F ⊕

C)

We start from recalling the materials in §3.2 of [61], particularly Propositions 3.1 and

3.2. We first define a function

φ(τ) :=
1

Q(τ)

(
2(τ +b)Q(−b)−2

∫
τ

−b
(σ0 +λx−R(x))(τ− x)Q(x)dx

)
(3.14)

where Q(τ), R(τ) are defined as in (3.6) and (3.7). These being functions of τ follows

from σ -constancy (Definition 3.3.1). We re-write this as

(φQ)(τ) = 2(τ +b)Q(−b)−2
∫

τ

−b
(σ0 +λx−R(x))(τ− x)Q(x)dx, (3.15)
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and differentiate both sides of (3.15) twice, to get

R(τ)− 1
2Q

∂ 2

∂τ2 (φQ)(τ) = σ0 +λτ. (3.16)

We can show, as in Proposition 3.1 of [61], that there exist constants σ0 and λ such

that φ satisfies φ(±b) = 0, φ ′(±b) = ∓2, and φ(τ) > 0 if τ ∈ (−b,b); namely that φ

defines a smooth momentum-constructed metric ωφ . We thus have S(ωφ ) = σ0 +λτ ,

by recalling (3.5) and (3.16), so that ωφ is extremal.

Roughly speaking, our strategy is to “brutally substitute λ = 0” in the above to get

a cscK metric with cone singularities along the ∞-section. More precisely, we aim to

solve the equation

R(τ)− 1
2Q

∂ 2

∂τ2 (ϕQ)(τ) = σ
′
0 (3.17)

with some constant σ ′0, for a profile ϕ that is strictly positive on the interior (−b,b)

of I with boundary conditions ϕ(b) = ϕ(−b) = 0 and ϕ ′(−b) = −2. The value ϕ ′(b)

has more to do with the cone singularities of the metric ωϕ , and we shall see at the end

that the metric ωϕ associated to such ϕ defines a Kähler metric with cone singularities

along the ∞-section with cone angle −πϕ ′(b) = 2πβ .

Since

ϕ(τ) :=
1

Q(τ)

(
2(τ +b)Q(−b)−2

∫
τ

−b
(σ ′0−R(x))(τ− x)Q(x)dx

)

certainly satisfies the equation (3.17), we are reduced to checking the boundary condi-

tions at ∂ I and the positivity of ϕ on the interior of I. Note first that the equality

(ϕQ)(τ) = 2(τ +b)Q(−b)−2
∫

τ

−b
(σ ′0−R(x))(τ− x)Q(x)dx (3.18)

immediately implies that ϕ(−b) = 0 and ϕ ′(−b) = 2 are always satisfied. Imposing

ϕ(b) = 0, we get

0 = 2bQ(−b)−
∫ b

−b
(σ ′0−R(x))(b− x)Q(x)dx (3.19)

from (3.18), which in turn determines σ ′0. Differentiating both sides of (3.18) and
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evaluating at b, we also get

ϕ
′(b)Q(b) = 2Q(−b)−2

∫ b

−b
(σ ′0−R(x))Q(x)dx. (3.20)

Writing A :=
∫ b
−b Q(x)dx and B :=

∫ b
−b xQ(x)dx we can re-write (3.19), (3.20) as

Aσ ′0

Bσ ′0

=

 Q(−b)−ϕ ′(b)Q(b)/2+
∫ b
−b R(x)Q(x)dx

−bQ(−b)−bϕ ′(b)Q(b)/2+
∫ b
−b xR(x)Q(x)dx

 , (3.21)

which can be regarded as an analogue of the equations (26) and (27) in [61]. The

consistency condition B(Aσ ′0) = A(Bσ ′0) gives an equation for ϕ ′(b), which can be

written as

− ϕ ′(b)
2

=−
Q(−b)

∫ b
−b(b+ x)Q(x)dx−

∫ b
−b Q(x)dx

∫ b
−b xR(x)Q(x)dx+

∫ b
−b xQ(x)dx

∫ b
−b R(x)Q(x)dx

Q(b)
∫ b
−b(b− x)Q(x)dx

=
Q(−b)(bA+B)−A

∫ b
−b xR(x)Q(x)dx+B

∫ b
−b R(x)Q(x)dx

Q(b)(bA−B)
. (3.22)

Summarising the above argument, we have now obtained a profile function ϕ

which solves (3.17) with boundary conditions ϕ(b) = ϕ(−b) = 0, ϕ ′(−b) = −2, and

ϕ ′(b) as specified by (3.22). Now, Hwang’s argument (Appendix A of [61]) applies

word by word to show that ϕ is strictly positive on the interior of I, and hence it now

remains to show that the Kähler metric ωϕ has cone singularities along the ∞-section.

Since Q(τ) is a polynomial in τ and R(τ) is a rational function in τ (with no poles when

τ ∈ [−b,b]), we see from (3.17) that ϕ is real analytic on I = [−b,b] by the standard

ODE theory. Thus the value −πϕ ′(b) = 2πβ is the angle of the cone singularities that

ωϕ develops along the ∞-section of X = P(F ⊕C), by Lemma 3.3.6. This completes

the construction of the momentum-constructed conically singular metric ωϕ , with cone

angle −πϕ ′(b) = 2πβ as specified by (3.22).

We also see ϕ ′(b) ≤ 0 since otherwise ϕ ′(−b) > 0, ϕ ′(b) > 0, and ϕ(±b) = 0

imply that ϕ has to have a zero in (−b,b), contradicting the positivity ϕ > 0 on (−b,b).

Hence β ≥ 0.

Finally, we identify the Kähler class [ωϕ ] ∈ H2(X ,R) of the momentum-
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constructed conically singular cscK metric ωϕ . We first show that the restriction

ωϕ |fibre of ωϕ to each fibre has (fibrewise) volume 4πb. This is well-known when

the metric is smooth, but we reproduce the proof here to demonstrate that the same

argument works even when ωϕ has cone singularities. Related discussions can also be

found in §3.5.3 (see Lemma 3.5.6 in particular).

Lemma 3.3.9. (§4 in [61], or §2.1 in [62]) Suppose that ωϕ is a (possibly conically

singular) momentum-constructed metric with the momentum profile ϕ : [−b,b]→R≥0.

Then the fibrewise volume of ωϕ is given by 4πb.

Proof. The equation (3.9) means that the restriction of ωϕ at each fibre (which is iso-

morphic to P1) is given by (cf. equation (2.5) in [62])

ωϕ |fibre =
1
2

ϕ(τ)|ζ |−2√−1dζ ∧dζ̄ = ϕ(τ)r−2rdr∧dθ

where ζ = re
√
−1θ is a holomorphic coordinate on each fibre (| · | denotes the fibrewise

Euclidean norm defined by hF ; see §2.1 of [62] for more details). By using (3.9), we

can re-write this as

ωϕ |fibre =
dτ

dt
r−1dr∧dθ =

dτ

dr
dr∧dθ (3.23)

since t = logr. Integrating this over the fibre, we get

∫
fibre

ωϕ = 2π

∫
∞

0

dτ

dr
dr = 2π

∫ b

−b
dτ = 4πb

since τ = b corresponds to ∞ ∈ P1 and τ =−b to 0 ∈ P1.

Thus we can write [ωϕ ] = ∑
r
i=1 αi p∗[p∗i ωi] + 4πbc1(ξ ) for some αi > 0, in the

notation used in Remark 3.3.4. Since the same proof applies to the smooth metric ωφ ,

we also have [ωφ ] = ∑
r
i=1 α̃i p∗[p∗i ωi]+4πbc1(ξ ) for some α̃i > 0. On the other hand,

since ωϕ |M = ωM(b) = ωφ |M (where M is identified with the 0-section), it immediately

follows that αi = α̃i for all i, i.e. [ωϕ ] = [ωφ ].

3.3.3.2 Computation of the log Futaki invariant

We again take the (smooth) momentum-constructed extremal metric ωφ , with φ defined

as in (3.14), and write S(ωφ ) = σ0 +λτ for its scalar curvature.
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Recall that the generator v f of the fibrewise U(1)-action has aτ as its Hamiltonian

function with respect to ωφ (cf. §2.1, [62]), with some a ∈ R up to an additive con-

stant which does not change v f . This means that aτ (up to an additive constant) is the

holomorphy potential for the holomorphic vector field Ξ f := v1,0
f (cf. Remark 1.3.3)

which generates the complexification of the fibrewise U(1)-action, i.e. the fibrewise

C∗-action. Thus we can take f = a(τ− τ̄), with τ̄ being the average of τ over X with

respect to ωφ , for the holomorphy potential f in the formula (3.2). Then, noting that

S(ωφ )− S̄ = λ (τ− τ̄), we compute the (classical) Futaki invariant as

Fut(Ξ f , [ωφ ]) =
∫

X
aλ (τ− τ̄)2

ωn
φ

n!
= 2πaλVol(M,ωM)

∫ b

−b
(τ− τ̄)2Q(τ)dτ

with Vol(M,ωM) :=
∫

M
ω

n−1
M

(n−1)! , by Lemma 2.8 of [61]. Recalling D = {τ = b}, the

second term in the log Futaki invariant can be obtained by computing

∫
D

f
ω

n−1
φ

(n−1)!
=
∫

D
a(τ− τ̄)

ω
n−1
φ

(n−1)!
=
∫

D
a(b− τ̄)

p∗ωM(b)n−1

(n−1)!

= a(b− τ̄)Q(b)
∫

M

ω
n−1
M

(n−1)!

= a(b− τ̄)Q(b)Vol(M,ωM)

where we used

ω
n−1
φ

= p∗ωM(τ)n−1 +
n−1

φ
p∗ωM(τ)n−2dτ ∧dc

τ (3.24)

which was proved in p2296 in [62], and the definitional Q(b) = ωM(b)n−1/ω
n−1
M (cf.

equation (3.9)). We also note the trivial equality
∫

X f
ωn

φ

n! =
∫

X λ (τ− τ̄)
ωn

φ

n! = 0 to see that

the third term of the log Futaki invariant is 0. Collecting these calculations together,

the log Futaki invariant evaluated against Ξ f is given by

FutD,β (Ξ f , [ωφ ])= aλVol(M,ωM)
∫ b

−b
(τ− τ̄)2Q(τ)dτ−(1−β )a(b− τ̄)Q(b)Vol(M,ωM).

Thus, writing A :=
∫ b
−b Q(τ)dτ , B :=

∫ b
−b τQ(τ)dτ , and C :=

∫ b
−b τ2Q(τ)dτ and noting
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τ̄ = B/A, setting FutD,β (Ξ f , [ωφ ]) = 0 gives an equation for the cone angle β as

β = 1−
λ
∫ b
−b(τ− τ̄)2Q(τ)dτ

(b− τ̄)Q(b)

=
Q(b)(bA−B)−λ

(
AC−B2)

Q(b)(bA−B)
(3.25)

Applying (3.19) and (3.20) to the case of smooth extremal metric ωφ , i.e. with φ ′(b) =

−2, we get the equations (26) and (27) in [61] which can be re-written asA B

B C

σ0

λ

=

 Q(−b)+Q(b)+
∫ b
−b R(x)Q(x)dx

−bQ(−b)+bQ(b)+
∫ b
−b xR(x)Q(x)dx

 ,

and hence, noting AC−B2 > 0 by Cauchy–Schwarz (where we regard Q(τ)dτ as a

measure on I = [−b,b]), we get

λ =
−B
(

Q(−b)+Q(b)+
∫ b
−b R(x)Q(x)dx

)
+A

(
−bQ(−b)+bQ(b)+

∫ b
−b xR(x)Q(x)dx

)
AC−B2 ,

and hence

β =
Q(b)(bA−B)−λ

(
AC−B2)

Q(b)(bA−B)

=
Q(−b)(bA+B)+B

∫ b
−b R(x)Q(x)dx−A

∫ b
−b xR(x)Q(x)dx

Q(b)(bA−B)
(3.26)

which agrees with (3.22). This is precisely what was claimed in Theorem 3.1.7.

3.4 Log Futaki invariant computed with respect to the

conically singular metrics

3.4.1 Some estimates for the conically singular metrics of elemen-

tary form

We now consider conically singular metrics of elementary form ω̂ =ω+λ
√
−1∂ ∂̄ |s|2β

h ,

as defined in Definition 3.1.10. We collect here some estimates that we need later.

Remark 3.4.1. What we discuss in here is just a review of well-known results, and in
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fact for the most part, is nothing more than a repetition of §2 in the paper of Jeffres–

Mazzeo–Rubinstein [64] or §3 in the paper of Brendle [20].

Pick a local coordinate system (z1, . . . ,zn) around a point in X so that D is locally

given by {z1 = 0}. We then write

ω̂ = ∑
i, j

ĝi j̄
√
−1dzi∧dz̄ j = ∑

i, j
gi j̄
√
−1dzi∧dz̄ j +λ ∑

i, j

∂ 2|s|2β

h
∂ zi∂ z̄ j

√
−1dzi∧dz̄ j

which means

(ĝi j̄)i j̄ =


g11̄ +O(|z1|2β−2) g12̄ +O(|z1|2β−1) . . . g1n̄ +O(|z1|2β−1)

g21̄ +O(|z1|2β−1) g22̄ +O(|z1|2β ) . . . g2n̄ +O(|z1|2β )
...

... . . . ...

gn1̄ +O(|z1|2β−1) gn2̄ +O(|z1|2β ) . . . gnn̄ +O(|z1|2β )

 .

Thus, writing ĝ for the metric corresponding to ω̂ , we have (cf. Definition 3.1.1)

1. ĝ11̄ = O(|z1|2β−2) ,

2. ĝ1 j̄ = O(|z1|2β−1) if j 6= 1 ,

3. ĝi j̄ = O(1) if i, j 6= 1.

The above also means that the volume form ω̂n can be estimated as (cf. p10 of [20])

ω̂
n =

(
|z1|2β−2

n−1

∑
j=0

a j|z1|2β j +
n

∑
j=0

b j|z1|2β j

)
ω

n
0

where ω0 is a smooth reference Kähler form on X , a j’s and b j’s being smooth functions

on X , and a0 is also strictly positive. Thus we immediately have the following lemma.

Lemma 3.4.2. We may write ω̂n = |z1|2−2β α with some (n,n)-form α , which is smooth

on X \D and bounded as we approach D = {z1 = 0}, but whose derivatives (in z1-

direction) may not be bounded around D due to the dependence on the fractional power

|z1|2β .

We also see, analogously to Lemma 3.3.7, that the above means that the inverse

matrix ĝi j̄ satisfies the following estimates.
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Lemma 3.4.3. Suppose that ĝ is a conically singular Kähler metric of elementary form

with cone angle 2πβ along D = {z1 = 0}. Then, around D,

1. ĝ11̂ = O(|z1|2−2β ) ,

2. ĝ1 j̄ = O(|z1|) if j 6= 1 ,

3. ĝi j̄ = O(1) if i, j 6= 1.

Thus, ∆ω̂ f = ∑
n
i, j=1 ĝi j̄ ∂ 2

∂ zi∂ z̄ j
f is bounded if f is a smooth function on X. Also, if f ′

is a smooth function on X \D that is of order |z1|2β around D, then ∆ω̂ f ′ = O(1)+

O(|z1|2β ). In particular, ∆ω̂ f ′ remains bounded on X \D.

We now evaluate the Ricci curvature of ω̂ . In terms of the local coordinate system

(z1, . . . ,zn) as above, we have

Ric(ω̂)i j̄ =−
∂ 2

∂ zi∂ z̄ j
log
(

ω̂n

ωn
0

)
=− ∂ 2

∂ zi∂ z̄ j
log

(
|z1|2β−2

n−1

∑
j=0

a j|z1|2β j +
n

∑
j=0

b j|z1|2β j

)
.

Since ∂ ∂̄ log |z1|2 = 0 on X \D, we have

Ric(ω̂)i j̄ =−
∂ 2

∂ zi∂ z̄ j
log

(
n−1

∑
j=0

a j|z1|2β j +
n

∑
j=0

b j|z1|2−2β+2β j

)
.

Note now that we can write

log

(
n−1

∑
j=0

a j|z1|2β j +
n

∑
j=0

b j|z1|2−2β+2β j

)
= F0 + log

(
O(1)+O(|z1|2−2β )+O(|z1|2β )

)
= O(1)+O(|z1|2−2β )+O(|z1|2β ) (3.27)

with some smooth function F0, around the divisor D. We thus have Ric(ω̂)11̄ = O(1)+

O(|z1|−2β )+O(|z1|2β−2), Ric(ω̂)1 j̄ = O(1)+O(|z1|1−2β )+O(|z1|2β−1) ( j 6= 1), and

Ric(ω̂) jk̄ = O(1) ( j,k 6= 1). Together with Lemma 3.4.3, this means the following.

Lemma 3.4.4. Suppose that ĝ is a conically singular Kähler metric of elementary form

with cone angle 2πβ along D locally defined by z1 = 0. Then

1. Ric(ω̂)11̄ = O(1)+O(|z1|−2β )+O(|z1|2β−2),

2. Ric(ω̂)1 j̄ = O(1)+O(|z1|1−2β )+O(|z1|2β−1) ( j 6= 1),
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3. Ric(ω̂) jk̄ = O(1) ( j,k 6= 1).

In particular, combined with Lemma 3.4.3, we see that the scalar curvature S(ω̂) can

be estimated as S(ω̂) = O(1)+O(|z1|2−4β ).

Remark 3.4.5. We observe that the above estimate implies∣∣∣∣∫
Ω\D

S(ω̂)
ω̂n

n!

∣∣∣∣< const.
∫

unit disk in C
(1+ |z1|2−4β )|z1|2β−2√−1dz1∧dz̄1

< const.
∫ 1

0
(r2β−1 + r−2β+1)dr < ∞

for any open set Ω⊂ X with Ω∩D 6= /0, as 0 < β < 1.

3.4.2 Scalar curvature as a current

In order to compute the log Futaki invariant with respect to a conically singular metric

ωsing, we need to make sense of Ric(ωsing)∧ω
n−1
sing globally on X . However, this is

not well-defined for a general conically singular metric ωsing, as we discuss in Remark

3.4.8. We thus restrict our attention to the case of conically singular metrics of elemen-

tary form ω̂ or the momentum-constructed cynically singular metrics ωϕ . Theorems

3.1.11 and 3.1.12 state that in these cases it is indeed possible to have a well-defined

current Ric(ω̂)∧ ω̂n−1 or Ric(ωϕ)∧ωn−1
ϕ on X , and this section is devoted to the proof

of these results.

Remark 3.4.6. We decide to present the argument for the conically singular metric

of elementary form ω̂ in parallel with the one for the momentum-constructed coni-

cally singular metric ωϕ , as they have much in common. From now on, when we

write “momentum-constructed conically singular metric ωϕ on X”, it is always as-

sumed that X is of the form X = P(F ⊕C) over a base Kähler manifold (M,ωM)

with the projection p : (F ,hF ) → (M,ωM). We do not necessarily assume that

p : (F ,hF )→ (M,ωM) satisfies σ -constancy (cf. Definition 3.3.1), but do need to

assume that ϕ is real analytic; we will only rely on the results proved in §3.3.2, in

which we did not assume σ -constancy but assumed that ϕ is real analytic.

On the other hand, when we consider the conically singular metrics of elementary

form ω̂ = ω + λ
√
−1∂ ∂̄ |s|2β

h , X can be any (polarised) Kähler manifold with some

smooth effective divisor D⊂ X .
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Remark 3.4.7. Suppose that we write, for a conically singular metric of elementary

form ω̂ ,

S̄(ω̂) :=
1

Vol(X , ω̂)

∫
X

Ric(ω̂)∧ ω̂n−1

(n−1)!

for the “average of S(ω̂) on the whole of X”, where we note Vol(X , ω̂) :=
∫

X ω̂n/n! =∫
X\D ω̂n/n! < ∞ (by recalling Remark 3.1.6). We then have, from Theorem 3.1.11,

S̄(ω̂) = S(ω̂)+2π(1−β )
Vol(D,ω)

Vol(X , ω̂)
,

where S(ω̂) :=
∫

X\D S(ω̂) ω̂n

n! /Vol(X , ω̂) is the average of S(ω̂) over X \D, which makes

sense by Remark 3.4.5. Similarly, for a momentum-constructed conically singular met-

ric ωϕ , we have (by recalling Theorem 3.1.12 and Lemma 3.3.8)

S̄(ωϕ) = S(ωϕ)+2π(1−β )
Vol(D, p∗ωM(b))

Vol(X ,ωϕ)

= S(ωϕ)+2π(1−β )
Vol(M,ωM(b))

Vol(X ,ωϕ)
.

The reader is warned that the average of the scalar curvature S̄(ω̂) computed with

respect to the conically singular metrics may not be a cohomological invariant since

Ric(ω̂) is not necessarily a de Rham representative of c1(L) due to the cone singular-

ities of ω̂ , whereas Vol(D,ω) =
∫

D c1(L)n−1/(n−1)! certainly is. Exactly the same

remark of course applies to the momentum-constructed conically singular metric ωϕ .

On the other hand, we can show Vol(X , ω̂) =
∫

X c1(L)n/n! (cf. Lemma 3.5.1), and

Vol(X ,ωϕ) = 4πbVol(M,ωM) (cf. Remark 3.3.4) for X = P(F ⊕C).

Remark 3.4.8. We will use in the proof the estimates established in §3.3.2 and §3.4.1,

and our proof will not apply to conically singular metrics in full generality. Most im-

portantly, we do not know what the “distributional” component (i.e. the second term

in Theorems 3.1.11 and 3.1.12) should be for a general conically singular metric ωsing;

the proof below shows that it should be equal to [D]∧ω
n−1
sing , [D] being a current of in-

tegration over D, but it is far from obvious that it is well-defined (particularly so since

ωsing is singular along D). Indeed, even for the case of conically singular metrics of

elementary form ω̂ , [D]∧ ω̂n−1 being well-defined as a current (Lemma 3.4.10) seems

to be a new result.
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Proof of Theorems 3.1.11 and 3.1.12. The proof is essentially a repetition of the usual

proof of the Poincaré–Lelong formula (cf. [35]), with some modifications needed to

take care of the cone singularities of ω̂ and ωϕ .

We first consider the case of the conically singular metric of elementary form ω̂ .

We first pick a C∞-tubular neighbourhood D0 around D with (small but fixed) radius ε0,

meaning that points in D0 have distance less than ε0 from D measured in the metric ω .

We then write

∫
Ω

f Ric(ω̂)∧ ω̂n−1

(n−1)!
=
∫

Ω\D0

f Ric(ω̂)∧ ω̂n−1

(n−1)!
+
∫

Ω∩D0

f Ric(ω̂)∧ ω̂n−1

(n−1)!

and apply the partition of unity on the compact manifold Ω∩D0 (i.e. the closure of Ω∩

D0) to reduce to the local computation in a small open set U ⊂Ω∩D0 around the divisor

D. Confusing U ⊂Ω∩D0 with an open set in Cn, this means that we take an open set

U in Cn (by abuse of notation) endowed with the Kähler metric ω , where we may also

assume that U is biholomorphic to the polydisk {(z1, . . . ,zn) | |z1|ω < ε0/2, |z2|ω <

ε0/2, . . . , |zn|ω < ε0/2}, in which the divisor D is given by the local equation z1 = 0.

Thus our aim now is to show

∫
U

f Ric(ω̂)∧ ω̂n−1

(n−1)!
=
∫

U\{z1=0}
f S(ω̂)

ω̂n

n!
+2π(1−β )

∫
{z1=0}

f
ωn−1

(n−1)!
,

where we recall that the partition of unity allows us to assume that f is smooth and

compactly supported on U .

Note that exactly the same argument applies to the momentum-constructed con-

ically singular metric ωϕ , by using some reference smooth metric ω0 on X (in place

of ω) to define D0. Hence our aim for the momentum-constructed conically singular

metric ωϕ is to show

∫
U

f Ric(ωϕ)∧
ωn−1

ϕ

(n−1)!
=
∫

U\{z1=0}
f S(ωϕ)

ωn
ϕ

n!
+2π(1−β )

∫
{z1=0}

f
p∗ωM(b)n−1

(n−1)!
,

for a smooth and compactly supported f .

For the conically singular metrics of elementary form ω̂ , we recall Lemma 3.4.2

and write ω̂n = |z1|2β−2α with some smooth bounded (n,n)-form α on X \D, and

hence have ∂ ∂̄ logdet(ω̂) = (β − 1)∂ ∂̄ log |z1|2 + R where R is a 2-form which is
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smooth on U \ {z1 = 0} but may have a pole (of fractional order) along {z1 = 0}.

We thus write

Ric(ω̂)∧ ω̂
n−1 =−

√
−1∂ ∂̄ logdet(ω̂)∧ ω̂

n−1

= (1−β )
√
−1∂ ∂̄ log |z1|2∧ ω̂

n−1−
√
−1R∧ ω̂

n−1. (3.28)

On the other hand, we can argue in exactly the same way, by using (3.13) in place

of Lemma 3.4.2, to see that for a momentum-constructed conically singular metric ωϕ ,

we can write

Ric(ωϕ)∧ω
n−1
ϕ =−

√
−1∂ ∂̄ logdet(ωϕ)∧ω

n−1
ϕ

= (1−β )
√
−1∂ ∂̄ log |z1|2∧ω

n−1
ϕ −

√
−1Rϕ ∧ω

n−1
ϕ (3.29)

for some 2-form Rϕ that is smooth on U \{z1 = 0} but may have a pole (of fractional

order) along {z1 = 0}.

We aim to show that these formulae (3.28) and (3.29) are well-defined in the weak

sense. This means that we aim to show that

∫
U

f Ric(ω̂)∧ ω̂n−1

(n−1)!
=
∫

U
f
√
−1R∧ ω̂n−1

(n−1)!
+(1−β )

∫
U

f
√
−1∂ ∂̄ log |z1|2∧

ω̂n−1

(n−1)!

is well-defined and is equal to

∫
U\{z1=0}

f S(ω̂)
ω̂n

n!
+2π(1−β )

∫
{z1=0}

f
ωn−1

(n−1)!

for any smooth function f with compact support in U . Theorem 3.1.11 obviously

follows from this, and exactly the same argument applies to ωϕ to prove Theorem

3.1.12.

We prove these claims as follows. Let Uε be a subset of U defined for sufficiently

small ε � ε0 by Uε := {(z1, . . . ,zn) ∈ U | 0 < ε < |z1|} (the norm in the inequality

ε < |z1| is given by the Euclidean metric on Cn). In Lemma 3.4.9, we shall prove that

−n
∫

U
f
√
−1R∧ ω̂

n−1 =−n lim
ε→0

∫
Uε

f
√
−1R∧ ω̂

n−1 =
∫

U\{z1=0}
f S(ω̂)ω̂n
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for a conically singular metric of elementary form ω̂ , and

−n
∫

U
f
√
−1Rϕ ∧ω

n−1
ϕ =−n lim

ε→0

∫
Uε

f
√
−1Rϕ ∧ω

n−1
ϕ =

∫
U\{z1=0}

f S(ωϕ)ω
n
ϕ

for a momentum-constructed conically singular metric ωϕ , and that both of these terms

are finite if f is compactly supported on U ,

In Lemma 3.4.10 we shall prove

∫
U

f
√
−1∂ ∂̄ log |z1|2∧ ω̂

n−1 = 2π

∫
{z1=0}

f ω
n−1,

and in Lemma 3.4.12 we shall prove

∫
U

f
√
−1∂ ∂̄ log |z1|2∧ω

n−1
ϕ = 2π

∫
{z1=0}

f p∗ωM(b)n−1,

if f is smooth. Granted these lemmas, we complete the proof of Theorems 3.1.11 and

3.1.12.

Lemma 3.4.9. For a conically singular metric of elementary form ω̂ , we have

−n
∫

U
f
√
−1R∧ ω̂

n−1 =−n lim
ε→0

∫
Uε

f
√
−1R∧ ω̂

n−1 =
∫

U\{z1=0}
f S(ω̂)ω̂n

and the integral is well-defined for any smooth function f compactly supported on U,

i.e.
∣∣∫

U f
√
−1R∧ ω̂n−1

∣∣< ∞.

For a momentum-constructed conically singular metric ωϕ , we have

−n
∫

U
f
√
−1Rϕ ∧ω

n−1
ϕ =−n lim

ε→0

∫
Uε

f
√
−1Rϕ ∧ω

n−1
ϕ =

∫
U\{z1=0}

f S(ωϕ)ω
n
ϕ

and the integral is well-defined for any smooth function f compactly supported on U.

Proof. We first consider the case of the conically singular metric of elementary form

ω̂ . Although R is not bounded on the whole of U \{z1 = 0}, Lemma 3.4.4 shows that

the metric contraction of R with ω̂ (which is equal to S(ω̂)/n on X \D) satisfies

|Λω̂R|< const.(1+ |z1|2−4β ). (3.30)
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on U \{z1 = 0}, thus

|R∧ ω̂
n−1|ω ≤ const.(|z1|2β−2 + |z1|2−4β+2β−2) = const.(|z1|2β−2 + |z1|−2β )

on U \ {z1 = 0}. Since f is bounded on the whole of U , we see, by writing r := |z1|

and choosing a large but fixed number A which depends only on U and ω , that

lim
ε→0

∣∣∣∣∫Uε

f
√
−1R∧ ω̂

n−1
∣∣∣∣≤ const. lim

ε→0

∫
Uε

(|z1|2β−2 + |z1|−2β )ωn

≤ const. lim
ε→0

∫
ε<|z1|<A

(|z1|2β−2 + |z1|−2β )
√
−1dz1∧dz̄1

≤ const. lim
ε→0

∫ A

ε

(r2β−2 + r−2β )rdr < ∞

since 0 < β < 1. In other words, the above shows that the signed measure defined by
√
−1R∧ ω̂n−1 on U is well-defined. Observe also∣∣∣∣∫U\Uε

f
√
−1R∧ ω̂

n−1
∣∣∣∣≤ const.

∫
U\Uε

| f
√
−1R∧ ω̂

n−1|ωω
n

≤ const.
∫

ε

0
sup
|z1|=r

| f
√
−1R∧ ω̂

n−1|ωrdr (3.31)

≤ const.
∫

ε

0
(r2β−1 + r1−2β )dr→ 0

as ε→ 0, where we used the elementary
∫

ε

0 =
∫
[0,ε] =

∫
(0,ε] in (3.31) to apply (3.30), by

noting that sup|z1|=r | f
√
−1R∧ ω̂n−1|ω is continuous in r ∈ (0,ε] and its only singular-

ity is the pole of fractional order at r = 0. We thus have

∫
U

f
√
−1R∧ ω̂

n−1 = lim
ε→0

∫
Uε

f
√
−1R∧ ω̂

n−1 =
∫

U\{z1=0}
f
√
−1R∧ ω̂

n−1

and the above integrals are all finite.

On the other hand, we know that ∂ ∂̄ log |z1|2 = 0 on U \ {z1 = 0}, and hence,

recalling (3.28), S(ω̂)ω̂n =−n
√
−1R∧ ω̂n−1 on U \{z1 = 0}. Thus we can write

−n
∫

U
f
√
−1R∧ ω̂

n−1 =−n lim
ε→0

∫
Uε

f
√
−1R∧ ω̂

n−1 =
∫

U\{z1=0}
S(ω̂)ω̂n

as claimed.
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For the case of momentum-constructed conically singular metric ωϕ , Lemma 3.3.8

shows that |Λωϕ
Rϕ | is bounded on U \ {z1 = 0}. Since this is better than the estimate

(3.30), all the following argument applies word by word. We thus establish the claim

for the momentum-constructed conically singular metric.

Lemma 3.4.10. For a conically singular metric of elementary form ω̂ ,

∫
U

f
√
−1∂ ∂̄ log |z1|2∧ ω̂

n−1 = 2π

∫
{z1=0}

f ω
n−1,

if f is smooth and compactly supported in U.

Remark 3.4.11. Note that we cannot naively apply the usual Poincaré–Lelong formula,

since the metric ω̂ is singular along {z1 = 0}. Note also that the integral
∫
{z1=0} f ωn−1

is manifestly finite.

Proof. We start by re-writing

∫
U

√
−1∂ ∂̄ log |z1|2∧ f ω̂

n−1

=
1
2

lim
ε→0

∫
U\Uε

ddc log |z1|2∧ f ω̂
n−1

=
1
2

lim
ε→0

∫
U\Uε

d
(
dc log |z1|2∧ f ω̂

n−1)+ 1
2

lim
ε→0

∫
U\Uε

dc log |z1|2∧d f ∧ ω̂
n−1 (3.32)

since ∂ ∂̄ log |z1|2 = 0 if |z1| 6= 0, where we used d = ∂ + ∂̄ and dc =
√
−1(∂̄ −∂ ).

We first claim limε→0
∫

U\Uε
dc log |z1|2 ∧ d f ∧ ω̂n−1 = 0. We start by observing

that ω̂n−1 cannot contain the term proportionate to dz1∧dz̄1 when we take the wedge

product of it with dc log |z1|2 or d log |z1|2, since it will be cancelled by them. Namely,

writing |s|2β

h = eφ |z1|2β and defining

ω̃ := ω̂−λ
√
−1

∂ 2

∂ z1∂ z̄1
(eφ |z1|2β )dz1∧dz̄1

= ω +λ
√
−1

(
n

∑
j=2

β |z1|2β−2z1(∂ j̄e
φ )dz1∧dz̄ j + c.c.+ |z1|2β

η
′

)
(3.33)

where η ′ := ∂ ∂̄eφ − ∂ 2eφ

∂ z1∂ z̄1
dz1∧dz̄1 is a smooth 2-form, we have dc log |z1|2∧ ω̂n−1 =

dc log |z1|2∧ ω̃n−1 and d log |z1|2∧ ω̂n−1 = d log |z1|2∧ ω̃n−1. It should be stressed that

ω̃ is not necessarily closed; indeed dω̃ =−λ
√
−1d

(
∂ 2

∂ z1∂ z̄1
(eφ |z1|2β )dz1∧dz̄1

)
. Note
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also that ω̃ ≤ const.ω̂ .

Combined with the well-known equality dc log |z1|2∧d f ∧ ω̂n−1 = −d log |z1|2∧

dc f ∧ ω̂n−1, we find

∫
Vε

dc log |z1|2∧d f ∧ ω̂
n−1

=−
∫

Vε

d log |z1|2∧dc f ∧ ω̃
n−1

=−
∫

Vε

d
(
log |z1|2dc f ∧ ω̃

n−1)+∫
Vε

log |z1|2ddc f ∧ ω̃
n−1−

∫
Vε

log |z1|2dc f ∧dω̃
n−1

(3.34)

where we decide to write Vε :=U \Uε .

We evaluate each term separately and show that all of them go to 0 as ε →

0. To evaluate the first term of (3.34), we write
∫

Vε
d
(
log |z1|2dc f ∧ ω̃n−1) =∫

∂Vε
log |z1|2dc f ∧ ω̃n−1. Observe now that

ω̃|∂Vε
= ω|∂Vε

+λ
√
−1
(
∑ε

2β (∂ j̄e
φ )
√
−1e

√
−1θ dθ ∧dz̄ j + c.c.+ ε

2β
η
′|∂Vε

)
(3.35)

where we wrote z1 = εe
√
−1θ on ∂Vε = {|z1|= ε}. This means that∣∣∣∣∫

∂Vε

log |z1|2dc f ∧ ω̃
n−1
∣∣∣∣≤ const. logε

∣∣∣∣∫
∂Vε

(ε2β + ε)dθ ∧dz2∧dz̄2∧ . . .dzn∧dz̄n

∣∣∣∣
(3.36)

≤ const.ε2β logε → 0

as ε → 0, by noting that dz1 = ε
√
−1e

√
−1θ dθ on ∂Vε and f is smooth on U .

The second term of (3.34) can be evaluated as∣∣∣∣∫Vε

log |z1|2ddc f ∧ ω̃
n−1
∣∣∣∣≤ const.

∣∣∣∣∫Vε

logr2
∆ω̂ f ω̂

n
∣∣∣∣

≤ const.
∣∣∣∣∫Vε

logr2
ω̂

n
∣∣∣∣ (3.37)

≤ const.
∣∣∣∣∫ ε

0
r2β−1 logrdr

∣∣∣∣→ 0

as ε → 0, by noting that ∆ω̂ f is bounded since f is smooth on U (cf. Lemma 3.4.3).
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In order to evaluate the third term of (3.34), we start by re-writing it as

∫
Vε

log |z1|2dc f ∧dω̃
n−1

=−λ (n−1)
∫

Vε

log |z1|2dc f ∧d
(

∂ 2

∂ z1∂ z̄1
(eφ |z1|2β )

√
−1dz1∧dz̄1

)
∧ ω̃

n−2. (3.38)

We have

d
(

∂ 2

∂ z1∂ z̄1
(eφ |z1|2β )

√
−1dz1∧dz̄1

)
=

n

∑
j=2

(
β

2(∂ jeφ )|z1|2β−2 +β∂ j((∂1φ)eφ )|z1|2β−2z1

+β∂ j((∂1̄φ)eφ )|z1|2β−2z̄1 + |z1|2β ∂ 3eφ

∂ z1∂ z̄1∂ z j

)√
−1dz1∧dz̄1∧dz j + c.c.

Since ω̃ does not have any term proportionate to dz1 or dz̄1 when wedged with

d
(

∂ 2

∂ z1∂ z̄1
(eφ |z1|2β )dz1∧dz̄1

)
, we have, from (3.33),

∣∣∣∣dc f ∧d
(

∂ 2

∂ z1∂ z̄1
(eφ |z1|2β )dz1∧dz̄1

)
∧ ω̃

n−2
∣∣∣∣
ω

≤ const.
∣∣∣∣dc f ∧d

(
∂ 2

∂ z1∂ z̄1
(eφ |z1|2β )dz1∧dz̄1

)
∧ω

n−2
∣∣∣∣
ω

and noting that f is smooth on U , we have∣∣∣∣dc f ∧d
(

∂ 2

∂ z1∂ z̄1
(eφ |z1|2β )dz1∧dz̄1

)
∧ω

n−2
∣∣∣∣
ω

≤ const.|z1|2β−2. (3.39)

Thus ∣∣∣∣∫Vε

log |z1|2dc f ∧dω̃
n−1
∣∣∣∣

=

∣∣∣∣λ (n−1)
∫

Vε

log |z1|2dc f ∧d
(

∂ 2

∂ z1∂ z̄1
(eφ |z1|2β )dz1∧dz̄1

)
∧ ω̃

n−2
∣∣∣∣

≤ const.
∣∣∣∣∫Vε

r2β−2 logrω
n
∣∣∣∣≤ const.

∣∣∣∣∫ ε

0
r2β−1 logrdr

∣∣∣∣→ 0 (3.40)

as ε → 0, finally establishing
∫

Vε
dc log |z1|2∧d f ∧ ω̂n−1→ 0 as ε → 0.

Going back to (3.32), we have thus shown limε→0
∫

Vε

√
−1∂ ∂̄ log |z1|2∧ f ω̂n−1 =
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1
2 limε→0

∫
Vε

d
(
dc log |z1|2∧ f ω̂n−1), and hence are reduced to evaluating

lim
ε→0

∫
Vε

d
(
dc log |z1|2∧ f ω̂

n−1)= lim
ε→0

∫
∂Vε

dc log |z1|2∧ f ω̂
n−1 = lim

ε→0

∫
∂Vε

dc log |z1|2∧ f ω̃
n−1.

Recall that dc log |z1|2 = 2dθ on {|z1| = ε}, and also that limε→0 ω̃|∂Vε
= ω|{z1=0},

which follows from (3.33). We thus have

lim
ε→0

∫
∂Vε

dc log |z1|2∧ f ω̃
n−1

= lim
ε→0

∫
∂Vε

2dθ ∧ f ω̃
n−1 =

∫ 2π

0
2dθ

∫
{z1=0}

f ω
n−1 = 4π

∫
{z1=0}

f ω
n−1.

This means that

lim
ε→0

∫
Vε

√
−1∂ ∂̄ log |z1|2∧ f ω̂

n−1 =
1
2

lim
ε→0

∫
Vε

ddc log |z1|2∧ f ω̂
n−1 = 2π

∫
{z1=0}

f ω
n−1

as claimed.

Lemma 3.4.12. For a momentum-constructed conically singular metric ωϕ ,

∫
U

f
√
−1∂ ∂̄ log |z1|2∧ω

n−1
ϕ = 2π

∫
{z1=0}

f p∗ωM(b)n−1,

if f is smooth and compactly supported in U.

Proof. The proof is essentially the same as the one for Lemma 3.4.10. We note that

we can proceed almost word by word, except for the places where we used the explicit

description of ω̂ and ω̃: the estimates (3.36), (3.37), and in estimating (3.38).

We certainly need to define a differential form, say ω̃ϕ , which replaces ω̃ in the

proof of Lemma 3.4.10. We define it as ω̃ϕ := ωϕ −
2A2

0B2
1β 2|z1|4β−2

ϕ

√
−1dz1 ∧ dz̄1, by

recalling the estimate (3.12).

Note again that this is not necessarily closed, and also that ω̃ϕ does not even define

a metric, since it is degenerate in the dz1∧dz̄1-component, whereas we certainly have

ω̃ϕ ≤ const.ωϕ . Observe that (3.12) and ϕ = O(|z1|2β ) (as proved in Lemma 3.3.6)
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imply that

ω̃ϕ |∂Vε
= ωϕ |∂Vε

+
1
ϕ

(
2β |z1|4β−2z̄1A0B1

n

∑
i=2

B2,i
√
−1dz1∧dz̄i + c.c.+O(|z1|4β )

)∣∣∣∣∣
∂Vε

= ωϕ |∂Vε
+O(ε2β ), (3.41)

which replaces (3.35) in the proof of Lemma 3.4.10. Note also that, by recalling (3.12),

ωϕ |∂Vε
=

(
p∗ωM(τ)+

1
ϕ

dτ ∧dc
τ

)∣∣∣∣
∂Vε

= p∗ωM(τ)|∂Vε
+

1
ϕ

(
2β |z1|4β−2z̄1A0B1

n

∑
i=2

B2,i
√
−1dz1∧dz̄i + c.c.+O(|z1|4β )

)∣∣∣∣∣
∂Vε

= p∗ωM(τ)|∂Vε
+

1
ϕ

(
−2ε

4β
βA0B1

n

∑
i=2

B2,idθ ∧dz̄i + c.c.+O(ε4β )

)∣∣∣∣∣
∂Vε

(3.42)

where we wrote z1 = εe
√
−1θ on ∂Vε = {|z1| = ε} and used dz1 = ε

√
−1e

√
−1θ dθ .

Thus, recalling ϕ = O(|z1|2β ), ωM(τ) ≤ const.ωM, and that ωM depends only on

(z2, . . . ,zn), i.e. the coordinates on the base M, we have the estimate

ωϕ |∂Vε
≤ const.

(
∑

i, j 6=1

√
−1dzi∧dz̄ j + ε

2β
n

∑
j=2

√
−1dθ ∧dz j + c.c.

)∣∣∣∣∣
∂Vε

(3.43)

from which it follows that∣∣∣∣∫
∂Vε

log |z1|2dc f ∧ω
n−1
ϕ

∣∣∣∣≤ const. logε

∣∣∣∣∫
∂Vε

(ε2β + ε)dθ ∧dz2∧dz̄2∧ . . .dzn∧dz̄n

∣∣∣∣
≤ const.ε2β logε → 0 (3.44)

as ε → 0, for any smooth f ∈ C∞(X ,R). This means that the estimate (3.36) in the

proof of Lemma 3.4.10 is still valid for momentum-constructed metrics ωϕ .

Also, Lemma 3.3.7 and the estimate (3.13) (and also ω̃ϕ ≤ const.ωϕ ) means that

the estimate in (3.37) in the proof of Lemma 3.4.10 is still valid for momentum-

constructed metrics ωϕ .

We are thus reduced to estimating (3.38), which is the third term of (3.34) in the
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proof of Lemma 3.4.10. We first note

d

(
2A2

0B2
1β 2|z1|4β−2

ϕ

√
−1dz1∧dz̄1

)
=

n

∑
i=2

∂

∂ zi

(
2A2

0B2
1β 2|z1|4β−2

ϕ

)
√
−1dz1∧dz̄1∧dzi

+ c.c.

Recalling the estimate (3.43) and ω̃ϕ ≤ const.ωϕ , we thus have, by using a smooth

reference metric ω0 on X ,∣∣∣∣∣dc f ∧d

(
2A2

0B2
1β 2|z1|4β−2

ϕ

√
−1dz1∧dz̄1

)
∧ ω̃

n−2
ϕ

∣∣∣∣∣
ω0

≤ const.

∣∣∣∣∣∣dc f ∧d

(
2A2

0B2
1β 2|z1|4β−2

ϕ

√
−1dz1∧dz̄1

)
∧

(
∑

i, j 6=1

√
−1dzi∧dz̄ j

)n−2
∣∣∣∣∣∣
ω0

≤ const.|z1|2β−2, (3.45)

where in the last estimate we used the fact that f is smooth and that ϕ is of order

O(|z1|2β ) (cf. Lemma 3.3.6). This replaces (3.39) in the proof of Lemma 3.4.10, and

hence we see that the estimate (3.40) is still valid for the momentum-constructed met-

rics, establishing that the third term of (3.34) in the proof of Lemma 3.4.10 goes to 0

as ε → 0. Since all the other arguments in the proof of Lemma 3.4.10 do not need the

estimates that use the specific properties of ω̂ , and hence applies word by word to the

momentum-constructed case, we finally have

lim
ε→0

∫
∂Vε

dc log |z1|2∧ f ω̃
n−1
ϕ

= lim
ε→0

∫
∂Vε

2dθ ∧ f ω̃
n−1
ϕ =

∫ 2π

0
2dθ

∫
{z1=0}

f p∗ωM(b)n−1 = 4π

∫
{z1=0}

f p∗ωM(b)n−1,

where we used ω̃n−1
ϕ |D = ωn−1

ϕ |D = p∗ωM(b)n−1 by recalling (3.41), (3.42) and D =

{z1 = 0}= {τ = b}. We can thus conclude, as in Lemma 3.4.10, that

∫
U

√
−1∂ ∂̄ log |z1|2∧ f ω

n−1
ϕ

= lim
ε→0

∫
Vε

√
−1∂ ∂̄ log |z1|2∧ f ω

n−1
ϕ = 2π

∫
{z1=0}

f p∗ωM(b)n−1,

to get the claimed result.
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3.4.3 Log Futaki invariant computed with respect to the conically

singular metrics

3.4.3.1 Conically singular metrics of elementary form

We first consider the conically singular metric of elementary form ω̂ = ω +

λ
√
−1∂ ∂̄ |s|2β

h . Suppose now that Ξ is a holomorphic vector field with the holomorphy

potential H ∈ C∞(X ,C), with respect to ω , so that ι(Ξ)ω = −∂̄H. The holomor-

phy potential of Ξ with respect to ω̂ is given by H − λ
√
−1Ξ(|s|2β

h ), since, writing

Ξ = ∑
n
i=1 vi ∂

∂ zi
with ∂̄vi = 0 in terms of local holomorphic coordinates (z1, . . . ,zn), we

have (cf. Lemma 4.10, [119])

ι

(
vi ∂

∂ zi

)√
−1∂ ∂̄ |s|2β

h =
√
−1vi ∂

2|s|2β

h
∂ zi∂ z̄ j dz̄ j = ∂̄

(
√
−1vi ∂ |s|

2β

h
∂ zi

)
. (3.46)

Suppose we write |s|2β

h = eβφ |z1|2β in local coordinates on U , where h = eφ

for some function φ that is smooth on the closure of U . We now wish to evaluate

Ξ(eβφ |z1|2β ). If we assume that Ξ preserves the divisor D = {z1 = 0}, we need to have

Ξ|D = ∑
n
i=2 vi ∂

∂ zi
, and so v1 has to be a holomorphic function that vanishes on {z1 = 0}.

This means that we can write v1 = z1v′ for another holomorphic function v′. We thus

see that Ξ(eβφ |z1|2β ) = ∑
n
i=1 vi∂i(eβφ |z1|2β ) is of order |z1|2β near D. We thus obtain

that, for a holomorphic vector field Ξ preserving D, there exists a (C-valued) function

H ′ that is smooth on X \D and is of order |z1|2β near D and satisfies

ι(Ξ)ω̂ =−∂̄ (H +H ′), (3.47)

i.e. Ĥ := H +H ′ is the holomorphy potential of Ξ with respect to ω̂ .

We wish to extend Theorem 3.1.11 to the case when f is replaced by the holomor-

phy potential Ĥ of a holomorphic vector field Ξ with respect to ω̂ . This means that we

need to extend Theorem 3.1.11 to functions f ′ that are not necessarily smooth on the

whole of X but merely smooth on X \D and are asymptotically of order O(|z1|2β ) near

D. Note that most of the proof carries over word by word when we replace f by such

f ′, except for the place where we showed limε→0
∫

U\Uε
dc log |z1|2∧d f ∧ ω̂n−1 = 0 in

the equation (3.32) when we proved Lemma 3.4.10. More specifically, the smoothness
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of f was crucial in the estimates (3.36), (3.37), and (3.39) but not anywhere else. Thus

the Lemma 3.4.10 still applies to f ′ if we can prove the estimates used in (3.36), (3.37),

and (3.39) for f ′. Note that we may still assume that f ′ is compactly supported on U ,

since this is the property coming from applying the partition of unity.

For (3.36), note first that on ∂Vε , |dc f ′|ω ≤ const. |ε(∂1 f )dθ +∑
n
i=2(∂i f ′)+ c.c.|

ω
=

O(ε2β ) by noting that dz1 =
√
−1εe

√
−1θ dθ on ∂Vε . Thus we have∣∣∣∣∫

∂Vε

log |z1|2dc f ′∧ ω̃
n−1
∣∣∣∣≤ const.ε2β logε

∣∣∣∣∫
∂Vε

(ε2β + ε)dθ ∧dz2∧dz̄2∧ . . .dzn∧dz̄n

∣∣∣∣
≤ const.ε4β logε → 0 (3.48)

in place of (3.36).

For (3.37), we need to estimate ∆ω̂ f ′, but we simply recall Lemma 3.4.3 and see

that ∆ω̂ f ′ is bounded on the whole of U . Thus the estimate established in (3.37)∣∣∣∣∫Vε

log |z1|2ddc f ′∧ ω̃
n−1
∣∣∣∣≤ const.

∣∣∣∣∫Vε

logr2
ω̂

n
∣∣∣∣ (3.49)

still holds for f ′.

We are left to verify that the estimate (3.39) holds for f ′. We remark

that, in computing (3.39), we may replace dc f with
√
−1∑

n
j=2(∂ j̄ f dz̄ j − ∂ j f dz j),

since any term proportionate to dz1 or dz̄1 will vanish when wedged with

d
(

∂ 2

∂ z1∂ z̄1
(eφ |z1|2β )dz1∧dz̄1

)
. Thus, since ∂ j̄ f ′ and ∂ j f ′ (2 ≤ j ≤ n) are of order

O(r2β ), we have∣∣∣∣dc f ′∧d
(

∂ 2

∂ z1∂ z̄1
(eφ |z1|2β )dz1∧dz̄1

)
∧ω

n−2
∣∣∣∣
ω

≤ const.|z1|4β−2 (3.50)

in place of (3.39), so that the conclusion (3.40) still holds.

Thus the proof of Lemma 3.4.10 carries over to f ′. Noting that f ′ vanishes on D,

we have
∫

U f ′
√
−1∂ ∂̄ log |z1|2∧ ω̂n−1 = 0. In particular, if Ξ is a holomorphic vector

field on X that preserves D whose holomorphy potential with respect to ω (resp. ω̂) is

H (resp. Ĥ := H +H ′), we get

∫
X

ĤRic(ω̂)∧ ω̂n−1

(n−1)!
=
∫

X\D
ĤS(ω̂)

ω̂n

n!
+2π(1−β )

∫
D

H
ωn−1

(n−1)!
.
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Combined with Remark 3.4.7, we thus get the first item of Corollary 3.1.14.

3.4.3.2 Momentum-constructed conically singular metrics

We now consider the momentum-constructed conically singular metrics ωϕ and the

generator Ξ of the fibrewise C∗-action that has τ as its holomorphy potential (see the

argument at the beginning of §3.3.3.2). Recalling that τ − b is of order O(|z1|2β ), as

we proved in Lemma 3.3.6, we are thus reduced to establishing the analogue for ωϕ of

the statement that we proved in §3.4.3.1 for the conically singular metric of elementary

form ω̂ . In fact, the proof carries over word by word, where we only have to replace

ω̃ by ω̃ϕ (cf. the proof of Lemma 3.4.12); (3.44) is replaced by the analogue of (3.48),

∆ωϕ
f ′ is bounded by Lemma 3.3.7 to establish the analogue of (3.49), and (3.45) can

be established by observing that we can replace dc f ′ by
√
−1∑

n
j=2(∂ j̄ f ′dz̄ j−∂ j f ′dz j),

as we did in (3.50).

Thus, arguing exactly as in §3.4.3.1, we get the second item of Corollary 3.1.14.

3.5 Some invariance properties for the log Futaki in-

variant

3.5.1 Invariance of volume and the average of holomorphy poten-

tial for conically singular metrics of elementary form

We first specialise to the conically singular metric of elementary form ω̂ . Momentum-

constructed conically singular metrics will be discussed in §3.5.3.

We recall that the volume Vol(X , ω̂) or the average of the integral
∫

X Ĥ ω̂n

n! is not

necessarily a invariant of the Kähler class, unlike in the smooth case. This is because,

as we mentioned in §3.1.3, the singularities of ω̂ mean that we have to work on the

noncompact manifold X \D, on which we cannot naively use the integration by parts.

The aim of this section is to find some conditions under which the boundary integrals

vanish, as in the smooth case. We first prove the following lemma.

Lemma 3.5.1. The volume Vol(X , ω̂) of X measured by a conically singular metric

with cone angle 2πβ of elementary form ω̂ = ω + λ
√
−1∂ ∂̄ |s|2β

h with ω ∈ c1(L) is

equal to the cohomological
∫

X c1(L)n/n! if β > 0.

Proof. Consider a path of metrics {ω̂t := ω + t
√
−1∂ ∂̄ |s|2β

h } defined for 0 ≤ t ≤ λ
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for sufficiently small λ > 0, and write ĝt for the metric corresponding to ω̂t , with

g := ĝ0. Then we have d
dt

∣∣
t=T ω̂n

t = n
√
−1∂ ∂̄ |s|2β

h ∧ ω̂
n−1
T = ∆T |s|2β

h ω̂n
T , where ∆T

is the (negative ∂̄ ) Laplacian with respect to ω̂T . If we show that d
dt

∣∣
t=T

∫
X ω̂n

t =

d
dt

∣∣
t=T

∫
X\D ω̂n

t =
∫

X\D
d
dt

∣∣
t=T ω̂n

t = 0 for any 0 ≤ T ≤ λ � 1 (where we used the

Lebesgue convergence theorem in the second equality), then we will have proved

Vol(X , ω̂T ) = Vol(X ,ω) =
∫

X c1(L)n/n!. We thus compute
∫

X\D ∆T |s|2β

h ω̂n
T for any

0≤ T ≤ λ . We treat the case T = 0 and T 6= 0 separately. Note that in both cases, we

may reduce to a local computation on U ⊂ X by applying the partition of unity as we

did in the proof of Theorems 3.1.11 and 3.1.12.

First assume T = 0. We now choose local holomorphic coordinates (z1, . . . ,zn) on

U so that D = {z1 = 0}. Writing z1 = re
√
−1θ , we define a local C∞-tubular neighbour-

hood Dε around D = {z1 = 0} by Dε := {x ∈ X | |s|h(x)≤ ε}. Then we have

∫
U\D

∆ω |s|2β

h ω
n =

∫
U\Dε

∆ω |s|2β

h ω
n +

∫
Dε\D

∆ω |s|2β

h ω
n

=
∫

U\Dε

∆ω |s|2β

h ω
n +

∫
Dε\D

∑
i, j

gi j̄ ∂ 2

∂ zi∂ z̄ j
|s|2β

h ω
n.

Writing r = |z1| and noting that |s|h = f r for some locally defined smooth bounded

function f , we can evaluate
∣∣∣∑i, j gi j̄ ∂ 2

∂ zi∂ z̄ j
|s|2β

h

∣∣∣≤ const.(r2β−2 + r2β−1 + r2β ). Thus

∣∣∣∣∣
∫

Dε\D
∑
i, j

gi j̄ ∂ 2

∂ zi∂ z̄ j
|s|2β

h ω
n

∣∣∣∣∣≤ const.
∫

ε

0
(r2β−2 + r2β−1 + r2β )rdr→ 0

as ε → 0, if β > 0.

We thus have to show that
∫

U\Dε
goes to 0 as ε → 0. Note that this is re-

duced to the boundary integral on ∂Dε by the Stokes theorem (by recalling that we

have been assuming |s|2β

h is compactly supported in U as a consequence of apply-

ing the partition of unity) as
∫

U\Dε
∆ω |s|2β

h ωn =
∫

∂Dε
n
√
−1∂̄ |s|2β

h ∧ωn−1. Recalling

dz̄1 ||z1|=r= (−
√
−1cosθ − sinθ)rdθ , we may write

∂̄ |s|2β

h ∧ω
n−1
∣∣∣
∂Dε

=
∂ |s|2β

h
∂ z̄1

Fεdθ ∧
√
−1dz2∧dz̄2∧·· ·∧

√
−1dzn∧dz̄n

with some smooth function F , in the local coordinates (z1, . . . ,zn). We thus have
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n
√
−1∂̄ |s|2β

h ∧ωn−1
∣∣∣≤ const.ε2β−1ε → 0 as ε → 0, if β > 0.

When T > 0, note that ∆T |s|2β

h =O(1) by Lemma 3.4.3. By Lemma 3.4.2, we have

ω̂n
T =O(r2β−1), which shows that

∣∣∣∫Dε\D ∑i, j ĝi j̄
T

∂ 2

∂ zi∂ z̄ j
|s|2β

h ω̂n
T

∣∣∣≤ const.
∫

ε

0 r2β−1dr→ 0

as ε→ 0. We are thus reduced to showing that the boundary integral
∫

U\Dε
∆T |s|2β

h ω̂n
T =∫

∂Dε
n
√
−1∂̄ |s|2β

h ∧ ω̂
n−1
T goes to 0 as ε → 0. We first evaluate

∫
∂Dε

n
√
−1∂ |s|2β

h
∂ z̄1

dz̄1∧

ω̂
n−1
T . By noting dz1 ∧ dz̄1 = 0 on ∂Dε , we observe that dz̄1 ∧ ω̂

n−1
T |∂Dε

= Fεdθ ∧
√
−1dz2∧dz̄2∧ ·· ·∧

√
−1dzn∧dz̄n for some function F , bounded as ε → 0, on ∂Dε .

Thus
∣∣∣∣∫∂Dε

n
√
−1∂ |s|2β

h
∂ z̄1

dz̄1∧ ω̂
n−1
T

∣∣∣∣= O(ε2β−1ε)→ 0 as ε → 0 if β > 0.

Again by noting dz1∧dz̄1 = 0 on ∂Dε , we observe that dz̄i∧ ω̂
n−1
T |∂Dε

= Fεdθ ∧
√
−1dz2 ∧ dz̄2 ∧ ·· · ∧

√
−1dzn ∧ dz̄n for some function F = O(ε2β−1) on ∂Dε . Thus∣∣∣∣∫∂Dε

n
√
−1∂ |s|2β

h
∂ z̄i

dz̄i∧ ω̂
n−1
T

∣∣∣∣= O(ε2β ε2β−1ε)→ 0 as ε → 0 if β > 0.

Lemma 3.5.2. The average of the holomorphy potential
∫

X Ĥ ω̂n

n! in terms of the coni-

cally singular metric with cone angle 2πβ of elementary form ω̂ = ω +λ
√
−1∂ ∂̄ |s|2β

h

with ω ∈ c1(L) is equal to the one
∫

X H ωn

n! measured in terms of the smooth Kähler

metric ω , if β > 0.

In particular, it is equal to b0 (in §1.2) of the product test configuration for (X ,L)

defined by the holomorphic vector field on X generated by H (cf. §2 of [41]), if β > 0.

Proof. Recall that the holomorphy potential varies as (cf. (3.46)) d
dt

∣∣
t=T Ĥt =

ĝi j̄
T

(
∂

∂ z̄ j
ĤT

)(
∂

∂ zi
|s|2β

h

)
. Thus, using the Lebesgue convergence theorem (as in the

proof of Lemma 3.5.1), we get

d
dt

∣∣∣∣
t=T

∫
X

Ĥtω̂
n
t =

∫
X\D

√
−1n

(
∂ |s|2β

h ∧ ∂̄ ĤT + ĤT ∂ ∂̄ |s|2β

h

)
∧ ω̂

n−1
T

=−
√
−1n

∫
X\D

d
(

ĤT ∂ |s|2β

h

)
∧ ω̂

n−1
T .

We proceed as we did above in proving Lemma 3.5.1. When T = 0 we evaluate

∫
U\D

d
(

H∂ |s|2β

h

)
∧ω

n−1

= lim
ε→0

∫
U\Dε

d
(

H∂ |s|2β

h

)
∧ω

n−1 + lim
ε→0

∫
Dε\D

d
(

H∂ |s|2β

h

)
∧ω

n−1

Noting that H is a smooth function defined globally on the whole of X , we apply exactly
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the same argument that we used in proving Lemma 3.5.1 to see that both these terms

go to 0 as ε → 0.

When T > 0, we evaluate

∫
U\D

d
(

ĤT ∂ |s|2β

h

)
∧ω̂

n−1
T =

∫
U\Dε

d
(

ĤT ∂ |s|2β

h

)
∧ω̂

n−1
T +

∫
Dε\D

d
(

ĤT ∂ |s|2β

h

)
∧ω̂

n−1
T .

Recalling that |ĤT | < const.(1+ r2β ), we can apply exactly the same argument as we

used in the proof of Lemma 3.5.1. This means that d
dt

∣∣
t=T

∫
X\D Ĥtω̂

n
t = 0 for all 0 ≤

T � 1 if β > 0.

As a consequence of Corollary 3.1.14 and Lemmas 3.5.1, 3.5.2, we have the fol-

lowing.

Corollary 3.5.3. If 0 < β < 1, we have

Fut(Ξ, ω̂) =
∫

X
Ĥ(S(ω̂)− S̄(ω̂))

ω̂n

n!

=
∫

X\D
Ĥ(S(ω̂)−S(ω̂))

ω̂n

n!
+2π(1−β )

(∫
D

H
ωn−1

(n−1)!
− Vol(D,ω)

Vol(X ,ω)

∫
X

H
ωn

n!

)
,

where we note that the last two terms are invariant under changing the Kähler metric

ω 7→ ω +
√
−1∂ ∂̄φ by φ ∈C∞(X ,R) (cf. Theorem 3.2.7).

Remark 3.5.4. Note that the “distributional” term

2π(1−β )

(∫
D

H
ωn−1

(n−1)!
− Vol(D,ω)

Vol(X ,ω)

∫
X

H
ωn

n!

)

in the above formula is precisely the term that appears in the definition of the log

Futaki invariant (up to the factor of 2π). Note also that Vol(D, ω̂) =
∫

X [D]∧ ω̂n−1

(n−1)! =∫
D

ωn−1

(n−1)! =Vol(D,ω) and
∫

D Ĥ ω̂n−1

(n−1)! =
∫

D H ωn−1

(n−1)! by Lemma 3.4.10 (and its extension

given in §3.4.3.1), where [D] is the current of integration over D. This means that,

combined with Lemmas 3.5.1 and 3.5.2, we get

∫
D

Ĥ
ω̂n−1

(n−1)!
− Vol(D, ω̂)

Vol(X , ω̂)

∫
X

Ĥ
ω̂n

n!
=
∫

D
H

ωn−1

(n−1)!
− Vol(D,ω)

Vol(X ,ω)

∫
X

H
ωn

n!
.

Thus, if we compute the log Futaki invariant FutD,β in terms of the conically singu-

lar metrics of elementary form ω̂ , we get FutD,β (Ξ, ω̂) = 1
2π

∫
X\D Ĥ(S(ω̂)−S(ω̂)) ω̂n

n! ,
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which will certainly be 0 if ω̂ satisfies S(ω̂) = S(ω̂) on X \D, i.e. is cscK as defined in

Definition 3.1.4.

3.5.2 Invariance of the Futaki invariant computed with respect to

the conically singular metrics of elementary form

We first recall how we prove the invariance of the Futaki invariant in the smooth case,

following the exposition given in §4.2 of Székelyhidi’s textbook [119]. Write ω for an

arbitrarily chosen reference metric in c1(L) and write ωt := ω + t
√
−1∂ ∂̄ψ with some

ψ ∈C∞(X ,R). Defining Futt(Ξ) :=
∫

X Ht(S(ωt)− S̄)ωn
t

n! , where Ht is the holomorphy

potential of Ξ with respect to ωt , we need to show d
dt |t=0Futt(Ξ) = 0.

Arguing as in §4.2, [119], we get

d
dt

∣∣∣∣
t=0

Futt(Ξ)

=
∫

X

√
−1n

(
(S(ω)− S̄)∂ψ ∧ ∂̄H−H(D∗ωDωψ−∂ψ ∧ ∂̄S(ω))+H(S(ω)− S̄)∂ ∂̄ψ

)
∧ω

n−1

where D∗ωDω is the operator defined in (1.1). We now perform the following integra-

tion by parts

∫
X
(S(ω)− S̄)∂ψ ∧ ∂̄H ∧ω

n−1

=−
∫

X
d
(
H(S(ω)− S̄)∂ψ ∧ω

n−1)+∫
X

H∂̄S(ω)∧∂ψ ∧ω
n−1−

∫
X
(H(S(ω)− S̄)∂ ∂̄ψ ∧ω

n−1

=
∫

X
H∂̄S(ω)∧∂ψ ∧ω

n−1−
∫

X
(H(S(ω)− S̄)∂ ∂̄ψ ∧ω

n−1

by using Stokes’ theorem. This means

d
dt

∣∣∣∣
t=0

Futt(Ξ) =−
∫

X
HD∗ωDωψω

n =−
∫

X
ψD∗ωDωHω

n = 0

as required, again integrating by parts.

We now wish to perform the above calculations when the Kähler metric ω̂ has

cone singularities along D. An important point is that, since we are on the noncompact

manifold X \D, we have to evaluate the boundary integral when we apply Stokes’

theorem, and that the remaining integrals may not be finite.

As we did in the proof of Lemma 3.5.1, we apply the partition of unity and reduce
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to a local computation around an open set U on which the integrand is compactly sup-

ported. Writing Ĥ = H +H ′ for the holomorphy potential of Ξ with respect to ω̂ , as

we did in (3.47), we first evaluate

∫
U\D

d
(
Ĥ(S(ω̂)−S(ω̂))∂ψ ∧ ω̂

n−1)= lim
ε→0

∫
U\Dε

d
(
Ĥ(S(ω̂)−S(ω̂))∂ψ ∧ ω̂

n−1)
= lim

ε→0

∫
∂Dε

Ĥ(S(ω̂)−S(ω̂))∂ψ ∧ ω̂
n−1.

Note dz1∧dz̄1 = 0 on ∂Dε , which implies

∂ψ ∧ ω̂
n−1|∂Dε

=
∂ψ

∂ z1
F1εdθ ∧

√
−1dz2∧dz̄2∧·· ·∧

√
−1dzn∧dz̄n

+∑
i6=1

∂ψ

∂ zi
Fiεdθ ∧F1

√
−1dz2∧dz̄2∧·· ·∧

√
−1dzn∧dz̄n (3.51)

where F1 is bounded as ε → 0 and Fi (i 6= 1) is at most of order ε2β−1, we see that

∂ψ∧ ω̂n−1|∂Dε
= O(ε)+O(ε2β ). Recalling Ĥ = O(1)+O(|z1|2β ) and S(ω̂) = O(1)+

O(|z1|2−4β ), we see that the integrand of the above is at most of order O(ε1+2−4β ).

Thus we need β < 3/4 for the boundary integral to be 0.

We now evaluate
∫

X Ĥ∂̄S(ω̂)∧∂ψ ∧ ω̂n−1. Writing

∂̄S(ω̂)∧∂ψ ∧ ω̂
n−1 =

∂S(ω̂)

∂ z̄1
dz̄1∧∂ψ ∧ ω̂

n−1 +∑
i 6=1

∂S(ω̂)

∂ z̄i
dz̄i∧∂ψ ∧ ω̂

n−1,

we see that the order of the first term is at most O(|z1|2−4β−1|z1|2β−1+1) =O(|z1|1−2β ),

and the second term is at most of order O(|z1|2−4β |z1|2β−1) = O(|z1|1−2β ), and

hence we need 1− 2β > −1, i.e. β < 1 for the integral to be finite, by recall-

ing Ĥ = O(1) + O(|z1|2β ). Since the second term
∫

X(∆ω̂ψ)Ĥ(S(ω̂)− S(ω̂))ω̂n is

manifestly finite (by Lemma 3.4.3 and Remark 3.4.5), we can perform the integra-

tion by parts to have d
dt

∣∣
t=0 Futt(Ξ) = −

∫
X\D ĤD∗

ω̂
Dω̂ψω̂n if 0 < β < 3/4. It re-

mains to prove that
∫

X\D ĤD∗
ω̂
Dω̂ψω̂n =

∫
X\D ψD∗

ω̂
Dω̂Ĥω̂n = 0 holds. Recalling

D∗
ω̂
Dω̂ψ = ∆2

ω̂
ψ + ∇̂ j̄(Ric(ω̂)k j̄∂kψ) (by noting ψ̄ = ψ as ψ is a real function), where

∇̂ is the covariant derivative on T X defined by the Levi-Civita connection of ω̂ , we first
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consider

∫
U\D

Ĥ∇̂ j̄(Ric(ω̂)k j̄
∂kψ)ω̂n =

∫
U\D

Ĥ(∇̂ j̄Ric(ω̂)k j̄)∂kψω̂
n +

∫
U\D

ĤRic(ω̂)k j̄
∂̄ j∂kψω̂

n

=
√
−1n

∫
U\D

Ĥ∂ψ ∧ ∂̄S(ω̂)∧ ω̂
n−1 +

∫
U\D

ĤS(ω̂)∆ω̂ψω̂
n

−
√
−1n(n−1)

∫
U\D

ĤRic(ω̂)∧∂ ∂̄ψ ∧ ω̂
n−2

where we used the Bianchi identity ∇̂ j̄Ric(ω̂)k j̄ = ĝk j̄∂ j̄S(ω̂) and the identity in Lemma

4.7, [119]. We perform the integration by parts for the second and the third term. We

re-write the second term as

∫
U\D

ĤS(ω̂)∆ω̂ψω̂
n =
√
−1n

(
−
∫

U\D
d(ĤS(ω̂)∂ψ ∧ ω̂

n−1)−
∫

U\D
d(S(ω̂)∂̄ Ĥψ ∧ ω̂

n−1)

+
∫

U\D
∂S(ω̂)∧ ∂̄ Ĥ ∧ψω̂

n−1 +
∫

U\D
S(ω̂)∂ ∂̄ Ĥ ∧ψω̂

n−1

+
∫

U\D
Ĥ∂̄S(ω̂)∧∂ψ ∧ ω̂

n−1
)

and the third term as

∫
U\D

ĤRic(ω̂)∧∂ ∂̄ψ ∧ ω̂
n−2

=
∫

U\D
d(ĤRic(ω̂)∧ ∂̄ψ ∧ ω̂

n−2)+
∫

U\D
d(∂ Ĥ ∧Ric(ω̂)∧ψω̂

n−2)

−
∫

U\D
ψ∂̄∂ Ĥ ∧Ric(ω̂)∧ ω̂

n−2.

We thus have
∫

U\D Ĥ∇̂ j̄(Ric(ω̂)k j̄∂kψ)ω̂n =
∫

U\D ψ∇̂ j(Ric(ω̂)k̄ j∂k̄Ĥ)ω̂n −
√
−1n(n− 1)(B1 +B2)−

√
−1n(B3 +B4), where the Bi’s stand for the boundary in-

tegrals B1 := limε→0
∫

∂Dε
ĤRic(ω̂)∧ ∂̄ψ ∧ ω̂n−2, B2 := limε→0

∫
∂Dε

ψ∂ Ĥ ∧Ric(ω̂)∧

ω̂n−2, B3 := limε→0
∫

∂Dε
ĤS(ω̂)∂ψ ∧ ω̂n−1, B4 := limε→0

∫
∂Dε

ψS(ω̂)∂̄ Ĥ ∧ ω̂n−1,

which we now evaluate.

We first evaluate
∫

∂Dε
ĤRic(ω̂)∧ ∂̄ψ ∧ ω̂n−2 in terms of ε . Since dz1 ∧ dz̄1 = 0

on ∂Dε , we can see that this converges to 0 (ε → 0) as long as 0 < β < 1, by recalling

Lemma 3.4.4. We thus get B1 = 0.

We then evaluate
∫

∂Dε
ψ∂ Ĥ ∧Ric(ω̂)∧ ω̂n−2. We see that this converges to 0
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(ε → 0) as long as 0 < β < 1, exactly as we did before. We thus get B2 = 0.

Now we see that
∫

∂Dε
ĤS(ω̂)∂ψ∧ ω̂n−1 is at most of order ε3−4β , since S(ω̂) is at

most of order ε2−4β and ∂ψ ∧ ω̂n−1 is of order O(ε)+O(ε2β ) (cf. (3.51)), and hence

converges to 0 (as ε → 0) if β < 3/4. Similarly, we can show that
∫

∂Dε
ψS(ω̂)∂̄ Ĥ ∧

ω̂n−1 converges to 0 if β < 3/4. Thus, we get B3 = B4 = 0.

Note that
∫

U\D ψ∇̂k(Ric(ω̂) j̄k(∂ j̄Ĥ))ω̂n converges if 0 < β < 1, since Lemma

3.4.4, combined with Lemma 3.4.3, implies Ric(ω̂)11̄ = O(|z1|2−2β ) + O(|z1|4−4β ),

Ric(ω̂)1 j̄ = O(|z1|) + O(|z1|3−4β ) + O(|z1|2−2β ) ( j 6= 1), and Ric(ω̂)i j̄ = O(1) +

O(|z1|2β ) +O(|z1|2−2β ) (i, j 6= 1). We thus see that we can perform the integration

by parts in the above computation if we have 0 < β < 3/4.

We are now left to prove
∫

X\D ψ∆2
ω̂

Ĥω̂n =
∫

X\D Ĥ∆2
ω̂

ψω̂n. We write

∫
X\D

Ĥ∆
2
ω̂

ψω̂
n =
√
−1n

∫
X\D

Ĥ∂ ∂̄ (∆ω̂ψ)∧ ω̂
n−1

=
√
−1n

∫
X\D

d(Ĥ∂̄ (∆ω̂ψ)∧ ω̂
n−1)+

√
−1n

∫
X\D

d(∂ Ĥ ∧ (∆ω̂ψ)ω̂n−1)

+
∫

X\D
(∆ω̂Ĥ)(∆ω̂ψ)ω̂n−1

and evaluate the boundary integrals limε→0
∫

∂Dε
Ĥ∂̄ (∆ω̂ψ)∧ω̂n−1 and limε→0

∫
∂Dε

∂ Ĥ∧

(∆ω̂ψ)ω̂n−1 which, as before, can be shown to converge to zero as long as β > 0.

We finally evaluate
∫

U\D(∆ω̂Ĥ)(∆ω̂ψ)ω̂n, where we recall from Lemma 3.4.3 that

∆ω̂Ĥ = O(1)+O(|z1|2−2β )+O(|z1|2β ). Thus, computing as we did above, we see that

this is finite.

Summarising the above argument, together with the results in §3.5.1, we have the

following. Suppose that we compute the log Futaki invariant

FutD,β (Ξ, ω̂)=
1

2π

∫
X

Ĥ(S(ω̂)− S̄(ω̂))
ω̂n

n!
−(1−β )

(∫
D

Ĥ
ω̂n−1

(n−1)!
− Vol(D, ω̂)

Vol(X , ω̂)

∫
X

Ĥ
ω̂n

n!

)

with respect to the conically singular metric of elementary form ω̂ for a holomor-

phic vector field v that preserves the divisor D, with Ĥ as its holomorphy poten-

tial. As we mentioned in Remark 3.5.4, Lemmas 3.5.1, 3.5.2, Corollary 3.5.3, com-

bined with Lemma 3.4.10 (and its extension given in §3.4.3.1), show FutD,β (Ξ, ω̂) =

1
2π

∫
X\D Ĥ(S(ω̂)−S(ω̂)) ω̂n

n! , and the calculations that we did above prove the first item

of Theorem 3.1.15.
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3.5.3 Invariance of the log Futaki invariant computed with respect

to the momentum-constructed conically singular metrics

Now consider the case of momentum-constructed metrics on X := P(F ⊕C) with the

P1-fibration structure p : P(F ⊕C)→ M over a Kähler manifold (M,ωM). In this

section, we shall assume that the σ -constancy hypothesis (Definition 3.3.1) is satisfied

for our data {p : (F ,hF )→ (M,ωM), I}. Let D⊂ P(F ⊕C) = X be the ∞-section, as

before.

We first prove some lemmas that are well-known for smooth momentum-

constructed metrics; the point is that they hold also for conically singular momentum-

constructed metrics, since, as we shall see below, the proof applies word by word. We

start with the following consequence of Lemma 3.3.9.

Lemma 3.5.5. (Lemma 2.8, [61]) Suppose that the σ -constancy hypothesis (Definition

3.3.1) is satisfied for our data. For any function f (τ) of τ , we have

∫
X

f (τ)
ωn

ϕ

n!
= 2πVol(M,ωM)

∫ b

−b
f (τ)Q(τ)dτ,

where Q(τ) is as defined in (3.6). In particular,
∫

X f (τ)
ωn

ϕ

n! does not depend on the

choice of ϕ or the boundary value ϕ ′(±b).

Proof. σ -constancy hypothesis implies that Q(τ) = ωM(τ)n−1/ω
n−1
M is a function

which depends only on τ . We thus have

∫
X

f (τ)
ωn

ϕ

n!
=
∫

X

ω
n−1
M

(n−1)!
∧
(

f (τ)Q(τ)

ϕ
dτ ∧dc

τ

)
= 2πVol(M,ωM)

∫ b

−b
f (τ)Q(τ)dτ,

by (3.23) in Lemma 3.3.9.

We summarise what we have obtained as follows.

Lemma 3.5.6. Suppose that the σ -constancy hypothesis is satisfied for our data. Let

ϕ : [−b,b]→R≥0 be a real analytic momentum profile with ϕ(±b) = 0 and ϕ(−b) = 2,

ϕ(−b) = −2β , so that ωϕ = p∗ωM − τ p∗γ + 1
ϕ

dτ ∧ dcτ has cone singularities with

cone angle 2πβ along the ∞-section. Let φ : [−b,b]→ R≥0 be another momentum

profile with ϕ(±b) = 0 and ϕ(±b) =∓2, so that ωφ = p∗ωM− τ p∗γ + 1
φ

dτ ∧dcτ is a

smooth momentum-constructed metric. Then we have the following.
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1. [ωϕ ] = [ωφ ],

2. Vol(X ,ωϕ) = 2πVol(M,ωM)
∫ b

−b
Q(τ)dτ = Vol(X ,ωφ ),

3.
∫

X
τ

ωn
ϕ

n!
= 2πVol(M,ωM)

∫ b

−b
τQ(τ)dτ =

∫
X

τ
ωn

φ

n!
.

Proof. The first item follows from Lemma 3.3.9, and the second and the third from

Lemma 3.5.5.

The second and the third item of the above lemma shows that the second “dis-

tributional” term in Corollary 3.1.14 agrees with the “correction” term in the log Fu-

taki invariant, as we saw in the case of conically singular metrics of elementary form

(cf. Corollary 3.5.3 and Remark 3.5.4). We thus get the following result.

Corollary 3.5.7. Suppose that the σ -constancy hypothesis is satisfied for our data {p :

(F ,hF )→ (M,ωM), I}. Writing Fut(Ξ,ωϕ) for the Futaki invariant computed with

respect to the momentum-constructed conically singular metric ωϕ with cone angle

2πβ and with real analytic momentum profile ϕ and 0 < β < 1, evaluated against the

generator Ξ of fibrewise C∗-action of X = P(F ⊕C), we have

Fut(Ξ,ωϕ) =
∫

X\D
τ(S(ωϕ)−S(ωϕ))

ωn
ϕ

n!

+2π(1−β )

(
b
∫

M

ωM(b)n−1

(n−1)!
− Vol(M,ωM(b))

Vol(X ,ωφ )

∫
X

τ
ωn

φ

n!

)

where ωφ is a smooth momentum-constructed metric in the same Kähler class as ωϕ .

In particular,

FutD,β (Ξ,ωϕ) =
∫

X\D
τ(S(ωϕ)−S(ωϕ))

ωn
ϕ

n!
.

We now wish to establish the analogue of the first item of Theorem 3.1.15. We

first of all have to estimate the Ricci and scalar curvature of the metric ωϕ +
√
−1∂ ∂̄ψ

for ψ ∈C∞(X ,R). We show that this is exactly the same as the ones for the conically

singular metrics of elementary form.

Lemma 3.5.8. Ric(ωϕ +
√
−1∂ ∂̄ψ) and S(ωϕ +

√
−1∂ ∂̄ψ) satisfy the estimates as

given in Lemma 3.4.4.
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Proof. Choose a local coordinate system (z1, . . . ,zn) around a point in X so that D is

locally given by {z1 = 0}. Lemma 3.3.6 and the estimate (3.12) imply that we have

ωϕ +
√
−1∂ ∂̄ψ =p∗ωM− τ p∗γ +

1
ϕ

dτ ∧dc
τ +
√
−1

n

∑
i, j=1

∂ 2ψ

∂ zi∂ z̄ j

√
−1dzi∧dz̄ j

=|z1|2β−2
(

F11 + |z1|2−2β ∂ 2ψ

∂ z1∂ z̄1

)√
−1dz1∧dz̄1

+
n

∑
j=2
|z1|2β−2

(
F1 j z̄1 + |z1|2−2β ∂ 2ψ

∂ z1∂ z̄ j

)√
−1dz1∧dz̄ j + c.c.

+
n

∑
i, j=2

(
Fi j|z1|2β +

∂ 2ψ +ψM

∂ zi∂ z̄ j

)√
−1dzi∧dz̄ j

where Fi j’s stand for locally uniformly convergent power series in |z1|2β with coef-

ficients in smooth functions which depend only on the base coordinates (z2, . . . ,zn).

We also wrote ψM for the local Kähler potential for p∗ωM. When we Taylor

expand ψ and ψM, we thus get (ωϕ +
√
−1∂ ∂̄ψ)n = |z1|2β−2[O(1) + O(|z1|2β ) +

O(|z1|2−2β )]∏n
i=1(
√
−1dzi∧dz̄i). Writing ω0 := ∏

n
i=1(
√
−1dzi∧dz̄i), we thus get

log
(ωϕ +

√
−1∂ ∂̄ψ)n

ωn
0

= (β −1) log |z1|2 +O(1)+O(|z1|2β )+O(|z1|2−2β ).

This is exactly the same as (3.27), from which Lemma 3.4.4 follows (since

∂ ∂̄ log |z1|2 = 0 on X \D).

Since that the holomorphy potential for Ξ with respect to ωϕ +
√
−1∂ ∂̄ψ is given

by τ−
√
−1Ξ(ψ)=O(|z1|2β )+O(1) (cf. Lemma 4.10, [119]), it is now straightforward

to check that the calculations in §3.5.2 apply word by word. We thus get the second

item of Theorem 3.1.15.



Chapter 4

Stability and canonical metrics on

BlP1Pn

4.1 Introduction

4.1.1 Statement of the results

Consider now the following problem1.

Problem 4.1.1. Suppose that a Kähler manifold X admits a cscK (resp. extremal)

metric. Under what geometric hypotheses does the blowup BlY X of X along a complex

submanifold Y admit a cscK (resp. extremal) metric?

The case dimCY = 0 was solved by the theorems of Arezzo–Pacard [6, 7], and

Arezzo–Pacard–Singer [8], which will be discussed in detail in §4.1.2, and will provide

a background and motivation for considering Problem 4.1.1. The remaining case is

dimCY > 0, and we assume dimCX ≥ 3 for the blowup to be non-trivial. On the other

hand, there seems to be very few results known about Problem 4.1.1 when dimCY > 0,

and the solution of Problem 4.1.1 in general seems to be out of reach at the moment;

see §4.1.3 for the review of previously known results.

We thus decide to focus instead on a particular example, the blowup BlP1Pn of Pn

along a line, in the hope that this may serve as a useful example in attacking Problem

4.1.1. The result that we prove is the following.

Theorem 4.1.2. Let n ≥ 3 and consider the blowup π : BlP1Pn → Pn of Pn along a

line. BlP1Pn is slope unstable (and hence K-unstable, cf. §4.2.1) with respect to any

1This is mentioned, for example, in Székelyhidi’s survey [118] in the case dimCY > 0.
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polarisation; in particular, BlP1Pn cannot admit a cscK metric in any rational Kähler

class. However, if we choose ε > 0 sufficiently small, there exists an extremal metric in

the Kähler class π∗c1(OPn(1))−εc1([E]), with an explicit formula given in Proposition

4.4.1, where [E] is the line bundle associated to the exceptional divisor E.

Notation 4.1.3. In this chapter, given a divisor D in a Kähler manifold X , we write

[D] for the line bundle OX(D) associated to D. Also, we shall use the additive nota-

tion for the tensor product of line bundles, and the multiplicative notation will be re-

served for the intersection product of divisors: given n divisors D1, . . . ,Dn, we shall

write D1.D2. · · · .Dn to mean
∫

X c1([D1])c1([D2]) . . .c1([Dn]), and Di
1.D

n−i
2 to mean∫

X c1([D1])
ic1([D2])

n−i.

Remark 4.1.4. In spite of its apparent simplicity, there has been no known result on

BlP1Pn in terms of cscK or extremal metrics, to the best of the author’s knowledge (cf.

§4.1.3). This is perhaps related to the fact that BlP1Pn does not admit a structure of a

P1-bundle; see §4.1.3.1 for details.

4.1.2 Blowup of cscK and extremal manifolds at points

We now discuss the background for Theorem 4.1.2, namely Problem 4.1.1 for the case

dimCY = 0. We prepare some notation before doing so; write Ham(ω,g) for the group

of Hamiltonian isometries of g, i.e. isometries of (X ,g) which are also Hamiltonian

diffeomorphisms of ω and let ham be its Lie algebra. We observe that Ham(ω,g)

is a finite dimensional compact Lie group. This allows us to define a moment map

m : X→ ham∗, which we may normalise so that
∫

X〈m,v〉ωn/n!= 0 for all v∈ ham with

〈,〉 being the natural duality pairing between ham and ham∗. If X admits a cscK metric,

a classical theorem of Matsushima [87] and Lichnerowicz [74] states the following for

the Lie algebra of the group Aut0(X ,L) consisting of the elements in Aut(X) which lift

to the automorphism of L (cf. §1.3).

Theorem 4.1.5. (cf. Theorem 1 in [70], Theorems 6.1 and 9.4 in [67]) Suppose that X

admits a cscK metric. Writing aut(X ,L) for LieAut0(X ,L), we have aut(X ,L) = hamC.

We now consider Problem 4.1.1 for dimCY = 0. Suppose that we have a polarised

cscK manifold (X ,L) which we blow up at points p1, . . . , pl . We ask if the blown-up

manifold Blp1,...,pl X admits a cscK metric in a “perturbed” Kähler class so that the size
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of the exceptional divisor is small. Solution to this problem is given by the following

theorem of Arezzo and Pacard [7], which generalises their previous result in [6].

Theorem 4.1.6. (Arezzo and Pacard [7]) Let (X ,L) be a polarised Kähler manifold

with a cscK metric ω ∈ c1(L). Let p1, . . . , pl be distinct points in X and a1, . . . ,al be

positive real numbers. Suppose that the following conditions are satisfied:

1. m(p1), . . . ,m(pl) spans ham∗,

2. ∑
l
i=1 an−1

i m(pi) = 0 ∈ ham∗.

Then there exists ε0 > 0, c > 0, and θ > 0 such that, for all 0 < ε < ε0 the blowup

X̂ := Blp1,...,pl X of X with the blowdown map π : X̂ → X admits a cscK metric ωε in

the perturbed Kähler class

π
∗[ω]− ε

l

∑
i=1

ãic1([Ei])

where ãi depends only on ε and satisfies |ãi− ai| ≤ cεθ as ε → 0 and Ei stands for

the exceptional divisor corresponding to the blowup at pi. Moreover, ωε → ω in the

C∞-norm as ε → 0, away from p1, . . . , pl .

By Theorem 4.1.5, all of these hypotheses are vacuous if we assume aut(X ,L) = 0.

However, in presence of nontrivial holomorphic vector fields on X , we cannot choose

the number and positions of p1, . . . , pl arbitrarily to get a cscK metric on X̂ (cf. Theorem

4.1.8).

Theorem 4.1.6 has many differential-geometric and algebro-geometric applica-

tions [32, 44, 108, 111]; we note in particular that it was used to construct an example

of asymptotically Chow unstable cscK manifold ([32], cf. Remark 2.1.4), and also

to prove the K-stability of cscK manifolds with discrete automorphism group ([111],

cf. Theorem 1.2.9).

Even though aut(X ,L) 6= 0 (or more precisely ham 6= 0) imposes some restrictions

on the applicability of Arezzo–Pacard theorem, there is still hope of finding an extremal

metric under weaker hypotheses, and moreover, it is natural to expect a version of this

theorem for extremal metrics. Such result was indeed proved by Arezzo, Pacard, and

Singer (cf. [8], Theorem 2.0.2). Just as Theorem 4.1.6 was used by Stoppa [111] to

prove the K-stability of cscK manifolds when aut(X ,L) = 0, this result was used by
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Stoppa and Székelyhidi [114] to prove the relative K-stability of Kähler manifolds with

an extremal metric. We finally note that Székelyhidi [117, 120] later established a

connection to the K-stability of the blowup X̂ when X admits an extremal metric.

4.1.3 Comparison to previous results

We now return to the case X =Pn and Y =P1, to consider BlP1Pn. Our results (Theorem

4.1.2) have much in common with, or more precisely are modelled after, the ones for

the blowup BlptPn of Pn at a point. We review some previously known results on

BlptPn and its generalisations, as well as several nonexistence results that seem to be

particularly relevant to Problem 4.1.1.

4.1.3.1 Calabi’s work on projectivised bundles and related results

In a seminal paper, Calabi [23] presented the first examples of Kähler manifolds which

admit a non-cscK extremal metric. More precisely, he proved the following theorem.

Theorem 4.1.7. (Calabi [23]) The projective completion P(OPn−1(−m)⊕C)→ Pn−1 of

line bundles OPn−1(−m)→ Pn−1, for any m,n ∈ N, admits an extremal metric in each

Kähler class.

We observe that P(OPn−1(−1)⊕C) is simply the blowup BlptPn of Pn at a point;

the above theorem thus implies that there exists an extremal metric in each Kähler class

on BlptPn, although Theorem 4.1.8 due to Ross and Thomas shows that none of these

extremal metrics can be cscK.

There are two important features of BlptPn (or more generally P(OPn−1(−m)⊕

C)) that can be used in the construction of extremal metrics; the P1-bundle structure

and the toric structure. We first focus on the P1-bundle structure. Calabi’s original

proof exploited this structure, which was later generalised by many mathematicians to

various situations. While the reader is referred to §4.5 of [62] for a historical survey, we

wish to particularly mention the following case to which this theory applies: suppose

that we blow up two skew planes P1 ∼= Pk and P2 ∼= Pn−k−1 in Pn. Then BlP1,P2Pn

is isomorphic to the total space of the projectivised bundle P(O(1,−1)⊕C) over an

exceptional divisor Pk ×Pn−k−1, where O(1,−1) = p∗1OPk(1)⊗ p∗2OPn−k−1(−1) and

p1 : Pk×Pn−k−1 → Pk and p2 : Pk×Pn−k−1 → Pn−k−1 are the obvious projections.

Then, we see that Theorem 3.3.2 by Hwang [61] immediately implies that BlP1,P2Pn
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carries an extremal metric in each Kähler class.2

On the other hand, BlP1Pn does not have a structure of a P1-bundle, so the above

theorems do not apply. Thus, we now focus on the toric structure of BlptPn. This

was treated in [3] and [99], which (amongst other results) re-established Calabi’s the-

orem using toric methods. This is the approach that we follow for BlP1Pn, and will be

discussed in greater detail in §4.4.2.1.

4.1.3.2 Nonexistence results

We mention several nonexistence results which seem to be particularly relevant to Prob-

lem 4.1.1. There are several approaches to prove the nonexistence of cscK (resp. ex-

tremal) metrics. One frequently used approach is to use Theorem 1.2.8 due to Donald-

son [42] (resp. Theorem 1.4 in [114] due to Stoppa and Székelyhidi), namely to prove

K-instability (resp. relative K-instability) of (X ,L). Proving K-instability is often pos-

sible by establishing a stronger statement, which is to prove slope instability of (X ,L);

the reader is referred to §4.2.1 for more details on this. Along this line, we recall the

following result of Ross and Thomas. We follow their approach very closely in proving

the slope instability of BlP1Pn (cf. Proposition 4.3.1).

Theorem 4.1.8. (Ross–Thomas [102], Examples 5.27, 5.35.) BlptPn is slope unstable

with respect to any polarisation. In particular, it cannot admit a cscK metric in any

rational Kähler class.

On the other hand, in some cases it is still possible to show K-instability directly,

without proving slope instability, as in the following theorem due to Della Vedova

[33]. They can be regarded as an extension of Stoppa’s results [112, 111] to blowing

up higher dimensional submanifolds. By defining the notion of “Chow stability” for

subschemes inside a general polarised Kähler manifold (cf. Definition 3.5, [33]), he

proved the following by showing the K-instability of the blowup.

Theorem 4.1.9. (Della Vedova [33], Theorem 1.5.) Let (X ,L) be a polarised Kähler

manifold with a cscK metric in c1(L). Let Z1, . . . ,Zs be pairwise disjoint submanifolds

of codimension greater than two, and let π : X̂→ X be the blowup of X along Z1∪·· ·∪

2In fact, some of the above examples admit Kähler–Einstein metrics, as shown by Koiso and Sakane
[69], Mabuchi [80], and also Nadel [91].
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Zs with E j being the exceptional divisor over Z j. Define the subscheme Z by the ideal

sheaf IZ := I m1
Z1
∩·· ·∩I ms

Zs
for m1, . . . ,ms ∈ N.

If Z ↪→ X is Chow unstable, then the class π∗c1(L)− ε ∑
s
j=1 m jc1([E j]) contains

no cscK metrics for 0 < ε � 1.

Della Vedova also proved an analogous statement for the extremal metrics (The-

orem 1.7, [33]), by defining “relative Chow stability” for subschemes inside a general

polarised Kähler manifold. See Examples 1.6 and 1.11 in [33] for explicit examples in

which these results are used.

Remark 4.1.10. Recalling Theorem 4.1.5, we now ask whether the automorphism

group of X = BlP1Pn is reductive. It is easy to see that the Lie algebra aut(X) of

Aut(X) is equal to the Lie subalgebra h of sl(n+1,C) consisting of matrices of the formA B

0 C

 where A,B,C are matrices of size 2×2, 2×(n−1), (n−1)×(n−1), respec-

tively. Note that X is Fano, and aut(X) = aut(X ,−KX). Note also that aut(X ,−KX)∼=

aut(X ,L) for any ample line bundle L, cf. [67, 70].

It is easy to see that the centre of h is trivial, and hence h is reductive if and only

if it is semisimple. In principle this can be checked e.g. by Cartan’s criterion using

the Killing form, although in practice it may be a nontrivial task. We can still prove

that h is not semisimple, and hence nonreductive, as follows. Theorem 4.1.2 shows

that we have a non-cscK extremal metric in the polarisation L := π∗OPn(1)− ε[E] if

ε > 0 is sufficiently small. This means that the Futaki invariant evaluated against the

extremal vector field is not zero (Lemma 1.4.5). However, since the Futaki invariant is

a Lie algebra character (Corollary 2.2, [54]), this means that h ∼= aut(X ,L) cannot be

semisimple. We thus conclude that h is not reductive.

4.2 Some technical backgrounds

We briefly recall slope stability in §4.2.1, and toric Kähler geometry in §4.2.2. The aim

of these sections is to fix the notation and recall some key facts; the reader is referred

to the literature cited in each section for more details.
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4.2.1 Slope stability

For the details of what is discussed in the following, the reader is referred to the paper

[102] by Ross and Thomas.

Let (X ,L) be a polarised Kähler manifold. Then for k� 1,

dimH0(X ,L⊗k) = a0kn +a1kn−1 +O(kn−2).

Now let Z be a subscheme of X . The Seshadri constant Sesh(Z) for Z ⊂ X (with

respect to L) can be defined as follows. Considering the blowup π : BlZX→ X with the

exceptional divisor E, we define

Sesh(Z) = Sesh(Z,X ,L) := sup{c | π∗L− cE is ample on BlZX}.

Then, writing IZ for the ideal sheaf defining Z, we compute

dimH0(X ,L⊗k/(L⊗k⊗I xk
Z )) = ã0(x)kn + ã1(x)kn−1 +O(kn−2)

for k� 1 and x∈Q such that kx∈N. It is well-known that ãi(x) is a polynomial in x of

degree at most n− i, and hence can be extended as a continuous function on R (cf. §3,

[102]).

Definition 4.2.1. The slope of (X ,L) is defined by µ(X ,L) := a1/a0, and the quotient

slope of Z with respect to c ∈ R is defined by

µc(OZ,L) :=
∫ c

0 (ã1(x)+ ã0(x)/2)dx∫ c
0 ã0(x)dx

.

Definition 4.2.2. (X ,L) is said to be slope semistable with respect to Z if µ(X ,L) ≤

µc(OZ,L) for all c ∈ (0,Sesh(Z)]. (X ,L) is said to be slope semistable if it is slope

semistable with respect to all subschemes Z of X . (X ,L) is slope unstable if it is not

slope semistable.

We remark that, since X is a manifold, the slope can be computed by the

Hirzebruch–Riemann–Roch theorem as

µ(X ,L) =−n
∫

X c1(KX)c1(L)n−1

2
∫

X c1(L)n . (4.1)



166 Chapter 4. Stability and canonical metrics on BlP1Pn

The quotient slope can also be computed in terms of Chern classes when BlZX is

smooth, by noting π∗OBlZX(− jE) = I j
Z for π : BlZX → X and j ≥ 0 and again using

Hirzebruch–Riemann–Roch. It takes a particularly neat form when Z is a divisor in X .

Theorem 4.2.3. (Ross–Thomas [102], Theorem 5.2.) Let Z be a divisor in X. Then

µc(OZ,L) =
n
(

Ln−1.Z−∑
n−1
j=1
(n−1

j

) (−c) j

j+1 Ln−1− j.Z j.(KX +Z)
)

2∑
n
j=1
(n

j

) (−c) j

j+1 Ln− j.Z j
, (4.2)

where the dot stands for the intersection product (cf. Notation 4.1.3), by identifying line

bundles with corresponding divisors.

A fundamental theorem of Ross and Thomas is the following.

Theorem 4.2.4. (Ross–Thomas [102], Theorem 4.2.) If (X ,L) is K-semistable, then it

is slope semistable with respect to any smooth subscheme Z.

Remark 4.2.5. Slope stability is strictly weaker than K-stability; the blowup of P2

at two distinct points with the anticanonical polarisation is K-unstable, and yet slope

stable (Example 7.6 in [94]).

4.2.2 Toric Kähler geometry

In addition to the original papers cited below, we mention [3, 45] and Chapters 27-29

of [26] as particularly useful reviews on the details of what is discussed in this section.

We first of all demand that the symplectic form ω on X be fixed throughout in

this section. Recall that an action of a group G on a manifold X is called effective if

for each g ∈ G, g 6= idG, there exists x ∈ X such that g · x 6= x. We first define a toric

symplectic manifold, by regarding a Kähler manifold (X ,ω) merely as a symplectic

manifold.

Definition 4.2.6. A toric symplectic manifold is a symplectic manifold (X ,ω)

equipped with an effective Hamiltonian action of an n-torus T n := Rn/2πZn with a

corresponding moment map m : X → Rn.

Remark 4.2.7. Recall that a moment map for the action T n y X is a T n-invariant map

m : X → Lie(T n)∗ ∼= Rn such that ι(v)ω = −d〈m,v〉 for all v ∈ Lie(T n). A T n-action

is called Hamiltonian if there exists a moment map for the action.
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A theorem due to Atiyah [9], and Guillemin and Sternberg [59] states that the

image of the moment map m is the convex hull of the images of the fixed points of

the Hamiltonian torus action. For a toric symplectic manifold, it is a particular type

of convex polytope called a Delzant polytope. Delzant [34] showed that we have

a one-to-one correspondence between a Delzant polytope P and a toric symplectic

manifold T n y (X ,ω); Delzant polytopes are complete invariants of toric symplectic

manifolds. This allows us to confuse a toric symplectic manifold with its associated

Delzant polytope P , which is often called the moment polytope.

It is well-known that on (the preimage inside X of) the interior P◦ of

the moment polytope P , the T n-action is free and we have a coordinate chart

{(x,y) = (x1, . . . ,xn,y1, . . .yn) ∈P◦× (Rn/2πZn)}, called action-angle coordinates,

on m−1(P◦). Action coordinates (x1, . . . ,xn) are also called momentum coordinates.

In action-angle coordinates, the symplectic form can be written as ω = ∑
n
j=1 dx j ∧dy j

and the moment map can be given by m(x,y) = x.

We now consider a complex structure on X to endow (X ,ω) with a Kähler struc-

ture; the reader is referred, for example, to §3 of [3] or §2 of [45] for more details. We

first recall that the way we construct T n y (X ,ω) from P [34] shows that any toric

symplectic manifold automatically admits a T n-invariant complex structure compatible

with ω; a toric symplectic manifold is automatically a toric Kähler manifold. Let Sn

be the Siegel upper half space consisting of complex symmetric n×n matrices of the

form Z = R+
√
−1S where R and S are real symmetric matrices and S is in addition

assumed to be positive definite. It is known that Sn is isomorphic to Sp(2n,R)/U(n),

and that Sn bijectively corresponds to the set J (R2n,ωstd) of all complex structures

on R2n which are compatible with its standard symplectic form ωstd. It follows that

in the action-angle coordinates on m−1(P◦), by taking a Darboux chart, any almost

complex structure J on (X ,ω) can be written as

J =

 −S−1R −S−1

RS−1R+S RS−1

 .

If we assume that J is T n-invariant, we can make R, S depend only on the action co-

ordinates x. Moreover, by a Hamiltonian action generated by a function f (x), given
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infinitesimally as y j 7→ y j +
∂ f
∂x j

(x), we may choose R = 0. Furthermore, if we choose

J to be integrable, we can show that there exists a potential function s(x) of S such that

Si j =
∂ 2s

∂xi∂x j
(x). Such s(x) is called a symplectic potential. Guillemin [60] showed

that we can define a canonical complex structure, or canonical symplectic potential on

(X ,ω), from the data of the moment polytope P .

Theorem 4.2.8. (Guillemin [60]) Suppose that P has d facets (i.e. codimension 1

faces) which are defined by the vanishing of affine functions li : Rn 3 x 7→ li(x) :=

〈x,νi〉−λi ∈R, i= 1, . . . ,d, where νi ∈Zn is a primitive inward-pointing normal vector

to the i-th facet and λi ∈ R. Then in the action-angle coordinates on m−1(P◦), the

canonical symplectic potential sP(x) is given by

sP(x) :=
1
2

d

∑
i=1

li(x) log li(x).

Note that sP(x) is not smooth at the boundary of the polytope, and this singu-

lar behaviour will be important in what follows. Abreu [2] further showed that all

ω-compatible T n-invariant complex structures can be obtained by adding a smooth

function to the above sP(x).

Theorem 4.2.9. (Abreu [2], Theorem 2.8) An ω-compatible T n-invariant complex

structure on a toric Kähler manifold (X ,ω) is determined by a symplectic potential

of the form s(x) := sP(x)+ r(x) where r(x) is a function which is smooth on the whole

of P such that the Hessian Hess(s) of s is positive definite on the interior of P and

has determinant of the form

det(Hess(s)(x)) =

[
δ (x)

d

∏
i=1

li(x)

]−1

, (4.3)

with δ being a smooth and strictly positive function on the whole of P . Conversely,

any symplectic potential of this form defines an ω-compatible T n-invariant complex

structure on a toric Kähler manifold (X ,ω).

The description in terms of the symplectic potential gives the scalar curvature a

particularly neat form. Now let gs be the Riemannian metric defined by ω and the

complex structure determined by the symplectic potential s(x). Write si j(x) for the
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inverse matrix of the Hessian ∂ 2s
∂xi∂x j

(x). Abreu [1] derived the following equation in the

action-angle coordinates.

Theorem 4.2.10. (Abreu [1], Theorem 4.1) The scalar curvature S(gs) of gs can be

written as

S(gs) =−
1
2

n

∑
i, j=1

∂ 2si j

∂xi∂x j
(x). (4.4)

Moreover, gs is extremal if and only if

∂

∂xk
S(gs) = const (4.5)

for all k = 1, . . . ,n.

The equation (4.4) is often called Abreu’s equation.

4.3 Slope instability of BlP1Pn

4.3.1 Statement of the result

We now return to the case where we blow up a line P1 inside Pn, where we assume

n ≥ 3 for the blowup to be nontrivial. For ease of notation, we write X := BlP1Pn and

also write π for the blowdown map π : X → Pn. We re-state the first part of Theorem

4.1.2 as follows.

Proposition 4.3.1. X = BlP1Pn, n ≥ 3, is slope unstable with respect to any polarisa-

tion. In particular, X cannot admit a cscK metric in any rational Kähler class.

4.3.2 Proof of Proposition 4.3.1

4.3.2.1 Preliminaries on intersection theory

Observe first of all that any line bundle L on X = BlP1Pn can be written as L =

aπ∗OPn(1)−b[E], with some a,b ∈ Z, by recalling Pic(X) = Zπ∗OPn(1)⊕Z[E]. This

is ample if and only if a > b > 0. Thus, up to an overall scaling, we may say that any

ample line bundle on X can be written, as a Q-line bundle, as L = π∗OPn(1)− ε[E] for

some ε ∈Q∩ (0,1).

This also implies Sesh(E,X ,L) = 1−ε; suppose that we blow up E in X , with the

blowdown map π̃ : BlEX ∼= X ∼→ X . Then π̃∗L− c[E] = π∗OPn(1)− (c+ ε)[E], which

is ample if and only if −ε < c < 1− ε .
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Henceforth, to simplify the notation, we write H for the hyperplane in Pn so that

[H] = OPn(1).

Our aim is to show that X is slope unstable with respect to the exceptional divi-

sor E. Since the slope (4.1) and the quotient slope (4.2) can be computed in terms of

intersection numbers, we first need to prepare some elementary results on the intersec-

tion theory on X ; more specifically, we need to compute
∫

X c1(π
∗[H]) jc1([E])n− j for

0≤ j ≤ n.

Recall (e.g. §3, Chapter 3, [58]) the Euler exact sequence

0→ OPn
j→ OPn(1)⊕(n+1)→ TPn → 0,

where the vector bundle homomorphism j takes 1 ∈ OPn to the Euler vector field

n

∑
i=0

Zi
∂

∂Zi
∈

n⊕
i=0

(
OPn(1)

∂

∂Zi

)
∼= OPn(1)⊕(n+1),

with [Z0 : · · · : Zn] being the homogeneous coordinates on Pn. Restricting this sequence

to a line P1 ⊂ Pn, we get 0→OP1
j→OP1(1)⊕(n+1)→ TPn|P1→ 0. Combining this with

the exact sequences 0→ TP1 → TPn|P1 → NP1/Pn → 0 and 0→ OP1 → OP1(1)⊕2 →

TP1 → 0, we get NP1/Pn ∼= OP1(1)⊕(n−1). Thus the exceptional divisor E = P(NP1/Pn)

is isomorphic to P(OP1(1)⊕(n−1)) ∼= P(O⊕(n−1)
P1 ) ∼= P1×Pn−2. Note also that the ad-

junction formula (§1, Chapter 1, [58]) shows [E]|E ∼= NE/X , and that NE/X is isomor-

phic to the tautological bundle OE(−1) over E = P(OP1(1)⊕(n−1)). We observe that

OE(−1)∼= p∗1OP1(1)⊗ p∗2OPn−2(−1), where p1 (resp. p2) is the natural projection from

E to P1 (resp. Pn−2), and that π∗[H]|E ∼= p∗1OP1(1)⊗ p∗2OPn−2 .

With these observations, and recalling that c1([E]) is the Poincaré dual of E, we

compute

En =
∫

X
c1([E])n =

∫
E

c1([E])n−1

=
∫
P1×Pn−2

(p∗1c1(OP1(1))− p∗2c1(OPn−2(1)))n−1

= (−1)n−2(n−1)
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and

π
∗H.En−1 =

∫
X

c1(π
∗[H])c1([E])n−1

=
∫
P1×Pn−2

p∗1c1(OP1(1))(p∗1c1(OP1(1))− p∗2c1(OPn−2(1)))n−2

= (−1)n−2.

If 2≤ j < n, we have

π
∗H j.En− j =

∫
P1×Pn−2

p∗1c1(OP1(1)) j(p∗1c1(OP1(1))− p∗2c1(OPn−2(1)))n− j−1

= 0

and

π
∗Hn =

∫
X

π
∗c1([H])n =

∫
π(X)

c1([H])n =
∫
Pn

c1([H])n = 1.

Summarising the above, we get the following lemma.

Lemma 4.3.2. Writing x := c1(π
∗[H]) and y := c1([E]), we have the following rules:

1. xn = 1,

2. xyn−1 = (−1)n−2,

3. yn = (−1)n−2(n−1),

4. x jyn− j = 0 for 2≤ j ≤ n−1.

4.3.2.2 Computation of the slope µ(X ,L)

We apply Lemma 4.3.2 to the formula (4.1) for the slope µ(X ,L). Recall first of all

that we have KX = π∗KPn +(n−2)[E] since we have blown up a complex submanifold

of codimension n− 1 (cf. §6, Chapter 4, [58]). Note that L = π∗[H]− ε[E] and KX =

π∗KPn +(n−2)[E] implies c1(L) = x−εy and c1(KX) =−(n+1)x+(n−2)y. We thus

get ∫
X

c1(KX)c1(L)n−1 =−(n+1)(1− ε
n−1)+(n−1)(n−2)εn−2(1− ε)
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by Lemma 4.3.2. Similarly we get
∫

X c1(L)n = 1−nεn−1 +(n−1)εn. Hence

µ(X ,L) =
n
2
(n+1)(1− εn−1)− (n−1)(n−2)εn−2(1− ε)

(n−1)εn−nεn−1 +1
.

For the later use, we write Den1 for the denominator and Num1 for the numerator of

the fraction above, so that µ(X ,L) = n
2Num1/Den1.

4.3.2.3 Computation of the quotient slope µc(OE ,L)

We now compute the quotient slope µc(OE ,L) with respect to the exceptional divisor

E and for c = Sesh(E,X ,L) = 1− ε , by using the formula (4.2).

We write µSesh(E)(OE ,L) = n
2Num2/Den2 and compute the denominator Den2 and

the numerator Num2 separately. We first compute the denominator by using Lemma

4.3.2.

Den2 =
n

∑
j=1

(
n
j

)
(ε−1) j

j+1
(x− εy)n− jy j

=
n

∑
j=1

(
n
j

)
(1− ε) j

j+1
(
−(n− j)εn− j−1 +(n−1)εn− j)

= ε
n−1
((

1+
1− ε

ε

)n

−1
)
+

n

∑
j=1

(
n
j

)
ε

n−1

(
−n+1

j+1

(
1− ε

ε

) j

+
n−1
j+1

ε

(
1− ε

ε

) j
)
.

We now set χ := 1−ε

ε
and note the following identity

n

∑
j=1

(
n
j

)
χ j

j+1
=

n

∑
j=1

(
n
j

)
1
χ

∫
χ

0
T jdT =

1
χ

(
(1+χ)n+1−1

n+1
−χ

)
. (4.6)

Observing 1+χ = ε−1, we thus get the denominator as

Den2 =−
1− εn

1− ε
+nε

n−1 +
n−1
n+1

1− εn+1

1− ε
− (n−1)εn.

We now compute the numerator. Since the first term Ln−1.E is equal to (x−
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εy)n−1y = (n−1)εn−2(1− ε), we are left to compute the following second term

n−1

∑
j=1

(
n−1

j

)
(ε−1) j

j+1
Ln−1− j.E j.(KX +E)

=
n−1

∑
j=1

(
n−1

j

)
(ε−1) j

j+1
(x− εy)n−1− jy j(−(n+1)x+(n−2)y+ y).

By applying Lemma 4.3.2, we can compute each summand as

(x− εy)n−1− jy j(−(n+1)x+(n−2)y+ y)

= (−1) j(n−1)(n− j−1)εn− j−2− (−1) j
ε

n− j−1n(n−3).

We thus get

n−1

∑
j=1

(
n−1

j

)
(ε−1) j

j+1
Ln−1− j.E j.(KX +E)

=
n−1

∑
j=1

(
n−1

j

)
εn−2

j+1

(
(n−1)(n− j−1)

(
1− ε

ε

) j

− ε

(
1− ε

ε

) j

n(n−3)

)
.

Setting χ = 1−ε

ε
as we did before, the above is equal to

n−1

∑
j=1

(
n−1

j

)
ε

n−2
(
(n−1)2 χ j

j+1
− (n−1) j

χ j

j+1
− εn(n−3)

χ j

j+1

)

=−(n−1)εn−2
n−1

∑
j=1

(
n−1

j

)
χ

j + ε
n−2

n−1

∑
j=1

(
n−1

j

)(
n(n−1)

χ j

j+1
− εn(n−3)

χ j

j+1

)
.

Now recalling the identity (4.6), we see that the above is equal to

− (n−1)εn−2((1+χ)n−1−1)+n(n−1)εn−2 1
χ

(
(1+χ)n−1

n
−χ

)
−n(n−3)εn−1 1

χ

(
(1+χ)n−1

n
−χ

)
= (n−1)

1− εn−1

1− ε
− (n−1)2

ε
n−2− (n−3)

1− εn

1− ε
+n(n−3)εn−1.

Thus we find the numerator to be

Num2 =(n−1)εn−2(1−ε)−(n−1)
1− εn−1

1− ε
+(n−1)2

ε
n−2+(n−3)

1− εn

1− ε
−n(n−3)εn−1.
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4.3.2.4 Proof of instability

We now compute µSesh(E)(OE ,L)− µ(X ,L). Since µSesh(E)(OE ,L)− µ(X ,L) < 0 im-

plies that (X ,L) is slope unstable with respect to the divisor E (cf. Definition 4.2.2), it

suffices to show that

2
n
(µSesh(E)(OE ,L)−µ(X ,L)) =

Num2

Den2
− Num1

Den1

is strictly negative for all 0 < ε < 1.

Since ε j > ε j+1 for any non-negative integer j if 0 < ε < 1, we have the following

inequalities:

Den2 =−
1− εn

1− ε
+nε

n−1 +
n−1
n+1

1− εn+1

1− ε
− (n−1)εn

=− 2
n+1

n−1

∑
j=0

ε
j +

n(1−n)
n+1

ε
n +nε

n−1

<− 2n
n+1

ε
n−1 +

n(1−n)
n+1

ε
n−1 +nε

n−1 = 0 (4.7)

and

Den1 = 1−nε
n−1 +(n−1)εn = (1− ε)

(
−nε

n−1 +
n−1

∑
j=0

ε
j

)
> 0,

for 0 < ε < 1.

Thus, to show slope instability, we are reduced to proving Num2Den1 −

Num1Den2 > 0, or equivalently

(1− ε)(Num2Den1−Num1Den2)> 0

for 0 < ε < 1.

We first re-write (1− ε)Num2 as

(1− ε)Num2 = (n−1)εn−2(1− ε)2− (n−1)(1− (n−1)εn−2 +(n−2)εn−1)

+(n−3)(1−nε
n−1 +(n−1)εn).

Let

Fm := 1−mε
m−1 +(m−1)εm
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be defined for an integer m > 1. We record the following lemma which we shall use

later.

Lemma 4.3.3. The following hold for Fm, where m > 1 is an integer:

1. Fm > m(m−1)
2 (1− ε)2εm−2 > 0 for 0 < ε < 1,

2. Fm−Fm−1 = (m−1)εm−2(1− ε)2 > 0 for 0 < ε < 1,

3. Fn = Den1.

Proof. Observe first of all

Fm = 1−mε
m−1 +(m−1)εm = 1− ε

m−1− (m−1)εm−1(1− ε)

= (1− ε)

(
m−2

∑
j=0

(ε j− ε
m−1)

)

= (1− ε)2

(
m−2

∑
j=0

(
m− j−2

∑
k=0

ε
j+k

))
.

Since 0 < ε < 1, we have ε j+1 < ε j for any positive integer j. Thus

Fm > (1− ε)2

(
m−2

∑
j=0

(m− j−1)εm−2

)
=

m(m−1)
2

(1− ε)2
ε

m−2 > 0,

proving the first item of the lemma. The second item follows from a straightforward

computation. The third is a tautology.

Using Lemma 4.3.3, we can write (1− ε)Num2 = (n−2)Fn−nFn−1, and hence

(1− ε)Num2Den1 = (n−2)F2
n −nFn−1Fn.

Similarly, we compute Num1 = (n−2)Fn−1 +3(1− εn−1) and

(1− ε)Den2 =−Fn +
n−1
n+1

Fn+1. (4.8)
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Summarising these calculations, we finally get

(1− ε)(Num2Den1−Num1Den2)

= (n−2)F2
n −nFn−1Fn +[(n−2)Fn−1 +3(1− ε

n−1)]

(
Fn−

n−1
n+1

Fn+1

)
,

and our aim now is to show that the right hand side of the above equation is strictly

positive for all 0 < ε < 1.

By using Lemma 4.3.3, we first re-write

(n−2)Fn−1 +3(1− ε
n−1) = (n−2)Fn−1 +3(Fn +(n−1)εn−1(1− ε))

= (n+1)Fn− (n−1)(n−2)εn−2(1− ε)2 +3(n−1)εn−1(1− ε)

so as to get

(n−2)F2
n −nFn−1Fn +[(n−2)Fn−1 +3(1− ε

n−1)]

(
Fn−

n−1
n+1

Fn+1

)
= Fn (−nFn−1 +(2n−1)Fn− (n−1)Fn+1)

+ [−(n−1)(n−2)εn−2(1− ε)2 +3(n−1)εn−1(1− ε)]

(
Fn−

n−1
n+1

Fn+1

)
.

Now compute

−nFn−1 +(2n−1)Fn− (n−1)Fn+1 =−nFn−1 +(n−2)Fn +(n+1)Fn− (n−1)Fn+1

= n(n−1)εn−2(1− ε)3,

and get

(1− ε)(Num2Den1−Num1Den2)

= (n−1)εn−2(1− ε)

[
n(1− ε)2Fn +((n+1)ε− (n−2))

(
Fn−

n−1
n+1

Fn+1

)]
.

Since n(1− ε)2Fn > 0 by Lemma 4.3.3 and

Fn−
n−1
n+1

Fn+1 =−(1− ε)Den2 > 0



4.3. Slope instability of BlP1Pn 177

by recalling (4.8) and (4.7), we see that the above quantity is strictly positive if (n+

1)ε− (n−2) ≥ 0, i.e. n−2
n+1 ≤ ε < 1. This means that we have proved slope instability

for n−2
n+1 ≤ ε < 1.

Thus assume 0 < ε < n−2
n+1 from now on. Now, again using Lemma 4.3.3, we have

(1− ε)(Num2Den1−Num1Den2)

= (n−1)εn−2(1− ε)

×
[(

n(1− ε)2 +2
(

ε− n−2
n+1

))
Fn +[(n+1)ε− (n−2)]

(
−n(n−1)

n+1
ε

n−1(1− ε)2
)]

.

Noting n(1− ε)2 +2
(
ε− n−2

n+1

)
= n

(
ε− n−1

n

)2
+ 5n−1

n(n+1) and also

[(n+1)ε− (n−2)]
(
−n(n−1)

n+1
ε

n−1(1− ε)2
)

= n(n−1)εn−1(1− ε)3− 3n(n−1)
n+1

ε
n−1(1− ε)2,

we are thus reduced to proving that[
n
(

ε− n−1
n

)2

+
5n−1

n(n+1)

]
Fn−

3n(n−1)
n+1

ε
n−1(1− ε)2 +n(n−1)εn−1(1− ε)3

is strictly positive for 0 < ε < n−2
n+1 .

Observe that n−2
n+1 < n−1

n , which holds if n ≥ 1, implies that
(
ε− n−1

n

)2
is mono-

tonically decreasing on 0 < ε < n−2
n+1 . Thus

n
(

ε− n−1
n

)2

+
5n−1

n(n+1)
> n

(
n−2
n+1

− n−1
n

)2

+
5n−1

n(n+1)
=

9n
(n+1)2

for 0 < ε < n−2
n+1 . Hence, recalling Lemma 4.3.3, we finally have

[
n
(

ε− n−1
n

)2

+
5n−1

n(n+1)

]
Fn−

3n(n−1)
n+1

ε
n−1(1− ε)2

>
9n

(n+1)2 (1− ε)2
ε

n−2 n(n−1)
2

− 3n(n−1)
n+1

ε
n−1(1− ε)2

> (1− ε)2
ε

n−1 n(n−1)
n+1

(
9n

2(n+1)
−3
)
> 0
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for 0< ε < n−2
n+1 , since n≥ 3. We have thus proved (1−ε)(Num2Den1−Num1Den2)>

0 both for 0 < ε < n−2
n+1 and n−2

n+1 ≤ ε < 1, finally establishing the slope instability for all

0 < ε < 1.

4.4 Extremal metrics on BlP1Pn

4.4.1 Statement of the result

Having established the nonexistence of cscK metrics in Proposition 4.3.1, we now dis-

cuss the extremal metrics on BlP1Pn (n≥ 3), with the blowdown map π : BlP1Pn→ Pn,

as mentioned in the second part of Theorem 4.1.2. We write (x1, . . . ,xn) for the ac-

tion coordinates on the moment polytope corresponding to (BlP1Pn,π∗OPn(1)− ε[E]),

where the exceptional divisor is defined by {∑n−1
i=1 xi = ε}, and we write r := ∑

n
i=1 xi

and ρ := ∑
n−1
i=1 xi; see §4.4.2.1 for more details. We re-state the second part of Theorem

4.1.2 as follows, with an explicit description of the extremal metrics in the action-angle

coordinates.

Proposition 4.4.1. There exists 0 < ε0 < 1 such that BlP1Pn admits an extremal Kähler

metric in the Kähler class π∗c1(OPn(1))− εc1([E]) for any ε ∈ (0,ε0). Moreover, this

metric admits an explicit description in terms of the symplectic potential s(x) in the

action-angle coordinates as follows:

s(x) =
1
2

(
n

∑
i=1

xi logxi +(1− r) log(1− r)+h(ρ)

)
(4.9)

where h(ρ) is given as an indefinite integral by

h(ρ) =

∫
ρ

dρ

∫
ρ −1− 2n+δ

n(n−1) +ρ + (δ−γ)ρ
n(n+1) +

γρ2

(n+1)(n+2) +αρ−n +βρ−n+1

(1−ρ)
(

1−ρ

(
1− 2n+δ

n(n−1) +
(δ−γ)ρ
n(n+1) +

γρ2

(n+1)(n+2) +αρ−n +βρ−n+1
))dρ,
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with

α =−1− δ

n(n+1)
− γ

(n+1)(n+2)
, (4.10)

β =
n+1
n−1

+
δ

n(n−1)
+

γ

n(n+1)
, (4.11)

γ =
n(n+1)(n+2)

((
εn+1−1
n(n+1) +

ε−εn

n(n−1)

)
δ −1+ n+1

n−1ε− εn−1 + n−3
n−1εn

)
−nεn+2 +(n+2)εn+1 +n− (n+2)ε

, (4.12)

δ =

(
ε

n−2(1− ε)−
(−nεn+1 +(n+1)εn−1)(n+2)

(
−1+ n+1

n−1ε− εn−1 + n−3
n−1εn)

−nεn+2 +(n+2)εn+1 +n− (n+2)ε

+
n(n−3)

n−1
ε

n−1− (n−1)εn−2 +
n+1
n−1

)
×
(

(−nεn+1 +(n+1)εn−1)(n+2)
−nεn+2 +(n+2)εn+1 +n− (n+2)ε

(
εn+1−1
n(n+1)

+
ε− εn

n(n−1)

)
+
−(n−1)εn +nεn−1−1

n(n−1)

)−1

.

(4.13)

Remark 4.4.2. Note that the symplectic potential is well-defined up to affine functions,

and hence the integration constants in h(ρ) are not significant.

4.4.2 Proof of Proposition 4.4.1

4.4.2.1 Overview of the proof

The basic strategy of the proof, as given in §4.4.2.2 and §4.4.2.3, is exactly the same

as in §5 of [3] or §4.2 of [99] for the point blow-up case; the crux of what is presented

in the following is to show that the same strategy does indeed work for BlP1Pn, with an

extra hypothesis ε � 1.

We recall that the moment polytope P(Pn) for Pn, with the Fubini–Study sym-

plectic form, is the region in Rn defined by the set of affine inequalities P(Pn) :=

{x1 ≥ 0, . . . ,xn ≥ 0,∑n
i=1 xi ≤ 1} (cf. Figure 4.1), where (x1, . . . ,xn) ∈ Rn are the ac-

tion coordinates as defined in §4.2.2. The moment polytope Pε(X) for the blowup

X = BlP1Pn is obtained by cutting one edge by ε amount: Pε(X) := {x1 ≥ 0, . . . ,xn ≥

0,∑n
i=1 xi ≤ 1,∑n−1

i=1 xi ≥ ε} (cf. Figure 4.2), where the P1 that is blown up corresponds

to the line defined by {x1 = · · · = xn−1 = 0}. Note that the symplectic form ω on X

is in the cohomology class π∗c1(OPn(1))− εc1([E]) (cf. Theorem 6.3, [60]). We write
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Figure 4.1: The moment polytope P(P3) for P3.

Figure 4.2: The moment polytope Pε(X) for X = BlP1P3, with ε = 0.2.
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r := ∑
n
i=1 xi and ρ := ∑

n−1
i=1 xi for notational convenience. Recall also that we assume

n≥ 3 for the blow-up to be non-trivial.

Our strategy is to seek a symplectic potential s of the form

s(x) =
1
2

(
n

∑
i=1

xi logxi +(1− r) log(1− r)+h(ρ)

)
, (4.14)

where h(ρ) stands for some function of ρ , so that the Riemannian metric gs given by the

symplectic form ω and the complex structure defined by s (cf. Theorem 4.2.9) satisfies

the equation

S(gs) =−γρ−δ (4.15)

for some constants3 γ and δ . Such a metric gs would be an extremal metric by Theorem

4.2.10. Our first result is that the equation (4.15) reduces to a second-order linear ODE

as given in (4.16), similarly to the case of the point blowup (cf. [3, 99]). The equation

(4.16) can be easily solved, and the solution is given in (4.17) with two additional free

constants α and β . This is the content of §4.4.2.2.

However, it is not a priori obvious that s(x) as defined in (4.14), with h ob-

tained from (4.17), gives a well-defined symplectic potential. The main technical result

(Proposition 4.4.4) that we establish in §4.4.2.3 is that, once we choose α , β , γ , δ as

in (4.10), (4.11), (4.12), (4.13) and ε to be sufficiently small, h obtained from (4.17)

does satisfy all the regularity hypotheses required in Theorem 4.2.9, so that s(x) is a

well-defined symplectic potential. This is the content of §4.4.2.3.

4.4.2.2 Reducing the equation (4.15) to a second order linear ODE

We first compute the Hessian

si j :=
∂ 2s

∂xi∂x j
(x)

of the symplectic potential s(x) = 1
2 (∑

n
i=1 xi logxi +(1− r) log(1− r)+h(ρ)) as fol-

lows:

si j =


1
2

(
δi j

xi
+

1
1− r

+h′′
)

if i, j 6= n,

1
2

(
δi j

xi
+

1
1− r

)
if i = n or j = n or both.

3The factor of −1 in (4.15) is an artefact to be consistent with the equation (4.16).
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By direct computation, we find the inverse matrix si j of si j to be

si j =



2
(

xiδi j−
xix j(1+(1−ρ)h′′)

1+ρ(1−ρ)h′′

)
if i, j 6= n,

− 2xixn

1+ρ(1−ρ)h′′
if i 6= n and j = n,

2xn

1−ρ

(
1−ρ− xn +

xnρ

1+ρ(1−ρ)h′′

)
if i = j = n.

Let A be a function of ρ defined by

A(ρ) :=
1+(1−ρ)h′′

1+ρ(1−ρ)h′′
,

so that we can re-write the above as

si j =



2(xiδi j− xix jA) if i, j 6= n,

−2xixn(1−ρA)
1−ρ

if i 6= n and j = n,

2xn

1−ρ

(
1−ρ− xn +

xnρ(1−ρA)
1−ρ

)
if i = j = n.

Thus, by Abreu’s equation (4.4) (cf. Theorem 4.2.10), we have

S(gs) =
n−1

∑
i=1

(2A+4xiA′+ x2
i A′′)+2 ∑

1≤i< j≤n−1
(A+ xiA′+ x jA′+ xix jA′′)

+2
n−1

∑
i=1

(
1−ρA
1−ρ

+ xi

(
1−ρA
1−ρ

)′)
+

(
2

1−ρ
− 2ρ(1−ρA)

(1−ρ)2

)
.

Hence, re-arranging the terms, we find

S(gs) = ρ
2A′′+2

(
n− ρ

1−ρ

)
ρA′+

(
n(n−1)− 2nρ

1−ρ

)
A+

2n
1−ρ

.

Thus the equation (4.15) to be solved can now be written as

ρ
2A′′+2

(
n− ρ

1−ρ

)
ρA′+

(
n(n−1)− 2nρ

1−ρ

)
A+

2n
1−ρ

+ γρ +δ = 0 (4.16)
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for some constants γ and δ . The general solution to this equation is given by

A =
1

1−ρ

(
− 2n+δ

n(n−1)
+

(δ − γ)ρ

n(n+1)
+

γρ2

(n+1)(n+2)
+αρ

−n +βρ
−n+1

)
,

for some constants α and β . Recalling A = 1+(1−ρ)h′′

1+ρ(1−ρ)h′′ , we can now write h′′ as

h′′ =
A−1

(1−ρ)(1−ρA)

=
−1− 2n+δ

n(n−1) +ρ + (δ−γ)ρ
n(n+1) +

γρ2

(n+1)(n+2) +αρ−n +βρ−n+1

(1−ρ)
(

1−ρ

(
1− 2n+δ

n(n−1) +
(δ−γ)ρ
n(n+1) +

γρ2

(n+1)(n+2) +αρ−n +βρ−n+1
)) . (4.17)

We have thus solved the equation (4.15), with 4 undetermined parameters α , β , γ ,

δ . We now have to prove that the function h as obtained above satisfies all the regularity

conditions as stated in Theorem 4.2.9, and we claim that this holds once α , β , γ , δ are

chosen as in (4.10), (4.11), (4.12), (4.13).

Before discussing the claimed regularity of h′′, which we do in §4.4.2.3, we define

two polynomials P(ρ) and Q(ρ), with α , β , γ , δ as parameters, as follows. They play

an important role in what follows.

Definition 4.4.3. We define a polynomial P(ρ) by

P(ρ) :=− 2n+δ

n(n−1)
+

(δ − γ)ρ

n(n+1)
+

γρ2

(n+1)(n+2)

and Q(ρ) by

Q(ρ) := ρ
n−1−ρ

n−ρ
nP(ρ)−α−βρ

=− γ

(n+1)(n+2)
ρ

n+2− δ − γ

n(n+1)
ρ

n+1−
(

1− 2n+δ

n(n−1)

)
ρ

n +ρ
n−1−α−βρ,

so that we can write

h′′(ρ) =
ρn+1−ρn +ρnP(ρ)+α +βρ

(1−ρ)ρQ(ρ)
. (4.18)

4.4.2.3 Regularity of h

The main technical result is the following.
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Proposition 4.4.4. For h as given by (4.17), there exists a function R(ρ) which is

smooth on the whole of the polytope Pε(X) such that

h(ρ) = (ρ− ε) log(ρ− ε)+R(ρ)

and that the Hessian of the symplectic potential

s(x) =
1
2

(
n

∑
i=1

xi logxi +(1− r) log(1− r)+h(ρ)

)

is positive definite over the interior P◦
ε (X) of the polytope Pε(X), with the determi-

nant of the form required in (4.3), if we choose α , β , γ , δ as in (4.10), (4.11), (4.12),

(4.13) and ε > 0 to be sufficiently small.

Proof. Recall from (4.18) that h′′ is given by

h′′(ρ) =
ρn+1−ρn +ρnP(ρ)+α +βρ

(1−ρ)ρQ(ρ)
.

We first need to prove that ρ = 1 is a removable singularity. In Lemma 4.4.5, we

shall prove that this is indeed the case, once we choose α and β as in (4.10), (4.11).

We then consider the asymptotic behaviour of h′′ as ρ → ε . We now write

h′′(ρ) =
1
ρ

1
ρ−1

+
ρn−2(1−ρ)

Q(ρ)

and consider the Taylor expansion

Q(ρ) = Q0 +Q1(ρ− ε)+ · · ·

of Q(ρ) around ρ = ε , with some Q0,Q1 ∈ R. Writing now

h′′(ρ) =
1
ρ

1
ρ−1

+
ρn−2(1−ρ)

Q0 +Q1(ρ− ε)+ · · ·

around ρ = ε , our strategy is to show that, for the choice of γ and δ as in (4.12), (4.13),
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we have a Laurent expansion

h′′(ρ) =
1

ρ− ε
+ Q̂0 + Q̂1(ρ− ε)+ · · · (4.19)

in ρ − ε , with some Q̂0, Q̂1 ∈ R. This will be proved in Lemma 4.4.6. We shall also

prove in Lemma 4.4.9 that Q(ρ) > 0 on (ε,1), for these choices of α , β , γ , δ and

sufficiently small ε > 0. Since ρ = 1 is a removable singularity, this means that h′′ is

smooth on the whole polytope except for a pole of order 1 and residue 1 at ρ = ε .

We now consider a function

R̃(ρ) := h′′(ρ)− 1
ρ− ε

.

This is smooth on the whole of the polytope Pε(X) by the above properties of h′′, and

hence integrating both sides twice, we get a function R(ρ) that is smooth on the whole

polytope which satisfies

R(ρ) = h(ρ)− (ρ− ε) log(ρ− ε),

as we claimed. Finally, we shall prove in Lemma 4.4.10 that the Hessian of the sym-

plectic potential

s(x) =
1
2

(
n

∑
i=1

xi logxi +(1− r) log(1− r)+h(ρ)

)

is indeed positive definite over the interior P◦
ε (X) of the polytope Pε(X) and has

determinant of the form required in (4.3), for the above choices of α , β , γ , δ and

sufficiently small ε > 0.

Therefore, granted Lemmas 4.4.5, 4.4.6, 4.4.9, and 4.4.10 to be proved below, we

complete the proof of the proposition.

Lemma 4.4.5. For the choice of α and β as in (4.10), (4.11), the following hold:

1. the numerator ρn+1−ρn +ρnP(ρ)+α +βρ of h′′ has a zero of order at least 3

at ρ = 1,
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2. Q(1) = Q′(1) = 0, Q′′(1) = 2; in particular, Q has a zero of order exactly 2 at

ρ = 1.

In particular, ρ = 1 is a removable singularity of h′′ if we choose α and β as in (4.10),

(4.11).

Proof. The numerator ρn+1−ρn +ρnP(ρ)+α +βρ of h′′ has a zero at ρ = 1 if and

only if P(1)+α +β = 0. We thus choose β =−α−P(1). The zero is of order at least

two if and only if 1+ nP(1)+P′(1)+β = 0, in addition to β = −α −P(1). We thus

choose α by the equation

1+nP(1)+P′(1)+(−α−P(1)) = 0 (4.20)

and β by the equation

β =−α−P(1) =−1− (n−1)P(1)−P′(1)−P(1) (4.21)

by noting that P(1) and P′(1) depend only on γ and δ .

Finally, we observe

d2

dρ2

∣∣∣∣
ρ=1

(ρn+1−ρ
n +ρ

nP(ρ)+α +βρ) = 2n+n(n−1)P(1)+2nP′(1)+P′′(1)

= 0 (4.22)

identically for any choice of γ and δ . Thus the numerator ρn+1−ρn+ρnP(ρ)+α+βρ

of h′′ vanishes at ρ = 1 with order at least 3, if α , β are chosen as in the equations (4.20),

(4.21). We now unravel the equations (4.20) and (4.21), to find that they are exactly as

given in (4.10) and (4.11).

We have thus established the first claim in the lemma: the numerator ρn+1−ρn +

ρnP(ρ)+α +βρ of h′′ has a zero of order at least 3 at ρ = 1 if α , β are chosen as

(4.10) and (4.11).

The second claim of the lemma is an easy consequence of the equations (4.20),

(4.21), (4.22): we simply compute Q(1) = 1− 1− P(1)− α − β = 0 and Q′(1) =

(n− 1)− n− nP(1)−P′(1)−β = 0, by virtue of (4.20) and (4.21). We finally have

Q′′(1) = 2 by (4.22).
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Lemma 4.4.6. We have the expansion (4.19), namely we have the Laurent expansion

h′′(ρ) =
1

ρ− ε
+ Q̂0 + Q̂1(ρ− ε)+ · · ·

in ρ−ε , if we choose α , β , γ , δ as in (4.10), (4.11), (4.12), (4.13), and if ε is sufficiently

small.

Proof. We first consider the Taylor expansion

Q(ρ) = Q0 +Q1(ρ− ε)+ · · · (4.23)

of Q(ρ) around ρ = ε , with Q0,Q1 ∈ R. When we have α and β as defined in (4.10)

and (4.11), we find the 0th order term Q0, which is equal to Q(ε), to be

Q0 =−
γ

(n+1)(n+2)
ε

n+2− δ − γ

n(n+1)
ε

n+1−
(

1− 2n+δ

n(n−1)

)
ε

n + ε
n−1−α−βε

=

(
−nεn+2 +(n+2)εn+1 +n− (n+2)ε

n(n+1)(n+2)

)
γ

+

(
1− εn+1

n(n+1)
+

εn− ε

n(n−1)

)
δ +1− n+1

n−1
ε + ε

n−1− n−3
n−1

ε
n.

We choose γ as in (4.12), so that Q0 = 0; note that −nεn+2 +(n+ 2)εn+1 + n− (n+

2)ε 6= 0 if ε is chosen to be sufficiently small. This means that we can write

h′′(ρ) =
1
ρ

1
ρ−1

+
ρn−2(1−ρ)

Q(ρ)

=
ρn−2(1−ρ)

Q1

1
ρ− ε

+power series in ρ− ε,

near ρ = ε . In order to prove the stated claim, we need to show that the residue at the

pole ρ = ε of h′′ is 1. We prove this by showing Q1 = εn−2(1− ε) for an appropriate

choice of δ , with α , β , and γ as determined in the above.

We thus consider the coefficient Q1 in the expansion (4.23), which is equal to
d

dρ
|ρ=ε Q(ρ), i.e.

Q1 =−
γ

n+1
ε

n+1− δ − γ

n
ε

n−
(

n− 2n+δ

n−1

)
ε

n−1 +(n−1)εn−2−β .
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For the choice of β and γ as in (4.11) and (4.12), we can re-write this as

Q1 =[
(−nεn+1 +(n+1)εn−1)(n+2)
−nεn+2 +(n+2)εn+1 +n− (n+2)ε

(
εn+1−1
n(n+1)

+
ε− εn

n(n−1)

)
+
−(n−1)εn +nεn−1−1

n(n−1)

]
δ

+
(−nεn+1 +(n+1)εn−1)(n+2)
−nεn+2 +(n+2)εn+1 +n− (n+2)ε

(
−1+

n+1
n−1

ε− ε
n−1 +

n−3
n−1

ε
n
)

− n(n−3)
n−1

ε
n−1 +(n−1)εn−2− n+1

n−1
.

(4.24)

The equation Q1 = εn−2(1− ε) can be solved for δ if and only if the coefficient

of δ in the equation (4.24) is not zero, i.e.

(−nεn+1 +(n+1)εn−1)(n+2)
−nεn+2 +(n+2)εn+1 +n− (n+2)ε

(
εn+1−1
n(n+1)

+
ε− εn

n(n−1)

)
+
−(n−1)εn +nεn−1−1

n(n−1)

6= 0.

Note that the left hand side is equal to −2
n2(n−1)(n+1) 6= 0 when ε = 0, and hence

this is non-zero for all sufficiently small ε > 0 by continuity. Hence the equation

Q1 = εn−2(1− ε) can be solved for δ , with the solution as given in (4.13), if ε > 0

is sufficiently small. We thus obtain the claimed expansion

h′′(ρ) =
1

ρ− ε
+ Q̂0 + Q̂1(ρ− ε)+ · · ·

near ρ = ε , if we choose α , β , γ , δ as in (4.10), (4.11), (4.12), (4.13) and ε to be

sufficiently small.

Note that Q0 = 0 (resp. Q1 = εn−2(1− ε)) proved in the above is equivalent

to saying Q(ε) = 0 (resp. Q′(ε) = εn−2(1− ε)). Together with what was proved in

Lemma 4.4.5, we summarise below the properties of the polynomial Q(ρ) that we have

established so far.

Lemma 4.4.7. For the choice of α , β , γ , δ as in (4.10), (4.11), (4.12), (4.13) and
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sufficiently small ε , the polynomial Q(ρ) satisfies the following properties:

1. Q(1) = Q′(1) = 0, Q′′(1) = 2,

2. Q(ε) = 0, Q′(ε) = εn−2(1− ε).

We also need the following estimates of α , β , γ , δ in the later argument.

Lemma 4.4.8. We can estimate α = O(ε2), β = O(ε2), γ = O(ε2), δ = −n(n+ 1)+

O(ε2), when ε is sufficiently small.

Proof. The proof is just a straightforward computation; we compute δ as

δ =

2
n(n−1) +

2(n+2)
n2(n−1)ε +O(ε2)

−2
n2(n−1)(n+1) −

2(n+2)
n3(n−1)(n+1)ε +O(ε2)

=−n(n+1)+O(ε2),

and similarly for γ . The claim for α and β follows easily from the definitions (4.10)

and (4.11).

With these preparations, we now prove that Q(ρ) is non-zero for all ρ ∈ (ε,1).

Lemma 4.4.9. Q(ρ)> 0 for all ρ ∈ (ε,1), if α , β , γ , δ are chosen as in (4.10), (4.11),

(4.12), (4.13), and ε is sufficiently small.

Proof. Note first of all that the second derivative of Q can be computed as

Q′′(ρ) = ρ
n−3 [−γρ

3− (δ − γ)ρ2− (n(n−1)− (2n+δ ))ρ +(n−1)(n−2)
]
.

Re-write the terms in the bracket [· · · ] as

− γρ
3− (δ − γ)ρ2− (n(n−1)− (2n+δ ))ρ +(n−1)(n−2)

= Q̃(ρ)+ ε
2Q̃rem(ρ),

where we defined

Q̃(ρ) := n(n+1)ρ2−2n(n−1)ρ +(n−1)(n−2)
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and

Q̃rem(ρ) :=
1
ε2

(
−γρ

3− (δ0− γ)ρ2−δ0ρ
)

with δ0 := δ + n(n+ 1). Recalling γ = O(ε2) and δ0 = O(ε2) (cf. Lemma 4.4.8), we

see that there exists a constant C̃(ε1) > 0, which depends only on (sufficiently small)

ε1 and hence can be chosen uniformly for all ε satisfying 0 < ε < ε1, such that

|Q̃rem(ρ)|< C̃(ε1) (4.25)

holds for all ρ ∈ (0,1) and all ε satisfying 0 < ε < ε1.

Observe now that Q̃( 1
2n) =

n+1
4n +(n−1)(n−3) > 0 for n ≥ 3. Observe also that

Q̃′(ρ) = 2n(n+ 1)ρ − 2n(n− 1), meaning that Q̃(ρ) is monotonically decreasing on

(0, n−1
n+1). Noting 1

2n < n−1
n+1 if n≥ 3, we hence have

Q̃(ρ)> Q̃
(

1
2n

)
>

n2(n−2)+2n+1
n

(4.26)

if ρ ∈ (0, 1
2n). The estimates (4.25) and (4.26) imply that, if ε is chosen to be sufficiently

small,

Q′′(ρ) = ρ
n−3 (Q̃(ρ)+ ε

2Q̃rem(ρ)
)
> ρ

n−3
(

n+1
4n

+(n−1)(n−3)
)
> 0

for all ρ ∈ (0, 1
2n).

Now recall Q(ε)= 0 and Q′(ε)= εn−2(1−ε)> 0 (cf. Lemma 4.4.7). Since Q′′(ρ)

is strictly positive for all ρ ∈ (0, 1
2n) if ε is chosen to be sufficiently small, Q′(ρ) is

strictly monotonically increasing on (0, 1
2n). Combined with Q′(ε) = εn−2(1− ε)> 0,

we thus see that Q′(ρ) > 0 for all ρ ∈ (ε, 1
2n). Thus Q(ρ) is strictly monotonically

increasing on (ε, 1
2n) if ε is chosen to be sufficiently small, but recalling Q(ε) = 0, we

see that Q(ρ) is strictly positive for all ρ ∈ (ε, 1
2n) if ε is chosen to be sufficiently small.

Having established Q(ρ) > 0 for all ρ ∈ (ε, 1
2n), we are now reduced to proving

the positivity of Q(ρ) for all ρ ∈ [ 1
2n ,1) when ε is sufficiently small. We need some

preparations (i.e. the estimate (4.29)) before doing so.
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We now recall that δ0 = δ +n(n+1) is of order ε2 by Lemma 4.4.8, and write

Q(ρ) = ρ
n−1(ρ−1)2− γ

(n+1)(n+2)
ρ

n+2− δ0− γ

n(n+1)
ρ

n+1 +
δ0

n(n−1)
ρ

n−α−βρ.

(4.27)

Note that, by Lemma 4.4.8, there exist real constants α̃ , β̃ , γ̃ , δ̃ (when ε is sufficiently

small) which remain bounded as ε→ 0 such that α = α̃ε2, β = β̃ ε2, γ = γ̃ε2, δ0 = δ̃ ε2.

We can thus write

Q(ρ)= ρ
n−1(ρ−1)2−ε

2

(
γ̃

(n+1)(n+2)
ρ

n+2 +
δ̃ − γ̃

n(n+1)
ρ

n+1− δ̃

n(n−1)
ρ

n + α̃ + β̃ρ

)
.

Suppose that we write

F̃0(ρ) :=
γ̃

(n+1)(n+2)
ρ

n+2 +
δ̃ + γ̃

n(n+1)
ρ

n+1− δ̃

n(n−1)
ρ

n + α̃ + β̃ρ

for the terms in the bracket. Now recall that Q(ρ) has a zero of order exactly 2 at ρ = 1

by Lemma 4.4.7. This means that F̃0 must have a zero of order at least 2 at ρ = 1, and

hence we can factorise

F̃0(ρ) = (ρ−1)2F̃1(ρ)

for some polynomial F̃1(ρ). Observe that this implies

Q(ρ) = (ρ−1)2(ρn−1− ε
2F̃1(ρ)). (4.28)

Note that, since α̃ , β̃ , γ̃ , δ̃ are uniformly bounded for all sufficiently small ε > 0, there

exists a constant C̃1(ε1) > 0, which depends only on (sufficiently small) ε1 and hence

can be chosen uniformly for all ε satisfying 0 < ε < ε1, such that

|F̃1(ρ)|< C̃1(ε1) (4.29)

holds for all ρ ∈ (0,1) and all ε satisfying 0 < ε < ε1.

Now consider the equation (4.28) for ρ ∈ [ 1
2n ,1). Suppose Q(ρ0) = 0 at some ρ0 ∈

[ 1
2n ,1). We would then have ρ

n−1
0 − ε2F̃1(ρ0) = 0. However, since ρ

n−1
0 ≥ (2n)−n+1

and F̃1 is uniformly bounded on [ 1
2n ,1) (as given in (4.29)), we have ε2F̃1→ 0 uniformly

on [ 1
2n ,1) as ε→ 0, and hence the equation ρ

n−1
0 −ε2F̃1(ρ0) = 0 cannot hold if we take
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ε to be sufficiently small. We thus get Q(ρ) 6= 0 for all ρ ∈ [ 1
2n ,1). Since Q(ρ)> 0 on

(ε, 1
2n), we get Q(ρ)> 0 for all ρ ∈ [ 1

2n ,1) by continuity, and finally establish Q(ρ)> 0

for all ρ ∈ (ε,1) and all sufficiently small ε > 0.

We shall finally prove the positive-definiteness of the Hessian of the symplectic

potential

s(x) =
1
2

(
n

∑
i=1

xi logxi +(1− r) log(1− r)+h(ρ)

)
. (4.30)

Writing sFS
i j for the Hessian of the symplectic potential corresponding to the Fubini–

Study metric on Pn, i.e.

sFS
i j :=

1
2

∂ 2

∂xi∂x j

(
n

∑
i=1

xi logxi +(1− r) log(1− r)

)

=
1
2


x−1

1 0 0 . . . 0

0 x−1
2 0 . . . 0

...
...

... . . . ...

0 0 0 . . . x−1
n

+
1
2

1
1− r


1 1 · · · 1 1

1 1 · · · 1 1
...

... . . . ...
...

1 1 · · · 1 1

 , (4.31)

we can write the Hessian si j of s as

si j = sFS
i j +

h′′

2
Ti j,

where T is a matrix defined by

T :=


1 · · · 1 0
... . . . ...

...

1 · · · 1 0

0 · · · 0 0

 .

Observe that T is positive semi-definite.

Lemma 4.4.10. si j is positive definite on the interior P◦
ε (X) of the polytope Pε(X)

and has the determinant of the form (4.3), if α , β , γ , δ are chosen as in (4.10), (4.11),

(4.12), (4.13), and ε is sufficiently small.
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Proof. Observe first of all that, since sFS
i j is positive definite (as given in (4.31)) and

T is positive semi-definite, it suffices to prove that there exists a constant C(ε1) > 0,

which depends only on some (small) ε1 > 0 and hence can be chosen uniformly for all

ε satisfying 0 < ε < ε1, such that

h′′(ρ)>−εC(ε1) (4.32)

holds for all ρ ∈ (ε,1) and all ε satisfying 0 < ε < ε1; the claimed positive-definiteness

would then follow by taking ε to be sufficiently small.

The inequality (4.32) also implies that det(si j) is of the form required in (4.3); by

a straightforward computation, representing si j with respect to the following basis

e1 =



1

1
...

1

0


e2 =



x−1
1

−x−1
2

0
...

0


, . . . ,en−1 =



x−1
1

0
...

−x−1
n−1

0


,en =



0

0
...

0

1


,

we see that

det(si j) =
1
2n

n

∏
i=1

x−1
i det



1+h′′+ ρ

1−r 0 · · · 0 xn
1−r

0 1 · · · 0 0
...

... . . . ...
...

0 0 · · · 1 0
ρ

1−r 0 · · · 0 1+ xn
1−r


=

1
2n

n

∏
i=1

x−1
i

1
1− r

(
(1+h′′)(1−ρ)+ρ

)
.

Granted (4.32), we thus see that det(si j) is of the form required in (4.3), by taking ε > 0

to be sufficiently small and also by recalling Lemmas 4.4.5, 4.4.6, and 4.4.9.

We now prove (4.32). Throughout in the proof, C(ε1) will denote a constant which

depends only on ε1 (and not on ε) which varies from line to line.
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Now define

F̃2(ρ) :=− γ

(n+1)(n+2)
ρ

n+2− δ0− γ

n(n+1)
ρ

n+1 +
δ0

n(n−1)
ρ

n−α−βρ

so that

Q(ρ) = ρ
n−1(1−ρ)2 + F̃2(ρ).

Observe first that Q(ε) = 0 (cf. Lemma 4.4.7) is equivalent to F̃2(ε) =−εn−1(1−

ε)2. On the other hand, γ = δ0 = O(ε2) (cf. Lemma 4.4.8) implies F̃2(ε) = O(εn+2)−

α−βε . Thus we get

−α−βε =−ε
n−1(1− ε)2 +O(εn+2),

and hence

−α−βρ =−α−βε−β (ρ− ε) =−ε
n−1(1− ε)2 +O(εn+2)−β (ρ− ε).

On the other hand, since Q′(ε) = εn−2(1− ε) (cf. Lemma 4.4.7), we have

Q′(ε) = ε
n−2(1− ε)[(n−1)(1− ε)−2ε]−β +O(εn+1) = ε

n−2(1− ε),

by differentiating (4.27) and recalling Lemma 4.4.8. We thus get

β =−ε
n−2(1− ε)+ ε

n−2(1− ε)[(n−1)(1− ε)−2ε]+O(εn+1)

= ε
n−2(1− ε)[(n−1)(1− ε)−1−2ε]+O(εn+1).

Define a constant

C̄ε := (n−1)(1− ε)−1−2ε

and observe that it satisfies the following bound

10n2−21n−1
10n

≤ C̄ε < n−2 (4.33)

for all 0 < ε < 1
10n say, where we note 10n2−21n−1 > 0 if n≥ 3; C̄ε can be bounded

from above and below by a positive constant, uniformly of (all small enough) ε . Then
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we can write β = C̄εεn−2(1− ε)+O(εn+1), and hence

−α−βρ =−ε
n−1(1− ε)2 +O(εn+2)−β (ρ− ε)

=−ε
n−2(1− ε)[ε(1− ε)+(C̄ε +O(ε3))(ρ− ε)+O(ε4)].

We now write
ρn−1(1−ρ)2

Q(ρ)
−1 =

1
1+ ε2F̃3(ρ)− F̃4(ρ)

−1

where we defined

F̃3(ρ) :=
1

ε2(1−ρ)2

(
− γ

(n+1)(n+2)
ρ

3− δ0− γ

n(n+1)
ρ

2 +
δ0

n(n−1)
ρ

)

and

F̃4(ρ) :=
(ε/ρ)n−2(1− ε)

(1−ρ)2 [(ε/ρ)(1− ε +O(ε3))+(C̄ε +O(ε3))(1− ε/ρ)].

Arguing as we did in (4.25) and (4.29), we use δ0 = O(ε2) and γ = O(ε2) (cf.

Lemma 4.4.8) to see that F̃3(ρ) satisfies

|F̃3(ρ)|<C(ε1) (4.34)

for all ρ ∈ (0, 1
2) say, with a constant C(ε1) > 0 which depends only on (sufficiently

small) ε1 and hence can be chosen uniformly for all ε satisfying 0 < ε < ε1. Note also

that the estimate (4.33) implies

F̃4(ρ) =
(ε/ρ)n−2(1− ε)

(1−ρ)2 [(ε/ρ)(1− ε +O(ε3))+(C̄ε +O(ε3))(1− ε/ρ)]> 0

for all ρ ∈ (ε,1) if ε is small enough. Finally, observe that

ρn−1(1−ρ)2

Q(ρ)
=

1
1+ ε2F̃3(ρ)− F̃4(ρ)

and that Q(ρ)> 0 for ρ ∈ (ε,1) (cf. Lemma 4.4.9) imply 1+ ε2F̃3(ρ)− F̃4(ρ)> 0 for
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all ρ ∈ (ε,1). We thus have

0 < F̃4(ρ)< 1+ ε
2F̃3(ρ)

for all ρ ∈ (ε,1) if ε is small enough.

Hence we have

ρn−1(1−ρ)2

Q(ρ)
−1 =

1
1+ ε2F̃3(ρ)− F̃4(ρ)

−1

>
1

1+ ε2F̃3(ρ)
−1,

for all ρ ∈ (ε,1). In particular, recalling the estimate (4.34), there exists a constant

C(ε1)> 0 independent of ε such that

h′′(ρ) =
1
ρ

1
1−ρ

(
ρn−1(1−ρ)2

Q(ρ)
−1
)

>
1
ρ

1
1−ρ

(
1

1+ ε2F̃3(ρ)
−1
)

>−ε

2

∣∣F̃3(ρ)
∣∣(1+ ε

2 ∣∣F̃3(ρ)
∣∣+ · · ·)

>−εC(ε1)

for all ρ ∈ (ε, 1
2), if ε is chosen to be sufficiently small.

Having established the claim for all ρ ∈ (ε, 1
2), we now treat the case ρ ∈ [1

2 ,1).

Using the polynomial F̃1 as given in (4.28), we can write

h′′(ρ) =
1
ρ

1
1−ρ

(
ρn−1

ρn−1− ε2F̃1(ρ)
−1
)
.

We thus find that we have a power series expansion of h′′ in ε2ρ−n+1F̃1 as

h′′(ρ) =
1
ρ

1
1−ρ

(
1

1− ε2ρ−n+1F̃1(ρ)
−1
)
= ε

2 ρ−nF̃1(ρ)

1−ρ

(
1+ ε

2
ρ
−n+1F̃1(ρ)+ · · ·

)
where the series in the bracket is uniformly convergent on [1

2 ,1) for all 0 < ε < ε1 if ε1

is chosen to be sufficiently small, by noting

|ρ−n+1F̃1(ρ)|<C(ε1)
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for ρ ∈ [1
2 ,1), following from the estimate (4.29). We thus find

|h′′(ρ)|< ε
2C(ε1)

∣∣∣∣ρ−nF̃1(ρ)

1−ρ

∣∣∣∣ ,
for a constant C(ε1) > 0 which does not depend on ε . Recall now that Q′′(1) = 2

(cf. Lemma 4.4.7) and Q(ρ) = (ρ − 1)2(ρn−1− ε2F̃1(ρ)) (cf. equation (4.28)) imply

F̃1(1) = 0. We thus see that F̃1(ρ)
1−ρ

is in fact a polynomial, and hence by arguing as we

did in (4.25) and (4.29), we get ∣∣∣∣ρ−nF̃1(ρ)

1−ρ

∣∣∣∣<C(ε1)

uniformly on [1
2 ,1) and for all ε satisfying 0 < ε < ε1, if ε1 is sufficiently small. We

can thus evaluate |h′′(ρ)|< ε2C(ε1) for all ρ ∈ [1
2 ,1), which finally establishes h′′(ρ)>

−εC(ε1) for all ρ ∈ (ε,1) and all ε satisfying 0 < ε < ε1, where ε1 is chosen to be

sufficiently small.

4.4.3 Potential extension of Proposition 4.4.1

As we saw in the above, the hypothesis ε � 1 is essential in establishing the regularity

(Proposition 4.4.4) of the symplectic potential. However, as in the point blowup case

(Theorem 4.1.7), it is natural to expect that the extremal metrics exist in each Kähler

class.

Question 4.4.11. Does Proposition 4.4.4 hold for any 0 < ε < 1? In other words, does

BlP1Pn admit an extremal metric in each Kähler class?

Some numerical results obtained by a computer experiment seem to suggest that

the answer to this question should be affirmative.





Appendix A

Some results on the Lichnerowicz

operator used in §2.3.2

Lemma A.0.12. For any F ∈ C∞(X ,R), there exists F1 ∈ C∞(X ,R), F2 ∈ C∞(X ,R)

such that D∗ωDωF1 = F +F2 with D∗ωDωF2 = 0. Moreover, writing prω : C∞(X ,R)�

kerD∗ωDω by recalling the L2-orthogonal direct sum decomposition C∞(X ,R) ∼=

imD∗ωDω ⊕kerD∗ωDω , F2 is in fact F2 =−prω(F).

Proof. This is a well-known result, which follows from the self-adjointness and the

elliptic regularity of D∗ωDω .

Lemma A.0.13. Let {Fk} be a family of smooth functions parametrised by k, con-

verging to a smooth function F∞ in C∞ as k→ ∞, and (φ1,k, . . . ,φm,k) be smooth func-

tions, each of which converges to a smooth function φi,∞ as k → ∞. Write ω(m) :=

ω +
√
−1∂ ∂̄ (∑m

i=1 φi,k/ki). Let prω : C∞(X ,R)→ kerD∗ωDω and pr(m) : C∞(X ,R)→

kerD∗(m)D(m) be the projection to kerD∗ωDω and kerD∗(m)D(m), respectively. Then,

pr(m)Fk converges to prωF∞ in C∞.

Proof. Note that we can write D∗(m)D(m) =D∗ωDω +D/k for some differential operator

D of order at most 4, which depends on ω and (φ1,k, . . . ,φm,k). Since we know that

each φi,k converges to a smooth function φi,∞ in C∞, the operator norm of D can be

controlled by a constant which depends only on ω and (φ1,∞, . . . ,φm,∞) but not on k.

Thus, ||pr(m)F − prωF ||C∞ → 0 for any fixed F ∈ C∞(X ,R) as k→ ∞. On the other

hand, ||pr(m)Fk− pr(m)F∞||C∞ → 0 since Fk converges to F∞ in C∞. Combining these
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estimates,

||pr(m)Fk−prωF∞||C∞ ≤ ||pr(m)(Fk−F∞)||C∞ + ||pr(m)F∞−prωF∞||C∞ → 0

as k→ ∞.

Lemma A.0.14. Suppose that the following four conditions hold for an arbitrary but

fixed m≥ 1.

1. (φ1,k, . . . ,φm,k) are smooth functions parametrised by k such that each φi,k

converges to a smooth function φi,∞ in C∞ as k → ∞, so that ω(m) := ω +
√
−1∂ ∂̄ (∑m

i=1 φi,k/ki) converges to ω in C∞,

2. {Gk} is a family of smooth functions on X parametrised by k such that it con-

verges to a smooth function G∞ in C∞ as k→ ∞,

3. {Fk} is another family of smooth functions on X parametrised by k, each of which

is the solution to the equation

D∗(m)D(m)Fk = Gk,

with the minimum L2-norm,

4. there exists a smooth function F∞ which is the solution to the equation

D∗ωDωF∞ = G∞

with the minimum L2-norm.

Then Fk converges to F∞ in C∞ as k→ ∞.

Proof. Consider the equation

D∗(m)D(m)(F∞−Fk) = D∗ωDωF∞ +O(1/k)−Gk = G∞−Gk +O(1/k)

in C∞(X ,R). Recalling the L2-orthogonal direct sum decomposition C∞(X ,R) =

kerD∗ωDω ⊕ imD∗ωDω (and hence imD∗ωDω = kerD∗ωD⊥ω ), we write (F∞−Fk)
⊥ for
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the kerD∗(m)D
⊥
(m)-component of F∞−Fk. By the standard elliptic estimate, we have

||(F∞−Fk)
⊥||L2

p+4
≤C1,p(ω,{φi,k})||G∞−Gk +O(1/k)||L2

p
→ 0

Recalling also imD∗ωDω = kerD∗ωD⊥ω , the hypothesis 4 implies F∞ ∈ imD∗ωDω ,

and hence there exists a function F ′ ∈ C∞(X ,R) such that F∞ = D∗ωDωF ′ with the

estimate

||F ′||L2
p
≤C2,p(ω)||F∞||L2

p−4

following from the standard elliptic regularity. On the other hand,

F∞ = D∗ωDωF ′ = D∗(m)D(m)F
′+

1
k

D(F ′),

with some differential operator D of order at most 4 which depends on ω and

(φ1,k, . . . ,φm,k). This means that F∞−D(F ′)/k ∈ kerD∗(m)D
⊥
(m), and hence

||F∞− (F∞)
⊥||L2

p+4
< ||D(F ′)||L2

p+4
/k <C3,p(ω,{φi,k})||F ′||L2

p
/k

<C4,p(ω,{φi,k})||F∞||L2
p−4

/k→ 0

as k → ∞, where we used the fact that φi’s are the functions that converge to some

smooth function as k→ ∞, so that C4(ω,{φi,k}) stays bounded when k goes to infinity.

Thus, recalling that Fk is the solution to D∗(m)D(m)Fk = Gk with the minimum L2-norm

(implying (Fk)
⊥ = Fk), we have

||F∞−Fk||L2
p+4
≤ ||(F∞−Fk)

⊥||L2
p+4

+ ||F∞− (F∞)
⊥||L2

p+4
→ 0

as k→ ∞.

Since the above argument holds for all large enough p, we see that Fk converges

to F∞ in C∞.
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