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Abstract 27 

Exploiting hydrogels for the cultivation of stem cells, aiming to provide them with physico-chemical 28 

cues suitable for osteogenesis, is a critical demand for bone engineering. Here, we developed hybrid 29 

compositions of collagen and silica into hydrogels via a simple sol-gel process. The physico-chemical 30 

and mechanical properties, degradation behavior, and bone-bioactivity were characterized in-depth; 31 

furthermore, the in vitro mesenchymal stem cell growth and osteogenic differentiation behaviors within 32 

the 3D hybrid gel matrices were communicated for the first time. The hydrolyzed and condensed silica 33 

phase enabled chemical links with the collagen fibrils to form networked hybrid gels. The hybrid gels 34 

showed improved chemical stability and greater resistance to enzymatic degradation. The in vitro 35 

apatite-forming ability was enhanced by the hybrid composition. The viscoelastic mechanical 36 

properties of the hybrid gels were significantly improved in terms of the deformation resistance to an 37 

applied load and the higher modulus values under a dynamic oscillation. Mesenchymal stem cells 38 

adhered well to the hybrid networks and proliferated actively with substantial cytoskeletal extensions 39 

within the gel matrices. Of note, the hybrid gels substantially reduced the cell-mediated gel 40 

contraction behaviors, possibly due to the stiffer networks and higher resistance to cellular 41 

degradation. Furthermore, the osteogenic differentiation of MSCs, including the expression of bone-42 

associated genes and protein, was significantly upregulated within the hybrid gel matrices. Together 43 

with the physico-chemical and mechanical properties, those MSCs behaviors observed within 3D gel 44 

matrices, being different from the previous approaches reported on 2D substrates, provide new 45 

information on the feasibility and usefulness of the silica-collagen system as the 3D bio-matrices for 46 

stem cell culture and tissue engineering of hard tissues.  47 

 48 
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1. Introduction 52 

Hydrogels have gained considerable attention as a matrix within which to culture tissue cells since 53 

they provide 3-dimensional (3D) scaffold environment for cells to properly adhere, spread and grow, 54 

and to acquire tissue-specific differentiation cues.1-4 The high water content and tissue-like elastic 55 

properties of hydrogels make them ideal candidates as 3D matrices for cell encapsulation and 56 

delivery for engineered tissues.5-8 Furthermore, bioactive signaling molecules can be integrated within 57 

hydrogel networks to improve therapeutic functions in regulation of cellular fate.9, 10 For hydrogels to 58 

provide 3D matrix conditions favorable to cells for target tissue development, the physico-chemical 59 

and mechanical properties, as well as the degradation profile should be carefully tailored.  60 

Among other materials, polymers of natural origin, such as collagen, alginate, and chitosan 61 

as hydrogels, have been widely used and developed due to their excellent cellular affinity and tissue 62 

compatibility.2, 11 In particular, collagen, as the most abundant protein present in mammals, has been 63 

the most frequent option for culture of cells and repair and regeneration of diverse tissues including 64 

bone and teeth.10, 12 However, there some critical limitations that have been encountered, particularly 65 

for use in hard tissues, such as poor mechanical properties and rapid degradation.13, 14 Furthermore, 66 

in cell cultures, collagen is known to undergo substantial shrinkage, limiting its potential for 67 

applications in wound repair and defect closure.15 With their relatively low chemical stability and low 68 

physical rigidity, collagen hydrogels have primarily been used to target soft tissues rather than for 69 

hard tissues.  70 

Physical compression of collagen has been conducted to overcome these limitations and to 71 

improve the properties of collagen-based hydrogels. The compressed collagen showed a condensed 72 

structure, resulting in higher physical and mechanical properties that are more favorable for hard 73 

tissue applications.16  74 

The combination of collagen with inorganic nanomaterials, has also gained great attention to 75 

improve the properties of collagen-based biomaterials. Some nanocomposites or hybridized collagen-76 

based hydrogels, such as collagen/apatite and collagen/bioactive glass, have been recognized to 77 

exhibit improved mechanical and biological properties that are more suitable for bone repair.16-18 78 

However, studies on hydrogels with nanocomposite/hybrid compositions have not been investigated 79 

as rigorously. One recent elegant study on collagen hydrogels that incorporated surface-80 
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functionalized bioactive glass nanoparticles showed an improved physico-chemical stability and the 81 

associated gel properties against shrinkage during cell culture.16  82 

Here, we aimed to produce hybrid hydrogels based on collagen and silica. The composition 83 

was amenable to in situ gelation, culture of cells, and hard tissue engineering. In fact, the 84 

collagen/silica hybrid compositions have been documented in the form of coatings, membranes, and 85 

gels, and the preparation methods and the properties related to the cells have been reported. The sol-86 

gel process introduced has been shown to be effective in generating collagen-silica hybrid networks.19, 
87 

20 The hardened hybrid materials, with a mesoporous structure, have presented controlled drug 88 

release, suggesting that they are suitable as drug delivery matrices.21 The dried collagen/silica 89 

membranes have also been shown to improve in vitro and in vivo bioactivity for use as guiding 90 

membranes for bone regeneration.22-27 While the collagen/silica hybrid compositions have been 91 

shown to hold potential properties for use in bone repair and regeneration, very few systematic works 92 

have been carried out on hybrid hydrogels to encapsulate and cultivate cells for cell delivery and bone 93 

tissue engineering. 94 

In the present study, collagen/silica hybrid hydrogels were prepared through a simple sol-gel 95 

process during which cells were simultaneously cultivated to provide hybrid gel 3D networks. The 96 

physico-chemical and mechanical properties, as well as the degradation of the hybrid hydrogels were 97 

investigated, and the cell-associated gel contraction was also monitored. Furthermore, the cell growth 98 

and osteogenic differentiation behaviors were compared. Such a series of properties evaluated were 99 

judged to determine the efficacy of the hybrid compositions as 3D hydrogel matrices for hard tissue 100 

engineering. While many studies on silica-collagen system have explained cellular phenomena over 101 

the 2D substrates, this study is considered to report for the first time on the cell behaviors within silica-102 

collagen 3D gel matrix conditions.  103 

 104 

2. Experimental Part 105 

2.1. Preparation of silica-collagen solutions and hydrogels 106 

Tetramethyl orthosilane (TMOS) was chosen as a silica source and was hydrolyzed for 3 h at room 107 

temperature by adding water under acidic conditions (1 N HCl). The molar ratio of TMOS to water was 108 

1:10 in order to minimize redundant liquid. A collagen solution (3.87 mg/ml, rat tail Col I; BD 109 
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Biosciences) was diluted in distilled water at a concentration of 3.5 mg/ml. The collagen solution was 110 

mixed with hydrolyzed TMOS at weight ratios of collagen:TMOS = 90:10 and 80:20, called Col-10S 111 

and Col-20S, respectively. The mixtures were then placed in spinner flasks and were stirred with a 112 

magnetic stirrer at 50 rpm in an ice bath. Dulbecco’s-modified eagle medium (10X)-based cell 113 

suspensions were added to the solution, which was then neutralized with 0.5 N NaOH.28 The mixtures 114 

were cast in a plastic mould (6 mm x 3 mm) and were shortly incubated at 37 °C for 1 h for gelation.  115 

 116 

2.2. Sample characterization 117 

The surface morphology was observed via scanning electron microscopy (SEM; Hitachi). Hydrogel 118 

samples were washed with distilled water several times, and then freeze-dried for the SEM. The 119 

atomic composition was detected using energy dispersive spectroscopy (EDS; Bruker) attached to 120 

SEM. The chemical composition was examined via attenuated total reflectance-Fourier transform 121 

infrared (ATR-FTIR; Varian 640-IR) analysis. The transmission spectra were recorded in the spectral 122 

range of 4000–400 cm-1 with a resolution of 4 cm-1. The release of silicon ion from the samples was 123 

investigated by incubation of the freeze-dried sample in 10 ml of phosphate buffered saline (PBS at 124 

pH 7.4) solution at 37 oC. At each period, the release of Si ion was detected using Si titration with 125 

inductively coupled plasma atomic emission spectrometry (ICP-AES). The thermal stability was 126 

assessed with differential scanning calorimetry (DSC, Q-20, TA Instruments), and the measurements 127 

were conducted in the temperature range from 20 to 100 °C with 5 °C/min heating rate under a 128 

nitrogen flow.  129 

 130 

2.3. Enzymatic degradation tests 131 

For the enzymatic degradation test, collagenase type I (Worthington Biochemical, USA) was used. 132 

Each sample with a cylindrical shape (6 mm x 3 mm) was incubated in 1 ml of 0.1 M Tris–HCl buffer 133 

(pH 7.4) containing 50 mM CaCl2 at 37 °C. Collagenase type I was prepared at a specific 134 

concentration (54 units/ml in 0.1 M Tris–HCl). The samples were soaked within a collagenase solution 135 

for 30, 60, and 120 min, which was then placed on ice at 4 °C and was added 0.2 ml of 0.25 M EDTA. 136 

The weight change in the samples during the test was recorded. Three replicate samples were used 137 

for the test.  138 

 139 
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2.4. In vitro apatite mineralization test 140 

The in vitro apatite forming ability of the samples was tested in Kokubo’s simulated body fluid (SBF, 141 

pH 7.4) at 37 °C.29 SBF was prepared by dissolving NaCl (142.0 mM), NaHCO3 (4.2 mM), KCl (5.0 142 

mM), K2HPO4.3H2O (1.0 mM), MgCl2.6H2O (1.5 mM ), CaCl2 (2.5 mM ), and Na2SO4 (0.5 mM ) into 143 

deionized water buffered to pH 7.4 with Tris-HCl buffer at 37 °C. The lyophilized hydrogels were cut 144 

into proper sizes and were subsequently placed in 6-well plates containing 10 ml SBF in each well, 145 

which were then incubated at 37 ºC for up to 7 days with a refreshed SBF solution every day. Three 146 

replicate samples were used for the SBF test After removal from the SBF, the samples were washed 147 

with distilled water, and were then dried at room temperature. The formation of apatite crystals was 148 

examined via X-ray diffraction (XRD, Ultima IV, Rigaku, Japan) and SEM. The nano-crystalline 149 

morphology was examined by using high resolution transmission electron microscopy (HR-TEM), and 150 

the crystal pattern was analyzed according to the selected area electron diffraction (SAED). For the 151 

TEM observation, the samples were washed several times with distilled water, freeze-dried, and then 152 

a part of the samples was scratched off to place on a Cu grit.  153 

 154 

2.5. Static and dynamic mechanical tests 155 

The viscoelastic measurements were performed using a dynamic mechanical analyzer (DMA 25N, 156 

01dB-Metravib, France) where samples in hydrated state with cylindrical geometry and dimensions of 157 

10 x 10 x 15 mm3 were used. Two types of compression stress tests, including static and dynamic 158 

tests, were performed on the prepared hydrogels. The static compression stress test, a sort of creep 159 

test, involves the application of a constant static compressive stress of 0.5 kPa normal to the 160 

cylindrical hydrogel sample axis, and the strain of the sample was measured as a function of time at 161 

room temperature for 450 s. For the dynamic compression stress test, the upper cylindrical rod was 162 

allowed to oscillate sinusoidally with small strain amplitude (100 µm) which was in the linear range of 163 

viscoelasticity of the material. The tests were conducted using a frequency ranging from 0.5 up to 10 164 

Hz for 10 min at room temperature. The storage (E′) and loss (E′′) modulus of the samples were 165 

measured, and the energy loss (tan delta; E′′/ E′) value was also calculated.  166 

 167 

2.6. Mesenchymal stem cells (MSCs) and culture in hydrogels 168 
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MSCs derived from rat bone marrow were isolated from adult Sprague-Dawley rats (5 weeks old). 169 

The proximal and distal epiphyses of the rat femora and tibiae were cut off, and bone marrow tissue 170 

was flushed out with a collagenase type I solution in alpha-minimal essential medium (MEM). The 171 

tissue was centrifuged and re-suspended in a normal culture medium (alpha-MEM supplemented with 172 

10% fetal bovine serum containing 1% penicillin/streptomycin) and was then placed in a culture dish 173 

in an incubator under a humidified atmosphere of 5% CO2 in air at 37 °C. The adherent cells were 174 

expanded and sub-cultured for 3 passages for further experiments.  175 

For the culture of MSCs within the hydrogels, the cells were prepared at a concentration of 1 176 

x 105 cells/ml in the 1 ml of the hydrogel solution, which was allowed to gel during storage at 37 oC for 177 

1 h. The cell-hydrogel constructs were cultured in an osteogenic medium (normal medium plus 50 178 

µg/ml sodium ascorbate, 10-2 M sodium β-glycerol phosphate and 10-8 M dexamethasone) for up to 3 179 

weeks. The cell-gel constructs were prepared in each well of 24-well plates for further analyses, 180 

including cell growth, morphology, and osteogenic differentiation. For the biological assays, the cells 181 

were harvested by digesting the hydrogels with collagenase type I (10 mg/ml) and then separating 182 

them via a centrifugation (1500 rpm).  183 

 184 

2.7. Hydrogel contraction test 185 

The hydrogel contraction due to the cells present inside was also recorded. Different concentrations 186 

of cells (5 x 104, 1 x 105, and 2 x 105 cells/ml) were used for the test. Cell-hydrogel constructs were 187 

prepared in each well of 6-well plates, and the diameter change of the hydrogels was recorded during 188 

the culture. Samples were tested in triplicate.  189 

 190 

2.8. Cell viability and growth morphology 191 

Cell viability was assessed using an MTS [3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-192 

2-(4-sulfophenyl)-2H tetrazolium] assay kit (CellTiter 96 Aqueous One Solution from Promega) using 193 

a spectrophotometer at an absorbance of 490 nm.  194 

The growth morphology of cells in the hydrogels was observed via confocal laser scanning 195 

microscopy (CLSM; LSM 510, Carl Zeiss). The cells were fixed with 4% paraformaldehyde and were 196 

permeabilized in 0.1% Trion X-100 for 5 min. An Alexa Fluor 546 phalloidin (Invitrogen A22283) 197 
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solution diluted in PBS was added into the sample. ProLongVR Gold antifade reagent with 40,6-198 

diamidino-2-phenylindole (DAPI) (Invitrogen P36935) was used to stain nuclei. 199 

 200 

2.9. Gene expression by quantitative polymerase chain reaction (QPCR) 201 

The expression of genes associated with osteogenesis, including Runx-2, osteopontin (OPN), and 202 

bone sialoprotein (BSP), was assessed via QPCR. The total RNA was extracted from the lysate of 203 

cells gathered from each scaffold using the RNeasy Kit (Qiagen). The isolated RNA was quantified 204 

using Quant-It RiboGreen kit. Total RNA (50 ng) was reverse-transcribed to cDNA with a first-strand 205 

cDNA synthesis kit (PrimeScript RT reagent Kit, Bioneer) using random hexamers as primers. Finally, 206 

QPCR was performed using Sensimix Plus SYBR master mix (Quantace) in a spectrofluorometric 207 

thermal cycler (Rotor-Gene 3000; Corbett Research). Comparative threshold cycle (CT) method was 208 

used where the accumulated PCR products for each gene examined were normalized in accordance 209 

with the reference gene, GAPDH, and triplicate samples were tested. The primer sequences of the 210 

genes for QPCR are as follows: GAPDH: GATGACATCAAGAAGGTGGT (forward), CAAAGTTGTCA 211 

TTGAGAGCA (reverse); OPN: CCGATGAATCTGATGAGTCCTT (forward), TCCAGCT 212 

GACTTGACTCATGG (reverse); BSP: ATCAAAGCAGAGGATTCTGA (forward), TTCG 213 

TTGTTTTCCTCTTCAT (reverse).  214 

 215 

2.10. Protein expression by Western blot 216 

Based on the results of the QPCR, the expression of protein BSP was analyzed via Western blotting. 217 

The extracts of the cells harvested after 14 days of culture were prepared with a RIPA buffer, after 218 

which the protein samples were resolved on 10% SDS-polyacrylamide gels, transblotted to NC 219 

membranes blocked with 2.5% BSA in Tris-buffered saline with 0.1% Tween-20, and were probed 220 

with primary antibody (anti-BSP antibody, 1:1000). The blots were then incubated with HRP-221 

conjugated secondary IgG, and immunoreactive bands were detected using an ECL detection reagent 222 

(Pierce, Rockford). 223 

 224 



9 

 

2.11. Statistical analysis 225 

Data were represented as means and standard deviations. The data comparison was carried out 226 

using a Student’s t-test, and the significance level was considered at p < 0.05.  227 

 228 

3. Results and Discussion 229 

 230 

3.1. Physico-chemical and degradation properties of the hybrid hydrogels 231 

The schematic view of the collagen/silica (Col/Sil) hybrid networks formed in the hydrogels is depicted 232 

in Fig. 1. The silica precursor silane molecules hydrolyzed and then polymerized to form siloxane (Si-233 

O-Si) networks. On the other hand, collagen molecules self-assembled into a fibrillar formation. In the 234 

meantime, the siloxane end groups and the functional groups present in the amino acid sequences of 235 

the collagen fibrils chemically interacted to be hybridized and gelled.19, 30  236 

The chemical interactions of the hydrogels were further characterized via FT-IR (Fig. 2a). 237 

Pure Col showed typical amide bands. The Col/Sil hybrids showed a development of bands in very 238 

similar positions to those of Col. However, on closer examination, the amide bands of Col/Sil showed 239 

a slight blue shift (dashed lines in Fig. 2b). The results indicated that there were possible chemical 240 

interactions between the collagen and silica, i.e., the amino acids of collagen with the siloxane group 241 

of the silica composition. Based on DSC curves of the different gel compositions a difference in the 242 

denaturation temperature of the collagen was determined: ~36.5 °C for pure Col, which increased to 243 

~50 °C for both hybrids (Fig. 2c). This was also possibly due to the effects of the silica-collagen 244 

chemical interactions. In previous reports on collagen nanocomposites with inorganic hydroxyapatite 245 

nanocrystals, such an improvement in the denaturation point of collagen has also been reported.31, 32  246 

After confirming that there was a strong chemical interaction between the collagen and silica 247 

in the hydrogels, we next examined the degradation behavior. The enzymatic degradation of the 248 

hydrogels was also analyzed by exposure to collagenase type I. During soaking each hydrogel in 249 

collagenase I for up to 120 min, the weight loss of the samples was monitored (Fig. 3). With 250 

increasing silica content, the weight loss decreased; 100% for collagen, 89% for Col-10S, and 65% 251 

for Col-20S at 120 min after soaking. Considering the silica content in each hydrogel, i.e., 0%, 10% 252 

and 20% for collagen, Col-10S, and Col-20S, respectively, the silica-added hybrid hydrogels showed 253 
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a lower degradation level. The results indicated that the increase in silica improved the resistance to 254 

the enzymatic degradation of collagen. Taken together, the hybrid composition improved the 255 

enzymatic degradation of hydrogels.  256 

 257 

3.2. Mechanical properties of the hybrid hydrogels under static and dynamic conditions 258 

Along with the degradation behavior, the mechanical properties of the hydrogels were analyzed. First, 259 

the hydrogels experienced a static load, and the strain change was recorded against time for up to 260 

450 s (Fig. 4a). With time, the static strain of the collagen increased rapidly followed by a continual 261 

decreased stain rate, while the Col/Sil hydrogels showed substantially decreased strain change, 262 

especially, with increasing silica content. The initial strain rate was measured to be ~2 x 10-5/s, ~4 x 263 

10-6/s, and ~4 x 10-7/s, for collagen, Col-10S, and Col-20S, respectively. Furthermore, the static strain 264 

recorded at 450 s was ~0.037, 0.019 and 0.007 on average, for collagen, Col-10S, and Col-20S, 265 

respectively (Fig. 4b). The static mechanical tests demonstrated that the silica-added hybrid gels 266 

sustained a static load and thus resisted the deformation more effectively.  267 

Next the dynamic mechanical properties of the hydrogels were investigated via DMA. The 268 

hydrogel samples were subjected to a dynamic load with a varying frequency of over 0.5–10 Hz, and 269 

the storage modulus (E’) and the loss modulus (E”) values were recorded. E’ values of all the samples 270 

changed very little with frequency. Interestingly, the E’ value of Col-20S showed the most striking 271 

increase compared to that of other samples (Fig. 5a). The E” values increased with frequency, and 272 

higher E” values were recorded with an increase in silica content. The E’ and E” values were 273 

averaged and showed significant increases with an increase in silica content, and E” value in Col-20S 274 

was the highest and showed the most increase (Fig. 5b). The energy loss factor E”/E’ (tan delta) 275 

showed a slight decrease with an increase in silica (Fig. 5c). The DMA results demonstrated that the 276 

silica-added hybrid gel showed the most significant improvement in terms of the storage modulus, an 277 

elastic component that characterizes the stiffness of the gel. The increase in stiffness of the polymeric 278 

hydrogels is considered to be favorable in applications for hard tissues, like bone and teeth.33, 34 Here 279 

the issue is more detailed in relation with the cellular responses.  280 

 281 

3.3. In vitro apatite forming ability and ionic releases of the hybrid hydrogels 282 

The apatite forming behaviors of the hydrogels were monitored in SBF to presume the bone 283 
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bioactivity in vitro. The morphological changes of the hydrogels during the SBF-test were examined 284 

via SEM. While the collagen hydrogel showed no changes, Col-Sil hybrid gels exhibited development 285 

of fine crystallites throughout the gels (Fig. 6a). A closer examination of the produced crystals 286 

revealed the growth of flake-like highly-faceted nano-crystallites. The TEM image of the nano-287 

crystallites (shown for Col-20S, representatively) reflected well the clustered nanoflakes of the 288 

crystals, and the selected-area election diffraction (SAED) signals revealed a spotted ring pattern, 289 

which was characteristic of apatite nano-crystals (Fig. 6b). The results indicated that Col-Sil hybrid 290 

hydrogels are expected to be very bone-bioactive in vitro, inducing apatite mineral growth throughout 291 

the hydrogel networks. The silica addition to the polymeric materials have been shown to improve the 292 

in vitro acellular mineralization elsewhere, including in silica-chitosan, silica-silk, and silica-collagen, 293 

prepared in the form of membranes and porous foams.20, 35, 36 The highly negatively charged siloxane 294 

groups present in the silica phase played a key role in the deposition of calcium ions present in SBF, 295 

which in turn captured phosphate ions to accelerate the whole mineralization process. 296 

 The ionic releases from the hybrid hydrogels were monitored by ICP-AES for up to 3 weeks 297 

in PBS (Fig. 7). Since the hydrogels showed hydrolytic degradation in PBS, the silicon ions in the 298 

silica phase were considered to be released with time. The silicon release was observed for both the 299 

Col-10S and Col-20S, and it continued with time, showing higher amount from the Col-20S. The 300 

silicon release recorded for 21 days was ~40 ppm for Col-10S and ~70 ppm for Col-20S. The silicon 301 

ionic release from the hybrid hydrogels would positively affect the cell response during the culture 302 

experiments. Previous reports also highlighted the beneficial influence of the silicon ions leached from 303 

bioactive materials, such as glasses, coatings, and silicon-doped apatite.37, 38 Bone-associated cells 304 

were stimulated to increase in proliferation and/or osteogenic differentiation when cultured with 305 

silicon-releasing matrices or dosed at proper concentrations.37, 39 The silicon amounts recorded herein 306 

(tens of ppm) were also within the cell-stimulating ranges previously documented.40  307 

 Taking all the physico-chemical and mechanical properties as well as the degradation 308 

behaviors observed for the hydrogels, the silica-hybridized gels were considered to provide more 309 

favorable 3D environments for cells and the application of bone tissue engineering in terms of the 310 

structural and chemical stability, mechanical rigidity, and acellular bone bioactivity (silicon ionic 311 

release and mineralization acceleration).  312 

 313 
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3.4. Cell growth, associated hydrogel contraction, and osteogenesis 314 

To assess whether the developed hydrogels can provide suitable 3D matrix conditions for cells to 315 

survive, grow, and adopt proper differentiation for bone tissues, we cultured MSCs derived from rat 316 

bone marrow within the hydrogels. First, the MSCs behaviors at the short time periods of up to 3 days 317 

were examined. The cells cultured within the gels were monitored by confocal microscopy (Fig. 8a). 318 

At day 1, some cells had cytoskeletal extensions while many cells were spherical with limited 319 

extensions. At day 3, the cell extensions were more pronounced and more cells were found. Next, the 320 

cell viability within the gels was monitored via MTS (Fig. 8b). The cell viability at day 1 was not 321 

significantly different for all groups, while slightly lower level at day 3 was noticed in Col-20S.  322 

With prolonged culture of the cells, the gel matrices were shown to shrink since the collagen 323 

gel is well-known to undergo cell-mediated contraction.41 The shrinkage of the hydrogels was thus 324 

examined. The initial cell densities varied (5 x 104, 1 x 105, and 2 x 105 cells/ml), and the cell-325 

mediated gel contraction was measured at different culture periods. Fig. 9 shows the cell-mediated 326 

contractions with varying cell densities in different hydrogel compositions. With 5 x 104 cells/ml (Fig. 327 

9a), the gel contractions were observed starting from 7 days and increased quite linearly with culture 328 

time for all groups. The contraction increase rate was in the following order: Col > Col-10S > Col-20S. 329 

Finally, the contractions were recorded at 21 days and were of approximately 50%, 35%, and 20%, 330 

for Col, Col-10S, and Col-20S, respectively. With 1 x 105 cells/ml (Fig. 9b), the contractions in Col 331 

and Col-10S were abrupt at 7 days (down to 40–50%), which was then preserved for up to 21 days. 332 

On the other hand, the contraction behavior of Col-20S was different from that of the others, without 333 

showing an abrupt contraction at day 7 but rather a linear increase in contraction as was observed for 334 

the lower cell density. The contraction recorded at 21 days was approximately 70%, 65% and 50%, 335 

for Col, Col-10S and Col-20S, respectively. With 2 x 105 cells/ml (Fig. 9c), all three groups presented 336 

similar behaviors, with a rapid contraction at day 7 and ongoing contraction for up to 21 days. The 337 

contractions recorded at 21 days were of approximately 90%, 78%, and 60%, for Col, Col-10S and 338 

Col-20S, respectively. Based on the gel contraction results, it was clear that the silica-hybridized 339 

hydrogels had less gel contraction for all cell densities and for all time points, and the higher silica 340 

content controlled these effects. Furthermore, the gel contractions were more pronounced when the 341 

cell density was higher and the culture period was longer, implying that this phenomenon was, as 342 

expected, closely related to the cell population. 343 



13 

 

As to the cell-induced gel contraction mechanisms, when the cells anchored and spread 344 

along the hydrogel networks, they exerted substantial contractile forces that shrink the gel networks. 345 

With an increase in the culture period, the cells multiplied to increase the contractile forces, and at the 346 

same time, the gel matrix was also degraded enzymatically as a result of the increased cell numbers, 347 

all of which consequently accelerate the shrinkage of the gel matrix. Therefore, the reduced 348 

contractions in the silica-hybridized gels were considered to primarily be a result of the increased 349 

resistance to the contractile forces induced by the cells since the hybrid gel was much stiffer. 350 

Together with a higher rigidity, the less degradable properties of the hybrid gels also contributed to 351 

the decreased gel contraction. This gel contraction behavior observed in the collagen-based 352 

hydrogels has become a significant obstacle to apply these gels in tissue engineering applications.42 353 

Therefore, such a decrease in gel contraction by silica hybridization is considered to be another 354 

beneficial point for the use of a hybrid gel matrix. Collectively, the hybrid gels provided favorable 355 

conditions for MSCs to survive, spread, and multiply, exerting substantial contractile forces on the gel 356 

networks to shrink consequently though with a lower level than that of collagen.  357 

Next, the osteogenic differentiation of the cells cultured on collagen, Col-10S, and Col-20S 358 

hydrogels was investigated. First, the cell morphologies at 14-day culture were monitored by CLSM 359 

(Fig. 10a). The cells cultured on collagen were shown to develop well-spread and organized actin 360 

filaments. On the other hand, the silica-hybrid gels appeared to show more elongated cytoskeletal 361 

extensions with narrower yet specified directional growth. Next, the expression of osteogenic genes, 362 

including Runx2, OPN and BSP, was analyzed at 14 days via quantitative RT-PCR (Fig. 10b). All the 363 

genes were significantly stimulated when cultured in the hybrid gels, and the most remarkable change 364 

was observed in the BSP gene – with an increase as high as 7 times for Col-10S and 14 times for 365 

Col-20S. For the case of Runx2 and OPN, the increases were ~1.5–2 times. While Runx2 and OPN 366 

are relatively early osteogenic markers, BSP is engaged in much later stages for osteogenic 367 

differentiation.43, 44 Therefore, a substantial stimulation of the BSP gene during a relatively long culture 368 

period of 14 days was thought to reflect high osteogenic potential of MSCs induced by the hybrid gel 369 

matrix. We next examined the BSP protein expression by cells cultured in collagen, Col-10S, and Col-370 

20S gels for 14 days (Fig. 10c). The Western blot band intensity was much stronger in cells cultured 371 

particularly on Col-20S gels.  372 

Collectively, the hybrid gel provided 3D environments for MSCs to adopt an osteogenic 373 
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lineage more effectively than the pure collagen gel, with stimulated expressions of osteogenic 374 

markers at the gene and protein levels. At this point, significantly different cell growth morphology, 375 

particularly at a prolonged culture for 14 days with more highly elongated and directional spreading in 376 

the hybrids, were thought to reflect the higher osteogenic differentiation status of the cells. In fact, 377 

previous studies on MSCs reported that those with better osteogenic differentiation had more 378 

elongated and higher cell aspect ratios, and this was observed when they were cultured on stiffer gel 379 

matrices or on nano-topological substrates.45, 46  380 

There can be multiple reasons for osteogenic stimulation in the hybrid gels. First, the stiffer 381 

hybrid matrix can drive MSC differentiation into the osteogenic lineage. In fact, the storage modulus 382 

values of all compositions are well within the ranges similar to those of native non-calcified or 383 

collagenous bone matrices as well as those of demineralized bone matrices engineered, and this fact 384 

is considered to be favorable for cellular fate determination into hard tissue.47-50 Thus, even pure 385 

collagen gel is considered to be favorable for driving cells down the osteogenic lineage. However, 386 

when cells proliferate actively and substantial collagen degradation is involved, the rigid matrix 387 

becomes softer, resulting in gel contraction driven by a cellular contractile force. Substantial gel 388 

contraction that occurred in pure collagen reflects well the change from a stiff to a soft gel matrix with 389 

increasing cell culture time. On the other hand, the hybrid gels have more rigid properties, and the 390 

cells can propagate and spread more effectively without causing substantial gel contraction. These 391 

different gel stiffnesses and cell-driven gel contraction behaviors between the hydrogel groups may 392 

result in dissimilar MSC differentiation and differential osteogenesis. At the same time, the release of 393 

silicon ions should also influence cellular fate. The silicon ions released (~tens of ppm) have been 394 

shown to positively influence the proliferation and differentiation of osteoblasts and stem cells. 395 

Together with the physical nature of the gels (stiffness and contraction), this chemical source (silicon 396 

ion) could alter the behavior of MSCs in a manner favorable for an osteogenic lineage.  397 

 398 

4. Conclusions 399 

Collagen-silica hydrogels were produced by a sol-gel process for hard tissue engineering. During the 400 

hydrolysis and condensation reactions, the silica components chemically linked with the collagen 401 

amino acid networks to form hybridized hydrogels. The hybrids improved the chemical stability of the 402 
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hydrogels, such as slowing down the enzymatic degradation. The hybrid gels exhibited improved 403 

mechanical properties, including a higher resistance to static stress and a storage modulus in 404 

dynamic conditions. The silica-addition also enhanced the in vitro apatite forming ability in SBF of the 405 

hydrogels. The MSCs cultured within the hydrogels were shown to actively spread and proliferate, 406 

which resulted in substantial hydrogel contractions. The silica-containing compositions reduced the 407 

gel contraction significantly, and the osteogenic differentiation of the MSCs was greatly enhanced by 408 

the hybrid hydrogels in terms of the bone-related gene and protein expressions. The developed silica-409 

collagen hybrid hydrogels, according to the results of the physico-chemical and mechanical as well as 410 

the degradation test in parallel with MSC growth and osteogenic differentiation behaviors, indicate this 411 

material may be a potential matrix for bone tissue engineering.  412 
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Graphical Abstract: 558 
 559 
 560 
Hybrid hydrogels comprising of collagen-silica demonstrated excellent chemical stability and bone-561 

bioactivity, and the stem cell cultivation and osteogenic responses, ultimately favorable for bone 562 

tissue engineering.  563 

 564 

 565 
 566 
  567 
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Fig. 1. Schematic drawing of the Col/Sil hybrid hydrogel system, illustrating the formation of 568 

hybridized networks between the two components. 569 

 570 

  571 
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Fig. 2. (a,b) FT-IR spectrum observed at wide and narrow ranges, and (c) collagen denaturation 572 

temperature recorded from DSC curves of the hydrogels with different compositions. Closer 573 

examination of the FT-IR in a narrow range revealed a blue shift of the collagen amide band with 574 

silica hybridization. Collagen denaturation temperature increased with silica hybridization. 575 

 576 

 577 
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Fig. 3. Enzymatic degradation of hydrogels measured for up to 120 min, using collagenase type I (54 579 

U/ml) in Tris-HCL buffer. Statistical significance was noticed for the hybrid gels vs. Col gel at each 580 

time point (*p < 0.05, n = 3).  581 

 582 

583 
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Fig. 4. Static mechanical properties of collagen, Col-10S, and Col-20S hydrogels. (a) Static strain 584 

change with constant stress applied for 450 s. Initial slope values (strain rate) were also fitted. (b) 585 

Stress recorded at 450 s. 586 

 587 

588 
 589 

 590 
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Fig. 5. Dynamic mechanical analysis of collagen, Col-10S, and Col-20S hydrogels. (a) E’ and E” 592 

variations with frequency change, (b) average E’ and E” values obtained, and (c) tan delta (E”/E’, loss 593 

factor). 594 

 595 

 596 
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Fig. 6. In vitro apatite-forming ability assessed by an SBF-immersion test. (a) The SEM morphology of 598 

collagen, Col-10S, and Col-20S hydrogels at 7 days, and (b) TEM image and SAED pattern at 7 days 599 

(Col-20S shown for representative sample), revealing hydroxyapatite crystalline structure. 600 

 601 

 602 
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Fig. 7. Silicon ion release (in ppm) from the hydrogels, monitored via ICP-AES for up to 3 weeks in 604 

PBS. 605 

 606 

  607 



27 

 

Fig. 8. (a) Cell growth morphology at day 1 and 3 observed by CLSM. Cell nuclei stained in blue 608 

(DAPI) and cytoskeletons in green (Alex fluor 488 phalloidin). (b) Cell viability determined by MTS. 609 

 610 

 611 
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Fig. 9. Cell-mediated hydrogel contraction with culture for up to 21 days. Different cell densities were 613 

used; (a) 5 x 104, 1 x 105 and (c) 1 x 105 cells/ml. 614 

 615 
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Fig. 10. (a) Cell growth morphology within the hydrogels at day 14, observed by CLSM. (b) 617 

Expression of osteogenic markers, OPN and BSP, by quantitative RT-PCR, and (c) BSP protein 618 

analyzed by Western blot at day 14. 619 
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