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Abstract
Acute liver failure is a rare but catastrophic condition which can progress rapidly to multi-

organ failure. Studies investigating the onset of individual organ injury such as the liver, kid-

neys and brain during the evolution of acute liver failure, are lacking. MicroRNAs are short,

non-coding strands of RNA that are released into the circulation following tissue injury. In

this study, we have characterised the release of both global microRNA and specific micro-

RNA species into the plasma using a porcine model of acetaminophen-induced acute liver

failure. Pigs were induced to acute liver failure with oral acetaminophen over 19h±2h and

death occurred 13h±3h thereafter. Global microRNA concentrations increased 4h prior to

acute liver failure in plasma (P<0.0001) but not in isolated exosomes, and were associated

with increasing plasma levels of the damage-associated molecular pattern molecule, geno-

mic DNA (P<0.0001). MiR122 increased around the time of onset of acute liver failure

(P<0.0001) and was associated with increasing international normalised ratio (P<0.0001).
MiR192 increased 8h after acute liver failure (P<0.0001) and was associated with increas-

ing creatinine (P<0.0001). The increase in miR124-1 occurred concurrent with the pre-ter-

minal increase in intracranial pressure (P<0.0001) and was associated with decreasing

cerebral perfusion pressure (P<0.002).

Conclusions

MicroRNAs were released passively into the circulation in response to acetaminophen-in-

duced cellular damage. A significant increase in global microRNA was detectable prior to

significant increases in miR122, miR192 and miR124-1, which were associated with clinical

evidence of liver, kidney and brain injury respectively.
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Introduction
Drug-induced liver injury accounts for more than 50% of acute liver failure (ALF) cases with
the largest number of cases being attributable to acetaminophen (APAP) [1]. ALF is a rare but
catastrophic condition that is caused by massive hepatocyte necrosis and characterised by he-
patic and extrahepatic organ failure, notably of the kidney and brain [2]. Acute kidney injury is
reported to occur in 80% of patients with APAP-induced ALF and is associated with worse out-
comes [3,4], whilst intracranial hypertension, caused by brain oedema, accounts for 20–25% of
deaths due to ALF [5]. As a result the different predictive scoring systems used to determine
the requirement for liver transplantation, including King's College Criteria, APACHE II, SOFA
score, MELD and Clichy-Villejuif criteria, all utilise a marker of liver function or coagulopathy,
and at least one of creatinine or encephalopathy grade [6,7]. The prognosis and requirement
for liver transplantation remain difficult to predict [8] and partly as a consequence of this, the
death rate of patients with APAP-induced ALF is approaching 30% [1]. Gaining a more de-
tailed understanding of the time course of organ injury in ALF may hold the key to better pre-
diction of outcomes, identification of therapeutic windows, earlier targeted organ-specific
interventions and therefore improved patient survival in ALF.

Both damage-associated molecular pattern molecules (DAMPs) and microRNA (miRNA)
are released into the circulation following tissue injury [9,10] and have been shown to increase
in plasma samples during ALF [11,12]. Genomic DNA is an established DAMP, which is re-
leased following tissue injury in ALF, and is involved in the activation of the immune response
via toll-like receptor-9 [13]. MiRNA are short (ca. 22 nucleotides), non-coding strands of RNA
that function as post-transcriptional regulators and are highly conserved between species [14].
RNA strands may also activate the immune response via toll-like receptor-7 [9]. In addition,
miRNA have been shown to be stable in blood samples under extreme conditions, making
them good candidates for biomarkers [15–17].

Previous studies have considered the potential use of miRNA species as biomarkers in ALF.
In a mouse model of APAP-induced acute liver injury (ALI), plasma miR122 and miR192 in-
creased in a time- and dose-dependent manner in parallel with increasing alanine transaminase
(ALT) [12]. These findings were replicated in a study of human patients with ALI, with both
circulating miR122 and miR192 being increased in patients with APAP-induced ALI but only
miR122 correlating with peak ALT concentrations [18]. Further work in APAP overdose pa-
tients demonstrated that plasma miR122 levels at presentation to hospital correlated with peak
ALT and peak international normalised ratio (INR) during the period of hospitalisation and
that in patients with normal ALT at presentation, miR122 levels were predictive of develop-
ment of ALI and more sensitive than ALT for identifying ALI in patients presenting within
eight hours of APAP overdose [19]. John et al [20] extended these findings by demonstrating
that serum and liver tissue levels of miR122 were higher in ALF patients that spontaneously re-
covered compared to those that required liver transplantation, suggesting that miR122 levels
may be predictive of recovery from ALF.

Whilst circulating miR192 has been shown to increase following APAP-induced ALI in
both mice and humans [12,18], the lack of correlation with ALT makes its organ of origin un-
certain. MiR192 is considered kidney-specific [21] and is highly expressed in the proximal
convoluted tubule [22], which has been shown to be the site of injury associated with acute kid-
ney injury in APAP-induced ALF [4]. MiR124-1 has been shown to be enriched in the brain
[23,24], released into the plasma following brain injury in a rat model of stroke [25], and a pre-
dictor of neurological outcome in humans following cardiac arrest [26]. Changes in circulating
levels of miR124-1 and its relationship with brain injury during the progression of ALF have
yet to be investigated.
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In view of the potential dual role of elevated circulating miR122 both as an early predictor
of onset of ALI in APAP toxicity [19], as well as a predictor of survival in ALF [20], characteri-
sation of the temporal changes in plasma miR122 levels with disease progression may aid un-
derstanding of its role in ALF. Furthermore, as ALF is a dynamic disease, knowledge of the
temporal changes in plasma levels of a potential biomarker is useful when considering results
from a single time point. In addition, since tissue-specific miRNAs have been identified for the
major organs affected in ALF [21,23], miRNAs offer the potential to investigate not just the
liver injury occurring during ALF, but also the significant co-morbidities of kidney and
brain injury.

Thus, the present study investigated the time course of changes in plasma levels of global
miRNA and tissue-specific miRNA using samples from a reproducible and clinically relevant
porcine model of APAP-induced ALF that allows monitoring of clinical and analytical parame-
ters during the evolution of ALF, from the point of APAP overdose through ALI to death [27].

Materials and Methods

Porcine model of APAP-induced ALF
Banked samples from our previously published study of a porcine model of ALF induced with
oroduodenal APAP dosing, supported as in a human intensive care setting [27] were used.
Briefly, six APAP and three control pigs (30-40kg) were maintained under total intravenous
anaesthesia with ketamine, midazolam and fentanyl. Clinical onset of ALF was documented by
monitoring INR, which increased to greater than 3, 19h ± 2h after the onset of APAP dosing
following a total APAP dose of 59.6g ± 10.5g. The time at which INR exceeded 3 will be re-
ferred to hereafter as the point of ‘ALF’ for ease of description. At ALF, two units of porcine
fresh frozen plasma were given and continuous renal replacement therapy (PRISMA HF1000,
Gambro Dialysatorium GmbH, Rostock, Germany) was initiated. Thereafter, all APAP animals
developed multi-organ failure, characterised by intracranial hypertension, hyperammonaemia,
cardiovascular collapse, elevation in creatinine and metabolic acidosis, and died from non-re-
coverable cardiorespiratory arrest after a further 13h ± 3h. The biochemical and clinical pro-
gression of ALF in these pigs has been previously described. Control animals underwent sham
induction to ALF over 20h with water instead of APAP and were maintained for a further 20h.
Control animals were managed using the same protocols as the APAP group, including initia-
tion of continuous renal replacement therapy (PRISMA HF1000) at ALF. All animal proce-
dures were conducted under a project license approved by the UK Home Office and in strict
accordance with the Animals (Scientific Procedures) Act 1986.

Plasma samples had been obtained every 4h from the onset of APAP dosing, at the point of
ALF and every 4h until death. Dialysate samples had been obtained every 4h after the initiation
of continuous renal replacement therapy at ALF. Tissue biopsies had been collected at death.
All samples were stored at -80°C.

miRNA
Isolation and quantification. RNA was isolated from aliquots of plasma and dialysate,

which had not been previously thawed, exosomes and tissue samples and the small RNA-en-
riched fraction (including miRNA) was separated from larger RNAs using the miRNeasy Mini
kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol. The quantity and
quality of the isolated small RNA and miRNA was assessed using Small RNA chips on the Agi-
lent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA).

Establishing a porcine endogenous control. Following a literature search, three potential
endogenous controls were identified, snRNA:U6, miR26a and miR191. Their TaqMan
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MicroRNA Assays (Applied Biosystems, Foster City, CA; S1 Table) were assessed for amplifi-
cation efficiency and validated for use in porcine samples, and they were tested for stability
with progression of ALF [28–32]. Of the three potential endogenous controls, miR26a had
threshold cycles (Cts) closest to the target miRNA species and was the most stable throughout
ALF (Table 1 and S1 Fig). As a result miR26a was used as the endogenous control for the spe-
cific miRNA assays.

Quantification of specific miRNA species. Specific miRNA species (miR122, miR192
and miR124-1) and miR26a were quantified by reverse transcription quantitative polymerase
chain reaction (qRT-PCR) starting with an input miRNA of 0.25ng for miR122 and miR192,
and 0.5ng for miR124-1, and using TaqMan MicroRNA Assays (S1 Table) with TaqMan
MicroRNA Reverse Transcription Kit and TaqMan Universal PCRMaster Mix, No AmpErase
UNG on the 7500 Fast Real-Time PCR system (all Applied Biosystems). All specific miRNA
species were quantified in the plasma and dialysate, and the relevant tissue-specific miRNA
along with the endogenous control were quantified in each of the liver, kidney and brain tis-
sues. It was not possible to quantify miR124-1 at the +12h time point due to a lack of
available plasma.

Exosomes
Precipitation. ExoQuick exosome precipitation solution (EXOQ5A, System Biosciences,

Mountain View, CA) was mixed with 100μl of plasma, which had not been previously thawed,
and the exosome-rich fraction was precipitated according to the manufacturer’s protocol. (Lev-
els of exosomal and protein-bound miRNA have been shown to be stable during prolonged
cold storage (-20°C and below) but not with repeated freeze-thaw cycles [33].) The exosome
pellets were then lysed to isolate either small RNAs using the miRNeasy Mini kit (see above;
Qiagen, Hilden, Germany) or proteins using 1X RIPA buffer (25mM Tris-HCl, pH7.6, 150mM
NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS plus a cocktail of protease inhibitors;
Sigma, St. Louis, MO).

Protein quantification andWestern blotting. After lysis in RIPA buffer, exosome protein
quantification was carried out using the MicroBCA method (Pierce Protein Biology Products,
Thermo Fisher Scientific, Waltham, MA); 20 μg of sample was then resolved in 4–12% Bis-Tris
NuPage gels (Invitrogen, Carlsbad, CA). Proteins were then transferred onto PVDF mem-
branes. Membranes were blocked and incubated with primary antibodies [HSP (heat shock
protein) 70 (R&D systems, Minneapolis, MN), CD9A1 (System Biosciences)]. The membranes

Table 1. Assessment of potential endogenous controls, snRNA:U6, miR26a andmiR191, for use in porcine studies of ALF, usingmiR122 as the
target miRNA.

Gene Raw Ct
(Mean ± SD)

Normfinder (Stability
value)

BestKeeper (SD of
CPs)

geNorm (M-
value ± CV)

Delta Ct (Mean
SD)

Composite
Rank

miR26a 29.52 ± 0.19 0.019 0.18 1.319 ± 0.163 1.825 1

miR191 24.48 ± 1.42 0.069 1.19 1.816 ± 0.588 2.517 2.25

snRNA:
U6

34.10 ± 1.89 0.051 1.59 2.115 ± 1.078 2.922 2.75

Potential endogenous controls were quantified by qRT-PCR in plasma samples from acetaminophen-treated pigs (n = 3, raw Ct). The stability of the

potential endogenous controls with progression of ALF was assessed using the following software packages: Normfinder [28]; BestKeeper [29]; geNorm

[30,31]; and Delta Ct method [32]. The results from these analyses were used to form the composite rank to determine the final choice of endogenous

control. For a graphical representation of the stability of the endogenous controls see S1 Fig.

Ct, threshold cycle; SD, standard deviation; CPs, crossing points; M-value, gene stability value; CV, coefficient of variance

doi:10.1371/journal.pone.0128076.t001
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were washed and incubated again with a horseradish peroxidase-conjugated specific secondary
antibody. The bound antibody was detected using an enhanced chemiluminescence reagent.

Quantification of genomic DNA levels
Plasma genomic DNA levels were measured with the Cell Death Detection ELISA Plus (Roche,
Basel, Switzerland) using 20μl plasma and following the manufacturer’s instructions. To ensure
consistency between the two plates, three samples were run on both plates, a linear regression
was plotted and the two plates were assimilated.

Data analysis and statistics
Clinical data. In this study, recordings of INR, creatinine, cerebral perfusion pressure

(CPP), bicarbonate therapy, noradrenaline therapy and albumin were used as markers of pro-
gression of liver injury, kidney injury, brain injury, acid-base imbalance, cardiovascular stabili-
ty and vascular permeability respectively. CPP was calculated as mean arterial pressure minus
intracranial pressure (ICP). Collection and description of this data has been reported previous-
ly [27].

miRNA data. For the qRT-PCR data the threshold line was established from pilot studies
and standardised across all experiments. Cts from three technical replicates were summarised
as mean values for each miRNA in a sample. The raw Ct means were placed relative to both the
mean Ct of the endogenous control in the same sample (ΔCt) and the mean ΔCt of the control
animals at that time point (ΔΔCt). qRT-PCR data were therefore summarised and displayed as
relative expression (2-ΔΔCt), corrected to μl of plasma where appropriate.

Statistics. All data were summarised as mean ± SE. Linear mixed effects models were used
for all analyses, and the first degree auto-regressive (co)variance structure was used to account
for the correlation between repeated measures. The fixed effects (β) and confidence interval
(CI) of each covariate were estimated and represented on their respective log and semi-log
graphs. Significance was set at the 5% level. Statistical analyses were performed using SPSS soft-
ware version 21 for Windows (IBM, Armonk, NY).

Results

Plasma global miRNA levels increase with onset of ALF and are
associated with disease progression
The temporal changes in the six markers of disease progression used in this study are demon-
strated in S2 Fig. Briefly, INR was only monitored from the onset of APAP dosing until ALF
and increased from baseline at 16h after the onset of APAP dosing, continuing to rise to ALF
(P< 0.0001). Creatinine was elevated from 16h after the onset of APAP dosing until death
(P< 0.0001). CPP began to decrease at ALF and continued to fall until death (P< 0.0001).
Acid-base imbalance reflected by bicarbonate therapy was different from controls from ALF to
8h thereafter (P< 0.0001). Reduced cardiovascular stability was reflected by increased nor-
adrenaline therapy requirements in APAP pigs from ALF until death (P< 0.0001). Reduced
circulating albumin concentration from 16h after the onset of APAP dosing until death
(P< 0.0001) reflected increased vascular permeability.

Plasma global miRNA levels (all RNA strands between 10 and 40 nucleotides in length),
measured by electropherogram, increased with disease progression in APAP-treated animals,
beginning 16h after the onset of APAP dosing and continuing until death (P< 0.0001, Fig 1).
Global miRNA concentrations were significantly associated with all six markers of disease pro-
gression assessed (P< 0.0001; Fig 2)
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To investigate the mechanism of miRNA entering the plasma from tissue, exosomes were isolat-
ed from plasma samples and the global miRNA concentration measured. In APAP-treated pigs, as
with controls, there was no observable increase in global miRNA concentration in the exosomes (S3
Fig). Whether increasing plasma global miRNA concentrations were a result of tissue damage, was
evaluated by measuring plasma levels of an established DAMP, genomic DNA. Plasma genomic
DNA levels increased from baseline at ALF (P< 0.0001) and continued to rise until death and this
increase in genomic DNAwas associated with the increase in global miRNA (P< 0.0001, Fig 3).

Tissue-specific miRNA species show the timeline of organ injury in
plasma samples
Plasma levels of miR122, miR192 and miR124-1 were measured by qRT-PCR to assess their
contribution to the rise in plasma global miRNA. A time course of increases in these miRNAs
was observed in APAP-treated animals (Fig 4). Plasma miR122 levels began to increase prior
to ALF and were elevated from the point of ALF to death (P< 0.0001), whilst plasma miR192
levels began to increase from the point of ALF and were elevated from 8h after ALF until death
(P< 0.0001), and plasma miR124-1 levels were only elevated pre-terminally (P< 0.0001).

As the time course was suggestive that these miRNA originated from different tissues, their as-
sociations with markers of injury of the major organs affected in ALF (liver, kidney and brain)
were investigated (Fig 5). Plasma miR122 levels were associated with INR, a marker of liver injury
in this model, prior to and including the point of ALF (P< 0.0001). The increase in plasma
miR192 was associated with increasing creatinine, a marker of kidney injury (P< 0.0001). Inter-
estingly, the onset of continuous renal replacement therapy at the point of ALF, mitigated the
rise in creatinine, but did not affect the rise in plasma miR192. This was supported by the analysis
of the dialysate for miRNA, which revealed that all specific miRNA species tested were in the un-
detectable range of Cts (range: 36.4–39.2 raw Ct) in the dialysate samples. The terminal rise in
miR124-1 was associated with falling CPP, a marker of brain injury in this model (P = 0.0019).

Tissue-specific miRNA species remain unaltered by APAP-induced ALF
in tissue samples
The tissue-specific miRNAs, miR122, miR192 and miR124-1, were highly expressed in their re-
spective tissues (range: 15.7–28.4 raw Ct and -1.3–1.5 ΔCt). Levels of miR122, miR192 and

Fig 1. Plasma global miRNA concentrations increase in APAP-treated animals. Plasma global miRNA
concentrations were measured every 4h from the onset of dosing until death for APAP-treated pigs (n = 6)
and controls (n = 3). Values are means ± SE; * P < 0.05 vs. baseline at -20h.

doi:10.1371/journal.pone.0128076.g001
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miR124-1 in liver, kidney and brain tissue respectively were not significantly altered by ALF
when compared to controls at the end of the study (Fig 6).

Discussion
This study shows that plasma global miRNA levels increase following APAP administration in
pigs and are associated with markers of ALF progression. An increase in plasma global miRNA
levels has also been noted (Supplementary information [12]) in a mouse model of APAP-

Fig 2. Increasing global miRNA concentrations in plasma associate with parameters of clinical ALF progression. The global miRNA concentrations
were compared to six time-matched parameters representing: liver injury; kidney injury; brain injury; acid-base imbalance; cardiovascular stability; vascular
permeability. β: fixed effects; CI: confidence interval.

doi:10.1371/journal.pone.0128076.g002
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induced ALI. The global miRNA levels lack specificity and may rise in other conditions where
there is massive cell injury. In this study, the magnitude of the increase in global miRNA levels
probably allowed earlier detection of the ALF associated increase compared to increases of a
smaller magnitude in the individual tissue-specific miRNAs. The markers of ALF available in
the pig model of ALF used in this study show a clear progression through ALI to ALF, multi-
organ failure and death (S2 Fig). Due to the limitations of this model some of the markers are
surrogates for those more commonly used. In addition INR was only measured up to the point
of ALF as treatment with fresh frozen plasma at ALF would have complicated its interpretation
as a marker of liver function. In spite of these limitations, the consistent close association of
global miRNA levels to these markers (Fig 2) highlights the ability of global miRNA levels to
give an overall indication of ALF progression.

For miRNA to be stable in blood they must either be within an exosome or protein-bound,
otherwise they are rapidly degraded [16]. In this study it was observed that isolated exosomes
contained only a trace amount of miRNA (S3 Fig), suggesting that the increases in plasma
miRNA observed were as a result of increases in protein-bound miRNA. This observation is
consistent with a previous study where miR122 was found to be predominantly elevated in the
protein-rich fraction in ALF and isolated exosomes during chronic liver injury in mice [34]. In
addition analysis of the dialysate revealed that the specific miRNA species were in the undetect-
able range suggesting that the miRNA must be bound to a sufficiently large protein to prevent
passage through the filter membrane. This observation has also been found in another study
which investigated plasma and dialysate levels of miR21 and miR210 with different haemodia-
lysis filters [35]. The primary candidate protein would be Ago2 as it is 96kDa, naturally associ-
ated with miRNA intracellularly and extracellular levels of Ago2/miRNA complexes have been
shown to increase following cell death [17]. Furthermore the release of miRNA into the circula-
tion in the present study was associated with rising levels of plasma genomic DNA (Fig 3). Ge-
nomic DNA is a DAMP, which has been shown to rise in humans and rodents following DNA
fragmentation caused by APAP metabolite-induced cellular damage [36,37]. Therefore the re-
sults of this study suggest that the increase in plasma miRNA occurred due to passive release of
protein-bound miRNA in response to cellular damage and injury.

The change in the global miRNA levels highlights the requirement for a robust endogenous
control, which does not alter with progression of ALF, for quantification of any organ-specific

Fig 3. Increasing plasma global miRNA concentrations associate with increasing plasma genomic DNA in APAP-treated animals.Genomic DNA
levels were measured in APAP treated pigs (n = 6) and controls (n = 3), and its association with global miRNA concentrations was assessed. Values are
means ± SE; * P < 0.05 vs. baseline at -20h; β: fixed effects; CI: confidence interval.

doi:10.1371/journal.pone.0128076.g003
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miRNA. Whilst miR103 was found to be the best endogenous control from six potential genes
tested for plasma in a rat model of APAP-induced ALF [38], we are not aware of any published
validated endogenous controls for pigs or humans in ALF. MiR26a has previously been

Fig 4. Plasma levels of miR122, miR192 andmiR124-1 increase in a time dependent manner in APAP-
treated animals. Values are means ± SE of relative expression (2-ΔΔCt) for APAP-treated animals (n = 6) to
both the endogenous control (miR26a) and the time-matched controls (n = 3); * P < 0.05 vs. baseline at -20h.

doi:10.1371/journal.pone.0128076.g004
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identified for use as an endogenous control both in porcine tissues [39] and in human plasma
from Hepatitis B virus-infected patients [40]. Here we have validated miR26a for use in porcine
plasma and tissue samples, and showed that it is a robust endogenous control for use in ALF
samples (Table 1).

The earliest and most marked elevation amongst the specific miRNA species evaluated in
this study was seen with miR122 (Fig 4). MiR122 has been described as a liver-specific miRNA,
which makes up 70% of the miRNA in hepatocytes [24] and has been shown to be liver-specific

Fig 5. The increase in plasma levels of miR122, miR192 andmiR124-1 associate with evidence of liver,
kidney and brain injury respectively. PlasmamiR122, miR192, miR124-1 and their respective
associations with INR, creatinine and CPP. β: fixed effects; CI: confidence interval.

doi:10.1371/journal.pone.0128076.g005
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in the pig [41]. Circulating miR122 levels increase across a wide spectrum of liver diseases and
have been shown to correlate with the severity of liver injury [42,43]. In addition, studies have
shown a close association between increasing miR122 and ALT in APAP-induced ALF in mice
[12,34]. Since ALT is not a sensitive marker of liver injury in the pig [44] and does not increase
with progression of ALF in this model or in other models using pigs [27,45], the close associa-
tion between increasing miR122 and INR (Fig 5) in this study support the hypothesis that plas-
ma miR122 in porcine ALF originates from the liver. This study provides the first evidence that
miR122 is a useful marker of liver injury in porcine liver models.

The second specific miRNA species to increase following ALF was miR192 (Fig 4), which is
considered kidney-specific [21] and is highly expressed in the porcine kidney [46]. However it
is also expressed in other tissues such as the liver and previous studies have concluded that this
was the source of increased plasma miR192 levels in APAP-induced ALF in humans and mice
[12,18]. In this study it is clear that plasma miR192 rises more slowly than miR122 and associ-
ates with the rise in creatinine (Fig 5). Interestingly creatinine levels pass into the Risk category
in the RIFLE criteria and Stage 1 in the AKIN criteria (� 1.5x baseline) [47,48] at the point of
ALF when miR192 plasma levels begin to rise and reach the Injury category and Stage 2 (� 2x
baseline) at ALF + 8h (S2 Fig) when the elevation in plasma miR192 becomes significant. The
differences in the timeline and the fold-change between miR192 and miR122, the close associa-
tion with clinically significant changes in creatinine and the high expression of miR192 in the
kidneys support the notion that the kidney represents the primary candidate for release of
miR192 following the acute kidney injury that occurs during ALF.

The last specific miRNA species to increase was miR124-1 (Fig 4), which has been shown to
be enriched in the brain [23,24] and enriched in neurons in pigs [49], and released into the
plasma following brain injury in humans and rats [25,26]. In the present model, there is a grad-
ual fall in CPP due to rising ICP following ALF with a rapid increase in ICP pre-terminally. It
has been shown in pigs that a CPP of less than 30mmHg corresponds with the brain ischemia
threshold (lactate: pyruvate ratio> 30) [50]. Plasma levels of miR124-1 associate with falling
CPP (Fig 5) and are significantly elevated when the CPP falls below 30mmHg (S2 Fig), suggest-
ing that the release of miR124-1 into the plasma is likely to be due to relative ischemia in this
study. The high levels of miR124-1 found in the brain tissue, support the notion that it

Fig 6. Levels of miR122, miR192 andmiR124-1 in their respective tissues. Values are means ± SE of
relative expression (2-ΔΔCt) for APAP-treated animals to both the endogenous control (miR26a) and the time-
matched controls; * P < 0.05 vs. baseline at -20h.

doi:10.1371/journal.pone.0128076.g006
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originates in the brain. This is the first report of elevated circulating miR124-1 levels as a po-
tential marker of brain injury in ALF.

In this study it was only possible to take biopsies of all three tissues at the end of the study.
Having observed a large passive release of each tissue-specific miRNA into the plasma prior to
death (Fig 4), a corresponding fall in tissue-specific miRNA expression within in each tissue
was expected. However, although there was a trend towards changes in tissue expression, no
significant change in tissue expression was observed (Fig 6). The lack of significance may in
part be due to the high expression of the tissue-specific miRNA within their respective tissues,
when compared to plasma levels, resulting in small fold changes, the small sample size used in
this study and the region specific tissue injury caused by APAP, particularly in the liver and
kidney. The trend towards an increase in tissue expression of miR122 and miR124-1 within the
liver and brain respectively suggests that changes in miRNA expression within the tissues oc-
curred in addition to the passive release evident in the plasma. Therefore miRNAs may play an
active role in the response to APAP-induced injury at the tissue level. This is supported by a re-
cent study showing that increased miR122 in hepatocytes resulted in down-regulation of target
genes, which impair liver regeneration, and was associated with an increased chance of survival
in ALF patients [20]. In light of this, targeted investigation of changes in miRNA expression in
each tissue during the evolution of its injury is warranted to gain insights into their mecha-
nisms of action and whether they may represent therapeutic targets.

Since there is no physical way of identifying the tissue of origin of a specific miRNA species,
studies that investigate time courses and associations between markers, such as this one, can
give a strong indication of their likely origin. In addition, identifying a time course of tissue in-
jury during ALF progression facilitates further tissue-specific mechanistic studies and could, in
future, enable the identification of therapeutic windows and targeted interventions. Since miR-
NAs do not represent current treatment targets, unlike more commonly used clinical markers,
and appear to be more closely linked to tissue injury rather than function, they may facilitate
assessments of interventions that target these common clinical markers. So, whilst this study
cannot provide causal relationships, it does elucidate the potential utility of miRNA when in-
vestigating the multi-organ injury occurring during ALF.

In summary, we have shown for the first time that an increase in plasma global miRNA lev-
els may be detected prior to increases in individual specific miRNA species and that this in-
crease occurs in association with evidence of cellular damage, and clinical and analytical
parameters of ALF progression. Furthermore by quantifying individual tissue-specific miRNA
species, we were able to visualise the timeline of organ injury in this model, starting with the
liver at the point of ALF, followed by the kidney and finally the brain pre-terminally. It is
hoped that this study will form a foundation from which to further investigate the role of
miRNA in tissue injury in ALI and ALF.
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