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Abstract. Multiple imputation (MI) is a practical, principled approach to han-
dling missing data. When used to impute missing values in covariates of regression
models, imputation models may be mis-specified if they are not compatible with
the substantive model of interest for the outcome. In this article we introduce
the smcfcs command, which imputes covariates by substantive model compati-
ble fully conditional specification (SMC–FCS). This modifies the popular FCS or
chained equations approach to MI by imputing each covariate compatibly with a
user-specified substantive model. The smcfcs command is compared to standard
FCS imputation using mi impute chained in a simulation study and illustrative
analysis of data from a study investigating time to tumour recurrence in breast
cancer.
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1 Introduction

Missing data are a common issue in empirical research, reducing statistical power
and potentially causing bias in parameter estimates. The method of multiple impu-
tation (MI) has become one of the most popular approaches for handling missing data
(van Buuren (2007)). For each missing value, MI creates a number of plausible imputa-
tions, based on a model for the conditional distribution of the variable being imputed
given other variables, thus creating a number of completed, or imputed datasets. Each
imputed dataset is then analysed separately and identically, giving estimates of parame-
ters of interest and corresponding standard errors. These are then combined using rules
derived by Rubin (1987). Virtually all implementations of MI in software packages as-
sume data are missing at random (MAR), which states that the probability that data
are missing is independent of the unobserved values, conditional on the observed values
(Rubin (1976)).
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2 Substantive model compatible FCS MI

1.1 Fully conditional specification

As originally conceived, parametric MI involves specification of a joint model for the
partially observed variables, conditional on any fully observed variables (‘joint model
MI’). A popular alternative to joint model MI is the fully conditional specification
(FCS) or chained equations approach (White et al. (2011), van Buuren (2007)). FCS
MI involves specifying a series of univariate models for the conditional distribution
of each partially observed variable given the other variables. This approach permits
a great deal of flexibility, since an appropriate regression model can be selected for
each variable (e.g. linear regression for continuous variables, logistic regression for
binary variables). Consequently, FCS MI is particularly appealing in settings in which
a number of variables have missing data, some of which are continuous and some of
which are discrete. In Stata the FCS approach was implemented by Royston (2005)
as the user-written command ice, but as of version 12, has been available as part of
official Stata through the mi impute chained command.

1.2 Multiple imputation of covariates

In this paper we focus on the setting in which some values are missing in the covariates
of a substantive model of interest. Correctly specifying imputation models for covari-
ates can be challenging, particularly when the substantive model relating the outcome
to the covariates includes non-linear covariate effects or interactions between covari-
ates. For example, Seaman et al. (2012) showed that for a linear regression substantive
model with quadratic effects of a (marginally) normal covariate, imputation models
which are implemented in existing MI software are mis-specified, and lead to biased
estimates. They drew similar conclusions when the substantive model included an in-
teraction. Even when the MAR assumption holds, mis-specification of the imputation
model generally results in biased estimates of the substantive model parameters. In the
aforementioned examples the mis-specification can be attributed to the fact that the
imputation and substantive models are incompatible (sometimes referred to as unconge-
nial). Loosely speaking, the imputation and substantive models are compatible if there
exists a joint model for covariate and outcome whose conditional distributions are equal
to those given by the imputation and substantive models. While compatibility between
the imputation and substantive models does not guarantee the former is correctly spec-
ified, provided the substantive model is correctly specified, incompatibility between the
two (generally) implies the imputation model is mis-specified. This suggests that it is
desirable that covariates are imputed using imputation models which are compatible
with the substantive model.

1.3 Substantive model compatible FCS MI

Recently Bartlett et al. (2014) proposed substantive model compatible FCS (SMC–
FCS). This modifies the FCS or chained equations MI approach by imputing each
partially observed covariate using an imputation model which is compatible with a
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user-specified substantive model. In Section 2 we describe the SMC–FCS method in
more detail. In Section 3 we describe the smcfcs command and its syntax, and in Sec-
tion 4 we illustrate its use and compare its performance with standard FCS. In Section
5 we describe the results of a small simulation study comparing smcfcs to a standard
approach using mi impute chained, in terms of bias and computational time. We
conclude in Section 6 with some final remarks.

2 Substantive model compatible FCS

2.1 Setup

We consider the setting in which interest lies in fitting a model to a fully observed
outcome Y with p partially observed covariates X = (X1, .., Xp) and q fully observed
covariates Z = (Z1, .., Zq). Let Xobs and Xmis denote the observed and missing com-
ponents of X for a given subject, and let R be the vector of observation indicators
whose elements are zero or one depending on whether the corresponding element of X
is missing or observed respectively. We assume throughout that the data are missing at
random (MAR) Rubin (1976). Here MAR means that P (R|Y,X,Z) = P (R|Y,Xobs, Z).
We assume that (Yi, Xi, Zi, Ri), i = 1, .., n are independent and identically distributed.
Lastly, we let f(Y |X,Z, ψ) denote the ‘substantive model’, which is indexed by parame-
ter ψ (ψ ∈ Ψ). We assume throughout that this substantive model is correctly specified.
That is, there exists ψ ∈ Ψ such that f0(Y |X,Z) = f(Y |X,Z, ψ), where f0(Y |X,Z)
denotes the true conditional distribution of Y given X and Z.

2.2 Incompatibility and imputation model mis-specification

Suppose for the moment that there exists only a single partially observed covariate,
denoted X. To impute X we must specify an imputation model f(X|Z, Y, ω), indexed
by parameter ω ∈ Ω. Following Liu et al. (2013), this imputation model is said to be
compatible with the substantive model f(Y |X,Z, ψ), ψ ∈ Ψ, if there exists a joint model
g(Y,X|Z, θ), θ ∈ Θ and surjective maps t1 : Θ → Ω, t2 : Θ → Ψ such that:

1. for ω ∈ Ω, and θ ∈ t−1
1 (ω) = {θ : t1(θ) = ω},

f(X|Z, Y, ω) = g(X|Z, Y, θ)

2. for ψ ∈ Ψ and θ ∈ t−1
2 (ψ),

f(Y |X,Z, ψ) = g(Y |X,Z, θ)

Again following Liu et al. (2013), the two models are said to be semi-compatible if they
can be made compatible by setting certain parameters in either one or both models to
zero. Lastly, if the two are semi-compatible and correctly specified, they are said to be
valid semi-compatible. The imputation model is then correctly specified if and only if
it is valid semi-compatible with the substantive model (Bartlett et al. (2014)).
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Except in cases where the imputation and substantive models can be made com-
patible by restricting the parameter space Ω of the imputation model, incompatibility
between the two implies that the imputation model is mis-specified, assuming the sub-
stantive model is correctly specified. This is because incompatibility means there exist
no joint models which have the imputation and substantive models as its conditionals.

To illustrate this, suppose the substantive model is Y |X ∼ N(ψ0+ψ1X+ψ2X
2, σ2

ψ)

and the imputation model is X|Y ∼ N(ω0 + ω1Y, σ
2
ω). These models are incompatible

since there exists no joint model with conditionals corresponding to the substantive and
imputation models. They are semi-compatible, by setting ψ2 = 0, but unless ψ2 = 0
in truth, the imputation model will not be valid semi-compatible with the substantive
model, and so will necessarily be mis-specified. Figure 1 shows a plot of (Y,X) pairs
simulated under this substantive model withX ∼ N(1, 1), and Y |X ∼ N(X+3X2, 1.52),
in which the missing X value has been imputed assuming the aforementioned linear
imputation model. By virtue of the imputation model (wrongly) assuming linearity
between Y and X, it is clear that the estimates of the quadratic substantive model will
be biased. This example was investigated in detail through simulation by von Hippel
(2009) and Seaman et al. (2012).

Now assume the substantive model is Y |X ∼ (ψ0 + ψ1X,σ
2
ψ) and the imputation

model is X|Y ∼ N(ω0 + ω1Y + ω2Y
2, σ2

ω), with each of the regression coefficients
lying in (−∞,+∞). These two models are again incompatible. However, they can be
made compatible (and are hence semi-compatible) by restricting the parameter space
of the imputation model by setting ω2 = 0. Here incompatibility does not imply mis-
specification.

As a final example, suppose the substantive model Y |X ∼ (ψ0 + ψ1X,σ
2
ψ) and the

imputation model is X|Y ∼ N(ω0 + ω1Y, σ
2
ω). These models are compatible, with the

joint model being the bivariate normal. We emphasize that compatibility does not
guarantee that the imputation model is correctly specified.

Even when the substantive model only contains linear covariate effects without in-
teractions, incompatibility may arise with default imputation models if the substan-
tive model is non-linear. For example, for an exponential survival substantive model,
Bartlett et al. (2014) describe how the recommended imputation model for continuous
partially observed covariates is incompatible with the exponential model.

In conclusion, except in cases where the imputation and substantive models can be
made compatible by restricting the parameter space Ω of the imputation model (i.e. a
simpler model nested within the imputation model is compatible with the substantive
model), incompatibility between the two implies the imputation model is mis-specified
(assuming correct specification of the substantive model). Consequently, when choosing
the covariate imputation model f(X|Z, Y, ω) we should (at least) ensure that it is either
compatible with the substantive model, or a restriction of it is compatible with the
substantive model.
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Figure 1: Plot of simulated (Y,X) data, in which X ∼ N(1, 1) and Y |X ∼ N(X +
3X2, 1.52). Y is fully observed, whereas X is partially observed. 100 (Y,X) pairs in
which X was observed are shown as circles. 100 (Y,X) pairs where X was imputed
assuming X|Y ∼ N(ω0 +ω1Y, σ

2
ω) are shown by crosses. Conditional expectations were

estimated non-parametrically using the lowess command
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2.3 Substantive model compatible FCS

We now return to the setting of a vector of multiple partially observed covariates,
X = (X1, .., Xp). To apply standard FCS MI (see van Buuren (2007) for further
background on standard FCS MI) in the missing covariates setting, for each partially
observed covariate Xj , j = 1, .., p, we specify a model for f(Xj |X−j , Z, Y ), where
X−j = (X1, .., Xj−1, Xj+1, .., Xp). For the reasons described in the previous sub-section,
common choices for this imputation model may be incompatible with the substantive
model f(Y |X,Z, ψ), implying mis-specification.

To motivate the SMC–FCS algorithm, note that the conditional distribution f(Xj |X−j , Z, Y )
can be expressed as

f(Xj |X−j , Z, Y ) =
f(Y,Xj |X−j , Z)

f(Y |X−j , Z)
=

f(Y |Xj , X−j , Z)f(Xj |X−j , Z)

f(Y |X−j , Z)

∝ f(Y |X,Z)f(Xj |X−j , Z).

In substantive model compatible FCS (SMC–FCS), forXj we specify a model f(Xj |X−j , Z, ϕj),
where ϕj is a vector of model parameters, and impute using the density proportional to

f(Y |X,Z, ψ)f(Xj |X−j , Z, ϕj). (1)

For any given j, this imputation model will automatically be compatible with the sub-
stantive model f(Y |X,Z, ψ). The model f(Xj |X−j , Z, ϕj) can be chosen in the same
way as models are selected for the standard FCS algorithm. For example, ifXj is binary,
a default choice would be to use a logistic regression model. For discrete Xj which have
a finite sample space (e.g. binary and categorical variables), samples can be drawn di-
rectly from the distribution proportional to equation 1. More generally, Bartlett et al.
(2014) show that provided one can easily draw samples from f(Xj |X−j , Z, ϕj), the
Monte-Carlo method of rejection sampling can be used to draw samples from the im-
putation distribution when the substantive model is either a normal linear regression,
a regression model for a discrete outcome Y (thereby including logistic and Poisson
regression) or a proportional hazards model for a possibly censored time-to-event out-
come. Rejection sampling involves repeatedly drawing from a candidate distribution
(here f(Xj |X−j , Z, ϕj)) until a certain criterion is satisfied, which is therefore computa-
tionally intensive. To ensure reasonable run times the smcfcs command therefore uses
Mata to perform rejection sampling.

The SMC–FCS algorithm initialises by imputing missing values in each variable by
randomly observed values from the same variable. It then cycles through the imputation
models for each partially observed variable, which here are the variables X1, .., Xp,
imputing each missing value. At the end of a suitable number of iterations, the current
imputations form the first imputed dataset. The process is then repeated to create as
many imputed datasets as desired.

In SMC–FCS the imputation model for Xj depends both on ϕj and the substantive
model parameter ψ. Bartlett et al. (2014) derive a Gibbs sampler for the joint model
(assuming it exists) defined by the substantive model and the models f(Xj |X−j , Z, ϕj),
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j = 1, .., p. At the tth iteration the SMC–FCS algorithm imputes missing values in Xj

by performing the following draws

ψ(t,j) ∼ f(ψ)f(y|xmis(t−1)
j , xobsj , x∗−j , z, ψ)

ϕ
(t)
j ∼ f(ϕj)f(x

mis(t−1)
j , xobsj |x∗−j , z, ϕj),

where f(ψ) and f(ϕj) denote uninformative priors, y and z denote the (fully) observed
values of Y and Z across the n subjects, x∗−j denotes the observed and most recent

imputed values of X−j across all n subjects, xobsj denotes the observed values of Xj , and

x
mis(t−1)
j denotes the imputed values of Xj from the preceding iteration. The missing

values in Xj are then imputed using rejection sampling from the density defined by

equation 1 using ψ(t,j) and ϕ
(t)
j .

Bartlett et al. (2014) give conditions, including that the models f(Xj |X−j , Z, ϕj),
j = 1, .., p are mutually compatible, under which the SMC–FCS imputes from a well de-
fined Bayesian joint model. When this joint model is correctly specified, application of
Rubin’s rules will result in valid inferences. There are however common model specifica-
tions (e.g. a combination of linear and logistic covariate models) for which SMC–FCS is
not equivalent to MI from a Bayesian joint model. Bartlett et al. (2014) conjecture that
when the models f(Xj |X−j , Z, ϕj), j = 1, .., p are ‘semi-compatible valid’, which means
that there exists restrictions of these models which makes them mutually compatible,
and that these are correctly specified, application of Rubin’s rules to imputations gen-
erated by SMC–FCS will give consistent point estimates. Simulations by Bartlett et al.
(2014) support this, and further suggest that confidence intervals based on Rubin’s
variance estimator may still perform well even when SMC–FCS is not equivalent to MI
from a Bayesian joint model. Lastly, if the models f(Xj |X−j , Z, ϕj), j = 1, .., p are
not compatible (and cannot be made so by restrictions of their parameter spaces), we
cannot generally expect consistent point estimates to be obtained.

Bartlett et al. (2014) reported simulation results for a linear regression substantive
model with quadratic covariate effects, a linear regression model with an interaction
effect, and a Cox proportional hazards substantive model. Overall, their results suggest
that SMC–FCS is an attractive approach for imputing missing values of covariates
for substantive models which include non-linear covariate effects, interactions, or are
themselves non-linear (e.g. Cox’s proportional hazards model).

3 The smcfcs command

3.1 Syntax

smcfcs smcmd smdepvar smindepvars, regress(varlist) logit(varlist)

poisson(varlist) nbreg(varlist) mlogit(varlist) ologit(varlist)

iterations(#) m(#) rjlimit(#) passive(string) eq(string) rseed(string)

chainonly savetrace(filename) noisily by(varlist)]
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3.2 Options

regress(varlist) specifies the names of the partially observed continuous variables (if
any), which are to be imputed by normal linear regression.

logit(varlist) specifies the names of the partially observed binary variables (if any),
which are to be imputed by logistic regression.

poisson(varlist) specifies the names of the partially observed Poisson variables (if any),
which are to be imputed.

nbreg(varlist) specifies the names of the partially observed negative binomial variables
(if any), which are to be imputed.

mlogit(varlist) specifies the names of the partially observed unordered categorical vari-
ables (if any), which are to be imputed.

ologit(varlist) specifies the names of the partially observed ordered categorcal vari-
ables (if any), which are to be imputed.

iterations(#) specifies the number of iterations to perform for each imputation; de-
fault is 10.

m(#) specifies number of imputations to generate; default is 5.

rjlimit(#) smcfcs uses rejection sampling to impute missing covariate values for
variables which do not have a finite sample space. Rejection sampling involves
repeatedly drawing from a distribution until a valid imputation is found. This
option specifies the maximum number of attempts that smcfcs will make to find a
valid draw for imputed values. If valid values have not been found for one or more
subjects by the limit the command continues, using the last proposed draw for such
subjects. The default limit is 1000.

passive(string) specifies a string of equations to update derived covariates (if any).
Each expression within the string must be separated by a |. Derived covariates may
appear either in the substantive model, in covariate models, or both.

eq(string) specifies a string of linear predictor sets for partially observed variables.
Each expression within the string must be separated by a |. Each expression should
be of the form varname: varlist, which specifies that the linear predictor of the
covariate model for varname is given by varlist. If an expression is not specified for
a given partially observed variable, the default is to impute using a covariate model
which includes which includes any fully observed variables in the substantive model
and all partially observed variables except the one being imputed.

rseed(string) sets Stata’s random number seed to the given value.

chainonly perform iterations of SMC–FCS (as specified by iteration option) without
creating imputations. Useful in conjunction with savetrace to assess convergence.

savetrace(filename) save means and SDs of imputed values from each iteration in
filename.dta. Useful for checking convergence of SMC–FCS.
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noisily runs SMC–FCS noisily. Useful for diagnosing errors.

by(varlist) imputes separately in groups defined by varlist .

3.3 Description

smcfcs multiply imputes missing values in covariates using the SMC–FCS algorithm.
The substantive model is specified immediately following smcfcs by smcmd smdepvar
smindepvars, giving the substantive model command, dependent variable, and indepen-
dent variables respectively. Currently smcfcs supports regress, logistic and stcox

substantive models. The independent variables of the substantive model can be fully
observed, directly imputed variables, or passively imputed variables (i.e functions of
imputed variables and possibly fully observed variables).

Partially observed variables can be imputed using linear, logistic, Poisson, negative
binomial, multi-nomial logistic and ordered logistic regression models, which is con-
trolled by passing the variables to the regress, logit, poisson, nbreg, mlogit, and
ologit options respectively. By default, each partially observed variable is imputed
from a model conditioning on all of the other partially observed variables and any fully
observed independent variables in the substantive model. When they serve as predictors,
partially observed variables are included by default as linear terms, except for partially
observed categorical variables, which are included as factor variables. The eq option
can be used should one wish to customise the models f(Xj |X−j , Z, ϕj). Fully observed
variables can be included as factor variables if desired by using Stata’s i. notation.

If any of the covariates given as smindepvars are derived functions of the partially
observed variables, the equations defining the covariates must be specified using the
passive option. For example, if the substantive model includes xsq as a covariate, which
is equal to the square of a partially observed variable x, we would pass xsq=x^2 to the
passive option. Further examples are given in the help file to smcfcs, and also see the
illustrative example in Section 4.

Once the desired number of imputations have been generated, smcfcs imports the
imputations to Stata mi format flong, and then fits the substantive model to the
imputations using Stata’s mi estimate command. The mi estimate command can
then be used to fit alternative models for the outcome, although care should be taken
to ensure that these are nested within the substantive model specified to generate the
imputations.

The command will give a warning if valid draws are not obtained for one or more
observations within the limit specified by the rjlimit option. If you receive this warning
it is advisable to increase the limit until the warning no longer appears.

As with standard FCS MI, one should assess whether a sufficient number of itera-
tions have been used for the algorithm to converge. Convergence can be assessed by
using chainonly and savetrace options, as per Stata’s mi impute chained command,
and plotting the means and SDs of imputed values by iteration. Because, unlike stan-
dard FCS, SMC–FCS conditions on the last imputations of Xj when fitting the models
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f(Xj |X−j , Z, ϕj) and f(Y |X,Z, ψ), SMC–FCS may be expected to require more iter-
ations for convergence. However, Bartlett et al. (2014) obtained good performance in
simulations with 10 iterations, which is therefore the default used by smcfcs.

The by(varlist) option can be used to impute separately in groups defined by the
supplied varlist . In this case smcfcs fits the substantive model and covariate models,
and imputes, entirely separately in each group. Following this, the imputations from
each group are appended. Note that in this case smcfcs does not fit a single substantive
model across all the groups - it is up to the user to select and fit an appropriate model
using mi estimate.

When using standard FCS imputation, it is recommended that the outcome of the
substantive model be included as a predictor in the imputation models for the substan-
tive model covariates, to ensure that the covariates are (hopefully correctly) associated
with the outcome. For the avoidance of doubt, when using smcfcs, the outcome should
only be included as the smdepvar variable, and should not be included elsewhere in the
command call.

4 Illustrative example

We illustrate the use of smcfcs using a dataset of 686 patients in Germany with posi-
tive node breast cancer, previously analysed by Royston (2004). The original data can
be loaded with webuse brcancer. Royston (2004) previously developed a substantive
Cox proportional hazards model for time to cancer recurrence, including five covariates:
age (age) with a fractional polynomial transformation with powers −2 and −0.5, tu-
mor grade 2/3 (gradd1), number of positive lymph nodes (nodes) with the exponential
transformation enodes = exp(−0.12×nodes), progesterone receptors (pgr) with a frac-
tional polynomial transformation with power 0.5, and hormonal therapy with tamoxifen
(tam). The Cox model thus contains the following nonlinear transformations of three
covariates:

age 1 = (age/10)−2

age 2 = (age/10)−0.5

enodes = exp(−0.12× nodes)

pgr 1 = ((pgr+ 1)/1000)0.5

In the original dataset the covariates were fully observed in all 686 patients. However,
Royston deleted 20% of values completely at random for each independent variable in the
analysis model. As a sterner test, here we make 50% missing (completely randomly) in
each independent variable, leaving just 25 complete cases (provided as partialdata.dta).
For comparison with estimates based on MI, we first present results based on the full
data, before data were made missing:

. use breastcancerfull, clear
(German breast cancer data)

. fracgen age -2 -0.5
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-> gen double age_1 = X^-2
-> gen double age_2 = X^-0.5

(where: X = age/10)

. fracgen pgr 0.5
-> gen double pgr_1 = X^0.5

(where: X = (pgr+1)/1000)

. stcox age_1 age_2 gradd1 enodes pgr_1 tam, nohr nolog

failure _d: censrec
analysis time _t: rectime

Cox regression -- Breslow method for ties

No. of subjects = 686 Number of obs = 686
No. of failures = 299
Time at risk = 2111.978093

LR chi2(6) = 153.11
Log likelihood = -1711.6186 Prob > chi2 = 0.0000

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

age_1 43.55382 8.253433 5.28 0.000 27.37738 59.73025
age_2 -17.48136 3.911882 -4.47 0.000 -25.14851 -9.814212

gradd1 .5174351 .2493739 2.07 0.038 .0286713 1.006199
enodes -1.981213 .2268903 -8.73 0.000 -2.425909 -1.536516
pgr_1 -1.84008 .3508432 -5.24 0.000 -2.52772 -1.15244
tam -.3944998 .128097 -3.08 0.002 -.6455654 -.1434342

We first applied standard FCS MI to the partially observed dataset, using mi impute

chained to create 100 imputations. Imputing variables ignoring non-linearities, and
then passively imputing the non-linear covariates of the substantive model, is known
to lead to biased estimates (Seaman et al. (2012)). Instead, we used the just another
variable (JAV) approach for imputing non-linear and interaction terms proposed by
von Hippel (2009). To do this, we directly imputed the non-linear terms involved in the
substantive model, here given by age 1, age 2, enodes and pgr 1 using normal linear
regressions. Note that this ignores the deterministic relationship between age 1 and
age 2. We used logistic regression to impute the two binary variables, gradd1 and tam.
Following the advice of White and Royston (2009), we included the event indicator and
the marginal Nelson–Aalen cumulative hazard estimate (generated using sts gen) as
covariates in each imputation model:

. use partialdata, clear

. sts gen na = na

. mi set flong

. mi register imputed age_1 age_2 pgr_1 enodes gradd1 tam
(661 m=0 obs. now marked as incomplete)

. mi impute chained (reg) age_1 age_2 pgr_1 enodes (logit) gradd1 tam = na _d,
> add(100) rseed(6934)

Conditional models:
age_1: regress age_1 age_2 enodes i.gradd1 i.tam pgr_1 na _d
age_2: regress age_2 age_1 enodes i.gradd1 i.tam pgr_1 na _d
enodes: regress enodes age_1 age_2 i.gradd1 i.tam pgr_1 na _d
gradd1: logit gradd1 age_1 age_2 enodes i.tam pgr_1 na _d

tam: logit tam age_1 age_2 enodes i.gradd1 pgr_1 na _d
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pgr_1: regress pgr_1 age_1 age_2 enodes i.gradd1 i.tam na _d

Performing chained iterations ...

Multivariate imputation Imputations = 100
Chained equations added = 100
Imputed: m=1 through m=100 updated = 0

Initialization: monotone Iterations = 1000
burn-in = 10

age_1: linear regression
age_2: linear regression
pgr_1: linear regression
enodes: linear regression
gradd1: logistic regression

tam: logistic regression

Observations per m

Variable Complete Incomplete Imputed Total

age_1 360 326 326 686
age_2 360 326 326 686
pgr_1 323 363 363 686
enodes 358 328 328 686
gradd1 350 336 336 686

tam 333 353 353 686

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

. mi estimate: stcox age_1 age_2 gradd1 enodes pgr_1 tam , nohr

Multiple-imputation estimates Imputations = 100
Cox regression: Breslow method for ties Number of obs = 686

Average RVI = 1.2171
Largest FMI = 0.6489

DF adjustment: Large sample DF: min = 237.25
avg = 340.43
max = 437.48

Model F test: Equal FMI F( 6, 1955.8) = 11.40
Within VCE type: OIM Prob > F = 0.0000

_t Coef. Std. Err. t P>|t| [95% Conf. Interval]

age_1 33.24523 11.62389 2.86 0.004 10.39961 56.09085
age_2 -12.41139 5.569491 -2.23 0.026 -23.3611 -1.461675

gradd1 .299675 .343087 0.87 0.383 -.375485 .974835
enodes -1.835314 .336044 -5.46 0.000 -2.496132 -1.174495
pgr_1 -2.287823 .5170807 -4.42 0.000 -3.306479 -1.269168
tam -.4000215 .1941113 -2.06 0.040 -.7819716 -.0180715

We first note that the standard errors are all larger than those based on full data,
as is to be expected with such large proportions of missingness. The coefficients of the
two powers of age are in the same direction as the full data estimates, but there is the
suggestion of attenuation (i.e. bias), with the estimates both being about 25% smaller in
magnitude than the full data estimates. The coefficient of gradd1 is also proportionately
much smaller than the full data estimate. The coefficients corresponding to the number
of nodes and tam are both quite close to their full data estimates, whilst the coefficient
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of pgr 1 is somewhat larger. Researchers may be uncomfortable using JAV because
the normal imputation models used are not well specified. For example, in this data,
for those patients with a negative value imputed for the enodes variable, one cannot
take logarithms to obtain an imputed value for the original nodes variable, and for
some patients for whom the back-transformation can be performed their nodes value
is negative. Further, for each subject with age missing there is no single imputation of
this variable, since the values imputed into age 1 and age 2 will not be consistent with
a particular value of age.

One may argue that when interest lies in fitting a substantive model, we should
only be concerned with the validity of inferences for the parameters of this model. Here
there was some suggestion that some of the coefficients may be biased, although it
is difficult here to distinguish between random variation and systematic bias. More
importantly, although JAV can be shown to be unbiased for linear regression models
under MCAR, it has been shown to be biased under MAR mechanisms, and also biased
for logistic regression substantive models, even under MCAR (Seaman et al. (2012)).
As far as we are aware there is no justification for its (even approximate) validity for
Cox proportional hazards models.

For these reasons, SMC–FCS is an appealing alternative approach here, since we
can impute each variable from an imputation model which is compatible with the as-
sumed Cox proportional hazards model. Since the nodes and pgr variables are both
integer valued and positively skewed, we chose to impute them using negative binomial
regression. Since all patients have at least one node, we subtracted one from nodes

and assumed this followed a negative binomial regression. The distribution of age had
little skew, and so we chose a normal linear regression model. Since the nodes and pgr

variables are so highly skewed, we deemed it implausible that they had linear effects in
the covariate models f(Xj |X−j , Z, ϕj). We therefore used the eq option to specify that
when included as covariates, they should be included as log(nodes) and log(pgr+1)

respectively. To do this we generated corresponding variables, and added expressions to
the passive option (in addition to those required for the substantive model covariates)
so that these were updated appropriately.

. use partialdata, clear

. gen nodesminusone = nodes-1
(328 missing values generated)

. gen logpgr = log(pgr+1)
(363 missing values generated)

. gen lognodes = log(nodesminusone+1)
(328 missing values generated)

. smcfcs stcox age_1 age_2 gradd1 enodes pgr_1 tam, reg(age) logit(gradd1 tam)
> nbreg(nodesminusone pgr) passive( age_1 = (age/10)^-2 | age_2 = (age/10)^-.5
> | enodes = exp(-0.12*(nodesminusone+1)) | pgr_1 = ( (pgr+1)/1000)^.5 | logpgr
> = log(pgr+1) | lognodes = log(nodesminusone+1)) eq(age: gradd1 tam logpgr lo
> gnodes | gradd1: age tam logpgr lognodes | tam: gradd1 age logpgr lognodes |
> nodesminusone: tam gradd1 age logpgr | pgr: lognodes tam gradd1 age) rseed(59
> 13) m(100)

Covariate models:
reg age gradd1 tam logpgr lognodes
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logistic gradd1 age tam logpgr lognodes, coef
logistic tam gradd1 age logpgr lognodes, coef
nbreg nodesminusone tam gradd1 age logpgr
nbreg pgr lognodes tam gradd1 age

Your passive statement(s) say:
age_1 = (age/10)^-2
age_2 = (age/10)^-.5
enodes = exp(-0.12*(nodesminusone+1))
pgr_1 = ( (pgr+1)/1000)^.5
logpgr = log(pgr+1)
lognodes = log(nodesminusone+1)
...............................................................................
> .....................
100 imputations generated
Fitting substantive model to multiple imputations

Multiple-imputation estimates Imputations = 100
Cox regression: Breslow method for ties Number of obs = 686

Average RVI = 1.2787
Largest FMI = 0.6045

DF adjustment: Large sample DF: min = 273.50
avg = 329.79
max = 453.10

Model F test: Equal FMI F( 6, 1872.1) = 12.33
Within VCE type: OIM Prob > F = 0.0000

_t Coef. Std. Err. t P>|t| [95% Conf. Interval]

age_1 37.86482 11.04905 3.43 0.001 16.15108 59.57857
age_2 -13.96674 5.765115 -2.42 0.016 -25.30891 -2.624579

gradd1 .4355209 .3483549 1.25 0.212 -.2502723 1.121314
enodes -1.924758 .3263519 -5.90 0.000 -2.566525 -1.282991
pgr_1 -2.996675 .577313 -5.19 0.000 -4.132892 -1.860458
tam -.3652585 .204516 -1.79 0.075 -.7678841 .0373672

The command first gives a summary of the covariate models it will use. This shows
that log(nodes) and log(pgr+1) will be used as covariates, rather than their un-
transformed versions, in the covariate models f(Xj |X−j , Z, ϕj). The command then
summarises the passive expressions which will be used. Next, the SMC–FCS algorithm
runs, creating the desired imputations, and finally the substantive model is fitted to
each imputation, and the results combined and displayed using mi estimate.

Comparing the estimates obtained using SMC–FCS with those from the full data
and those using JAV, we see that all of the estimated coefficients from SMC–FCS are
closer to those from the full data compared to those using JAV, with the exception of
that of pgr 1 (for which the SMC–FCS is quite a bit larger in magnitude) and tam

(which is still fairly close to the full data estimate). Unlike the imputations generated
from JAV, the distributions of the variables after imputation are similar to their full
data distributions, and the values in the variables age 1 and age 2 are consistent with
the imputed values of age.
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5 Simulation study

In this section we present results of a small simulation study comparing the performance
of smcfcs to standard FCS imputation with mi impute chained, in the case of a Cox
proportional hazards substantive model. We include results on computational time
to highlight the fact that smcfcs is more computationally demanding. Datasets were
simulated for n subjects with two covariates, X1 drawn from a Bernoulli distribution
with probability 0.5, and X2|X1 ∼ N(X1, 1). For each subject, we then simulated a
survival time, with hazard function h(t|X) = 0.002 exp(β1X1+β2X2) with β1 = β2 = 1.
Censoring times were generated from an exponential distribution with hazard 0.002.
Values in X1 and X2 were made (independently) missing completely at random with
probability π in each simulation. We first investigated the impact of sample size, by
performing simulations (100 per scenario) for n = 100, 500, 1000, 2500, 5000, with π =
0.25 (such that approximately 50% of subjects had at least one covariate missing). Next,
for n = 1000, we performed simulations (100 per scenario) with varying proportions of
missingness from π = 0.05 up to π = 0.35 in steps of 0.05.

For each simulated dataset, we first imputed the missing values in X1 and X2 using
mi impute chained. X1 and X2 were imputed using logistic and linear regression mod-
els respectively, with the event indicator and Nelson–Aalen estimate of the (marginal)
cumulative hazard as covariates. Next we imputed using smcfcs, again using logistic
and linear models, but imputing compatibly with a Cox proportional hazards model
for the survival time. For both methods 10 imputations were used, and in smcfcs the
default setting for the rejection sampling limit of 1,000 was used. In this setting, smcfcs
can directly sample from the imputation distribution for the binary covariate X1, but
rejection sampling is used for the continuous covariate X2.

Figure 2 shows the distributions of the relative computation times taken by smcfcs

compared with mi impute chained, for the different sample sizes considered. This
shows that for n = 100, smcfcs typically takes the same time to complete as mi impute

chained. However, As the sample size increases, the relative computational cost of
smcfcs increases, with an approximately 6 fold increase in time taken for n = 5000.
This additional computational cost is due to the fact that smcfcs uses rejection sampling
to impute the continuous covariate X2. As the sample size gets larger, in each dataset
there is a larger probability of having at least one record with a very low acceptance
probability, such that a large number of proposal draws are required before acceptance.
Figure 3 shows the estimates of β2 = 1 from the two imputation approaches, again for
varying sample sizes. This shows that while smcfcs gives unbiased estimates, imputing
the covariates directly, using the approximate approach proposed by White and Royston
(2009), estimates are systematically biased towards the null, a bias which does not
reduce with increasing sample size.

Figure 4 shows that as expected, for a fixed sample size, increasing levels of missing-
ness lead to a modest increase in computation times for smcfcs relative to mi impute

chained. Set against this however, Figure 5 illustrates that the bias in estimates of
β2 = 1 from mi impute chained steadily increase with increasing levels of missingness,
whereas smcfcs continues to be unbiased.
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Figure 2: Plot showing ratio of time taken by smcfcs to mi impute chained for varying
sample sizes, π = 0.25
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varying sample sizes, π = 0.25
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Figure 4: Plot showing ratio of time taken by smcfcs to mi impute chained for in-
creasing probability of missingness, n = 1000

.7
.8

.9
1

1.
1

1.
2

M
I e

st
im

at
es

 o
f β

2

.05 .1 .15 .2 .25 .3 .35
Probability of a covariate being missing π

smcfcs mi impute chained

Figure 5: Plot showing estimates of β2 = 1 from smcfcs and mi impute chained for
increasing probability of missingness, n = 1000



18 Substantive model compatible FCS MI

In summary, the simulations demonstrate that smcfcs incurs an additional computa-
tional cost compared to using mi impute chained. Thus in settings where a substantive
model compatible imputation model can be specified directly using mi impute chained

(e.g. a linear regression outcome model with main effects only), use of smcfcs is not
recommended. Outside of these settings however, use of smcfcs is expected to give
estimates with less bias, by imputing compatibly with the assumed substantive model,
and the increased computational cost would usually be deemed a small price to pay.

6 Final remarks

The smcfcs command allows one to impute covariates from imputation models which
are compatible with a user-specific substantive model. In settings where the substantive
model contains non-linear effects or interactions, and the variables involved in these
contain missing values, we believe it offers material advantages relative to what can be
achieved using standard FCS/ICE MI. That the algorithm forces the user to specify the
substantive model (or rather a substantive model) at the imputation stage is, we believe,
a strength of the approach, since it is clear that a set of multiple imputations can be
generated which give reasonable results for certain analyses or substantive models but
which may give biased estimates for others.

In practice one will typically not know the final substantive model at the imputation
stage. A number of possible strategies could be employed. If the complete cases repre-
sent a reasonably large proportion of the sample, the substantive model could be chosen
(using standard model selection strategies) using the complete cases. Alternatively, one
could impute assuming a flexible substantive model, following which simpler, nested
models for the outcome can be fitted to the imputations. Conversely, one should not fit
substantive models which are not nested within the substantive model used to generate
the imputations. For example, one should not impute assuming a substantive model
which assumes no interactions and then fit alternative substantive models which allow
for interactions.

A concrete example of the above advice is for fractional polynomial (FP) models.
In section 4 we used FP transformations that had previously been selected by Royston
(2004). If this was not the case we would have had to select our best FP model. To ensure
each imputation model is semi-compatible with any FP model that might be selected,
the following method could be used. For a partially observed X the transformations
Xp under consideration will typically include p = −2,−1,−0.5, 0, 0.5, 1, 2, and 3, where
X0 is ln(X). All of these Xp should be included in the SMC–FCS specification of
the substantive model. This ensures the imputation model for each partially observed
variable (in particular X) is semi-compatible with any (to be subsequenty selected) FP
model. An FP model for the outcome can then be selected using the imputed data.
Note that for degree-2 FP models, repeated powers for X are possible. If this is a
concern the variables Xp ln(X) should also be included in the ‘substantive model’ at
the imputation stage.

The following fragment of code demonstrates how this strategy can be implemented
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in practice. Note that fracgen involves scaling and centering of x 1–x 7, so it is im-
portant to be aware of this in defining the passive() statement.

. smcfcs reg y x_1 x_2 x_3 x_4 x_5 x x_7 x_8, reg(x)
> passive(x_1 = x^-2 | x_2 = x^-1 | x_3 = x^-0.5 | x_4 = ln(x) | x_5 = x^0.5 |
> x_6 = x^2 | x_7 = x^3)

We believe imputing covariates from a model which is compatible with the sub-
stantive model is desirable, since, assuming the latter is correctly specified, unless the
imputation model (or a restriction of it) is compatible with the substantive model, the
imputation model is mis-specified. We emphasize that this compatibility does not ensure
that the imputation model is correctly specified – if the covariate model f(Xj |X−j , Z, ϕj)
is mis-specified for a given value of j, the imputation model is mis-specified. Care should
therefore be taken to ensure that the covariate models f(Xj |X−j , Z, ϕj) are reasonable
for the data in hand. Diagnostics which can be applied to multiple imputations should
be applied, such as examining the distributions of imputed variables and comparing to
the distribution of the observed values.
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