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Combating illicit trafficking of Special Nuclear Material may require the ability to image through
electromagnetic shields. This is the case when the trafficking involves cargo containers. Thus, suitable
detection techniques are required to penetrate a ferromagnetic enclosure. The present study considers
techniques that employ an electromagnetic based principle of detection. It is generally assumed that a
ferromagnetic metallic enclosure will effectively act as a Faraday cage to electromagnetic radiation and
therefore screen any form of interrogating electromagnetic radiation from penetrating, thus denying the
detection of any eventual hidden material. In contrast, we demonstrate that it is actually possible to capture
magnetic images of a conductive object through a set of metallic ferromagnetic enclosures. This validates
electromagnetic interrogation techniques as a potential detection tool for National Nuclear Security
applications.

I
llicit trafficking of Special Nuclear Material (SNM) and certain radiological materials remains an ongoing
threat to homeland security1. As a response to such threats the Home Office (HO) and the Ministry of Defence
(MoD) in combination with the Atomic Weapons Establishment (AWE) have established a UK National

Nuclear Security (NNS) programme to enhance the UK capability in the detection of illicitly trafficked SNM and
radiological materials2,3. To enhance the UK’s capability, detection using different physical principles is continu-
ally being identified. The UK NNS programme covers a wide variety of active and passive interrogation tech-
niques ranging from conventional radiation detection methods to muon scattering tomography2–4. As trafficking
of SNM materials may involve cargo containers, suitable detection techniques are required to penetrate a
ferromagnetic enclosure. We consider here techniques that employ an electromagnetic based principle of detec-
tion5–7. It is generally assumed that a ferromagnetic metallic enclosure will effectively act as a Faraday cage to
electromagnetic radiation and therefore screen any form of interrogating electromagnetic radiation from pen-
etrating, thus denying the detection of any eventual hidden material. Here we demonstrate that it is actually
possible to capture magnetic images of a conductive object through a set of metallic ferromagnetic enclosures.
This validates electromagnetic interrogation techniques as a potential SNM detection tool for NNS applications.

Our imaging system is based on the principles of electromagnetic induction, and on the technique used in
Magnetic Induction Tomography (MIT)5–7. The imaging system operates by applying a primary alternating
magnetic field to induce circulating eddy currents, according to Faraday’s law of induction, within the conductive
objects being imaged. In response, these induced eddy currents produce secondary magnetic fields opposing the
cause of their generation. The measurement of the amplitude and phase of the additional magnetic fields
associated with the eddy currents provides access to the electrical and magnetic properties of the object.
Position-resolved measurements allow the reconstruction of an image of an object, as detailed below. In our
approach, the position-resolved measurements are taken with the help of a 20 3 20 planar array of sensor coils.
The planar arrangement allows us to extract images from the measurements without having to solve a compu-
tationally intensive inverse problem, as is the case for other geometries. Further details of our experimental set-up
are given in the supplementary information provided.

Each sensor coil measures at its position, the oscillating magnetic field, consisting of the sum of the primary
field and secondary magnetic fields containing image information. The output of each coil was analysed with a
dual-phase lock-in amplifier at frequencies between 200 and 500 Hz. The dual-phase capability of the lock-in
amplifier permitted measurement of both magnitude and phase-difference w between array coils and driver. By
repeating measurements for each sensor of the array, the phase-difference data at each (x, y) sensor position is
determined. An image of an object is generated by initially measuring the background phase w0(x, y), i.e. a
measurement in the absence of any object in the imaging plane. This is followed by a phase measurementw(x, y) in
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the presence of an object, whereupon the phase difference Dw(x, y) 5

w(x, y) 2 w0(x, y) produces a representative magnetic image of the
object. For materials with large conductivities and low magnetic
permeabilities, as the ones considered in this work, phase difference
Dw(x, y) is determined by the conductivity of the object, and mag-
netic images can be considered as proportional conductivity maps
that we refer to as magnetic images.

As illustration of the ability of the imaging system to resolve an
object’s shape, figure 1 shows sample images for different objects,
namely an aluminium disk, square and triangle of thickness 2 mm
with radius/side equal to 15 cm. A comparison between the magnetic
images and photographs of the actual objects provides an immediate
proof of the ability of our instrument of reproducing shape well in an
image. A more complete characterization of the imaging capabilities
of our instrument can be found in the supplementary information
provided.

The first research question addressed in our investigation is,
whether magnetic field interrogation can penetrate a metallic enclos-
ure enough to create clear images of the enclosure interior, thus
overcoming the detrimental effects of Faraday-cage screening. It is
furthermore necessary to establish whether the proposed imaging
modality is suitable for extracting images of eventual objects within
the enclosure. Addressing these challenges was considered essential
in any decisions made for future National Nuclear Security applica-
tions. The penetrating power of the imaging system was demon-
strated, by imaging a copper disk through the 0.2 mm thick walls,
of a closed ferromagnetic metallic enclosure, manufactured from a
commonly used plated mild-steel sheet. Images of the 30 mm dia-
meter and 2 mm thick copper disk were captured, whilst it was
positioned at several locations within the 75 mm 3 77 mm 3

15 mm enclosure. For this study, images were captured whilst the
driver coil was operated at a low frequency of 200 Hz to further
increase the magnetic field penetration through the walls of the
enclosure. The magnitude of the magnetic flux density at the level
of the sensor coils was equal to (0.42 6 0.02) mT RMS. The results of

these measurements, presented in Figure 2, demonstrate firstly, that
the copper disk appears to leave a clear magnetic signature in the
image that allows the identification of its presence and position to be
known. Importantly, these results additionally demonstrate that our
magnetic array imaging modality is sensitive to the presence and
position of this magnetic signature of the copper disk.

The penetrating power of our magnetic imaging array was further
demonstrated, to an even greater degree by imaging a 40 mm dia-
meter, by 3 mm thick copper disk, through a double ferromagnetic
enclosure, using the same strength and frequency of magnetic field of
the single enclosure interrogation. The copper disk was placed in a
small ferromagnetic enclosure, and this enclosure containing the
disk, was placed in a larger enclosure. Both enclosures were manu-
factured from the commonly used plated mild-steel-sheet, previously
described. The smaller enclosure had dimensions of 88 mm 3

89 mm 3 9 mm, with material thickness (0.24 6 0.01) mm.
Whereas, the larger enclosure had dimensions of 145 mm 3

113 mm 3 17 mm, with material thickness (0.33 6 0.01) mm.
Magnetic images of the disk, at different relative positions within
the inner enclosure were captured and presented in figure 3.
Figure 3(ai) presents, a magnetic image of the closed empty double-
ferromagnetic-enclosure, a photograph of which is shown in (aii).
Figures 3(bi) through to (di), show that magnetic images of the
double enclosure, did not clearly reveal the content of the inner
enclosure. A key result of our work was that such an image does
actually contain a magnetic signature of the concealed copper disk,
and further there is sufficient information in such an image, with
which to determine disk size and position. This can be shown by the
following procedure. First, a magnetic image, i.e. the phase readings,
of the empty enclosure assembly is captured. Then, such an image of
the empty container is subtracted from phase readings of the double
enclosure with the copper disk inside. The resultant image, shown in
figure 3(bii) through to (dii) clearly reveals the disk, identifying its
position within the double enclosure. This clearly demonstrates firstly,
that a weak magnetic signature contains enough information to create

Figure 1 | Sample images. (a) through to (c) show photographs of an aluminium disk, square and triangle of thickness 2 mm with radius/side equal to

15 cm. (d) through to (f) illustrate the respective magnetic images reconstructed from phase measurements between the Helmholtz driver and 20 3 20

sensor coil array. The edges of the objects, as detected via a Canny8–10 method, are also reported in these magnetic images (solid lines). Object photographs

identify individual sensor coil positions of the array with respect to the object.
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detailed images, of a concealed object within double ferromagnetic-
enclosures, and secondly that our imaging system proved sensitive to
these signatures.

In real-world applications images of empty enclosures would not
be easily acquirable rendering our background subtraction method
impracticable. To address such a limitation, we have demonstrated
that a substitute background image technique can be implemented,
using magnetic images of enclosures at sufficiently high frequencies,
such as to preclude enclosure penetration. This dual-frequency pro-
cedure is detailed and validated here, by imaging a 30 mm diameter
by 0.71 mm thick, concealed copper-disk, inside a single ferromag-
netic-enclosure. The method required two images of the enclosure
containing the object to be captured; one at low frequency, 200 Hz,
shown in figures 4(ai) through to 4(ci), and the other at high fre-
quency, 2 kHz, shown in figures 4(aii) through to 4(cii). The low
frequency image was rescaled by a global factor, so that at locations
away from the concealed object, the phase value coincided with the
value at the corresponding position in the high frequency image. The
high frequency image approximated an empty enclosure and the
rescaled low-frequency-image, contains the critical data of the object.
We subtracted the phases of the high frequency image from the
rescaled low-frequency-image, thus revealing the extracted metallic
object, concealed inside the ferromagnetic enclosure in three posi-
tions, as shown in figures 4(aiii) through to 4(ciii).

Discussion
The described research, thus demonstrated that in addition to it
being possible for interrogating magnetic-fields to penetrate through
the walls and into a ferromagnetic-enclosure arrangement, any con-
ductive concealed-objects enclosed, have magnetic signatures that
are able to escape back out through the enclosure walls. These sig-
natures can then be detected via the array-based imaging system
introduced here, thus revealing the existence and position of the
object. We also demonstrated, that even very weak signatures escap-
ing double-ferromagnetic enclosures can be clearly resolved, by sub-
tracting the background image corresponding to the empty
enclosure. A dual-frequency procedure makes our technique suitable
for real-world applications. This procedure does not require an
empty enclosure background-image, therefore providing the cap-
ability to image the unknown contents of ferromagnetic enclosures,
without having to open them. We anticipate that the magnetic sig-
natures identified also contain information on material type, permit-
ting the nature of the object to also be identified. Our demonstra-
tion of the possibility to image, along with the potential to identify
objects through multiple metallic-ferromagnetic-enclosures, pro-
vides a potential threat/non-threat detection technique suitable for
nuclear security applications. This demonstration has realised a prin-
ciple of detection that is alternative and potentially complementary
to those already identified, and the presented evidence validates

Figure 2 | Magnetic image capture through a single ferromagnetic enclosure. (ai) Magnetic image and (aii) photograph of the closed empty

ferromagnetic enclosure. (bi) through to (fi) illustrate reconstructed magnetic images of the same closed enclosure concealing a 30 mm diameter, 2 mm

thick copper disk in the 5 different positions stated, where photographs (bii) through to (fii) show, respectively, the disk position within the enclosure

when opened. Photographs of the magnetic enclosures were taken with the enclosure lid off to allow identification of disk positions; magnetic images

however were captured whilst the enclosure was closed.

www.nature.com/scientificreports
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Figure 3 | Magnetic image capture through a double ferromagnetic enclosure. (ai) Magnetic image and (aii) photograph of the closed empty double-

ferromagnetic enclosure. (bi) through to (di) illustrate raw magnetic images of the same closed double-enclosure concealing a 40 mm diameter, by 3 mm

thick copper disk in the 3 different positions stated. (bii) through to (dii) illustrate extracted images of the concealed copper disk in 3 different positions

within the enclosure. Disk images were extracted by subtraction of the phase data of the empty double- enclosure, from the double-enclosure containing

the concealed disk. Photographs (biii) through to (diii) show, respectively, the disk position within the enclosure when opened. Photographs of the

contents of the enclosures were taken with the enclosure lid off to allow identification of disk positions; magnetic images however were captured whilst the

enclosure was closed.

www.nature.com/scientificreports
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electromagnetic-interrogation techniques developed within the UK
NNS programme, as a valid tool for the detection of SNM.
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