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Abstract Partial oxidation of methanol to formaldehyde on silver catalyst represents an important industrial process 
due to the versatility of formaldehyde as an intermediate in chemical synthesis. The development of 

kinetic models is essential for a quantitative description of the changes in concentration of the chemical species involved in the 
process due to reaction as well as for process design and optimisation purposes. Microreactor platforms represent effective tools for 
the quick development of reliable kinetic models. However, the development and identification of kinetic models is strictly related to 
the execution of informative experiments, allowing either elucidation of the complex reaction pathways involved in the oxidation 
process or providing a precise estimation of the kinetic parameters for each candidate model. In this work a model-based design of 
experiments (MBDoE) procedure is proposed where experiments are optimally designed for both discriminating among competing 
models and for improving the estimation of kinetic parameters. The proposed methodology allows the most influential reaction 
pathways to be elucidated and provides a sequence of optimally informative experiments showing the key role of temperature in the 
kinetic model identification procedure. 

Optimal design of experiments 
for the identification of kinetic models of methanol 

oxidation over silver catalyst

INTRODUCTION

The partial oxidation of methanol to formaldehyde over a 
silver catalyst represents a reaction of high industrial 
significance due to the importance of formaldehyde as a 
precursor to the production of urea, formaldehyde resin, 
melamine resin, phenol formaldehyde resin, 
polyoxymethylene plastics, 1,4-butanediol, and methylene 
diphenyl diisocyanate. Under industrial conditions the silver 
catalyst process is usually carried out at atmospheric pressure 
and high temperatures (T = 853-923 K); if steam is introduced 
with H2O/CH3OH = 0.67 and CH3OH/O2 = 2.4-2.5 a high 
selectivity can be reached (~ 90%) (1). The overall oxidation 
process is usually regarded as an oxidative dehydrogenation, 
i.e. a combination of methanol oxidation (CH3OH + 1/2O2 -> 
CH2O + H2O ) and dehydrogenation (CH3CH -> CH2O + H2). 
The main by-products are H2, H2O, CO2, CO, and methyl 
formate/formic acid. 
Throughout the years, numerous research efforts have been 
devoted to this reaction system to understand the catalytic 
role of silver and the possible reaction mechanisms occurring 
on the catalyst surface (2,3). Methanol oxidative 
dehydrogenation on silver is strongly related to the presence 
of chemisorbed oxygen and it is driven by the different 
activity of oxygen species which are present on the catalyst 
surface and in the bulk (4). The accurate quantitative 
description of the concentration of the chemical species 

involved in the process is related to the availability of i) a 
reliable kinetic mechanism, defining the mathematical 
structure of the kinetic model (i.e. the set of constitutive 
equations); ii) the precise estimation of the set of kinetic 
parameters for the model. However, despite the industrial 
significance  of this system, only a few attempts to model the 
kinetics have been reported in the scientific community (3,5,6) 
and a full understanding of the reaction on silver under 
industrial reaction conditions has yet to be established. 
Recently, a microkinetic model of methanol oxidation on 
silver, based on a Langmuir-Hinshelwood mechanism, has 
been proposed (5) in order to explain surface science 
experiments and kinetic experiments at industrially relevant 
conditions, applying physically realistic parameters. However, 
a simplification of the model was required in order to be 
applied for reactor engineering purposes (6), given the high 
number of kinetic parameters and the complexity of the rate 
expressions. 
Microreactor platforms represent an ideal system for the study 
and determination of intrinsic reaction kinetics for strongly 
exothermic, endothermic, and fast catalytic reactions. With 
careful experimental design, microreactors allow these 
reactions to be performed isothermally and in the absence of 
mass transfer limitations, ensuring the rapid manipulation of 
reaction conditions and the precise control of the 
hydrodynamic environment (7). However, the quantity, 
quality, and speed of information generated by these systems 
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model predictions. The optimally designed experimental 
conditions are implemented in the microreactor system (Step 
5), providing new experimental data to be used for 
parameter estimation (Step 6). The iteration of steps 4) to 6) 
represents the core of the MBDoE identification procedure, 
leading to the detection of the best model structure 
representing the system (i.e. inadequate models are 
rejected), elucidating the most plausible kinetic mechanism 
and ensuring at the same time a precise estimation of the 
kinetic parameters. The MBDoE procedure will stop when a 
model is found adequate to represent the system (from lack-
of-fit χ2 tests based on a-posteriori statistics (21)) and a 
statistically satisfactory estimation of model parameters 
(based on t-test (14)) is achieved.   

Formulation of competitive kinetic models of methanol 
oxidation on silver
The set of reactions involved in each proposed model is 
shown in Table 1. The simplified model proposed by 
Andreasen (6) is used as a reference model (Model 1) and 
two additional simplified kinetic models of increasing level of 
complexity (Model 2, Model 3) are considered. According to 
Model 1, methanol oxidative dehydrogenation (reaction 1) 
and formaldehyde partial oxidation (reaction 2) constitute 
the base (global) mechanism. Model 2 includes reactions 1-2 
and the total oxidation reactions for both CH3OH and CH2O 
(reactions 3 and 4 respectively). Model 3 includes the total 
oxidation reactions 3,4 for CH3OH and CH2O (like Model 2) 
but global methanol oxidation (reaction 1 used in Model 1 
and 2) is split into a dehydrogenation reaction (reaction 5) 

are affected by the experimental conditions realised during 
the trials. Design of experiments (DoE) (8) methodologies may 
help for designing preliminary screening and exploratory 
experiments, but these techniques are based on empirical 
models which do not imply a fundamental understanding of 
the chemical system. Conversely, model-based design of 
experiments (MBDoE) techniques, based on the 
phenomenological model of a system, have been proposed 
for designing a set of experiments yielding the most 
informative data to be used for the development of 
fundamental models. These techniques have been 
successfully adopted in a wide range of applications (9) 
including the investigation of chemical kinetics in catalytic 
systems (10,11) and microfluidic devices (12). According to 
MBDoE, experiments can be specifically designed for i) 
maximising the difference between model predictions, 
allowing a clear discrimination between candidate kinetic 
models (13); ii) improving the precision in parameter 
estimation for each candidate model (14). These two MBDoE 
objectives usually represent distinct sequential steps to be 
carried out in the conventional model building procedure 
(15). Some studies have tried to achieve these two goals 
simultaneously (16,17) by using a multi-objective approach 
where the objective functions were evaluated on a grid of 
experimental conditions, but no multi-objective optimisation 
was involved. 
In this paper, a MBDoE procedure based on a multi-objective 
optimisation is proposed where experiments are optimally 
designed for improving the estimation of kinetic parameters 
as well as the simultaneous discrimination among competing 
kinetic models. MBDoE methodologies are exploited to design 
a sequence of experiments to be carried out in a specifically 
designed silicon-glass microreactor (18). 

OPTIMAL EXPERIMENTAL DESIGN PROCEDURE FOR THE 
IDENTIFICATION OF KINETIC MODELS 
A sketch of the suggested procedure for the optimal design 
of experiments for the development of kinetic models of 
oxidative dehydrogenation of methanol on silver is shown in 
Figure 1. Insights from surface science and chemistry lead to 
the formulation of candidate kinetic mechanisms (Step 1) 
including the potential reactions taking place on the catalyst 
surface. Kinetic mechanisms represent the basis for the 
formulation of kinetic models (Step 2). Model reduction 
strategies based on the evaluation of the rate determining 
step (RDS) are used for the development of structurally 
identifiable models (19) (i.e. models where kinetic parameters 
can be uniquely determined from experimental data) with 
chemically consistent reaction rate expressions (10,20). 
Available historical data are then used for a preliminary 
model discrimination between candidate kinetic models 
(Step 3) based on a-posteriori statistics obtained after 
parameter estimation (21), allowing for a preliminary model 
selection and an initial estimation of kinetic parameters. Once 
a set of candidate kinetic models is defined, model-based 
design of experiment (MBDoE) techniques are applied for 
planning a sequence of optimally informative experiments 
allowing for the simultaneous discrimination among 
candidate models and for improving the precision of 
parameter estimation (Step 4). MBDoE optimisation computes 
both the experimental conditions yielding the minimum 
expected variability in the kinetic parameters and the ones 
providing the maximum discrimination power in terms of 

Figure 1. MBDoE procedure for simultaneous model 
discrimination and improvement of parameter precision.
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O2 and H2. The GC analyses were assumed to be 
corrupted by Gaussian noise with zero mean and a 
standard deviation of 1% on the reading. A molar 
composition of the inlet gas mixture CH3OH=10.4%, and 
ratios CH3OH/O2=2.25 and CH3OH/H2O=1.32 were used as 
a standard case. Experimental reproducibility was 
checked by performing the standard run at 783 K 
between each set of experiments. The variables which 
can be manipulated during the experiments are: inlet 
composition of reactants in terms of molar fractions (y0 = 
[yCH3OH, yO2, yH2O]), temperature (T), total pressure (P) and 
volumetric flow rate (F).   

Preliminary model discrimination
Preliminary data from Nexp= 21 one-factor-at-a-time 
(OFAT) preliminary experiments from the microreactor 
system were available for a first discrimination among the 
proposed competitive models (Model 1, Model 2 and 
Model 3) where the effect of temperature (T) and feed 
composition (CH3OH, O2 and H2O molar fraction y0) on 
final products (CH3OH, O2, H2O, CH2O, H2, CO2) was 
investigated: 
1.	 Experiments E1-5: T varied from 725 to 826 K (inlet 

composition fixed at yCH3OH=0.10, yO2=0.04, yH2O=0.07);
2.	 Experiments E6-9: T varied from 725 to 826 K (inlet 

composition fixed at yCH3OH=0.15, yO2=0.06, yH2O=0.11);
3.	 Experiments E10-21: T kept at 733 K, variable yCH3OH 

(range 0.07-0.14, E10 to E14; yO2=0.04, yH2O=0.08), 
variable yO2 (range 0.03-0.10, E15 to E17; variable 
yCH3OH=0.10, yH2O=0.08) and variable yH2O (range 0.02-
0.22, E18 to E21; yCH3OH=0.10, yO2=0.04).

Data fitting results (Figure 2) shows the importance of 
including the total oxidation reactions in the model 
formulation for achieving a good representation of 
oxygen concentration (Figure 2a). Model 3, including 
distinct dehydrogenation and oxidation pathways, 
provides the best performance in terms of fitting 
formaldehyde data (Figure 2b).

Model-based Design of Experiments (MBDoE)
Eq. 1 and the power-law reaction rate expressions rj 
represent a system of differential and algebraic equations 
where the set of unknown kinetic model parameters 
(Arrhenius kinetic constants Ai and Ea,i) have to be 
estimated in the most precise and accurate way. The 
variables optimised by MBDoE are: 
1.	 Composition of reactants in terms of molar fractions 

y0: methanol (yCH3OH = 0.07-0.14), oxygen (yO2 = 0.03-
0.10) and water (yH2O = 0.02-0.22);   

2.	 Temperature T (725 K < T < 826 K). 
	 The ranges of operability (shown in parenthesis above) 

represent the currently investigated design space D, 
where F and P have been kept constant to F = 26.5 
mL/min, P = 1.6 atm. MBDoE techniques for improving 
parameter estimation (MBDoE-PE) aim at decreasing 
the parameter uncertainty region predicted by each 
model through the solution of the optimisation 
problem:

and a selective oxidation step (reaction 6). Hydrogen 
oxidation (reaction 7) has also been included in each 
mechanism. This reaction is known to occur only at higher 
temperatures (22), and it has been primarily considered to 
represent the low hydrogen concentrations observed in the 
experiments.

The microchannel reactor is modelled as a dynamic plug flow 
reactor (PFR) in the form: 

where ci is the species concentration, rj and νij are the 
reaction rate and the stoichiometric coefficient of the i-th 
species in the j-th reaction respectively, z is the axial 
coordinate, uz is the flow velocity in the z-direction and t the 
integration time. 
The microreactor was fabricated by photolithography and 
deep reacting ion etching. The reactor channel had a 
rectangular cross section with 8 mm width  and 0.12 mm 
depth. The silver film catalyst was deposited on the 
channel floor by sputtering and was 12.5 mm long and 
0.25 mm thick. In order to minimise heat losses, the 
microreactor assembly was insulated with ceramic 
insulation material. Even though some heat loss was 
present from the top of the reactor, the temperature at 
the catalyst location was constant. Mass transfer 
resistances can be neglected due to the small 
microchannel depth. The reactor and experimental setup 
have been described in detail in a previous publication 
(18).
The reaction was carried out at 725-826K and operation 
pressure ~1.6 atm. The residence time at reaction 
temperature was kept at ~6.5-7 ms to avoid formaldehyde 
decomposition. The effect of O2, CH3OH and H2O 
concentrations was studied by varying each of these 
components (one at a time) and keeping the total flow 
constant (25.8-26.5 mL/min) using helium. The inlet and the 
effluent were analysed online using a ThermoQuest Trace 
gas chromatograph (GC) to determine the concentration 
of CO2, CH3OH and CH2O, while the non-condensable 
gases were analysed using a Shimadzu GC to determine 

Table 1. Set of reactions involved in the proposed kinetic models.

Eq. 1

Eq. 2
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In Eq. 3 ψMBDoE-MD is the discriminating power, σy,i is the 
standard deviation of the i-th reading, ŷM,i and ŷN,i are the i-th 
predicted responses of model M and N, while Pi is the relative 
probability of the i-th model to be the “true” model, as 
computed after maximum likelihood parameter estimation 
(13) from the following expression

where SSWRi is the sum of squared weighted residuals for the i-th 
model, and SSWRT is the total sum of weighted residuals for the 
full set of candidate models. The probability Pi reflects the 
confidence on the i-th model in such a way that MBDoE-based 
model discrimination will preferentially operate on the best 
candidate models representing the system. After the preliminary 
parameter estimation P1 = 0.26, P2 = 0.34 and P3 = 0.40, reflecting 
the superiority of Model 3 on fitting the available experimental 
data.    

MBDoE RESULTS AND DISCUSSION

In order to show the potential of MBDoE techniques, a simulation 
study is presented here to compute the optimal experimental 
conditions to be used for both discriminating among competing 
models and improving the estimation of kinetic parameters. The 
optimal experimental conditions provided by MBDoE 
optimisation for improving parameter precision (MBDoE-PE, Eqs. 
2) and for model discrimination (MBDoE-MD, Eq. 3) are, 
respectively:
1. MBDoE-PE: y0 = [yCH3OH, yO2, yH2O] = [0.14, 0.10, 0.22], 

T = 732 K; 
2. MBDoE-MD: y0 = [yCH3OH, yO2, yH2O] = [0.14, 0.10, 0.22] , 

T = 826 K. 
As can be observed from Figure 3a, the optimally designed 
conditions are far from the ones investigated by OFAT 
experiments in terms of inlet concentrations of reactants. In 
particular, the optimal operating region suggested by MBDoE 
(for both model discrimination and improving parameter 
precision) is the one at high concentrations of reactants. An 
A-optimal design criterion was used for MBDoE-PE, but 
optimisation results obtained from a D-optimal and E-optimal 
design were very similar to the ones obtained from the A-optimal 
(i.e. at the extremities of the design space). The difference was 
only of 3% on the optimal temperature value found from MBDoE-
PE, whilst no difference on the solution was observed concerning 
the initial concentration of reactants. Reaction temperature T 
becomes a key factor for model discrimination: 1) at low T the 
confidence in the estimation of model parameters can be 
increased (MBDoE-PE); 2) at high T a clear distinction between 
model predictions along the microreactor can be realised 
(MBDoE-MD). Figure 3b shows the Pareto curve showing the 
trade-off solutions (points 1 to 4) between MBDoE-PE and 
MBDoE-MD in terms of objective functions (ψMBDoE-PE and ψMBDoE-

MD, Eq. 2 and Eq. 3 respectively) according to an ε-constraint 
multi-objective optimisation approach (23), where intermediate 
solutions 2 (T = 765 K) and 3 (T = 796 K) have been computed. 
Figure 3c shows the impact of the MBDoE-MD design on the 
prediction of formaldehyde molar fraction along the reactor for 
candidate kinetic models. The maximum discriminating power is 
obtained at the outlet of the reactor (point 2 in the figure, solid 
lines), where Model 1 formaldehyde molar fraction can be 
clearly distinguished from Model 2 and 3. However, note how a 

The design optimisation given by Eq. 2 is carried out by 
computing the nφ-dimensional experiment design vector φ, 
including all the variables which can be optimised during 
an experiment, i.e. φ = [y0, T]T. In Eq. 2 θ is the 
Nθ-dimensional vector of model parameters, Vθ and Hθ are 
the variance-covariance matrix of model parameters and 
the global Fisher Information Matrix (FIM), which is the sum 
of FIMs of candidate models. According to Eq. 2, the 
experiment is designed so as to minimise a measurement 
function ψ of Vθ, representing the chosen design criterion 
and the objective function to be optimised for improving 
parameter precision (ψ = ψMBDoE-PE) The most common 
design criteria are the A-, D-, E-optimal criteria, minimising 
the trace, the determinant and the maximum eigenvalue 
of Vθ respectively, or its singular values (SV-optimal design) 
(14). In this work the A-optimal design criterion was used. 
However, the discussion that follows remains unchanged if 
D- and E-optimal design criteria are considered (See 
Section ”MBDoE Results and Discussion”). 
MBDoE for model discrimination (MBDoE-MD) is formulated 
with the purpose of maximising the discriminating power 
(i.e. the relative difference between the predictions of 
candidate models): 

Figure 2. Preliminary model discrimination results for Model 1, 
2 and 3: molar fractions as a function of temperature for 
selected species: (a) methanol and oxygen; (b) 
formaldehyde. Concentrations from experiments E1-E5 are 
shown, including error bars.         

Eq. 3

Eq. 4

(a)

(b)
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net discrimination between Model 2 and 3 can only be 
obtained at point 1. For obtaining this condition at the outlet of 
the reactor, higher volumetric flow rate F has to be used 
(dashed lines). Figure 3d shows the effect of MBDoE-PE design 
on the parameter estimation confidence of activation energies 
Ea,2 (formaldehyde partial oxidation) and Ea,3 (methanol total 
oxidation) of Model 3. 
 
Based on the solutions of the multi-objective MBDoE 
optimisation, a sequence of steady-state experiments (EXP1-4) is 
designed for improving the estimation of model parameters and 
the simultaneous discrimination among candidate models 
(MBDoE-SIM) minimising the experimental effort required for 
model identification. Suggested experiments in terms of 
temperature profile are given in Figure 4a. The first experiment 
(EXP1) starts at the MBDoE-PE planned experimental conditions 
(y0 = [0.14, 0.10, 0.22], T1 = 732 K) and the temperature is 
increased to T2 = 765 K until, after a transient phase Δ1 (in which 
the concentrations need to be stabilised) a new steady state is 
reached (EXP2). After a second transient (Δ2), the same 
approach is then used from EXP3 (T3 = 796 K) to EXP4, where the 
temperature is increased until MBDoE-MD conditions (y0 = [0.14, 
0.10, 0.22], T1 = 826 K) are realised. As it becomes apparent from 
Figure 4b, this experiment allows a very clear distinction between 
model predictions in terms of formaldehyde selectivity. At y0, the 
increase in temperature designed by MBDoE-SIM is expected to 
increase the selectivity for Model 3, while a decrease in 
selectivity will be observed for Model 1 and 2.  
          

CONCLUSION

A MBDoE procedure has been proposed for the optimal 
design of experiments in microreactor platforms showing the 
best experimental conditions to be used for a precise 
estimation of the set of kinetic parameters of candidate 
kinetic models and for elucidating the different reaction 
pathways of proposed kinetic models based on historical 
data. A preliminary discrimination of simplified kinetic models 
of methanol oxidation on silver has been carried out, 
underlining a better representation of experimental results 
when dehydrogenation and a selective oxidation step are 
included in the model formulation. Furthermore, MBDoE results 
demonstrated the important role of temperature in the model 
discrimination task for this system. At high concentrations of 
the reactants, low temperature experiments provide the 
maximum confidence for the estimation of kinetic 
parameters, while high temperature ones support model 
discrimination. The management of this design variable allows 
designing a highly informative sequence of steady-state 
experiments providing at the same time a high discriminating 
power and an improvement of parametric precision.
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