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ABSTRACT

Here we present the results of residue–residue contact predictions achieved in CASP11 by the CONSIP2 server, which is

based around our MetaPSICOV contact prediction method. On a set of 40 target domains with a median family size of

around 40 effective sequences, our server achieved an average top-L/5 long-range contact precision of 27%. MetaPSICOV

method bases on a combination of classical contact prediction features, enhanced with three distinct covariation methods

embedded in a two-stage neural network predictor. Some unique features of our approach are (1) the tuning between the

classical and covariation features depending on the depth of the input alignment and (2) a hybrid approach to generate

deepest possible multiple-sequence alignments by combining jackHMMer and HHblits. We discuss the CONSIP2 pipeline,

our results and show that where the method underperformed, the major factor was relying on a fixed set of parameters for

the initial sequence alignments and not attempting to perform domain splitting as a preprocessing step.
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INTRODUCTION

The emergence of new covariation-based contact pre-

diction methods has given a lot of hope for rapid pro-

gress in solving the protein structure prediction problem

by aiding de novo predictions with predicted contact

information.1–7 However, it is apparent that the require-

ment for large and diverse alignments needed for reliable

contact predictions has limited the applicability of those

methods to only a handful of CASP targets, as most

cases where covariation-based contact predictions are

applicable end up falling into the template-based model-

ing (TBM) category.5 Classical contact prediction meth-

ods based on support vector machines or neural

networks do not require large alignments and can be

used even for the most challenging free modeling (FM)

targets, but they suffer from low precision, as was shown

in the residue–residue contact prediction category for the

previous CASP experiment.8 On the other hand, it was

shown that the addition of even relatively sparse contact

information can improve protein structure models.9

At the time of CASP10, the best contact prediction meth-

ods based on neural networks or other machine learning

approaches, had not yet started to incorporate the as then

novel statistical covariation based methods. The highest

precision for those methods and for methods evaluated in

previous CASP experiments hovered around 20% (consid-

ering top-L/5 long-range contacts) for free modeling targets

and was somewhat higher if template-based modeling tar-

gets (TBM-hard) were included in the evaluation dataset.8

For CASP11, we developed a new server based around

our recently developed MetaPSICOV method, which takes

advantage of the observation that covariation based meth-

ods derived using different statistical approaches predict

significant nonoverlapping sets of contacts10 and also uti-

lizes a well-established “classic” machine learning contact

predictor as an additional source of information.11 Meta-

PSICOV combines these sources of information to (1)

increase contact prediction precision and (2) enable mak-

ing reliable contact predictions for sequences with shallow

multiple sequence alignments.12

In this article, we present a brief overview of the Meta-

PSICOV method, as implemented in the CONSIP2
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server. We discuss our performance in CASP11 and stress

strengths and weaknesses of our approach. We also

selected an interesting free modeling case and discuss the

model we were able to generate using MetaPSICOV con-

tacts. Finally, we highlight our views on the future devel-

opment of contact prediction methods and on the

obstacles they are likely to encounter.

MATERIALS AND METHODS

Contact predictions overview

The CONSIP2 server takes the whole submitted target

sequence and carries out a hybrid sequence alignment

protocol, where we attempt to identify as many homolo-

gous sequences as possible using either HHblits13 alone,

or HHblits and jackHMMer14 in tandem (see Fig. 1).

The output MSA is then passed on to MetaPSICOV to

generate the contact predictions.

The version of MetaPSICOV used in CASP11 combines

three covariation based contact prediction methods—

PSICOV,4 mfDCA,15 and GREMLIN.5 The covariation

and classical contact prediction features are combined

using two tandem neural networks. The first stage net-

work generates an initial contact map, which is then pas-

sed on to the second stage network, where spurious

outliers are removed and gaps in the contact maps are

filled. The results are returned for each pair of residues in

the query sequence (four residues or more apart) in the

form of contact probability estimates.

Generating sequence alignments

Crucial elements for contact predictions based on

amino acid covariation are accurate large and diverse mul-

tiple sequence alignments. We developed a workflow to

take advantage of as much public sequence data as

possible (Fig. 1). By default, the query sequence is used as

an input to HHblits with an E-value threshold of 1023, a

minimum of 50% coverage and three iterations. Our ini-

tial HHblits alignments were generated with the newest

available release of the UniRef20 database, which had been

last updated in March 2013 and was thus out of date by

over a year at the time of CASP11. For comparison, the

UniRef100 March 2013 release included 21,824,511 entries,

while the May 2014 UniRef100 release (at the start of the

CASP11 prediction season) included 36,473,742 entries,

that is, it had grown by 67% in the intervening period. In

light of this, we attempted to supplement the sequence

information for each query sequence. If the HHblits out-

put alignment (A3M file) had <2000 sequences, we con-

structed an “on the fly” custom database for HHblits

using jackHMMer to identify possible homologous

sequences in an up-to-date release of the UniRef100 data-

base (parameters: E-value 5 10, three iterations). Then,

the prebuilt custom database, along with the query

sequence was used as an input for HHblits. Finally, we

compared outputs of both runs—HHblits-UniRef20 and

HHblits-jackHMMer, and selected the alignment with the

most sequences as the input for MetaPSICOV. In this way,

HHblits was always used to generate the alignments, but

any additional sequences detected in new releases of Uni-

Ref100 could be incorporated.

MetaPSICOV contact predictions

The complete MetaPSICOV approach has already been

described elsewhere.12 Briefly, MetaPSICOV is a two

stage neural network predictor. The first stage uses 672

features in total and generates an initial contact map tak-

ing advantage of three covariation-based contact predic-

tion methods—PSICOV,4 mfDCA,15 and GREMLIN5

(CCMpred16 is used instead of GREMLIN in the pub-

licly available implementation of MetaPSICOV; http://

Figure 1
Diagram of sequence alignment pipeline implemented in the CONSIP2 server.
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bioinf.cs.ucl.ac.uk/MetaPSICOV), mutual information

measures17 and classical machine learning-based contact

prediction features, such as amino acid profiles, pre-

dicted secondary structure and solvent accessibility, along

with sequence separation predicted. The second stage

takes the output of the first stage (an 11 3 11 window

of the full contact map each time) and analyses it to

both eliminate outliers and also to fill in the gaps in the

contact map. The total number of features used in the

second stage is 731.

The covariation methods were selected to represent

different approaches to solving the statistical decoupling

problem inherent in residue covariation-based contact

predictions (PSICOV—sparse inverse covariance estima-

tion; mfDCA—mean-field approximation of a maximum

entropy inverse Potts model; GREMLIN—pseudolikeli-

hood maximization framework) and, therefore, produce

only partially overlapping results. Aside from covariation

methods, we used classical neural network-based contact

prediction features (for a full list of features used please

refer to MetaPSICOV paper12 Table S3). The classical

features, whilst having far less predictive power than the

covariational features, do play an important role in cases

where multiple sequence alignments generated for the

query sequence have little depth.

Effective sequence calculations

Large MSAs can contain many redundant sequences

that do not contribute significant contact information.

Therefore, like other authors,7,18,19 we calculate effec-

tive sequence counts (Neff) rather than raw sequence

numbers to account for this redundancy. In our case, we

cluster the protein sequences at a 62% identity threshold

(which is the same clustering threshold used to compile

the standard BLOSUM62 matrix used in BLAST) and

then take the number of clusters as the Neff value.

Folding using predicted contacts

To perform de novo structure prediction using Meta-

PSICOV contacts, we used our previously described

approach.20 In this approach, predicted contacts serve as

additional energy terms for FRAGFOLD,21–23 in addi-

tion to the pair-wise potentials of mean force and solva-

tion. In case of transmembrane (TM) proteins we used

FILM3,24 instead of FRAGFOLD. FILM3 uses an objec-

tive function based on contact predictions alone and dis-

tance constraints approximating Z-coordinate values

within the lipid membrane.

We used two residue–residue contact potentials—one

representing short-range contacts (ESR-RR, sequence sepa-

ration< 23) and the other for the long-range contacts

(ELR-RR). The potentials have the form of a square well

with exponential decay above the contact distance

threshold (8 Å Cb-Cb distance) and are scaled according

to the predicted contact probability for each pair of resi-

dues with PPV �0.5. In the original PSICOV, the con-

tacts were predicted only for the residues where a

covariational signal was observed. Therefore, it was suita-

ble to use a single contact-related function. In case of

MetaPSICOV predictions, where contact probabilities for

every pair of residues are reported, we found that sepa-

rating short-range and long-range contact potentials

yielded better results. Otherwise, the contributions from

short-range contacts (more abundant and easier to pre-

dict) outweigh the impact of long-range contacts what

results in lower long-range contact satisfaction.

RESULTS

MetaPSICOV benchmark performance

We previously benchmarked MetaPSICOV on the PSI-

COV set of 150 single domain monomeric proteins,

which has now served as a benchmark for numerous

other contact prediction methods.4 In addition, we

tested MetaPSICOV’s performance on a set of 434 chains

from smaller protein families with known experimental

structures. Our findings showed that MetaPSICOV per-

forms better than both the consensus of the three indi-

vidual covariation methods and the neural network

(classical contact prediction), regardless of the number of

effective sequences in the MSA.12 We also found that

MetaPSICOV performs on par with any single covaria-

tion method, requiring only 200 effective sequences (as

opposed to over 600 effective sequences—which was the

median of the original PSICOV test set). Considering

only top-L/5 long-range contacts, the prediction accuracy

reaches a plateau at around 300 effective sequences giv-

ing a mean precision of approx. 80% (Fig. 2).

Figure 2
Average MetaPSICOV performance for targets in the small MSA region

compared to CASP11 contact prediction results.

CONSIP2 Contact Predictions in CASP11
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Performance in CASP11

In CASP11 there were 40 domains in the contact pre-

diction category (Table I). Our server achieved an aver-

age precision of 27% across all these targets. Using our

sequence generation approach (Fig. 1), we were able to

generate on average 592 more total sequences using

HHblits-jackHMMer approach, than HHblits-UniRef20

alone. In all but one cases (T0826-D1), our method fol-

lowed the horizontal path of Figure 1 scheme (jack-

HMMer database for HHblits). The median number of

effective sequences calculated using our approach (see

Materials and Methods) was 44. The number of effective

sequences was calculated from the original alignments

generated by the server and truncated to the domain

boundaries used in the assessment (provided by the

CASP organizers). Therefore, for example, for T0793

which had three of the five domains in the RR analysis,

we got a unique value for each of the analyzed domains.

The results suggest a slightly lower than expected per-

formance, that is 27%, compared to around 30%. Look-

ing at the plot in Figure 2, we can observe some clear

outliers, however. We decided to analyze the results of

seven of them in more detail (predictions with more

than 250 Neff and precision below 40%; Table II). The

CONSIP2 server, by default, runs using the whole sub-

mitted target sequence, for example, for protein T0793

the server generated a single MSA and predicted contacts

for the whole chain, which were then split after submis-

sion and assessed independently on a per-domain basis.

Analysing the outliers, we repeated the MetaPSICOV pre-

dictions, but constructing the alignments only for the

assessed domains in isolation. For six of the seven reana-

lyzed targets, a drop of between 200 and 400 Neff was

observed upon realignment and, on average, an increase

in their prediction precision due to the removal of

drifted or misaligned sequences in the alignment.

The targets generally lost sequences upon realignment.

The main reason was because a FM domain (included in

the contact assessment) was adjacent to a TBM domain

(not assessed here) and thus accumulated more sequen-

ces than would otherwise be included in the MSA for the

FM domain alone. This would influence MetaPSICOV to

overweight the contribution for covariation compared to

other features. The other cause of worse than expected

performance was anchoring of the alignments toward the

more populated easier domain (TBM), resulting in a

poor alignment quality for the FM region, but a good

alignment for the remainder of the chain.

In case of T0793, Domains 3 and 4 were TBM

domains and Domains 1, 2 and 5 were FM domains.

When the sequences of the FM domains were realigned

using only the domain sequences, they lost between 300

Table I
Summary of CONSIP2 Results

Domain Length Top-L/5 LR precision Neff

T0761-D1 88 5.6 1
T0761-D2 136 8.7 1
T0763-D1 130 46.2 2
T0767-D2 180 58.3 43
T0771-D1 151 10.0 8
T0775-D2 66 46.2 19
T0775-D4 61 25.0 20
T0775-D5 145 0.0 14
T0777-D1 345 23.2 39
T0781-D1 200 5.0 2
T0785-D1 112 18.2 1
T0789-D1 146 51.7 253
T0789-D2 126 28.0 304
T0790-D1 135 44.4 276
T0790-D2 130 26.9 300
T0791-D1 156 53.3 223
T0791-D2 139 42.9 271
T0793-D1 109 15.0 302
T0793-D2 45 11.1 402
T0793-D5 118 38.1 357
T0794-D2 172 26.5 133
T0799-D1 141 7.1 2
T0802-D1 116 13.0 4
T0804-D2 152 16.7 1
T0806-D1 256 84.3 561
T0808-D2 269 35.2 46
T0810-D1 113 17.4 83
T0814-D1 137 37.0 115
T0814-D2 116 82.6 131
T0820-D1 90 5.6 1
T0824-D1 108 45.5 155
T0826-D1 201 7.5 422
T0827-D2 158 10.0 257
T0831-D2 244 7.7 71
T0832-D1 209 2.4 10
T0834-D1 99 5.0 34
T0834-D2 92 17.7 28
T0836-D1 204 43.9 50
T0837-D1 121 29.2 9
T0855-D1 115 17.4 19

Contact prediction precision is calculated for top-L/5 LR contacts, where L is the

length of the protein and LR indicates long-range contacts (>23 sequence

separation).

Neff—number of effective sequences calculated as described in the Materials and

Methods section (see “Effective sequence calculations”).

Table II
Recalculated Effective Sequence Counts and Precision Values Using
Only the Domain Sequence

Domain

Initial Recalculated

Top-L/5 LR
precision Neff

Top-L/5 LR
precision Neff

T0789-D2 28.0 304 36.0 278
T0790-D2 26.9 300 38.0 258
T0793-D1 15.0 302 9.5 12
T0793-D2 11.1 402 25.0 12
T0793-D5 38.1 357 21.7 61
T0826-D1 7.5 422 62.5 424
T0827-D2 10.0 257 20.0 116

Initial results (Columns 2 and 3)—the results submitted by the CONSIP2 server

during CASP11 prediction season, obtained using the whole target sequence.

Recalculated results (Columns 4 and 5)—produced by CONSIP2 using only the

domain sequence.
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and 400 Neff compared to the initial result for the whole

protein sequence (Fig. 3).

A similar situation could be observed for T0827,

T0790 (PDB id: 4L4W), and T0789 (PDB id: 4W4L).

T0827-D2 (FM domain) lost almost 250 sequences upon

realignment, gaining 10% precision. T0789-D2 lost 200

Neff gaining 8% precision and T0790-D2 lost 200 Neff

but gaining 11% precision.

A different situation was observed for T0826. This tar-

get has 2 domains—D2 is a globular TBM domain (not

considered here) and D1 is a transmembrane FM do-

main. When realigned, the number of sequences in D1

did not change substantially (422 vs. 424 effective

sequences), but the contact prediction precision signifi-

cantly increased. In this case, the improvement came

about solely because the sequence alignment was no lon-

ger anchored to the C-terminal (TBM) domain.

Structure predictions using MetaPSICOV
contacts

Although we are focussing here on our contact predic-

tion results, the utility of contact predictions can be put

in better context by looking at our (group Jones-UCL)

free modeling predictions made using our predicted con-

tact lists. In every FM case, CONSIP2 server predictions

and alignments were manually inspected for domain

boundaries, alignment errors, or transmembrane targets

and rerun, if needed.

One interesting case of a successful usage of predicted

residue–residue contacts is that of T0836, which is a 5-

helix transmembrane target, as determined by MEMSAT-

SVM25 and confirmed by visual inspection. It allowed us

to use our TM protein modeling protocol—FILM3.24

For T0836 we were able to find only 50 effective sequen-

ces, which would not have been sufficient to allow us to

apply the original FILM3 method based on PSICOV

alone. Nevertheless, using MetaPSICOV contacts (top-L/

5 precision 5 44%) we were able to produce a model

with TM-score 5 0.60 (Fig. 4). All five of our submitted

models ranked in the top seven of the ranking according

to GDT-TS.

What went right?

We were able to achieve a substantial improvement in

the contact prediction precision, with a satisfactory pre-

cision at only 200 Neff, whereas for a single covariation-

based contact prediction method we would have required

around 600 Neff. It is clear that using multiple covaria-

tion techniques we are able to improve significantly over

classical machine learning contact predictors. Although

with each edition of CASP both datasets and methods

evolve, it is clear (also from our comparison of network-

only MetaPSICOV12) that covariation methods give us

an important new source of residue contact information.

More importantly, we were able to further confirm

that it is possible to successfully apply predicted residue–

reside contacts in structure predictions of large FM tar-

gets. In 8 of our (group Jones-UCL) FM targets (includ-

ing two transmembrane proteins) we were able to

achieve GDT-TS scores> 40 (TM-score> 0.5).

What went wrong?

The analysis of outliers in our predictions clearly sug-

gests that multi-domain proteins should be processed

per-domain. The current CONSIP2 (and MetaPSICOV)

server accepts the whole sequence and does not attempt

Figure 3
Changes to the outliers upon realigning the domain sequence. The solid

line shows reference MetaPSICOV benchmark results. Points represent
analyzed outliers: solid circle (o)—initial CONSIP2 server prediction;

(x)—result for the realigned domain sequence.

Figure 4
Jones-UCL FM prediction for target T0836-D1. A sample free modeling

case, where the predicted contacts (Neff 5 50; top-L/5 LR contact pre-
cision 5 44%) helped to produce an outstanding model.

CONSIP2 Contact Predictions in CASP11
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to split the sequence into domains. This resulted in some

subpar predictions. We hope to address this shortcoming

before the next CASP experiment.

Another aspect is setting the sequence coverage criteria

appropriately. On one hand, a too stringent sequence cov-

erage requirement might result in losing some sequence

information for targets where the sequence data is already

scarce. On the other hand, a too permissive sequence cov-

erage requirement could result in finding partial matches

for some targets and allowing for insufficient coverage in

multi-domain proteins. It is generally easy to spot and

correct these issues when looking at the alignments by

eye, but difficult to come up with a completely automated

system that can deal with the wide variety of scenarios

across the whole range of CASP targets.

Our method was also designed to tackle the contact pre-

dictions for globular domains as the most general case. In

the case of transmembrane domains, building too deep

alignments could result in unrelated sequences or drifted

domains being included and thus generating false positives

in the predicted list of contacts. The notable case here is

T0826-D1, where we included over 400 sequences in the

alignment but the contact prediction accuracy was very poor

(precision below 10%). Thanks to manual tweaking in the

FM category and rerunning the contact predictions on a new

alignment, we were able to obtain a satisfactory model and a

high contact prediction precision (above 60%).

CONSIP2 was created to achieve the deepest achievable

sequence alignments by constructing HHblits databases on

the fly. It would, however, be more desirable to have a

complete up to date HHblits database. We realize that

clustering over 35 million sequences is a serious computa-

tional endeavour, particularly for a single research group,

but perhaps this is a challenge best handled by a commu-

nity-wide distributed computing approach, as sequence

alignments are required universally and public sequence

data is growing at an ever increasing rate.

DISCUSSION

In CASP11, we were able to improve the state-of-the-art

in residue–residue contact prediction by combining classi-

cal contact prediction features with three covariation-based

methods, within a neural network framework. In our

approach, we put an emphasis on constructing the largest

possible multiple-sequence alignments. An important

aspect of MetaPSICOV is its ability to modulate the rela-

tive impact of covariation-based and classical features

depending on the quality and depth of the MSA. If the

alignment is shallow, then covariation features are down-

weighted, whereas for deep and diverse alignments the

covariation features are dominant. It is possible that fur-

ther improvements of the way this is currently handled

could result in further increases in prediction accuracy for

smaller numbers of sequences, and this is clearly a focus

point for future research.

Overall, we were able to achieve a precision of 27% on

the CASP11 contact prediction set which had a median

of 44 effective sequences (36 after recalculating overesti-

mated domains). Our CASP11 results probably show rea-

sonably well what are the realistic expectations for what

contact predictions can contribute to the de novo predic-

tion problem for different sizes of MSAs. MetaPSICOV

works very well at approximately 200 Neff and above, so

although we were able to significantly decrease the

required number of sequences in an alignment, there is

still a gap between what is feasible for sequence family

sizes as they currently are, in the majority case at least,

and what is needed to exploit these modeling techniques

for really challenging cases. It is clear, that with the cur-

rent methods it is impossible to solve the protein struc-

ture prediction problem with the use of contact

predictions alone unless we accumulate many more

sequences or are better able to deal with alignments with

fewer effective sequences.

Improvements in this area could come from two direc-

tions. One is the evolution of contact prediction algo-

rithms. On the side of covariation, the major issues of

indirect coupling and phylogenetic bias were ameliorated

in recent years, but are still unresolved.10,26,27 Never-

theless, this progress alone is not going to solve the

problem. In case of very small MSAs there is simply not

enough covariation information to analyze, no matter

what algorithm is applied.

The other issue is the availability of sequence data. We

observe an increase in the median Pfam family size,20

but it is still unclear how the relative sizes of available

sequence and structure data are going to evolve in the

coming years.5 As we have said before, we do not believe

that new sequencing technologies will be able to deal

with this problem alone, as for proteins inhabiting par-

ticularly unique evolutionary niches, there may only exist

very limited numbers of homologous sequences in nature

with sufficient sequence diversity to carry out covariation

analysis. Time will tell of course.
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