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Abstract 

Engineered anisotropic tissue constructs containing aligned cell and ECM structures are useful as in vitro 

models and for regenerative medicine. They are of particular interest for nervous system modelling and 

regeneration, where tracts of aligned neurons and glia are required. The self-alignment of cells and 

matrix due to tension within tethered collagen gels is a useful tool for generating anisotropic tissues, but 

requires an optimal balance between cell density, matrix concentration and time to be achieved for 

each specific cell type. The aim of this study was to develop an assay system based on contraction of 

free-floating cellular gels in 96-well plates that could be used to investigate cell-matrix interactions and 

to establish optimal parameters for subsequent self-alignment of cells in tethered gels. Using C6 glioma 

cells the relationship between contraction and alignment was established, with 60-80% contraction in 

the 96-well plate assay corresponding to alignment throughout tethered gels made using the same 

parameters. The assay system was used to investigate the effect of C6 cell density, collagen 

concentration and time. It was also used to show that blocking α1 integrin reduced the contraction and 

self-alignment of these cells, whereas blocking α2 integrin had little effect. The approach was validated 

by using primary astrocytes in the assay system under culture conditions that modified their ability to 

contract collagen gels. This detailed investigation describes a robust assay for optimising cellular self-

alignment and provides a useful reference framework for future development of self-aligned artificial 

tissue.  
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Introduction 

Designing engineered tissues frequently requires the organisation of cells and extracellular matrix (ECM) 

into stable anisotropic structures. Cell-populated collagen hydrogels are widely used in tissue 

engineering since their composition recapitulates many of the key features of natural tissues; 

additionally, their mechanical compliance and dynamic cell-matrix interactions can be advantageous in 

the construction of robust organised structures.1, 2 Research largely focussed on the study of fibroblast-

populated collagen lattices, has revealed the close association  between the ECM and cellular behaviour 

within collagen gels (reviewed by 3). Harnessing the forces generated by cells within such systems 

provides a potential means of creating engineered tissues that can be used as model systems 4-7 or 

within regenerative medicine where anisotropic constructs are required.4, 8 Furthermore, our recent 

studies have shown that subsequent stabilisation of organised cellular collagen gels produces robust 

artificial tissues with highly aligned cell and ECM structures.9-12 

The process of cellular self-alignment within collagen gels involves cells exerting forces that contract and 

deform the surrounding matrix. By casting the cellular gel within a mould that tethers each end to a 

fixed point 2, cell-mediated contraction of the gel is restricted, and tension builds up along the 

longitudinal axis of the gel. Subsequent analysis shows that both cells and ECM fibrils align parallel to 

this axis of tension, and where there are regions with no single axis of tension the cells are orientated 

randomly.4, 5  

In order to exploit fully this phenomenon to construct anisotropic cellular gels for various applications in 

research and regeneration, it is important to establish a better understanding of the parameters that 

influence cellular self-alignment in collagen gels. Of particular interest is the further exploration of the 

behaviour of nervous system cells within an aligned stabilised model, since the great majority of 



previous work in this area has focussed on musculoskeletal cells (predominantly fibroblasts).3, 6, 7, 13, 14 

Organising neural cells into aligned 3D tissues has obvious applications in regenerative medicine, where 

aligned tracts of glia can potentially be used to support and guide neurons to bridge gaps in peripheral 

nerves or replace tracts of CNS tissue. Furthermore, organising 3D cultures of neural cells into aligned 

constructs provides considerable advantages in terms of ease of monitoring and control of complexity 

when co-cultures are used as in vitro models in research. Additionally, this model system is also likely to 

be applicable to other areas such as musculoskeletal, cardiac tissue and engineering of the cornea. The 

initial aim here therefore was to explore the key parameters that influence self-alignment in collagen 

gels of a rat CNS glial cell line (C6) that is widely used in neuroscience research. Further to this, because 

different cell types vary in their ability to contract collagen gels,15 we aimed to establish an assay system 

that could be applied more widely to determine optimal conditions required for self-alignment.  

For successful generation of an anisotropic tract of cellular collagen, sufficient tension is required, which 

is dependent on factors such as the amount of force generated by the cellular component, the 

compliance of the ECM component, and the extent and nature of interactions between cells and ECM. 

Initial experiments confirmed the integrin-mediated nature of the glial cell-ECM interaction that is 

central to the process; then the influence of cell seeding density, collagen concentration and time on 

contraction of unconstrained gels and alignment of glial cells within tethered gels were explored in 

detail.  

  

  



Materials & Methods 

Fabrication of collagen gels 

C6 rat glioma cells (ATCC®CCL-107™), were maintained in culture medium (Ham’s F12, Gibco) 

supplemented with penicillin and streptomycin (100U/ml and 100 mg/ml, respectively; Sigma) and 10% 

v/v foetal calf serum (Sigma) in standard cell culture flasks. Primary astrocytes were obtained from the 

cortices of P2 rat pups using previously reported protocols,16 and maintained in culture medium 

(DMEM, Sigma) also supplemented with penicillin and streptomycin and foetal calf serum in poly-D-

lysine coated cell culture flasks. All gels were prepared using 80% v/v Type I rat tail collagen (2 mg/ml in 

0.6% acetic acid; First Link, UK) unless otherwise stated, mixed with 10% v/v 10× minimum essential 

medium (Sigma) and the mixture neutralised using 5.8% v/v neutralising solution (TAP Biosystems) 

before addition to 4.2% v/v cell suspension (culture medium containing cell number appropriate for 

achieving the required final cell density). For multi-well plate assays, 75µl or 400µl of the mixture was 

added to individual wells of 96- or 24-well plates respectively. For aligned gels, 1 ml of this mixture was 

added to a rectangular stainless steel mould  and integrated with tethering mesh at opposite ends as 

described previously,2, 17 and all gels were allowed to set at 37 °C for 10 min. Cellular gels were 

immersed in culture medium and incubated at 37 °C for a further 15min before detachment from well 

plates where appropriate (termed free-floating gels) and incubated at 37 °C  in a humidified incubator 

with 5% CO2/95% air for up to 24 h. In some experiments, the initial collagen concentration was altered. 

In those cases, Type I rat tail collagen (5 mg/ml in 0.6% acetic acid; First Link, UK) was diluted in 0.6% 

acetic acid to the required concentration prior to neutralisation. 

To investigate the role of specific integrins in the cell-ECM interaction, anti-CD49a antibody, anti-CD49b 

antibody (BD Biosciences) or IgG control was diluted in Ham’s F12 and added to both the cell suspension 



used to make the gel and to the culture medium used to cover the gel, to give the desired final 

concentration (0.01 - 10µg/ml).   

Measurement of Contraction of cellular gels 

At the end of the defined period in culture, media was removed from gels in the multi-well plates and 

images captured of each gel. Percentage contraction was calculated by comparing the area of the well 

occupied by each gel to the area of the well (Image J). 

Measurement of cellular alignment within gels 

To assess alignment of C6 cells, haematoxylin and eosin (H & E) were used to stain cellular gels from the 

tethered aligned system. Following overnight fixation in 4% paraformaldehyde, the fixative was 

aspirated and samples washed with water, and then stained in Harris’s haematoxylin for 5 min. Gels 

were washed in water for 2 min and differentiated in 0.5% acid alcohol for 1 min. Gels were washed 

again in water for a further 2 min, and then stained in 1% Eosin-Pink for 1 min. The stained gels were 

rinsed once more in water. Replicate images were captured from 3 areas within defined regions of each 

gel under bright-field illumination (20x lens, Olympus BX61 microscope). Cell processes were traced 

using OpenLab software (Perkin Elmer) to assess the angle of deviation of each cell process compared to 

the long axis of the gel.  

Statistical analysis 

Effects of blocking specific integrin subunits on cellular gel contraction were analysed using one-way 

ANOVA with Dunnett’s post test to compare each concentration to the 0 µg/ml control. The effect of 

blocking integrin α1 subunit on cellular alignment was analysed using a Mann-Whitney test to compare 

equivalent regions in the presence or absence of anti-CD49a antibody. Assessment of cellular alignment 



was conducted using a Kruskal-Wallis test with Dunn’s post-test to compare middle and side populations 

to delta zones.  

 

 

  



Results 

The effect of blocking α1 and α2 integrin subunits on contraction of cellular collagen gels 

In order to investigate the cell-ECM interactions involved in the contraction of collagen gels by C6 cells, 

the effect of using blocking antibodies selective for α1 integrin (CD49a) and α2 integrin (CD49b) were 

examined separately in 96-well plate contraction assays (Figure 1). Following 24 hours incubation, the 

presence of anti-CD49a antibody reduced the contraction in a dose-dependent manner with significantly 

lower contraction compared to untreated control (51.9 ± 5.9 %) in the presence of antibody at 

concentrations of 0.1 µg/ml and above (Figure 1A). Maximal effect was observed with anti-CD49a 

antibody concentrations of 1 and 10 µg/ml (12.0 ± 1.6 % and 11.2 ± 1.2 % respectively) suggesting 

saturation. The presence of a rabbit IgG control (1μg/ml) had no significant effect on cell-mediated 

contraction. Incubation with anti-CD49b antibody had little effect with concentrations of 0.01-1 µg/ml 

not significantly different to the contraction in untreated control gels (49.4 ± 2.8 %; Figure 1B). Only a 

concentration of 10 µg/ml anti-CD49b antibody reduced contraction significantly (to 11.2 ± 1.6 %).   

 

Blocking integrin α1 subunit inhibits cellular alignment within tethered collagen gels 

Following the assessment of the effect of anti-CD49a and anti-CD49b on contraction of free-floating gels 

in the 96-well plate assay, the effect on cellular alignment of 1µg/ml of anti-CD49a antibody was tested. 

After 24h, the control gel with no anti-CD49a adopted the characteristic shape associated with the 

generation of tension, narrowing by 38% in the centre (Figure 2A). In contrast, an equivalent gel 

incubated with anti-CD49a showed little change in shape (~15% narrowing; Figure 2B).  



The alignment of C6 cells within the tethered gels was assessed using image analysis to determine the 

angle by which the principal axis of each cell process deviated from the longitudinal axis of the gel. 

Specific fields within the gels were assessed based on previous studies that showed how both the 

‘middle’ and ‘side’ regions of tethered gels contain aligned cells after 24h.4 Anti-CD49a (1μg/ml) reduced 

the alignment of cells in both the middle and side regions of the tethered gel (Figure 2C).  

 

Using contraction assays to optimise parameters for cellular self-alignment 

When a previously untested cell type is used in a tethered collagen gel system it can be time-consuming 

and costly to determine the optimal cell seeding density required to generate sufficient tension for self-

alignment. Using C6 cells as an exemplar, a simple multi-well plate assay was therefore used to quantify 

contraction over a range of cell densities, in order to relate this to the extent of cellular alignment 

generated in tethered aligned gels of equivalent cell density. Figure 3A shows an example of free-

floating gels with different cell seeding densities in a 96-well plate after 24h contraction. Contraction 

increased with increasing cell density up to 3 x106 cells/ml before reaching a plateau at ~70 % (Figure 

3B).  

The relationship between % contraction of free-floating gels in the multi-well plate assay and the extent 

of cellular self-alignment achieved using the equivalent seeding density in tethered gels was 

investigated. Images of specific regions from each gel were used to determine the pattern of cellular 

alignment in each case (Figure 4). The three gel regions analysed (Figure 2C diagram) were selected 

based on previous work showing that distinct alignment can be detected in each, with cells in the side 

regions more highly aligned than the middle and those in the delta zones randomly orientated.4 The gels 

with lower cell densities (0.5 and 1 x 106 cells/ml) only showed a significant difference in alignment 

4 2 1 0.5 
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between the side regions and delta zones, whereas gels with higher cell densities (2 x106 to 4 x 106 

cells/ml) showed a significant difference in both middle and side regions compared to delta zones, 

indicating cellular alignment throughout the central part of the gel. Table 1 shows the mean angle of 

deviation from the longitudinal axis of gel for the cell processes in each region. Within the side regions 

and the middle regions from the higher cell density gels, a smaller mean angle of deviation can be noted 

in comparison to the delta zones and the middle regions from the lower cell density gels. The C6 cell 

seeding density that resulted in significant cellular self-alignment throughout the middle and side 

regions corresponded to the seeding densities that produced >60% contraction in the multi-well plate 

assay.  

 

Validation of contraction assay as a way to select seeding density for cellular self-alignment. 

Having established the link between % contraction in the 96-well plate assay and subsequent cellular 

self-alignment using C6 cells, a validation experiment was conducted using primary rat astrocytes. 

Previous work showed that stimulation of primary rat astrocytes in collagen gels using TGFβ1 caused 

them to adopt a more reactive phenotype with an accompanying increase in gel contraction.4, 16 

Contraction assays were conducted using varying cell densities in the presence or absence of TGFβ1 

(Figure 5A). Based on this, a cell seeding density of 4 x106 cells/ml in the presence of TGFβ1 was selected 

as providing between 60 and 80% contraction and subsequently tested for cellular self-alignment within 

the tethered aligned system. Figure 5B shows that the primary astrocytes became highly aligned in both 

the middle and side regions.  

 

The effect of collagen concentration on contraction of cellular gels 



To test the hypothesis that the concentration of collagen present will affect the extent of cell-mediated 

hydrogel contraction, gels were made using a range of collagen concentrations (1-5mg/ml). Contraction 

profiles, using C6 cells revealed that in all cases contraction increased with cell density, and the gels with 

lower collagen concentration contracted more than those with higher collagen concentrations (Figure 

6).  

 

Time-course of collagen gel contraction over 24h  

To complete the investigation of the factors affecting contraction of collagen gels by C6 cells, the time-

course was examined, using two different seeding densities in collagen gels.  

Figure 7 shows that most of the contraction took place in the initial 4h for cells seeded at 2 x 106 cells/ml 

and the first 6h for cells seeded at 4 x 106 cells/ml, then the rate of contraction was slower for the 

remaining time. By 24h, similar contraction was achieved at both cell densities.  



Discussion 

Characterisation of the cell-mediated contraction of collagen gels is important for the development of 

engineered tissues that exploit the cellular self-alignment that accompanies generation of tension in 

tethered gels. Here we have shown how simple 96-well plate assays can be used to investigate cell-ECM 

interactions and optimise parameters such as cell seeding density, collagen concentration and 

incubation time to facilitate subsequent generation of aligned neural cell constructs. The desired end 

result of this investigation is to achieve consistent, predictable self-alignment of neural cells within 

hydrogels to mimic the aligned tracts in the CNS and peripheral nerves for regenerative medicine18 and 

to aid analysis and quantification.9, 19 Self-alignment to achieve cell and matrix anisotropy within a 3D 

collagen environment is dependent on sufficient tension being developed through cell-ECM interaction 

and cytoskeletal activity. Parameters such as seeding density, collagen concentration and incubation 

time therefore need to be optimised for each new cell type. Since neural cells are often valuable and in 

short supply, and the measurement of alignment in tethered gels is time-consuming, the development 

of the simple 96-well plate assay described here is a useful new tool to speed up and simplify the 

construction of aligned neural tissues. In addition to being useful for characterising the ability of new 

cell types to self-align, this assay can potentially be used in testing of batches of cells for engineered 

neural tissue (EngNT) construction, release criteria, or product assessment. 

Functional attachment of cells to collagen is an essential step in the self-alignment process and the 

ability of neural cells to align in this system will therefore depend on their expression of relevant 

integrins. It is accepted that α1β1, α2β1, α10β1 and α11β1 are the integrins responsible for direct 

attachment of cells to collagen fibrils.20-22 Here we used the 96-well assay to demonstrate that blocking 

the α1 integrin subunit of C6 cells inhibited contraction of gels in a dose-dependent manner, indicating 



the critical role played by α1 integrin in C6 cell-collagen interaction. Blocking the α2 integrin subunit 

however, was less effective, with only a high concentration of antibody reducing contraction. Inhibition 

of contraction achieved with anti-CD49a was not total, and anti-CD49b had minimal effect, therefore 

indicating the presence of other binding mechanisms, for example directly via α10β1 and α11β1 

integrins or indirectly via other ECM molecules present in the cultures (e.g. fibronectin from the FCS 

which can bind to both cells and collagen). Integrin expression in neural cells varies according to the 

specific cell type and phenotype;23, 24 for example Schwann cells which have been used previously in the 

tethered aligned collagen gels express α1β1 to a greater extent than α2β1, and the pattern of integrin 

expression is altered by interactions with axons.25 The C6 cells used here and in many other in vitro 

studies are glioma-derived and their β1 integrin expression is associated with invasion of brain tissue,26 

which may improve their ability to contract and align in tethered gels compared for example to primary 

astrocytes.4 The diversity of integrin expression among neurons and glia adds to the unpredictability 

associated with generation of self-alignment of untested neural cells in collagen gels and reinforces the 

importance of developing systems for optimisation.     

The effects of time and cell density upon collagen contraction have been studied with regard to the 

behaviour of fibroblasts.14, 27 Here we used C6 cells to determine the relationship between % contraction 

of free-floating gels14 and self-alignment of cells in equivalent tethered gels. In this case, the free-

floating gels were prepared in standard 96-well plates, using small volumes of gel (75 µl), making the 

assay suitable for widespread adoption and minimising the materials used in the optimisation of 

conditions for new cell types. This assay format could also be automated. The results showed that the 

free-floating gel contraction which produced reliable alignment throughout the middle and side zones of 

the equivalent tethered gel was above 60%. Contraction of less than 60% in the free-floating gels was 

associated with less alignment, specifically alignment of the middle zone of the equivalent tethered gel 



did not differ significantly from that in the unaligned delta zones. The value of the contraction profile as 

a means of determining optimal cell density for self-alignment of other cell types was tested using 

primary astrocytes. The primary rat astrocyte contraction profile indicated that between 4 – 6 x 106 

cells/ml in the presence of TGFβ1 would achieve sufficient contraction for self-alignment in tethered 

gels. Using the lowest seeding density in the predicted range in the tethered aligned system, highly 

aligned middle and side regions were observed, validating the use of the contraction assay as a tool for 

the optimisation of seeding density to generate aligned engineered constructs. Furthermore, the 

relationship between C6 cell and primary astrocyte seeding densities and collagen gel contraction was 

similar to that seen previously with other cell types, where contraction increased with increasing cell 

density until a plateau was reached between 75 – 80%.28, 29  

In addition to cell seeding density, another factor that affects the cellular contraction of collagen gels is 

the initial collagen concentration.14, 27, 30-32 To explore this in detail, 5mg/ml collagen was diluted to give 

concentrations of 1, 2, 3, and 4 mg/ml, and gels of each concentration assessed in terms of contraction 

after 24h with a range of C6 cell densities. The gels prepared with lower concentrations of collagen 

contracted more than those prepared with higher concentrations at each cell seeding density, which is 

similar to previous studies using fibroblast-populated gels.33 Similarly, the time course of C6 cell-

mediated collagen gel contraction leading up to the standard 24h end point was investigated using two 

seeding densities. Interestingly with both cell densities there was a rapid initial contraction phase in the 

first 6 hours, followed by a much slower increase in contraction. This suggests that the 96-well 

contraction assay might be further refined by assessing gels at an earlier time point than 24h in order to 

determine the likely ability of the cell condition under test to result in successful self-alignment in a 

tethered construct. Such a modification would potentially be beneficial in terms of improving the 

efficiency of the assay.  



In summary, we have demonstrated how a simple accessible assay system using minimal quantities of 

reagents and cells can be used to establish optimal conditions for cellular self-alignment in tethered 

collagen gels. This will be particularly useful in the area of neural tissue engineering, where aligned 

cultures containing neurons and/or glia are being increasingly used for the engineering of implantable 

repair constructs or in vitro tissue models. Minimising the number of cells used to achieve successful 

self-alignment is of critical economic importance in the scale-up of engineered tissues, so an assay to 

help optimise this without the need to quantify alignment in numerous different tethered gels is a 

beneficial development. This study also demonstrated for the first time the involvement of α1 integrin 

in the self-alignment within collagen gels of C6 cells, a cell line that is widely used in neuroscience 

research. Furthermore, a detailed investigation of the relationship between cell density, collagen initial 

concentration and % contraction was conducted, providing a useful reference framework for future 

development of self-aligned neural tissues.     
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Figure & Table Legends 

Figure 1: The effect of blocking integrin α subunits on contraction of cellular collagen gels. 

Free-floating gels containing C6 cells at a density of 4x106 cells/ml were incubated in the 

presence or absence of different concentrations of anti-CD49a antibody or anti-CD49b 

antibody for 24h then % contraction was assessed. A dose-response curve was calculated for 

anti CD49a using nonlinear regression (GraphPad Prism software), IC50 approximately 0.3 

µg/ml. Data are means ± SEM, n=10 gels per condition. *P < 0.05,  ***P < 0.001 for anti-CD49a, 

### P <0.001 for anti-CD49b; One-way ANOVA with Dunnett’s post test to compare each 

concentration to the 0 µg/ml control which was 51.9 ± 5.9 % and 49.4 ± 2.7 % for the anti-

CD49a and anti-CD49b experiments respectively. Control treatment with 1µg/ml rabbit IgG 

mean ± SEM; 50.2 ± 3.4% 

 

Figure 2: The effect of anti-CD49a antibody on cellular self-alignment. Tethered collagen gels 

containing 4 x 10
6
 C6 cells/ml were incubated for 24h in the absence (A) or presence (B) of 

1µg/ml anti-CD94a antibody. The width of the gel was measured to obtain % change in width 

in each case. Gels were fixed and cells stained with H & E to enable the angle of deviation of 

cellular processes relative to the long axis of the construct to be determined in the middle and 

side regions (C). The drawing illustrates the position of the regions that were sampled. Boxes 

show interquartile range and median values, whiskers indicate maximum and minimum angles. 

A Mann-Whitney test was used to compare equivalent regions in the presence or absence of 

anti-CD49a antibody (***P <0.001, n = approx 72 cell processes from 3 gels).  

 

Figure 3: Contraction assay for varying seeding densities of C6 cells. Typical photograph 

showing free-floating gels containing C6 cells at various seeding densities after 24h in culture 

(A). Images were processed to calculate % contraction, enabling a contraction profile to be 



constructed (B). Data are mean ± SEM, n=10 gels per condition from a total of 3 experimental 

gel batches. 

 

Figure 4: Assessment of cellular self- alignment in tethered gels with varying seeding 

densities of C6 cells. Micrographs showing typical H & E staining of gels containing 4x106 C6 

glioma cells/ml in the 3 different areas of the tethered aligned system after 24h (A). Tethered 

gels containing C6 cells at 0.5 x 106  to 4x106 cells/ml were maintained for 24h then fixed and 

stained to enable cellular alignment to be assessed. The angle by which the orientation of cell 

processes deviated from the longitudinal axis of the gel was measured for approx 30 cells in 3 

fields within delta, middle and side regions of gels (B). Boxes show interquartile range and 

median values, whiskers indicate maximum and minimum angles. Middle and side populations 

were compared to delta zones using a Kruskal-Wallis test with Dunn’s post-test, ***P <0.001, 

n=3 gels.  

 

Figure 5: Using the contraction assay to predict the seeding density for successful alignment 

of primary rat astrocytes. 24h contraction assay (collagen gels in 96-well plates) for primary 

rat astrocytes in the presence or absence of TGFβ1 (A). Data are mean ± SEM, n=5 gels per 

condition from a total of 2 experimental gel batches. On the basis of the contraction assay, a 

cell density of 4 x 106 primary rat astrocytes/ml was chosen to assess cellular self-alignment 

within tethered gels following 24 hours in culture (B). Middle and side populations were 

compared to delta zones using a Kruskal-Wallis test with Dunn’s post-test, n=2 gels. 

 

Figure 6: The effect of collagen concentration on contraction. Free-floating gels were made in 

96-well plates using different collagen concentrations and seeded with a range of C6 cell 

densities. Their % contraction was assessed after 24h. Data are means ± SEM, n = 6 gels per 

seeding density from at least 4 cultures.  

 



Figure 7: Time-course for collagen gel contraction. Free-floating gels were made in 96-well 

plates using 2 or 4 x 106 C6 cells/ml. Cultures were photographed at various times throughout 

the 24h incubation period and the % contraction determined at each stage. Data are means ± 

SEM, n = 5 gels at each density.  

 

 

 

Table 1: Summary of cellular self-alignment in tethered gels with varying seeding densities of 

C6 cells. Mean angle data ± SEM were calculated from the cell populations shown in Figure 4. 

Middle and side populations were compared to delta zones using a Kruskal-Wallis test with 

Dunn’s post-test, ***P <0.001, n=3 gels. The contraction profile result for each equivalent cell 

density (Figure 3B) is also shown.  
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Table 1 

 

 

Seeding 

density (C6 

cells/ml gel) 

Mean 

angle (°) 

Delta 

Mean 

angle (°) 

Mid 

Mean 

angle (°) 

Side 

Delta v Mid 

Kruskal-

Wallis with 

Dunn’s 

Delta v Side 

Kruskal-

Wallis with 

Dunn’s 

Respective 

contraction 

assay 

result 

0.5 x106 38 ± 2.0 34 ± 1.8 24 ± 1.5 ns *** 51 ± 4.6% 

1 x106 39 ± 1.7 34 ± 1.8 25 ± 1.5 ns *** 59 ± 2.3 % 

2 x106 39 ± 1.5 21 ± 1.2 15 ± 1.1 *** *** 68 ± 3.3% 

3 x106 42 ± 1.7 29 ± 1.5  20 ± 1.3 *** *** 82 ± 1.6% 

4 x106 41 ± 2.0 25 ± 1.6 21 ± 1.6 *** *** 69 ± 2.2% 


