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ABSTRACT 

Approximately 25% of paediatric patients with T-cell acute lymphoblastic leukaemia (T-ALL) 

develop recurrent disease and post-relapse prognosis remains poor. Identification of molecular 

prognostic markers at diagnosis is needed so that earlier intervention with more intensive 

therapy can be targeted at those at the greatest risk of relapse, and dose reduction considered for 

those at a lower risk. Denaturing HPLC (dHPLC) was used to screen selected regions of the 

NOTCH1 and FBXW7 genes in samples from 162 paediatric T-ALL patients. Overall, 101 

(62%) had NOTCH1 mutations (NOTCH 
MUT

) and 29 (18%) were FBXW7
MUT

. The cohort was 

divided into three genotype groups for analysis: wild-type (WT) for both genes 

(NOTCH1
WT

FBXW7
WT

), a single NOTCH1 mutation (NOTCH1
Single

FBXW7
WT

), and either 

NOTCH1
Double

FBXW7
WT

 or NOTCH1
MUT

FBXW7
MUT

 (NOTCH1±FBXW7
Double

). Patients with 

NOTCH1±FBXW7
Double 

mutations were significantly associated with negative minimal residual 

disease (P=.01) and an excellent overall survival (P=.005), and should not be considered for 

more intensive therapy in first remission. PTEN mutation status was determined by dHPLC and 

the mutant level quantified by fragment analysis. Overall, 21 (13%) were PTEN
 MUT

 and median 

mutant level was 48% (range 10%-96%). Loss of genomic PTEN was investigated by 

quantification of two SNP loci in 76 informative patients and Illumina SNP array analysis in 

139 patients with sufficient DNA. Of 145 patients, 15 (10%) had PTEN deletions, and 

combining the mutation and deletion status, 32 (22%) harboured a PTEN
 
abnormality. PTEN 

genotype was not a significant prognostic indicator of response to therapy or clinical outcome; 

therefore it is not warranted for use in risk-adapted therapy at the present time. PTEN genotype 

had no impact on the favourable outcome of the patients with NOTCH1±FBXW7
Double 

mutations; 

nor did it further stratify the NOTCH1
Single

FBXW7
WT

 or NOTCH1
WT

FBXW7
WT

 groups. This 

work provides insight into the biology of NOTCH1, FBXW7 and PTEN mutations and their use 

as clinical markers.  
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CHAPTER 1: INTRODUCTION 

Acute lymphoblastic leukaemia (ALL) is an aggressive malignant disease of haematopoietic 

cells derived from the transformation of lymphoid progenitors. The disease is characterised by 

the accumulation of lymphoblasts in the bone marrow (BM) and peripheral blood (PB), and the 

expansion of the blast cells within the BM, resulting in the failure of normal haematopoiesis. 

ALL is a very heterogeneous disease in terms of disease biology, and this heterogeneity is 

observed in the varied immunophenotypes and gene mutations found in patients at diagnosis, 

and reflected in the difference in prognosis and response to therapy observed between patients.  

The work presented in this thesis describes the investigation of mutations in the NOTCH1, 

FBXW7 and PTEN genes in paediatric patients with T-cell acute lymphoblastic leukaemia (T-

ALL), a subtype of ALL. This chapter provides an overview of the classification, treatment and 

prognostic factors of the disease in order to put this work into context. The specific biology and 

clinical relevance of the mutations in the genes mentioned above is provided in the introductions 

to Chapters 3-6. 

1.1 Haematopoiesis 

The blood contains many different cellular compartments with a wide range of functions, from 

the transport of oxygen to the production of an immune response to fight infection. 

Haematopoiesis is the formation of these components of the blood system, all derived from a 

haematopoietic stem cell (HSC). The main site of haematopoiesis in adults is the BM, however 

during embryonic and foetal development it also occurs in the liver, spleen, thymus and lymph 

nodes. Pluripotent HSCs are able to differentiate into all cells of the blood system including red 

blood cells (erythropoiesis), lymphocytes (lymphopoiesis), myeloid cells (myelopoiesis) and 

platelets (megakaryopoiesis), and they reside in small numbers in the BM. An overview is given 

in Figure 1.1. HSCs are also characterised by their capacity for self-renewal. Studies suggest 

that HSCs generate either multipotent common myeloid progenitor (CMP) or common 

lymphoid progenitor (CLP) cells, which can differentiate into cells of the myeloid and lymphoid 

lineages, respectively (Orkin & Zon, 2008). The CLP produces B- and T-lymphocytes, and the 

CMP megakaryocyte/erythroid progenitors (MEPs), which then give rise to erythrocytes and 

megakaryocytes, and granulocyte/macrophage progenitors (GMPs) which can differentiate
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Figure 1.1 Haematopoiesis. Haematopoiesis is the formation of the components of the blood 

system, all derived from an HSC. HSCs generate either the multipotent CMP or CLP cell, which 

can differentiate into cells of the myeloid and lymphoid lineages, respectively This process 

requires a number of different transcriptions factors, indicated by red bars. Abbreviations: HSC, 

haematopoietic stem cell; LT, long-term; ST, short-term; CMP, common myeloid progenitor; 

CLP, common lymphoid progenitor; MEP, megakaryocyte/erythroid progenitor; GMP, 

granulocyte/macrophage progenitor; RBCs, red blood cells. Taken from Orkin and  Zon et al 

(2008). 

 

Copyright image removed 
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+ 

through more lineage-restricted committed precursor cells into terminally differentiated cells, 

such as neutrophils and macrophages. Committed lymphoid progenitors differentiate under the 

tightly regulated influence of various growth factors such as interleukin-2 (IL-2), IL-7 and SDF-

1 (Orkin & Zon, 2008).  Transcription factors are also involved in lineage determination 

including Ikaros, E2A and PU.1 for lymphoid differentiation (Orkin, 2000) and PAX5 for B-cell 

development (Nutt & Kee, 2007). As cells become more differentiated, they lose self-renewal 

capacity and pluripotency, characteristics of the HSC.  

1.2 ALL 

1.2.1 Leukaemogenesis 

Transformation of a normal haematopoietic cell to a leukaemic cell requires not only the 

capacity to cause a block in differentiation while maintaining self-renewal properties, but also 

an aberrant proliferation and survival signal (Kelly & Gilliland, 2002). Therefore unless a single 

genetic event is sufficient to confer all the above properties, it is clear that the acquisition of 

contributory genetic events is necessary for malignant transformation and the development of 

acute leukaemia. Cooperating events such as chromosomal translocations or gene mutations are 

acquired over time in a multistep process (Gilliland et al., 2004), and several studies suggest 

that these acquired changes confer a survival advantage to tumour cells (Anderson et al., 

2011;Greaves, 2007;Merlo et al., 2006;Nowell, 1976;Stratton et al., 2009). For example, in 

ALL, a study of syngeneic twins was able to identify a pre-natal ETV6-RUNX1 gene fusion that 

represented a pre-leukaemic clone likely to predate the development of ALL, suggesting that 

additional genetic events are required (Bateman et al., 2010).  

Newer technologies such as next generation sequencing (NGS) have revealed a complexity and 

diversity of human cancer at the DNA sequence level, and sequencing of individual cancer 

genomes has enabled the detection of a large number of somatic genetic alterations (Stratton et 

al., 2009).  However, it is likely that only a small number of the somatic mutations identified 

confer a selection advantage on the cells that acquire them, and these mutations are defined as 

driver mutations (Stratton et al., 2009). The driver mutations are generally in cancer-associated 

genes and it has been suggested that most cancers have more than one. They disrupt genetic 
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pathways and are thought to contribute to the “hallmarks of cancer” described by Hanahan and 

Weinberg et al (2011), which include the ability to sustain proliferative signalling, evade growth 

suppressors, resist apoptosis, enable replicative immortality, induce angiogenesis and activate 

invasion and metastasis. Exactly how many genetic ‘hits’ are required for leukaemia 

development is unclear but their frequency varies between cancers, with an estimate of between 

5 and 20 in an individual cancer type (Beerenwinkel et al., 2007;Rangarajan et al., 

2004;Sjoblom et al., 2006). The large majority of somatic mutations are therefore thought to be 

unlikely to confer a selection advantage and are defined as passenger mutations (Stratton et al., 

2009).  

The specific mutations or genetic events that confer a selection advantage over normal cells 

cause the expansion of the leukaemic clone and subsequent accumulation of leukaemic blasts in 

the PB and BM. In ALL, these genetic hits are discussed further in section 1.4 and include the 

disruption of cell differentiation by the aberrant expression of TAL1, a key regulator of HSC 

development, or an increase in cell proliferation and/or survival by activating mutations in 

signal transduction pathway components such as IL-7R and NRAS (Van Vlierberghe & 

Ferrando, 2012). In recent years there have been major advances in the identification of the 

malignant populations responsible for the maintenance of leukaemia and initiation of relapse. 

Early studies examined the leukaemia blast cell proliferation kinetics in in vivo models of acute 

leukaemia and demonstrated that two proliferating populations existed within the tumour: a 

larger fast cycling subset with a 24hr cell cycle time, and a smaller slow cycling dormant subset 

able to repopulate the fast cycling cells (Clarkson et al., 1975). However, it was only in later 

xenotransplantation assays that leukaemia stem cells (LSCs) were first described when 

transplantation of an immature CD34
+
CD38

-
 fraction of tumour cells purified from a patient 

with acute myeloid leukaemia (AML) into severe combined immunodeficient (SCID) mice was 

shown to initiate leukaemic engraftment and produce large numbers of mature blast cells 

(Lapidot et al., 1994). The LSC has been defined as a leukaemic cell distinct from the bulk of 

the tumour which, like an HSC, possesses the capacity to self-renew and replenish the 

heterogeneous cell populations of the leukaemia, and may also be quiescent (Dick, 2008). The 

immature phenotype of the LSC in some types of leukaemia suggests that the normal 

haematopoietic cell from which the LSC is derived may be a multipotent HSC which has 

undergone leukaemic transformation. The identification of the LSC in ALL has been more 

difficult to define. In contrast to AML, self-renewal was shown to not be restricted to an HSC-

like, CD34
+
CD19

- 
population, but was found in a range of normal B precursor populations 
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including a mature CD34
-
CD19

+
 population that was able to replenish the entire disease 

phenotype including the CD34
+
CD19

-
 subset (Kong et al., 2008;le Viseur et al., 2008). These 

studies suggest that in ALL the cell of origin may be a more committed lymphoid progenitor 

cell that has acquired some stem-cell properties, in particular self-renewal capacity, during 

leukaemogenesis (Bomken et al., 2010).  

1.2.2 Clinical presentation and incidence  

The accumulation of leukaemic blasts in the BM and PB leads to the ablation of normal 

haematopoiesis, known as BM failure, and resultant PB cytopenia. This may cause an increased 

susceptibility to infections due to neutropenia, fatigue or shortness of breath as a result of 

anaemia, and pain in the bone and joints. Thrombocytopenia may also lead to bleeding and a 

propensity for the skin to bruise easily. An enlargement of the lymph nodes, liver and spleen 

may also be seen in some patients.  

The incidence of ALL has two apparent peaks, one in early childhood between two and five 

years of age and a second peak after middle age. There is an estimated annual incidence of two 

cases per 100,000 individuals in the population, and approximately 60% of cases occur at <20 

years of age (Inaba et al., 2013). Childhood ALL accounts for approximately 23% of cancers in 

children (Pui & Evans, 1998). 

1.2.3 Epidemiology 

ALL is considered to arise from multiple factors including genetic susceptibility, environmental 

exposures and chance. In both children and adults there is a male predominance with a ratio of 

1.5:1. Cases are highest in non-Hispanic whites, and Switzerland has the highest worldwide 

incidence. There has been a steady increase in the number of cases diagnosed worldwide, with 

an average reported increase of 0.7% per year between 1970 and 1999 (Dores et al., 2012). 

There are a number of risk factors for ALL. The chromosomal disorder Down’s syndrome 

(trisomy 21) confers a 20 fold increased risk of developing ALL. Other inherited or congenital 

conditions such as neurofibromatosis type 1, Schwachman syndrome, Bloom syndrome and 

ataxia telangiectasia also increase the risk of ALL. Studies have demonstrated the risk of both 

foetal and postnatal X-ray exposure. For example, X-ray therapy was used in the treatment of 

children with tinea capitis and many cases developed brain and skin cancers and ALL (Shore et 
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al., 2003).  Exposure to other agents including radiation, pesticides and low electromagnetic 

fields are also risk factors and are listed on the National Institute of Health website: 

http://www.cancer.gov/cancertopics/pdq/treatment/childALL/. It has also been shown that 

specific single nucleotide polymorphisms (SNPs) in the ARID5B gene are linked to ALL 

susceptibility (Xu et al., 2012). 

1.3 Classification 

ALL can develop from lymphoid cells blocked at any stage of differentiation. Early 

classification was based on the French-American-British (FAB) system which defined the 

leukaemia on the basis of morphological appearance and cytochemistry (Bennett et al., 1981). 

On this basis, ALL was categorised into three subtypes, L1, L2 or L3, however distinguishing 

between the L1 and L2 subgroups did not provide any prognostic information so the system is 

no longer used. Therefore, a panel of monoclonal antibodies against different cluster-of-

differentiation (CD) molecules is used to diagnose by immunophenotype (Pui, 1995). Cases are 

classified as either T-ALL or B-ALL depending on the expression of specific markers, 

cytoplasmic CD3 with CD7 plus CD2 or CD5 for T-cell lineage and cytoplasmic CD79a, CD19 

and HLA-DR for B-cell lineage leukaemia (Swerdlow et al., 2008).   

1.3.1 European Group for the Immunological Characterisation of Leukaemias (EGIL) 

classification of ALL  

The EGIL classification system allows the grouping of leukaemias within the B and T-cell 

lineage according to the level of cell differentiation (Table 1.1) and is widely used. The 

immunophenotype of the leukaemic cells is assessed by flow cytometry. For the B-cell lineage 

the four immunological subtypes are Pro-B-ALL, Common ALL, Pre-B-ALL and Mature B-

ALL. The four subgroups of T-cell leukaemia are Pro-T-ALL, Pre-T-ALL, Cortical/Thymic T-

ALL and Mature T-ALL. The most common subtype of ALL is Common ALL, which accounts 

for 50% of ALL cases. Cortical/Thymic T-ALL is the most common T-cell leukaemia, 17% of 

total ALL cases are classified into this subgroup (Bene et al., 1995). In some instances, the 

http://www.cancer.gov/cancertopics/pdq/treatment/childALL/


23 

Table 1.1 EGIL classification of immunophenotype of ALL using flow cytometric markers 

 % ALL 

cases 

Positive markers Negative markers 

B-ALL 
Pro B-ALL 10% HLA

-
DR

+
, TdT

+
,  CD19

+
 CD10

-
, CyIg

-
 

Common ALL 50% CD10
+
, TdT

+
 CyIg

-
 

Pre-B-ALL 10% CyIg
+
, CD10

+
, TdT

+
  

Mature B-ALL 4% SmIg
+
 TdT

-
, CD34

-
 

T-ALL 

Pro-T-ALL 7% TdT
+
, CD7

+
, CyCD3

+
 CD2

-
, CD4

-
, CD8

-
 

Pre-T-ALL 1% TdT
+
, CD7

+
, CyCD3

+
, CD2

+
 CD4

-
, CD8

-
 

Cortical/thymic T-ALL 17% TdT
+
, CD7

+
, CyCD3

+
, CD1a

+
, 

CD2
+
, CD5

+
, CD4

+
, CD8

+
 

 

Mature T-ALL 1% CD7
+
, SmCD3

+
, CD2

+
, CD4 /8

+
 TdT

-
, CD1a

-
 

 

Abbreviations; HLA-DR, human leukocyte antigen DR; TdT, terminal deoxynucleotidyl 

transferase, Cy, cytoplasmic; Ig, immunoglobulin; Sm, surface. Taken from Bene et al., (1995). 
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subgroups can be of prognostic use, for example MLL rearrangements are most frequently seen 

in Pro-B-ALLs and are associated with a poor outcome (Cimino et al., 1995;Pui et al., 1994).  

However this classification system does not incorporate cytogenetic abnormalities and is 

unhelpful in cases that do not show an immunophenotype characteristic of the outlined 

subgroups.  

1.3.2 World Health Organisation (WHO) classification of ALL 

In recent times more detailed genetic information has been obtained and, combining this with 

cytogenetic, morphological, and immunophenotypic information, the WHO has developed a 

classification system that was first reported in 2001 (Jaffe et al, 2001) and recently updated 

(Campo et al., 2011). There are three main groups within this classification: B-lymphoblastic 

leukaemia/lymphoma not otherwise specified, B-lymphoblastic leukaemia/lymphoma with 

recurrent genetic abnormalities, and T-lymphoblastic leukaemia/lymphoma (Table 1.2). 

1.3.3 Classification of biphenotypic leukaemia 

In a small subset of ALLs, the lineage of origin is unclear; either two separate leukaemic blast 

populations of different lineages are present, or a single blast population co-expressing both 

myeloid and lymphoid markers. The WHO classification refers to the former as bilineage 

leukaemia and the latter as biphenotypic leukaemia (Swerdlow et al., 2008). Accurate diagnosis 

of biphenotypic leukaemia is essential as it constitutes a rare subgroup of ALL with a poor 

prognosis. It is not uncommon for leukaemias to aberrantly express a single marker from an 

alternate lineage, therefore it is important to distinguish these from the biphenotypic subgroup. 

The EGIL points classification system was devised to do this and is based on the number and 

degree of specificity of the myeloid and lymphoid markers expressed by the leukaemic blasts 

(Table 1.3). Biphenotypic leukaemia is considered to be present if there is a score of greater 

than two points for myeloid markers together with greater than one point for lymphoid markers 

(Bene et al., 1995).   

1.3.4 Early T-cell precursor (ETP) ALL 

ETP-ALL is characterised by the lack of expression of T-cell lineage markers CD1a and CD8, 

weak or absent expression of CD5, and expression of one or more myeloid or stem cell marker. 
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Table 1.2 World Health Organisation classification of ALL 

Precursor Lymphoid neoplasms 

B-cell lymphoblastic leukaemia/lymphoma, not otherwise specified 

B-cell lymphoblastic leukaemia/lymphoma with recurrent genetic abnormalities 

           B-cell lymphoblastic leukaemia/lymphoma with t(9;22)(q34;q11.2) BCR-ABL1 

           B-cell lymphoblastic leukaemia/lymphoma with t(v;11q23) MLL rearrangement 

           B-cell lymphoblastic leukaemia/lymphoma with t(12;21)(p13;q22)  

           TEL-AML1(ETV6-RUNX1) 

           B-cell lymphoblastic leukaemia/lymphoma with hyperploidy 

           B-cell lymphoblastic leukaemia/lymphoma with hypoploidy 

           B-cell lymphoblastic leukaemia/lymphoma with t(5;14)(q31;q32) IL3-IGH 

           B-cell lymphoblastic leukaemia/lymphoma with t(1;19)(q23;p13.3) E2A-PBX1 

T-cell lymphoblastic leukaemia/lymphoma 

Taken from Swerdlow et al., (2008). 
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Table 1.3 EGIL classification for the diagnosis of biphenotypic leukaemia 

 B-lineage T-lineage Myeloid lineage 

2 points    CD79
+
, IgM

+
, CD22

+
 CD3

+
 

Anti TCR
+
 

MPO
+
 

 

1 point 

CD19
+
 

CD10
+
 

CD20
+
 

CD2
+
, CD5

+
, CD8

+
 

CD10
+
 

CD13
+
 

CD33
+
 

CD65
+
 

 

0.5 point 

TdT
+
 TdT

+
, CD17

+
, CD10

+
 CD14

+
 

CD15
+
 

CD64
+
 

CD117
+
 

 

Abbreviations; Ig, immunoglobulin; TCR, T-cell receptor; TdT, terminal deoxynucleotidyl 

transferase. Taken from Bene et al., (1995). 
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This subset of T-ALL also has a gene expression pattern similar to that of normal ETP cells, 

with overexpression of myeloid genes including GATA2, CEBPA and CD34. ETP blast cells 

derive from an immature haematopoietic progenitor cell arrested at an early stage of maturation, 

which retains the ability to differentiate into myeloid and T-cell lineages (Zhang et al., 2012). 

1.4 T-ALL 

Of the total number of ALL cases, 10-15% of paediatric and 25% of adult patients have a T-cell 

phenotype, which derives from the transformation of T-cell progenitors in the thymus (Pui & 

Evans, 1998). T-ALL is more frequent in males than females, and patients tend to be associated 

with a higher white blood cell count, older age and the presence of a mediastinal mass when 

compared to those with a B-cell phenotype. T-ALL is also associated with an increased risk of 

central nervous system (CNS) infiltration at diagnosis (Marks et al., 2009;Pui & Evans, 1998).  

1.4.1 Cytogenetics 

The most common cytogenetic abnormality is the deletion of chromosome 9p21, which is seen 

in >70% of patients with T-ALL (Ferrando et al., 2002) (Table 1.4). The deletions encompass 

the cell cycle regulator CDKN2A locus which encodes the p16INK4a and p14ARF tumour 

suppressor genes. Chromosomal rearrangements in T-ALL frequently involve genes encoding 

transcription factors and place the transcription factor under the control of a T-cell receptor 

(TCR) gene such as TCRB (7q34) or TCRA-D (14q11), where the strong TCR gene enhancers 

and promoters drive their aberrant expression (Van Vlierberghe et al., 2008).   

1.4.1.1 bHLH transcription factors 

Frequently rearranged transcription factors in patients with T-ALL include members of the basic 

helix-loop-helix (bHLH) family, TAL1, TAL2, LYL1 and BHLHB1. The proteins contain two α-

helices connected by a loop, required for homodimer and heterodimer formation, and a basic 

domain that mediates DNA binding. The most frequently rearranged bHLH transcription factor 

is the TAL1 gene located on chromosome 1p32, and aberrant expression is seen in 60% of 

patients with T-ALL (Ferrando et al., 2002). TAL1 is essential for HSC development and 

survival (Aifantis et al., 2008). It is expressed on haematopoietic progenitors and plays a role in 

megakaryocyte/erythrocyte differentiation. It binds E-box motifs following heterodimerisation 
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Table 1.4 Cytogenetic aberrations reported in patients with T-ALL 

Gene category Gene Rearrangement Incidence Impact on outcome Reference 

Translocations involving TCR genes 
bHLH family TAL1 

 

TAL2 

LYL1  

bHLHB1 

t(1:14)(p32;q11) 

t(1;7)(p32;q34) 

t(7;9)(q34;q32) 

t(7;19)(q34;p13) 

t(14;21)(q11.2;q22) 

3% 

3% 

<1% 

<1% 

<1% 

Good 

Good 

Unknown 

Unknown 

Unknown 

Cave et al., (2004) 

Cave et al., (2004) 

Van Grotel et al., (2006) 

Hwang et al., (1995) 

Wang et al., (2000) 

LMO family LMO1 

LMO2 

t(11;14)(q15;p11) 

t(11;14)(p13;q11) 

t(7;11)(q35;p13) 

2% 

7% 

3% 

Unknown 

Unknown 

Unknown 

Graux et al., (2006) 

Graux et al., (2006) 

Graux et al., (2006) 

Homeobox 

family 

TLX1 (HOX11) 

 

TLX3 (HOX11L2) 

 

HOXA cluster 

t(10;14)(q24;q11)  

t(7;10)(q34;q24) 

t(5;14)(q35;q32) 

t(5;7)(q35;q21) 

t(7;7)(p15;q34) 

5%-10% 

 

24% 

24% 

3% 

Good 

 

Unknown 

Poor/No impact 

Unknown 

Cave et al., (2004) 

 

Cave et al., (2004) 

Cave et al., (2004) 

Cave et al., (2004) 

Proto-oncogenes NOTCH1 

C-MYB 

C-MYC 

t(7;9)(q34;q34.3) 

t(6;7)(q23;q34) 

t(8;14)(q24;q11) 

<1% 

3% 

2% 

Unknown 

Unknown 

Poor 

Ellisen et al., (1991) 

Clappier et al., (2007) 

Erikson et al., (1986) 

Cell cycle CCND2 t(7;12)(q34;p13) 

t(12;14)(p13;q11) 

<1% 

<1% 

Unknown 

Unknown 

Clappier et al., (2006) 

Clappier et al., (2006) 

Formation of fusion genes 

bHLH family STIL/TAL1 1p32 deletion 16%-30% Good Cave et al., (2004) 

Homeobox 

family 

HOXA (MLL-ENL) 

HOXA (SET-NUP214) 

 

HOXA (CALM-AF10) 

t(11;19)(q23;p13) 

9q34 deletion 

inv(14)(q11.2q13) 

t(10;11)(p13;q14) 

1% 

3% 

 

5%-10% 

Unknown 

No impact 

 

Poor 

Ferrando et al., (2003) 

Van Vlierberghe et al., (2008) 

 

Asnafi et al., (2003) 

Signal 

transduction 

NUP214-ABL1 

 

ETV6-ABL1 

EML-ABL1 

BCR-ABL1 

Episomal amplification of 9q34 

t(9;12)(q34;p13) 

t(9;14)(q34;q32) 

t(9;22)(q34;q11) 

4% 

 

<1% 

<1% 

<1% 

Poor 

 

Unknown 

Unknown 

Poor 

Graux et al., (2006) 

 

Graux et al., (2006) 

Graux et al., (2006) 

Raanani et al., (2005) 
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Table 1.4 Continued 

 

Gene category Gene Rearrangement Incidence Impact on outcome Reference 
Deletions 
Cell cycle CDKN2A/2B 

CDKN1B 

RB1 

9p21 deletion 

12p13 deletion 

13q14 deletion 

70% 

2% 

4% 

Good 

Unknown 

No impact 

Ferrando et al., (2002) 
Graux et al., (2006) 

Remke et al., (2009) 

 

Abbreviations: TAL, T-cell acute lymphoblastic leukaemia gene; LMO, Lim-only domain gene; TLX, T-cell leukaemia homeobox gene; HOXA, 

homeobox; MYB, myeloblastosis viral oncogene homolog gene; MYC, myelocytomatosis viral oncogene homolog gene; CCND2, Cyclin D2 gene; 

STIL, SCL/TAL1 interrupting locus; NUP214, nucleoporin 214kDa gene; ABL1, c-abl1oncogene; CDKN2A/B, cyclin-dependent kinase inhibitor; 

RB1, retinoblastoma-1 gene. 
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with one of the class I bHLH E-proteins such as E2A or HEB, and forms a transcriptional 

complex with other factors including GATA3, LIM-only (LMO) domain proteins LMO1/2 and 

runt-related transcription factor 1 (RUNX1) (O'Neil et al., 2004;Ono et al., 1998). In patients 

with T-ALL with aberrant TAL1 expression, there is a block in differentiation at the late double-

positive (DP) stage of thymocyte development. The t(1;14)(p32;q11) translocation, which 

juxtaposes the TAL1 gene to the TCRα/δ gene, is present in 3% of paediatric cases, and between 

16%-30% of patients with T-ALL harbour a small deletion at chromosome location 1p32 which 

places TAL1 next to and under the subsequent control of the STIL gene (Van Vlierberghe & 

Ferrando, 2012).  

1.4.1.2 LMO proteins 

Frequent translocations are also seen involving the LMO domain genes, LMO1, 2 and 3. The 

LMO proteins form transcriptional complexes with TAL1 and LYL1, therefore activation of the 

LMO1 and LMO2 genes is frequently found in conjunction with aberrant TAL1 expression 

(Ferrando et al., 2002). In a transgenic mouse model, leukaemogenesis was enhanced in mice 

overexpressing both the Tal1 and Lmo1/2 genes (Aplan et al., 1997;Larson et al., 1996). 

Another study demonstrated that overexpression of Lmo2 resulted in the initiation of leukaemia 

by conferring the capacity to self-renew to developing thymocytes (McCormack et al., 2010). 

Translocations of the LMO genes are seen in approximately 10% of paediatric T-ALL cases 

(Van Vlierberghe & Ferrando, 2012). The most frequent is the t(11;14)(p13;q11) rearrangement 

where the LMO2 gene is placed under the control of the TCRα/δ receptor.  

1.4.1.3 HOX transcription factors 

Members of the HOX family of transcription factors are also rearranged in T-ALL. HOX 

transcription factors play an essential role in organogenesis, such as TLX1 (Hox11), which is 

required for spleen development, and TLX3 (Hox11L2) for neural development. The oncogenic 

role of TLX1 was recently demonstrated in a transgenic mouse model, where aberrant 

expression resulted in the induction of leukaemia (De Keersmaecker et al., 2010). The 

t(10;14)(q24;q11) rearrangement, in which the TLX1 gene is translocated to the TCRα/δ receptor 

locus, occurs in approximately 5%-10% of paediatric and 30% of adult patients with T-ALL 

(Ferrando et al., 2002). Frequent rearrangements are also seen in TLX3, the most common, the 

t(5;7)(q35;q21) juxtaposes the gene to the TCRα/δ receptor and is seen in 25% of  T-ALL cases 

(Bernard et al., 2001). Approximately 3% of patients with T-ALL harbour rearrangements in the 
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HOXA cluster of HOX genes, which are essential for the regulation of axial patterning during 

development (Soulier et al., 2005). The t(7;7)(p15;q34) translocation places the HOXA9 and 

HOXA10 genes in the TCRβ receptor locus. 

1.4.1.4 Fusion genes 

A number of chromosomal rearrangements generate fusion transcripts encoding distinct 

transcription factors. The MLL-ENL gene fusion is seen in 1%, the SET-NUP214 in 3% and the 

CALM-AF10 in approximately 5%-10% of cases of T-ALL (Van Vlierberghe & Ferrando, 

2012). All three of these fusion genes result in the upregulation of the HOXA cluster. The ABL1 

gene is rearranged in 8% of cases, and 4% of cases harbour episomal amplification and 

expression of the NUP214-ABL1 fusion gene (Graux et al., 2004;Hagemeijer & Graux, 2010), 

commonly those with TLX1 and TLX3 rearrangements. Other ABL1 rearrangements include the 

ETV6-ABL1 and EML-ABL1 fusion transcripts (De Keersmaecker et al., 2005).  

1.4.1.5 Proto-oncogenes 

The leucine zipper transcription factor c-MYB is overexpressed as a result of the t(6;7)(q23;q32) 

translocation in 3% of cases of T-ALL, predominantly in patients aged two years and under 

(Clappier et al., 2007). Duplications of the gene are also found in approximately 8%-15% of 

cases (Lahortiga et al., 2007). The MYC gene is also rearranged in 2% of cases, where the 

t(8;14)(q24;q11) translocation places the gene under the control of the TCRα receptor (Van 

Vlierberghe & Ferrando, 2012).  

1.4.2 Gene mutations 

There are number of genes that have been found to be recurrently mutated in the leukaemic cells 

of patients with T-ALL, which, in combination with the variety of chromosomal abnormalities 

seen in transcriptional regulators and signal transducers, is the basis of the heterogeneity seen in 

this disease (Table 1.5). Further study of the reported chromosomal translocations and 

rearranged oncogenes in patients with T-ALL led to the identification of frequent mutations in 

genes including the NOTCH1 receptor, which is discussed further in chapter 3 (Weng et al., 

2004). One group engineered lymphoma-prone mice with chromosomal instability to assess 

disease-associated copy number aberrations by array-based comparative genome hybridisation 

(a-CGH) (Maser et al., 2007). The authors identified recurrent deletions of FBXW7 and PTEN, 
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and targeted re-sequencing of the genes in patients with T-ALL revealed inactivating mutations, 

and these are discussed further in chapters 3 and 5 respectively. 

A number of other studies utilised copy number analysis by SNP array or aCGH to identify 

candidate genes for mutation screening. Heterozygous frameshift mutations of WT1 are present 

in approximately 10% of cases of T-ALL and are frequently associated with aberrant TLX1 and 

HOXA9 expression (Tosello et al., 2009). LEF1 is a member of the lymphoid enhancer factor/T-

cell factor family of transcription factors and interacts with nuclear β-catenin in the WNT 

signalling pathway (van Noort & Clevers, 2002). Inactivating mutations of the LEF1 gene have 

been reported in 7% of paediatric patients (Gutierrez et al., 2010b). Loss of function mutations 

have also been detected in the BCL11B gene in 9%-13% of paediatric patients with T-ALL (De 

Keersmaecker et al., 2010;Gutierrez et al., 2011). The BCL11B gene encodes a zinc finger 

transcription factor that plays a critical role in the differentiation and survival of T-cell 

progenitors in the thymus (Wakabayashi et al., 2003). Other transcription factors have been 

shown to be mutated in cases of early immature T-ALL including ETV6 and RUNX1. The 

t(12;21) ETV6-RUNX1 translocation is frequently described in patients with pre-B-ALL, 

however inactivating mutations of ETV6 have been reported in 13% of paediatric cases of T-

ALL (Van Vlierberghe et al., 2011) and RUNX1 loss of function mutations in 10% of cases 

(Della Gatta et al., 2012).  

Further advances in technology such as whole genome and exome NGS have led to the 

detection of mutations in numerous other genes in leukaemic cells. A study examining the 

increased incidence of T-ALL in male cases performed targeted capture and NGS of genes 

located on the X chromosome and identified mutations of the plant homeodomain finger 6 gene 

(PHF6) in 16% of paediatric and 38% of adult cases  (Van Vlierberghe et al., 2010). Mutations 

were associated with cases with aberrant TLX1/3 and TAL1 expression. PHF6 is suggested to 

have a role in transcriptional regulation and DNA repair, and the loss of function mutations 

suggest that PHF6 may be a tumour suppressor gene.   

In the first report of whole-genome sequencing (WGS) of samples from patients with ALL, 12 

cases of ETP-ALL were sequenced (Zhang et al., 2012). ETP-ALL is characterised by the 

absence of T-lineage cell surface marker expression and cases commonly harbour a high 

number of genetic alterations but lack a common abnormality. There was a marked diversity 

from case to case in the frequency and location of the alterations identified; however the 
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Table 1.5 Somatic mutations in T-ALL 

Gene category Gene Incidence  Impact on outcome Reference 

Activating mutations 

NOTCH1 pathway NOTCH1 60% Good/No impact Weng et al., (2004), Breit et al., (2006)  

Signal transduction IL-7R 

JAK1 

JAK3 

STAT5B 

NRAS 

FLT3 

10% 

1% 

5% 

6% 

5%-10% 

2% 

No impact 

No impact 

No impact 

Poor 

No impact 

No impact 

Shocat et al., (2011) 

Zhang et al., (2012) 

Zhang et al., (2012 

Bandapelli et al., (2014) 

Zhang et al., (2012) 

Zhang et al., (2012) 

Inactivating mutations 

NOTCH1 pathway FBXW7 8%-30% Good/No impact Maser et al., (2007)  

Signal transduction PTEN 

NF1 

10% 

3% 

Poor/No impact 

No impact 

Palomero et al., (2007), Jotta et al., (2010) 

Zhang et al., (2012) 

Transcription factors WT1 

LEF1 

ETV6 

BCL11B 

RUNX1 

GATA3 

CNOT3 

10% 

10%-15% 

13% 

10% 

10%-20% 

5% 

4% 

No impact 

Unknown 

No impact 

No impact 

Poor/No impact 

Poor 

Unknown 

Tosello et al., (2010) 

Gutierrez et al., (2010) 

Zhang et al., (2012) 

Guterriez et al., (2011) 

Zhang et al., (2012) 

Zhang et al., (2012) 

De Keermaeker et al., (2013) 

Chromatin regulators EZH2 

SUZ12 

EED 

PHF6 

10%-15% 

10% 

10% 

20%-40% 

Poor 

No impact 

No impact 

No impact 

Zhang et al., (2012) 

Zhang et al., (2012) 

Zhang et al., (2012) 

Van Vlierberghe et al., (2010) 

 

Abbreviations: IL-7R, interleukin-7 receptor; JAK, Janus kinase 1; STAT5B, signal transducer and activator of transcription; NRAS, neuroblastoma-

RAS gene; FLT3, FMS-related tyrosine receptor 3; FBXW7, F-box and WD40 domain-containing protein 7; PTEN, phosphatase and tensin 

homolog; NF1, neurofibromatosis 1 gene; WT1, Wilms Tumour 1 gene; LEF1, lymphoid enhancer factor 1 gene; ETV6, ETS translocation variant 

6 gene; BCL11B, B-cell CLL/lymphoma 11B; RUNX1, runt-related transcription factor 1; EZH2, enhancer of zeste homolog 2; EED, embryonic 

ectoderm development; PHF6, planthomeodomain finger 6. 
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majority harboured abnormalities that could be classified into three groups. The first group were 

mutations in genes predicted to result in abnormal cytokine receptor or RAS signalling 

including N-RAS, K-RAS, FLT3, JAK1, JAK2 and IL-7R. The second group were mutations in 

genes encoding regulators of haematopoietic development including ETV6, GATA3, IKZF1 and 

RUNX1. Finally, the third group were mutations targeting genes involved in histone 

modification, including components of the polycomb repressor complex 2, EED, EZHZ and 

SUZ12. Novel somatic mutations were also identified in the study; inactivating mutations of the 

DNM2 and RELN genes were described in patients with both ETP and non-ETP ALL and in the 

ECT2L gene in cases of ETP only (Zhang et al., 2012).  

A recent study of whole exome sequencing of 67 samples from patients with T-ALL identified 

mutations in 15 candidate driver genes (De Keersmaecker et al., 2013). Of the 15 genes, eight 

had already been previously described, NOTCH1, FBXW7, WT1, BCL11B, JAK3, PTEN, DNM2 

and PHF6. The seven newly identified genes were CNOT3, RPL10, RPL5, ODZ2, TET1, 

KDM6A and MAGEC3. The CNOT3 gene was mutated in 4% of cases and was associated with 

adult T-ALL. Mutations were truncating or missense, resulting in weak or absent expression of 

the CNOT3 protein, which is part of the CCR4-NOT complex that plays a role in the assembly 

of the proteosome (Collart & Panasenko, 2012). Mutations of the ribosomal genes RPL5 and 

RPL10 were reported in 2% and 5% of the cohort respectively and RPL10 mutations were 

associated with paediatric T-ALL. Mutations in the STAT5B gene have also recently been 

identified in 6% of paediatric patients with T-ALL (Bandapalli et al., 2014) and somatic 

heterozygous mutations in non-coding sites that introduce MYB binding motifs and create a 

super-enhancer upstream of the TAL1 gene in a subset of cases of T-ALL (Mansour et al., 

2014).  

1.5 Factors associated with patient outcome 

The survival rate of paediatric patients with T-ALL has risen to approximately 90% in recent 

trials (Inaba et al., 2013), but for adults, long-term remission rates are currently at 

approximately 50% (Pui & Evans, 2006). Historically, the prognosis of patients with T-ALL 

was particularly poor in comparison to patients with B-ALL. However improvements in 

therapeutic approaches including landmark advances such as the introduction of high-dose 

methotrexate, have led to T-ALL survival rates equalling those of B-ALL in recent years (Pui & 
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Evans, 2013). This improvement in treatment protocols has been paralleled by increased 

toxicity, and a wide variation in the response to the same treatment regimen is seen between 

patients. This has led to the development of a risk-based approach to therapy to avoid over- or 

under-treatment of individuals. The prognostic factors currently used to stratify patients are 

detailed below.  

1.5.1 Clinical features 

Age and white blood cell count (WBC) at diagnosis are robust prognostic factors when 

stratifying patients for risk-adapted therapy. In current paediatric trials, age ≥10 years is 

considered to be an adverse risk factor, with a better prognosis in patients aged between 1 and 

10 years (Inaba et al., 2013). In paediatric treatment protocols the latter are therefore assigned to 

a less intense treatment regimen providing that they have no other poor risk factors (Clappier et 

al., 2010;Kox et al., 2010;Qureshi et al., 2010;Zuurbier et al., 2010). There have been a number 

of studies demonstrating the inferior outcome of adolescent patients and those in their early 20s 

when treated on adult rather than paediatric regimens (Boissel et al., 2003;de Bont et al., 

2004;Ramanujachar et al., 2007). Whether this difference is a reflection of the biological 

differences in susceptibility to therapy, clinical differences in treatment tolerability or 

compliance issues decreasing the effectiveness of treatment remains unclear however, and 

recent paediatric trials have raised the age of accrual to 25 years accordingly (Nachman, 2005). 

In adults, increasing age is associated with a worse prognosis. A recent study demonstrated that 

patients aged between 55-65 years had a lower complete remission and survival rate, and more 

infections during induction therapy (Sive et al., 2012). The association of older age with a worse 

outcome in B-ALL is in part due to the higher incidence of the t(9;22) BCR-ABL translocation 

in this age group, which is linked to resistance to chemotherapy (Ribeiro et al., 1997). An 

elevated WBC indicates a high tumour load and proliferation rate, and for T-ALL the cut-off 

point for high-risk disease is a presenting WBC >100x10
9
/L (Bassan & Hoelzer, 2011;Hunger et 

al., 2012).  In paediatric patients, boys historically have a slightly worse prognosis than girls as 

a result of testicular relapse; therefore current treatment regimens extend the maintenance 

therapy for boys by one year.  Sex has no effect in adult trials (Marks et al., 2009).  

There is limited evidence to suggest that the maturation level of the T-cells is associated with 

prognostic significance, unlike in B-ALL, where a CD10
-
 pro-B-ALL immunophenotype is 

associated with high-risk disease (Bassan & Hoelzer, 2011). In an adult study, cases of T-ALL 
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expressing CD1a with an immunophenotype similar to that of early cortical thymocytes seemed 

to respond better to therapy (Marks et al., 2009). However, ETP-ALL is a recently identified 

subgroup of T-ALL which accounts for 15% of cases and is associated with an increased risk of 

treatment failure in the context of some trials (Coustan-Smith et al., 2009;Ma et al., 2012), 

although this association has not been replicated in the UKALL 2003 trial (Patrick et al., 2014).  

A recent study has suggested that CD45 expression may be a potential prognostic marker in T-

ALL (Cario et al., 2014). The authors demonstrated an association between high CD45 

expression and a higher rate of relapse and worse survival in paediatric patients treated on the 

ALL-BFM 2000 protocol. They hypothesised that this was due to the decreased proliferation of 

cells as a result of the CD45-mediated inhibition of Src and JAK kinases. A reduced 

proliferation gene expression profile has previously been shown to be linked to in vivo 

treatment resistance in primary samples from patients with T-ALL (Cario et al., 2005;Chiaretti 

et al., 2004). Genes encoding proteins shown to function in cell proliferation, including TTK and 

FGFR1, were expressed at low levels in the blast cells of relapsed patients. 

1.5.2 Cytogenetics 

A number of recurrent chromosomal abnormalities have been shown to have prognostic 

significance in B-ALL. Some chromosomal abnormalities are associated with a more favourable 

outcome such as hyperdiploidy (Paulsson & Johansson, 2009) and the ETV6-RUNX1 fusion 

(Attarbaschi et al., 2004). Others are associated with a poorer prognosis including the 

Philadelphia chromosome t(9;22) (Ribeiro et al., 1997), rearrangements of the MLL gene (Pui et 

al., 2003) and the intrachromosomal amplification of the AML1 gene (iAMP21) (Moorman et 

al., 2007). However this has not been the case in T-ALL. One possible reason for this is the 

relatively small proportion of T-ALL compared with B-ALL patients in ALL clinical trials, 

meaning that the cohort sizes for impact studies are small and outcomes vary between treatment 

protocols. One study of 153 paediatric patients with T-ALL reported an association between a 

favourable outcome and presence of either the STIL/TAL1 fusion gene or TLX1 or TAL1 

rearrangements (Cave et al., 2004). However,  in other studies a poor prognosis was found to be 

associated with overexpression of the TLX3 gene and NUP214-ABL1 episomal amplification 

(Burmeister et al., 2006;Cave et al., 2004;Ferrando et al., 2004;van Grotel et al., 2006). In one 

study, patients harbouring CDKN2A deletions were associated with a shortened survival after 

relapse (Diccianni et al., 1997).  
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1.5.3 Response to therapy 

Early response to glucocorticoid-based induction therapy is morphologically assessed from BM 

aspirates and the tumour load at this time point is a robust prognostic marker. The specific 

glucocorticoid administered varies between trials, the UKALL 2003 protocol uses 

dexamethasone whereas a number of other paediatric treatment protocols use prednisone 

(Clappier et al., 2010;Kox et al., 2010;Zuurbier et al., 2010). Induction response is assessed on 

day 8 or 15 of treatment for high- and low-risk patients respectively. Patients with more than 

25% blasts present in the BM at this time are classed as high risk and receive a more dose-

intensive induction and prolonged consolidation therapy.  

The measurement of minimal residual disease (MRD) at the end of induction therapy is also 

used to stratify treatment of ALL. Although complete remission is considered to be the presence 

of <5% blast cells in the BM, this is based on microscopic assessment. However, more than half 

of relapses occur from patients who had a rapid early response based on morphological criteria 

and it has been calculated that these patients may still have up to 10
10 

leukaemic cells (Bassan & 

Hoelzer, 2011). As a result, more sensitive techniques were developed to quantify the residual 

leukaemic cells, and the level of disease persisting after induction therapy is currently the most 

powerful predictor of relapse in modern treatment protocols as it defines submicroscopic ALL 

present in patients in morphological remission. For the clinical use of MRD, the technique used 

is required to be sensitive, able to distinguish leukaemic cells from normal cells, available 

within a dedicated time frame for a therapeutic decision, reliable, and applicable to routine 

laboratories worldwide. The two main methods to track the leukaemic cells are flow cytometry 

and PCR. 

Using flow cytometry, aberrant phenotypes are identified on leukaemic cells on the basis of the 

combination of expression and variable intensity of staining of T-cell markers such as terminal 

deoxynucleotidyl transferase (TdT), CD2 and CD7, together with markers of other lineages. 

These may include B-cell markers such as CD19 or markers of the myeloid lineage such as 

CD13 or CD33 (Campana & Coustan-Smith, 1999). This technique is challenging due to the 

need for fresh cells and it is generally less sensitive than PCR, 0.01% versus 0.001%. However, 

improved methods using multi-colour combinations of additional leukaemia markers in B-ALL 

have improved the sensitivity (Coustan-Smith et al., 2011).  
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Quantitative PCR analysing ‘leukaemia –specific’ junctional regions of rearranged TCR and  

genes (Szczepanski et al., 1999) can detect leukaemic cells with a sensitivity as low as 1 

leukaemic cell in 10
6
 normal cells, and this method is widely used. During normal T-cell 

development, lymphocytes must first rearrange the variable diversity joining (VDJ) segments of 

the TCRγ and TCRδ genes to form a γδTCR. The TCRβ and TCRα loci are then rearranged to 

form the αβTCR (Dadi et al., 2009), the process being mediated by RAG recombinase genes 

(RAG1 and RAG2). In order to produce a polyclonal population of T-cells with diverse antigen 

specificity, TdT introduces random DNA insertions and deletions; therefore, the sequence of 

individual VDJ regions varies between each normal T-cell. PCR across the VDJ region of cells 

from a normal individual would not produce a specific band as a result of this diversity, whereas 

the expansion of a dominant clone with a specific VDJ rearrangement would produce a positive 

result. PCR primers are therefore designed for the specific clonal rearrangement identified in an 

individual at leukaemic presentation, and presence of the clone can be tracked during the course 

of treatment.  

Several studies have shown that there is a relationship between the risk of relapse and 

persistence of high MRD levels, and the measurement of residual disease is now incorporated 

into most modern treatment protocols (Cave et al., 1998;van Dongen et al., 1998;Schrappe et 

al., 2011). The definition of positive and negative disease varies between trials. In the UKALL 

2003 protocol, levels of MRD of more than 1 leukaemic cell in 1000 cells (>10
-3

) are classed as 

MRD-positive, levels below this as MRD-negative. In the ALL-BFM and EORTC protocols, 

the level of MRD-positive disease is defined as >10
-4 

and >10
-2 

respectively (Clappier et al., 

2010;Kox et al., 2010). 

1.5.4 Other genetic alterations 

As cytogenetic alterations do not seem to accurately predict the risk of treatment failure and 

recurrent disease, there has been a focus on the relationship between other genetic alterations 

and outcome in ALL. In B-ALL an emerging candidate is the IKZF1 gene, which encodes the 

zinc-finger containing transcription factor IKAROS. Loss of function deletions and mutations of 

this gene are a common feature of high-risk BCR-ABL ALL and are associated with an 

increased risk of treatment failure and relapse (Mullighan et al., 2009;van der Veer et al., 2014). 

There are few cohort studies of adequate size to significantly address the prognostic value of 

most molecular markers identified in patients with T-ALL or their use in targeted therapy. This 
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is particularly true if a marker is only present in a small proportion of patients, and large cohorts 

of patients are therefore required for meaningful subgroup analyses. However, with the 

introduction of NGS and array-based technology, potential targets are now beginning to emerge. 

The complexity caused by the variety of mutations and the way in which they may interact with 

other markers means that determining the prognostic value of gene mutations remains a 

challenge.  

The correlation between outcome and NOTCH1 mutations is the most widely studied molecular 

marker in patients with T-ALL, and the prognostic use of mutations in this gene is discussed 

further in chapter 4. Other gene alterations associated with outcome include GATA3, RUNX1 

and EZH2 mutations, hallmarks of ETP-ALL which has been associated with a poor 5-year EFS 

of <50% in the context of some trials (Grossmann et al., 2011;Zhang et al., 2012). A recent 

study used targeted sequencing based genotyping of 25,000-34,000 SNPs to identify genome 

profiles associated with relapse risk (Wesolowska-Andersen et al., 2014). Eleven SNPs were 

found to be associated with relapse, in genes including MPO, MMP7 and ESR1. When 

correlating SNP status to clinical features such as MRD status and WBC, the authors were able 

to define three risk groups, and using these groups to stratify patients, the lowest relapse rate 

was 4% in contrast to 76% for the high-risk group. Studies like these may allow for future 

individualised therapy. Other potential markers include the absence of biallelic TCRγ deletion 

(ABD), which indicates that cells have not undergone complete TCRγ rearrangement, a 

characteristic of early thymocyte precursors. One study demonstrated that a subset of paediatric 

T-ALL patients with ABD had a biological overlap with ETP-ALL as defined by gene 

expression (Gutierrez et al., 2010a). The clinical course of the patients with ABD was 

aggressive and associated with a poor response to induction therapy.  

1.6 Treatment of ALL 

The current treatment protocols for paediatric ALL are largely based on the Berlin-Frankfurt-

Munster (BFM) regimens. There are three phases of treatment: induction, consolidation and 

maintenance, with patients assigned to one of three intensities of treatment at diagnosis. These 

regimens have become increasingly risk-based, with factors such as age, WBC and MRD used 

to stratify patients in order to reduce treatment in low-risk patients and direct intensification for 

those at the greatest risk.  
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1.6.1 Induction therapy 

Four to five weeks of induction chemotherapy eliminates the initial tumour cell burden and 

restores normal haematopoiesis in almost 99% of cases of paediatric and 78%-92% cases of 

adult ALL (Bassan & Hoelzer, 2011;Hunger et al., 2012). Induction therapy includes the 

administration of a glucocorticoid such as prednisone or dexamethasone, with the latter being 

used in the UKALL 2003 trial as it has been shown to provide better control of CNS leukaemia 

(Mitchell et al., 2005). In the UKALL 2003 trial, induction therapy is allocated according to risk 

factors. Patients with low-risk disease (age 1-10 years and WBC <50x10
9
/L) are allocated to a 

three drug induction regimen with vincristine, dexamethasone and asparaginase (regimen A). 

High-risk patients (age >10 years and/or WBC >50x10
9
/L) are allocated to receive an additional 

anthracycline such as daunorubicin (regimen B). Patients who are BCR-ABL positive, 

hypodiploid, MLL gene rearranged, RUNX1 amplification positive, or who have a 

morphological slow early response (SER, defined as >25% bone marrow blasts at day 8 or 15 of 

induction therapy for high- and low-risk patients respectively), and are less than 16 years of age 

are assigned to 'augmented BFM' therapy (regimen C), which is described below and involves a 

more intense Capizzi interim maintenance protocol using intravenous methotrexate.  

1.6.2 Consolidation and maintenance therapy 

Consolidation or intensification therapy is administered after induction treatment to eliminate 

the persistent residual leukaemic blast cells, and involves cyclic courses of interim maintenance 

and delayed intensification phases. In regimen A of the UKALL 2003 trial, consolidation is 

given for a duration of 32 weeks and consists of two courses of interim maintenance using 

dexamethasone, vincristine, 6-mercaptopurine and oral methotrexate and two courses of delayed 

intensification with dexamethasone, vincristine, asparaginase, cytarabine, cyclophosphamide 

and 6-mercaptopurine. However, these drugs have limited specificity for leukaemic cells over 

normal BM cells, and their toxic effects cause periods of severe marrow failure and 

pancytopenia. A recent report from the UKALL 2003 trial reported that there was no difference 

in EFS between MRD-negative patients who received either one or two delayed intensifications, 

suggesting that treatment reduction is feasible in this subgroup (Vora et al., 2013). Regimen B is 

similar to A but includes a ‘standard BFM consolidation’ phase immediately after induction 

using vincristine, asparaginase, cyclophosphamide, cytarabine and 6-mercaptopurine, whereas 

regimen C replaces the interim maintenance course with a more intense Capizzi interim 
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maintenance protocol using intravenous methotrexate. Patients then receive maintenance 

chemotherapy, consisting of daily 6-mercaptopurine and weekly methotrexate with pulses of 

vincristine and dexamethasone for a duration of two years for girls and three years for boys.   

1.6.3 Adult treatment protocols 

In adult ALL trials such as the ECOG2993/UKALLXII trial, treatment consists of two phases of 

induction therapy. The first course uses prednisolone, vincristine, asparaginase and 

daunorubicin, and the second phase uses cyclophosphamide, cytarabine and 6-mercaptopurine. 

Three courses of high dose methotrexate are then administered followed by consolidation with 

more chemotherapy, autologous or allogeneic transplantation. However, despite the same drugs 

being used in both paediatric and adult treatment protocols, the outcome between these two sets 

of patients remains very different. Factors included in this difference include the higher rate of 

induction deaths seen in adult patients, a decreased drug tolerance to agents such as 

asparaginase which can cause liver toxicity, and other treatment-related mortalities (Fielding, 

2008). A more recent adult trial UKALL14 is currently testing a new drug, nelarabine, a purine 

nucleoside analog with selected cytotoxicity, for the treatment of patients with T-ALL in this 

age group.  

1.6.4 Treatment-related mortality 

The improvement in treatment protocols in recent years and the reduction in relapse rates in 

paediatric patients with ALL has been paralleled by an increased toxicity. This has raised the 

importance of decreasing treatment-related mortality (TRM) (Rabin, 2014). Infection is one of 

the main causes of TRM and a recent report on UKALL 2003 revealed that 30% of total deaths 

and 64% of treatment-related deaths were due to infectious causes (O'Connor et al., 2014). 

Infection-related mortality (IRM) was associated with Downs Syndrome and patients with high-

risk factors at diagnosis. In the non-Downs Syndrome patients there was a heightened risk of 

IRM during induction therapy and the more intensive phases of treatment. The infections were 

predominantly respiratory or catheter-linked infections of the blood, and in 55% of IRM cases 

death occurred within 48 hours from the onset of infection. The identification of low-risk 

patients would spare them from aggressive induction therapy, therefore reducing the risk of 

toxicity. 
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1.6.5 CNS-directed therapy 

T-ALL is associated with an increased risk of CNS infiltration at diagnosis and the control of 

this aspect of the disease is an important part of treatment. Prophylatic cranial irradiation has 

been shown to effectively manage CNS disease and is used in the context of some paediatric 

treatment protocols including BFM-ALL regimens (Kox et al., 2010), however its use has been 

removed from other trials in order to prevent complications such as neurotoxicity and secondary 

malignancies (Pui & Howard, 2008). These protocols, including the UKALL 2003 trial, 

replaced cranial irradiation with intrathecal chemotherapy with agents such as methotrexate, as 

studies had demonstrated that CNS relapse risk was equivalent using either approach (Veerman 

et al., 2009). 

1.6.6 Stem cell transplantation 

Haematopoietic stem cell transplantation (SCT) is an established treatment in childhood ALL 

and is an alternative option to further chemotherapy. It can be effective at preventing relapse by 

inducing a graft-versus-leukaemia (GVL) effect. However, this is an aggressive therapy 

associated with significant TRM, due to both the intensive treatment required to ablate the 

recipients’ BM as well as the effects of the donated cells, with complications including graft-

versus-host disease (GVHD), graft failure and severe infections. More recent SCT protocols 

with the use of high-resolution human leucocyte antigen (HLA)-typing and improved 

conditioning and supportive care have reduced TRM and relapse (Leung et al., 2011). 

Furthermore, the prognosis of patients receiving HSCs from an HLA-matched unrelated donor, 

cord blood or a haploidentical donor is now comparable to that in patients receiving HSCs from 

an HLA-matched sibling donor (Eapen et al., 2007;Leung et al., 2011). Allogeneic SCT is 

considered for paediatric patients who have recurrent disease or high-risk factors at first 

remission (Balduzzi et al., 2005). These risk factors include BCR-ABL, MLL rearrangement, 

iAMP21 or E2A-HLF positive ALL, or MRD-positive disease at the end of induction therapy 

(Bader et al., 2009;Leung et al., 2012).  

1.7 Aims of this thesis 

The identification of molecular markers with prognostic relevance is advantageous in patients 

with T-ALL, as they may guide future risk stratification and aid clinical decision making, such 
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as whether SCT is necessary. The significance of mutations in the NOTCH1 and FBXW7 genes 

remains unclear in patients with T-ALL. The incidence of NOTCH1 and FBXW7 mutations was 

therefore investigated in a cohort of paediatric patients with T-ALL and these results are 

presented in chapter 3. To address the prognostic implications of the NOTCH1 and FBXW7 

mutations, the characteristics and clinical outcome of patients treated on the UKALL2003 

protocol was correlated to mutation status (chapter 4). To further elucidate the molecular profile 

of the paediatric patients with T-ALL and to investigate other candidate markers, mutations in 

the PTEN gene were also explored in terms of their incidence and mutant level (chapter 5). To 

address the prognostic use of the mutations and copy number changes of the PTEN gene, the 

effect of the PTEN genetic alterations on clinical outcome was evaluated in the paediatric 

patients (chapter 6). 

 



 

44 

CHAPTER 2: MATERIALS AND METHODS 

2.1 Molecular Biology 

2.1.1 Reagents 

Acetonitrile (ACN) (VWR International Ltd., Lutterworth, UK) 

Agar (Sigma-Aldrich Company Ltd, Poole, UK) 

Agarose (Bioline, London, UK) 

Betaine (Sigma-Aldrich Company Ltd, Poole, UK) 

BIOTAQ
 
DNA polymerase (Bioline, London, UK) 

BIOTAQ DNA polymerase buffer and magnesium chloride (Bioline, London, UK) 

Boric acid (VWR International Ltd, Lutterworth, UK) 

Bromophenol blue (Merck, Frankfurt, Germany) 

Carbenicillin (Melford Laboratories Ltd, Ipswich, UK) 

Chloroform (VWR International, Lutterworth, UK) 

DNA size standard kit – 600 (Beckman Coulter UK Ltd, Buckinghamshire, UK) 

dNTPs (Bioline, London, UK) 

Dodecyl-trimethyl ammonium bromide (DTAB) (Sigma Aldrich Company Ltd, Poole, UK) 

Ethylenediamine tetraacetic acid disodium salt (EDTA) (VWR International Ltd, Lutterworth, 

UK) 

Ethanol 100% (VWR International Ltd, Lutterworth, UK) 

Ethidium bromide solution (Sigma-Aldrich Company Ltd, Poole, UK) 

Glycerol (VWR International Ltd, Lutterworth, UK) 

Hyperladder I and IV (Bioline, London, UK) 

Luria-Bertani (LB) broth capsules (MP Biomedicals, London, UK) 

Molecular Biology water (Sigma Aldrich Company Ltd, Poole, UK) 
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One Shot Max Efficiency DH5α-T1 competent E. coli (Invitrogen Life Technologies, Paisley, 

UK) 

Optimase buffer and magnesium sulphate (Transgenomic Ltd, Glasgow, UK) 

Optimase
 
DNA polymerase (Transgenomic Ltd, Glasgow, UK) 

Phosphate buffered saline (PBS) (Sigma Aldrich Company Ltd, Poole, UK)  

Phusion Hot Start High-Fidelity DNA Polymerase (New England Biolabs UK Ltd, Hitchin, UK) 

Phusion
 
HF buffer (New England Biolabs UK Ltd, Hitchin, UK) 

Primers (Integrated DNA Technologies, Leuven, Belgium; Invitrogen, Paisley, UK) 

QIAquick Gel Extraction kit (QIAGEN, Crawley, UK) 

QIAquick PCR Purification kit (QIAGEN, Crawley, UK) 

Restriction enzymes and buffers (New England Biolabs UK Ltd, Hitchin, UK) 

Sample loading solution (SLS) (Beckman Coulter UK Ltd, Buckinghamshire, UK) 

Super optimal broth with catabolite repression (SOC) (Invitrogen Life Technologies, Paisley, 

UK) 

TOPO TA cloning kit (Invitrogen Life Technologies, Paisley, UK) 

Tri-ethylene ammonium acetate (TEAA) (Transgenomic Ltd, Glasgow, UK) 

Tris base (Tris(hydroxymethyl)aminomethane) (VWR International Ltd, Lutterworth, UK) 

WellRED oligos (Sigma-Aldrich Company Ltd, Poole, UK) 

X-Gal (Invitrogen Life Technologies, Paisley, UK) 

2.1.2 Buffers 

DNA lysis buffer: 8% DTAB Solution. For 100ml: 4g DTAB, 4.4g NaCl, 0.6055g Tris-

hydrochloride, 0.93g EDTA disodium salt dissolved in distilled water   

10x TBE (pH8.3): For 1 litre. 108.9g Tris, 55.7g Boric acid, 7.4g EDTA dissolved in distilled 

water 

Loading buffer: 30% glycerol, 0.025% bromophenol blue in 1xTBE 
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2.1.3 DNA Extraction 

Cells were suspended at a concentration of 1 x 10
6
 cells per 100µl in PBS. Two times the 

volume of DNA lysis buffer was added, mixed thoroughly by inversion and incubated at 68
o
C 

for 5 minutes. After cooling, an equal volume of chloroform was added and mixed thoroughly 

and the sample was centrifuged at 3000g for 20 minutes. The upper aqueous layer containing 

the DNA in solution was removed, and an equal volume of 100% ethanol was added and the 

solution was gently mixed until the DNA precipitated. The precipitated DNA was centrifuged at 

3000g for 5 minutes. The DNA pellet was transferred to a clean tube and washed with 70% 

ethanol, then resuspended in molecular biology water. Samples were quantified using a 

Nanodrop spectrophotometer and were stored at 2-8
o
C. 

2.1.4 Polymerase Chain Reaction (PCR)   

The PCR was used to amplify specific regions of genomic DNA. The DNA is amplified by 

successive cycles of denaturation of the template DNA, sequence-specific forward and reverse 

primer annealing to define the region to be amplified, followed by an extension step of DNA 

polymerisation. In order to ensure that there was no variation in the conditions in each reaction 

tube, a master mix of all required reagents was made and aliquoted prior to the addition of DNA 

template or water for the negative control.  Three different Taq polymerases were used during 

this work, BIOTAQ, Optimase and Phusion Hot Start High-Fidelity DNA polymerase, each 

with specific conditions as recommended by the manufacturer. 

For amplification using BIOTAQ
 
DNA polymerase, a standard reaction mix for a 20µl PCR 

contained 2µl 10x NH4 reaction buffer (670nM Tris-HCl, 160mM (NH4)2SO4, 100mM KCl, 

0.1% stabiliser), 1mM MgCl2, 200µM of each dNTP, 0.5µM of each forward and reverse 

primer, 0.5U BIOTAQ DNA Polymerase and 10-100ng DNA template. The standard cycling 

conditions were 35 cycles of denaturation at 95°C for 30 seconds, annealing of primers for 30 

seconds at a temperature specific to the primers (this information is given in the Appendices) 

and extension at 72°C for 30 seconds, followed by a final extension incubation of 5 minutes at 

72°C to ensure complete extension of all the primers. For amplification using Optimase DNA 

polymerase,
 
a standard 20µl PCR contained 2µl 10x Optimase reaction buffer, 1.5mM MgCl2, 

200µM of each dNTP, 0.5µM of each forward and reverse primer, 1U Optimase DNA 

Polymerase and 10-100ng DNA template. An initial denaturation step was added (95
o
C for 5 
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minutes) and the primer extension step increased to 1 minute. The standard reaction mix for a 

20µl PCR using Phusion Hot Start High-Fidelity DNA Polymerase contained 4µl 5x Phusion 

HF buffer (containing 7.5 mM MgCl2, providing 1.5mM MgCl2 in the final reaction), 200µM of 

each dNTP, 0.5µM each of the forward and reverse primers, 0.2U Phusion Hot Start High-

Fidelity DNA Polymerase and 10-100ng DNA template. The standard cycling conditions used 

were an initial denaturation step of 98°C for 2 minutes, then 35 cycles of denaturation at 98°C 

for 42 seconds, annealing of primers for 42 seconds and extension at 72°C for 42 seconds, 

followed by a final extension incubation of 5 minutes at 72°C. As indicated in the relevant 

chapters, where required the PCR additive betaine was also added to PCR reaction mixes to 

enable amplification of difficult templates. 

2.1.5 Agarose gel electrophoresis 

Agarose gel electrophoresis was used to both confirm the presence of PCR products and to size 

separate different fragments of DNA following restriction enzyme digestion, or to purify 

specific bands for sequencing. The required amount of agarose (between 1% and 2.5% 

weight/volume depending on the application) was dissolved in 35ml of 1xTBE by heating in a 

microwave oven and cooled slightly before the addition of 3.5µl of a 1mg/ml ethidium bromide 

solution and pouring into a mould. After the gel had set, it was covered in running buffer of 1x 

TBE containing the same concentration of ethidium bromide as the gel (0.1µg/ml). An aliquot 

of each PCR product or restriction enzyme digest to be analysed was mixed with loading buffer 

before loading into a well in the gel and where required, an aliquot of ladder was also loaded. 

Samples were electrophoresed at approximately 70V until they had ran across approximately 

two thirds of the gel. PCR products were visualised on a UV transilluminator by fluorescence of 

ethidium bromide intercalated in the DNA, and polaroid images were made. 

2.1.6 Denaturing HPLC using the WAVE platform 

Denaturing high-performance liquid chromatography (dHPLC) on the WAVE platform 

(Transgenomic Ltd., Glasgow, UK) was used to detect nucleotide changes in DNA PCR 

products. An overview of the process is shown in Figure 2.1. In WAVE analysis, the sample is 

injected into the flow path of buffer containing triethylammonium acetate (TEAA) and 

acetonitrile (ACN) and then flows through a polystyrene-divinyl benzene copolymer DNA 

separation column located in an oven at the temperature required for analysis. Navigator 
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software (Transgenomic Ltd) was used to determine the temperature or multiple temperatures at 

which to analyse the sample, which is dependent on the melting profile predicted by the 

software from the sequence of the amplicon. Representative amplicons melting curves are given 

in chapter 3. In general, a temperature was chosen at which the proportion of the PCR product 

predicted to be helical was between 50% and 95%. More than one temperature may be required 

to analyse the same sample depending on the percentage helicity across the amplicon. TEAA 

acts as an ion-pairing agent and forms TEA+ ions in solution, and the positively charged TEA+ 

associates with the negatively charged phosphate backbone of the DNA, thereby creating a 

hydrophobic layer on the fragment. The PCR products then bind to the column as the 

hydrophobic layer is attracted to the hydrophobic beads of the DNA separation column. Over 

time, the proportion of ACN in the buffer is gradually increased, and as the ACN concentration 

increases, the ion-pairing property of the TEAA decreases, causing the DNA to be eluted from 

the column. The presence of heteroduplexes containing mismatched bases leads to the DNA 

binding less strongly to the column than the homoduplexes, and so they are eluted from the 

column first. The DNA passes through a UV detector, which records the absorbance at 260 nm, 

and the results are displayed in the form of a chromatogram of absorbance over time. A sample 

containing only homoduplexes should produce a single peak on the chromatogram. The 

presence of heteroduplexes will create additional peaks on the chromatogram, for example the 

four peaks shown in Figure 2.1, however the number of peaks is dependent on the particular 

sequence.  

Prior to WAVE analysis, PCR was used to amplify the region of interest from a template DNA 

using a proof-reading enzyme where possible, to limit errors in base inclusion to reduce 

potential false mutant peaks. The presence of PCR products was checked by agarose gel 

electrophoresis. The PCR products were then denatured by incubation at 95°C for 5 minutes, 

followed by 40 cycles of 1 minute incubations starting at 92°C and reducing by 1.5°C per cycle, 

to allow heteroduplex formation if a mutation was present, as shown in Figure 2.1. If only one 

type of allele, either wild-type (WT) or mutant, was present in the sample then just one 

homoduplex was produced. 

The fraction collector facility of the WAVE instrument was used where purification of a 

particular heteroduplex peak was required, which enabled specific fractions eluted from the  
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Figure 2.1 Mutation detection by dHPLC analysis. The region of interest was amplified by 

PCR and the PCR products were denatured and then gradually re-annealed slowly to enable 

heteroduplex formation. These were then analysed by dHPLC at a specific temperature. 

Heteroduplexes were eluted from the column first, followed by the homoduplexes. 
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column to be collected into separate vials. The fractions could then be further analysed by re-

amplification by PCR and sequencing. For samples where the heteroduplex was present at a low 

level, fragment collection was performed at a denaturing analysis temperature that enabled the 

collection and enrichment of the heteroduplex.  

2.1.7 DNA sequencing 

PCR products were purified using the QIAquick PCR Purification Kit (QIAGEN, Crawley, 

UK). The NanoDrop 1000 Spectrophotometer (Fisher Scientific UK Ltd., Loughborough, UK) 

was used to quantify the concentration of DNA in the purified product and the product was then 

diluted with water to a concentration of 1ng/µl per 100 bp to be sequenced. This diluted product 

was sent, along with the correct primer at a concentration of 5pmol/µl, to the Scientific Support 

Service at UCL Cancer Institute for direct nucleotide sequencing. 

2.1.8 Restriction enzyme digestion 

All restriction enzymes were obtained from New England Biolabs (Hitchin, UK) and PCR 

products were digested for four hours using the appropriate buffer and temperature specified by 

the manufacturer. Further details are given in the relevant chapters. 

2.1.9 LB broth and plates 

LB broth was made by adding 13 LB tablets to 500ml distilled water followed by autoclaving. 

For LB-agar plates, 7.5g of agar was added to the above mix and then autoclaved. Once the 

reagents for both the broth and plates had cooled to below 55
o
C, carbenicillin (final 

concentration 100µg/ml) was added. Plates were then poured, set for one hour and stored at 2-

8
o
C until required.  

2.1.10 TOPO TA Cloning of PCR products 

PCR products were cloned using the TOPO TA cloning kit (Invitrogen Life Technologies, 

Paisley, UK) which utilises the polyadenosine (A) overhang at the 3’ end of PCR products that 

is produced by non-proofreading Taq polymerases, such as BIOTAQ DNA Polymerase. PCR 

products were ligated with the pCR2.1-TOPO vector, which contains single 3’-thymidine (T) 
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overhangs, in a reaction mix of 0.5-4µl of PCR product, 1µl vector, 1µl salt solution (22mM 

NaCl; 10mM MgCl2) in a final volume of 6µl. The mix was incubated at room temperature for 5 

minutes. 

The ligation mix was then transformed into One Shot Max Efficiency DH5α-T1 E. coli cells. 

One vial of cells was thawed on ice for each transformation, then 1µl of ligation reaction was 

added and incubated on ice for 30 minutes. The cells were then heat-shocked for 30 seconds at 

42°C and placed on ice for 2 minutes before 250µl of SOC medium (2% tryptone, 0.5% yeast 

extract, 10mM NaCl, 2.5mM KCl, 10mM MgCl2, 10mM MgSO4, 20mM glucose) was added 

per vial.  The cells were then incubated at 37°C in a shaking incubator for 1 hour. LB agar 

plates containing 100µg/ml carbenicillin and pre-coated with 40µl of a 40mg/ml X-gal solution 

in dimethylformamide to allow blue/white screening of colonies, were pre-warmed to 37°C. 

Between 20µl and 100µl of transformed bacteria were spread per plate and the plates were then 

incubated overnight at 37°C to allow colony formation. A successfully ligated PCR sequence 

was indicated by the presence of a white colony due to disruption of the LacZα gene in the pCR 

2.1-TOPO vector. Colonies without an insertion were blue. To screen individual bacterial 

colonies for the presence of PCR inserts, white colonies were picked and expanded in wells of a 

96-well plate containing 200µl of LB broth and incubated at 37°C overnight. Products for 

sequencing were then obtained by PCR amplification, using 2µl of the cultured broth as a 

template. 



 

52 

CHAPTER 3: SCREENING FOR MUTATIONS IN THE NOTCH1 AND FBXW7 

GENES 

3.1 Introduction 

Early genetic studies investigating Drosophila melanogaster that harboured characteristic 

notches on the ends of their wings led to the cloning and subsequent identification in the 1980s 

of the Notch receptor gene (Wharton et al., 1985). Since then, numerous studies have explored 

the role of Notch signalling in various cellular process including apoptosis, proliferation and 

differentiation. In mammalian embryos, Notch receptors and ligands are expressed during 

organogenesis and play a role in the development of a wide variety of tissues derived from the 

endoderm (pancreas [(Lammert et al., 2000)]), the mesoderm (haematopoietic system [(Milner 

& Bigas, 1999)]) and the ectoderm (nervous system [(Yoon & Gaiano, 2005)]).  In 

developmental systems, it has been shown that Notch-controlled interactions between cells play 

a role in the regulation of the cell-fate decisions of various multipotent precursors (Artavanis-

Tsakonas et al., 1999). Notch regulates lineage specification at developmental decision points. 

An example of this is during peripheral neurogenesis in the fly, where an equipotent precursor 

can give rise to one of two alternative cell fates depending on whether it expresses Notch or its 

ligand. The outcome of Notch signalling is diverse and is likely to be dependent on factors such 

as signal strength and specific developmental environment (Pear & Radtke, 2003). Studies have 

shown that Notch receptors and their ligands are expressed on haematopoietic cells, and that 

activation of the signalling pathway plays an important role in the lineage decisions at various 

stages of T-cell development (Ogawa, 1993). 

3.1.1 NOTCH1 structure  

In mammals, the Notch family consists of four Notch receptors, NOTCH1-4. The NOTCH1 

gene, found on human chromosome 9q34.3, has 34 exons and encodes a type 1 single-pass 

transmembrane protein that binds to ligands belonging to either the Delta-like or the 

Jagged/Serrate-like family of ligands (Delta-like ligands 1, 3 or 4, Jagged1 or Jagged2). The 

extracellular portion of the NOTCH1 receptor consists of 36 N-terminal epidermal growth 

factor (EGF)-like repeats which mediate ligand binding, and a negative regulatory region 

comprised of three Lin-12/Notch repeats A-C (LNR) which are responsible for maintaining the 
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receptor in an inactive state (Figure 3.1). The heterodimerisation (HD) domain is responsible for 

stable subunit association and comprises a 103 amino acid N-terminal extracellular region (HD-

N) and a 65 amino acid C-terminal transmembrane region (HD-C). The intracellular portion of 

NOTCH1 consists of the juxtamembrane (JME) domain, a RAM (RBP-J associated molecule) 

domain and 7 ankyrin repeats which mediate interaction with transcription factors. The C-

terminal end consists of a proline- and glutamine-rich transcriptional activation (TAD) domain 

and a C-terminal PEST (proline-, glutamic acid-, serine- and threonine- rich) domain where the 

receptor is targeted for proteolytic degradation by the E3 ubiquitin ligase FBXW7 (Weng et al., 

2004).  

Maturation and signalling through the NOTCH1 receptor involves three cleavage steps. The 

first is by a furin-like convertase, which cleaves the receptor just external to the transmembrane 

domain at site S1 during intracellular trafficking in the Golgi complex (Logeat et al., 1998) 

(Figure 3.2). This leads to expression of the receptor subunits as a heterodimer on the 

membrane, where ligand binding occurs. The strength and affinity of the receptor-ligand 

interaction is regulated by a critical modification in which the ligand binding site in the EGF 

repeats is glycosylated by the protein O-fucosyltransferase (O-fut1) (Kopan & Ilagan, 

2009;Stanley & Okajima, 2010). Ligand binding initiates two more proteolytic cleavages, the 

first by the ADAM-family metalloprotease TNFα converting enzyme (TACE). In the inactive 

state, the LNR domain is folded over the HD domain protecting the TACE cleavage site, and 

this protective conformation is only shifted upon ligand binding to the EGF repeats (Sanchez-

Irizarry et al., 2004).  TACE cleaves the protein just outside the membrane at site S2, which is 

followed by a final cleavage by γ-secretase at site S3. This liberates the intracellular portion of 

NOTCH1 (ICN-1) to translocate to the nucleus, where it binds to members of the CSL family of 

transcription factors (Bray, 2006;Brou et al., 2000;Struhl & Greenwald, 1999) (Figure 3.2). CSL 

binds motifs in promoter and enhancer regions, and in an inactivated state it represses its target 

genes (Tun et al., 1994) and is bound to co-repressors including nuclear receptor co-repressor-2 

(NCOR2, also known as SMRT) and co-repressor interacting with RBPJ-1 (CIR-1). When ICN-

1 translocates to the nucleus and binds to CSL, the co-repressors are displaced and co-activators 

including Mastermind-like-1 (MAML-1) are recruited, leading to the transcription of 

downstream targets.  
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Figure 3.1 Functional  domains of  NOTCH1. The N-terminal extracellular region consists of 36 Epidermal Growth Factor (EGF) like 

repeats,  the  NOTCH1 Lin12/Notch repeats (LNR) domain and the heterodimerisation (HD) N and C-terminal domains. The intracellular 

region consists of the juxtamembrane (JME) domain, the RAM/ankyrin (ANK) repeats, and the C-terminal transcriptional activation 

(TAD) and PEST domains.  Adapted from Weng et al (2004). 
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Figure 3.2 NOTCH1 signalling pathway. Signalling through the NOTCH1 receptor involves 

three cleavage steps. The first is by a furin-like convertase which cleaves the receptor just 

external to the transmembrane domain at site S1. This leads to expression of the receptor 

subunits as a heterodimer on the membrane, where ligand binding initiates two more proteolytic 

cleavages. First by TACE at site S2, and finally by γ-secretase at site S3, liberating the 

intracellular portion of NOTCH1 (ICN-1) to translocate to the nucleus where it binds to 

members of the CSL family of transcription factors. 
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3.1.2 NOTCH signalling and haematopoiesis  

Haematopoietic stem cells give rise to common lymphoid progenitors (CLPs) which are directed 

from the bone marrow towards the thymus, where they differentiate through the double-negative 

CD4
-
CD8

-
 (DN) stage to become double positive (DP) cells expressing both CD4 and CD8, 

before entering the circulation as single positive (SP) CD4
+
 or CD8

+
 T-cells (Dadi et al., 

2009;Krangel, 2009) (Figure 3.3). When the CLPs enter the thymus the first lineage decision is 

made, T-versus B-cell fate (Zuniga-Pflucker, 2004). Signalling through the NOTCH1 receptor 

has been shown to be essential for the commitment of CLPs to the T-cell lineage. This was 

demonstrated in Notch-1 deficient mice that showed a block in T-cell development at the 

earliest stage, with CLPs adopting a B-cell fate by default (Radtke et al., 1999). This was also 

shown in a complementary study where murine haematopoietic precursors were transduced with 

a constitutively activated ICN-1. In mice receiving the ICN-1 transduced cells, T-cell 

development occurred outside the thymus in the bone marrow (Aster & Pear, 2001;Izon et al., 

2002;Pear et al., 1996;Pui et al., 1999). Once the T-cell fate has been adopted, T-cells must 

subsequently commit to either the αβ or γδ lineage where they express either the αβ receptor, 

and become CD4 and CD8 cells, or the γδ receptor, which occurs in only a small subset of T-

cells expressed in the epithelium and epidermal tissues. NOTCH1 signals have been shown to 

promote the development of αβ T-cells, which must first successfully rearrange the T-cell 

receptor (TCR) β gene. The β-chain is then expressed on the cell surface, and this leads to 

formation of the pre-TCR by association with the pTα chain (Washburn et al., 1997).  

Thymocytes which do not successfully rearrange their β-chain genes do not pass the β-selection 

point and die by apoptosis. T-cells then go on to rearrange the α-chain and become single 

positive T-cells expressing either CD8 or CD4 (Robey et al., 1996). NOTCH1 is downregulated 

after β-selection (Taghon et al., 2006;Witt et al., 2003).  

Lineage commitment of T-cells is coordinated in the nucleus, where ICN-1 interacts with the 

transcriptional co-activator MAML. This leads to displacement of the co-repressor complex 

made up of SMRT and CIR-1 from its association with the DNA-binding protein CSL, and 

induction of the transcriptional activation of T-cell lineage-specific NOTCH1 downstream 

targets. One of these targets is the basic helix-loop-helix transcription factor Hes1. Studies in 

knockout mouse models have demonstrated the importance of Hes1 in the expansion of early T-

cell progenitors (Tomita et al., 1999), with this need diminishing in the later stages of T-cell 

development (Kaneta et al., 2000). In 2006, the basic region-helix-loop-helix-leucine zipper 
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Figure 3.3 Stages of T-cell development. Haematopoietic stem cells give rise to common 

lymphoid progenitors (CLPs), which are directed from the bone marrow towards the thymus 

where they differentiate through the double-negative (DN) stage to become double positive 

(DP) cells expressing both CD4 and CD8, before entering the circulation as single positive (SP) 

CD4
+
 or CD8

+
 T-cells. Red arrows indicate the stages where NOTCH1 is required. 
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protein c-Myc was identified as a direct NOTCH1 target (Palomero et al., 2006;Sharma et al., 

2007;Weng et al., 2006). Studies have shown that at the β-selection checkpoint during T-cell 

development, Notch-dependent c-Myc transcription in DN3 cells promotes the proliferation of 

T-cell progenitors that successfully rearrange their TCRβ chain and produce a pre-TCR (Liu et 

al., 2010;Weng et al., 2006). It has also been suggested that c-Myc coordinates signals for cell 

survival, growth and proliferation of post β-selection thymocytes as they develop to DP cells.  

Another critical role of NOTCH1 signalling in haematopoiesis is in driving cell cycle 

progression by regulating genes which are involved in the G1 to S-phase transition (Liu et al., 

2011). NOTCH1 directly activates the transcription of cyclin D1 and induces CDK2 activity, 

promoting the entry of cells into S-phase (Ronchini & Capobianco, 2001). Cyclin D3 has also 

been identified as a NOTCH1 target (Joshi et al., 2009). During T-cell development, NOTCH1 

signalling activates the PI3K/AKT pathway (Palomero et al., 2008). It is not clear how this is 

done, but possible mechanisms have been hypothesised. The first is by the expression of the 

pTα gene, which is a direct target of NOTCH1; the human pTα contains at least one conserved 

DNA binding site for CBF-1 (Deftos & Bevan, 2000;Fehling et al., 1995;Reizis & Leder, 2002). 

This results in the assembly of the pre-TCR and AKT then becomes activated via pre-TCR 

signalling (Sade et al., 2004). The second mechanism is through HES1, which represses 

phosphatase and tensin homolog (PTEN), a negative regulator of the PI3K/AKT pathway 

(Palomero et al., 2007). It has been shown that activation of this pathway can substitute for 

NOTCH1 signalling at the β-selection checkpoint (Ciofani & Zuniga-Pflucker, 2005).  

3.1.3 Oncogenic NOTCH1 signalling in haematopoietic malignancies 

NOTCH1 signalling is essential for normal T-cell development, but aberrant signalling has been 

linked to various human cancers. The first evidence implicating the NOTCH1 signalling 

pathway in leukaemogenesis came in 1991 from the identification of a rare t(7;9)(q34;q34.3) 

translocation in less than 1% of paediatric T-ALL cases,  juxtaposing the TCRβ promoter with 

the intracellular portion of the NOTCH1 receptor gene. The translocation led to the expression 

of a constitutively activated truncated NOTCH1 protein, formerly known as translocation-

associated NOTCH1 (TAN1) (Ellisen et al., 1991). Further studies in murine models showed 

that the forced expression of a similar constitutively active truncated form of NOTCH1 induced 

a highly aggressive form of T-ALL (Aster et al., 1994;Pear et al., 1996). It was also 

demonstrated that sustained NOTCH1 signalling was required for the growth in vitro of murine 
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T-ALL cell lines (Weng et al., 2003). Further evidence implicating NOTCH1 in the 

pathogenesis of T-ALL came when deletions of either the 5’ or the 3’ domain of NOTCH1 were 

identified in over half of radiation-induced murine T-cell thymic lymphomas (Tsuji et al., 

2003). 

3.1.4 Activating mutations in the NOTCH1 gene 

From the growing evidence of the role of NOTCH1 in the pathogenesis of T-ALL, Weng et al 

(2003) tested human T-ALL cell lines lacking the t(7;9)(q34;q34.3) translocation for 

dependency on NOTCH1. This was done by treating the cells with a γ-secretase inhibitor (GSI) 

which would block the final cleavage of the NOTCH1 receptor and thereby inhibit translocation 

of ICN-1 to the nucleus. Thirty cell lines were tested and, of these, five showed a G0/G1 cell 

cycle arrest which was reversed by retroviral expression of ICN-1 (Weng et al., 2003), 

suggesting that the growth of these cell lines was NOTCH1-dependent. The HD and PEST 

domains of the NOTCH1-dependent cell lines were then sequenced, revealing that four of the 

five harboured mutations in these regions. The mutations found in the HD domain were 

missense mutations and the PEST mutations were short frameshift insertions and deletions 

predicted to result in deletion of the C-terminal domain. One of the cell lines harboured 

mutations in both the HD and PEST domains, which were found to be in cis on the same allele 

of NOTCH1 by sequencing of cDNA. The cell lines which were insensitive to the GSI were 

subsequently sequenced and nine of the 19 were NOTCH1 mutant-positive.  

This led to the same group investigating the NOTCH1 HD and PEST mutational status of a 

cohort of 96 paediatric T-ALL patients. They demonstrated mutations in 56% of the patients. 

Mutations in both the HD-N and HD-C domain were short in-frame size changes or missense 

mutations, and the PEST domain mutations were frameshift size changes or point mutations 

resulting in premature stop codons. Of the 96 patients, 17 (18%) had dual HD and PEST 

mutations. This mutation incidence has since been confirmed in several other studies (Table 

3.1). Mutations tend to cluster in the HD and PEST domains, but have also been reported at a 

lower frequency in the TAD, LNR and JME domains. Overall, it has been found that mutations 

occur at a frequency of between 22-57% in paediatric and 42-62% in adult T-ALL patients. 

Putting the paediatric studies together, of 1115 cases examined, 548 (49%) had at least one 

mutation in NOTCH1. The most commonly mutated region across the studies was the HD 
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domain, with 429 (38%) patients harbouring a mutation in either exon 26 or 27. Of these, 105 

(9%) patients also had a co-incident PEST mutation (Table 3.1). 

3.1.5 Functional consequences of NOTCH1 mutations 

To investigate the functional consequence of the mutations identified, Weng et al (2004) carried 

out reporter gene assays in human U20S cells, known to have a low level of NOTCH1 

expression, transfected with either full-length NOTCH1 plasmids or those bearing various 

deletions and mutations, and a NOTCH1-sensitive luciferase reporter gene, CBF1. Missense 

mutations in the HD domain resulted in a 3-9 fold increase in luciferase activity, and deletion in 

the PEST domain resulted in a 1.5-2 fold increase. There was a striking 20-40 fold increase for 

plasmids harbouring both an HD and a PEST domain mutation in cis, indicating that the two 

mutations lead to synergistic NOTCH1 activation, a finding that has also been shown by others 

(Chiang et al., 2008). Together with crystallography data, these studies have given insights into 

the mechanisms of pathway activation by NOTCH1 mutations (Gordon et al., 2009).  

Mutations in the HD domain are classified into two distinct groups that were established in a 

study by Malecki et al (2006). They confirmed the activating potential of 15 representative HD 

point mutations and an insertion by introducing them into a full length NOTCH1 cDNA which 

was then transiently expressed in U20S cells. Of these mutations, all except one resulted in the 

increased activation of a NOTCH1–sensitive luciferase reporter gene containing CSL binding 

sites as compared to the NOTCH1–WT. Furthermore, they demonstrated that HD mutations 

were capable of activating NOTCH1 signalling independently of ligand using a NOTCH1 

∆EGF construct lacking the N-terminal EGF repeats, where the same level of activation as 

before was seen in the mutants. The effect of the HD mutants on NOTCH1 heterodimer stability 

was then investigated when authors introduced the mutations into a soluble polypeptide 

consisting of the LNR and HD domains. The HD mutations correlated with an increased 

sensitivity to cleavage at site S2 and when transiently expressed in mammalian cells, only the 

WT polypeptide underwent furin processing and was secreted into conditioned media as a 

heterodimer with the LNR-HD domains intact. Using all this data, HD mutants were then 

assigned to two distinct classes (Malecki et al., 2006). Class I mutations are missense point 

mutations or small in-frame size changes that enhance subunit dissociation and destabilise the 

NOTCH1 heterodimers, leading to exposure of the metalloprotease cleavage site. Common 

class I mutations include leucine to proline point mutations, where the introduction of proline
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Table 3.1 Studies of NOTCH1 mutation detection in patients with T-ALL 

Reference Age group Screening 

method 

Exons 

screened 

Total 

in 

study 

Total 

NOTCH1 

mutant 

patients 

(%) 

Type of mutations and number of mutated patients 

Weng et al., 

(2004) 

Paediatric dHPLC 26, 27, 

34 

96 54 (57%) 25 (26%) missense or in-frame insertions/deletions in HD domain 

 6  (13%) missense or frame-shift insertions/deletions in PEST domain 

 6  (18%) mutations in both HD and PEST domains 

 (Breit et al., 

2006) 

Paediatric Sequencing 26, 27, 

34 

157 82 (52%) 55 (35%)  missense or in-frame insertions/deletions in  HD domain: of these 

84% were in the HD-N, 16% were in the HD-C 

13  (8%)  missense /frame-shift insertions/deletions in  PEST domain 

14  (9%)  mutations in both  HD and PEST domains 

 (van Grotel et 

al., 2008) 

Paediatric dHPLC 26, 27, 

34 

70 40 (57%) 28 (40%) missense or in-frame insertions/deletions in HD domain 

 6 (15%)  missense or frame-shift insertions/deletions in PEST domain 

 6 (15%) mutations in both HD and PEST domains 

 (Park et al., 

2009) 

Paediatric dHPLC 26, 27, 

34 

69 24 (35%) 16 (23%) mutations in HD domain
∆
 

  8 (12%) mutations in PEST domain 

(Zuurbier et 

al., 2010) 

Paediatric Sequencing 25-34 141 79 (56%) 47 (33%) missense or in-frame insertions/deletions in HD domain 

17 (12%) nonsense or missense mutations in PEST domain 

  5 (4%) in-frame insertions in JME domain 

  9 (6%) mutations in both HD and PEST domains 

  1 (1%) mutations in both HD and JME domains 

 (Clappier et 

al., 2010) 

Paediatric Sequencing 

+ Fragment 

Analysis 

26-28, 34 134 77 (57%) 45 (33%) missense or in-frame insertions/deletions in HD domain 

17 (13%) frame-shift insertions/deletions in PEST domain 

15 (11%) mutations in both HD and PEST domains 

 (Kox et al., 

2010)* 

Paediatric Sequencing 26, 27, 

34 

301 150 (50%) 94 (31%) mutations in HD domain
∆
 

29 (10%) mutations in PEST domain 

27 (9%) mutations in both HD and PEST domains 

 (Erbilgin et 

al., 2010) 

Paediatric dHPLC 26, 27, 

34 

87 19 (22%) 11 (12%) missense or in-frame insertions in HD domain: of these 73% were 

in the HD-N, 27% were in the HD-C 

  6 (7%) missense or frame-shift insertions/deletions in PEST domain 

  2 (3%) mutations in both HD and PEST domains 
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Table 3.1 Continued 

 
Reference Age 

group 

Screening 

method 

Exons 

screened 

Total in 

study 

Total 

NOTCH1 

mutant 

patients 

 

(%) 

Type of mutations and number of mutated patients 

 (Mansur et al., 

2012) 

Paediatric Sequencing 26, 27, 

34 

138 60 (43%) 42 (30%) missense or in-frame insertions/deletions in HD domain 

11 (8%) nonsense or frame-shift insertions/deletions in PEST domain 

  7 (5%) mutations in both HD and PEST domains 

Fogelstrand et 

al., (2014) 

Paediatric Sequencing 26-28, 34 79 45 (57%) 29 (37%) missense or in-frame insertions/deletions in HD domain 

  8 (10%)  missense or frame-shift insertions/deletions in PEST domain 

  8 (10%) mutations in both HD and PEST domains 

(Zhu et al., 2006) Paediatric 

and adult 

Sequencing 26, 27, 

34 

77 
(53 

paediatric 

24 adult) 

32 (42%) 23 (30%) missense or in-frame insertions/deletions in HD domain: of 

these 70% were in the HD-N, 30% were in the HD-C 

  5 (7%) missense or frameshift insertions/deletions in PEST domain 

  3 (4%) had missense or frameshift insertions/deletions in TAD domain 

  1 (1%) missense mutation in ANK domain 

(Asnafi et al., 

2009) 

Adult Sequencing 26-28, 34 141 88 (62%) 59 (42%) missense or in-frame insertions/deletions in HD domain 

  9 (6%) missense or frameshift insertions/deletions in PEST domain 

16 (10%) mutations in both HD and PEST domains 

  1 (2%) mutation in both HD and TAD domains 

  3 (2%) mutations in JME domain 

(Mansour et al., 

2009) 

Adult dHPLC 26-28, 34 88 53 (60%) 36 (41%) missense or in-frame insertions/deletions in HD domain 

  8 (9%) nonsense or missense mutations PEST domain 

  3 (3%) mutations in JME domain 

  6 (7%) mutations in both HD and PEST domains 

 

Abbreviations: dHPLC, denaturing high performance liquid chromatography; HD,  heterodimerisation; JME, juxtamembrane; TAD, 

transcriptional activation; ANK, ankyrin repeats. 

* extended cohort of original study by Breit et al (2006). 

 ∆ details of the type of mutation not available.
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 residues into the protein are thought to destabilise the structure (Weng et al., 2004). Class II 

mutations are larger in-frame insertions which either duplicate the S2 site, identified as residues 

A1710-V1711 (Mumm et al., 2000;Brou et al., 2000), or are adjacent to and enhance access of 

TACE to the cleavage site. This class of mutation was found to be the most potent activating 

mutation in studies where a 14 amino acid insertion duplicating the S2 cleavage site resulted in 

the highest level of activation in reporter gene assays (Chiang et al., 2008) (Malecki et al., 

2006). This mutation also resulted in the onset of leukaemia in murine models, whereas the 

L1593P and L1600P mutants were only able to accelerate leukaemia induced by constitutive K-

ras signalling (Chiang et al., 2008). Disruption of the HD domain leads to ligand 

hypersensitivity or ligand-independent NOTCH1 activation (Sanchez-Irizarry et al., 2004).  

Mutations reported in the C-terminal PEST domain generally truncate the protein, resulting in 

increased levels of activated ICN-1 due to impaired degradation by the proteasome (Weng et al., 

2004;Gupta-Rossi et al., 2001). Studies have shown that these mutations leave FBXW7 unable 

to bind and therefore ICN-1 is stabilised in the nucleus (Chiang et al., 2008;Thompson et al., 

2007). Approximately 20% of patients have mutations in both the HD and PEST domains, 

which, as previously mentioned, leads to synergistic NOTCH1 activation (Weng et al., 

2004;Malecki et al., 2006). 

Another group of mutations have recently been identified in the NOTCH1 JME domain, usually 

large insertions which are thought to be functionally similar to HD domain mutations. Sulis et al 

(2008) showed that the JME domain mutations are internal tandem duplications of the exon and 

adjacent intronic sequences. Functional studies on these mutations analysed the levels of 

activated ICN-1 in cells transfected with the pcDNA3 NOTCH1 Jurkat JME17 plasmid 

containing only exons 19 to 29 of NOTCH1and an internal tandem duplication of 51 bases 

within exon 28. The results demonstrated that expression of these mutant alleles caused a 2000-

fold activation of the NOTCH1 reporter compared with controls. The JME mutations found in 

T-ALL patient samples all coded for a NOTCH1 receptor with an intact but significantly 

expanded extracellular JME region, which resulted in the S2 cleavage site and HD/LNR 

complex being displaced away from the membrane, thus making the S2 site more accessible to 

metalloprotease cleavage. The JME insertion mutants all contained a QLHF sequence, which 

was initially hypothesised to be an alternate S2-like site to increase signal activation. However, 

upon testing of mutants with insertions of 5, 8, 11, 12, 13 and 14 amino acids, the activation was 

only moderately increased (1.5–12 fold) in the mutants with 5, 8 or 11 amino acid insertions but 
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increased 700-2000 fold in mutants with 12 or 14 amino acid insertions. This suggests that the 

activation of NOTCH1 in JME mutants is dependent on the length of the space inserted between 

the HD-LNR complex, and is independent of the specific amino acid sequence the mutation 

introduces (Sulis et al., 2008). Mutations in the LNR domain are uncommon, but may lead to 

the activation of NOTCH1 cleavage by selectively releasing the inhibitory effect of the LNR 

repeats on the S2 cleavage site (Sulis et al., 2008).  

Aberrant NOTCH1 signalling has also been implicated in other cancers, including solid tumours 

where activating mutations have been found in non-small cell lung carcimoma (NSCLC) 

(Westhoff et al., 2009). Two studies have also recently identified NOTCH1 activating mutations 

in chronic lymphocytic leukaemia (CLL) (Fabbri et al., 2011;Puente et al., 2011). In both 

NSCLC and CLL, the mutations reported were in the PEST domain and correlated with reduced 

patient survival. Loss of function NOTCH1 mutations have also been reported in head and neck 

squamous cell carcinoma (HNSCC), suggesting a tumour-suppressive role of NOTCH1 in some 

cancers (Agrawal et al., 2011;Stransky et al., 2011). The mutations found were missense 

substitutions and mostly within the EGF-like repeats, resulting in inefficient ligand binding. A 

role for NOTCH signalling has also been implicated in multiple myeloma, where 

overexpression of both the NOTCH1 and NOTCH2 receptors and the Jagged-1 and Jagged-2 

ligands has been reported in primary samples (Houde et al., 2004;Jundt et al., 2004). 

3.1.6 Other mechanisms of NOTCH1 activation 

Studies in mice have suggested that it is likely that other mechanisms of ligand-independent 

NOTCH1 activation remain to be discovered in human T-ALL, despite initially seeming to 

refute the theory that HD domain mutations are required for leukaemogeneic NOTCH1 

signalling. This is owing to the fact that the most common NOTCH1 mutations in human T-

ALL are clustered in the HD domain, whereas in murine T-ALL, HD mutations are rare, and the 

most commonly mutated region is the PEST domain (Aster et al., 2008). The PEST mutations 

found in murine T-ALL commonly arise in transgenic mice with genetic backgrounds that 

predispose to tumourigenesis such as p53, E2A or Ikaros deficiency or constitutive K-ras 

signalling (O'Neil et al., 2006;Reschly et al., 2006;Dumortier et al., 2006;Chiang et al., 2008) . 

HD mutations are present in only a small proportion of these tumours, leaving it unclear how 

NOTCH1 becomes activated. However, investigations using retroviral mutagenesis had shown 

that the NOTCH1 gene was an insertion site when the Murine Leukaemia Virus (MuLV) was 
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used to accelerate leukaemia onset in myc transgenic mice (Hoemann et al., 2000). Many of 

these insertions occurred in close proximity to the intronic breakpoint described in the t(7;9) 

translocation (Girard et al., 1996), and integrated in both the HD and LNR domains of NOTCH1 

leading to increased expression of ICN-1. The characterisation of radiation-induced thymic 

lymphomas in ataxia telangiectasia mutated knock-out (Atm 
-/-

) mice identified deletion 

breakpoints at the 5’ end of the NOTCH1 gene, with the tumours generating short NOTCH1 

transcripts through errors in V(D)J recombination (Tsuji et al., 2004;Tsuji et al., 2009). 

Subsequent screening of a panel of murine T-ALL cell lines showed that the majority harboured 

5’ region deletions in the NOTCH1 gene (Ashworth et al., 2010;Jeannet et al., 2010). The 

deletions either encompassed exon 1 and the proximal promoter and were RAG-dependent, or 

removed the region between exon 1 and exons 26-28 and were RAG-independent. The more 

frequent RAG-dependent deletions activate an internal promoter which lies in or near exon 25, 

driving expression of NOTCH1 transcripts with 5’ deletions. Both types of deletion result in the 

initiation of translation at a conserved methionine residue in the transmembrane domain, leading 

to the production of truncated, activated NOTCH1 protein (Ashworth et al., 2010).  Ikaros loss 

can also lead to increased transcription of NOTCH1 alleles with 5’ deletions. The induction of 

T-ALL was markedly shortened when Ikaros-deficient mice were crossed with a conditional 

mouse model in which the 5’ end of NOTCH1 was deleted upon expression of T-cell specific 

Cre recombinase (Gomez-del Arco et al., 2010;Jeannet et al., 2010). The deletion also activated 

the same internal promoter in or near exon 25 as in the RAG-dependent deletions (Ashworth et 

al., 2010). This suggests that Ikaros and possibly other proteins act as tumour suppressors. 

Whether these mechanisms are features of human T-ALL is yet to be determined.   

3.1.7 NOTCH1 activated signalling pathways in T-ALL 

Various groups have identified some of the downstream targets of the NOTCH1-CSL activation 

complex in T-ALL cells (Wang et al., 2011a;Palomero et al., 2006;Weng et al., 2006), and 

some of these are also regulated by NOTCH1 in normal thymocytes. In the context of the 

transformation of T-cell precursors, the NOTCH1 signalling pathway supports cell growth. The 

best characterised targets include the bHLH transcriptional repressor HES1 and the transcription 

factor c-Myc (Palomero et al., 2006;Weng et al., 2004), and key pathways activated include the 

PI3K/AKT (Palomero et al., 2007;Ciofani & Zuniga-Pflucker, 2005;Sade et al., 2004) and 

mTOR pathways (Chan et al., 2007;Cullion et al., 2009). Conditional loss-of-function studies in 

mice and lentiviral knockdown in human T-ALL cell lines have demonstrated that NOTCH1-
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induced T-ALLs are HES1-dependent (Wendorff et al., 2010). The role of HES1 in the 

pathogenesis of the disease remains unclear, although it has been shown to bind to and repress 

the PTEN promoter, suggesting that aberrant NOTCH1 signalling could upregulate signalling 

through the PI3K/AKT pathway (Palomero et al., 2007). Normal thymocytes express c-Myc, 

which is a consistently expressed downstream target of ICN-1 in human and mouse T-ALL 

lines, and expression directly correlates with NOTCH1 signal strength and peaks during β-

selection. Inhibition of NOTCH1 signalling with GSI treatment in these cell lines resulted in the 

rapid downregulation of c-Myc and retroviral expression of c-Myc alone rescued some of them 

from NOTCH1 inhibition, suggesting that NOTCH1 dependency is mediated through c-Myc in 

these cell lines (Weng et al., 2006;Chan et al., 2007;Sharma et al., 2007). Weng et al (2006) 

transduced murine marrow with a c-Myc transgene in which expression could be turned off in 

the presence of doxycycline and demonstrated, that upon doxycycline administration, the cells 

proliferated rapidly and subsequently underwent apoptosis. However, upon retroviral 

transduction with ICN-1, an increase in endogenous c-Myc expression was seen along with the 

inhibition of cell death. This suggests that NOTCH1-mediated c-Myc expression is crucial for 

the maintenance of T-ALL.  

More recently, other direct NOTCH1 signalling targets which activate the PI3K/AKT pathway 

have been implicated in T-ALL. The IL7-Rα is transcriptionally regulated directly by NOTCH1 

and is required for normal lymphoid development. Activating mutations have been described in 

approximately 10% of samples from patients with T-ALL, leading to ligand-independent IL7-R 

homodimerisation and activation of STAT5 and JAK1, promoting cell transformation and 

tumour formation (Shochat et al., 2011;Zenatti et al., 2011). The insulin growth factor receptor-

1 (IGF1R) is also a NOTCH1 target, and NOTCH1 signalling is required to maintain IGF1R 

expression at high levels in T-ALL cells (Medyouf et al., 2011;Wang et al., 2011a). 

Pharmacologic inhibition or genetic deletion of the IGF1R was found to block the growth and 

viability of T-ALL cells, and a reduction of IGF1R signalling decreased the transplantability of 

the tumours in secondary recipients, thereby compromising leukaemia initiating cell (LIC) 

activity (Medyouf et al., 2011).  

3.1.8 F-box and WD40 domain-containing protein 7 (FBXW7) 

Studies elucidating the mechanism of the proteasome-dependent degradation of ICN-1 in 

Caenorhabditis elegans identified FBXW7 in this process, as it targets the NOTCH1 PEST 
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domain for ubiquitination and subsequent degradation by the proteasome (Hubbard et al., 1997). 

The FBXW7 gene is located on human chromosome 4q31.3, has 12 exons and encodes an E3-

ubiquitin ligase which is abundantly expressed in haematopoietic cells (Mao et al., 2004). F-box 

and WD40 domain containing protein 7 (FBXW7) is a constituent of the highly conserved SCF 

complex comprised of SKP1, CUL1, RBX1 and FBXW7 (Figure 3.4). The F-box protein of 

FBXW7 is approximately 40 amino acids long and binds to the protein targeted for 

ubiquitination independently of the complex, by interacting with the bridging protein SKP1 

which is anchored to the scaffold structure CUL1 (Nakayama & Nakayama, 2005). This allows 

the protein to be brought into proximity of the functional E2-ubiquitin which is bound to the 

RBX1 zinc-binding domain, and results in transfer of the ubiquitin to a lysine residue on the 

target protein. FBXW7 also contains eight WD40 repeats which are short structural motifs that 

typically fold together to form a type of beta propeller structure,  providing a rigid scaffold for 

interaction with various proteins (Orlicky et al., 2003;Li & Roberts, 2001;Smith et al., 1999). 

FBXW7 forms homodimers through a domain just upstream of its F-box domain, but the 

requirement for this is unclear as monomeric forms still bind to most substrates (Welcker & 

Clurman, 2008). The SCF complex covalently attaches ubiquitin groups to proteins that contain 

the consensus sequence I/L-I/L/P-T-P-XXXX (Welcker & Clurman, 2008). This consensus 

sequence is known as a phosphodegron as a conserved residue in the substrate must first be 

phosphorylated to allow the complex to bind. In the NOTCH1 PEST domain, this has been 

identified as T2512, which is phosphorylated by GSKβ and CDK8 (Foltz et al., 2002;Fryer et 

al., 2004).  

Cyclin E was the first identified target of FBXW7, although its importance in T-ALL remains 

unclear (Hao et al., 2007;Koepp et al., 2001;Orlicky et al., 2003). Other substrates of FBXW7 

include c-Myc, mTOR and c-Jun (Mao et al., 2008;Koepp et al., 2001;Wei et al., 2005;Welcker 

et al., 2004). As previously mentioned, c-Myc is a direct downstream target of NOTCH1, and 

FBXW7 further regulates NOTCH1 signalling by degrading c-Myc (Palomero et al., 2006). The 

oncogenic potential of this pathway was demonstrated in an fbxw7 conditional knockout mouse 

model, which led to the mice developing thymic lymphomas with high expression of c-Myc 

(Onoyama et al., 2007). Mao et al (2008) carried out a genome-wide search for FBXW7 targets 

in human breast cancer cell lines and identified the enzyme mTOR as one of these. The cell 

lines and primary tumours showed that loss of FBXW7 correlated with deletion of PTEN, which 

also activates mTOR. 
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Figure 3.4 Structure of the SCF complex. (A). Overall architecture of the SCF complex where 

the F-box protein binds to the target protein then interacts with SKP1. (B). Ribbon diagram 

showing the eight WD40 repeats fold together to form a β propeller structure where target 

proteins bind. Taken from Hao et al (2007) and Magori et al (2011). 
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FBXW7 gene mutations and deletions have been reported in various types of human cancer. In a 

study using a triple knockout model (TP53
-/-

, Terc
-/-

 and ATM
-/-

) where mice developed thymic 

lymphomas, analysis of the tumours demonstrated FBXW7 deletions encompassing the whole 

gene (Maser et al., 2007). The same group then sequenced a cohort of 23 human T-ALL cell 

lines and 38 clinical samples and found that 48% of the cell lines and 29% of the clinical 

samples were deleted or mutated in FBXW7 (Maser et al., 2007). Deletions of the FBXW7 gene 

have not been widely reported, although a recent study identified 14% of T-ALL patients 

harboured a deletion (Rudner et al., 2011). The mutations found in the study in human FBXW7 

were predominantly missense mutations and clustered in the arginine residues of the WD40 

domains, which are required for substrate interaction (Orlicky et al., 2003). The most common 

mutations observed were those involving R465 located in exon 9, and R479 in exon 10, and 

sequencing of matched bone marrow samples from patients in remission showed that these 

mutations were acquired somatically (Maser et al., 2007). Since then a number of paediatric and 

adult studies have extended these findings and these are detailed in Table 3.2. In paediatric T-

ALL, the incidence of FBXW7 mutations was 16% (range 10% to 31%). The majority of the 

mutations were located in the mutational hotspot exons 9 and 10, and three studies screened 

these exons alone (Clappier et al., 2010;Kox et al., 2010;Mansur et al., 2012).  

FBXW7 mutants have been shown to be unable to bind to the NOTCH1 PEST domain or to c-

Myc, therefore stabilising ICN-1 and c-Myc in the nucleus. Recent studies have also shown that 

FBXW7 mutation can modulate leukaemia-initiating cell (LIC) activity (King et al., 2013). The 

heterozygous mutation R465C mutation was found to abolish the capacity of Fbxw7 to 

ubiquitinate c-Myc, and the presence of the R465C mutation in Fbxw7
mut/+

 Mx1-Cre mice did 

not compromise normal HSC function but led to an increase in the LIC population. This 

increase was as a result of the stabilisation of c-Myc, as the expression of c-Myc directly 

correlated with the LIC population in vivo. Studies have indicated that this stabilisation of c-

Myc by FBXW7 mutations may also confer GSI resistance in some T-ALL lines (O'Neil et al., 

2007).  

Mutations in FBXW7 are thought to mimic NOTCH1 PEST mutations; therefore mutations in 

the NOTCH1 PEST domain and FBXW7 in the same patient are rare. This was demonstrated by 

sequence analysis of NOTCH1 in T-ALL cell lines and primary T-ALL samples harbouring 

FBXW7 mutations. None of the cell lines were mutated in the PEST domain whereas all of them 

either had an HD mutation or WT NOTCH1 alleles (Thompson et al., 2007). As with NOTCH1
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Table 3.2 Studies of FBXW7 mutation detection in patients with T-ALL 

Reference Age 

group 

Screening 

method 

Exons 

screened 

Total 

in 

study 

Total 

FBXW7 

mutant 

patients 

      (%) 

Type of mutations and number of patients with mutations 

Malyukova 

et al., (2007) 

Paediatric PCR-SSCP 2-12 26 8 (31%) All missense mutations; 3 in exon 9, 4 in exon 10 and 1 in exon 12 

2 (25%) also had a NOTCH1 mutation 

(Park et al., 

2009) 

Paediatric Dhplc 2-12 69 11 (16%) 9 (12%) missense mutations in exons 9,10 and 12 

1 31bp insertion in exon 9, 1 deletion in exon 12 and 1 missense mutation in 

exon 9 + indel in exon 3  

5 (7%) also had a NOTCH1 mutation 

 (Zuurbier et 

al., 2010) 

Paediatric Sequencing 5, 7+11 141 23 (16%) 22 (15%) missense mutations: 1 in exon 7, 1 in exon 8 and 2 in exon 11, 18 in 

exons 9 and 10 

1 nonsense mutation in exon 11 

10 (7%) also had a NOTCH1 mutation 

 (Clappier et 

al., 2010) 

Paediatric Sequencing 

+ Fragment 

Analysis 

9+10 134 20 (15%) 19 (14%) missense mutations 

1 short frameshift insertion introducing a premature stop codon 

17 (13%) also had a NOTCH1 mutation 

 (Kox et al., 

2010) 

Paediatric Sequencing 9+10 301 42 (14%) 42 (14%) mutations in exons 9 or 10 

 (Erbilgin et 

al., 2010) 

Paediatric dHPLC 7-11 72 7 (10%) 5 (7%) missense mutations in exons 8, 9 and 10 

1 insertion in exon 12 

2 (3%) also had a NOTCH1 mutation 

 (Mansur et 

al., 2012) 

Paediatric Sequencing 9+10 110 21 (19%) 21 (19%) mutations in exon 9 or 10 

13 (12%) also had a NOTCH1 mutation 

Fogelstrand 

et al., (2014) 

Paediatric Sequencing 9-14 79 17 (22%) 15 (18%) missense mutations: 9 in exon 9, 3 in exon 10 and 2 in exon 12,  1 in 

exons 9 +10 

1 insertion in exon 12 and 1 deletion in exon 8 

15 (7%) also had a NOTCH1 mutation 

O’Neil et al., 

(2007) 

Adult Sequencing 7-11 81 7 (9%) All missense mutations in exons 9 and 10 

Thompson et 

al., (2007) 

Adult Sequencing 9+10 95 15 (16%) All missense mutations in exons 9 and 10 
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Table 3.2 Continued 

 
Reference Age 

group 

Screening 

method 

Exons 

screened 

Total 

in 

study 

Total 

FBXW7 

mutant 

patients 

      (%) 

Type of mutations and number of patients with mutations 

 (Asnafi et al., 

2009) 

Adult Sequencing 9, 10+12 141 34 (24%) 5 (7%) missense mutations in exons 9 and 10 

21 (19%) also had a NOTCH1 mutation 

(Mansour et al., 

2009) 

Adult dHPLC 8-12 88 16 (18%) 16 (18%) missense mutations in exons 9 and 10 

11 (13%) also had a NOTCH1 mutation  

 

Abbreviations: dHPLC, denaturing high performance liquid chromatography; SSCP, single strand conformation polymorphism; indel, 

insertion/deletion..
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HD and PEST domain mutations, co-incident NOTCH1 and FBXW7 mutations are also 

thought to act in synergy to amplify signal strength. In reporter assays with a HD mutation 

coupled with a mutation disrupting FBXW7 binding, the loss of NOTCH1/FBXW7 

interaction produced a five-fold increase in NOTCH1 activity (Malyukova et al., 

2007;Thompson et al., 2007). More recently, in vivo experiments where a truncated Notch1 

construct constitutively cleaved in a ligand-independent manner, was retrovirally expressed 

on an Fbxw7
+/+

, Fbxw7
∆/+

 or Fbxw7
mut/+ 

background, showed that the mice harbouring the 

heterozygous mutation developed leukaemia at a much shorter latency to the WT mice or 

mice harbouring loss of one Fbxw7 allele. This indicates that NOTCH1 and FBXW7 

mutations synergise to confer a greater leukaemia initiating capacity (King et al., 2013). 

3.1.9 Techniques used to detect NOTCH1 and FBXW7 mutations 

There are two main approaches that different groups have used to screen for mutations in the 

NOTCH1 and FBXW7 genes, these are summarised in Tables 3.1 and 3.2. Sanger sequencing 

of PCR products, either directly or after cloning, has been the most commonly used 

technique. The main advantage of sequencing is that it can detect all types of mutation 

whether they are size changes, point mutations, heterozygous or homozygous. For a large 

number of samples this technique can, however, be expensive and labour-intensive. The 

sensitivity of nucleotide sequencing is also an issue as it can be easy to miss a low level 

somatic mutation. A number of studies have used the technique of denaturing high 

performance liquid chromatography (dHPLC) on the WAVE platform (Transgenomic Ltd, 

Glasgow, UK) for mutation detection, which relies on heteroduplex analysis (Erbilgin et al., 

2010;Park et al., 2009;van Grotel et al., 2008;Weng et al., 2004). A previous study in our 

laboratory identifying NOTCH1 and FBXW7 mutations in an adult cohort of T-ALL patients 

had used the latter technique (Mansour et al., 2009) and more details of the technique are 

given in section 2.1.6. There are a number of advantages to dHPLC; both size changes and 

point mutations can be detected with a higher sensitivity than sequencing and with a 

reasonably high throughput. Analysis of a single PCR product takes between 3 and 7 minutes 

depending on the DNA separation column used. There is little sample handling, and only 

samples with a chromatogram that is different to that of a known WT control sample need to 

be investigated by sequencing. dHPLC on the WAVE platform was therefore chosen to 

detect mutations in the NOTCH1 and FBXW7 genes in the studies presented in this thesis.  

NOTCH1 mutations were first described in exons encoding the HD and PEST domains, i.e. 

exons 26, 27 and 34, and the majority of studies have only screened for mutations in these 

exons (Table 3.1). More recently, mutations have been described at a lower frequency in 
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exons 25 and 28 encoding the LNR and JME domains respectively, therefore in the present 

study patient samples were screened for mutations in exons 25-28 and 34 of NOTCH1. The 

reported mutational hotspots in the FBXW7 gene are in exons 9 and 10 (Table 3.2).  A lower 

frequency of mutations has been reported in other exons encoding the WD40 domains, exons 

8, 11 and 12. It was therefore decided that the patient samples in this cohort would be 

screened for mutations in exons 8-12 of the FBXW7 gene. 

3.2 Materials and Methods 

3.2.1 Patients and samples 

Diagnostic samples were available from the United Kingdom Leukaemia and Lymphoma 

Research Childhood Leukaemia Cell Bank from 162 of the 388 (42%) T-ALL patients 

entered into the United Kingdom Medical Research Council ALL 2003 (UKALL 2003) trial 

between 2003 and 2011. Ethical approval for the trial was obtained from the Scottish Multi-

Centre Research Ethics Committee. Informed consent was obtained in accordance with the 

Declaration of Helsinki. Samples were from peripheral blood or bone marrow and were 

received as frozen cells or genomic DNA. DNA was prepared using detergent lysis and 

chloroform extraction (section 2.1.3) or, if the number of cells was less than 1x10
6
, using the 

Qiagen DNeasy Blood and Tissue kit (Qiagen, Crawley, UK),  and dissolved in TE buffer. 

3.2.2 NOTCH1 mutation screening  

NOTCH1 mutation screening of the LNR-B (exon 25), HD-N (exon 26), HD-C (exon 27), 

JME (exon 28), TAD and PEST (exon 34) domains was carried out by PCR and dHPLC, 

followed by sequencing of samples with abnormal chromatograms. Samples were amplified 

by 35 cycles of PCR using the primers and appropriate annealing temperature shown in 

Appendix Table 1. Wherever possible, PCR products were obtained using the proof-reading 

enzyme Optimase (Transgenomic). The standard Optimase DNA Polymerase reaction mix 

and cycling conditions are detailed in chapter 2 (section 2.1.4). Due to a high GC content of 

the HD-C, JME and TAD domains, 1mol/L betaine was also included in the reaction mix for 

these amplicons to enhance PCR efficiency. For the NOTCH1 HD-N, PEST and LNR-B 

domains, where adequate PCR products could not be obtained using Optimase, the non-

proof-reading enzyme BIOTAQ DNA polymerase (Bioline) was used. Details of the 

standard BIOTAQ DNA Polymerase reaction mix and cycling conditions are given in 
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section 2.1.4. PCR products were checked on a 2% agarose gel stained with ethidium 

bromide (section 2.1.5).  

PCR products were screened by dHPLC on the WAVE DNA Fragment Analysis System 

(Transgenomic, Glasgow, UK) as detailed in section 2.1.6. They were denatured and cooled 

slowly to enable the formation of heteroduplexes, then analysed on the WAVE at optimal 

melting temperatures which were calculated using Transgenomic Navigator software  

(Appendix Table 1). Representative amplicon melting curves for three exons are given in 

Figure 3.5. Each WAVE run included a known wildtype (WT) case for each particular exon 

and, where possible, a known mutant control to allow for comparison.  

3.2.3 Confirmation of common NOTCH1 polymorphisms 

A common synonymous SNP in the HD-C domain of NOTCH1,  (C5094T, rs10521 

MAF=0.417) interfered with mutation detection (Figure 3.6A). Therefore the presence of the 

SNP was investigated by PCR and restriction enzyme digestion and/or sequencing of all 

samples. For the PCR and digest, products were obtained with 35 cycles using the mismatch 

forward primer SNP-F (Appendix Table 1) and the screening reverse primer 27-R with the 

BIOTAQ enzyme (see section 2.1.4 for standard reaction mix and cycling conditions) with 

the addition of 1mol/L betaine. The mismatch primer introduced a BsaA1 digestion site that 

would distinguish between the polymorphic alleles, giving bands of 158 and 29bp for the C-

alleles and a single uncut band of 187bp for the T-alleles. PCR products were digested for 

3hrs at 37
o
C

 
with the restriction enzyme BsaA1 and analysed by agarose gel electrophoresis 

(Figure 3.6B). A second SNP in the HD-C domain (G5073A, rs61751538) and two SNPs in 

the TAD domain of NOTCH1, G6853A (rs61751490 MAF=0.006) and C6870T (rs61751488 

MAF=0.004), were confirmed by direct sequencing. 

3.2.4 Confirmation of NOTCH1 mutations 

For samples with abnormal chromatograms, fresh PCR products were obtained using the 

BIOTAQ enzyme with standard reaction mix and conditions and sequenced in one direction. 

Where a low-level mutant was evident from the WAVE chromatogram, direct sequencing 

was sometimes not sufficiently sensitive to characterise the nucleotide change. The fragment 

collector function of the WAVE was therefore used to purify the heteroduplex peaks at the 

analysis temperature at which the peak was most visible. Heteroduplex peaks were collected, 

re-amplified and sequenced. For more complex mutations, the exon was amplified and the 

products cloned using the TOPO TA cloning kit (Invitrogen, Paisley, UK) as described in 
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Figure 3.5 Amplicon melting curve profiles. Melting curve profiles for the LNR, HD-N 

and JME domains at the temperatures selected for WAVE analysis, displayed as the helical 

fraction against the base position in the PCR product. 
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Figure 3.6 Identification and confirmation of a common NOTCH1 polymorphism. (A). 

NOTCH1 HD-C exon 27 WAVE chromatograms of a WT control and a case that is 

heterozygous (C/T) for the synonymous SNP at nucleotide (nt) 5094. (B). Genotyping of C/T 

alleles at nt 5094 by amplification with a mismatch primer designed to introduce a BsaA1 

digestion site in C-alleles but not T-alleles. The result of the BsaA1 digest is shown as 

visualised on a 2% agarose gel stained with ethidium bromide.  
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section 2.1.10. For the JME-mutant positive samples, PCR products were size separated by 

gel electrophoresis using 1% agarose. Mutant bands were excised from the gel using the 

Qiagen Gel Extraction kit (Qiagen, Crawley, UK) and then sequenced. 

3.2.5 FBXW7 mutation screening 

Patient samples were screened for FBXW7 mutations in exons 8-12 which encode the WD40 

domain. PCR products were obtained using the Optimase enzyme (Transgenomic) with 

standard reaction mix and cycling conditions as detailed in section 2.1.4 and amplified by 35 

cycles of PCR, followed by dHPLC analysis on the WAVE. PCR primers, annealing 

temperatures and WAVE analysis temperatures are given in Appendix Table 1. Fresh PCR 

products from samples with abnormal chromatograms were sequenced. The presence of a 

polymorphism in the intron between exons 11-12 was confirmed by 35 cycles of PCR with 

the BIOTAQ enzyme with primers and annealing temperatures shown in Appendix Table 1, 

followed by direct sequencing of the products. 

3.3 Results 

Genomic DNA was available for analysis from peripheral blood or bone marrow samples 

taken at diagnosis from 162 T-ALL patients entered into the MRC UKALL 2003 trial.  

3.3.1 NOTCH1 mutation detection 

WAVE analysis was used to screen the LNR-B, HD-N, HD-C, JME, TAD and PEST 

domains of NOTCH1. Of the 162 patients investigated, 133 (82%) had one or more exons 

with abnormal WAVE chromatograms. In 29 cases, the abnormal chromatograms were due 

to the presence of a common polymorphism (C5094T, G5073A, G6853A or C6870T), which 

were confirmed as detailed in section 3.2.3. In a further three cases, direct nucleotide 

sequencing showed a deletion in intron 26-27. All patients in whom these were the only 

changes were scored as NOTCH1-WT.  

A total of 119 mutations were detected in the NOTCH1 gene in 101 (62%) of the 162 

patients analysed (NOTCH1
MUT

). Figure 3.7 shows the location and type of the mutations 

identified, with an overview in Table 3.3. A full list of nucleotide and amino acid changes 

for all patients is given in Appendix Table 2. Representative WAVE chromatograms are 

shown in Figure 3.8. It was not possible to predict the specific mutation based on a 
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Figure 3.7 Schematic representation of the location and type of NOTCH1 mutations detected in 162 paediatric T-ALL patients. Mutations identified in 

the NOTCH1 Lin12/Notch repeats (LNR), heterodimerisation (HD) N and C- terminal domains, juxtamembrane (JME), transcriptional activation (TAD) and 

PEST domains.  
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characteristic WAVE chromatogram; therefore all samples with an abnormal chromatogram 

were sequenced. In the case of most mutants (89%), it was possible to determine the change 

by direct nucleotide sequencing. This approach was unsuccessful for 13 (11%) mutations due 

to more complex mutations or the presence of a low-level mutant indicating either non-

leukaemic cell contamination in the sample or a mutation in a subclone. Using the fraction 

collector facility on the WAVE, three of these mutants were purified at a denaturing 

temperature and one was size-separated at a non-denaturing temperature. For the remaining 

nine mutations, the exon was amplified by PCR to obtain a fresh PCR product, which was 

then cloned using the TOPO TA cloning kit and clones were screened as described in section 

2.1.10.  

Of these 119 mutations, 87 (73%) were found in the HD domain, 70 of them (80%) in the 

HD-N region of the domain and 17 (20%) in the HD-C region. The mutations in the HD-N 

region tended to cluster in the highly conserved areas between amino acid residues 1533-

1602 (50 mutations) and 1605-1618 (19 mutations). Approximately half of the mutations 

found in the HD-N domain were missense amino acid substitutions (33 mutations, 47%), of 

which 20 were leucine to proline amino acid changes. The remaining mutations were short, 

in-frame insertions, deletions or indels, generally of up to 15bps, although larger in-frame 

insertions, one of 30bps and two of 39bps, were also identified. The HD-C domain mutations 

were all located in the region spanning amino acid residues 1674-1723 and comprised 14 

(82%) missense amino acid substitutions, 12 of them leucine to proline amino acid changes, 

one 3bp indel, one 3bp deletion and a larger in-frame insertion of 78bps which consisted of a 

10bp insertion plus a 68bp duplication. A total of 25 mutations (21% of all mutations) were 

found in the PEST domain. These included eight insertions, nine deletions and four indels all 

causing a frameshift, with the introduction of a premature stop codon resulting in a C-

terminally truncated protein. Two nonsense amino acid changes were detected, Q2406X and 

S2487X, also resulting in a C-terminally truncated protein, and two missense amino acid 

changes, F2510L and P2459T. In the TAD domain, two nonsense amino acid substitutions 

were identified, Q2392X and Q2395X, which would result in C-terminal protein truncation. 

Four mutations were found in the JME domain, all of them large in-frame insertions of 

24bps or more. One missense amino acid substitution, C1528R was also found in the LNR-B 

domain.  

Of the 101 patients with a mutated NOTCH1 gene, 84 patients (83%) had a single mutation 

(NOTCH1
Single

) (Table 3.3) and 17 patients (17%) had more than one NOTCH1 mutation, 

herein denoted NOTCH1
Double

. Of the NOTCH1
Double

 patients, 14 (82%) were mutated in both 

the HD (either the HD-N or HD-C) and PEST domains, one of them also had an LNR-B 
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Table 3.3 Summary of NOTCH1 mutations detected 

Mutant 

Status 

Mutation 1 Mutation 2 No. of patients 

HD-N HD-C JME TAD PEST LNR-B HD-N HD-C PEST  

Single In-frame 

size change 

        32 

Missense         25 

 Missense        11 

 In-frame  

size change 

       1 

  In-frame 

size change 

      4 

   Nonsense      1 

    Out-of-frame 

size change 

    8 

    Missense     1 

    Nonsense     1 

Total   84 

Double Missense       Missense  2 

Missense        Out-of-frame 

size change 

6 

In-frame  

size change 

       Out-of-frame 

size change 

2 

In-frame  

size change 

    Missense   Out-of-frame 

size change 

1 

In-frame  

size change 

       Nonsense 1 

In-frame  

size change 

       Missense 1 

 In-frame  

size change 

      Out-of-frame 

size change 

2 

 Missense       Out-of-frame 

size change 

1 
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Table 3.3 Continued 

 
Mutant 

Status 

Mutation 1 Mutation 2 No. of patients 

HD-N HD-C JME TAD PEST LNR-B HD-N HD-C PEST  

   Nonsense     Out-of-frame 

size change 

1 

Total  17 

 

Abbreviations: dHPLC, denaturing high performance liquid chromatography; HD,  heterodimerisation; JME, juxtamembrane; TAD, transcriptional activation; 

ANK, ankyrin repeats; LNR, Lin-12/Notch repeats. 
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Figure 3.8 Detection of NOTCH1 mutations by WAVE analysis. Representative WAVE chromatograms of patient samples normalised and compared to 

that of a known WT control. (A). High level and low level heterozygous point mutations in exon 27. (B). High level and low level insertions in exon 34. (C)  

High level and low level deletions in exon 26.  
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mutation, two patients harboured mutations in both the HD-N and HD-C subunits, and one 

patient in both the PEST and TAD domains.  

3.3.2 Confirmation of common NOTCH1 polymorphisms 

Of the 162 patients screened for HD-C mutations in exon 27, 75 (45%) had a WAVE 

chromatogram suggestive of the common C/T SNP at nt 5094 in exon 27. Heterozygous 

presence of the SNP was confirmed in all cases, 21 by direct nucleotide sequencing, 31 by 

PCR with a mismatch primer and BsaA1 digestion (Figure 3.6), and 23 cases by both 

methods. The incidence of patients that were heterozygous for the SNP did not differ 

between NOTCH1-WT and NOTCH1-mutant cases (27 of 61 [44%] vs. 48 of 101 [46%], 

P=.67). Direct sequencing of three other patients with an abnormal chromatogram for exon 

27 showed the presence of an A/G SNP at nt 5073. Five cases with an abnormal 

chromatogram in the TAD domain were scored as heterozygous for the A/G SNP at nt 6853 

and two cases for the C/T SNP at nt 6870 by direct sequencing.  

3.3.3 FBXW7 mutation detection 

WAVE analysis was used to screen exons 8-12 of the FBXW7 gene. Of the 162 patients 

investigated, 42 (26%) had one or more exons with abnormal WAVE chromatograms. In 11 

cases, the abnormal chromatograms were due to the presence of a common C/T 

polymorphism in intron 11-12, which were confirmed by direct sequencing. All patients in 

whom these were the only changes were scored as FBXW7-WT.  

A total of 31 mutations were detected in the FBXW7 gene in 29 (18%) of the 162 patients 

analysed (FBXW7
MUT

). Full details are given in Appendix Table 2. In the case of all mutants 

it was possible to determine the change by direct nucleotide sequencing. All mutations were 

missense amino acid substitutions (Figure 3.9). The most commonly mutated region was 

exon 9 with 21 (68%) mutations; nine of them were R465H, seven R465C, two R465L, two 

R465P and one R441Q. Of the eight (26%) exon 10 mutations identified, five were R479Q, 

two R505C and one G517V. Two patients harboured the R689W mutation in exon 12. Of 

note, all mutations in FBXW7 except one, G517V in exon 10, disrupted the conserved 

arginine residues in the WD40 domain of the gene.  

All except two patients had a single FBXW7 mutation. The patient harbouring the G517V 

mutation in exon 10 also had an R465C mutation in exon 9, and one patient had a R505C 

mutation in exon 9 in conjunction with a R689W mutation in exon 12.
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Figure 3.9 Schematic representation of the location and type of FBXW7 mutations detected in 162 paediatric T-ALL patients. Mutations identified in 

exons 9, 10 and 12 of the WD40 domain repeats. 
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Table 3.4 NOTCH1 and FBXW7 mutation status of cohort studied 

NOTCH1 domain FBXW7 WT  

(% of total patients) 

FBXW7 MUT  

(% of total patients) 

NOTCH1 WT 57 (35%)   4 (3%) 

NOTCH1 MUT 76 (47%) 25 (15%) 

                              HD only                  48 (30%)                  23 (14%) 

                              JME                    4  (3%)                    0  (0%) 

                              TAD                    1 (<1%)                    0  (0%) 

                              PEST only                  10 (13%)                    0  (0%) 

                              HD+PEST                  11  (7%)                    2  (1%) 

                              HD+PEST+LNR-B                    1 (<1%)                    0  (0%) 

                              PEST + TAD                    1 (<1%)                    0  (0%) 

 

Abbreviations: WT, wild-type; MUT, mutant; HD, heterodimerisation domain; JME, 

juxtamembrane domain; TAD, transcriptional activation domain; LNR-B, Lin12/Notch 

repeats. 
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3.3.4 NOTCH1 and FBXW7 genotypes 

Considering the mutational status of both the NOTCH1 and FBXW7 genes together for all 

162 patients, 57 (35%) patients were wild type in both genes, 76 (47%) were mutated in 

NOTCH1 only, of these 62 (38% of all mutated cases) were NOTCH1
Single

FBXW7
WT

 and 14 

(9%) were NOTCH1
Double

FBXW7
WT

, four patients (3%) had an FBXW7 mutation only and 25 

patients (15%) were NOTCH1
MUT

FBXW7
MUT

 (Table 3.4). The latter all had a NOTCH1 HD 

domain mutation coupled with the FBXW7 mutation; two patients also had a mutation in the 

NOTCH1 PEST domain. This data indicates a positive association between a NOTCH1 HD 

domain mutation and an FBXW7 mutation, 23 of 71 (32%) patients with HD-only mutations 

were FBXW7
MUT

 versus 6 of 91 (7%) other patients (P=.0003). Conversely, cases with a 

NOTCH1 PEST domain mutation were less likely to have an FBXW7 mutation, 24 of 133 

(18%) FBXW7
WT

 patients had a PEST domain mutation versus 2 of 29 (6%) FBXW7
MUT 

patients, but this difference did not reach statistical significance (P=.19). 

3.4 Discussion 

Data is presented in this chapter on the screening of a cohort of paediatric T-ALL patients 

for mutations in the NOTCH1 and FBXW7 genes. The standard mutational screening 

technique utilised by many groups is direct Sanger sequencing of PCR products, but for a 

large number of samples this is expensive and labour-intensive and, due to the limited 

sensitivity of the technique, low level mutants are not easily detected. In the present study, 

dHPLC was used to screen denatured PCR products from the chosen exons. It is a medium 

throughput screening method for the sensitive detection of both point mutations and size 

changes. The technique involves very little sample handling and is more sensitive than 

Sanger sequencing as studies in our laboratory have shown that it is sensitive enough to pick 

up mutations which are present at a level of less than 5% of total alleles. The protocols had 

already been optimised in the laboratory in a previous study identifying NOTCH1 and 

FBXW7 mutations in an adult cohort of T-ALL patients (Mansour et al., 2009). One of the 

limitations of dHPLC is the requirement for heterozygous mutation as the technique relies on 

the formation of heteroduplexes that bind less strongly to the column and are therefore eluted 

first. It is not possible to detect homozygous mutations by dHPLC unless the PCR products 

to be screened are mixed with wildtype control PCR products prior to denaturation. This was 

not carried out in the present study as homozygous mutations have not been reported in the 

NOTCH1 or FBXW7 genes in previous paediatric T-ALL studies.     
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In total, of the 162 patients analysed by dHPLC on the WAVE platform, 101 (62%) had one 

or more NOTCH1 mutations. Of the nine studies investigating NOTCH1 mutations in 

paediatric T-ALL, the median mutation incidence is 56% (range 22% to 57%). The mutation 

incidence in the present study is higher than the previous studies combined, but the 

difference is not significant (548 of 1115, 49%, P=.08) (Clappier et al., 2010;Erbilgin et al., 

2010;Fogelstrand et al., 2014;Kox et al., 2010;Mansur et al., 2012;Park et al., 2009;van 

Grotel et al., 2008;Weng et al., 2004;Zuurbier et al., 2010). Possible explanations for the 

difference in mutation rate between the studies include the exons screened. Six of the nine 

studies only investigated the HD and PEST domains; however the frequency of mutations in 

domains outside of these exons, e.g. the JME and LNR domains, is low and therefore would 

not be predicted to increase the mutation rate significantly. Another factor could be the 

method used to screen for the mutations. Five of the previous studies used Sanger 

sequencing, which can miss low level mutations due to lesser sensitivity. However, of the 

four studies that utilised dHPLC, as in the present study, the mutation rate ranges from 22% 

to 57%, suggesting that the difference is as a result of reasons other than technique used. 

Racial origin of the cohorts could also explain the difference. A Japanese study reported a 

35% mutation incidence, suggesting that NOTCH1 mutations are not as prevalent in Asian 

populations (Park et al., 2009). T-ALL is also a relatively rare disease, and the low numbers 

of patients in the respective cohorts makes comparison difficult.  

The location of the mutations identified in this cohort is comparable to other studies, and 

although the regions are common, there is heterogeneity amongst individual mutations. The 

most frequently mutated region is the HD domain, with mutations in 85 of the 101 (84%) 

NOTCH1-mutated patients located here. This is comparable to other studies; the median HD 

domain mutation rate across the paediatric studies, as a percentage of the total number of 

mutations, is 78% (range 67% to 85%). The HD domain is essential for stable subunit 

association, and crystallography data has shown that conserved amino acid residues in the 

domain form the LNR-HD interaction platform (Gordon et al., 2009). Mutations in this 

region are likely to disrupt this interaction, and have previously been assigned to two distinct 

groups predicted to either lead to ligand-independent S2 cleavage or hypersensitivity to 

ligand binding (Malecki et al., 2006). Mutations found in the present study would be 

expected to fall into these groups and therefore be functionally significant. The first group 

are missense point mutations or small in-frame size changes that enhance subunit 

dissociation and destabilise the NOTCH1 heterodimers, resulting in exposure of the 

metalloprotease cleavage site. Of the 47 missense mutations identified in the HD domain, 34 

(72%) introduced a proline residue into the protein structure which is likely to be structurally 

disruptive (Weng et al., 2004). The functionality of eight of the 14 missense mutations found 
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in this cohort (L1678P, R1598P, V1578E, I1616N, I1680T, F1592S, L1600P and L1593P) 

have been tested and found to result in increased activation (Malecki et al., 2006;Chiang et 

al., 2008). Of the other point mutations, three are leucine to proline changes, and the 

remaining three are located in close proximity to the missense mutations investigated in 

previous studies so would be predicted to be functionally significant. The size changes 

identified in the present study of up to 15bps may expose the S2 cleavage site by 

repositioning it away from the LNR domain and the protective conformation. The second 

distinct class of HD mutations are larger in-frame insertions which either duplicate the S2 

site or are adjacent to and enhance access of TACE to the cleavage site. This class of 

mutation was uncommon in the present cohort as only one duplication spanning amino acids 

1710-1711 was identified in the HD-C domain. Of note, the mutations in the HD domain are 

all in-frame, which suggests the need for an intact ICN for leukaemogenesis. 

Another group of mutations have recently been identified in the JME domain (Sulis et al., 

2008).  They occur less frequently than HD domain mutations, with other studies reporting a 

2-6% incidence (Sulis et al., 2008;Zuurbier et al., 2010;Asnafi et al., 2009;Mansour et al., 

2009), which was confirmed in our cohort with 3% of patients harbouring this type of 

mutation. Of the four mutations found in this domain in the present study, three introduce the 

peptide sequence QLHF that has been previously reported (Sulis et al., 2008). The same 

group demonstrated that the increase in the level of activation of the signalling pathway as a 

result of JME mutation is dependent on the number of amino acids that are inserted. An 

insertion of 12-17 amino acids or more was found to lead to a 200-2000 fold increase in 

activation above the baseline. Two of the mutations found in the present study would be 

predicted to be functionally equivalent to this; one had an insertion of 19 amino acids and the 

other 42 amino acids. In the remaining two mutations, eight and ten amino acids were 

inserted, which would be predicted to result in only a 1.5-12 fold increase in activation.  

The PEST domain was also found to be a mutational hotspot in the present study, with 

mutations in 25 of the 101 (25%) NOTCH1-mutated patients located here. This is 

comparable to other studies; the median PEST domain mutation rate across the paediatric 

studies is 33% (range 20% to 42%). As with other studies, the PEST domain mutations 

found in the cohort were predominantly frameshift size changes leading to the introduction 

of a premature stop codon, which would result in the synthesis of a C-terminally truncated 

protein. Two nonsense mutations were also identified which would also result in a truncated 

receptor. Nineteen of the mutations cause the introduction of a stop codon before the PEST 

phosphodegron region on or around T2512, which would lead to a truncated receptor being 

expressed with no FBXW7 binding site. In the remaining six mutations, the mutational start 
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site is located in amino acids 2514-2517. The PEST phosphodegron spans amino acids 2510-

2517, therefore these mutations would also be predicted to disrupt FBXW7 binding. Two 

missense mutations were also identified in the present cohort, F2510L and P2459T. F2510L 

would be predicted to affect the FBXW7 binding site, but the functional significance of 

P2459T is unclear as it is not located near the binding site and so would not be predicted to 

lead to stabilisation of ICN-1 in the nucleus. A possible explanation is that the mutation is a 

rare SNP, but remission material was not available to confirm this.  

Two TAD domain nonsense mutations were identified which would result in a truncated 

NOTCH1 receptor lacking the PEST domain. Previous studies have demonstrated that the 

TAD domain associates with transcriptional coactivators during signalling and that T-cell 

transformation requires an intact TAD domain, as constructs encoding polypeptides lacking 

amino acids 2155 to 2374 of the TAD domain failed to induce T-ALL (Aster et al., 2000). 

The truncating mutations identified in the TAD domain in the present study were located 

outside of this region at amino acids 2391 and 2394 respectively, so would be predicted to be 

functionally similar to PEST domain mutations. One mutation was identified in the LNR 

domain, C1528R, which would be predicted to destabilise the structure by inhibiting calcium 

binding (Aster et al., 1999;Gordon et al., 2009). Studies in D.melanogaster demonstrated 

that three cysteine residues that form disulphide bonds are critical for the stability of the 

LNR-HD interface (Tien et al., 2008). It is possible that certain cysteine residues in the LNR 

domain of the human NOTCH1 receptor mutation are also crucial for disulphide bond 

formation, and the mutation found in the present study may disrupt this process.   

Of the 17 NOTCH1
Double

 patients, 14 (82%) were mutated in both the HD (either the HD-N 

or HD-C) and PEST domains, which is the most frequently reported combination of 

mutations in NOTCH1. One of these patients mutated in both the HD and PEST domain also 

had an LNR-B mutation. Previous studies have demonstrated that mutations in the HD and 

PEST domains are in cis on the same allele (Weng et al., 2004). This could not be confirmed 

in the present study as only genomic DNA was available for analysis. The intronic and 

exonic sequence between exons 26 and 34 is 10kb in size, therefore although possible, 

amplification and cloning of a PCR product from genomic DNA would have been 

challenging and this was not pursued. For the same reason, it could not be determined 

whether this was also the case in two patients who harboured mutations in both the HD-N 

and HD-C subunits. One of the patients also has an FBXW7 mutation indicating the 

requirement to further increase the activation signal. One patient had a mutation in both the 

PEST and TAD domains, both mutations are predicted to truncate the protein and be 

functionally comparable. In the paediatric studies, only one other combination of co-incident 
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NOTCH1 mutations has been reported, a patient who harboured both an HD and a JME 

domain mutation (Zuurbier et al., 2010). Six of the nine paediatric studies screened for 

mutations in the HD and PEST domains only, which could explain the low incidence of 

other double mutations in their respective cohorts. 

In total, of the 162 patients analysed by dHPLC on the WAVE platform, 29 (18%) had an 

FBXW7 mutation. Of the eight studies investigating FBXW7 mutations in paediatric T-ALL, 

the median mutation incidence is 16% (range 10% to 31%). The mutation incidence in the 

present study is in line with the previous studies combined (149 of 932, 16%, P=.6) 

(Clappier et al., 2010;Erbilgin et al., 2010;Fogelstrand et al., 2014;Kox et al., 

2010;Malyukova et al., 2007;Mansur et al., 2012;Park et al., 2009;Zuurbier et al., 2010). Of 

the 31 mutations found in 29 patients in this study, 30 (97%) disrupt the conserved arginine 

residues of the WD40 domain, which has been demonstrated to lead to increased levels of 

activated ICN-1 as mutant FBXW7 is unable to bind to the NOTCH1 PEST domain and 

degradation by the proteasome is impaired (Chiang et al., 2008;Thompson et al., 2007). The 

location of the mutations identified in this cohort fits with other studies, with the mutations 

mainly clustering in exons 9 and 10. Functional studies have demonstrated that the R465C 

mutation not only renders FBXW7 unable to bind to the NOTCH1 PEST domain, but also 

unable to ubiquitinate c-Myc, and the subsequent stabilisation of c-Myc results in an 

increased population of LICs. The mutants formed heterodimers and exerted a dominant 

effect over the WT protein (King et al., 2013). R465 is the most frequently mutated amino 

acid in the present study, with 20 (65%) of the 29 mutations in exons 9 and 10 located here, 

therefore these mutations are predicted to be functionally significant. Two missense 

mutations disrupting the arginine residues in exon 12 were also reported in this study, 6% of 

the total FBXW7 mutations. Four other groups have reported missense mutations in arginine 

residues in exon 12 (Fogelstrand et al., 2014;Malyukova et al., 2007;Park et al., 

2009;Zuurbier et al., 2010). These mutations are predicted to be functionally similar to the 

exon 9 and 10 mutations, as exon 12 also encodes part of the WD40 domain which forms the 

propeller-like structure for interaction with various substrates. Less common missense 

mutations affecting residues other than arginine have been reported in previous studies, 

including G498A (Erbilgin et al., 2010), G477S and S516G (Asnafi et al., 2009) in exon 10 

and G423V (Mansour et al., 2009;Asnafi et al., 2009) in exon 9. Only one such mutation 

was found in the present study (3%), G517V located in exon 10. This incidence is in line 

with other studies (9 of 83, 10%, P=.2). Of the eight studies investigating FBXW7 mutations 

in paediatric T-ALL, three screened exons 9 and 10 only. In the studies where more exons 

were investigated, mutations were reported at a lower frequency in exon 7 (Zuurbier et al., 

2010), exon 8 (Erbilgin et al., 2010;Fogelstrand et al., 2014) and exon 3 (Park et al., 2009), 
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however no mutations in exon 8 were identified in this cohort and exons 7 and 3 were not 

screened. No nonsense mutations or size change mutations were identified in this cohort, 

however frameshift insertions, deletions and indels have been reported in other studies (Park 

et al., 2009;Clappier et al., 2010;Erbilgin et al., 2010;Fogelstrand et al., 2014).  

Studies have shown that co-incident mutations in the NOTCH1 HD domain and the 

NOTCH1 PEST domain synergise to increase NOTCH1 activation and signal strength, and 

that mutations in the FBXW7 gene also have a synergistic effect when coupled with 

NOTCH1 mutations (Maser et al., 2007;Weng et al., 2004;Chiang et al., 2008;O'Neil et al., 

2007;Thompson et al., 2007). These findings have recently been extended in in vivo mouse 

models, which demonstrated that FBXW7 and NOTCH1 mutations co-operate to stabilise c-

Myc, thereby increasing leukaemia initiating capacity (King et al., 2013). The frequency of 

co-incident NOTCH1 and FBXW7 mutations in the present study is 15%, which is 

comparable to other studies combined (94 of 932, 10% P=.07). There was a positive 

association between mutations in the NOTCH1 HD domain only and the FBXW7 gene. 

Mutations in the NOTCH1 PEST domain and FBXW7 in the same patient are infrequent. 

Only one patient had an HD mutation with both a PEST and an FBXW7 mutation. This is 

consistent with other studies (Clappier et al., 2010;Zuurbier et al., 2010), and supports the 

hypothesis that in aberrant NOTCH1 signalling, if the NOTCH1 PEST domain is already 

mutated and the activation signal is increased, there is no further advantage in acquiring a 

mutation in FBXW7, or conversely, if FBXW7 is already mutated, there is no further 

advantage in acquiring a mutation in the NOTCH1 PEST domain. The greater number of 

single mutations in the HD domain than the PEST domain suggests that the HD domain 

becomes mutated prior to the PEST domain in the sequence of acquisition. In a mouse model 

of radiation-induced T-cell acute lymphoblastic lymphoma, reduced Fbxw7 activity 

precluded the requirement for Notch1 PEST domain mutations for tumour development (Jen 

et al., 2012).  

The data presented in this chapter reports the screening and identification of mutations in the 

NOTCH1 and FBXW7 genes. The association of the mutations with clinical characteristics 

and the impact of genotype on patient outcome is studied in chapter 4. 
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CHAPTER 4: PROGNOSTIC IMPACT OF NOTCH1 AND/OR FBXW7 

MUTATIONS IN PAEDIATRIC T-ALL PATIENTS WITH T-ALL 

4.1 Introduction 

As described in chapter 1, a risk-adapted approach is used to treat patients with T-ALL, and 

risk stratification of ALL patients on the UKALL 2003 trial is initially based on age and 

WBC. Patients are then further stratified by early response to induction therapy and levels of 

MRD. Several studies have shown the relationship between the risk of relapse and 

persistence of high MRD levels, and the measurement of residual disease is now 

incorporated in most modern treatment protocols (Cave et al., 1998;van Dongen et al., 

1998). Nevertheless, the delay in only identifying high-risk patients based on MRD levels at 

day 29 of induction therapy, and the subsequent switch of treatment regimen at this time 

point, may be a disadvantage for these patients as they may have benefited from earlier more 

intensive treatment. Identification of additional molecular prognostic markers at diagnosis is 

therefore needed to discriminate between the lower-risk and higher-risk patients, so that 

earlier intervention with more intensive therapy such as haematopoietic stem cell 

transplantation can be targeted at those at greatest risk of relapse, and dose reduction 

considered for those at lower risk of relapse. In other haematological malignancies such as 

AML and B-ALL, recent advances have allowed the stratification of patients based on 

cytogenetic and molecular characterisation. A number of recurrent chromosomal 

abnormalities have been shown to have prognostic significance in B-ALL. Some 

chromosomal abnormalities are associated with a more favourable outcome, such as 

hyperdiploidy (Paulsson & Johansson, 2009) and the ETV6-RUNX1 fusion (Attarbaschi et 

al., 2004). Others are associated with a poorer prognosis, including the Philadelphia 

chromosome t(9;22) (Ribeiro et al., 1997), rearrangements of the MLL gene (Pui et al., 

2003), and the intrachromosomal amplification of the AML1 gene (iAMP21) (Moorman et 

al., 2007). This has not been the case in T-ALL as discussed in chapter 1, and there is a lack 

of informative prognostic markers. However, recent studies have indicated that abnormalities 

in the NOTCH1 pathway may be suitable candidates. 

4.1.1 Therapeutic targeting of the NOTCH1 signalling pathway 

The high frequency of activating NOTCH1 mutations in T-ALL, as described in chapter 3, 

implies a central role for NOTCH1 signalling in the pathogenesis of the disease, and the 

pathway has therefore been identified not only as a potential prognostic marker, but also as a 
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therapeutic target (Weng et al., 2004). The presence of a NOTCH1 mutation at diagnosis 

could identify patients who may benefit from NOTCH1 pathway inhibition. Clinical 

compounds initially tested were small molecule inhibitors of the γ-secretase cleavage 

complex, which block the final cleavage in the maturation of the NOTCH1 receptor and 

therefore the translocation of the intracellular domain to the nucleus (Seiffert et al., 2000). 

However, the γ-secretase inhibitors tested were not selective for the NOTCH1 receptor and 

also the blocked signalling through the NOTCH2-4 receptors, and animal studies showed 

that this resulted in gastrointestinal toxicity due to the accumulation of secretory goblet cells 

in the intestine (Milano et al., 2004;van Es et al., 2005;Wong et al., 2004;Searfoss et al., 

2003). Analysis of these inhibitors in relapsed and refractory T-ALL in a phase-1 clinical 

trial by Deangelo et al (2006) demonstrated that this was also the case in patients. In 

addition, there was no significant clinical response, indicating the weak anti-leukaemic 

activity of these agents in T-ALL. More recent studies have shown that the inhibition of 

NOTCH1 with γ-secretase inhibitors restored glucocorticoid–sensitivity in glucocorticoid–

resistant T-ALL cell lines and primary samples (Real et al., 2009). The glucocorticoids 

inhibited the gut toxicity and this suggests that the use of γ-secretase inhibitors in 

combination with glucocorticoids may offer a new treatment option in the future (Real & 

Ferrando, 2009).  

However, other studies have focused on the association of the mutations with the clinical 

characteristics of T-ALL and their prognostic significance.  

4.1.2 Clinical characteristics of T-ALL patients with NOTCH1 and/or FBXW7 

mutations 

Several groups have investigated the characteristics of NOTCH1 and/or FBXW7 mutant T-

ALL since the identification of NOTCH1 and FBXW7 mutations in patients with T-ALL in 

2004 and 2007 respectively, and these studies are summarised in Table 4.1. Most paediatric 

studies showed no association of NOTCH1 and/or FBXW7 mutation status with age, sex or 

WBC count, although of seven studies investigating the impact of NOTCH1 mutations alone 

on clinical characteristics, three reported the mutations were more frequently found in T-

ALL patients with a low WBC count (Mansur et al., 2012;Erbilgin et al., 2010;Park et al., 

2009). Of these paediatric reports, six correlated the T-cell immunophenotype of the patients 

to genotype, and one group showed a significantly higher incidence of NOTCH1 mutations 

in the cortical subgroup (CD1a positive) compared with the immature pro/pre-T phenotype 

(Breit et al., 2006). Another reported that NOTCH1 and/or FBXW7 mutations were 

significantly less frequently associated with mature T-ALL (Zuurbier et al., 2010). 



 

 

 

9
4

 

Table 4.1 Studies reporting on the clinical characteristics of T-ALL patients with NOTCH1 and FBXW7 mutations 

Reference Total 

in 

study 

Median 

age, years 

(range) 

 

NOTCH1 

mutated 

 

(%) 

 FBXW7 

mutated 

 

(%) 

Clinical Characteristics and Immunophenotype Cytogenetics 

(Breit et al., 2006) 157 8.8 (2-18) 52 N/A No difference: age, sex, WBC  

NOTCH1 mutations less frequently associated with 

immature pro/pre-T phenotype and more frequently 

associated with cortical phenotype (P=.02) 

N/A 

(van Grotel et al., 

2008) 

70 N/A 57 N/A No difference: age, sex, WBC  

Non-significant trend towards lesser frequency of 

NOTCH1 mutations in mature T-ALL cases  

No difference 

(Park et al., 2009) 55 9.5 (2-15) 37 20 No difference: age, sex, T cell immunophenotype 

Decreased: WBC ˂100x10
9
/l  associated with 

NOTCH1 and/or FBXW7 mutations (P=.03) 

No difference 

 

(Clappier et al., 

2010) 

134 N/A 57 15 No difference: age, sex, WBC  

NOTCH1 and/or FBXW7 mutations less frequently 

associated with immature pro/pre-T phenotype and 

more frequently associated with cortical phenotype 

(P=.06) 

No difference 

 

(Zuurbier et al., 

2010) 

141 N/A 56 16 No difference: age, sex, WBC  

NOTCH1 and/or FBXW7 mutations less frequently 

associated with mature T-ALL cases (P=.05) 

NOTCH1 and/or FBXW7 mutations 

less frequently associated with 

TAL/LMO rearranged cases and  

more prevalent in TLX3 rearranged 

cases 

(Erbilgin et al., 

2010) 

87 7 (6-16) 22 10 No difference: age, sex, T cell immunophenotype 

Decreased: WBC ˂50x10
9
/l  associated with 

NOTCH1 and/or FBXW7 mutations (P=.03) 

N/A 

(Mansur et al., 

2012) 

138 8 (1-18) 44 19 No difference: age, sex, T cell immunophenotype 

Decreased: WBC associated with missense mutations 

in NOTCH1 (P=.035) 

No difference 
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Table 4.1 Continued 

 
Reference Total in 

study 

Median 

age, years 

(range) 

 

NOTCH1 

mutated 

 

(%) 

 FBXW7 

mutated 

 

(%) 

Clinical Characteristics and Immunophenotype Cytogenetics 

(Fogelstrand et 

al., 2014) 

79 9 (1-17) 57 19 No difference: sex, WBC  

NOTCH1 and/or FBXW7 mutations more frequently 

associated with older patients (P=.007) 

N/A 

(Zhu et al., 2006) 77 
(53 paediatric 

24 adult) 

42 
(18 paediatric 

24 adult) 

38 N/A No difference: age, sex, T cell immunophenotype 

Increased: WBC ˃10x10
9
/l  associated with NOTCH1 

mutations (P=.04) 

No difference 

(Asnafi et al., 

2009) 

141 27.5 (15-

58) 

62 24 No difference: age, sex, WBC, T cell 

immunophenotype 

Mutation more frequently 

associated with TLX1 expression 

(P=0.004) 

(Mansour et al., 

2009) 

88 30.5 (16-

60) 

60  16  No difference: age, sex, WBC  N/A 

 

Abbreviations: WBC, white blood cell count; N/A, not available. 
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Four paediatric studies related cytogenetic abnormalities to mutational status, and one 

demonstrated that NOTCH1 and/or FBXW7 mutations were more frequently associated with 

rearrangements of TLX3 and less frequently associated with TAL/LMO rearranged cases 

(Zuurbier et al., 2010). 

4.1.3 Impact of NOTCH1 and/or FBXW7 mutations on response to therapy and 

patient outcome in T-ALL 

A number of different groups have also reported the impact of the mutations on response to 

therapy and patient outcome, and these studies are summarised in Table 4.2. The association 

between a favourable effect on outcome and the presence of NOTCH1 mutations was first 

suggested by Breit et al (2006), indicating that they might be a suitable candidate prognostic 

marker in T-ALL. This study, comprising 157 paediatric T-ALL patients from the ALL-

Berlin-Frankfurt-Munster (BFM) 2000 trial, showed that those with a NOTCH1 mutation 

were more likely to be MRD-negative at the end of induction therapy, and also to be 

associated with a lower relapse rate (RR) and improved relapse-free survival (RFS). In 

multivariate analyses, NOTCH1 mutation status was found to be a favourable prognostic 

marker independent of age, sex, WBC count at diagnosis and T-cell immunophenotype. 

Since then, a number of studies have extended these findings. Of eight paediatric studies 

investigating the association of NOTCH1 mutation alone on patient outcome, only two could 

replicate the favourable effect seen in the original study, including an extended series of 301 

patients treated on the ALL-BFM 2000 protocol (Kox et al., 2010;Park et al., 2009). In the 

remaining reports, most found no association between the presence of NOTCH1 mutations 

and long term outcome (Erbilgin et al., 2010;Fogelstrand et al., 2014;Larson Gedman et al., 

2009;Mansur et al., 2012;van Grotel et al., 2008). However, one study demonstrated the 

favourable effect of NOTCH1 mutation on early response to therapy, but this did not 

transcend into long term outcome (Zuurbier et al., 2010).   

The identification of FBXW7 mutations in T-ALL in 2007, and the finding that they 

synergise with NOTCH1 mutations to increase the activation of the NOTCH1 signalling 

pathway, led to the grouping together of the NOTCH1 and/or FBXW7 mutated patients for 

analysis of outcome in a number of studies of paediatric T-ALL. Of the three paediatric 

studies where early response to therapy (as assessed by morphology at day 8 or 15 of 

induction therapy, where a good response was defined as <1000 leukaemic blood blasts/µl) 

was related to mutational status, all agreed that the presence of NOTCH1 and/or FBXW7 

mutations was associated with a favourable early response to treatment (Clappier et al., 

2010;Zuurbier et al., 2010;Kox et al., 2010). Two of these studies also correlated the 
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Table 4.2 Studies reporting on the impact of NOTCH1 and FBXW7 mutations on clinical outcome in T-ALL 

Reference Age 

group 

Protocol/trial Total in 

study 

NOTCH1 

mutated 

 

(%) 

 FBXW7 

mutated 

 

(%) 

Outcome compared to NOTCH1
WT

and/or FBXW7
WT

  

(Breit et al., 2006) Paediatric ALL-BFM 2000 157 52 N/A RER and favourable MRD  in NOTCH1
MUT 

group 

Lower RR and improved RFS in NOTCH1
MUT 

group 

(van Grotel et al., 

2008) 

Paediatric DCOG-ALL7/8/9 70 57 N/A No association with outcome in NOTCH1
MUT 

group 

(Larson Gedman 

et al., 2009) 

Paediatric POG 

8704/9086/9295/9

296/9297/9398 

47 34 11 No association with outcome in NOTCH1 and/or FBXW7 group 

(Park et al., 2009) Paediatric JACLS-ALL-97 55 37 20 Improved EFS and OS in NOTCH1
MUT 

alone and NOTCH1 and/or FBXW7 

groups 

(Zuurbier et al., 

2010) 

Paediatric DCOG-ALL7/8/9; 

COALL-97 

141 56 16 RER in NOTCH1 and/or FBXW7 group   

 No association with EFS in NOTCH1 and/or FBXW7 group 

(Clappier et al., 

2010) 

Paediatric EORTC 

58881/58951 

134 57 15 RER and favourable MRD in NOTCH1 and/or FBXW7 group 

No association with EFS and OS in NOTCH1 and/or FBXW7 group 

(Kox et al., 

2010)* 

Paediatric ALL-BFM 2000 301 50 14 RER and favourable MRD in NOTCH1
MUT 

alone  and NOTCH1 and/or 

FBXW7
 
group 

Improved EFS and OS in NOTCH1
MUT 

alone group 

(Erbilgin et al., 

2010) 

Paediatric ALL-BFM 2000 87 22 10 No association with outcome in NOTCH1
MUT

, FBXW7
MUT

 or NOTCH1 

and/or FBXW7 groups 

(Mansur et al., 

2012) 

Paediatric GBTL1-99 138 44 19 No association with outcome in NOTCH1
MUT

, FBXW7
MUT

 or NOTCH1 

and/or FBXW7 groups 

(Fogelstrand et 

al., 2014) 

Paediatric  NOPHO ALL-

1998/2000 

79 57 19 No association with outcome in NOTCH1 and/or FBXW7 group 

(Zhu et al., 2006) Paediatric 

and adult 

VDCP regimen 77 
(53 paediatric 

24 adult) 

38 N/A Paediatric: No association with outcome in NOTCH1
MUT 

Adults: Inferior OS and RFS in NOTCH1
MUT 

group 

(Asnafi et al., 

2009) 

Adult LALA-94; 

GRAALL-2003 

141 62 24 Association with improved EFS and OS in NOTCH1
MUT 

alone and NOTCH1 

and/or FBXW7 group but only significant in multivariate analysis in 

NOTCH1 and/or FBXW7 group 
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Table 4.2 Continued 

 

 

Abbreviations: N/A, not available; RER, rapid early response; MRD, minimal residual disease; RR, relapse rate; RFS, relapse-free survival; EFS, event-free 

survival; OS, overall survival. 

* extended cohort of original ALL-BFM study by Breit et al (2006). 

 

 

Reference Age 

group 

Protocol/trial Total in 

study 

NOTCH1 

mutated 

 

(%) 

 FBXW7 

mutated 

 

(%) 

Outcome compared to NOTCH1
WT

and/or FBXW7
WT

  

(Mansour et al., 

2009) 

Adult UKALLXII/ECO

G2993 

88 60 16 No association with outcome in NOTCH1 and/or FBXW7 group 
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presence of NOTCH1 and/or FBXW7 mutations to MRD status (assessed at day 29 of 

induction therapy, with MRD-negative disease defined according to the specific study), both 

reported a positive association between the presence of mutations and MRD-negativity 

(Clappier et al., 2010;Kox et al., 2010).  

Of the eight paediatric studies that investigated the long term outcome of patients with 

NOTCH1 and/or FBXW7 mutations, only one demonstrated the favourable effect of 

mutations on EFS and OS (Park et al., 2009), with the favourable effect of the NOTCH1 

mutations being lost on the addition of FBXW7 mutations in one study (Kox et al., 2010). 

However, the remaining studies found no association between the presence of NOTCH1 

and/or FBXW7 mutations and long term survival (Clappier et al., 2010;Erbilgin et al., 

2010;Fogelstrand et al., 2014;Larson Gedman et al., 2009;Mansur et al., 2012;Zuurbier et 

al., 2010;Kox et al., 2010). The presence of mutations in the NOTCH1 signalling pathway 

therefore only translates into improved overall survival in some trials, and it has been 

suggested that this is most probably as a result of differences in therapy (Ferrando, 2010).  

The impact of mutations on the prognosis of high-risk T-ALL patients has also been 

controversial. Two studies reported that the effect of NOTCH1 and/or FBXW7 mutations 

differed between the standard- and intermediate-risk groups and the high-risk groups that 

were defined as poor early responders to induction therapy and/or MRD-positive (Clappier et 

al., 2010;Kox et al., 2010), In the ALL-BFM study, presence of a NOTCH1 mutation was 

associated with an improved outcome in the standard- and intermediate-risk groups, but had 

no effect on long term outcome in the high-risk group (Kox et al., 2010). Whereas in the 

EORTC protocol, where there was no reported effect of NOTCH1 and/or FBXW7 mutations 

in the standard- and intermediate-risk groups, high-risk patients had a dismal prognosis, with 

a significantly poorer outcome and more central nervous system (CNS) relapses when 

compared to NOTCH-
 
WT patients (Clappier et al., 2010).  

A recent study has shown in a mouse model that the NOTCH1 receptor positively controls 

expression of the chemokine receptor CCR7, which is required for targeting T-ALL cells to 

the CNS (Buonamici et al., 2009). Mutations in NOTCH1 resulting in constitutive activation 

of the NOTCH1 pathway upregulated CCR7 expression, therefore leukaemic cells were 

targeted to the CNS at a higher rate. This could explain the higher rate of CNS relapse in 

NOTCH1-
 
mutated

 
high-risk patients treated on the EORTC trial and their subsequent dismal 

prognosis. However, CNS relapses are rare in BFM-treated patients in general but also in the 

high-risk group (Kox et al., 2010). The major difference in the treatment protocols in these 

two studies is the use of prophylactic cranial radiation in the BFM trial, suggesting that this 
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may play a role in the prevention of CNS relapse in the NOTCH1 mutant high-risk T-ALL 

patients (Kox et al., 2010).  

This chapter reports the results of an investigation into the impact of NOTCH1 and FBXW7 

mutations in a cohort of paediatric patients with T-ALL treated on the UKALL 2003 trial. 

Other studies have investigated the impact according to the presence of individual NOTCH1 

mutations or the combined NOTCH1 and/or FBXW7-mutated group. However, as described 

in chapter 3, double mutations in NOTCH1, such as an HD domain mutation coupled with a 

PEST domain mutation, also synergise to increase NOTCH1 signal strength. Therefore in the 

present study, the NOTCH1
Double

FBXW7
WT

 group was considered jointly with the 

NOTCH1
MUT

FBXW7
MUT

  group as they both lead to synergistic NOTCH1 activation and are 

predicted to be functionally equivalent. The cohort was therefore divided into three defined 

genotype groups prior to analysis, WT for both genes (NOTCH1
WT

FBXW7
WT

), single 

NOTCH1-mutated alone (NOTCH1
Single

FBXW7
WT

), and NOTCH1
Double

FBXW7
WT

 or 

NOTCH1
MUT

FBXW7
MUT 

(hereafter called NOTCH1±FBXW7
Double

). 

4.2 Materials and Methods  

4.2.1 Patients 

As detailed in chapter 3, diagnostic samples from 162 patients entered into the MRC 

UKALL2003 trial were available for NOTCH1 and FBXW7 mutation screening. The trial 

was opened to patients aged 1-18 years in 2003. The age limit was increased to 20 years in 

2006, and 25 years in 2007. Median age of the patients studied was 9 years (range 1-23); 23 

were over 16 years, 3 of these over 20 years; 123 were male and 39 female. Patients with bi-

phenotypic leukaemia or T-cell lymphoma were excluded. The clinical information for this 

study was made available by the Clinical Trial Service Unit, Richard Doll Building, 

University of Oxford, and all statistical analyses were performed by the trial statisticians, 

Rachel Wade and Sue Richardson.  

4.2.2 MRC UKALL 2003 trial protocol  

Details of the trial protocol have been published elsewhere (Qureshi et al., 2010). There are 

three phases of treatment: induction, consolidation and maintenance, with patients assigned 

to one of three regimens at diagnosis. Details of the drugs used and timing schedules for the 

three regimens are shown in outline in Figure 4.1. At trial entry, induction therapy was 
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Figure 4.1 Outline of the MRC UKALL 2003 trial protocol. Drugs used and timing schedules for the three regimens. 
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allocated according to the National Cancer Institute (NCI) risk score. Patients with low-risk 

disease (age 1-10 years and WBC <50x10
9
/L) were allocated to a 3-drug induction regimen 

with vincristine, dexamethasone and asparaginase (regimen A); high-risk patients (age >10 

years and/or WBC >50x10
9
/L) were allocated to receive additional daunorubicin (regimen 

B). Patients who had a morphological slow early response (SER, defined as >25% bone 

marrow blasts at day 8 or 15 for high- and low-risk patients respectively), and were less than 

16 years of age were then assigned to 'augmented BFM' therapy (regimen C) and received 

additional asparaginase during the consolidation and delayed intensification phases. At day 

29, patients not in morphological remission but with <25% bone marrow blasts were also 

reallocated to regimen C. If resistant disease was present (>25% bone marrow blasts), 

patients were taken off protocol. MRD was assessed in those with a rapid early response 

(RER) in morphological remission at day 29 using PCR analysis of leukaemia clone-specific 

rearranged TCR and  genes as previously described (Goulden et al., 1998). If MRD of 

more than 1 leukaemic cell in 1000 cells (>10
-3

) was present, patients were classed as MRD-

positive and were then randomised to either remain on their assigned regimen (A or B) or to 

be reallocated to regimen C. Of the 162 patients included in this study, 14 patients were 

treated on regimen A, 92 on B and 56 on C (Figure 4.2).  

4.2.3 Cytogenetic and FISH analysis 

Cytogenetic and FISH analyses were made available by the Clinical Trial Service Unit and 

were performed on pre-treatment samples using standard methodologies. They were reported 

and reviewed as previously described (Moorman et al., 2010;Harrison et al., 2001). FISH 

testing for CDKN2A/B, MLL, AF10/CALM, TLX1, TLX3, BCL11B, TAL1, LMO1, LMO2, 

LYL1 and TCR α/δ, γ/β abnormalities were performed using a combination of commercial 

and home-grown probes as previously reported (Harrison et al., 2005;Sulong et al., 

2009;Marks et al., 2009). Classification of patients into the four genetic T-ALL subgroups 

(rearrangements of HOXA, TAL1/LMO, TLX1 and TLX3) was based on a combination of 

cytogenetic and FISH data and according to the definition outlined by Van Vlierberghe et al 

(2008).  

4.2.4 Clinical end points 

Outcome was analysed according to overall survival (OS), defined as the time to death, 

event-free survival (EFS), which was the time to relapse, secondary tumour or death, and 

rate of relapse (RR), which was the time to relapse for those that achieved remission, 

censoring at death in remission.
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Figure 4.2 Schema of the therapy given to the 162 patients included in this study. NCI, National Cancer Institute; WBC, white blood cell count; MRD, 

minimal residual disease. 
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4.2.5 Statistical analysis 

Statistical analysis of the UKALL2003 cohort was performed by Rachel Wade and Sue 

Richards at the Clinical Trial Service Unit, Oxford UK. Chi-squared tests were used to test 

for differences across the patient molecular groups in categorical subgroups such as gender, 

genetic subgroup, NCI risk group, SER and MRD, excluding any missing data categories. P-

values are quoted for heterogeneity and when determining the statistical significance in 

response to therapy across the three genotype groups, P-values are also quoted for trend. Due 

to small sample size Fisher’s exact test was used to test for differences in the incidence of 

CNS relapse according to genotype. The non-parametric Kruskall-Wallis test was used to 

determine statistical significance between patient genotype and continuous variable 

subgroups including WBC and age. Kaplan-Meier curves were used to assess survival, and 

differences between groups were compared using the log-rank test. Multivariate logistic 

regression models were used to analyse SER and MRD, and time to event was modelled 

using Cox regression. P values are for Wald chi-squared tests for the effect of 

NOTCH1/FBXW7 genotype, excluding OS where the likelihood ratio test is also presented 

due to no deaths in the NOTCH1±FBXW7
Double

 group. Hazard ratios (HRs) and 95% 

confidence intervals (CI) are quoted for all main endpoints. In all cases, a ratio <1 indicates a 

benefit for a NOTCH1/FBXW7 mutation. All P values quoted are two-sided, P<0.5 was 

considered statistically significant. The decision to divide the patients according to the three 

defined genotype groups was made prior to analysis.   

4.3 Results 

Surviving patients in the cohort of 162 analysed for NOTCH1 and FBXW7 mutations were 

censored on 31
st
 October 2011. Median follow up for survivors in this cohort was 4 years 

and 6 months (range 2 years 4 months to 7 years 9 months). When the cohort was divided 

into the three defined genotype groups, 57 patients (35%) were WT for both genes 

(NOTCH1
WT

FBXW7
WT

), 62 patients (38%) were single NOTCH1-mutated alone 

(NOTCH1
Single

FBXW7
WT

), and 39 patients (24%) were either NOTCH1
Double

FBXW7
WT

 

(n=14) or NOTCH1
MUT

FBXW7
MUT  

ie. NOTCH1±FBXW7
Double

. There were also four patients 

(3%) with an FBXW7 mutation only. 
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4.3.1 Characteristics of T-ALL patients according to genotype 

Compared with the 226 T-ALL patients treated on the UKALL 2003 trial who did not have 

molecular data, there were no significant differences in sex, WBC, NCI risk group or CNS 

disease at diagnosis (Table 4.3). In the 226 T-ALL patients entered into the trial without 

molecular data the median age was 11 years (range 1-24 years); the 162 patients with 

molecular data in the present cohort were slightly younger (P=.005), the median age was 9 

years (range 1-23 years). 

The characteristics of the patients studied are given in Table 4.4. There was no significant 

difference in sex, WBC, age group, CNS disease or NCI risk group between the three 

combined genotype groups, excluding the four patients with FBXW7 mutations alone, nor in 

cytogenetic characteristics. 

4.3.2 Response to glucocorticoid therapy by NOTCH1/FBXW7 genotype 

After the initial stratification at the time of trial entry based on age and WBC count, patients 

are further stratified by the level of clearance of the blasts in the blood or marrow after one 

or two weeks of induction therapy. This response to glucocorticoid therapy is assessed 

morphologically on day 8 for patients initially treated on Regimen B and day 15 for patients 

on Regimen A. A rapid early response (RER) is defined as ≤25% blasts in the marrow, a 

slow early response (SER) as >25% blasts present in the marrow.  

Early response to therapy was first correlated with the presence or absence of mutations in 

individual genes. Of the 101 patients with a NOTCH1 mutation, 80 (79%) had an RER and 

21 (21%) an SER. Of the 61 patients lacking a NOTCH1 mutation, 40 (66%) had an RER 

and 21 (34%) an SER (Table 4.5). This difference was of borderline significance (P=.06), 

which may suggest that patients with a NOTCH1 mutation were more likely to be associated 

with an RER than those without a NOTCH1 mutation. FBXW7 mutational status alone had 

no significant effect on early response. Of the 29 patients with an FBXW7 mutation, 25 

(86%) had an RER and 4 (14%) had an SER, whereas of the 133 patients without an FBXW7 

mutation, 95 (71%) had an RER and 38 (29%) had an SER (Table 4.5). This was not 

statistically significant (P=.1) however, the number of patients with an FBXW7
 
mutation was 

low. 
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Table 4.3 Characteristics of T-ALL patients with and without molecular data 

Characteristic 

Patients with 

data % 

Patients without 

data % P
1
 

Gender 

     Male 

     Female 

 

123 

39 

 

76% 

24% 

 

159 

67 

 

70% 

30% 

0.2 

Age Group (years) 

     <10 

     10-15 

     ≥16 

    Median 

    Range 

 

88 

51 

23 

9 

1-23 

 

54% 

32% 

14% 

N/A 

N/A 

 

99 

87 

40 

11 

1-24 

 

44% 

38% 

18% 

N/A 

N/A 

0.1 

 

 

 

0.005
2
 

WBC at diagnosis (x10
9
/L) 

     <50 

     50-99 

     ≥100 

 

50 

25 

87 

 

31% 

15% 

54% 

 

88 

37 

101 

 

39% 

16% 

45% 

0.2 

NCI risk group 

     Low 

     High 

 

20 

142 

 

12% 

88% 

 

38 

188 

 

17% 

83% 

0.2 

CNS disease at diagnosis 

     No 

     Yes 

 

154 

8 

 

95% 

5% 

 

210 

16 

 

93% 

7% 

0.4 

5 year event-free survival, 

  % (95% CI) 

84% 

(79%-90%) 

N/A 80% 

(74%-80%) 

N/A 0.3
3
 

 

P values: 
1
Chi-squared test, 

2
Kruskal-Wallis test, 

3
Log-rank test. 

Abbreviations: WBC, white blood cell count; NCI, National Cancer Institute; CNS, central 

nervous system; N/A, not applicable; CI, confidence intervals. 
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Table 4.4 Characteristics of T-ALL patients investigated, grouped according to NOTCH1/FBXW7 genotype 

Subgroup 
Total


 

NOTCH1
WT

FBXW7
WT 

NOTCH1
Single

FBXW7
WT 

NOTCH1±FBXW7
Double

 P* 

Total no. % Total no. % Total no. %  

Gender 

    Male 

    Female 

 

119 

39 

 

40 

17 

 

70% 

30% 

 

48 

14 

 

77% 

23% 

 

31 

8 

 

79% 

21% 

0.5 

 

WBC (x10
9
/L) 

    <50 

    50-99 

    ≥100 

Median count 

Range 

 

      47 

25 

86 

110.5 

0.5-881.0 

 

     16 

7 

34 

131.0 

0.5-881.0 

 

           28% 

12% 

60% 

N/A 

N/A 

 

       17 

12 

33 

104.8 

2.5-783.1 

 

      28% 

19% 

53% 

N/A 

N/A 

 

           14 

6 

19 

90.0 

6.4-777.0 

 

       36% 

15% 

49% 

N/A 

N/A 

0.8 

 

 

 

0.5** 

Age group   

(years) 

  <10 

  10-15 

  ≥16 

 Median 

 Range 

 

 

85 

50 

23 

9 

1-23 

 

 

31 

16 

10 

9 

1-23 

 

 

54% 

28% 

18% 

N/A 

N/A 

 

 

35 

19 

8 

8 

1-23 

 

 

56% 

31% 

13% 

N/A 

N/A 

 

 

19 

15 

5 

11 

2-18 

 

 

49% 

38% 

13% 

N/A 

N/A 

    0.8 

 

 

    

   

    0.3** 

 

CNS disease  

  No 

  Yes 

 

150 

8 

 

55 

2 

 

96% 

4% 

 

58 

4 

 

94% 

6% 

 

37 

2 

 

95% 

5% 

0.7 

 

NCI risk group 

  Low 

  High 

 

18 

140 

 

7 

50 

 

12% 

88% 

 

6 

56 

 

10% 

90% 

 

5 

34 

 

13% 

87% 

0.6 
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Table 4.4 Continued 

 

Subgroup 
Total


 

NOTCH1
WT

FBXW7
WT 

NOTCH1
Single

FBXW7
WT 

NOTCH1±FBXW7
Double

 P* 

Total no. % Total no. % Total no. %  

Cytogenetics 

  Normal 

  Abnormal 

  Failed 

  Missing 

 

31 

94 

27 

6 

 

10 

41 

4 

2 

 

18% 

72% 

7% 

3% 

 

14 

30 

16 

2 

 

23% 

48% 

26% 

3% 

 

7 

23 

7 

2 

 

18% 

59% 

18% 

5% 

0.4
†
 

 

 

Genetic 

subgroup 

  HOXA 

  TAL/LMO 

  TLX1 

  TLX3 

  Missing 

 

 

9 

30 

3 

8 

108 

 

 

4 

11 

1 

3 

38 

 

 

7% 

19% 

2% 

5% 

67% 

 

 

2 

12 

2 

1 

45 

 

 

3% 

19% 

3% 

2% 

73% 

 

 

3 

7 

0 

4 

25 

 

 

8% 

18% 

0% 

10% 

64% 

0.6 

 

CDKN2A/B 

deletion 

  No 

  Yes 

  Missing 

 

 

38 

37 

83 

 

 

14 

13 

30 

 

 

25% 

23% 

52% 

 

 

15 

15 

32 

 

 

24% 

24% 

52% 

 

 

9 

9 

21 

 

 

23% 

23% 

54% 

    0.99 

 

 


Excludes 4 patients with NOTCH1

WT
FBXW7

MUT
 genotype. 

*P values: unless otherwise indicated these are given for chi-squared test for categorical subgroups across all 3 molecular groups, excluding any missing data 

categories. **Kruskal-Wallis test for continuous variable subgroups for WBC and age. 
†
Normal versus abnormal. 

Abbreviations: WT, wild-type; MUT, mutant; WBC, white blood cell count; CNS, central nervous system; NCI, National Cancer Institute; N/A, not 

applicable. 
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Early response to therapy was then correlated to the three genotype groups, excluding the 

four patients with mutations in FBXW7 alone. The frequency of an RER was highest in 

NOTCH1±FBXW7
Double

 patients and this was of borderline significance (82%, 77%, 40% for 

NOTCH1±FBXW7
Double

, NOTCH1
Single

FBXW7
WT

 and NOTCH1
WT

FBXW7
WT

 respectively, P 

for trend across all groups =.08) (Table 4.5). When multivariate analysis was performed 

considering the known prognostic factors for T-ALL, i.e. age and WBC, genotype was not a 

significant prognostic marker of early response to therapy (Table 4.6). Although the hazard 

ratios (HR) in both the NOTCH1
Single

FBXW7
WT 

group (HR=0.65, 95% confidence intervals 

(CI) = 0.27-1.40) and the NOTCH1±FBXW7
Double

 group (HR=0.45, 95% CI = 0.16-1.21) 

suggest that patients with a mutation are less likely to have an SER, the 95% CI for each 

group are broad and there is no statistical difference when compared to patients with no 

mutation.  
 
 

4.3.3 MRD status according to NOTCH1/FBXW7 genotype  

The MRD status at day 29 post diagnosis was provided by Dr. Nick Goulden at Great 

Ormond Street Hospital, one of the UKALL2003 trial co-ordinators, and was available for 

151 of the 162 paediatric patients. Patients with residual disease at the level of one positive 

cell in 1000 cells were considered MRD-positive, i.e. unfavourable disease, and those with 

levels of disease below this were considered MRD-negative, i.e. favourable disease. MRD 

status was first correlated with the presence or absence of mutations in individual genes. Of 

the 97 patients with a NOTCH1 mutation, 57 (59%) had favourable and 40 (41%) 

unfavourable disease, whereas of the 54 patients lacking a NOTCH1 mutation, 21 (39%) had 

favourable and 33 (61%) unfavourable disease (Table 4.5). This difference was statistically 

significant (P=.02), indicating that patients with a NOTCH1 mutation were more likely to be 

associated with a low level of MRD than those without a NOTCH1 mutation. FBXW7 

mutational status alone had no significant effect on MRD. Of the 29 patients with an FBXW7 

mutation, 17 (58%) had favourable and 12 (41%) unfavourable disease, whereas of the 122 

patients without an FBXW7 mutation, 61 (50%) had favourable and 61 (50%) unfavourable 

disease (Table 4.5). This was not statistically significant (P=.4), but there were only a small 

number of patients with an FBXW7
 
mutation. MRD status was then assessed according to the 

number of NOTCH1 mutations or the combination of NOTCH1 and FBXW7 mutations, 

excluding the four patients with mutations in FBXW7 alone.
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Table 4.5 Response to chemotherapy and survival status according to NOTCH1/FBXW7 genotype 

  NOTCH1 genotype FBXW7 genotype NOTCH1+FBXW7 genotype

 

 Total WT 

 

MUT 

 

P* WT 

 

MUT 

 

P* Total NOTCH1
WT 

FBXW7
WT

 

NOTCH1
Single 

FBXW7
WT

 

NOTCH1± 

FBXW7
Double

 

P* 

Slow early 

response 

    No 

    Yes 

 

 

120 

42 

 

 

40 (66%) 

21 (34%) 

 

 

80 (79%) 

21 (21%) 

 

 

0.06 

 

 

95 (71%) 

38 (29%) 

 

 

25 (86%) 

4 (14%) 

 

 

0.1 
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40 

 

 

38 (67%) 

19 (33%) 

 

 

48 (77%) 

14 (23%) 

 

 

32 (82%) 

7 (18%) 

 

 

0.2 

0.08** 

MRD at day 

29 

    Negative 

    Positive 

 

 

78 

73 

 

 

21 (39%) 

33 (61%) 

 

 

57 (59%) 

40 (41%) 

 

 

0.02 

 

 

61 (50%) 

61 (50%) 

 

 

17 (58%) 

12 (41%) 

 

 

0.4 

 

 

77 

70 

 

 

20 (40%) 

30 (60%) 

 

 

30 (51%) 

29 (49%) 

 

 

27 (71%) 

11 (29%) 

 

 

0.01 

0.005** 

CNS relapse 

    No 

    Yes 

 

153 

9 

 

60 (98%) 

1 (2%) 

 

93 (92%) 

8 (8%) 

 

0.2

 

 

125 (94%) 

8   (6%) 

 

28 (97%) 

1 (3%) 

 

0.99

 

 

149 

9 

 

56 (98%) 

1 (2%) 

 

56 (90%) 

6 (10%) 

 

37 (95%) 

2 (5%) 

 

0.2 

0.4** 

Outcome at 

5 years, 

% (95% CI) 

RR 

 

EFS 

 

OS 

 

 

 

161 

 

162 

 

162 

 

 

 

16% 

(6%-26%) 

80% 

(69%-90%) 

83% 

(73%-93%) 

 

 

 

11% 

(5%-17%) 

87% 

(80%-94%) 

93% 

(88%-98%) 

 

 

 

0.4
†
 

 

0.1
†
 

 

0.06
†
 

 

 

 

15% 

(9%-21%) 

82% 

(76%-89%) 

87% 

(81%-93%) 

 

 

 

4% 

(0%-10%) 

93% 

(84-100%) 

100% 

 

 

 

0.08
†
 

 

0.1
†
 

 

0.02
†
 

 

 

 

157 

 

158 

 

158 

 

 

 

17% 

(7%-28%) 

78% 

(67%-89%) 

82% 

(71%-92%) 

 

 

 

15% 

(6%-24%) 

84% 

(75%-93%) 

88% 

(80%-96%) 

 

 

 

5% 

(0%-12%) 

92% 

(84%-100%) 

100% 

 

 

 

0.1
†
 

 

0.04
†
 

 

0.005
†
 

 


Excludes 4 patients with NOTCH1

WT
FBXW7

MUT
 genotype.*P values: unless otherwise indicated these are for chi-squared test for heterogeneity across all 3 

molecular groups. **Trend for NOTCH1+FBXW7 genotype. 

Fisher’s exact test due to small numbers. 

†
Log-rank test. Abbreviations: WT, wild-type; MUT, 

mutant; MRD, minimal residual disease; CNS, central nervous system; RR, relapse risk; EFS, event-free survival; OS, overall survival; CI, confidence 

interval. 
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Favourable and unfavourable disease were observed in 27 (71%) and 11 (29%) of the 38 

NOTCH1±FBXW7
Double

 patients respectively, 30 (51%) and 29 (49%) of the 59 

NOTCH1
Single

FBXW7
WT

 patients, and 20 (40%) and 30 (60%) of the 50 patients with 

mutations in neither gene (NOTCH1
WT

FBXW7
WT

). The frequency of MRD-negativity was 

highest in NOTCH1±FBXW7
Double

 patients and P for trend =.005 (Table 4.5). Of the 11 

patients without MRD data, seven were NOTCH1
WT

FBXW7
WT

, three 

NOTCH1
Single

FBXW7
WT

 and one NOTCH1±FBXW7
Double

. When multivariate analysis was 

performed with the variables age and WBC included in the analysis, the genotype was a 

highly significant prognostic indicator of MRD status at day 29 (P=.0003) (Table 4.6).  

4.3.4 Clinical outcome by NOTCH1/FBXW7 genotype 

Outcome data was available for all 162 patients. There was no significant difference in the 

EFS at 5 years from the 226 excluded patients without molecular data (84% versus 80%, 

P=.3) (Table 4.3).  

There was no significant difference between NOTCH1
MUT

 and NOTCH1
WT

 patients in RR 

and EFS at 5 years, 11% versus 16% (log-rank P=.4) and 87% versus 80% (P=.1) 

respectively, although NOTCH1
MUT

 patients did show a trend for improved OS (93% versus 

83%, P=.06) (Figure 4.3 A-C). Outcome for FBXW7
MUT 

patients was generally better than 

FBXW7
WT

 patients, RR 4% versus 15% respectively (P=.08), EFS 93% versus 82% (P=.1), 

and OS 100% versus 87% (P=.02) (Figure 4.4 A-C). Of 29 FBXW7
MUT

 patients, only one 

relapsed and none have died. In the combined genotype groups, there was a non-significantly 

lower RR according to the number of mutations, 17%, 15%, 5% for NOTCH1
WT

FBXW7
WT

, 

NOTCH1
Single

FBXW7
WT

 and NOTCH1±FBXW7
Double

 patients respectively (P for trend =.1), 

and significantly improved EFS (78%, 84%, 92%; P=.04)  and OS (82%, 88%, 100%; 

P=.005) (Figure 4.5 A-C). In a multivariate analysis, this significantly better OS was 

independent of age and WBC (P=.004), HRs and CIs for the NOTCH1
Single

FBXW7
WT

 and 

NOTCH1±FBXW7
Double

 were 0.06 (95% CI = 0.007-0.54) and 0.02 (95% CI =0.002-0.16) 

respectively, therefore genotype is a significant prognostic indicator of improved OS (Table 

4.6). Many of the 39 NOTCH1±FBXW7
Double

 patients had characteristics associated with 

high-risk disease, 20 (51%) were 10 years or older, 25 (64%) had a presenting WBC 

>50x10
9
/L, with 34 (87%) having NCI high-risk disease (Table 4.4). Furthermore, six (15%) 

of this group, were NCI high-risk and had an SER, and 12 (31%) had high-level MRD at day 

29. Nevertheless, despite the presence of these poor risk factors, only two of the 39 relapsed 

and both remained alive at the analysis end-point, one had a cord blood transplant, the other 

was transferred to the EURO-LB 02 protocol.  
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Table 4.6 Multivariate analysis of outcome with age and WBC as continuous variables 

 

Outcome Variable 

Hazard ratio (95% CI)  

P* NOTCH1
WT

FBXW7
WT 

NOTCH1
Single

FBXW7
WT 

NOTCH1±FBXW7
Double

 

SER 1.00 0.65 (0.27-1.40) 0.45 (0.16-1.21) 0.2 

MRD 1.00 0.06 (0.007-0.54) 0.02 (0.002-0.16) 0.0003 

RR 1.00 0.93 (0.37-2.39) 0.29 (0.06-1.35) 0.3 

EFS 1.00 0.68 (0.30-1.56) 0.31 (0.09-1.08) 0.2 

OS 1.00 0.61 (0.23-1.60) 0 (No events) 0.6 

0.004** 

 

*P values: unless otherwise indicated these are for Wald chi-square tests for the effect of NOTCH1/FBXW7 genotype. **Likelihood ratio due to no deaths in 

NOTCH1±FBXW7
Double

 genotype group. Abbreviations: WT, wild-type; SER, slow early response; MRD, minimal residual disease; RR, relapse risk; EFS, 

event free survival; OS, overall survival; CI, confidence interval. 
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Figure 4.3 The impact of NOTCH1 mutant status on clinical outcome. Kaplan-Meier 

curves stratified by NOTCH1-mutant (MUT) versus NOTCH1-wildtype (WT) status. (A) 

Relapse rate, (B) Event-free survival, (C) Overall survival. 
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Figure 4.4 The impact of FBXW7 mutant status on clinical outcome. Kaplan-Meier 

curves stratified by FBXW7-mutant (MUT) versus FBXW7-wildtype (WT)  status. (A) 

Relapse rate,  (B) Event-free survival, (C) Overall survival. 
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In other studies, the impact of a NOTCH1 mutation has differed according to risk group. In 

the ALL-BFM study, the favourable outcome associated with NOTCH1 mutations was 

restricted to those patients with a good response to induction therapy, with no difference in 

the high-risk group of patients who had either an SER or were MRD-positive (Kox et al., 

2010). The EORTC study reported a very poor prognosis in NOTCH1
MUT

 high-risk patients, 

and a high number of CNS relapses in NOTCH1
MUT

 patients (Clappier et al., 2010). To 

examine this in our cohort, outcome was analysed according to genotype in a high-risk group 

of 85 patients with either an SER or MRD-positive disease and a low risk group of 73 

patients with an RER and either MRD-negative disease or MRD status unknown. The OS for 

the NOTCH1±FBXW7
Double

 patients did not differ according to risk group, all patients were 

still alive (Figure 4.6 A-B), and there was some evidence that the favourable impact of the 

genotype was greater in the high-risk than the low-risk group (P for heterogeneity =.05). 

This difference was not seen for RR or EFS. Of the 14 high-risk double-mutated patients, 

none had received a transplant; one was treated on regimen A (low/standard risk), five on 

regimen B (intermediate-risk) and eight on regimen C (high-risk). There was no difference in 

the incidence of CNS relapse across the three genotype groups (P=.2); the highest incidence 

(10%) was in the NOTCH1
Single

FBXW7
WT

 group (Table 4.5).
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Figure 4.5 The impact of NOTCH1 /FBXW7 mutant status on clinical outcome. Kaplan-

Meier curves stratified by NOTCH1 and FBXW7 genotype . (A) Relapse rate,  (B) Event-free 

survival,  (C) Overall survival. 
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Figure 4.6 The impact of NOTCH1/FBXW7 genotype on overall survival.  Low-risk patients with an RER to induction therapy and MRD-negative, High-

risk patients with an SER to therapy and/or MRD-positive.  
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4.4 Discussion 

Data is presented in this chapter on the investigation of NOTCH1- and FBXW7-mutated T-

ALL, in terms of clinical characteristics and the impact of the mutations on response to 

therapy and long-term outcome, in a cohort of 162 paediatric patients with T-ALL treated on 

the UKALL 2003 trial. As previously described in chapter 3, NOTCH1 and FBXW7 

mutations are a frequent occurrence in T-ALL, with a mutation incidence in the present 

cohort of 62% and 18% respectively. In the eight paediatric studies that have investigated the 

impact of mutations on patient outcome, all divided their respective cohorts according to the 

presence of mutations in the NOTCH1 gene only or in a combined NOTCH1 and/or FBXW7-

mutated group (Clappier et al., 2010;Erbilgin et al., 2010;Fogelstrand et al., 2014;Kox et al., 

2010;Larson Gedman et al., 2009;Mansur et al., 2012;Park et al., 2009;Zuurbier et al., 

2010). In these studies therefore, patients with double mutations in the HD and PEST 

domains of NOTCH1 were grouped with patients harbouring single mutations in the gene. 

However, co-incident mutations in the HD and PEST domain of NOTCH1, and mutations in 

both the NOTCH1 and FBXW7 genes, synergise to increase NOTCH1 signal strength and 

these combinations of mutations are predicted to be functionally equivalent. Therefore in the 

present study, the cohort was divided into three defined genotype groups prior to analysis, 57 

patients (35%) WT for both genes (NOTCH1
WT

FBXW7
WT

), 62 patients (38%) single 

NOTCH1-mutated alone (NOTCH1
Single

FBXW7
WT

), and 39 patients (24%) 

NOTCH1±FBXW7
Double

. There were also four patients (3%) with an FBXW7 mutation only 

which were excluded from analysis due to low numbers. 

When comparing the clinical characteristics across the three genotype groups, there was no 

significant difference in sex, WBC, age group, CNS disease or NCI risk group. This is in line 

with five of the eight paediatric studies  (Breit et al., 2006;Clappier et al., 2010;Fogelstrand 

et al., 2014;van Grotel et al., 2008;Zuurbier et al., 2010), however three reported the 

association of NOTCH1 and/or FBXW7 mutations with decreased WBC count at diagnosis 

(Erbilgin et al., 2010;Mansur et al., 2012;Park et al., 2009). Of note, these studies consisted 

of non-European cohorts and reported an overall lower frequency of mutations in patients, 

suggesting racial origin could explain the differences. The T-cell immunophenotype was not 

available for patients in the present cohort. Others have shown a significantly higher 

incidence of mutations in the cortical subgroup (CD1a positive) patients compared with the 

mature immunophenotype cases, suggesting that the oncogenic role of the NOTCH1 

pathway is less prominent in T-ALL cases arrested at a later stage in T-cell development 

(Breit et al., 2006;Zuurbier et al., 2010). There was no association between genotype and 
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cytogenetic characteristics in the present cohort.  However, the proportion of patients in 

which the test results either failed or were missing for cytogenetics, genetic subgroup and 

CDKN2A/B deletion analysis was 21%, 68% and 53% respectively. Therefore, the number of 

patients harbouring the cytogenetic abnormalities in each group was small, making 

comparison between the genotypes difficult. In other studies, NOTCH1 and/or FBXW7 

mutations were more frequently associated with rearrangements of the TLX3 gene and less 

frequently associated with TAL/LMO rearranged cases (Zuurbier et al., 2010). In one study 

where NOTCH1-mutated patients in an adult cohort had an improved outcome, the mutations 

were associated with high expression of TLX1 (20 of 21 patients with high expression of 

TLX1 had a NOTCH1 mutation) (Asnafi et al., 2009). Up-regulation of TLX1 has also been 

reported to be associated with an improved prognosis independently of NOTCH1 mutations 

(Ferrando et al., 2004), indicating that the importance of NOTCH1 activation during 

leukaemogenesis and its influence on the outcome of patients may also depend on other 

factors and collaborating genetic rearrangements. 

Knowledge of clearly defined prognostic markers at diagnosis in T-ALL could help to refine 

current risk stratification strategies that are based on response to therapy, and inform clinical 

decisions, in particular which patients should proceed to allogeneic stem cell transplantation. 

When correlating mutational status to response to glucocorticoid therapy in the present 

cohort, there was a borderline significant trend for patients with a NOTCH1 mutation to be 

more likely associated with a RER than those without a NOTCH1 mutation. FBXW7 

mutational status alone had no significant effect on response, most likely because the patient 

numbers in the group were low. In the three defined genotype groups, the frequency of a 

RER was highest in NOTCH1±FBXW7
Double

 patients, and again this was borderline 

significant. However, in other studies, NOTCH1 and/or FBXW7 mutations were significantly 

associated with an RER (Clappier et al., 2010;Kox et al., 2010;Zuurbier et al., 2010). One 

reason why the difference did not reach significance in the present study could be the 

specific glucocorticoid used in induction therapy. Glucocorticoids are a class of steroid 

hormone that play an important role in the treatment of lymphoid malignancies because of 

their ability to induce apoptosis in lymphoid progenitor cells (Real et al., 2009;Tissing et al., 

2003). Dexamethasone is the glucocorticoid used in the UKALL 2003 protocol, whereas 

other trials use prednisone, and therefore NOTCH1 and/or FBXW7 mutated T-ALLs may be 

less sensitive to dexamethasone.  

The association of NOTCH1 activating mutations with a good response to glucocorticoid 

therapy in patients is unexpected. It has previously been shown that activated NOTCH1 can 

prevent certain T-ALL cell lines from undergoing apoptosis induced by dexamethasone by 
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upregulating anti-apoptotic proteins (Deftos et al., 1998;Sade et al., 2004). More recently, 

NOTCH1 signalling has been linked to glucocorticoid resistance in a study showing that γ-

secretase inhibitors can sensitise for response to glucocorticoids in glucocorticoid-resistant 

cells in which HES1, a downstream target of NOTCH1, represses glucocorticoid receptor 

auto-upregulation (Real et al., 2009). This favours resistance as it decreases the number of 

surface receptors, thereby reducing the apoptotic response. However, the opposite effect is 

seen in NOTCH1 mutated T-ALL patients, where mutation is associated with an RER to 

glucocorticoid treatment, suggesting that the drug effectively kills the leukaemic cells in 

induction therapy. The effect may be due to the interaction of NOTCH1 with other drugs 

used. A recent study has also suggested that the glucocorticoid receptor is a novel substrate 

of FBXW7, and that mutation of the FBXW7 gene renders it unable to sequester the receptor, 

resulting in increased apoptosis (Malyukova et al., 2013). This may explain the RER seen in 

patients with NOTCH1 and/or FBXW7 mutations in other trials, as FBXW7 mutant leukaemic 

cells are predicted to harbour more glucocorticoid receptors on the surface. 

 In the present study, patients in the NOTCH1±FBXW7
Double

 group had a significantly higher 

frequency of MRD-negativity at day 29 of induction therapy, suggesting that the level of 

NOTCH1 pathway activation is an influencing factor in response to treatment. The genotype 

was a highly significant prognostic indicator for response to therapy, independent of age and 

WBC. Two other paediatric studies also correlated genotype to levels of MRD and both 

reported the association of NOTCH1 and/or FBXW7 mutations with favourable levels of 

MRD at day 29 of induction therapy (Clappier et al., 2010;Kox et al., 2010). However, the 

results are not comparable between studies as different parameters are used to define the 

levels of MRD-positive and MRD-negative disease across the various trials. In the UKALL 

2003 trial, MRD-negative disease is defined as <10
-3

 leukaemic cells, whereas in the ALL-

BFM and EORTC protocols it is classified as <10
-4 

and <10
-2  

leukaemic cells respectively, 

therefore a patient who has MRD-negative disease in the context of one trial, may not 

necessarily in another. For patients where the measurement of MRD is not available, it is 

possible that knowledge of the genotype could help to inform the clinical decision as to 

whether a switch of regimen is required. However, this information should be used with 

caution as approximately one third of patients with a NOTCH1±FBXW7
Double 

mutation were 

MRD-positive at day 29, and the excellent OS reported in this group could be as a result of 

the more intensive treatment in this subset of patients. Of note, five patients were treated on 

regimen A, 26 on regimen B and eight on regimen C.     

When correlating genotype to long term outcome, analysed alone, NOTCH1 mutations could 

not predict for improved outcome, but in combination with FBXW7 mutations, patients in the 
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NOTCH1±FBXW7
Double 

genotype group had a significantly improved EFS and OS. Of the 

nine paediatric studies reporting the impact of NOTCH1 and/or FBXW7 mutations, only two 

reported an association between mutation and favourable long term outcome (Kox et al., 

2010;Park et al., 2009), and in one of the studies this effect was seen in the NOTCH1 

mutated group only (Kox et al., 2010). This suggests that the prognostic significance of the 

mutations in paediatric T-ALL may be trial-dependent. There was some evidence in the 

present cohort that the favourable impact on long term outcome of the genotype was greater 

in the high-risk than the low-risk group, which is in contrast to the outcome reported in high-

risk NOTCH1
MUT

 patients on other trials (Clappier et al., 2010;Kox et al., 2010). In addition, 

there was no evidence in the present cohort that lack of cranial irradiation leading to 

increased CNS relapse was a contributory factor to outcome, as has been suggested by others 

(Kox et al., 2010).  

When outcome for these patients was stratified according to individual gene mutant status, 

only the presence of an FBXW7 mutation had a significant effect on OS. This effect was not 

seen in other studies correlating long term outcome to FBXW7 mutation alone (Clappier et 

al., 2010;Erbilgin et al., 2010;Fogelstrand et al., 2014;Kox et al., 2010;Park et al., 2009), 

however the numbers of patients with an FBXW7 mutation are relatively small across the 

studies. A recent study has shown that FBXW7 interacts with glucocorticoid receptor α by 

GSK3β mediated phosphorylation, and targets the receptor for proteosomal degradation 

(Malyukova et al., 2013). Mutation of FBXW7 promotes the stabilisation and activity of the 

glucocorticoid receptor, thereby enhancing glucocorticoid sensitivity. This could explain the 

trend towards a favourable outcome for the patients with an FBXW7 mutation in the present 

study, only one patient relapsed however the total number of patients in the subgroup was 

small. The mutation could sensitise the leukaemic cells for dexamethasone, which is used 

throughout the duration of treatment in the induction, consolidation and maintenance 

therapies. 

Therefore, in the present cohort of paediatric patients with T-ALL treated on the UKALL 

2003 trial, the double-mutated group were associated with a much better response than either 

the NOTCH1
Single

FBXW7
WT

 or NOTCH1
WT

FBXW7
WT

 patients, in terms of clearance of 

leukaemic cells, EFS and OS. This could not be attributed to more favourable characteristics 

at diagnosis, as 87% were classified as NCI high-risk. Furthermore, despite the presence of 

adverse risk factors post-induction in about one-third of this genotype group (SER and/or 

MRD-positive in 14 of 39, 35%), only two high-risk NOTCH1±FBXW7
Double

 patients 

relapsed and all remain alive. The variable effects have been attributed to differences in 

treatment in the various trials (Ferrando, 2010), but differences in the combination of 
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mutations in the genotype groups may also be a significant factor. This may account for the 

differences in the present study, which is the first to consider patients that were either 

NOTCH1
Double

FBXW7
WT

 or NOTCH1
MUT

FBXW7
MUT

 as a single genotype group, as these 

combinations are thought to be functionally equivalent and induce synergistic NOTCH1 

activation (Chiang et al., 2008;O'Neil et al., 2007;Weng et al., 2004;Thompson et al., 2007). 

Other studies have grouped the patients in a NOTCH1 and/or FBXW7 group, which could 

mean that the favourable effect on outcome of the patients with either a double mutation in 

NOTCH1 or a mutation in both NOTCH1 and FBXW7 is masked by the patients with only a 

single NOTCH1 mutation. 

Current whole genome analyses have demonstrated that the genomic landscape for 

individual T-ALL patients is generally highly hetereogeneous (Remke et al., 2009;Rudner et 

al., 2011;Zhang et al., 2012), and it is possible that the NOTCH1±FBXW7
Double

 patients have 

other collaborating mutations that are associated with better outcome or lack prognostically 

adverse factors. Nevertheless, determining the contribution of coincident mutations to 

outcome in T-ALL is likely to be challenging due to the relative rarity of the disease. Recent 

evidence has also indicated that significance of the mutation is context-dependent, with 

reports of activating NOTCH1 mutations, frequently in the TAD and PEST domains, in both 

chronic lymphocytic leukaemia and mantle cell lymphoma being associated with aggressive 

disease and poor OS (Puente et al., 2011;Kridel et al., 2012;Fabbri et al., 2011;Villamor et 

al., 2013).  

The results presented in this chapter suggest that knowledge of NOTCH1/FBXW7 genotype 

may play a role in refining risk stratification by adding valuable information to 

morphological and MRD studies, to identify those patients in which intensification of 

treatment may be unnecessary. However, screening for NOTCH1 mutations for clinical use 

presents a challenge. Replicating the method in the present study requires an individual PCR 

to screen each exon, followed by further separate analysis of each fragment by dHPLC and 

Sanger sequencing of abnormal chromatograms, meaning that this approach is time 

consuming. Also there are no amino acid hotspots in NOTCH1 such as R465 in FBXW7, 

therefore the whole of each exon requires screening. Nevertheless, NGS technologies are 

also problematic as the technique generates relatively short sequence reads which are aligned 

to a reference sequence and highly efficient algorithms are employed to perform the 

mapping. This approach is successful for point mutations but the algorithms struggle 

particularly to accurately align reads containing small indels, which occured in 5% of 

patients in the present study, and can miss large insertions or duplications, which accounted 

for approximately 6% of mutations. NGS has been used to screen for NOTCH1 mutations in 
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other studies, in particular CLL, where a group performed whole exome sequencing (WES) 

of all NOTCH1 exons, and reported NOTCH1 mutations in 4% of  patients (Wang et al., 

2011b). This is contrast to three other studies who utilised Sanger sequencing to screen only 

the PEST domain in their respective cohorts of patients with CLL, all reported PEST 

mutations in 11% of patients (Balatti et al., 2012;Rossi et al., 2013;Villamor et al., 2013). 

Whether or not the differences in the incidence of NOTCH1 mutations between the 

respective studies are as a result of mutations being missed using NGS algorithms, or 

whether they are due to other factors such as the racial origin of the cohort is unclear. 

Screening could potentially be limited to patients who are classified as high-risk post-

induction therapy, with NOTCH1±FBXW7
Double

 patients not considered for further 

intensification therapy, including allogeneic stem cell transplantation. However, further 

investigation is clearly required to validate this finding in a larger cohort.  

The data presented in this chapter shows the association of mutations in the NOTCH1 and 

FBXW7 genes with the clinical characteristics and long-term outcome of patients with T-

ALL. Data on the association of the mutations with other molecular markers is studied in 

chapter 6. 
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CHAPTER 5: SCREENING FOR MUTATIONS IN THE PTEN GENE AND 

QUANTIFICATION OF MUTANT LEVEL 

5.1 Introduction 

In the 1980s, genetic studies on brain cancers showed the complete or partial loss of 

chromosome 10 (Bigner et al., 1984).  However, it was not until 1997, when homozygous 

deletions of chromosome 10 in glioma cell lines were mapped, that a novel candidate tumour 

suppressor gene was identified at the 10q23 locus named phosphatase and tensin homolog 

(PTEN) (Li et al., 1997;Steck et al., 1997). The role of PTEN as a tumour suppressor was 

further established in reports demonstrating frequent mutations of the PTEN gene in 

glioblastoma, prostate and breast cancer cell lines, and in studies where the presence of 

germline PTEN mutations in patients with Cowden disease, an autosomal dominant multiple 

hamartoma syndrome, increased the risk of the development of several cancers including 

breast and thyroid (Liaw et al., 1997). Since then, much knowledge has been gained about 

the structure and function of PTEN and its roles in normal cellular processes.  

5.1.1 Structure of  PTEN  

The PTEN gene has 9 exons; the N-terminus encodes the phosphatase domain and consists 

of exons 1-6, with exons 5 and 6 encoding the WPD, P and TI loops which make up the 

active site pocket. The C-terminus consists of exons 7-9 and encodes the C2 and PEST 

domains (Figure 5.1.A). The PTEN lipid phosphatase is ubiquitously expressed and is a 403 

amino acid protein containing a catalytic signature motif HCXXGXXR, which is also 

present in the active sites of other protein tyrosine phosphatases (PTPs) (Denu et al., 1996). 

However, PTEN has little sequence homology to PTPs outside of this motif, instead the N-

terminal region containing the signature has homology to the actin-binding protein tensin, 

and the molecular chaperone regulating protein auxilin (Li et al., 1997;Steck et al., 1997).  

Crystallography data has provided an insight into the structure of the PTEN protein (Lee et 

al., 1999) (Figure 5.1B,C). The 179 amino acid N-terminal end contains the phosphatase 

domain, and the structure consists of a five-stranded β-sheet packaged with two α-helices on 

one side and four on the other. The signature motif at residues 123 to 130 forms the 

phosphate binding loop (P loop), which is structurally important and positioned at the bottom 

of the active site pocket. The other walls of the pocket are made from the WPD (TrpProAsp) 

loop at residues 91-94 and the TI (ThrIIe) loop at residues 42-52 and 163-166. The 
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Figure 5.1 Structure of PTEN. (A) The N-terminal domain of PTEN consists of the phosphatase domain. The C-terminal region consists of the C2 domain, 

PEST sequences and PDZ binding domain. (B) The phosphatase domain of PTEN contains the active site pocket composed of the P, TI and WPD loops. (C) 

The phosphatase and C2 domains are tightly linked at a phosphatase-C2 domain interface. (A) Taken from Chow et al (2006). (B) and (C) Taken from Song et 

al (2012). 
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incorporation of conserved threonine and isoleucine residues in the TI loop widens the active 

site pocket, which is critical for PTEN to be able to bind its substrates (Figure 5.1B). 

Mutagenesis studies on the active site pocket residues, H93 on the WPD loop and T167 and 

Q171 on the TI loop, showed a 75%, 60% and 70% reduction in phosphatase activity 

respectively, suggesting that the TI loop plays an important role in substrate binding. 

Mutation of K128 on the signature motif resulted in an 85% reduction of phosphatase 

activity (Lee et al., 1999). In the signature motif of PTPs, the cysteine and arginine residues 

are essential for catalysis (Barford et al., 1994), and the histidine and glycine residues are 

important for the conformation of the P loop (Stuckey et al., 1994). In PTEN these have been 

identified as C124, R130, H123 and G127 (Lee et al., 1999).  

The 170 amino acid C-terminal end consists of two antiparallel β-sheets with two α-helices 

between the strands to form a β sandwich. It contains the C2 domain that plays a central role 

in mediating and regulating phospholipid membrane binding via the CBR3 loop, which has a 

net positive charge resulting from exposed lysine residues at positions 260, 263, 266, 267 

and 269 (Essen et al., 1996;Perisic et al., 1998). The phosphatase and C2 domains are tightly 

linked at a phosphate-C2 interface, suggesting that another function of the C2 domain is to 

place the active site in the position which is the most optimal to bind to the membrane-bound 

substrate (Figure 5.1C) (Lee et al., 1999). The C-terminal end of PTEN also contains two 

PEST sequences and a PDZ binding motif, which binds to PDZ domains on substrates to 

help recruit PTEN to the membrane (Teng et al., 1997), although this domain is not essential 

as studies have shown that if the sequence is deleted, PTEN function is not abrogated 

(Furnari et al., 1997;Georgescu et al., 1999). Studies mapping the minimal in vivo functional 

domain of PTEN using deletion mutations of the N and C termini showed that a protein 

consisting of residues 10 to 353 maintained its phosphatase activity and was able to induce 

G1 arrest in cells (Vazquez et al., 2000). This indicated that the last 50 amino acids, the C-

terminal tail outside the C2 domain, were not necessary for the phosphatase activity of 

PTEN, and deletion of the C-terminal tail decreased protein stability and actually increased 

PTEN activity. The phosphorylation of residues S380, T382 and T383 maintains PTEN in an 

inactive state and is essential for stability (Raftopoulou et al., 2004). Together these studies 

indicate that the C-terminal tail exerts inhibitory activity. 

Until recently, PTEN was thought to function as a monomer. However, a study has shown 

that it can homodimerise (Papa et al., 2014). This was demonstrated in co-

immunoprecipitation assays where GFP-tagged PTEN and Myc-tagged PTEN were co-

transfected into the PTEN-null PC3 cell line. PTEN dimers were found to be more 

catalytically active than monomers in a phosphatase assay, and the highest level of 
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dimerisation was apparent when the C-terminal tail was removed. Therefore the 

phosphorylation of the C-terminal tail regulates PTEN dimerisation.  

5.1.2 PTEN and the PI3K/AKT pathway 

PTEN is a lipid phosphatase and is the main negative regulator of the PI3K/AKT signalling 

pathway. It influences multiple cellular functions, including cell growth, survival and 

proliferation (Maehama & Dixon, 1998). The PI3K/AKT signalling pathway becomes 

activated upon ligand binding to receptor tyrosine kinases (RTKs). This results in both the 

dimerisation and autophosphorylation of receptors, allowing interaction of the RTKs with 

Src homology 2 (SH2) domain-containing molecules, including PI3K (Pawson & Nash, 

2003;Schlessinger, 2002) (Figure 5.2). PI3K can be activated by three different mechanisms. 

The first is upon direct binding of the regulatory subunit of PI3K, p85, to the RTK, which 

results in the activation of the catalytic subunit of PI3K, p110 (Domchek et al., 1992). The 

second route is via GRB2 binding to the scaffolding protein GAB, which in turn binds to p85 

and activates p110 (Pawson, 2004). The final mechanism involves the binding and activation 

of SOS by GRB2 resulting in the activation of RAS, which can then activate p110 

independently of p85 (Ong et al., 2001). Activation of RAS also initiates signalling down the 

RAS/RAF/MEK/ERK pathway (Castellano & Downward, 2011). The activation of PI3K 

results in the generation of phosphatidylinositol triphosphate (PIP3) in the plasma membrane, 

followed by recruitment of the serine-threonine kinase AKT to the membrane via its 

pleckstrin homology (PH) domain. AKT is then phosphorylated and activated, leading to the 

phosphorylation of many downstream targets. PTEN dephosphorylates PIP3, thereby 

deactivating AKT and down-regulating the PI3K/AKT pathway.  

An overview of the pathway is given in Figure 5.3. During signalling, AKT isoforms are 

activated by phosphorylation at two different residues, by phosphatidylinositol-dependent 

kinase-1 (PDK-1) at T308 (Manning & Cantley, 2007), and at S473 by the mammalian target 

of rapamycin (mTOR) complex 2 (Zoncu et al., 2011). The activation of AKT isoforms 

AKT1-3 results in the phosphorylation of many targets including GSK3, FOXO, BCL-2, 

BAD, MDM2 and p27, which are crucial for cell survival, cell proliferation, angiogenesis 

and cellular metabolism (Manning & Cantley, 2007). Another protein directly targeted by 

AKT is tuberous sclerosis protein 2 (TSC2), which forms a heterodimer with TSC1. 

Phosphorylation of TSC2 by AKT inhibits the activation of RAS-related small GTPase 

homologue enriched in brain (RHEB), which, when activated, stimulates mTORC1 to 

phosphorylate its downstream targets (Guertin & Sabatini, 2007).  The mTORC1 complex 

phosphorylates p70 ribosomal protein S6 kinase (S6K) and inhibitory 4E-binding protein 1 
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Figure 5.2 Function of PTEN. The main function of PTEN lipid phosphatase is the regulation of PI3K/AKT signalling. PTEN dephosphorylates PIP3, 

thereby deactivating AKT and inhibiting signalling down the pathway. Taken from Chow et al (2006). 
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 (4EBP1), resulting in the activation of protein translation of specific mRNAs that are 

required for cell growth and proliferation. Two groups have recently identified a novel 

mTORC1 substrate that mediates feedback inhibition of the PI3K/AKT pathway, growth 

factor receptor bound protein 10 (GRB10) (Hsu et al., 2011;Yu et al., 2011). 

Phosphorylation of GRB10 via mTORC1 stabilised the protein, resulting in inhibition of the 

PI3K/AKT pathway. GRB10 expression is frequently downregulated in various cancers, 

including myeloma and breast carcinoma, and loss of the GRB10 protein and PTEN appear 

to be mutually exclusive events (Yu et al., 2011).  

5.1.3 Functions of normal PTEN 

The identification of numerous mutations of the PTEN gene in various cancers has given 

insights into the cellular functions of PTEN, and many of these are through PI3K/AKT 

signalling. The most studied functions are cell survival and proliferation. Loss of PTEN 

leads to an accumulation of PIP3 at the plasma membrane which recruits and activates AKT, 

thereby promoting the survival of cells by blocking the function of proapoptotic proteins 

including BAD and BIM (Datta et al., 1997). AKT directly phosphorylates and inactivates 

BAD, thereby releasing the pro-survival protein, Bcl-2, from inhibition. AKT also 

phosphorylates FOXO proteins including FOXO1 and FOXO3a, blocking the FOXO-

mediated transcription of target genes such as BIM (Manning & Cantley, 2007). Cell 

survival is also promoted by phosphorylation of the E3 ubiquitin ligase MDM2 by AKT, 

which then translocates to the nucleus where it negatively regulates p53 and down-regulates 

p53-mediated apoptosis (Mayo & Donner, 2001). Increases in cell proliferation are seen 

following cytosolic sequestration of the cyclin-dependent kinase inhibitor p27 as a result of 

phosphorylation by AKT; p27 is then prevented from localising to the nucleus where it 

exerts its cell cycle function.   

Studies have also identified more novel functions of PTEN and the PI3K/AKT pathway. One 

of these functions is cell metabolism. Through inhibition of the RAB-GTPase-activating 

protein (GAP), AKT stimulates glucose uptake by associating with glucose transporter 

GLUT4-containing vesicles in response to insulin stimulation, leading to the translocation of 

GLUT4 to the plasma membrane (Eguez et al., 2005). The signalling pathway also inhibits 

gluconeogenesis by blocking FOXO and peroxisome proliferator-activated receptor-γ 

(PPARγ) co-activator 1α (PGC1α) (Li et al., 2007;Sundqvist et al., 2005). AKT also 

phosphorylates GSK3β, resulting in the inhibition of GSK3β-mediated degradation of the 

transcription factor sterol-regulatory element-binding protein 1C (SREBP1C), which 

regulates genes involved in cholesterol and fatty acid biosynthesis (Horie et al., 2004). 
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Figure 5.3 The PI3K/AKT signalling pathway. Abbreviations: GF, growth factor; RTK, 

receptor tyrosine kinase; mTOR, mammalian target of rapamycin; mTORC1, mTOR 

complex 1;  mTORC2, mTOR complex 2. Taken from Song et al (2012). 
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PTEN also plays a role in cell migration, and inactivation of Pten in the developing brain of 

mice has been shown to lead to defects in neuronal migration (Fraser et al., 2004;Groszer et 

al., 2001;Marino et al., 2002). It has also been shown that the loss of Pten in mouse embryo 

fibroblasts caused increased motility, which could be inhibited by the expression of 

dominant-negative forms of Rac1 and Cdc42,  key mediators of cell motility (Liliental et al., 

2000). One study reported that PTEN can inhibit the migration of human glioma cells via its 

C2 domain (Raftopoulou et al., 2004). The same group also confirmed that the activity of the 

C2 domain is controlled by the phosphorylation state of T383; it is inactive when 

phosphorylated, and becomes activated upon dephosphorylation and therefore able to inhibit 

migration of cells.  

It has also been demonstrated that PTEN can function outside of the cytoplasm. Localisation 

of the PTEN protein has been found within the nucleus, and the finding that only 

cytoplasmic and not nuclear pools of PIP3 are dephosphorylated by PTEN, suggested a 

function of PTEN other than its lipid phosphatase activity (Lindsay et al., 2006). Subsequent 

studies have shown that nuclear PTEN functions to control genomic stability and cell cycle 

progression. Nuclear PTEN has been found to be important in DNA repair by upregulating 

the double-strand break repair protein RAD51 (Shen et al., 2007). The loss of PTEN, leading 

to activation of the PI3K/AKT pathway, results in cytoplasmic degradation of the cell cycle 

regulator checkpoint kinase 1 (CHEK1). This abrogates the G2-M cell-cycle checkpoint, 

reduces the nuclear localisation of CHEK1 and promotes double-strand breaks in tumour 

cells (Puc et al., 2005).  

5.1.4 Mechanisms leading to loss of PTEN function in cancer 

5.1.4.1 Copy number changes/Genomic loss  

As previously mentioned, PTEN was first identified as a tumour suppressor gene when 

homozygous deletions of chromosome 10 were mapped in glioma cell lines (Li et al., 

1997;Steck et al., 1997), since then genomic loss of PTEN has been reported in a wide range 

of cancers. In vivo reports have shown that total loss of the PTEN gene led to embryonic 

lethality (Trotman et al., 2003), and more recent studies in a hypomorphic allelic series of 

mice with decreasing levels of Pten expression demonstrated that even a small reduction of 

Pten promoted cancer susceptibility (Alimonti et al., 2010). Heterozygous deletion of the 

PTEN gene is frequently seen in breast, prostate, melanoma, bladder, kidney and colon 

cancer with incidences ranging from 20%-70% (Cairns et al., 1998;Cairns et al., 

1997;Guldberg et al., 1997;Schade et al., 2009;Shao et al., 2007), and loss of both alleles of 

the gene has been identified in thyroid and bladder cancer (Cairns et al., 1998;Dahia et al., 
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1997). Deletion of PTEN has also been reported in T-ALL and this is discussed further in 

chapter 6. 

5.1.4.2 Mutations 

Another mechanism for the loss of PTEN function in cancer is as a result of gene mutation.  

Germline mutations have been reported in approximately 80% of patients with Cowden 

Syndrome (Liaw et al., 1997;Zhou et al., 2003). Somatic loss-of-function PTEN mutations 

also occur in multiple cancer types, including approximately 40% of endometrial carcinomas 

(Maxwell et al., 1998;Risinger et al., 1997), 44% of gliomas (Chiariello et al., 1998;Duerr et 

al., 1998;Wang et al., 1997), 23% of bladder tumours (Cairns et al., 1998;Wang et al., 2000) 

and 10-20% of melanomas (Birck et al., 2000;Celebi et al., 2000;Guldberg et al., 1997). The 

mutations occur throughout the nine exons of the gene in these tumours and are either 

frameshift or nonsense mutations that would be predicted to result in a truncated protein, or 

in-frame or missense mutations which abrogate the phosphatase activity of PTEN. However, 

there are reported mutational hotspots; for example, 20% of the mutations found in 

endometrial tumours disrupt the amino acid R130 in exon 5. This arginine residue is also 

mutated in 4% of CNS tumours, a cancer in which 6% of mutations also cluster in the amino 

acid R173 in exon 6 (Hollander et al., 2011).  

Two of the most studied PTEN missense mutations in cancer are located in exon 5. C124S 

abolishes the catalytic activity of PTEN and has been found to be associated with 

endometrial cancer (Bonneau & Longy, 2000;Myers et al., 1997), and G129E abrogates lipid 

phosphatase activity and has been associated with Cowden disease (Liaw et al., 1997;Myers 

et al., 1998). Both mutants were able to homodimerise and to form heterodimers with WT 

PTEN (Papa et al., 2014). In a phosphatase assay, the mutant/WT heterodimers 

dephosphorylated PIP3 at a reduced rate compared to the WT dimers, indicating that the 

mutants exert a dominant-negative effect over the WT PTEN protein. Generation of 

Pten
C124S/+ 

and Pten
G129E/+

 mouse models demonstrated that the missense mutations 

accelerated the onset of tumourigenesis and the mice had an exacerbated tumour spectrum 

compared to the Pten WT mice. The missense mutations do not, however, affect the levels of 

PTEN protein, as expression was comparable to WT mice.  

The majority of the C-terminal mutations in exons 7-9, encoding the C2 and PEST domains, 

result in the introduction of premature stop codons leading to a C-terminally truncated 

protein (Bostrom et al., 1998;Chiariello et al., 1998;Levine et al., 1998;Maxwell et al., 

1998;Risinger et al., 1997). When C2 domain mutant constructs introducing a premature 

stop codon and a construct harbouring the N-terminal missense mutation H123Y were 
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expressed in the U87 glioblastoma cell line, both N and C-terminal mutant constructs 

demonstrated larger colony formation compared to WT constructs. This suggested that the 

consequence of the PTEN mutations was abrogated tumour suppressor function (Georgescu 

et al., 1999). The C2 domain mutants were expressed at a lower level compared with the WT 

or N-terminal mutant constructs, and had a significantly higher degradation rate. They 

mapped to regions predicted to form β-strands, suggesting that the C2 domain mutants could 

disrupt the secondary structure of the protein and that the decreased expression was as a 

result of impaired folding. They were also found to result in the ablation of phosphatase 

activity, indicating that the impaired folding of the C2 domain also affects the folding of the 

phosphatase domain. A later study investigating the functional role of C-terminal mutant 

R233X, confirmed that this nonsense mutation generated an unstable PTEN protein which 

was expressed at an almost undetectable level (Papa et al., 2014).   

5.1.4.3 Promoter methylation 

PTEN expression can also be affected by epigenetic silencing through aberrant methylation 

of its promoter. Promoter hypermethylation is frequent in breast cancer where it occurs in 

more than 50% of patients, and in the presence of additional alterations such as the Wnt or 

Errb2 transgenes, can lead to a decreased tumour latency (Hollander et al., 2011). More than 

half of thyroid, melanoma and lung cancers also harbour aberrant methylation at the PTEN 

promoter and it has been shown that high levels of 5-methylcytosine in the promoter region 

correlate with lower levels of mRNA (Alvarez-Nunez et al., 2006;Lahtz et al., 2010;Soria et 

al., 2002). However, recent studies have suggested that the methylation may correspond to 

the PTEN pseudogene PTENP1 rather than PTEN (Hesson et al., 2012;Zysman et al., 2002). 

PTENP1 is a retrotransposed or processed pseudogene located at chromosome 9p13.3 which 

shares 98% sequence homology with the coding region and 3’ UTR of PTEN cDNA, with 

only 19 nucleotides different between the two sequences. It is transcribed, however a 

missense mutation of the initiation methionine prevents translation (Fujii et al., 1999).  

5.1.4.4 miRNAs  

Various miRNAs, non-coding RNAs that mediate gene expression by targeting mRNAs, 

have been shown to downregulate PTEN expression leading to the promotion of 

tumourigenesis. These include miR-19 in leukaemia and Cowden disease and miR-21 in a 

number of other cancers (Mavrakis et al., 2010;Meng et al., 2007;Olive et al., 2009). Recent 

evidence has also suggested that PTENP1 behaves as a competitive endogenous RNA 

(ceRNA) that acts as a decoy for PTEN-targeting miRNAs and inhibits the negative 

regulatory effects of miRNAs on the expression of PTEN (Poliseno et al., 2010). Where loss 
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of genomic PTENP1 has been described in colon and breast cancer, the miRNAs instead 

bind to PTEN, which results in a decrease in protein abundance (Salmena et al., 2011). 

5.1.4.5 Post-translational modifications 

Post-translational modifications can also result in the loss of PTEN function. The 

phosphorylation of a number of residues at the C-terminal end of PTEN can reduce plasma 

membrane localisation and phosphatase activity (Rabinovsky et al., 2009;Vazquez et al., 

2001), including residues 380-385 which are phosphorylated by casein kinase 2 (CK2), and 

S370 and T366 which are phosphorylated by both CK2 and GSK3β  (Al-Khouri et al., 

2005;Liang et al., 2010). Other mechanisms of post-translational modification include 

oxidation by reactive oxygen species (ROS) in which a disulphide bridge is formed between 

residues C71 and C124, resulting in the inactivation of PTEN (Lee et al., 2002). One study 

demonstrated that the PTEN protein was stabilised as a result of CK2 overexpression and 

increased intracellular ROS (Silva et al., 2008). A combination of both CK2 inhibitors and 

ROS scavengers restored PTEN activity. 

5.1.5 PTEN abnormalities in T-ALL 

In early reports, mutations and deletions of the PTEN gene were reported in the T-ALL cell 

lines Jurkat and CEM (Gronbaek et al., 1998;Sakai et al., 1998;Shan et al., 2000). However, 

in studies of a triple knockout model to replicate the chromosomal instability of human 

cancers (TP53
-/-

, Terc
-/-

, Atm
-/-

), the mice developed thymic lymphomas due to telomere 

dysfunction, impaired DNA damage checkpoints and defective DNA repair, and array-CGH 

revealed that 43% of the tumours harboured Pten deletions encompassing the whole gene 

(Maser et al., 2007). As a consequence, they performed array-CGH analysis on samples from 

26 paediatric T-ALL patients and found that 4 (15%) had a PTEN deletion. Furthermore, 

when the PTEN gene was sequenced in samples from a separate cohort of 38 paediatric T-

ALL patients, two (5%) had a mutation in the PTEN gene. The mutations were located in 

exon 7 and were frameshift insertions resulting in the introduction of a premature stop 

codon.   

Further evidence for a role of PTEN deficiency in T-ALL came from oligonucleotide 

microarrays to identify disrupted genes associated with resistance to GSIs in a panel of GSI-

resistant and GSI-sensitive cell lines (Palomero et al., 2007). They demonstrated that PTEN 

was consistently found to be down-regulated in the GSI-resistant cell lines, the PTEN protein 

was absent or reduced, and the cell lines had increased levels of AKT phosphorylation 

associated with loss of PTEN function. Sequencing of the coding region of the PTEN gene 
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revealed that each of the resistant cell lines harboured mutations in the PTEN gene. Of the 

six mutations identified, one was a missense mutation in exon 5, the rest were frameshift 

truncating mutations, two in exon 7 and one each in exons 2, 5 and 8. They then went on to 

screen 111 patient samples and found eight mutations in seven (6%) patients. All mutations 

were frameshift size changes, five in exon 7, one each in exons 3 and 4 and one homozygous 

mutation in exon 7.  

Since then, a number of other groups have extended these findings in paediatric T-ALL 

patients, and these studies are detailed in Table 5.1. Overall, mutations have been reported at 

a frequency of between 5% and 27%. One study reported a 63% mutation incidence rate, 

which is significantly higher than the other reports (Larson Gedman et al., 2009). However, 

in this study investigators sequenced cDNA samples and it has been suggested that some of 

the mutations reported correspond to the PTEN pseudogene, PTENP1, which is likely to 

have been amplified by the exonic primers required to screen the cDNA, owing to the high 

sequence homology it shares with PTEN. Therefore this study has been excluded from the 

cumulative analysis. Combining the data from six studies, of 698 cases, 100 (14%) had at 

least one mutation in PTEN. Of these, 86 patients (86%) harboured exon 7 mutations alone 

and ten (10%) exon 7 mutations in conjunction with mutations in other exons. Only four 

(4%) patients did not harbour a mutation in exon 7. The mutations were predominantly 

frameshift size changes that would result in the introduction of a premature stop codon and 

loss of the C2 domain.  

The majority of mutations found in the PTEN gene in T-ALL are heterozygous (85%) and 

therefore monoallelic, affecting only one allele. However, a small number of biallelic 

mutations have been identified (15%), including homozygous mutations and compound 

heterozygous mutations (Gutierrez et al., 2009;Jotta et al., 2010;Palomero et al., 

2007;Zuurbier et al., 2012). Absent protein expression has been shown in samples from 

patients with exon 7 PTEN mutations in a number of these studies (Jotta et al., 

2010;Palomero et al., 2007;Zuurbier et al., 2012). However, it was shown both in a patient 

sample and in cell lines that harboured an exon 5 mutation, the protein was present but at a 

reduced level (Zuurbier et al., 2010).  Expression was found to be lower in the biallelic 

mutated patients compared with monoallelic cases (Jotta et al., 2010;Zuurbier et al., 2012).  

Together these studies provide evidence that PTEN mutations are a relatively frequent 

occurrence in paediatric T-ALL. This chapter therefore presents data on the screening for 

mutations in the PTEN gene, in the cohort of UKALL 2003 T-ALL paediatric patients 

described in the previous chapters. 
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Table 5.1 Studies of PTEN mutation detection in patients with T-ALL 

Reference Total in 

study 

Age group Screening 

method 

Exons 

screened 

Total PTEN 

mutant 

patients 

 

(%) 

Type of mutations 

Maser et al 

(2007) 

38 Paediatric Sequencing 1-9 2 (5%) 2 HET frameshift (exon 7) 

Palomero et al 

(2007) 

111 Paediatric Sequencing 1-9 7 (6%) 8 size changes in 7 patients: all frameshift  

    5 (5%) 1 HET (4 exon 7, 1 exon 3)  

    1 (1%) > 1 HET (exons 4 and 7)  

    1 (1%) HOM (exon 7) 

Jotta et al (2009) 

& Silva et al 

(2008) 

62 Paediatric dHPLC + 

sequencing 

1+7 11 (18%) 13 size changes in 11 patients: 10 frameshift, 3 in-frame 

    7 (12%) 1 HET (exon 7) 

    2 (3%) > 1 HET (1 exons 1 and 7, 1 with 2 exon 7)  

    2 (3%) HOM (exon 7)  

Gutierrez et al 

(2009) 

44 Paediatric Sequencing 1-9 12 (27%) 15 size changes in 12 patients: all frameshift 

    9 (20%) 1 HET (exon 7) 

    3 (7%) > 1 HET (exon 7)  

(Clappier et al., 

2010) 

43 Paediatric cDNA 

Sequencing  

1-9 27 (63%) 27 size changes in 27 patients: 22 frameshift, 5 in-frame  

    19 (21%) 1 HET (9 exon 7, 10 exons 2-8) 

      8 (19%) HOM  

Zuurbier et al 

(2012) 

142 Paediatric Sequencing 1-9 16 (11%) 26 mutations in 16 patients: 24 frameshift size changes, 2 missense 

       5 (3%) 1 HET (4 exon 7, 1 exon 4)  

     10 (7%) > 1 HET (5 with 2 exon 7, 4 exons 5 and 7, 1 exons 6 and 8)  

      1 (1%) HOM (exon 7) 

(Erbilgin et al., 

2010) 

301 Paediatric Sequencing 1-9  52 (17%) 58 size changes in 52 patients: all frameshift 

     47 (15%) 1 HET (46 exon 7, 1 exon 4)  

       5 (2%) > 1 HET (1 with 2 exon 7, 1 exon 4 and 7, 2 exon 5 and 7,  

                      1 exon 1 and  2 exon 7) 

 

Abbreviations: HET, heterozygous; HOM, homozygous. 
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5.2 Materials and Methods 

5.2.1 Patients 

Diagnostic samples were available from the United Kingdom Leukaemia and Lymphoma 

Research Childhood Leukaemia Cell Bank from 162 of the 388 (42%) T-ALL patients 

entered into the United Kingdom Medical Research Council ALL 2003 (UKALL 2003) trial 

between 2003 and 2011, as described in chapter 3 (section 3.2.1). 

5.2.2 PTEN mutation screening 

Mutation screening of the entire coding sequence (exons 1-9) of the PTEN gene was carried 

out by PCR and dHPLC, followed by sequencing of samples with abnormal chromatograms. 

Samples were amplified by 35 cycles of PCR using the primers and appropriate annealing 

temperatures shown in Appendix Table 1. Wherever possible, PCR products were obtained 

using the proof-reading enzyme Optimase (Transgenomic). For exons 1 and 7 where 

adequate PCR products could not be obtained using Optimase, the proof-reading enzyme 

Phusion High-Fidelity DNA Polymerase (New England Biolabs) was used. The standard 

Optimase DNA Polymerase and Phusion High-Fidelity DNA Polymerase reaction mixes and 

cycling conditions are detailed in chapter 2 (section 2.1.4). PCR products were checked on a 

2% agarose gel stained with ethidium bromide.  

PCR products were screened by dHPLC on the WAVE DNA Fragment Analysis System 

(Transgenomic, Glasgow, UK) as detailed in section 2.1.6. As homozygous mutations and 

hemizygosity have been reported in this gene, amplified products from the patient samples 

were mixed in equal quantities with products from a known WT control before denaturation. 

PCR products were denatured and cooled slowly to enable the formation of heteroduplexes, 

then analysed on the WAVE at optimal melting temperatures which were calculated using 

the Transgenomic Navigator software (Appendix Table 1). Each WAVE run included a 

known WT case for each particular exon and, where possible, a known mutant control to 

allow for comparison.  

5.2.3 Confirmation of PTEN mutations 

For samples with abnormal chromatograms, fresh PCR products were obtained using 

BIOTAQ DNA Polymerase with standard reaction mix and cycling conditions as detailed in 
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section 2.1.4, and sequenced in one direction. Where the presence of either multiple 

mutations or a low-level mutation was evident from direct sequencing, the exon was 

amplified and the products cloned using the TOPO TA cloning kit (Invitrogen, Paisley, UK) 

as described in section 2.1.10. Clones were harvested and grown overnight in LB broth 

before PCR amplification. PCR products from clones were then screened by gel 

electrophoresis.  

5.2.4 Whole Genome Amplification of genomic DNA 

There was limited DNA in the majority of the patient samples post mutation screening, 

therefore whole genome amplification (WGA) was performed using the REPLI-g Mini Kit 

(Qiagen, Crawley, UK), which enables highly uniform WGA from small samples across the 

entire genome with negligible sequence bias. The method is based on Multiple Displacement 

Amplification (MDA), which carries out isothermal genome amplification using a DNA 

polymerase capable of replicating up to 100kb without dissociating from the genomic DNA 

template. The DNA polymerase has 3’-5’ exonuclease proofreading activity to maintain high 

fidelity during replication, and is used alongside exonuclease resistant primers to achieve 

high yields of DNA product. For the reaction, 1-10ng of patient DNA was amplified 

following the kit instructions. 

5.2.5 Quantification of PTEN mutant level by fragment analysis 

For quantification by fragment analysis, exon 7 PCR products were obtained from both the 

original non whole genome amplified (non-WGA) DNA and the whole genome amplified 

(WGA) DNA using BIOTAQ DNA polymerase with a fluorescently labelled forward primer 

and unlabelled reverse primer (Appendix Table 1). Due to the sensitivity of the assay, the 

standard BIOTAQ DNA Polymerase reaction mix and cycling conditions given in section 

2.1.4 were adjusted. The concentration of each primer was decreased from 0.5µM to 

0.25µM, and in each of the denaturation, annealing and extension steps, the temperature was 

ramped at 0.5
o
C/second and the time extended to 1 minute. The number of cycles of 

amplification was reduced from 35 to 28, to limit preferential amplification of smaller PCR 

products, and also to ensure that the amount of fluorescently labelled PCR product did not 

saturate the fragment analyser. The final extension step, 72
o
C for 5 minutes in the standard 

protocol, was extended to 15 minutes to ensure full extension of all PCR products.  

After amplification, 2µl of PCR product was added to 38µl of sample loading solution 

(Beckman Coulter UK Ltd, Buckinghamshire, UK) containing a DNA size standard ladder 
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(DNA Size Standard Kit, 400PA, Beckman Coulter, High Wycombe, UK). Samples were 

then run on the CEQ 8000 Genetic Analysis System (Beckman Coulter) and analysed by 

capillary electrophoresis. Each run included a WT control to identify the WT peak in the 

patient samples. In patients with a size change mutation, peaks representing either an 

insertion or deletion were identified by their different size to the WT peak as called by the 

instrument software. The fragment analysis software calculated the area under the WT and 

mutant peaks, and mutant level was determined by expressing the area under each peak as a 

percentage of total alleles. Wherever possible, quantification of mutations in exon 7 was 

performed in both non-WGA and WGA samples and a mean total mutant level was 

determined. 

5.2.6 Quantification of mutant level by restriction enzyme digest 

In two patients harbouring multiple mutations, where a 1bp size change could not be 

resolved from the WT peak by fragment analysis, a restriction enzyme recognition site was 

identified in either the WT or 1bp mutant alleles that enabled differential separation of the 

alleles by size but did not affect the other mutant alleles. For one patient harbouring the 

mutation c.696delCinsGG (p.R233fs), exon 7 amplicons were generated as detailed in 

section 5.2.5, and 8µl of PCR product was digested at 37°C for 4 hours in a reaction mix 

with 1µl Hpy99I and 1µl of manufacturer’s CutSmart buffer (New England Biolabs, Hitchin, 

UK). After digestion, 2µl of the reaction was analysed as described above (section 5.2.5) on 

the CEQ 8000 Genetic Analysis System. Mutant alleles were undigested giving a 267bp 

fragment and WT alleles were digested to a labelled 121bp fragment. For another patient 

harbouring the mutation c.696insT (p.R233fs), 8µl of PCR product was digested at 65°C for 

4 hours in a reaction mix with 1µl Taqα1 and 1µl of manufacturer’s buffer  4 (New England 

Biolabs, Hitchin, UK), and 2µl of the reaction was analysed as described above (section 

5.2.5). WT alleles were uncut giving a 267bp fragment and mutant alleles were digested to a 

labelled 115bp fragment.  

5.3 Results 

5.3.1 PTEN mutation detection 

WAVE analysis was used to screen the entire coding sequence of the PTEN gene. Of the 162 

patients investigated, 89 (55%) had one or more exons with abnormal WAVE 

chromatograms. In 76 cases, the abnormal chromatograms were due to the presence of a 
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common polymorphism, rs1903858 (A/G) in intron 1-2, which could be identified from the 

characteristic WAVE chromatogram. Presence of the SNP was confirmed by fluorescently 

labelled PCR and restriction enzyme digestion and further details of this are provided in 

chapter 6 (section 6.3.2). In a further four cases, direct nucleotide sequencing showed 

another polymorphism in intron 1-2, rs190707033 (C/T). The 68 patients, in whom these 

were the only changes, were scored as PTEN
WT

. 

Mutations were detected in the PTEN gene in 21 (13%) of the 162 patients analysed 

(PTEN
MUT

). Of these, 19 (90%) harboured mutations in exon 7, two of these patients had co-

incident exon 6 mutations, and the remaining two patients harboured mutations just in exon 

5. Representative WAVE chromatograms are shown in Figure 5.4. Direct sequencing 

identified the nucleotide change in seven of the patients (33%), including the mutations in 

exons 5 and 6. However, the presence of either a low level mutant or multiple mutations in 

exon 7 meant that this approach was unsuccessful for the majority of patients (67%). 

Therefore, fluorescently labelled PCR products from patients with an abnormal 

chromatogram in exon 7 were size separated by fragment analysis to determine the number 

of mutations present in each sample. It was found that the size of the PCR product from a 

known PTEN WT sample, as called by the instrument software, was 2bp larger than the 

expected 265bp WT product size. However, nucleotide sequencing of the WT PCR product 

confirmed that the expected 265bp sequence was present with no extra nucleotides. Similar 

discrepancies have been previously reported in other studies in the laboratory, and are most 

probably due to the high GC content (60%) of the amplicon causing secondary structure that 

interferes with electrophoresis of the PCR product.  

Fragment analysis revealed a total of 37 exon 7 mutations in the 19 patients. Five patients 

had a single mutation whereas 14 patients harboured between two and four mutations, with 

the mutant level of the individual mutations ranging from 2% to 47% of total alleles (see 

section 5.3.2 for further details). Therefore, the 14 patient samples with uncharacterised exon 

7 mutations were amplified to obtain a fresh PCR product, which was cloned using the 

TOPO cloning kit as described in section 2.1.10. Between 15 and 20 clones per sample were 

harvested and grown in LB broth overnight, followed by PCR amplification. PCR products 

from clones were size separated by gel electrophoresis, and where a size change was evident, 

PCR products from at least two clones of the same size were sequenced. Where the size 

change was too small to be identified on the agarose gel, between 5 and 10 of the amplified 

clones were sequenced. Screening of the clones did not reveal the nucleotide sequence of 

seven mutations identified by fragment analysis. All mutations were present at a level of less 

than 10% of total alleles, and therefore they were not pursued as their detection would have 



 

 

 

1
4
1 

 

 

Figure 5.4 Detection of PTEN mutations by WAVE analysis. Representative WAVE chromatograms of patient samples normalised and compared to that of 

a known WT control. (A) Exon 7 WT control (B) Patient with one exon 7 mutation. (C) Patient with two mutations. (D) Patient with three mutations. (E) 

Patient with an exon 5 mutation. (F) Patient with an exon 6 mutation.  
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required the further screening of a large number of clones. For seven mutants, the size of the 

insertion or deletion called by the fragment analysis instrument software differed by 1bp 

from the size change obtained from nucleotide sequencing. As previously mentioned, this is 

likely to be due to the GC-rich sequence causing secondary structure, which may interfere 

with the capillary electrophoresis. All clones where the sequence showed a size change 

greater than 2bp were detected by fragment analysis. In five patients, cloning and sequencing 

identified single base pair insertions which could not be seen in fragment analysis. 

Retrospective inspection of the original sequence showed evidence of the 1bp change in all 

but one of these cases. In two of the five patients, the 1bp change could be identified upon 

fragment analysis of the WGA sample, and the mutations were present at a level of 47% and 

39% of total alleles, which was compatible with the sequence. This was not the case in the 

other three patients; therefore direct mutant level quantification by fragment analysis was not 

possible for these three cases. In two of them, the 1bp size change could be quantified after 

restriction enzyme digestion as described in section 5.2.6, and the mutations were present at 

a level of 28% and 2% of total alleles respectively (Figure 5.5). It is therefore not surprising 

that the 1bp change quantified at 2% was not apparent on either the original sequence or the 

fragment analysis. No suitable restriction digest site was available that would distinguish the 

WT from mutant alleles in the remaining case, therefore an estimated mutant level of 17% 

was determined by measuring ten peak heights in the direct sequence and calculating an 

average.   

A total of 44 mutations were therefore detected in the PTEN gene, 40 in exon 7, two in exon 

6 and two in exon 5.  Figure 5.6 shows the location and type of the mutations and a full list 

of nucleotide and amino acid changes is given in Appendix Table 3. The mutations in exon 7 

included 20 insertions, 17 indels and three deletions, with overall size changes ranging 

between 1bp and 20bps and, of the characterised mutations, all clustered in the region 

between amino acid residues 219-256. Of the 33 characterised mutations, 25 of these size 

changes (75%) caused a frameshift, with the introduction of a premature stop codon resulting 

in a C-terminally truncated protein. Three (10%) mutations were in-frame, but were indels 

where the inserted sequence introduced a premature stop codon (Figure 5.7). Five mutations 

(15%) were in-frame and non-truncating. The two mutations found in exon 5, were a 1bp 

frameshift insertion resulting in the introduction of a premature stop codon and a 9bp in-

frame indel. The two mutations in exon 6 were both short frameshift insertions of 8bp and 

13bps respectively, introducing a premature stop codon. Missense mutations were rare with 

only one found in the cohort, P246L. However, this was scored as WT as the functional 
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Figure 5.5 Restriction enzyme digest to distinguish 1bp change from WT peak and 

quantification of mutant level. (A) Hpy99I digest. WT alleles were digested to a labelled 

121bp fragment and 1bp ins and 20bp del mutant alleles were not digested giving fragments 

of 267bp and 247bps. (B) Taqα1 digest. 1bp ins mutant alleles were digested to a labelled 

115bp fragment and WT alleles and 3bp and 5bps ins were uncut giving fragments ar 267bp, 

270bp and 272bps.   
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Figure 5.6 Schematic representation of the location and type of PTEN mutations detected in 162 paediatric T-ALL patients. 
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consequence of this mutation is unknown and there is a possibility that the mutation is a rare 

SNP.  

Therefore 44 mutations were identified in 21 (13%) of the 162 patients analysed. Seventeen 

patients (80%) had exon 7 mutations only, two (10%) exon 6 and 7 mutations, and two 

(10%) exon 5 mutations only. Seven patients (34%) had one mutation, eight (38%) had two 

mutations, three (14%) had three mutations and three (14%) had four mutations (Table 5.2).  

5.3.2 Quantification of PTEN exon 7 mutant level by fragment analysis.  

Quantification of mutations in exon 7 of the PTEN gene was performed in both non-WGA 

and WGA samples. Of the 40 individual mutations identified in exon 7, 32 were successfully 

quantified in both non-WGA and WGA samples and the comparative data obtained from the 

mutations is shown in Figure 5.8. Comparison was not possible for eight mutations. In one 

mutation there was no suitable restriction enzyme digest to quantify the 1bp size change, 

therefore quantification was not performed in either sample, and in two mutations the 

restriction enzyme digestion was only carried out in the non-WGA sample. In a further two 

mutations the 1bp size change could only be distinguished from the WT peak in the WGA 

sample, and in one mutation the PCR product was of poor quality after amplification of the 

WGA sample, therefore the mutant peak was of an insubstantial height to be included by the 

software. In the case of the remaining two mutations, the non-WGA sample revealed a 6bp 

insertion which constituted 78% of the total alleles; however the peak was very broad. In the 

WGA sample, the 6bp insertion peak resolved into two peaks corresponding to a 6bp and 

8bp insertion, each at a level of 37% and 41% respectively, therefore these two mutations 

had no comparison in the non-WGA sample. Reassessment of the original sequence revealed 

the presence of the additional mutation, which was originally mistaken for the WT sequence.   

Of the 32 mutations in which comparison between the non-WGA and WGA DNA was 

possible, there was a strong correlation between the mutant levels of the individual mutations 

in the two samples, r
2 
=0.92. The difference in 31 was ≤5%, the median difference was 1% 

(range 0% to 21%). In the mutation where the difference was 21%, the mutation was 

quantified at 51% and 30% in the non-WGA and WGA samples respectively. In the original 

sequence, the mutant and WT traces are of equivalent heights, suggesting that the mutant 

level has been underestimated in the WGA sample. 
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Figure 5.7 In-frame indel mutation resulting in the introduction of a premature stop 

codon. 
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Figure 5.8 Comparison of exon 7 mutant levels quantified in non-WGA and WGA 

DNA. 

  

r
2
=0.92 
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An average mutant level of each individual mutation was determined where possible from 

the mean of the values from the non-WGA and WGA samples. There was a wide variation in 

the level of the individual mutations, ranging from 2% to 48% of total alleles, with a median 

of 16%. Examples of mutant level quantification for patients with either one, two, three or 

four mutations are shown in Figure 5.9. A total mutant level for each patient was determined, 

and the median total mutant level for the 19 patients with PTEN
 
exon 7 mutations was 41% 

(range 10% to 96%). Fragment analysis to quantify the mutant level in exons 5 and 6 was not 

performed as there were only two patients with mutations in either exon. An estimated 

mutant level for these mutations was therefore determined by measuring the peak heights in 

the direct sequence. Taking into account the estimated levels, the median mutant level for the 

21 PTEN
MUT

 cases was 48% (range 10% to 96%). Five (24%) patients had a total mutant 

level of <25%, six (28%) patients had a total mutant level of between 25%-50% and ten 

(48%) patients had a total mutant level of ˃50% (Figure 5.10). 

5.3.3 Classification of patients with PTEN mutations 

It was not possible to determine whether the multiple mutations detected in the majority of 

the mutant-positive patients were present in the same cell, as genomic DNA was the only 

available material from the patients. However, the level and/or the number of mutations in a 

given patient may indicate whether there is evidence of monoallelic mutation, where only 

one allele in a cell is affected, or biallelic mutation, where both alleles in a cell are affected. 

Therefore, each of the PTEN mutant cases were scored according to the following criteria: 

where one or more mutations were present and the total mutant level was <50%, patients 

were scored as monoallelic. Patients with either one or multiple mutations totalling >50% 

were scored as biallelic on the assumption that at least a proportion of cells must have more 

than one allele affected.  

Of the 21 PTEN
MUT

 cases, 11 (52%) patients were considered to harbour monoallelic 

mutations, and the remaining 10 (48%) patients, biallelic mutations. Of the monoallelic-

mutated patients, five had a single mutation which constituted nearly 50% of total alleles 

(37%, 41%, 45%, 47% and 48% respectively) suggesting the presence of a heterozygous 

mutation in the majority of cells. An example is given in Figure 5.11A where the patient has 

a mutation at a level of 48% of total alleles, consistent with a heterozygous mutation in 96% 

of cells. For the remaining six patients, the number of mutations per patient ranged from one 

to four. The mean mutant level of these mutations was only 8% (range 2% to 21%), therefore 

it is likely that the mutations are heterozygous and in different subclones, although the 

possibility that a significant proportion of non-leukaemic cells are present in the sample, 
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Figure 5.9 Quantification of mutant level by fragment analysis. (A) WT control. (B) 

Patient with one mutation. (C) Patient with two mutations. (D) Patient with three mutations. 

(E) Patient with four mutations.  
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Table 5.2 PTEN mutant levels in investigated patients 

 

 

*Mutant level estimated from the sequence. Abbreviations: indel, insertion/deletion. 

 

Patient 

 

 

No. 

muts 

Exon 5 mutation Exon 6 mutation Exon 7 mutation 

 

Total 

Mutant 

Level 

Monoallelic/

Biallelic 

1 1   2bp indel (41%) 41% Monoallelic 

2 1   10bp indel (10%) 10% Monoallelic 

3 1   1bp ins (47%) 47% Monoallelic 

4 1   7bp indel (48%) 48% Monoallelic 

5 1   12bp indel (37%) 37% Monoallelic 

6 2   14bp indel (11%), 13bp del (2%) 13% Monoallelic 

7 2   5bp indel (12%), 4bp ins (11%) 22% Monoallelic 

8 2   8bp ins (21%), 4bp ins (6%) 27% Monoallelic 

9 2   9bp indel (6%), 11bp ins (5%) 11% Monoallelic 

10 3   1bp ins (2%), 5bp ins (6%), 3bp ins (10%) 18% Monoallelic 

11 4   4bp indel (15%), 13bp del (9%), 11bp ins (4%), 7bp ins (6%) 34% Monoallelic 

12 1 1bp ins (70%)*   70% Biallelic 

13 1 9bp indel (60%) *   60% Biallelic 

14 2   4bp ins (45%), 1bp ins (17%)* 62% Biallelic 

15 2   2bp ins (34%), 6bp indel (37%) 71% Biallelic 

16 2   20bp indel (28%), 1bp indel (28%) 56% Biallelic 

17 2   16bp ins (34%), 1bp indel (39%) 73% Biallelic 

18 3  8bp ins (29%)* 18bp ins (29%), 2bp ins (2%) 60% Biallelic 

19 3   12bp indel (18%), 6bp ins (37%), 8bp ins (41%) 96% Biallelic 

20 4   20bp indel (28%), 6bp ins (13%), 2bp indel (16%), 8bp del (8%) 65% Biallelic 

21 4  13bp ins (24%)* 12bp indel (31%), 4bp ins (18%), 14bp ins (4%) 77% Biallelic 
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Figure 5.10 Distribution of total PTEN mutant level detected in mutant positive 

patients. 
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reducing the apparent mutant level, cannot be excluded. An example is given in Figure 

5.11B, in which the patient has two mutations at mutant levels of 11% and 2% respectively. 

The most likely explanation in this case is that the mutations are heterozygous and constitute 

different cell populations.  

Of the biallelic-mutated patients, two patients each had a single mutation in exon 5 

constituting more than half of total alleles (60% and 70%). This mutant level is consistent 

with either a homozygous mutation or hemizygosity, where there is loss of one allele and the 

remaining allele in the cell is mutated. In the remaining eight cases, all patients harboured 

more than one mutation and the mean total mutant level was 70% (range 56% to 96%). As 

the total mutant level for all cases was over 50%, this would be consistent with compound 

heterozygosity, where each allele in a cell harbours different mutations. Cloning of all the 

patient samples in which more than one exon 7 mutation was present (as described in section 

5.3.1), confirmed that the mutations were not present on the same allele, although it was not 

possible to determine whether this was the case in the two patients harbouring co-incident 

exon 6 and 7 mutations. The possibility of hemizygosity or that the individual mutations are 

homozygous also cannot be excluded. An example is given in Figure 5.12A where the 

patient has a single mutation at a level of 70% of total alleles. There are two possibilities, 

one being the mutation is homozygous, and therefore in 70% of cells, both alleles harbour 

the mutation. The second possibility is that a proportion of the cells are hemizygous and the 

remaining allele in these cells is mutated. As the mutant level in the patient is 70%, in this 

scenario 83% of cells would have lost one allele and harbour the mutation. Either way both 

alleles are affected. Further investigation demonstrated that the patient showed evidence of 

heterozygous deletion and this is presented in the next chapter. The example in Figure 5.12B 

is of a patient with two mutations A and B, at levels of 45% and 17% respectively. One 

possible explanation is that mutation B was acquired in a proportion of cells that already 

harboured mutation A, meaning 34% of cells are compound heterozygous. The other 

population of PTEN-mutated cells (21%) would therefore be heterozygous for mutation A. 

Alternatively, it is possible that both A and B are homozygous mutations in separate cell 

populations, or that a proportion of cells are hemizygous. Further investigation demonstrated 

that the patient showed no evidence of heterozygous deletion and this is presented in the next 

chapter. 
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Figure 5.11 Monoallelic PTEN mutations. (A) Heterozygous mutation in the majority of cells. (B) Two heterozygous mutations most likely to be in different 

subclones. Mutant level is given as a % of total alleles. Each cell is assumed to have both chromosomes therefore the percentage shown above each represents 

the contribution of the individual allele. 

 

Patient 4 has 1 mutation: Mutation A = 48%  of total alleles Patient 6 has 2 mutations: Mutation A = 11%  of total alleles,  Mutation B = 2% of total alleles 
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Figure 5.12 Biallelic PTEN mutations. (A) Evidence of homozygous mutation or deletion 

of one allele in a proportion of cells. (B) Evidence of a proportion of cells either harbouring 

different exon 7 mutations or a homozygous mutation, each with a co-incident population of 

cells harbouring a heterozygous mutation. 

 

 

Patient 12 has 1 mutation: Mutation A = 70% of total alleles 

Patient 14 has 2 mutations: Mutation A = 45%  of total alleles,  Mutation B = 17% of total alleles 
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5.4 Discussion 

The data presented in this chapter shows the screening of a cohort of paediatric patients with 

T-ALL for mutations in the PTEN gene, and quantification of the mutant level. In total, of 

the 162 patients analysed, 21 (13%) had one or more mutations in PTEN. This incidence is in 

line with the combined data from other paediatric studies (100 of 698 cases, 14%, P=0.6) 

(Table 5.1). In one study there was a significantly higher incidence of PTEN mutations (27 

of 43 cases, 63%) compared with the other paediatric studies (Larson Gedman et al., 2009). 

However, many of the cDNA mutations detected probably were in the PTEN pseudogene, 

PTENP1, which is known to be transcribed. PTENP1 lacks the intronic sequences of the 

PTEN gene and has 98% homology to functional PTEN cDNA (Dahia et al., 1998). In the 

present study, primers for mutational screening were designed to anneal to the intronic 

sequences flanking the exons, thereby eliminating the possibility of amplification of the 

pseudogene. 

There was a striking clustering of the mutations in exon 7. Of the 21 PTEN-mutated patients, 

19 (90%) harboured a mutation in this exon. This mutation location has been previously 

identified and other studies have reported a high frequency of mutations in this region (97 of 

102  mutations, 95%, compared to 40 of 44 mutation in the current study,  91%,  P=0.9). 

Although mutations were found in other exons, 5 and 6 in the present study and 1, 3, 4, 5, 6 

and 8 in other studies (Table 5.1), all but four of these patients also harboured co-incident 

exon 7 mutations. In other studies, patients harbouring mutations outside of exon 7 alone 

were infrequent, and this was confirmed in the current study where only 2 of 21 (10%) 

patients harboured exon 5 mutations alone. Other studies identified mutations in exons 1, 3, 

4 and 8. This was not the case in the present cohort, but due to the low frequency of the 

mutations in these exons in other studies, seven in 100 mutant-positive patients, it is not 

surprising that none were identified. In the two patients in the present study harbouring 

mutations in both exons 6 and 7, it was not possible to determine whether the mutations are 

in cis on the same allele, as RNA was not available. The intron between exons 6 and 7 is 7kb 

in size, although possible, amplification and cloning of a PCR product from genomic DNA 

would have been challenging. Therefore, due to the limited material available this was not 

pursued. Of note, one case with exon 5 and 7 mutations occuring in cis on the same allele 

has been reported (Zuurbier et al., 2012).   

The majority of mutations detected (85%) were size changes predicted to result in the 

introduction of a premature stop codon, and this is in line with the combined data reported 
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from other studies (117 of 122 total mutations, 96%, P=.6) (Table 5.1). The truncating 

mutations in exon 7, resulting in the loss of the C2 domain and C-terminal PEST sequences, 

all targeted the exon in the region between amino acids 219-261, and R233 was the amino 

acid most frequently disrupted by the mutations. The introduction of a premature stop codon 

would be likely to result in the induction of nonsense-mediated decay (NMD), leading to a 

lack of functional PTEN protein being produced. During splicing, exon-exon junction 

complexes (EJC) are deposited on the mRNA, approximately 20-24 nucleotides from the 

splice junction (Le Hir et al., 2000). Translation begins upon ribosome binding to the 

transcript, and amino acid elongation continues until the EJC is displaced, and is complete 

when a termination codon is reached (Cheng & Maquat, 1993). In NMD, if the mRNA 

contains a premature stop codon prior to the location of the EJC, mRNA decay is triggered 

(Cui et al., 1995). Therefore, the clustering of mutations in exon 7 and the high frequency of 

premature stop codon introduction could suggest that the functional consequence of these 

mutants in T-ALL is the induction of NMD. However, studies have shown that the 

truncating mutations R233X (Papa et al., 2014) and PTEN-254, a mutation that introduces a 

stop codon at residue 254 (Georgescu et al., 1999), did generate a PTEN protein, although it 

was expressed at low levels and rapidly degraded. Defective folding of both the C-terminal 

and phosphatase domains also reduced the phosphatase activity of the truncated PTEN 

protein (Georgescu et al., 1999). In a recent study investigating the PTEN protein expression 

of a number of mutations that were also detected in the present study, T232fs, R233fs, 

R234fs and P246fs, the protein was found to be absent in all cases (Zuurbier et al., 2012). 

The study also reported lack of the PTEN protein in one patient harbouring a heterozygous 

T232fs mutation, but no details were given as to why the remaining WT allele did not 

generate a functional protein; a possible explanation is that the other allele has been silenced 

via another unknown mechanism. This heterozygous mutation was also seen in the present 

study, as was the combination of an R233fs and P246fs mutation reported by Zuurbier et al 

(2012). Therefore, these patients would be predicted to lack PTEN protein in the affected 

cells. The remaining truncating mutations detected in the current study, Q219fs, I224fs, 

Y225fs, N228fs, S229fs, E235fs and F241fs, all clustered in close proximity to the other 

mutations so would also be predicted to result in a similar functional consequence, but as 

there were no cells available from the patients, this cannot be confirmed. The functional 

significance of the in-frame mutations is unclear; all five of these mutants were size changes 

ranging from 6bp to 18bps. The addition of extra amino acids leading to the generation of an 

unstable protein is a possible explanation. One mutation in exon 5 and both mutations found 

in exon 6 introduced a premature stop codon. They are thought to be functionally equivalent 

to exon 7 mutations as the C2 domain is removed, however the C-terminal end of the 

phosphatase domain is also truncated. Therefore if these mutants do produce a functional 
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protein, this suggests the phosphatase activity may be diminished compared to the exon 7 

mutants.  

A particular feature of the PTEN mutations identified in the present cohort is the presence of 

multiple exon 7 mutations per patient. Of 19 patients with mutations in exon 7, 14 (74%) had 

more than one mutation in the exon. This is significantly higher than in data reported from 

other studies combined (11 of 91, 12%, P=0.0005). A possible explanation for this 

difference is the screening technique used. The mutational screening method utilised by 

many groups is Sanger sequencing, with six of the seven paediatric studies using this 

approach. Studies in our laboratory have shown that Sanger sequencing is less effective at 

detecting mutations that are present at a level less than 10-20% of total alleles. Therefore if 

there were multiple mutations in a sample, the mutations present at a lower level may not 

have been identified on the sequence. In the present study, dHPLC was used to screen PCR 

products, which is more sensitive than sequencing, although it does not indicate the number 

of mutations present in the sample. Fragment analysis of fluorescently labelled PCR products 

is a robust way of screening and quantifying mutations, therefore it was utilised to determine 

mutant level(s) in the present study. This quantification method has been successfully used 

in the department for other genes and has been shown to be a straightforward and sensitive 

technique. However, problems with this technique included the inaccurate calling of the 

fragment size of 18% of the mutants when compared to the nucleotide sequence, and 

difficulty in quantifying mutants with size changes of 1bp. Therefore, the combined use of 

dHPLC and fragment analysis enabled the detection of mutants present at a level of less than 

20% of total alleles, directing further investigation to characterise the low level mutants, 

which may otherwise have been undetected, by TOPO cloning and sequencing. There were 

14 mutations present at a level ≤10% of total alleles, 32% of all the mutations detected. A 

further nine (20%) mutations were quantified between 10-20% of total alleles. Therefore of 

all mutations detected, 52% were <20%. It is possible other mutations have been missed in 

the present study, as demonstrated by the example given, in which a 1bp size change that 

quantified at 2% was only detected after restriction enzyme digestion (Figure 5.5B). This 

mutation was masked by two other mutations present in the patient. Studies in the laboratory 

have shown mutations quantified at a level of <5% of total alleles can be identified by 

dHPLC, therefore any missed mutations are only likely to have been in cases with other 

PTEN mutations, as had it been the sole mutant, it is likely it would have been detected.   

Of the 44 mutations detected in the present study, approximately 52% were <20% of total 

alleles and were therefore likely to be present in subclones, although the possibility of non-

leukaemic cell contamination cannot be excluded. The presence of normal cells in the 
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sample would dilute the leukaemic cells which may result in the mutant level being 

underestimated. This high frequency of subclonal mutations raises the question of whether a 

small population of subclones are driving resistance to therapy, some of which may not have 

been detected at diagnosis by insensitive screening techniques. Relapse samples from the 

patients in the present study were not available for investigation. However, intraclonal 

heterogeneity at diagnosis and clonal evolution at relapse are known to occur in T-ALL 

(Anderson et al., 2011;Mullighan et al., 2007;Yang et al., 2008), and in a report where the 

study of paired diagnostic and relapse samples was possible, the authors demonstrated that 

PTEN mutations were acquired in two of 35 (6%) patients upon relapse (Palomero et al., 

2007). It is possible that a PTEN-inactivated subclone that was undetected at presentation 

was selected for during the progression of disease and expanded, giving rise to relapse. 

However, as most of the PTEN mutations described in T-ALL are predicted to be 

functionally equivalent, determining the contribution of coincident genetic events is 

important in understanding the biology of relapse. NGS techniques will facilitate the 

investigation of other collaborating abnormalities which could be explored for targeted 

mutation analysis in T-ALL.   

It has been shown that PTEN is a haploinsufficient tumour suppressor gene, therefore loss of 

function would be expected in patients in whom one allele is mutated (Di Cristofano et al., 

1998;Podsypanina et al., 1999;Suzuki et al., 1998). Subsequent studies have shown that a 

further decrease of PTEN gene dosage below that of one functional allele leads to an 

accelerated progression to a more aggressive cancer (Alimonti et al., 2010;Trotman et al., 

2003). It is unknown whether the loss of one or both alleles is more tumourigenic in T-ALL. 

One study of paediatric T-ALL reported that patients with biallelic PTEN mutations had the 

lowest survival rate compared to monoallelic and WT patients (Jotta et al., 2010), suggesting 

that the level of PTEN loss is an important factor in T-ALL but this finding has not been 

replicated in other studies. Studies in other cancers have shown that the importance of the 

level of loss of PTEN during tumourigenesis may also depend on other factors and 

collaborating genetic abnormalities. In an in vivo prostate cancer model, complete loss of 

Pten and WT p53 resulted in the induction of Pten-loss-induced cellular senescence (PICS), 

whereas monoallelic loss led to the progression of cancer (Chen et al., 2005). Therefore, in 

the absence of a p53 abnormality, monoallelic loss of PTEN may be more detrimental than 

biallelic loss.  

As only genomic DNA was available for each patient in the current study, single cell 

analysis was not possible to determine whether the mutations were present in the same cell to 

indicate the level of PTEN loss. In two separate studies, authors have classified patients 
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harbouring more than one mutation as compound heterozygous by re-sequencing of cloned 

PCR products.  Gutierrez et al (2009) stated this was the case in three patients, each with two 

exon 7 mutations. Zuurbier et al (2012) reported compound heterozygosity in eight of nine 

patients with either more than one mutation in exon 7 or mutations in both exons 5 and 7. 

However, the technique utilised by both groups would only be able to demonstrate whether 

the mutations are on the same allele, not in the same cell. Therefore, the true incidence of 

compound heterozygosity is unclear. In the absence of single cell analysis, the mutant level 

of the individual mutations in a patient may indicate whether the mutations are likely to be 

monoallelic or biallelic. In the present study, patients with one or more mutations with a total 

mutant level was <50% were assumed to be monoallelic, and patients with either one or 

multiple mutations totalling >50%, to be biallelic on the assumption that at least a proportion 

of the cells must have more than one allele affected. However, using this approach it is not 

possible to determine whether the biallelic mutations are compound heterozygous or 

homozygous. The possibility of hemizygoisity also cannot be excluded and this is addressed 

further in chapter 6. Of the 21 PTEN-mutated patients, 11 (52%) patients were therefore 

classified as harbouring monoallelic mutations and, where more than one mutation was 

present, the mutations were considered most likely to be heterozygous and in different 

subclones. In these patients, the total number of cells affected by mutation ranged from 22% 

to 96%, demonstrating that in some patients, nearly all the cells were affected by PTEN 

mutation. The low mutant level in other patients could be as a result of non-leukaemic cell 

contamination of the sample or true subclones. Ten patients (48%) were classified as having 

biallelic mutations. Therefore monoallelic and biallelic mutations were identified at an 

equivalent frequency, suggesting that the presence of other collaborating mutations may be 

an important factor in disease progression.  

The data presented in this chapter shows the screening, identification and quantification of 

mutations in the PTEN gene. Data on the association of the mutations with clinical 

characteristics and the impact of the mutations on patient outcome is studied in chapter 6. 
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CHAPTER 6: COPY NUMBER ALTERATIONS IN PTEN AND THE 

PROGNOSTIC IMPLICATIONS OF PTEN ABNORMALITIES ON 

PAEDIATRIC PATIENTS WITH T-ALL   

6.1 Introduction 

6.1.1 PTEN gene dosage 

The identification of tumour suppressor genes led to the two-hit hypothesis in cancer, which 

was based on the analysis of a childhood cancer, retinoblastoma (Knudson, 1971). Germline 

deletion or mutation of one allele of the RB1 gene can be inherited from the parent (the first 

hit), which leads to retinoblastoma following the acquisition of a mutation in or loss of the 

other allele (the second hit). However, recent studies attempting to apply the principles of 

this hypothesis to identify novel tumour suppressors in sporadic cancers have demonstrated 

that for some genes where the loss of function of one allele has been reported, a second hit 

on the remaining allele is not required for tumour initiation and progression. As previously 

mentioned in chapter 5 (section 5.4.1), PTEN has been described as a haploinsufficient 

tumour suppressor gene as loss of only one allele can elicit a cancer phenotype. A recent 

study has further demonstrated that a more subtle reduction in the level of Pten can 

accelerate cancer progression (Alimonti et al., 2010). The authors generated a murine Pten 

‘hyper’ model by targeting intron 3 of Pten with a neomycin cassette under the control of the 

CMV promoter, which resulted in the disruption of transcription. Pten
hy/+ 

cells expressed 

80% of normal Pten mRNA and protein levels, and were used to generate a hypomorphic 

allele series of mice with decreasing Pten expression: Pten
+/+

, Pten
hy/+

, Pten
+/- 

and Pten
hy/-

. 

Notably, Pten
hy/+ 

mice showed an increased susceptibility to the development of cancers 

including mammary tumours and epithelial cancers. A further decrease of Pten dosage below 

monoallelic loss was associated with decreased survival. These studies led to PTEN being 

described as an obligate haploinsufficient tumour suppressor gene, where tumour 

progression may favour partial loss of PTEN over complete loss (Figure 6.1). 

It has been hypothesised that the cancer susceptibility and disease severity associated with a 

decrease in PTEN gene dosage is tissue-specific and context dependent (Hollander et al., 

2011). Studies have shown that the genetic background of the individual or tumour has an 

impact on the phenotype caused by the loss of PTEN. For example, in a mouse model of 

prostate cancer, loss of one allele of Pten in the presence of WT p53 was more tumourigenic 

than biallelic loss (Chen et al., 2005). Complete loss of Pten resulted in the induction of p53-
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Figure 6.1 Tumour suppressor genes. (A) Example of a gene which follows the two-hit hypothesis, retinoblastoma (RB). (B) Example of a haploinsufficient 

tumour suppressor gene, p53. (C) Example of an obligate haploinsufficient gene, PTEN. Abbreviations: PICS, PTEN-induced cellular senescence. Taken from 

Berger et al (2011). 
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dependent Pten-loss-induced cellular senescence (PICS), whereas monoallelic loss led to the 

progression of cancer. In the murine haematopoietic compartment, complete loss of Pten on 

a WT p53 background induced HSC exhaustion or bone marrow failure and only led to 

leukaemias, including AML and ALL, when co-incident genetic events occurred, such as 

loss of p53 (Lee et al., 2010;Yilmaz et al., 2006). Differences in the cancer phenotype of 

various monoallelic abnormalities have also been reported, with heterozygous loss-of 

function PTEN mutations being associated with higher levels of AKT phosphorylation 

compared to those with heterozygous (+/-) PTEN loss (Papa et al., 2014). The authors 

showed that the mutant Pten proteins exerted a dominant-negative effect by dimerisation 

with the WT protein, and suggest that this may result in a more exacerbated tumour 

spectrum.  

6.1.2 Genomic loss of PTEN in T-ALL 

PTEN deletions were first associated with T-ALL when a homozygous deletion was 

identified in the T-ALL cell line CCRF-CEM (Gronbaek et al., 1998). It was then shown that 

thymic lymphomas from TP53
-/-

, Terc
-/-

, Atm
-/- 

triple knockout mice also harboured Pten 

deletions encompassing the whole gene (Maser et al., 2007). As a consequence, array-CGH 

analysis was performed on samples from 26 paediatric T-ALL patients and four (15%) were 

found to have a PTEN deletion. Since then, a number of other groups have extended these 

findings, and these studies are detailed in Table 6.1. Overall, deletions have been reported at 

a frequency of between 5% and 15% in paediatric studies.  Combining the data from three 

studies, of 183 cases, 14 (8%) harboured PTEN deletions (Gutierrez et al., 2009;Maser et al., 

2007;Zuurbier et al., 2012). Biallelic and monoallelic deletions have been reported, however 

the functional advantage of one versus the other has not been defined. In the two studies 

where this information was available, of 157 patients, seven (4%) had a heterozygous 

deletion and three (2%) a homozygous deletion, which was too few for further analysis 

(Gutierrez et al., 2009;Zuurbier et al., 2012).  

In one study where protein level was assessed, no PTEN protein was detected in patients 

with either a heterozygous or homozygous deletion, in a patient in which the deletion was 

subclonal, and in three patients with WT PTEN genomic level and sequence (Zuurbier et al., 

2012). As a result the group extended their previous findings and used multiplex ligation-

dependent probe amplification (MLPA) to screen samples from 146 patients for PTEN 

microdeletions (Mendes et al., 2014) (Table 6.1). They were identified in four (3%) patients: 

three spanning exons 2-3, two of them heterozygous and one homozygous, and one 

heterozygous deletion of exons 4-5. The deletions ranged from 11kb to 65kb and all resulted 
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Table 6.1 Studies of PTEN deletion in patients with T-ALL 

Reference Total in 

study 

Age group Screening 

method 

Total 

PTEN 

deleted 

patients 

 

PTEN Deletion Total 

PTEN 

mutant 

patients 

(%) 

Total PTEN 

abnormalities 

Co-incident 

NOTCH1/FBXW7 

mutations 

Maser et al 

(2007) 

26 Paediatric aCGH 

+qPCR 

4 (15%) No details N/A N/A No association with 

NOTCH1 and/or FBXW7 

mutations 

Gutierrez et al 

(2009) 

44 Paediatric aCGH + 

FISH 

 

4 (9%) 

 

2 HOM 

2 HET 

No deleted patients 

harbored co-incident 

mutations 

12 (27%) 16 (36%) N/A 

Zuurbier et al 

(2012) 

142 Paediatric aCGH + 

FISH 

 

6 (5%) 

 

3 HET 

1 HOM 

2 SUB  

3 patients had co-incident 

mutations 

16 (11%)  19 (13%) NOTCH1 mutated 

patients had a 

significantly lower 

incidence of PTEN 

mutation (P=.006) 

Mendes et al 

(2014)* 

146 Paediatric aCGH+FISH 

 

MLPA+ 

genomic 

breakpoint 

PCR 

16 (11%) 3 HET 

2 SUB  

1 SUB + MICRO HET 

2 MICRO HET 

1 MICRO HOM 

7 MICRO SUB 

8 patients coincident 

mutations 

16 (11%) 26 (18%) PTEN mutation 

significantly associated 

with absence of 

NOTCH1 mutation 

(P=.05) 
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Table 6.1 Continued 

 

Reference Total in 

study 

Age 

group 

Screening 

method 

Total 

PTEN 

deleted 

patients 

 

PTEN Deletion Total 

PTEN 

mutant 

patients 

(%) 

Total PTEN 

abnormalities 

Co-incident 

NOTCH1/FBXW7 

mutations 

Trinquand et 

al (2013) 

175 Adult aCGH+qPCR 6 (3%) 3 HET 

1 HOM 

2 MICRO 

2 patients coincident 

mutations 

17 (10%) 21 (12%) PTEN mutation 

significantly associated 

with absence of 

NOTCH1and/or FBXW7 

mutation (P=.002) 

 

Abbreviations: aCGH, array-CGH; FISH, fluorescent in-situ hybridisation; HOM, homozygous; HET, heterozygous; SUB, subclonal; MICRO, microdeletion; 

N/A, not available; MLPA, multiplex ligation probe-amplification. 

* extended study of Zuurbier et al (2012). 
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in an out-of-frame transcript. Further screening of the samples for similar breakpoints to 

those identified revealed subclonal microdeletions in an additional seven patients. In one 

patient, a clonal microdeletion had already been detected by MLPA and in another patient, a 

heterozygous deletion had already been characterised in their previous study. Therefore 

microdeletions were identified in 11 (8%) patients, although only four of these were 

considered to be clonal. Only two of the 11 deletions had been detected in their previous 

study using array-CGH. Analysis of the sequences directly surrounding the breakpoints 

revealed that the microdeletions were as a result of illegitimate RAG-mediated 

recombination events, mediated by cryptic recombination signal sequences.  

Overall therefore, of the two studies where results of both PTEN mutations and deletions 

have been reported, 42 of 190 patients (22%) were considered to have abnormal PTEN. Of 

these, seven (4%) patients had both co-incident mutation and deletion, 14 (7%) harboured 

deletion only and 22 (12%) mutation only (Gutierrez et al., 2009;Mendes et al., 2014).   

6.1.3 Techniques to detect PTEN copy number changes 

Earlier studies of copy number changes in PTEN utilised Southern blotting (Wang et al., 

1998). However, the more recent development of high-throughput sequencing and 

microarray platforms has enabled the detection of copy number changes in large numbers of 

samples. The three studies that have screened for PTEN deletions in samples from paediatric 

patients with T-ALL all utilised microarray based-comparative genomic hybridisation (array-

CGH) (Gutierrez et al., 2009;Maser et al., 2007;Zuurbier et al., 2012).  In this assay, DNA 

from a reference and patient sample are differentially labelled with fluorophores and used as 

probes to hybridise to genome-wide or more defined nucleic acid targets. Newer approaches 

to array-CGH have enabled size changes of 200bp to be resolved. However, the technique is 

expensive, time consuming and it cannot identify copy-neutral aberrations such as acquired 

uniparental disomy (UPD). More recently, array-CGH platforms incorporating a number of 

SNP markers have become available to overcome this problem. It also requires 2-5µg of 

genomic DNA per sample for analysis. 

Other approaches examining just the PTEN gene have included genomic allele quantification 

by quantitative PCR (qPCR) to determine a gene dosage ratio of PTEN compared to a 

reference gene, ALBUMIN (Trinquand et al., 2013), fluorescence in-situ hybridisation 

(FISH) analysis, although this technique requires cells from the patient (Gutierrez et al., 

2009;Zuurbier et al., 2012), and MLPA (Mendes et al., 2014).  



 

166 

 

However, a number of studies of paediatric ALL have used SNP arrays to detect copy 

number changes (Kuiper et al., 2007;Mullighan & Downing, 2009;Mullighan et al., 

2008;Kawamata et al., 2008).  Here, unlabelled genomic test DNA is fragmented and 

hybridised to labelled allele-specific oligonucleotide probes that are attached to a beadchip. 

This is followed by single-base extension of the probes to incorporate detectable labels, 

generating intensity values in each of the two colour channels corresponding to the two 

alleles. SNP array panels consist of a uniform distribution of SNP markers to limit large gaps 

across the entire genome and are used for high resolution copy number aberration detection 

as the probes can be spaced at intervals of 500bps.  The technique can also identify areas of 

copy-neutral change, and <1 µg DNA/sample is required. There are a number of SNP array 

platforms available. The most widely used are Affymetrix arrays, for example, the 

Affymetrix SNP 6.0 array interrogates over 1.8 million genome-wide genetic markers 

including approximately 900,000 SNPs and 900,000 intensity-only-non-polymorphic probes 

in regions of known copy number variation and has over 400 probes covering the PTEN 

gene.  

To identify PTEN copy number changes in the present study, SNP array was chosen over 

array-CGH as less DNA is required. Due to the high cost of the Affymetrix protocol, the 

Illumina platform was selected. The Illumina CytoSNP-850K array examines 850,000 

empirically selected SNPs spanning the entire genome. It is enriched for coverage of 3262 

genes of known cytogenetic relevance in cancer applications and includes 230 PTEN probes. 

It requires only 200ng of DNA per sample, and the long 50-mer probes offer a high signal-

to-noise ratio.   

6.1.4 Impact of PTEN abnormalities on clinical characteristics and outcome in T-

ALL 

Several groups have focused on the association of PTEN mutations and deletions with the 

clinical characteristics of patients with T-ALL and their prognostic significance, and these 

are shown in Table 6.2. Most paediatric studies showed no association of PTEN 

abnormalities with age, sex or WBC count, although of three studies correlating genotype to 

clinical characteristics, one reported that patients harbouring abnormalities were more likely 

to be associated with a younger age (Mendes et al., 2014) and another showed an association 

between patients with biallelic mutations and a higher WBC count at diagnosis (Jotta et al., 

2010). No association was observed between T-cell immunophenotype and PTEN mutations 

and deletions, and only one study demonstrated an association with cytogenetic aberrations, 

where patients with PTEN mutations and deletions were significantly more likely to have a 
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TAL/LMO rearrangement and to be negatively associated with TLX3 rearrangements 

(Mendes et al., 2014). Only one group has correlated PTEN genotype with glucocorticoid 

response to therapy and MRD status (Bandapalli et al., 2013). The authors demonstrated that 

patients harbouring PTEN mutations were significantly associated with a poor prednisone 

response when compared to PTEN
WT

 patients (P=0.0007). Similarly, at both day 33 and day 

78 of induction therapy, PTEN
MUT

 patients were more likely to be MRD-positive than 

PTEN
WT

 patients (P=0.0007 and P=0.005 respectively). In a multivariate analysis with 

factors including age, sex and WBC, PTEN mutations remained an independent negative 

prognostic marker for early response to therapy and MRD status. Of five studies 

investigating the association of either PTEN mutations alone or PTEN mutations and 

deletions on long-term outcome, most agreed that there was no significant difference in long-

term outcome between PTEN-abnormal (PTEN
ABN

) and PTEN
WT 

patients (Bandapalli et al., 

2013;Gutierrez et al., 2009;Larson Gedman et al., 2009;Mendes et al., 2014). However, 

when Gutierrez et al (2009) analysed the outcome of mutated and deleted patients separately, 

PTEN deletions were significantly associated with early treatment failure although this was 

based on only four patients harbouring deletions. In another study, patients with biallelic 

PTEN mutations had a significantly worse OS than monoallelic and WT patients (Jotta et al., 

2010). 

6.1.5 PTEN abnormalities and NOTCH1 mutations in T-ALL    

A number of studies have suggested that there is a NOTCH-PTEN-AKT regulatory axis 

which, during normal thymocyte development, mediates upregulation of P13K/AKT 

signalling but upon aberrant NOTCH1 signalling in T-ALL, switches to promote the growth 

of leukaemic cells  (Palomero et al., 2007).  Chromosome immunoprecipitation (ChIP)-on-

chip analysis of promoter occupancy in the HPB-ALL T-ALL cell line demonstrated that 

two transcription factors directly controlled by NOTCH1, HES1 and MYC, are negative 

regulators of the PTEN gene promoter (Jarriault et al., 1995;Satoh et al., 2004;Weng et al., 

2006). Further evidence linking NOTCH1 and PTEN came from a study to identify disrupted 

genes associated with resistance to GSIs in a panel of GSI-resistant and GSI-sensitive cell 

lines, where PTEN was consistently found to be down-regulated in the GSI-resistant cell 

lines (Palomero et al., 2007). 

The role of co-incident PTEN and NOTCH1 abnormalities in T-ALL has been investigated in 

two paediatric studies. Both describe a negative association between the incidence of 

NOTCH1 and PTEN mutations but report different outcomes in their respective cohorts. In 

the study investigating a cohort of 301 patients treated on the ALL-BFM protocol, where 
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Table 6.2 Studies reporting on the impact of PTEN abnormalities on clinical outcome in patients with T-ALL 

Reference Total 

in 

study 

Age 

group 

Trial Total PTEN 

abnormal 

patients 

 

Co-incident 

NOTCH1/FBXW7 

mutations 

Outcome compared to  PTEN
WT

 

Gutierrez et al 

(2009) 

44 Paediatric COG 9404 

 

16 (36%) 

MUT +DEL 

N/A No association with outcome in PTEN
ABN 

group 

PTEN
DEL 

group alone significantly associated with worse 

EFS (P=.028) 

Jotta et al 

(2009) 

62 Paediatric GBTLI 

ALL-99 

11 (18%) 

MUT 

N/A PTEN
BI 

group associated with inferior OS compared to 

PTEN
MONO

 and PTEN
WT

 ( P=.04) 

Zuurbier et al 

(2012) 

142 Paediatric DCOG + 

COALL 

19 (13%) 

MUT+DEL 

NOTCH1 mutated 

patients had a 

significantly lower 

incidence of PTEN 

mutation (P=.006) 

Association with increased RR in PTEN
ABN 

group in 

presence or absence NOTCH1/FBXW7 mutation (P=.002) 

(Erbilgin et 

al., 2010) 

301 Paediatric ALL-BFM 52 (17%) 

MUT 

PTEN mutation 

significantly associated 

with absence of 

NOTCH1 mutation 

(P=.05) 

 

SER and unfavourable MRD in PTEN
MUT

 group 

No association with EFS  in PTEN
MUT

 group 

NOTCH1
MUT

 with/without PTEN
MUT

 associated with 

improved outcome 

PTEN
MUT 

alone associated with worse outcome 

Mendes et al 

(2014)* 

146 Paediatric DCOG + 

COALL 

26 (18%) 

MUT+DEL 

PTEN mutation 

significantly associated 

with absence of 

NOTCH1 mutation 

(P=.05) 

No association with outcome in PTEN
ABN 

group alone 

Association with reduced EFS in PTEN
ABN

  group in 

presence or absence NOTCH1/FBXW7 mutation 
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Table 6.2 Continued 

 

Reference Total 

in 

study 

Age 

group 

Trial Total PTEN 

abnormal 

patients 

 

Co-incident 

NOTCH1/FBXW7 

mutations  

Outcome compared to  PTEN
WT

 

Trinquand et 

al (2013) 

175 Adult GRAALL-

2003 

21 (12%) 

MUT+DEL 

PTEN mutation 

significantly associated 

with absence of 

NOTCH1and/or FBXW7 

mutation (P=.002) 

PTEN
ABN 

group associated with reduced RFS and OS 

NOTCH1
MUT

 without PTEN
ABN

 associated with improved 

outcome 

NOTCH1
MUT

 with PTEN
ABN

 associated with worse outcome 

 

Abbreviations: MUT, mutated; DEL, deleted; N/A, not available; SER, slow early response; MRD, minimal residual disease; RFS, relapse-free survival; EFS, 

event-free survival; OS, overall survival; BI, biallelic; MONO, monoallelic; ABN, abnormal; WT, wildtype; RR, relapse rate. 

* extended study of Zuurbier et al (2012).   
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NOTCH1-mutated patients were previously reported to be associated with a favourable 

outcome (Kox et al., 2010), patients with a PTEN mutation in either the presence or absence 

of a NOTCH1 mutation had an unfavourable prednisone response and MRD status at day 33 

(Bandapalli et al., 2013), suggesting that PTEN ablates the benefit of a NOTCH1 mutation at 

this early time point. However, by day 78 of induction therapy, NOTCH1-mutated patients 

either with or without a PTEN mutation were more likely to be associated with MRD-

negativity, suggesting that NOTCH1 is clinically dominant at this time point and neutralises 

the negative effect of a PTEN mutation. When correlating genotype to long-term outcome, 

NOTCH1-mutated patients, either with or without a PTEN mutation, had the more 

favourable outcome, with the worst outcome seen in the patients with a PTEN mutation only. 

However, the unfavourable effect of a PTEN mutation was restricted to the medium risk 

group of 154 patients with a good prednisone response and an intermediate MRD status, 

although there were only 14 patients with a PTEN mutation in this group.  

In the study of the cohort treated on the DCOG and COALL trials, in which there was a 

borderline significant trend towards NOTCH1-mutated patients being more likely to be 

associated with a worse outcome (Zuurbier et al., 2010), PTEN abnormalities (mutations and 

deletions) alone had no significant effect on RFS (Mendes et al., 2014). However, when 

analysed with NOTCH1 genotype, patients with PTEN and/or NOTCH1 mutations 

demonstrated reduced RFS when compared to those with wild-type PTEN and NOTCH1. In 

multivariate analysis including male gender and the presence of TLX3 rearrangements, PTEN 

and/or NOTCH1 abnormalities were independent predictors for increased risk of relapse. 

This chapter reports the investigation of PTEN gene deletions and the impact of PTEN 

mutations and deletions on clinical outcome in the cohort of paediatric patients treated on the 

UKALL 2003 trial. 

6.2 Materials and Methods 

6.2.1 qPCR to detect PTEN gene deletion 

A commercially available assay from Applied Biosystems was used to assess PTEN copy 

number by Taqman qPCR. The reaction mix for a 20µl PCR contained 10µl 2x Taqman 

Genotyping Master Mix, 1µl of FAM-labelled Taqman PTEN Copy Number Assay, 1µl of 

VIC-labelled Taqman TERT Copy Number Reference Assay and 20ng DNA template. The 

standard cycling conditions were an initial denaturation step at 95°C for 10 minutes followed 
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by 40 cycles of denaturation at 95°C for 15 seconds, and annealing of primers for 60 seconds 

at 60°C.  

For amplification by SYBR green qPCR, the reaction mix for a 20µl PCR contained 10µl 1x 

Universal SYBR Green Mix (Sigma, UK), 0.2µM of appropriate forward and reverse 

primers (Appendix Table 1), and 20ng DNA template. The standard cycling conditions were 

an initial denaturation step at 95°C for 2 minutes followed by 40 cycles of denaturation at 

95°C for 15 seconds, and annealing of primers for 60 seconds at 60°C.   

6.2.2 SNP identification 

The presence of a common A/G SNP in intron 1-2, rs1903858, with a Minor Allele 

Frequency (MAF) of 0.425, was detected when screening exon 2 of the PTEN gene by 

dHPLC (section 5.3.1). Ensembl Genome Browser was therefore used to search for another 

SNP at the 3’ end of the PTEN gene with a similar frequency, and the T/G SNP rs555895 in 

intron 8-9 (MAF=0.434) was identified. Screening for rs555895 was carried out by PCR and 

dHPLC. Samples were amplified by 35 cycles of PCR using the primers and appropriate 

annealing temperatures shown in Appendix Table 1. PCR products were obtained using the 

proof-reading enzyme Optimase (Transgenomic) and the standard Optimase DNA 

Polymerase reaction mix and cycling conditions are detailed in section 2.1.4. PCR products 

were checked on a 2% agarose gel stained with ethidium bromide and were then denatured 

and cooled slowly to enable the formation of heteroduplexes. Denatured products were 

screened by dHPLC on the WAVE DNA Fragment Analysis System (Transgenomic, 

Glasgow, UK) as detailed in section 2.1.6 at optimal melting temperatures calculated using 

the Transgenomic Navigator software (Appendix Table 1). Each WAVE run included a 

known WT case to allow for comparison.  

6.2.3 SNP Quantification 

For quantification by fragment analysis, rs1903858 and rs555895 PCR products were 

obtained using BIOTAQ DNA polymerase with a fluorescently labelled forward primer and 

unlabelled reverse primer (Appendix Table 1). Due to the sensitivity of the assay, the 

standard BIOTAQ DNA Polymerase reaction mix and cycling conditions were adjusted as 

described in section 5.2.5. After amplification, 2µl of PCR product was added to 38µl of 

sample loading solution (Beckman Coulter UK Ltd, High Wycombe, UK) containing a DNA 

size standard ladder (DNA Size Standard Kit, 400PA, Beckman Coulter UK Ltd, High 

Wycombe, UK), then run on the CEQ 8000 Genetic Analysis System (Beckman Coulter UK 
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Ltd, High Wycombe, UK) to check that PCR products were obtained. Each run included a 

WT control to identify the WT peak in the patient samples (Figure 6.2).  

A restriction enzyme recognition site was identified on one of the polymorphic alleles in 

each of the SNPs that would allow separation of the two alleles by size after digestion. For 

rs1903858, 8µl of PCR product was digested at 37°C for 4 hours in a reaction mix with 1µl 

HindIII and 1µl of manufacturer’s buffer 4 (New England Biolabs, Hitchin, UK). After 

digestion, 2µl of the reaction was analysed as described above on the CEQ 8000 Genetic 

Analysis System. The A alleles were undigested giving a 314bp fragment and the G alleles 

were digested to a labelled 281bp fragment. For rs555895, 8µl of PCR product was digested 

at 37°C for 4 hours in a reaction mix with 1µl HincII and 1µl of manufacturer’s buffer  3 

(New England Biolabs, Hitchin, UK), and 2µl of the reaction was analysed as described 

above. G alleles were uncut giving a 201bp fragment and the T alleles were digested to a 

labelled 110bp fragment. The fragment analysis software calculated the area under the peak 

corresponding to each allele, and the contribution of each was determined by expressing the 

area under each peak as a percentage of total alleles. 

6.2.4 SNP array 

The Infinium CytoSNP-850k Beadchip array (Illumina, Essex, UK) was chosen for analysis 

(see section 6.1.3). In the Infinium protocol, genomic DNA is whole-genome amplified and 

fragmented then hybridised to 50-mer probes on the beadchip. Enzymatic single base 

extension of the probes then incorporates detectable labels, thereby determining the genotype 

call at the specified locus. Prior to analysis, the quality of the patient and control WGA DNA 

(as described in section 5.2.4) was checked on a 1% agarose gel stained with ethidium 

bromide. High quality DNA appeared as a high molecular weight band, without a smear of 

lower molecular weight DNA that indicated degradation or shearing of the sample. For 

samples where the DNA was of sufficient quality, 750ng was sent for SNP array analysis by 

Kerra Pearce, UCL Genomics, Institute of Child Health.  

Analysis of the Infinium BeadChip data was performed using the GenomeStudio Genotyping 

Module of the GenomeStudio software. Copy number values and confidence scores for each 

region were calculated using the cnvPartition plug-in algorithm, which is able to detect copy 

number changes from the log R intensities and B-allele frequencies of each SNP marker 

(Figure 6.3). Chromosome 10 was viewed in the Illumina Chromosome browser, and for 

each patient the PTEN gene (location 10:89612850-89721667) was scored as WT, HET 

(heterozygous deletion) or HOM (homozygous deletion). Detected regions of copy number 
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Figure 6.2 SNP allele quantification. Relative contribution of each allele quantified by 

fluorescently labelled PCR followed by allele-specific restriction enzyme digestion and size 

separation of labelled PCR products. 
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loss were shaded red and orange in the chromosome browser, regions of copy number gain 

were shaded blue and purple. The calculated confidence scores of the known controls, cell 

lines harbouring a heterozygous deletion (LOUCY cells) or homozygous deletion (CEM 

cells) were used to determine a scoring threshold and samples with a score of <80 were 

scored as WT.  

6.2.5 Cytogenetic and FISH analysis 

Cytogenetic and FISH results were made available by the Clinical Trial Service Unit and 

were performed at the Northern Institute for Cancer Research, University of Newcastle as 

described in chapter 4 (section 4.2.3). 

6.2.6 Clinical End Points 

Outcome was analysed according to overall survival (OS), defined as the time to death, 

event-free survival (EFS), which was the time to relapse, secondary tumour or death, and 

relapse-free survival (RFS), which was the time to relapse for those that achieved remission, 

censoring at death in remission. 

6.2.7 Statistical Analysis 

Statistical analysis of the UKALL2003 cohort was performed by Amy Kirkwood at the UCL 

Cancer Trials Centre. Chi-squared tests, or in the instance of small sample size Fisher’s exact 

test, were used to test for differences across the patient molecular groups in categorical 

subgroups such as gender, genetic subgroup, NCI risk group, SER and MRD, excluding any 

missing data categories. P-values are quoted for heterogeneity or trend where appropriate. 

Kaplan-Meier curves were used to assess survival, and differences between groups were 

compared using the log-rank test. All P values quoted are two-sided.  
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Figure 6.3 Assessment of copy number changes by SNP array. At each SNP locus, the B-

allele frequency (BAF) and Log R intensities for the three standard population clusters, AA, 

AB and BB  are scored and plotted. For normal copy-number, CN=2, presence of the three 

populations is visible on the BAF plot, with probes clustering at 0 on the LogR ratio. For 

copy number loss, CN=1, the heterozygous AB population is absent from the BAF plot, with 

probes clustering below 0 on the LogR ratio.  For copy number gain, CN=3, extra AAB, 

ABB populations on the BAF plot are present, with probes clustering above 0 on the LogR 

ratio. Taken from Illumina Technical Note. 

 

  

Copyright image removed 
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6.3 Results 

A number of methods were attempted to detect genomic loss of PTEN in the cohort of 

paediatric T-ALL patients. 

6.3.1 qPCR 

Initial attempts to screen for PTEN gene deletion utilised a commercially available Taqman 

Copy Number assay with primers for probing PTEN in intron 5-6, and a reference gene 

TERT, in a multiplex qPCR. To determine the sensitivity of the assay for discriminating 

between cells with normal PTEN gene copy number, heterozygous or homozygous deletion, 

various mixes were prepared using cell lines with known PTEN genotype, either WT (HL60 

cells), heterozygous deletion (LOUCY cells) or homozygous deletion (CEM cells). DNA 

was extracted and the samples were assayed in triplicate. Despite attempts to optimise the 

assay by varying the concentration of genomic DNA and adjusting the threshold Ct and 

baseline parameters, the products obtained were usually inadequately amplified for accurate 

quantification, and the copy number results obtained were neither reproducible nor 

consistent with the expected values. Therefore this approach was not pursued any further. 

Subsequent attempts using SYBR green and custom designed PTEN and TERT primers with 

the titration mixes gave similar results. Therefore another strategy to detect loss of genomic 

PTEN was devised.  

6.3.2 SNP screening and allele quantification 

A common SNP at the 5’ end of the gene, A/G rs1903858 in intron 1-2, was detected as part 

of the mutation screening for exon 2 (see section 5.3.1). Of the 162 patients investigated, 76 

(47%) had an abnormal WAVE chromatogram and the chromatograms of four patients 

indicated an allelic imbalance (Figure 6.4). Presence of the SNP was confirmed by PCR and 

HindIII restriction enzyme digestion as detailed in section 6.2.3 (Figure 6.2). In order to 

determine whether the genomic loss encompassed the whole gene, an additional SNP at the 

3’ end in intron 8-9, the T/G rs555895 polymorphism, was identified in Ensembl Genome 

browser and the samples screened by WAVE analysis for the presence of the SNP as detailed 

in section 6.2.2. Of the 162 patients investigated, 76 (47%) had an abnormal WAVE 

chromatogram. There were six patients where the chromatograms suggested an allelic 

imbalance. Presence of the SNP was confirmed by PCR and HincII restriction enzyme 

digestion (see section 6.2.3) (Figure 6.2).  
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The contribution of each polymorphic allele for both the rs1903858 and rs555895 SNPs was 

quantified by fluorescently labelled PCR and allele specific restriction enzyme digestion 

using both non-WGA and WGA samples. At any given SNP site, the expected allele ratio 

was 50%:50%, i.e. there is one copy of each polymorphic allele. Therefore, to determine the 

normal range for the assay, samples from a series of 20 SNP-positive normal controls were 

quantified and a mean allele ratio and range calculated, any deviation from this was 

considered to indicate loss of genomic material. For rs1903858, the mean percentage for the 

A allele was 53%±2% (range, 50%-58%), and for rs555895 the mean percentage for the T 

allele was 53%±2% (range, 49%-57%).  

Of the 76 SNP-positive patients informative for one/both SNPs, 72 were successfully 

quantified using both the non-WGA and WGA samples, and the comparative data obtained 

from the allele ratios is shown in Figure 6.5. Comparison was not possible for four patients. 

In one patient there was insufficient original genomic DNA to whole-genome amplify and in 

three patients the PCR product from the WGA sample was of too poor quality after digestion 

for the peaks to be called by the software. There was a strong correlation between the levels 

of the individual SNPs in the non-WGA and WGA samples. For rs1903858, r
2
=0.88 and the 

median difference was 2% (range 0% to 11%) and for rs555895, r
2
=0.89 and the median 

difference was 2% (range 0% to 12%). Only three cases had >10% difference between the 

two values (two for rs1903858 and one for rs555895). These differences are most likely to 

be as a result of incomplete digestion of the PCR product, therefore the uncut allele was 

overestimated in the ratio.  

An average allele ratio for each individual SNP level was determined from the non-WGA 

and WGA samples. Of the 76 patients informative for rs1903858, the allele ratio of 69 (91%) 

patients was within the normal range. In seven cases (9%) the A/G ratio was 7:93, 17:83, 

68:32 (three cases) and 73:27 (two cases) (Table 6.3), which would be consistent with 

genomic loss in at least a proportion of the cells. An example is given in Figure 6.6B.  For 

rs555895, there were nine (12%) patients with an allelic imbalance, T/G ratio 5:95, 21:79, 

22:78, 62:38, 66:34, 68:32 (two cases), 75:25 and 80:20. Seven of these patients had 

equivalent loss at the 5’ and 3’ SNP loci, suggesting that the deletion encompassed the whole 

gene. The remaining two patients’ harboured loss at the 3’ end only, suggesting that the 

heterozygous deletion was intragenic (Figure 6.6C).  

The allele ratio was then used to calculate the proportion of cells that would harbour a 

deletion. In patients where there was equivalent loss at both loci, the mean was determined 

from the 5’ and 3’ SNP ratios. In the seven patients with heterozygous deletion spanning the 
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whole gene, the proportion of cells affected were calculated to be 46%, 51%, 53%, 57%, 

65%, 75% and 96% respectively, although three of these cases were subsequently found to 

be amplifications of the PTEN gene (see below) (Table 6.3). Of the two patients harbouring 

loss at the 3’ end only, this was the case in 73% and 75% of cells respectively. Of note, the 

technique only detects heterozygous loss. In a sample harbouring homozygous loss, the 

proportion of non-deleted cells or contaminating non-leukaemic cells would instead be 

amplified, giving a false normal allele ratio. 

 

 

 

 

 

Figure 6.4 Detection of unbalanced SNP levels in patients with T-ALL by dHPLC. 

Representative WAVE chromatograms of  the rs1903858 polymorphism. (A) Patient with a 

normal SNP level. (B) Patient with an unbalanced SNP level.  
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Figure 6.5 Comparison of SNP levels quantified in non-WGA and WGA DNA from 

patients with T-ALL. Abbreviations: WGA, Whole genome amplified. 
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Figure 6.6 Detection of unbalanced SNP levels by capillary electrophoresis in patients with T-ALL. Representative fragment analyses showing (A) 

Haematologically normal control. (B) Patient with heterozygous loss at both SNP loci in 64% of cells. (C) Patient with heterozygous loss at the 3’ SNP locus 

in 75% of cells.  
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6.3.3 CytoSNP-850k SNP array analysis 

Of the 162 patient samples in the present cohort, there were 13 for which the WGA DNA 

sample was of insufficient quality to proceed with SNP array analysis. Therefore the 

CytoSNP-850k arrays were performed on these WGA samples from 149 patients. Ten 

samples failed the assay, producing unreadable chromosome traces, and were subsequently 

excluded. The investigation of PTEN gene deletion by array analysis was therefore possible 

in a total of 139 patient samples.   

The PTEN gene is 108kb in size and located at chromosome 10:89612850-89721667. The 

CytoSNP-850k Beadchip contains 230 probes to cover this region, distributed approximately 

one probe per 400-500bps. Analysis of the BeadChip data was performed using the 

GenomeStudio Genotyping Module of the GenomeStudio software. Chromosome 10 was 

viewed in the Illumina Chromosome browser and, for each patient, plots corresponding to 

the Logr ratio and B-allele frequencies were used to determine the PTEN genotype call for 

the sample, either WT, HET (heterozygous deleted) or HOM (homozygous deleted). Overall, 

125 (90%) were scored as WT and partial or complete loss of the gene was detected in 14 

(10%) of the 139 samples. Of these, 11 (79%) demonstrated heterozygous loss and three 

(21%) homozygous loss. Representative examples of the Logr ratio and B-allele frequency 

plots of samples harbouring either a heterozygous or homozygous deletion are shown in 

Figure 6.7. Of the samples with heterozygous deletion, the deletion looked to encompass the 

whole gene. The homozygous deletions also spanned the entire PTEN locus in all cases. It 

was not possible to determine the level of deletion in each sample. The Logr ratio and B-

allele frequency plots of four patients were consistent with amplification of the entire q arm 

of chromosome 10 and were therefore scored as WT for the present study, as they do not 

result in the loss of function of the PTEN gene.  

The CytoSNP-850k array data was scored for copy number changes in PTEN independently 

of the quantitative SNP allele ratios for the informative patients. Comparison with the SNP 

quantification data was possible for 72 of the 76 informative patients, as three SNP-

informative samples failed the CytoSNP-850k assay and one sample did not have sufficient 

DNA for array analysis. Eight samples demonstrating an allelic imbalance at both SNP loci 

gave a corresponding abnormal SNP array trace (Table 6.3). In five of these cases the 

imbalance was consistent with heterozygous deletion of PTEN. In the remaining three cases, 

the variation of the allele ratio was likely to be as a result of amplification of one allele of 

PTEN in the majority or every cell. Of note, the two cases where the deletion was only seen 
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Figure 6.7 Identification of PTEN deletions by SNP array. B-allele Frequency (BAF) and 

LogR ratio plots for samples with wildtype PTEN, heterozygous deletion of PTEN  and 

homozygous deletion of PTEN.  
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Table 6.3 Comparison of techniques to detect copy number changes in patients with T-

ALL 

Patient
#
 Copy 

number 

status 

PTEN copy number change 

(SNP quantification) 

% total cells 

harbouring 

copy number 

change 

Array 

 

rs1903858 

A%:G% 

 

rs555895 

T%:G% 

9 Het Del 68:32 62:38 46% Het Del 

12 Het Del N/A N/A - Het Del 

13 Het Del 54:46 80:20 75% at 3’ end Het Del 

21 Het Del N/A N/A - Het Del 

22 Het Del N/A N/A - Het Del 

23 Het Del 7:93 5:95 96% Het Del 

24 Het Del N/A N/A - Het Del 

25 Het Del N/A N/A - Het Del 

26 Het Del 17:83 22:78 75% Het Del 

27 Het Del 73:27 75:25 65% N/A 

28 Het Del 54:46 21:79 73% at 3’ end Het Del 

29 Het Del N/A N/A - Het Del 

30 Hom Del N/A N/A - Hom Del 

31 Hom Del N/A N/A - Hom Del 

32 Hom Del N/A N/A - Hom Del 

10 Amp 68:32 68:32 100% Amp 

33 Amp 73:27 68:32 100% Amp 

34 Amp 68:32 66:34 100% Amp 

20 Amp N/A N/A - Amp 

 

Abbreviations: N/A, not applicable; Het Del, heterozygous deletion; Hom Del, homozygous 

deletion; Amp, amplification. 
# 
Patient number corresponds to and follows on from Table 5.2. 
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at the 3’ end on the SNP allele quantification were initially scored as WT on the array. 

However, re-examination of the array plots confirmed the presence of a 3’ end heterozygous 

deletion of the gene in both patient samples.  

Therefore combining the two techniques, there were 143 patients with PTEN deletion status. 

Of these, 128 (90%) patients were scored as WT, 62 cases by array alone, 63 cases by both 

SNP quantification and array analysis and three cases by SNP quantification alone. Partial or 

complete loss of the gene (PTEN
DEL

) was detected in 15 (10%) patients (Table 6.3). In nine 

patients this was identified by array analysis alone, in five patients by both SNP 

quantification and array analysis and in one case by SNP quantification alone. 

6.3.4 PTEN mutation and deletion genotype  

Putting together the mutation and deletion data, 143 patient samples had a complete 

genotype. A further two patients, who failed the CytoSNP-850k assay and were SNP-

uninformative and therefore had an undetermined deletion status, were added to the cohort as 

they harboured a loss-of-function PTEN mutation. Considering the mutation and deletion 

status of these 145 patients, 113 (78%) were PTEN WT (PTEN
WT

) and 32 (22%) had 

abnormalities in the PTEN gene (PTEN
ABN

) (Table 6.4). The PTEN
ABN

 group included 17 

patients (53%) harbouring mutations (PTEN
MUT

), 11 patients (34%) harbouring gene deletion 

(PTEN
DEL

)
 
and 4 patients

 
(13%) with co-incident mutations and deletions (PTEN

MUT+DEL
).  

Each of the PTEN
ABN

 cases was further classified as harbouring either monoallelic or 

biallelic abnormalities and was scored according to the following criteria: patients were 

scored as monoallelic where one or more mutations were present and the total mutant level 

was <50%, or where there was evidence of heterozygous deletion. Patients with either one or 

multiple mutations totalling >50%, or homozygous deletion, were scored as biallelic, on the 

assumption that at least a proportion of cells must have more than one allele affected.  

Of the 32 PTEN
ABN

 cases, 19 (59%) patients were considered to harbour monoallelic 

abnormalities (PTEN
MONO

), and 13 (41%) biallelic abnormalities (PTEN
BI

) (Table 6.4). Of 

the PTEN
MONO

 patients, ten had one or multiple mutations which constituted <50% of total 

alleles (total mutant level ranged from 10% to 48%) suggesting the presence of a 

heterozygous mutation or, if more than one mutation was present, heterozygous mutations in 

different cell populations. Eight patients harboured heterozygous deletion, of these the 
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Table 6.4 Details of PTEN abnormalities in patients with T-ALL 

 

Patient
#
 No. 

PTEN 

mutants 

PTEN 

Mutations 

Size change 

(% mutant) 

Total 

mutant 

level 

PTEN 

deletion 

(array) 

PTEN deletion 

(SNP quantification) 

% 

Cells 

deleted 

 

rs1903858 

 

A%:G% 

 

rs555895 

 

T%:G% 

Biallelic 

14 2 4bp ins (45%) 

1bp ins (17%)* 

62% Normal N/A N/A - 

15 2 2bp ins (34%) 

6bp indel 

(37%) 

71% Normal 53:47 52:48 - 

18 3 8bps ins 

(29%)* 

18bp ins (29%) 

2bp ins (2%) 

60% Normal N/A N/A - 

16 2 20bp indel 

(28%) 

1bp indel 

(28%) 

56% Normal 55:45 47:53 - 

17 2 16bp ins (34%) 

1bp indel 

(39%) 

73% N/A N/A N/A - 

19 3 12bp indel 

(18%) 

6bp ins (37%) 

8bp ins (41%) 

96% Normal 54:46 50:50 - 

20 4 20bp indel 

(28%) 

6bp ins (13%) 

2bp indel 

(16%) 

8bp del (8%) 

67% Normal N/A N/A - 

30 - - - Hom Del N/A N/A - 

31 - - - Hom Del N/A N/A - 

32 - - - Hom Del N/A N/A - 

12 1 1bp ins (70%) 70%* Het Del N/A N/A - 

13 1 9bp indel 

(60%) 

60%* Het Del 54:46 80:20 3’end 

in 75% 

21 4 13bp ins 

(24%)* 

12bp indel 

(31%) 

4bp ins (18%) 

14bp ins (4%) 

77% Het Del N/A N/A - 

Monoallelic 

6 2 14bp indel 

(11%) 

13bp del (2%) 

13% Normal 52:48 50:50 - 

10 3 1bp ins (2%) 

5bp ins (6%) 

3bp ins (10%) 

18% Normal N/A N/A - 
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Table 6.4 Continued 

 

 

Abbreviations: N/A, not available; Het Del, heterozygous deletion; Hom Del, homozygous 

deletion; ins, insertion; del, deletion; indel, insertion/deletion. 
# 
Patient numbers correspond 

to and follow on from Tables 5.2. and 6.3.* Mutant level estimated from the sequence. 

 

  

Patient
#
 No. 

PTEN 

mutants 

PTEN Mutations 

Size change 

(% mutant) 

Total 

mutant 

level 

PTEN 

deletion 

(array) 

PTEN deletion 

(SNP quantification) 

% 

Cells 

deleted 

 

rs1903858 

 

A%:G% 

 

rs555895 

 

T%:G% 

1 1 2bp indel (41%) 41% Normal 52:48 54:46 - 

2 1 10bp indel (10%) 10% Normal N/A N/A - 

3 1 1bp ins (47%) 47% Normal 51:49 50:50 - 

4 1 7bp indel (48%) 48% Normal 52:48 52:48 - 

11 4 4bp indel (15%) 

13bp del (9%) 

11bp indel (4%) 

7bp ins (6%) 

34% Normal N/A N/A - 

7 2 5bp indel (12%) 

4bp ins (11%) 

22% Normal N/A N/A - 

5 1 12bp indel (37%) 37% Normal 57:43 51:49 - 

8 2 8bp ins (21%) 

4bp ins (6%) 

27% N/A N/A N/A - 

9 2 9bp indel (6%) 

11bp ins (5%) 

11% Het Del 68:32 62:38 46% 

22 - - - Het Del N/A N/A - 

23 - - - Het Del 7:93 5:95 96% 

24 - - - Het Del N/A N/A - 

25 - - - Het Del N/A N/A - 

26 - - - Het Del 17:83 22:78 75% 

27 - - - N/A 73:27 75:25 65% 

28 - - - Het Del 54:46 21:79 3’ end 

in 73% 

29 - - - Het Del N/A N/A - 
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proportion of cells harbouring the deletion could be determined in four patients and ranged 

from 65% to 96%. The remaining patient harboured both mutations and a deletion. The two 

mutations accounted for 11% of total alleles (6% and 5%), and SNP quantification indicated 

that the heterozygous deletion was present in 46% of cells. In this case it was difficult to 

determine the possible cell populations but it is likely that the mutated and deleted cells 

constitute different cell populations. As the quantifications suggested a borderline level, the 

case was counted as monoallelic.  

Of the PTEN
BI

 patients, seven patients each had multiple mutations and the mean total 

mutant level was 69% (range 56% to 96%), which is consistent with compound 

heterozygosity, although the possibility that individual mutants were homozygous also 

cannot be excluded. Three patients had homozygous deletions. The remaining three patients 

had co-incident mutations and deletions. One case had only one mutant at a level of 70% of 

total alleles and a heterozygous deletion. Therefore it is likely that in approximately 80% of 

cells, one allele has been lost and the remaining allele is mutated. This example is shown in 

Figure 5.11A. One patient had a single mutation in exon 5 at a level of 60% of total alleles, 

and a heterozygous deletion of the 3’ end in approximately 75% of cells. It was not possible 

to determine from the SNP array the size of the intragenic deletion and therefore whether or 

not it encompassed exon 5. One possible explanation is that 75% of cells harbour a 3’ end 

heterozygous deletion that includes exon 5, and the other allele in these cells carries the exon 

5 mutation. Alternatively, it is possible that a homozygous mutation was acquired in a 

proportion of cells (60%) that already harboured a 3’ end heterozygous deletion not 

encompassing exon 5. The other population of PTEN-abnormal cells (15%) would therefore 

only be heterozygous for the 3’ deletion. The remaining patient had four mutations with a 

total mutant level of 77% (25%, 31%, 18% and 4% respectively) and a heterozygous 

deletion was detected by array analysis. This suggests that there are various populations of 

subclones in the patient which may be either compound heterozygous with distinct mutations 

on different alleles, or hemizygous with the remaining allele in the cell mutated.  

6.3.5 Clinical outcome according to PTEN genotype 

6.3.5.1 Characteristics of T-ALL patients according to PTEN genotype 

The characteristics of PTEN
ABN

 patients were compared to PTEN
WT 

patients. The PTEN
ABN

 

group includes patients harbouring mutations (PTEN
MUT

), patients harbouring gene deletion 

(PTEN
DEL

)
 
and patients

 
with co-incident mutations and deletions (PTEN

MUT+DEL
). There was 

no significant difference in sex, WBC, age group or NCI risk group between the genotype 

groups, nor in cytogenetic characteristics (Table 6.5). However, patients with an abnormality 
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Table 6.5 Characteristics of T-ALL patients according to PTEN genotype 

 

Abbreviations: WT, wild-type; ABN, abnormal; WBC, white blood cell count; CNS, central 

nervous system; NCI, National Cancer Institute; N/A, not applicable. 
*
 P values: unless otherwise indicated these are given for Fisher’s exact test. 

†
Chi squared 

test. 
∆
Missing/failed excluded. 

 

  

 

Subgroup 

Total PTEN
WT 

PTEN
ABN 

P* 

Total no. % Total no. %  

Gender 

    Male 

    Female 

 

111 

34 

 

85 

28 

 

75% 

25% 

 

26 

6 

 

81% 

19% 

0.47 

 

WBC (x10
9
/L) 

    <50 

    50-99 

    ≥100 

    Median count 

    Range 

 

47 

22 

76 

110.5 

0.5-881.0 

 

41 

17 

55 

95.0 

0.5-881.0 

 

36% 

15% 

49% 

N/A 

N/A 

 

6 

5 

21 

135.7 

0.7-777 

 

19% 

16% 

66% 

N/A 

N/A 

0.15 

 

 

 

 

Age group (years) 

  <10 

  10-15 

  ≥16 

  Median 

  Range 

 

79 

47 

19 

9 

1-23 

 

56 

40 

17 

10 

1-23 

 

50% 

35% 

15% 

N/A 

N/A 

 

23 

7 

2 

8.5 

1-18 

 

72% 

22% 

6% 

N/A 

N/A 

0.09 

 

 

 

 

CNS disease  

  No 

  Yes 

 

135 

7 

 

110 

3 

 

97% 

3% 

 

28 

4 

 

88% 

12% 

0.04 

 

NCI risk group 

  Low 

  High 

 

18 

127 

 

14 

99 

 

12% 

88% 

 

4 

28 

 

12% 

88% 

0.6 

 

Cytogenetics 

  Normal 

  Abnormal 

  Failed 

  Missing 

 

28 

90 

25 

2 

 

21 

69 

       21 

2 

 

19% 

61% 

19% 

2% 

 

7 

21 

4 

0 

 

22% 

66% 

12% 

0% 

0.86
†∆

 

 

 

Genetic subgroup 

  AF10-CALM 

  LMO2 

  MLL 

 TAL1 

  TLX1 

  TLX3 

  Unknown 

 

3 

10 

3 

14 

5 

15 

95 

 

3 

8 

3 

8 

4 

14 

73 

 

3% 

7% 

3% 

7% 

4% 

12% 

66% 

 

0 

2 

        0 

6 

1 

1 

22 

 

0% 

6% 

0% 

19% 

3% 

3% 

69% 

N/A 

CDKN2A/B deletion 

  No 

  Yes 

  Missing 

 

      45 

79 

21 

 

       36 

56 

21 

 

31% 

50% 

19% 

 

       9 

23 

0 

 

28% 

72% 

0% 

 

0.27 
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in the PTEN gene had a significantly higher incidence of CNS disease than PTEN
WT 

patients 

(P=.04). 

6.3.5.2 Response to glucocorticoid therapy according to PTEN genotype 

Early response to therapy was first correlated with the presence or absence of abnormalities 

in the PTEN gene. Of the 32 PTEN
ABN

 patients, 24 (75%) had an RER (≤25% blasts in the 

marrow at day 8 or 15 of induction therapy) and 8 (25%) an SER (>25% blasts). Of the 113 

PTEN
WT

 patients, 84 (74%) had an RER and 29 (26%) an SER (Table 6.6). The difference 

was not statistically significant (P>.99), suggesting that abnormalities in the PTEN gene did 

not have an effect on response to glucocorticoid therapy.  

Early response to therapy was then correlated to presence of either a monoallelic or biallelic 

abnormality. There was no difference in the frequency of an RER between the PTEN
MONO

, 

PTEN
BI

 and PTEN
WT

 patients (74%, 77% and 74% respectively, P>.99), suggesting that 

there was no association between the level of PTEN loss of function, either by gene mutation 

or genomic deletion, and response to therapy (Table 6.6). 

6.3.5.3 MRD status according to PTEN genotype 

The MRD status at day 29 post diagnosis was available for 134 of the 145 paediatric patients 

with a complete PTEN genotype. Of the 27 PTEN
ABN

 patients, 12 (44%) had favourable 

disease (<1 positive cell in 1000 cells) and 15 (56%) had unfavourable disease (≥1 positive 

cell in 1000 cells). Of the 107 PTEN
WT 

patients, 60 (56%) had favourable and 47 (44%) 

unfavourable disease (Table 6.6). This difference was not statistically significant (P=.28), 

suggesting that abnormalities in the PTEN gene did not have a major effect on MRD.  

MRD status was then assessed according to the presence of either a monoallelic or biallelic 

abnormality. Favourable and unfavourable disease were observed in five (31%) and 11 

(69%) of the 16 PTEN
MONO

 patients respectively, seven (64%) and four (36%) of the 11 

PTEN
BI 

patients respectively (Table 6.6).  There was no difference in the frequency of 

favourable disease between the PTEN
MONO

, PTEN
BI

 and PTEN
WT

 patients (P=.69), however 

there was a borderline trend for an association between monoallelic abnormalities and 

unfavourable disease at day 29 (P=.14).



 

 

 

1
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Table 6.6 Response to chemotherapy and survival status according to PTEN genotype 

 

 

 

                                 

 PTEN genotype  Level of PTEN loss 

Total WT ABN P* Total WT 

 

Monoallelic 

 

Biallelic P
†
 

Slow early response 

No 

Yes 

 

   

 108 

37 

 

     

   84 (74%) 

29 (26%) 

 

    

  24 (75%) 

 8 (25%) 

 

  

>.99 

 

  

108 

37 

 

      

   84 (74%) 

29 (26%) 

 

    

  14 (74%) 

5 (26%) 

 

     

   10 (70%) 

  3 (30%) 

 

 

>.99
#
 

MRD at day 29 

Negative 

Positive 

 

72 

62 

 

60 (56%) 

47 (44%) 

 

12 (44%) 

15 (56%) 

 

0.28 

 

72 

62 

 

60 (56%) 

47 (44%) 

 

 5 (31%) 

11 (69%) 

 

 7 (64%) 

 4 (36%) 

 

0.14
∆

0.69
*
 

Outcome at 5 years, 

% (95% CI) 

RFS 

 

EFS 

 

OS 

 

 

  144 

 

145 

 

145 

 

 

87% 

(80%-92%) 

85% 

(77%-90%) 

91% 

(84%-95%) 

 

 

84% 

(66%-93%) 

78% 

(60%-90%) 

81% 

(63%-91%) 

 

 

0.55
†
 

 

0.37
†
 

 

0.1
†
 

 

 

144 

 

145 

 

145 

 

 

87% 

(80%-92%) 

84% 

(77%-90%) 

91% 

(84%-95%) 

 

 

83% 

(57%-94%) 

74% 

(48%-88%) 

79% 

(53%-92%) 

 

 

85% 

(51%-96%) 

85% 

(51%-96%) 

85% 

(51%-96%) 

 

 

0.83 

 

0.46 

 

0.23 

 

*P values: unless otherwise indicated these are for chi-squared test. 
†
Log-rank test. 

# 
Fisher’s exact test. 

∆ 
Chi squared test. 

* 
Trend for PTEN genotype.    

Abbreviations: WT, wild-type; MUT, mutant; ABN, abnormal; MRD, minimal residual disease; RFS, relapse-free survival; EFS, event-free survival; OS, 

overall survival; CI, confidence interval  
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Figure 6.8 The impact on clinical outcome stratified according to PTEN genotype. 

Kaplan-Meier curves for patients with abnormal  (ABN) or wildtype  (WT) PTEN . PTEN 
ABN 

classified as PTEN
MUT

 and/or PTEN
DEL

  patients. (A) Relapse-free survival, (B) Event-

free survival, (C) Overall survival. 
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Figure 6.9 The impact on clinical outcome stratified according to the level of PTEN 

loss. Kaplan-Meier curves for patients with monoallelic PTEN abnormalities (MONO), 

biallelic PTEN abnormalities (BI) and wildtype PTEN (WT).  (A) Relapse-free survival, (B) 

Event-free survival, (C) Overall survival. 
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6.3.5.4 Long-term outcome stratified by PTEN genotype 

There was no significant difference between PTEN
ABN

 and PTEN
WT 

patients in either RFS or 

EFS, 84% versus 87% (P=.55) and 78% versus 85% (log-rank P=.37) respectively, although 

PTEN
ABN

 patients did show a trend for a worse OS (81% versus 91%, P=.1) (Figure 6.8) 

(Table 6.6). However, although the HR for OS is 2.27, which suggests that PTEN
ABN

 patients 

are more likely to have a poorer OS, the 95% CI (0.82-6.24) are broad and there is no 

statistical difference when compared to WT patients. This was also the case when 

PTEN
MONO

, PTEN
BI

 and PTEN
WT

 patients were stratified for RFS, 83%, 85% and 87% 

respectively (P=.83) and EFS, 74%, 85% and 84% (P=0.46) respectively (Figure 6.9) (Table 

6.6). Again there was a borderline trend for a worse OS in patients with monoallelic 

abnormalities, 79%, 85% and 91% for PTEN
MONO

, PTEN
BI

 and PTEN
WT

 patients respectively 

(P=.23). 

6.3.6 NOTCH1/FBXW7/PTEN genotype of T-ALL patients 

In order to determine whether PTEN abnormalities impact on the good outcome seen in the 

NOTCH1±FBXW7
Double

 cases in the present study, and whether they can refine stratification 

of cases with single NOTCH1 mutations (NOTCH1
Single

) or wild-type NOTCH1 

(NOTCH1
WT

), PTEN genotype was correlated with outcome in the different 

NOTCH1/FBXW7 subgroups. The incidence of PTEN abnormalities in the three genotype 

groups is shown in Table 6.7. The frequency of PTEN abnormalities alone did not differ 

according to NOTCH1/FBXW7 genotype, 59% PTEN
ABN 

patients had a NOTCH1/FBXW7 

mutation compared to 68% PTEN
WT

 patients (P=.67).  

6.3.7 Long-term outcome according to NOTCH1/FBXW7/PTEN genotype 

Patients in the NOTCH1±FBXW7
Double

 group studied in this cohort have an excellent 

outcome with 100% OS (see 4.3.4). When the 37 patients in the NOTCH1±FBXW7
Double

 

group were stratified by PTEN genotype, there was no significant difference between 

abnormal and WT patients in OS, as all patients were alive at 5 years. Similarly there was no 

significant difference in RFS, 100% versus 94% (P>.99) for PTEN
ABN

 and PTEN
WT 

patients 

respectively (Figure 6.10). Of note, there were only two patients who relapsed in the 

NOTCH1±FBXW7
Double

 group and both remain alive. Both relapses occurred in patients in 

the PTEN
WT

 group. These results therefore suggest that PTEN genotype had no impact on the 

favourable outcome of the NOTCH1±FBXW7
Double

 patients. 
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Table 6.7 NOTCH1/FBXW7/PTEN status of patients with T-ALL 

  

Total
#
 

PTEN genotype 

145 PTEN
ABN

 PTEN
WT

 

NOTCH1±FBXW7
Double

 37 5 (14%) 32 (86%) 

NOTCH1
Single

FBXW7
WT

 55 14 (25%) 41 (75%) 

NOTCH1
WT

FBXW7
WT

 49 13 (27%) 36 (73%) 

 

Abbreviations: ABN, abnormal; WT, wildtype. 
#
 excludes four patients with an FBXW7 mutation only. 
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Figure 6.10 The impact on clinical outcome of the NOTCH1±FBXW7
Double

 group 

stratified according to PTEN genotype. Kaplan-Meier curve for Relapse-free survival for 

patients with abnormal PTEN (ABN) and wildtype PTEN (WT).  
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Figure 6.11 The impact on clinical outcome of NOTCH1
Single

FBXW7
WT

 group stratified 

according to PTEN genotype. Kaplan-Meier curves for patients with abnormal PTEN 

(ABN) and wildtype PTEN (WT). (A) Relapse-free survival, (B) Overall survival. 
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Figure 6.12 The impact on clinical outcome of NOTCH1
WT

FBXW7
WT

 group stratified 

according to PTEN genotype. Kaplan-Meier curves for patients with abnormal PTEN 

(ABN) and wildtype PTEN (WT). (A) Relapse-free survival, (B) Overall survival. 
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There was similarly no difference in the outcome of the NOTCH1
Single

FBXW7
WT

 and the 

NOTCH1
WT

FBXW7
WT

 groups when stratified by PTEN genotype. In NOTCH1
Single

FBXW7
WT

 

patients, RFS and OS for PTEN
ABN

 and PTEN
WT 

patients were 79% versus 83% (P=.68) and 

79% versus 90% (P=.24) respectively (Figure 6.11). In NOTCH1
WT

FBXW7
WT

 patients, for 

PTEN genotype alone, RFS and OS were 83% versus 85% (P=.82) and 77% versus 83% 

(P=.6) for PTEN
ABN

 and PTEN
WT 

patients respectively (Figure 6.12). There was a suggestion 

therefore that there may be association between PTEN abnormalities and a worse prognosis 

in the NOTCH1
Single

FBXW7
WT

 and NOTCH1
WT

FBXW7
WT

 groups. However, the number of 

patients in these groups was low and although the HR (2.39) suggested that PTEN
ABN

 

patients were more likely to have a worse OS in the NOTCH1
Single

FBXW7
WT 

group, the 95% 

CI (0.54-10.70) were broad and there was no statistical difference when compared to 

PTEN
WT

 patients.   

6.4 Discussion 

The data presented in this chapter shows the investigation of PTEN deletions in T-ALL and, 

when analysed in combination with mutations in the PTEN gene, the impact of the 

abnormalities on response to therapy and long-term outcome. Screening for genomic loss of 

PTEN was possible in 145 of the 162 patients with mutation status, and of these, PTEN 

deletion was identified in 15 (10%) patients. This incidence is in line with the combined data 

from other paediatric studies (24 of 216 cases, 11%, P=.84) (Gutierrez et al., 2009;Maser et 

al., 2007;Mendes et al., 2014) (Table 6.1).  

The initial approach to identify copy number changes in PTEN applied a qPCR-based 

strategy using a commercially available Taqman Copy Number assay. However, the copy 

number results obtained from control samples were both unreproducible and inconsistent 

with the expected values as a result of inadequate amplification of the genomic DNA. 

Further attempts using SYBR green and custom designed primers gave similar results; 

therefore this approach was not pursued any further. Subsequently, a SNP allele 

quantification method was devised utilising the presence of two common SNPs at opposite 

ends of the gene, in 76 heterozygous patients. Samples were amplified using a fluorescently 

labelled primer then underwent allele-specific restriction enzyme digestion and fragment 

analysis to separate the two polymorphic alleles by size. The contribution of each allele was 

then calculated by expressing the area under each peak as a percentage of total alleles. An 

imbalance was identified in nine (12%) of 76 patients. Seven of these patients had equivalent 

loss at the 5’ and 3’ SNP loci, suggesting that the deletion encompassed the whole gene. The 
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remaining two patients’ harboured loss at the 3’ end only, suggesting that the heterozygous 

deletion was intragenic. Nevertheless, this method was only applicable in 76 (52%) of 145 

patients, could only detect heterozygous loss and was unable to definitely ascertain whether 

the allelic imbalance was as a result of deletion or amplification of the PTEN gene. 

Therefore further attempts to screen the entire cohort were warranted. 

This was achieved using the Illumina CytoSNP-850k array, which is a high-throughput 

technique enabling copy number analysis across the whole genome. This array platform was 

chosen as it had a better coverage of the PTEN gene and contained more PTEN probes than 

other similarly priced arrays. Furthermore, the array results could be validated in 72 of the 76 

patients in which SNP allele quantification was possible and eight samples demonstrating an 

allelic imbalance at both SNP loci gave a corresponding abnormal SNP array trace. No 

deletions detected were calculated to be present in less than approximately half of cells in the 

72 patients with both array and SNP allele quantification data, the lowest proportion of cells 

with heterozygous deletion was quantified at 46% by SNP allele quantification. Therefore, it 

was not possible to determine the cut-off and true sensitivity of the array. Of note, only 

deletions present in more than 27% of cells for rs1903858 and 26% of cells for rs555895 

would give an allelic ratio outside of the normal range using the SNP allele quantification 

technique. It is therefore likely that some deletions present in subclonal populations have 

been missed in the present study. Other groups investigating PTEN deletion in paediatric 

cohorts have utilised array-CGH (Gutierrez et al., 2009;Maser et al., 2007;Remke et al., 

2009;Zuurbier et al., 2012). One study of 146 patients detected subclonal deletions in two 

patients using array-CGH, and in one of the patients for whom material was available, the 

deletion was validated by FISH and quantified to be present in 40% of the leukaemic blasts 

(Zuurbier et al., 2012). However, the definition of a subclonal population is not actually 

stated in the study. 

A further limitation of the use of SNP arrays to screen for PTEN deletions is that the 

presence of microdeletions is unlikely to be picked up by the array. This was demonstrated 

in a recent study to further investigate patient samples defined as WT by array-CGH, but in 

whom PTEN protein expression was absent (Mendes et al., 2014).  MLPA and PCR of the 

common breakpoints were used to detect microdeletions in a cohort of 146 patients, with an 

overall frequency of 8% of patients harbouring these deletions. In the present study, two 

samples with deletions at the 3’ end of the gene detected by SNP allele quantification were 

initially scored as WT in the SNP array plots. It was only upon comparison of the array 

results with the SNP allele quantification data, and subsequent re-examination of the array 

plots, that the deletions were included. Therefore, the incidence of small deletions, including 
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microdeletions, may be underestimated in the current study as it is possible that more were 

present in the 69 patient samples that could not be investigated by SNP allele quantification. 

Further analysis of the cohort utilising the genomic breakpoint PCR approach, is required in 

the present study. The Mendes et al (2014) study was also able to identify multiple deletions 

in two patients; one case harboured a heterozygous deletion of exons 4 and 5 with a 

heterozygous deletion of intron 1-3. The second case harboured a heterozygous deletion of 

exons 3-9 with a heterozygous deletion of intron 1-3. It is not known whether these deletions 

were in the same cell or constituted different cell populations. Given the incidence of 

multiple mutations detected in the present cohort, it is highly likely that some patients could 

harbour more than one smaller deletion. 

When combining the mutation and deletion status, of the 145 patients analysed in the present 

study, 32 (22%) had one or more abnormality in the PTEN gene. This is equivalent to the 

combined data from two paediatric cohorts in which the PTEN mutation and deletion data 

was available (42 of 190 cases, 22%, P=.85) (Gutierrez et al., 2009;Mendes et al., 2014) 

(Table 6.1). The abnormalities are predicted to result in the loss of the PTEN function either 

by genomic loss of one or both PTEN alleles or by mutation leading to the production of a 

truncated protein. PTEN has been described as a haploinsufficient tumour suppressor gene as 

loss of one allele can elicit a cancer phenotype in murine models. Therefore, the 

abnormalities identified in samples in the current study would be predicted to play a role to 

the pathogenesis of the disease. Both biallelic and monoallelic abnormalities were detected 

in the present cohort at a frequency of 9% and 13% of patients respectively. Of 19 patients 

with a monoallelic abnormality, in ten patients the loss of PTEN function could be attributed 

to the presence of one or more heterozygous truncating mutations, eight patients harboured 

genomic loss of one allele and one patient demonstrated both mutation and heterozygous 

deletion. Of the 13 patients with a biallelic abnormality, seven patients harboured 

populations of cells where both alleles were affected by truncating mutations, three patients 

had a homozygous deletion and three patients demonstrated both mutation and deletion.  

Whether or not complete loss of PTEN is more tumourigenic than partial loss in T-ALL is 

unknown, but the incidence of both suggests that the acquisition of a second hit on the 

remaining PTEN allele may not be relevant in some tumours. However, the possibility that 

the remaining PTEN allele in the monoallelic cases is silenced by other unknown 

mechanisms such as aberrant splicing, mutation or hypermethylation of the PTEN promoter, 

cannot be excluded. The importance of PTEN inactivation during leukaemogenesis and the 

influence of this on the clinical outcome of patients may also depend on other factors and 

collaborating genetic abnormalities. For example, studies have shown in an in vivo prostate 

cancer murine model that in the absence of a p53 abnormality monoallelic loss of PTEN may 
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be more detrimental than biallelic loss, which may explain the frequency of loss of only one 

allele in T-ALL (Chen et al., 2005). Therefore, further investigation of other potential 

abnormalities, for example the characterisation of p53 status, is required to address this, and 

the use of NGS techniques will facilitate this. 

Intraclonal heterogeneity at diagnosis and clonal evolution at relapse are known to occur in 

T-ALL (Anderson et al., 2011;Mullighan et al., 2007;Yang et al., 2008). Two reports in 

which the study of paired diagnostic and relapse samples was possible demonstrated that 

PTEN deletion was acquired in 12% of patients upon relapse (Clappier et al., 2011), and 

PTEN mutation in 6% of patients (Palomero et al., 2007). Clappier et al (2011) injected mice 

with diagnostic leukaemic cells from a patient who relapsed, and the resulting xenograft 

sample harboured a PTEN deletion, which was the same as in the relapse sample. The 

deletion is likely to have been present in a subclone at diagnosis that was undetectable due to 

an insensitive screening technique. This suggests that the PTEN inactivated subclone was 

selected for during the progression of disease and expanded, giving rise to relapse. However, 

in another study where a patient was found to harbour a subclonal microdeletion, the authors 

demonstrated that this subclone was not clonally selected for following xenotransplantation, 

and the microdeletion was still present in a subclonal population (Mendes et al., 2014). 

These studies raise the question as to which abnormalities are selected for and contribute to 

relapse, whether cells harbouring subclonal biallelic or monoallelic PTEN abnormalities are 

selectively expanded and which other collaborating mutations are required to further 

destabilise the cell. Paired relapse samples were not available in the present cohort therefore 

it was not possible to determine which, if any, of the identified PTEN-abnormalities were 

present at relapse. The unknown level of non-leukaemic cell contamination of the samples 

also presented an issue with determining accurate subclonal populations. It is possible that a 

mutation quantified to be present in only a small proportion of cells may actually have been 

a dominant clone diluted by normal cells.  Nevertheless, the presence of subclones was 

evident in the present cohort by the identification of multiple mutations per patient. Of the 

total mutations, 14 were present at a level of <10% total alleles, nine were between 10-20% 

and a further five mutations were between 20-30%. There was no evidence of subclonal 

deletions in the present study, of the six cases quantified with heterozygous deletions, the 

proportion of cells affected ranged from 46% to 96%.  Of note, there were nine cases with 

deletions that could not be quantified in the present study because it was not possible to 

determine this from the SNP array and the patients were not SNP-informative. Therefore of 

the 15 deletions and 44 mutations detected in the present study, approximately 47% were 

likely to be subclonal. One patient in the present cohort showed evidence of heterozygous 

deletion (level unknown) and also harboured four mutations with mutant levels ranging from 
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4-31%. This implies that even in the presence of an inactivating event such as heterozygous 

genomic loss that would be predicted to drive clonal selection, there is still a need for the 

further acquisition of mutations leading to clonal diversity. 

The knowledge of well-defined molecular prognostic markers at diagnosis in T-ALL could 

identify patients who are the highest risk of relapse and help to guide risk stratification and 

inform clinical decisions. When correlating the presence of PTEN abnormalities to response 

to glucocorticoid therapy in the present cohort, there was no significant difference in the 

incidence of an SER in patients with abnormal or WT PTEN genotype. This is in contrast to 

a report from patients treated on the ALL-BFM protocol, where PTEN-mutated patients were 

significantly associated with an SER when compared to WT patients. This difference could 

possibly be attributed to the specific glucocorticoid used in the various trials; patients in the 

present study treated on the UKALL 2003 trial were administered dexamethasone, whereas 

patients treated on the ALL-BFM trial received prednisone. The lack of association with a 

PTEN abnormality and an SER was unexpected as mutational loss of PTEN has been 

associated with increased AKT1 phosphorylation in T-ALL (Morishita et al., 2012), which 

has been linked with glucocorticoid resistance (Piovan et al., 2013). The authors reported 

that AKT is able to bind to and phosphorylate the NR3C1 glucocorticoid receptor, which 

resulted in the impairment of responses required to mediate glucocorticoid-induced cell 

death such as glucocorticoid receptor auto-upregulation and the transcriptional regulation of 

proapoptotic BCL2L11. The effect was reversed upon AKT inhibition. A later study also 

showed that AKT pathway activation was acquired in T-ALL clones in a zebrafish 

transgenic model, leading to an increased leukaemia-propagating cell population through 

activation of mTORC1, rendering the cells resistant to dexamethasone (Blackburn et al., 

2014). Therefore loss of PTEN function, by deletion or mutation, would be expected to play 

a role in resistance to therapy. However, the effect on response to glucocorticoid therapy 

seen in the present cohort may be due to the interaction of PTEN inactivation with other 

drugs used.  

In the present study, there was no association between PTEN
 
genotype and MRD status at 

day 29 of induction therapy. However, when stratified by the level of PTEN loss there was a 

borderline trend for patients with a monoallelic abnormality to be associated with a higher 

frequency of MRD-positivity, although the numbers in the subgroups are small. This 

association was unexpected as complete loss of PTEN would be thought to be more 

detrimental to the glucocorticoid response as further increases in AKT activation would 

increase inhibition of the glucocorticoid receptor, therefore reducing the response to the 

drug.  In the only other study of 301 patients correlating PTEN abnormalities to MRD status, 
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PTEN-mutated patients were significantly associated with MRD-negativity when compared 

to WT patients (Bandapalli et al., 2013), however the authors did not group the patients by 

monoallelic or biallelic loss. Nevertheless, the number of patients in the cohort in the present 

study is smaller (n=134), and a significant effect could possibly be seen if validated in a 

larger cohort. 

When correlating PTEN genotype to long term outcome, there was no significant association 

between PTEN abnormalities and prognosis, however there was a borderline trend for 

PTEN
ABN 

patients to have a worse OS. When furthered stratified by the level of PTEN loss, 

the worst outcome was seen in the monoallelic patients, possibly indicating that the loss of 

one allele is more detrimental than complete loss, which has been shown on certain genetic 

backgrounds to lead to the induction of PICS. However, this difference was non-significant 

and the number of patients in the subgroups was very low. The present study is in agreement 

with four of the five paediatric studies investigating the association of PTEN abnormalities 

with long-term outcome, in that none found a significant difference between PTEN-abnormal 

and WT patients (Bandapalli et al., 2013;Gutierrez et al., 2009;Mendes et al., 2014;Zuurbier 

et al., 2012). However, when Gutierrez et al (2009) analysed the outcome of mutated and 

deleted patients separately, patients with PTEN deletions were significantly associated with 

early treatment failure. One other study also reported a significantly worse outcome in 

PTEN
ABN

 patients, although the number of patients in the respective cohort was small 

(n=62), therefore the significance of this study should be viewed with caution (Jotta et al., 

2010). In the present study, PTEN
ABN 

patients were significantly associated with a higher 

incidence of CNS disease, which has not been reported in other studies. Increased CNS 

disease and subsequent CNS relapse could be a possible explanation for the trend for a worse 

outcome seen in PTEN abnormal patients.  

The association between resistance to NOTCH1 pathway inhibition with loss of PTEN and 

the resulting constitutive activation of the PI3K/AKT signalling pathway led to the 

suggestion of dual inhibitors of the NOTCH1 and PI3K pathways as a rational therapeutic 

approach in T-ALL (Palomero et al., 2007). Subsequent studies have shown that increased 

NOTCH1 signalling and Myc expression is dispensable for the growth of T-ALL by 

demonstrating that PTEN loss or activation of the PI3K/AKT signalling pathway can 

overcome the loss of Myc. Using an inducible zebrafish model of T-ALL, Gutierrez et al 

(2011) demonstrated that pten haploinsufficiency significantly promoted the loss of MYC 

dependence and that AKT pathway activation could replace the MYC signals required for 

the maintenance of T-ALL. Bonnet et al (2011) also demonstrated a striking difference in 

MYC protein abundance between paired primary diagnostic and relapse samples. A-CGH of 
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the samples revealed a monoallelic PTEN gene deletion at diagnosis which had evolved to a 

biallelic deletion at relapse, and the absence of PTEN protein correlated with an 

accumulation of MYC. The MYC transcripts were unaffected, suggesting posttranscriptional 

deregulation of MYC by PTEN. In a more recent study using an in vivo murine model, it 

was found that a population of T-ALL clones resistant to PI3K inhibition had reduced levels 

of ICN-1 and Myc, demonstrated cross-resistance to γ-secretase inhibitors and upregulated 

PI3K/AKT signalling (Dail et al., 2014). The authors demonstrated that the resulting PI3K 

inhibitor-resistant primary T-ALLs that emerged in vivo did not harbour the somatic Notch1 

mutations present in the parental leukaemia and generally had reduced PTEN expression, 

suggesting that the loss of aberrant Notch1 signalling provided a selection advantage to the 

PI3K inhibitor-resistant leukaemic cells. This raises the possibility that inhibitors of 

NOTCH1 signalling, when used in combination with PI3K-inhibitors, may actually promote 

drug resistance in T-ALL by inadvertently promoting the survival and expansion of PI3K 

inhibitor-resistant clones. As mutations in both NOTCH1 and PTEN are common in patients 

with T-ALL, these studies therefore pose an interesting question of how the NOTCH1 and 

PI3K/AKT signalling pathways interact clinically. 

When combining the PTEN genotype with NOTCH1/FBXW7 mutational status, the 

incidence of PTEN abnormalities did not differ according to NOTCH1/FBXW7 genotype. 

This is in contrast to two other paediatric studies, which both reported a significant 

association between a NOTCH1 mutation and the absence of PTEN abnormalities 

(Bandapalli et al., 2013;Mendes et al., 2014). This difference may be chance, although there 

was a slightly lower incidence of NOTCH1 mutations in the two studies (50% and 56% of 

the respective cohorts) compared to 62% in the current study. In the present cohort, 

NOTCH1±FBXW7
Double

 patients had an excellent outcome, with all patients alive at 5 years 

(section 4.3.4). Although there was a borderline trend for a worse OS in the PTEN
ABN 

group, 

when the NOTCH1±FBXW7
Double

 group were further stratified by PTEN abnormality, there 

was no evidence that the abnormalities impacted on the good outcome seen in this group of 

patients. This suggests that the increased activation of the NOTCH1 pathway is dominant 

over the loss of PTEN function in the context of the treatment protocol, and that it potentially 

neutralises the negative effect of a PTEN abnormality. This could not be attributed to more 

favourable characteristics of the NOTCH1±FBXW7
Double

 patients at diagnosis, as 87% were 

classified as NCI high-risk. Furthermore, despite the presence of adverse risk factors post-

induction in about one-third of this genotype group (SER and/or MRD-positive in 13 of 37, 

35%), there were only two patients who relapsed and both were PTEN
WT

. This is line with 

Bandapalli et al (2013) who, although patients were not stratified into the same genotype 

groups as in the present cohort, demonstrated that NOTCH1 activation antagonised the 
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unfavourable effect of a PTEN abnormality, as NOTCH1-mutated patients with or without a 

PTEN abnormality had the most favourable outcome, with the worst outcome seen in the 

patients with only a PTEN abnormality.  However, the data differs from that reported in two 

other studies. One was in a paediatric cohort where the authors reported that NOTCH1-

mutated/PTEN-abnormal patients demonstrated a significantly reduced RFS when compared 

to NOTCH1/PTEN-WT patients, and PTEN and/or NOTCH1 abnormalities were 

independent predictors for increased risk for relapse (Zuurbier et al., 2012). The other was  

an adult cohort where the presence of NOTCH1 and/or FBXW7 mutations and absence of 

PTEN/RAS alterations identified low-risk patients, and all other patients were defined as 

high-risk (Trinquand et al., 2013). The variable effects seen between trials have been 

attributed to differences in the treatment regimens between the various protocols (Ferrando, 

2010).  

When the NOTCH1
Single

FBXW7
WT 

group were stratified by PTEN abnormality, the 

NOTCH1
Single

FBXW7
WT 

patients with a PTEN abnormality appeared to have a reduced 

overall survival rate, but this was not significant. This suggests that the neutralising effect of 

the NOTCH1 mutations is limited to the NOTCH1±FBXW7
Double 

group, and that the dominant 

effect of NOTCH1 is only seen when NOTCH1 activation is increased, either by a second 

mutation in the gene or by a mutation in FBXW7. This would imply that there is a threshold 

of NOTCH1 activity which must be reached in order to antagonise PTEN. The worst 

outcome in the present cohort was seen in the patients in the NOTCH1
WT

FBXW7
WT 

group 

with a PTEN abnormality. This is in line with one study which reported that the worst 

outcome was seen in patients who were WT for NOTCH1 and harboured a PTEN 

abnormality (Bandapalli et al., 2013).  

The data presented in this chapter demonstrates that PTEN loss is common in T-ALL; 

however it appears to have no effect on the prognosis of patients treated on the UKALL 

2003 trial. Therefore at present, screening of PTEN would not be warranted for use in risk 

adapted therapy. However the numbers in the subgroups are small, suggesting validation in a 

larger cohort is required. Both biallelic and monoallelic loss of PTEN were found at an 

equivalent rate in the present study. Further studies are required to determine whether the 

presence of PTEN loss in the majority of cells at diagnosis or in a subclone which is then 

preferentially selected, is functionally relevant for relapse. For example, investigation of the 

collaborating mutations required for the expansion of PTEN
ABN

 subclones, as previous 

studies have demonstrated that in the murine haematopoietic compartment, complete loss of 

Pten only led to leukaemia when co-incident genetic events occurred, such as loss of p53 

(Lee et al., 2010;Yilmaz et al., 2006). In view of this, it would be interesting to determine 
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the incidence of copy number changes in the p53 gene, located on human chromosome 

17p13.1, utilising the available CytoSNP-850k array data. The use of  NGS techniques will 

be able to define the mutational landscape to elucidate which abnormalities collaborate with 

PTEN loss to further destabilise the cell, giving a wider picture of the biology of relapse.    
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CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTIONS 

Overall survival rates in paediatric patients with T-ALL have steadily improved in recent 

years as a result of more intense regimens, to a current rate of approximately 90% (Inaba et 

al., 2013). The increases in survival are largely attributed to lower relapse rates, however, for 

those patients who do develop recurrent disease, prognosis post-relapse remains poor. 

Therefore, risk-adapted therapy and the development of personalised medicine is useful to 

target the most intensive treatment at patients with high-risk, rather than low-risk, features. 

This is particularly pertinent as the intensification of treatment has also raised concerns about 

the consequences of treatment-related toxicity, which, in low-risk patients, is now 

responsible for an equal number of deaths as relapse (Rabin, 2014). A recent report from the 

UKALL2003 trial reported that there was no difference in EFS between low-risk patients 

who received either one or two delayed intensifications, suggesting that treatment reduction 

is feasible in this subgroup (Vora et al., 2013). The identification of molecular markers with 

prognostic relevance is advantageous in patients with T-ALL, as they may identify 

subgroups in which treatment reduction is viable, guiding future risk stratification and 

clinical decision making, such as whether SCT is necessary. At present, age, WBC at 

diagnosis and response to therapy are used to stratify patients by risk, and molecular features 

of the disease are not incorporated into risk refinement strategies of current trials (chapter 1). 

Therefore questions remain regarding the application of biomarkers to therapeutic strategy in 

T-ALL, and greater understanding is required. Knowledge of this and the interaction 

between different markers is important for understanding the underlying biology of the 

leukaemia. 

This thesis presents an investigation of NOTCH1 and FBXW7 mutations and abnormalities in 

the PTEN gene, which have been reported in other paediatric cohorts but their prognostic 

significance remains unclear. The incidence of NOTCH1 and FBXW7 mutations was 

determined in a cohort of paediatric patients with T-ALL treated on the UKALL 2003 trial 

(chapter 3), and the biological characteristics and clinical outcome of the patients according 

to genotype were explored in chapter 4. Mutations in another candidate gene, PTEN, were 

also investigated in terms of their incidence and mutant level (chapter 5). Copy number 

changes in the PTEN gene and the association of the PTEN abnormalities with the clinical 

characteristics and the outcome of patients was also determined (chapter 6).  

Mutations in the NOTCH1 and FBXW7 genes were detected using dHPLC of PCR products 

from selected exons. This technique was shown to be effective at detecting both point 

mutations and size changes in the cohort of 162 patients. The incidence of the mutations in 
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both genes and the mutational hotspots, the HD and PEST domain of NOTCH1 and exons 9 

and 10 of the WD40 repeats of FBXW7, were comparable to other studies (Figures 3.7 and 

3.9). Overall, 76 patients (47%) were mutated in NOTCH1 only, of these 62 were 

NOTCH1
Single

FBXW7
WT

 and 14 were NOTCH1
Double

FBXW7
WT

, four patients (3%) had an 

FBXW7 mutation only and 25 patients (15%) were NOTCH1
MUT

FBXW7
MUT

 (Table 3.4). 

Double mutations in NOTCH1, such as an HD domain mutation coupled with a PEST 

domain mutation, synergise to increase the activation of the NOTCH1 signal, and co-

incident NOTCH1 and FBXW7 mutations are also thought to act in synergy to amplify signal 

strength (Malyukova et al., 2007;Thompson et al., 2007). Therefore in the present study, the 

NOTCH1
Double

FBXW7
WT

 group was considered jointly with the NOTCH1
MUT

FBXW7
MUT

 

group as they both lead to synergistic NOTCH1 activation and are predicted to be 

functionally equivalent. The cohort was divided into three defined genotype groups, WT for 

both genes (NOTCH1
WT

FBXW7
WT

), single NOTCH1-mutated alone 

(NOTCH1
Single

FBXW7
WT

), and NOTCH1
Double

FBXW7
WT

 or NOTCH1
MUT

FBXW7
MUT 

(NOTCH1±FBXW7
Double

). 

There were several differences between patients in the NOTCH1±FBXW7
Double

 group and 

those in the NOTCH1
Single

FBXW7
WT

 and NOTCH1
WT

FBXW7
WT

 groups, including a 

significantly higher frequency of MRD-negative disease in the NOTCH1±FBXW7
Double 

cases. 

Therefore, the double-mutated group were associated with a much better response than either 

the NOTCH1 single-mutated or WT patients, in terms of clearance of leukaemic cells, EFS 

and OS (Table 4.5), and genotype was an independent favourable factor for OS and EFS in 

multivariate analysis (Table 4.6). At the time this work was completed eight studies had been 

published on the impact of NOTCH1 and FBXW7 mutations on outcome in paediatric 

patients. The present study is the only report to have grouped the patients harbouring double 

NOTCH1 mutations with those harbouring mutations in both the NOTCH1 and FBXW7 

genes, all other studies divided their cohorts according to the presence of mutations in the 

NOTCH1 gene only or in a combined NOTCH1 and/or FBXW7-mutated group (Clappier et 

al., 2010;Erbilgin et al., 2010;Fogelstrand et al., 2014;Kox et al., 2010;Larson Gedman et 

al., 2009;Mansur et al., 2012;Park et al., 2009;Zuurbier et al., 2010). Of these studies only 

two reported an association between the presence of a mutation and favourable long term 

outcome (Kox et al., 2010;Park et al., 2009); in one of the studies this effect was seen in the 

NOTCH1-mutated group only (Kox et al., 2010). The variable effects have been attributed to 

differences in treatment in the various trials, but differences in the combination of mutations 

may also be a significant factor.  
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The present data suggests that knowledge of the NOTCH1/FBXW7 genotype may have a role 

in refining the risk stratification by adding valuable information to morphological and MRD 

studies, in particular that NOTCH1±FBXW7
Double

 patients would not be considered for further 

intensification of therapy in first remission, including allogeneic stem cell transplantation. 

Given that, detecting NOTCH1 mutations for clinical use would present a challenge as 

replicating the method in the present study requires an individual PCR to screen each 

relevant exon or domain, followed by further separate analysis of each fragment by dHPLC, 

meaning that this approach is labour-intensive and time-consuming. Therefore, screening 

could be performed in patients classified as high-risk post-induction therapy, which, in the 

current cohort, would limit analysis to approximately half of the patients.  

The incidence of PTEN mutations in the paediatric cohort was determined by dHPLC of 

PCR products from the entire coding sequence of the gene (chapter 5). Direct Sanger 

sequencing was shown to be ineffective at characterising the mutations in a number of cases 

where more than one alteration was present in the same exon. Therefore, fragment analysis, 

cloning and re-sequencing of PCR products was utilised and 84% of the identified mutations 

were successfully characterised. The incidence of patients with mutations and the clustering 

of mutations in exon 7 was comparable to other studies, overall, 21 (13%) patients were 

classified as PTEN
MUT 

(Figure 5.6). However, the present study reports a significantly higher 

overall number of mutations than others, owing to 81% of patients harbouring multiple 

mutations (Figure 5.9). This difference is probably due to a more sensitive screening 

approach used in the current study.  The mutant level of all mutations detected was 

quantified either by fragment analysis of fluorescently labelled PCR products or by 

estimation from the sequence, and 52% of mutations were subclonal. The mutant level and 

number of mutations indicated the level of PTEN loss per patient and monoallelic and 

biallelic mutations were identified at an equivalent frequency. This data reflects the 

complexity of the genetic hits to the PTEN gene in patients with T-ALL.  

The possibility of loss of genomic PTEN was also considered in the present study and was 

investigated using a combination of SNP array and SNP allele quantification (chapter 6). The 

techniques were shown to be effective at identifying copy number changes, and the 

incidence of PTEN deletion detected is comparable to data from other paediatric studies. 

Screening for genomic loss of PTEN was possible in 143 of the 162 patients with mutation 

status, and of these, PTEN deletion was identified in 15 (10%) patients. When combining the 

mutation and deletion status, of the 145 patients analysed in the present study, 32 (22%) had 

one or more abnormality in the PTEN gene (Table 6.4). Approximately 53% of the identified 

PTEN abnormalities were likely to be clonal, and both biallelic and monoallelic 
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abnormalities were detected in the present cohort at a frequency of 9% and 13% of patients 

respectively. Taken together, the mutation and deletion status of paediatric patients with T-

ALL demonstrates the wide spectrum of PTEN loss of function, and determining which 

clones are likely to be responsible for disease progression together with the influence of 

other collaborating mutations are important factors if PTEN status is to be used to aid clinical 

decisions.  

There were no differences in the clinical characteristics, response to therapy or long-term 

outcome of PTEN
ABN 

patients when compared to PTEN
WT 

patients, however there was a 

borderline trend for PTEN
ABN 

patients to have a worse OS (Figure 6.8). Increased CNS 

disease and subsequent CNS relapse could be a possible explanation for the trend for the 

worse outcome seen in patients with abnormal PTEN. When furthered stratified by the level 

of PTEN loss, the worst outcome was seen in the monoallelic patients, although this 

difference was non-significant, possibly indicating that the loss of one allele is more 

detrimental than complete loss (Figure 6.9). At the time this work was completed, five other 

paediatric studies had been published analysing patients by their PTEN
 
genotype, with four 

groups reporting no difference between PTEN-abnormal and WT patients (Bandapalli et al., 

2013;Gutierrez et al., 2009;Larson Gedman et al., 2009;Mendes et al., 2014). One study 

reported a significantly worse outcome in PTEN
ABN

 patients, although the number of patients 

in this cohort was small and therefore the significance of this study should be viewed with 

caution (Jotta et al., 2010). Therefore at present, screening of PTEN would not be warranted 

for use in risk-adapted therapy.  

A further important consideration in the present study was the interaction between the PTEN 

abnormalities and NOTCH1/FBXW7 mutation status. The favourable outcome of the 

NOTCH1±FBXW7
Double 

group could be observed in patients with or without a PTEN 

abnormality (Figure 6.10), and the worst outcome was seen in the NOTCH1
WT

FBXW7
WT 

patients with a PTEN abnormality. This suggests that the increased activation of the 

NOTCH1 pathway is dominant over the loss of PTEN function in the context of the 

treatment protocol, and that it potentially neutralises the possible negative effect of a PTEN 

abnormality. The negative impact of a PTEN abnormality in the NOTCH1-mutant cases was 

reported in a recent study (Bandapalli et al., 2013). Therefore, the possibility that PTEN 

abnormalities in patients who are either NOTCH1
Single

FBXW7
WT 

or NOTCH1
WT

FBXW7
WT 

could potentially identify those who require further intensification of treatment and needs to 

be investigated in a larger study.  
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There are an ever-increasing number of recurrently mutated genes identified in patients with 

T-ALL and identifying which markers collaborate with NOTCH1/FBXW7
  
mutations and 

PTEN
 
abnormalities, and should therefore be screened in new T-ALL patients, will be 

increasingly challenging. The use of NGS techniques will be able to further elucidate the 

mutational landscape. Therefore, studies of this kind are important to aid in rationalisation of 

which markers should be analysed.  

7.1 Future directions 

If the NOTCH1/FBXW7 mutant status is to be included in the molecular investigation of 

patients with T-ALL to aid clinical decisions, a fast, accurate and sensitive method of 

mutation detection will be required. Replicating the method in the present study requires an 

individual PCR to screen each relevant exon or domain, followed by further separate 

analysis of each fragment by dHPLC, meaning that this approach is labour-intensive and 

time-consuming. Also there are no amino acid hotspots in the NOTCH1 gene equivalent to 

the R465 hotspot in the FBXW7 gene, meaning that the whole exon or domain requires 

screening. In NOTCH1, screening could be limited to the HD and PEST domains only, 

where approximately 94% of the total mutations detected in the present study are located. 

However, one double case harboured both a PEST domain and a TAD domain mutation, 

therefore omitting the TAD domain from the screening panel could potentially lead to 3% of 

double cases being missed. Targeted NGS technology would be quick and sensitive but 

could be problematic as the technique generates relatively short sequence reads which are 

aligned to a reference sequence and can therefore miss large insertions or duplications, 

which accounted for approximately 6% of mutations in the present study. Furthermore, 

although highly efficient algorithms have been developed that are highly successful for 

detecting point mutations, they still struggle to accurately align reads containing small 

indels, which occurred in 5% of patients in the present study. NGS has been used to screen 

for NOTCH1 mutations in other studies, in particular CLL, where a group performed WES 

of all exons of NOTCH1 and reported a 4% frequency of NOTCH1 mutations (Wang et al., 

2011b). This is contrast to three other studies that utilised Sanger sequencing to screen only 

the PEST domain in their respective cohorts of patients with CLL, and all detected mutations 

at a frequency of 11% (Balatti et al., 2012;Rossi et al., 2013;Villamor et al., 2013). Whether 

or not the differences in the incidence of NOTCH1 mutations between the respective studies 

are as a result of mutations being missed using NGS algorithms, or whether they are due to 

other factors such as the racial origin of the cohort is unclear, but this does highlight the 

difficulties for developing NGS assays for the detection of NOTCH1 mutations. However, 
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streamlining the molecular work-up of samples is desirable, and the inclusion of 

NOTCH1/FBXW7 in targeted multiplexed NGS-based assays may have an important impact 

on future treatment-related decisions.  

The data presented in this thesis demonstrated a favourable prognosis for 

NOTCH1±FBXW7
Double 

patients.  Of the 14 NOTCH1±FBXW7
Double 

patients with either an 

SER or MRD-positive disease post-induction, none received a BMT in first remission and all 

were alive 5 or more years after diagnosis. Therefore, determining the NOTCH1/FBXW7 

mutation status of the patient could be limited to patients who are classified as high-risk 

post-induction therapy, with NOTCH1±FBXW7
Double 

patients not considered for further 

intensification of therapy in first remission, including allogeneic SCT. Further investigation 

is clearly required to validate this finding in a larger cohort. However, this remains 

challenging due to the relatively small proportion of T-ALL compared with B-ALL patients 

in ALL clinical trials. The frequency of NOTCH1±FBXW7
Double 

mutations was also only 24% 

of the current cohort, meaning that the cohort sizes for impact studies will be small, and a 

meta-analysis to address this issue is therefore warranted.  

Alternative ways in which NOTCH1/FBXW7 mutation status may guide risk-adapted therapy 

could also be explored. For example, in patients where the measurement of MRD was not 

available, it is possible that knowledge of the genotype could help to inform the clinical 

decision as to whether a switch of regimen is required at the end of induction therapy. 

However, this information should be used with caution as approximately one third of 

patients with a NOTCH1±FBXW7
Double 

mutation were MRD-positive at day 29 and the 

excellent OS reported in this group could be as a result of the more intensive treatment in 

this subset of patients. Of note, the use of NOTCH1 mutations as MRD markers is limited by 

the lack of stability of the mutations as loss at relapse has been demonstrated (Mansour et 

al., 2007). 

The loss of PTEN function has been reported to occur by a variety of mechanisms including 

copy number changes, mutation, promoter methylation and post-translational modifications 

(chapter 5). The present study focused on mutations and genomic loss of the PTEN gene. 

However, further investigation is required to detect intragenic PTEN deletions and to explore 

the other mechanisms of loss of function in order to gain a wider picture of the role of PTEN 

in T-ALL. A recent study used MLPA to screen samples from 146 patients for PTEN 

microdeletions (Mendes et al., 2014). They were identified in four (3%) patients: three 

spanning exons 2-3, two of them heterozygous and one homozygous, and one heterozygous 

deletion of exons 4-5. The deletions ranged from 11kb to 65kb and all resulted in an out-of-
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frame transcript. Further screening of the samples for similar breakpoints to those identified 

revealed subclonal microdeletions in an additional seven patients. Microdeletions were 

therefore detected in 11 (8%) patients, and only two of the 11 deletions had been detected in 

their previous study using array-CGH (Zuurbier et al., 2012). In view of this, it would be 

interesting to explore whether these type of microdeletions occur in the present cohort. 

Preliminary work to investigate this issue has been carried out by screening the breakpoint 

region of the previously described Type 1 microdeletions, a 65kb region encompassing 

exons 2 and 3 using PCR of genomic DNA followed by gel electrophoresis. Patient samples 

harbouring the deletion produced a 306bp amplicon visible on a 2% agarose gel. Evidence of 

Type 1 microdeletion was identified in four of 145 patients (3%). The deletions had not been 

detected by the SNP array however all four cases already harboured known PTEN 

abnormalities and this additional information would therefore not change their PTEN 

genotype. Continued investigation of the other described microdeletions (Type II and III) 

(Mendes et al., 2014), will further determine the extent of loss of genomic PTEN in the 

cohort. 

Knowledge of NOTCH1 and PTEN genotype could also be useful in guiding future treatment 

strategies such as the use of PI3K inhibitors. A recent study using an in vivo murine model, 

demonstrated that some PI3K inhibitor-resistant cases of primary T-ALL did not harbour the 

somatic Notch1 mutations present in the parental leukaemia and generally had reduced 

PTEN expression (Dail et al., 2014). This suggests that the loss of aberrant Notch1 signalling 

provided a selection advantage to the PI3K inhibitor-resistant leukaemic cells. Therefore, 

loss of NOTCH1
 
mutations and the presence of PTEN

 
abnormalities at relapse may identify 

patients who have become resistant to PI3K-inhibitor treatment and would benefit from a 

different therapeutic approach.  

Investigations of other molecular markers that can be correlated to the 

NOTCH1/FBXW7/PTEN molecular profile of patients with T-ALL are warranted to further 

refine risk-stratification. RAS is known to activate the PI3K/AKT pathway and mutations of 

the gene have been described in T-ALL (Kawamura et al., 1999;Zhang et al., 2012). Studies 

have also shown that activation of the PI3K/AKT pathway via RAS can lead to the induction 

of leukaemia (Kong et al., 2013;Shieh et al., 2013). A recent study in an adult cohort of T-

ALL patients reported that patients harbouring PTEN and/or RAS mutations had a 

significantly worse OS when compared to PTEN/RAS-WT cases (Trinquand et al., 2013). 

The authors devised an oncogenetic risk classifier whereby patients with either a PTEN 

mutation or deletion were grouped with patients with a RAS mutation, and the presence of 

NOTCH1 and/or FBXW7 mutations in the absence of PTEN/RAS alterations identified low-
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risk patients, and all other patients were defined as high-risk. This study suggests that the 

evaluation of the role of RAS mutations in the present cohort could provide valuable 

prognostic information. Subsequent to the work presented in this thesis, the RAS mutant 

status has been determined in the patients from the present study. Of 145 patients, 13 (9%) 

had a RAS mutation (RAS
MUT

). Of these, eight (62%) harboured an N-RAS mutation and five 

(38%) a mutation in K-RAS. Putting together the PTEN
 
and RAS genotype of the 145 

patients, 101 (70%) patients were scored as PTEN/RAS
WT

 and 44 (30%) had either an 

abnormality in the PTEN gene or a RAS mutation (PTEN/RAS
ABN

). When correlating to 

clinical outcome, the addition of the RAS genotype made no difference to the 

NOTCH1±FBXW7
Double 

cases that retained their excellent OS. Interestingly, in the 

NOTCH1
Single

FBXW7
WT 

patients, the addition of RAS
MUT

 to the PTEN
ABN

 group improved 

both the RFS and OS when compared to PTEN
ABN

 alone, albeit by a small amount. However, 

the opposite was seen in the NOTCH1
WT

FBXW7
WT

 group, where patients with a PTEN/RAS 

abnormality had a worse outcome than PTEN
ABN

 patients alone. These results therefore 

differ from the recent adult study (Trinquand et al., 2013) and suggest that RAS mutations 

may play a distinct role from PTEN abnormalities in the context of some cases of T-ALL. 

NOTCH1 activation may therefore also neutralise the negative effect of RAS mutations in the 

context of the treatment protocol. However, the numbers in the subgroups are low therefore 

analysis in a larger cohort is required to determine if PTEN and RAS abnormalities are 

significant in paediatric T-ALL. 

A recent study of adult patients with T-ALL reassessed the value of conventional risk factors 

such as WBC count, and new risk factors including MRD response and genetic markers 

(Beldjord et al., 2014) Authors used the oncogenetic classifier proposed by Trinquand et al 

(2013) in which a high-risk genetic profile was defined by the absence of a 

NOTCH1/FBXW7 mutation and/or the presence of a PTEN/RAS abnormality.  They 

demonstrated that patients with high-risk genetics had a higher incidence of relapse 

irrespective of MRD status, suggesting that genotype was the predominant predictor in the 

cohort which could be further refined by MRD response.  The oncogenetic classifier does not 

translate to the present paediatric cohort, as previously mentioned there was no evidence that 

the presence of a PTEN abnormality impacted on the highly favourable outcome reported in 

the NOTCH1±FBXW7
Double

 patients. The addition of RAS genotype also made no difference 

to the NOTCH1±FBXW7
Double 

cases that retained their excellent OS. Approximately one third 

of this genotype group were MRD-positive at day 29, suggesting that the genetic profile may 

be the dominant predictor over MRD response. To address the work of Beljord et al (2014), 

further investigation could assess the utility of an adjusted classifier in the present paediatric 

cohort, in which all NOTCH1±FBXW7
Double 

cases, including those with a PTEN/RAS 
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abnormality, be classed as low-risk. High-risk patients would therefore be defined as 

NOTCH1
Single

 cases with a PTEN/RAS abnormality and/or MRD-positive disease, and all 

NOTCH1/FBXW7
WT 

cases.   

In the present study, only the PTEN locus on chromosome 10 was investigated on the 

CytoSNP-850k array. Further characterisation of genome-wide copy number changes present 

in each patient is therefore required. A particular candidate for study is cyclin C, which was 

recently identified as a haploinsufficient tumour suppressor in T-ALL, with heterozygous 

deletions of the cyclin C encoding gene, CCNC, located on human chromosome 6q21, being 

detected in 17% of patient samples (Li et al., 2014). The authors demonstrated that the cyclin 

C-CDK8 complex phosphorylates ICN-1 in vivo, allowing FBXW7 to bind the PEST 

domain to target ICN-1 for proteolytic degradation. Many of the phosphorylation residues 

were located within the PEST domain of NOTCH1, including three residues, T2512, S2514 

and S2517, which are localised in the phosphodegron. Therefore, ablation of cyclin C 

resulted in decreased phosphorylation leading to the stabilisation of ICN-1 in the nucleus, 

thereby increasing the NOTCH1 activation signal. Deletion of CCNC may therefore underlie 

another mechanism for constitutive NOTCH1 signalling. The cyclin C deletion status of the 

patients in the present study could be determined from the array data and added to the 

NOTCH1/FBXW7 mutation status for prognostic use.  

The acquisition of collaborating genetic hits is likely required for the leukaemic phenotype 

of the patients harbouring NOTCH1/FBXW7/PTEN abnormalities in the present study. 

Therefore, exploration of what the cooperating events are is important. There is a wealth of 

information still to be explored from future studies using genome-wide technology. For 

example, WES to attempt to identify those genetic events predicting NOTCH1±FBXW7
Double 

cases with an excellent outcome. However, issues of complexity and heterogeneity, as shown 

in the PTEN analysis in the current study where the presence of multiple PTEN 

abnormalities was identified in some patients, will present a challenge for the interpretation 

of such studies. Further study is therefore warranted in order to determine which factors 

influence the outcome of paediatric patients with T-ALL and should be used to determine 

future therapeutic strategies. 

7.2 Conclusions   

This thesis describes an investigation of NOTCH1 and FBXW7 mutations and PTEN 

abnormalities in paediatric patients with T-ALL, clarifying their impact on the prognosis of 
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patients. Novel findings were made with regard to the presence of NOTCH1±FBXW7
Double 

mutations correlating to an excellent outcome in paediatric patients with T-ALL. This data 

has made a significant contribution to the current understanding of both the clinical and 

biological role of NOTCH1, FBXW7 and PTEN in T-ALL, as well as provided areas for 

further investigation. 
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Appendix Table 1 Primer sequences 

Gene Domain/exon Primer Sequence Annealing 

temperature 

(
o
C) 

WAVE 

temperature 

(
o
C) 

NOTCH1 LNR-B/ exon 25 25B-F
 

25B-R
 

5’-CGAGAGCCCCTTCTACCGTTG-3’ 

5’-CTCCCTCAGCCCCATGAGC-3’ 

64 63.8, 66.7 

NOTCH1 HD-N/ exon 26 26-F
 

26-R
 

5’-GGAAGGCGGCCTGAGCGTGTC-3’ 

5’-ATTGACCGTGGGCGCCGGGTC-3’ 

70 65.9, 67.4 

NOTCH1 HD-C/ exon 27 27-F
 

27-R
 

SNP-F
 

5’-GCCTCAGTGTCCTGCGGC-3’ 

5’-GCACAAACAGCCAGCGTGTC-3’ 

5’TCCTCGCAGTGCTTCCAGAGTGCCACCCA-3’ 

Touchdown 65 

NOTCH1 JME/ exon 28 28-F 

      28-R 

5’TGATTAATCGCGTAGAAAATCACCT-3’ 

5’-CACCGGGGACCCAGAAGC-3’ 

Touchdown 65.1, 66.3, 67.8 

NOTCH1 TAD/ exon 34 TAD-F
 

TAD-R
 

5’-GCTGGCCTTTGAGACTGGC-3’ 

5’-GCTGAGCTCACGCCAAGGT-3’ 

61 63.5, 64.5 

NOTCH1 PEST/ exon 34 PEST-F
 

PEST-R
 

5’-CAGATGCAGCAGCAGAACCTG-3’ 

5’-AAAGGAAGCCGGGGTCTCGT-3’ 

62 65.7 

FBXW7 8 8-F
 

8-R
 

5’-AGATAGACTACAAATTACTGTTCCTG-3’ 

5’-CTTTGTGAAGTGTAGGAAGAGTAAAC-3’ 

56 56, 58 

FBXW7 9 9-F
 

9-R
 

5’-TCTACCCAAAAGTAATCATCTTAAGTG-3’ 

5’-ATAGACGAACAAGTCCCAACCAT-3’ 

56 58.6 

FBXW7 10 10-F
 

10-R
 

5’-GTTTTTCTGTTTCTCCCTCTGCA-3’ 

5’-ACCTTATGATTCATCAGGAGAGC-3’ 

58 56, 59.6 

FBXW7 11 11-F
 

11-R
 

5’-GTAATTGATAGGAAGAGTATCCATAC-3’ 

5’-AACCATTCTGTATGAGGTTGACTC-3’ 

60 56.6, 59 

FBXW7 12 12-F
 

12-R
 

5’-CAAATTATAATGTAACTAACTCATAGCCA-3’ 

5’-GAGTATATAATGTAACTAACTCATAGCCA-3’ 

56 57.6 
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Appendix Table 1 continued 

 
Gene Domain/exon Primer Sequence Annealing 

temperature 

(
o
C) 

WAVE 

temperature 

(
o
C) 

PTEN 1 1-F 

1-R 

5’-AGAGCCATTTCCATCCTGCAGA-3’ 

5’-AACTACGGACATTTTCGCATCCG-3’ 

63 59.6 

PTEN 2 2-F 

2-R 

5’-CACCTTTTATTACTGCAGCTAT-3’ 

5’-CACAAAGTATCTTTTTCTGTGG-3’ 

57 54.1 

PTEN 3 3-F 

3-R 

5’-CAAATGTTAGCTCATTTTTGTT-3’ 

5’-GTTAAAATGTATCTTAACTCT-3’ 

51 54.7 

PTEN 4 4-F 

4-R 

5’GTACTTTTTTTTCTTCCTAAGTGCAAAAG-3’ 

5’-TCACTCGATAATCTGGATGACTCA-3’ 

62 56 

PTEN 5 5-F 

5-R 

5’-GAGTTTTTTTTTCTTATTCTGAGGTTATC-3’ 

5’-CTCAGATCCAGGAAGAGGAAAG-3’ 

62 55.5, 57.2 

PTEN 6 6-F 

6-R 

5’-GGCTACGACCCAGTTACCATAG-3’ 

5’-CTTCTAGATATGGTTAAGAAAACTGTTC-3’ 

62 57.1 

PTEN 7 7-F 

7-R 

5’-GACAGTTAAAGGCATTTCCTG-3’ 

5’-GTCCTTATTTTGGATATTTCTCCCAATG-3’ 

63.5 56.1, 58.8, 60.0 

PTEN 8 8-F 

8-R 

5’-GCAAATGTTTAACATAGGTGACAG-3’ 

5’-GATAACTCAGATTGCCTTATAATAGTC-3’ 

61 52.8, 55.3 

PTEN 9 9-F 

9-R 

5’-GTTTAAGATGAGTCATATTTGTGGGT-3’ 

5’-CAAGTTTATTTTCATGGTGTTTTATCC-3’ 

61.5 54.1, 56.9, 57.8 

PTEN Intron 8-9  Int8-9-F 

Int8-9R 

5’-TGATCTTGACAAAGCAAATAA-3’ 

5’-ACTGCTACGTAAACACTGCTT-3’ 

64 55.5 

 

F and R indicate forward and reverse primers, respectively. Abbreviations: HD, heterodimerisation domain; JME, juxtamembrane domain; TAD, 

transcriptional activation domain; LNR-B, Lin12/Notch repeats.
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Appendix Table 2 NOTCH1 and FBXW7 sequence alterations detected 

 

Patient 

Mutation 1 Mutation 2 Single/ 

Double Gene DNA change Predicted AA change Gene DNA change Predicted AA change 

1 NOTCH1 C7171T Q2391X    Single 

2 NOTCH1 4735_4737delCTG L1579del FBXW7 G1394A R465H Double 

4 NOTCH1 4732_4734delGTG V1578del    Single 

5 NOTCH1 T5039C I1680T    Single 

6 NOTCH1 4817_4818insTGTCGC F1606_K1607insVA    Single 

8 NOTCH1 T4754C L1585P    Single 

12 NOTCH1 4775_4776insTGCGGAGTG

GGC 

F1592_L1593insFAEW

A 

NOTCH1 7368delT 

 

I2456fs Double 

13 NOTCH1 T4799C L1600P    Single 

15 NOTCH1 T4799C L1600P    Single 

16 NOTCH1 G4793C R1598P    Single 

17 NOTCH1 T4799C L1600P NOTCH1 7430_7457dup7457_7

458insCCGGACCTA

GCGGGG 

S2486fs Double 

35 NOTCH1 T4847A, 

4849_4851delinsCCA 

I1615N, F1616P FBXW7 G1394A 

A1330G 

R465H 

K444E 

Double 

36 NOTCH1 4775_4776insGAA F1592delinsLN    Single 

37 NOTCH1 T4754C L1585P    Single 

38 NOTCH1 T5033C L1678P    Single 

39 NOTCH1 4732_4734delGTG V1578del FBXW7 G1394A R465H Double 

40 NOTCH1 G4793C R1598P    Single 

41 NOTCH1 T4733A V1578E    Single 

42 NOTCH1 7541_7545delinsGAA P2514fs    Single 

43 NOTCH1 T4778C L1592P FBXW7 G1394T R465L Double 

44 NOTCH1 C5099A A1700D NOTCH1 7318_7327delinsGGG

GGGGCGTGA 

V2443fs Double 
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Appendix Table 2 continued 

 

 

Patient 

Mutation 1 Mutation 2 Single/ 

Double Gene DNA change Predicted AA change Gene DNA change Predicted AA change 

45 NOTCH1 7525_7535delTTCCTCACCCC F2509fs    Single 

46 NOTCH1 T4721C L1574P FBXW7 G1394C R465P Double 

47 NOTCH1 7451delC Q2459fs    Single 

48 NOTCH1 T5033C L1678P    Single 

49 NOTCH1 G4793C R1598P FBXW7 G1394A R465H Double 

50 NOTCH1 4816_4818delTTC F1606del    Single 

51 NOTCH1 G4793C  R1598P  NOTCH1 7625_7626delCT P2517fs Double 

52 NOTCH1 G4790T S1597I FBXW7 G1394C R465P Double 

53 NOTCH1 5202_5203ins57nt H1735delinsPLAPVP

AGETVEPPPPAQLH 

   Single 

54 NOTCH1 4775_4776insTGGAAC F1592_L1593insGT    Single 

55 NOTCH1 T5033C L1678P FBXW7 C1393T R465C Double 

56 NOTCH1 G4793C R1598P FBXW7 G1394A R465H Double 

57 NOTCH1 4732_4734delGTG V1578del    Single 

58 NOTCH1 7475_7478delinsAAGCCC

CCAGCTTAGCC 

S2492fs    Single 

59 NOTCH1 T5033C L1678P    Single 

60 NOTCH1 7541_7542delCT P2514fs    Single 

61 NOTCH1 4816_4818delTTC F1606del FBXW7 G1436A R479Q Double 

62 NOTCH1 T5033C L1678P    Single 

63 NOTCH1 T5033C 

T4721C 

L1678P  

L1574P 

FBXW7 C2065T R689W Double 

64 NOTCH1 4775_4778delinsCACCCG

CCAAGTTAA 

F1592_L1593delinsS

PAKLM 

   Single 

65 NOTCH1 4816_4817insGGGGGGTTT  F1606delinsLGGF  NOTCH1 C7213T Q2406X Double 

66 NOTCH1 G4793C R1598P NOTCH1 T5033C  L1678P  Double 
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Appendix Table 2 continued 

 

 

Patient 

Mutation 1 Mutation 2 Single/ 

Double Gene DNA change Predicted AA change Gene DNA change Predicted AA change 

67 NOTCH1 T4721C L1574P    Single 

68 NOTCH1 4811_4812insCTTCTGGAC V1604_V1605insLLD    Single 

69 NOTCH1 4732_4734delGTG V1578del    Single 

70 NOTCH1 4817_4818insGGA 

T4582C 

F1606delinsLD 

C1528R 

NOTCH1 7541_7542delCT 

 

P2514fs 

 

Double 

71 NOTCH1 G4793C  R1598P  NOTCH1 7327_7328insTGAAT

CC 

V2443fs Double 

72 NOTCH1 C7183T Q2394X NOTCH1 7546_7547insAGTAC

TGAGT 

S2516fs Double 

73 NOTCH1 7399_7400insATAACCGT S2467fs    Single 

74 NOTCH1 T4754C L1585P    Single 

75 NOTCH1 T4847A I1616N FBXW7 G1322A R441Q Double 

76 NOTCH1 4775_4776insGGTGTCTGC F1592delinsLVSA    Single 

77 NOTCH1 T7525C F2509L    Single 

78 NOTCH1 4746_4747insCCG P1582_E1583insP FBXW7 C1393T R465C Double 

79 NOTCH1 T4778C  L1593P NOTCH1 7541_7542delCT P2514fs  Double 

80 NOTCH1 5077_5145dupinsTCATCTC

GGGG 

1693_1715dupinsSSR

G 

   Single 

81 NOTCH1 T4721C L1574P    Single 

82 NOTCH1 T5033C L1678P    Single 

83 NOTCH1 T4775C F1592S    Single 

84 NOTCH1 4810_4811insGCG N1603_V1604insG FBXW7 C1393T R465C Double 

85 NOTCH1 T5126C L1709P FBXW7 G1394A R465H Double 

86 NOTCH1 4775_4776insTGA F1592_L1593insD    Single 

87 NOTCH1 T4778C  L1593P  NOTCH1 7468_7469insGGATGA

CACCGTTTTAATCCG

GTACT 

Y2490fs Double 
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Appendix Table 2 continued 

 

 

Patient 

Mutation 1 Mutation 2 Single/ 

Double Gene DNA change Predicted AA change Gene DNA change Predicted AA change 

88 NOTCH1 7524_7534delTTCCTCACCCC F2509fs    Single 

89 NOTCH1 4848_4849insCTCCTC I1616delinsLL FBXW7 G1436A R479Q Double 

90 NOTCH1 4774_4775insTGAAAAATA

TCGCGC 

F1592delinsLKNIAL NOTCH1 7366_7367insAC, 

7327_7328insGGGAC

ACCTCGTCT 

I2456fs  

V2443fs  

Double 

91 NOTCH1 4851_4852insGGT G1619ins    Single 

92 NOTCH1 7312_7313insAATAATAAT

GTTTGTC 

P2438fs    Single 

93 NOTCH1 4776_4778del CCT F1592del FBXW7 C1393T R465C Double 

94 NOTCH1 T4799C  L1600P NOTCH1 7541_7542delCT P2514fs Double 

95 NOTCH1 G4793C R1598P    Single 

96 NOTCH1 5155_5156insGAC  E1719delinsGQ  NOTCH1 7398_7399insGCTCC S2467fs Double 

97 NOTCH1 T4721C L1574P    Single 

98 NOTCH1 5214_5215ins132nt Y1738_V1739ins44aa    Single 

99 NOTCH1 4731_4733delCTG V1578del FBXW7 C1393T  

G1550T 

R465C 

G517V 

Double 

100 NOTCH1 4742_4743insGCCCGG P1582insGP    Single 

101 NOTCH1 C7457A S2486X    Single 

102 NOTCH1 4816_4817insTGGGGACTT F1606insGDF    Single 

103 NOTCH1 T4754C L1585P FBXW7 C1513T R505C Double 

104 NOTCH1 4596_4597ins39nt K1632_R1633insRPV

LQGPLQRRAL 

   Single 

105 NOTCH1 4850_4853delinsCTCCCCCG

CG 

F1617delinsSPPR    Single 

106 NOTCH1 T5033C L1678P    Single 

107 NOTCH1 T4799C L1600P    Single 

108 NOTCH1 4821_4822insGTCTTCCAG K1607_R1608insVFQ     
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Appendix Table 2 continued 

 

 

Patient 

Mutation 1 Mutation 2 Single/ 

Double Gene DNA change Predicted AA change Gene DNA change Predicted AA change 

109 NOTCH1 G4723C, T4724C V1575P FBXW7 G1436A R479Q  

110 NOTCH1 C7372A, 4816_4817insGGGT 

TCACCACAGCC 

P2458T, F1606delinsLG 

SPQP 

FBXW7 C1393T R465C  

111 NOTCH1 T4721C L1574P     

112 NOTCH1 T5033C L1678P FBXW7 G1394A R465H  

113 NOTCH1 4779_4780insGGCCCC F1592_L1593insGP     

114 NOTCH1 4847_4853delins22nt I1616_P1618delinsTGPVS

PFL 

    

115 NOTCH1 4810_4811insGGG G1604ins FBXW7 G1436A R479Q  

116 NOTCH1 T4778C L1593P     

117 NOTCH1 4817_4818ins30nt F1606delinsLSVKEPFVGCL     

118 NOTCH1 7531_7542delinsT, 

5025_5026delGTC 

T2511fs, 

V1676del 

FBXW7 C1513T 

C2065T 

R505C 

R689W 

 

119 NOTCH1 4818delinsGCTCACT F1606delinsLLT     

120 NOTCH1 5220_5221ins30nt A1740_A1741insPAQLHFM

YVA 
   Single 

121 NOTCH1 T4721C L1574P FBXW7 G1394A R465H Double 

122 NOTCH1 5216_5217ins41nt V1739_A1740insWAGAFGA

SVLRMYW 
   Single 

123 NOTCH1 T5033C L1678P    Single 

124 NOTCH1 4776delinsAGGCCCT F1592delinsLGP    Single 

125 FBXW7 C1393T R465C    Single 

126 FBXW7 G1436A R479Q    Single 

127 FBXW7 G1394T R465L    Single 

128 FBXW7 G1394A R465H    Single 
 

Nucleotides numbered from the major translational start codon at nucleotide position 1. Abbreviations: AA, amino acid; ins, insertion; del, deletion; dup, 

duplication; nt, nucleotide.
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Appendix Table 3 PTEN sequence alterations detected 

 
Patient 

Mutations 
Number DNA change Predicted AA change 

1 1 696_700delinsGGGGCCT R233fs 

2 1 703_709delinsCCTTCCAGGGCATACAG E235fs 

3 1 703_704insG E235fs 

4 1 693_700delinsTCCCGAGAAAGACT T232fs 

5 1 696_702insAAAAACCATTGACGGATGT R233fs 

6 

 

2 

 

722insAGCGAGTTCCCCTCA 

13bp del: N/A 

F241fs 

13bp del: N/A 

7 

 

2 

 

700delinsTATGCCdelG 

700delinsCCTCA 

R234fs 

R234fs 

8 

 

2 

 

722_723insCGGATGGT 

671_672insCCCC 

F241fs 

I224fs 

9 

 

2 

 

736_739delinsTTTCCTCCTTTTG 

11bp ins: N/A 

P246fs 

11bp ins: N/A 

10 

 

 

3 

 

 

696_697insT 

698_699insGGAAG 

3bp ins: N/A 

R233fs 

R233fs 

3bp ins: N/A 

11 

 

 

 

4 

 

 

 

695_700delinsCCAGGGAGTA 

685_695del 

693_699delinsTCAGCTTACCCCACTCCT 

7bp ins: N/A 

T232fs 

S229fs 

T232fs 

7bp ins: N/A 

12 1 491_492insA K164fs 

13 1 445_446delinsGGCCTTGGGTT Q149RPPV 

14 

 

2 

 

736_737insCCCC 

696insA 

P246fs 

R233fs 

15 

 

2 

 

702_703insCG 

730_735delinsTCCCGTTAAGAT 

E235fs 

P244_Q245delinsLPL

RS 

16 

 

2 

 

682_701delinsC 

696delinsGG 

N228fs 

R233fs 

17 

 

2 

 

736_737insGAAGAGAGGACCGAGG 

736delinsGG 

P246fs 

P246fs 

18 

 

 

3 

 

 

765_766insCCCCAACCGCCTACCAGC 

546_547insGATGATTA 

2bp ins: N/A 

E256_F257insPQLPT

S 

K183fs 

2bp ins: N/A 

19 

 

 

3 

 

 

732_735delinsTCTCCTCTAGTCCCGG 

738_739insGCCCCG 

662_663insGGATGGTA 

Q245_P246SPLVPA 

L247_P248AP 

Y225fs 

20 3 656_674delinsTTTATCGTC 

735_736insATCCCT 

698_703insGGGGGCG 

8bp del: N/A 

Q219fs 

P246_L247IP 

R233fs 

8bp del: N/A 

21 

 

 

 

4 

 

 

 

682_696delinsCAT 

737_738insAGTG 

536_537insAGTATTATTATAG 

14bp ins: N/A 

N228fs 

P246fs 

S179fs 

14bp ins: N/A 
 

Nucleotides numbered from the major translational start codon at nucleotide position 1. 

Abbreviations: AA, amino acid; ins, insertion; del, deletion. 


