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Abstract 

 

Nuclear imaging enables quantitative measurements of biological processes in vivo 

and has revolutionised biomedical research, drug development and clinical practice. 

Despite the advances made in this field, the ability to image fundamental aspects of 

neurological diseases remains a challenge. This is partly due to the limited 

availability of radiotracers for imaging excitatory neurotransmission and detection of 

inflammation as well as an array of other biochemical processes central to the 

operational function of the brain.  The aim of this research was to expand the arsenal 

of radiotracers available for neuroimaging in order to study key pathological 

processes involved in neurological diseases. 

With the aim to target neuronal Voltage Gated Sodium Channels (VGSCs), Vascular 

Cell Adhesion Molecule – 1 (VCAM-1) and N-methyl-D-Aspartate Receptors 

(NMDARs), radiotracers have been synthesised and evaluated. Abnormal expression 

of these receptors has been implicated in a number of pathological conditions 

including epilepsy, multiple sclerosis and neurodegeneration. The radiotracers were 

characterised and evaluated via in vivo imaging (MRI and SPECT/CT) and ex-vivo 

studies (phosphorimaging, biodistribution and metabolite analysis) in order to 

determine if they hold significant potential as tools to study neuronal pathways as 

well as for diagnostic imaging and treatment monitoring.  

Iodinated analogues of the iminodihydroquinoline WIN17317-3, and the 1-

benzazepin-2-one BNZA have been evaluated as neuronal VGSC tracer candidates 

in healthy mice. Whilst the WIN17317-3 analogue suffered from poor brain uptake 

and was rapidly metabolised in vivo, the BNZA analogue exhibited excellent in vivo 

stability and its promising uptake in the brain warrants further investigations. 

Even though N-(1-Napthyl)-N’-(3-[
123

I]-iodophenyl)-N’-methylguanidine 

([
123

I]CNS-1261) has demonstrated favourable pharmacokinetics for brain imaging 

in clinical studies, [
125

I]CNS-1261 was not successful in discriminating NMDAR 

expression between naïve rats and those induced with status epilepticus using lithium 

and pilocarpine. 
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Promisingly, a multi modal contrast agent comprising micron sized particles of iron 

oxide conjugated to I-125 radiolabelled antibodies, highlighted the up-regulation of 

VCAM-1 in rat models of cerebral inflammation and in the lithium pilocarpine 

model of status epilepticus. This versatile imaging agent presents an exciting 

opportunity to identify an early biomarker for epileptogenesis.      
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Thesis Outline  

 

The focus of this thesis is on the development and evaluation of radiotracers for 

neuroimaging in order to increase our understanding of key pathological processes 

involved in neurological diseases. The emphasis is on identifying early biomarkers 

for diagnosis and treatment monitoring. In chapter 1, the basic principles of nuclear 

imaging and radiotracer development are introduced, with focus on the properties to 

which radiotracers must adhere to successfully target the brain. Chapter 2 begins 

with a brief discussion on the factors governing purity and yields in radiochemical 

reactions, and the mechanisms underlying radio-iodination of chemical moieties. The 

second part of chapter 2 details the experimental methods by which imaging systems 

were calibrated to allow for accurate quantification of the signals detected. In chapter 

3, the focus is on two radiotracers for imaging of neuronal VGSC expression. 

Inspired by the results from one of these radiotracers, the attempts to synthesise a 

fluorinated derivative are discussed in the latter part of chapter 3. In the subsequent 

chapter, the synthesis of a radiolabelled VCAM-1 targeting iron oxide particle is 

discussed. The ability of this probe to image VCAM-1 expression in a rat model of 

cerebral inflammation (chapter 4) and in the lithium pilocarpine model of status 

epilepticus (chapter 5) is described. To study the interplay between 

neuroinflammation and dysfunction of fast neurotransmission in diseases of the 

brain, the suitability of [
125

I]CNS-1261 to detect changes in expression of NMDA 

receptors between healthy rats and those that have been induced with (status 

epilepticus) seizures has been investigated (chapter 6). The overall results have been 

summarized in chapter 7 and ideas have been presented for future endeavors. The 

experimental methods conducted as part of this research are outlined in chapter 8.  
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Chapter 1 Introduction  

  
 

In vivo imaging is a powerful tool to evaluate structure and function non-invasively 

in a living subject. Multiple techniques are available, which can be divided into two 

main groups: those that primarily provide structural information such as Magnetic 

Resonance Imaging (MRI) and Computerised Tomography (CT), and those that 

predominantly give functional and molecular information, for example Single 

Photon Emission Computed Tomography (SPECT) and Positron Emission 

Tomography (PET). Nuclear imaging, principally SPECT is the core imaging 

modality used in the work presented herein. In this chapter, the principles behind 

nuclear imaging and the process of radiotracer development are presented. The 

properties required for a brain targeting tracer are also described.   

 

1.1 Nuclear Imaging   

 

Nuclear imaging involves detection of radioactive materials to identify signatures of 

diseases and quantify biochemical processes and has been pivotal in: 

 Improving the accuracy with which disease can be detected
1
 

 Determining the extent and severity of disease
2, 3

  

 Monitoring patient response to therapy
3, 4

 

The three principal nuclear imaging modalities are SPECT, PET, and 

Autoradiography/Phosphorimaging. Since the 1970s, X-Ray, CT and MRI 

dominated the imaging of human anatomy. Nonetheless, functional or metabolic 

changes do occur in the absence of a corresponding anatomical correlate. Therefore, 

nuclear imaging provides critical information that otherwise would be unavailable 

and require invasive surgery or more expensive diagnostic tests.
5
   

Nuclear imaging provides information about the distribution of a radioactive tracer 

(radiotracer) over time and can importantly show how this distribution differs 

between physiological and pathological conditions. This can aid in understanding 

biochemical properties under certain conditions. It is also vital to identify the exact 

anatomic location of radiotracer distribution in order to determine the proper course 
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of therapy. The pioneering work of Hasegawa and colleagues in the late 1980s
6, 7

 set 

the stage for integrated SPECT/CT
8
, PET/CT

9
 and PET/MRI

10
 systems. Such 

complementary, bi-modal scanners make it possible to acquire both anatomical and 

functional images. However in most systems, simultaneous acquisition of the 

anatomy and radiotracer distribution is not feasible. This means that artefacts can 

arise from patient movement between the two sets of scans. 

With the advancements in imaging technology, it is now possible to image the 

distribution of picomolar amounts of radiotracers.
11

 Therefore, SPECT and PET are 

highly sensitive techniques which are distinguished by the detection principles of 

gamma rays emitted, either when radioactive nuclei decay (SPECT) or from an 

annihilation event (PET).
12

 Radioactive decay is the process where unstable atomic 

nuclei spontaneously emit ionizing radiation. The unit of radioactivity is the 

Becquerel (Bq) and is defined as one nuclear disintegration per second (s
-1

).  

 

1.1.1 SPECT  

 

Radionuclides used for SPECT decay by emitting (single photon) gamma rays that 

are measured directly by the scanner. Collimators, which are honeycomb shaped lead 

blocks, have small holes designed to allow only gamma rays with a parallel 

trajectory to pass through and reach the detector (Figure 1a). Gamma rays which 

deviate from a parallel trajectory are attenuated by the lead and remain undetected. 

The angle of the emitted gamma rays must fall within a small range for detection, 

thus SPECT cameras generally exhibit lower sensitivity compared to PET (section 

1.1.2). The size and density of holes on the collimators can vary to suit particular 

imaging requirements: collimators with numerous small diameter holes (Figure 1b) 

produce images with higher resolution whilst larger diameter punctuations (Figure 

1c) offer greater sensitivity.  
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Figure 1. The detection of gamma rays in SPECT. Collimation detection (a): only gamma 
rays with a parallel trajectory (green) pass through the collimators and are detected. 
Gamma rays which deviate from a parallel trajectory (red) remain undetected. Collimators 
can be designed with numerous small diameter holes (b) or sparser large diameter holes (c) 
to provide higher resolution or offer greater sensitivity.   

 

Gamma rays which pass through the collimators are detected by a solid state 

scintillator, which typically is a crystal structure that converts the energy of ionising 

radiation into light in the visible spectrum (scintillation). Different scintillator 

materials are used depending on the energy of the gamma rays detected as well as 

the speed required for processing. As the photon energies involved in SPECT are 

lower than PET, there is a wider range of materials that can be used for detector 

designs. For SPECT, gamma rays are best detected with crystals of thallium-

activated sodium iodide which is dense enough to absorb energetic rays.
12

 The 

energy of each gamma photon is absorbed by the scintillator which results in 

excitation of the crystal (an electron is removed from an iodine atom). Upon de-

excitation (the dislocated electron finds a minimal energy state), the crystal re-emits 

the absorbed energy in the form of light where there is a direct correlation between 

the amount of light produced and the energy of the gamma ray absorbed. The 

scintillation photons are then processed through photomultiplier tubes (PMTs) which 

convert the light energy into electrical impulses, that become amplified to enable 

each radioactive decay event to be registered and measured (Figure 2). Initially, 

multiple 2-dimensional projections are acquired from various angles. These events 

are stored and the data subsequently fed into mathematical algorithms, which 

through a process called tomographic reconstruction, creates a 3-dimensional image 

of the radioactive spatial distribution in the field of view.   
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Figure 2. The processing of detected gamma rays. All PMTs simultaneously detect the 
(presumed) same flash of light from the scintillator. The intensity of the light detected at 
each PMT depends on its position from the actual incident event. The location of the 
incident event can be found by weighting the position of each PMT from the strength of its 
signal and a mean position is determined from the different locations and strengths of 
signals detected.  

 

1.1.2 PET  

 

Radionuclides used for PET decay by emitting a positron, which travels a short 

distance before annihilating with an electron. In doing so, the combined energy of 

the two particles is converted into two gamma rays that travel at 180° to each other. 

PET scanners consist of a circular array of detectors designed specifically to only 

detect linear pairs of gamma rays within a short time of each other (typically within 

8 - 12 nanoseconds). Therefore, PET scanners produce images via coincidence 

detection (Figure 3). Gamma rays arising from positron annihilation are less prone to 

attenuation than gamma rays emitted by SPECT radionuclides due to their higher 

energies (511 KeV vs. 80 – 160 KeV). Once detected, the gamma rays undergo a 

similar process of signal processing and amplification as the SPECT signals 

described in section 1.1.1.  
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Figure 3. Coincident detection in PET. An emitted positron annihilates with an electron, 
creating two 511 KeV gamma rays. Represented are the finite positron range and the non-
colinearity of the annihilation photons. For diagrammatic purposes, positron range and the 
angle between the two emitted photons have been to a great extent exaggerated.  

 

Positron range is the distance from the site of positron emission to the annihilation 

site. PET scanners detect the annihilation photons which define the line of response 

as opposed to the location of the decaying radionuclide. Therefore, positrons which 

travel a longer distance will result in a higher degree of image blurring.  

A positron and an electron are not completely at rest when they annihilate. The small 

net momentum of these particles means that the annihilated photons will not be 

exactly at 180° and this is referred to as non-colinearity. If the difference in the time 

of detection of these photons is smaller than a predetermined value (typically ≤ 12 

ns) then the two detectors define a line of response. PET systems assume that gamma 

rays are emitted at exactly 180°, resulting in a small error in locating the point of 

annihilation. Blurring of images caused by non-colinearity can be estimated by: 

 

∆𝑛𝑐 = 0.0022 x D 

 

Equation 1 

Where D is the distance between the two coincidence detectors.   
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The annihilated photons travel towards the detectors positioned around the subject, 

where they get absorbed and produce an electrical signal. As mentioned, the 

absorbing material of the detector is important for determining the interaction 

probability and the accuracy by which the system can measure the photons energy 

and time of contact.
13

 Consequently, the materials commonly used for PET 

scintillators are bismuth germanate,
14

 lutetium oxyorthosilicate, or gadolinium 

orthosilicate due to their high γ-ray stopping power and speed of signal processing. 

 

1.1.3 PET vs. SPECT, Clinical vs. Pre-Clinical  

 

Spatial resolution and detection sensitivity are important performance characteristics 

for imaging systems.
15

 In general, clinical PET scanners offer superior spatial 

resolution compared to SPECT systems, whereas in the pre-clinical setting SPECT 

scanners display higher resolution capabilities compared to PET (Figure 4).
16

 This is 

mainly due to the fact that SPECT systems are not affected by physical limitations 

that hinder PET cameras to reach sub-millimetre ranges.  

 

 

Figure 4. Spatial resolution across clinical and pre-clinical PET and SPECT scanners. 

 

Many factors affect the quality of the final re-constructed PET images.
17

 These 

include the size of the crystal detectors, positron range, photon non-colinearity, the 

total number of events that occur during the acquisition time and the reconstruction 

algorithms. Photon range and non-colinearity (as represented in Figure 3) are 

complications not present in clinical and pre-clinical SPECT systems. Instead, 

SPECT gamma cameras rely on collimators to determine the gamma ray trajectory. 

In clinical systems that require imaging of a large patient, collimators typically have 

parallel holes. In contrast, small animal imaging requires substantially higher spatial 

resolution for a much smaller object, and this is achieved by pinhole collimators. As 
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a consequence, the imaging field of view and sensitivity of the system becomes 

compromised as a sufficient amount of radioactivity must pass through the small 

pinholes in order for the detected events to be transformed into images. Multiple 

pinholes can be used to achieve a reasonable trade-off between spatial resolution, 

sensitivity and FOV. Pinhole collimators magnify the object in the projection and 

hence improve the resolution in the object space, relative to the intrinsic resolution of 

the detector (Figure 5). The notion that SPECT is unique for magnification imaging 

is not entirely true. Specialised detectors could magnify PET images and this higher 

resolution imaging method may be in principle applied to human imaging.
18

 

 

 

Figure 5. Comparison of multi-pinhole and parallel-hole collimators used in pre-clinical and 
clinical SPECT imaging. Pinhole collimators (left) generate magnified, inverted images.   

 

Additional factors such as attenuation and scatter can degrade SPECT image quality 

and this is discussed in detail in chapter 2. The overall image quality in small animal 

imaging is affected to a lesser extent by these degrading factors as rodents for 

example mice, are much smaller (20 – 40 g) compared to humans (average 75 kg). 

This disparity is also one of the main reasons why small animal PET scanners offer 

greater resolution than their clinical counterparts: in PET scanners used for small 

animals, D in Equation 1 is generally smaller.  
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1.1.4 Autoradiography and Phosphorimaging  

 

Whilst PET and SPECT show radioactivity distribution in vivo, autoradiography and 

phosphorimaging measure the distribution of radioactivity on tissue sections in two 

dimensions, in vitro or ex vivo. These imaging techniques can reach resolutions of 

less than 10 microns. Therefore, structures that are too small to be imaged in vivo 

can be assessed using these methods.  

For autoradiography and phosphorimaging, the radioactive tissue or organ is cryo-

sectioned with a thickness typically between 5 – 20 µM. These sectioned slices are 

mounted on glass slides and then exposed to either a photographic film 

(autoradiography) or a phosphorimaging screen.  

Phosphorimaging screens are coated with photo-reactive phosphor crystals that are 

europium (Eu) activated barium fluorohalide compounds. Tissue sections containing 

radioactivity are apposed on the screen and the energy from the radioactive 

emissions is absorbed by the phosphor crystals. As a result, Eu
2+ 

is oxidised to Eu
3+ 

and the released electron is stored in the phosphor lattice.
19

 After the exposure 

period, the screen is scanned in a phosphor imager using a red laser. This releases the 

trapped electron, reducing Eu
3+

 back to Eu
2+

 and reemitting the stored energy as blue 

light. The intensity of the emitted light is proportional to the amount of radioactivity 

in the sample. The blue light is detected and processed by a photomultiplier tube and 

the data are stored as a digital image of the locations and intensities of the 

radioactivity in the sample. 

The resulting image is then analysed using dedicated software programmes, and if a 

set of radioactive standards are included with the tissue samples, the amount of 

radioactivity within discrete regions of the image can be quantified. Further details 

of how this is performed are outlined in chapter 2. The screen can be reused by 

erasing the stored images with white light.  

Phosphor screen resolution is determined by the size of the phosphor crystals, the 

thickness of the coating, and the concentration (packing density) of the crystals. 

Phosphor crystal size and layer thickness are both inversely related to resolution, 

whilst a greater concentration of crystals will increase resolution. 
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Phosphor screen crystals are substantially larger than the silver halide crystals in film 

autoradiography. As a result, phosphor screens display superior sensitivity and hence 

exposure times are reduced.
19

 This is very convenient for radionuclides emitting low 

energy gamma rays such as 
125

I.  

For phosphorimaging and autoradiography, dynamic range is the intensity range over 

which signals can be quantified. This is equal to the net signal from the highest 

activity that can be measured (at the level of saturation) divided by the lowest 

activity level that can be detected. This lowest activity level is governed by the noise 

level that can be measured. Another advantage of phosphor screens is the increased 

linear dynamic range of five orders of magnitude compared to films.
20

 This makes it 

less likely that screens will be saturated (and thus the user has a greater latitude for 

the exposure time), and a larger range of intensities can be quantified in a single 

image.   

One of the drawbacks of autoradiography and phosphorimaging is that the tissue of 

interest must be physically removed from the subject. For this reason, these 

techniques are exclusively used for research, in particular to validate the binding 

properties of novel tracers and to quantify the expression of biomolecules such as 

receptors within tissues of interest. Moreover, in vivo imaging with PET and SPECT 

provides the opportunity to perform longitudinal dynamic studies. Conversely, in ex 

vivo studies such as autoradiography and phosphorimaging, only a single time point 

per animal can be sampled during an investigation.   

  

1.2 Radiotracers  

 

1.2.1 Radionuclides  

 

Radiotracers have two essential components: a radionuclide that emits ionising 

radiation as it decays, and a ligand specific for a biological target. A radionuclide is 

an atom with an unstable combination of protons and neutrons in the nucleus and 

thus has excess energy available, which can be imparted to a newly created radiation 

particle (alpha or beta particles), or gamma rays. The choice of radionuclide is 

governed by several factors
21

:  



28 
 

 Physical half-life (the time where the radioactivity decays by one-half of its 

initial value) 

 The nature of the radiation emitted (gamma rays which require lead 

shielding, alpha or beta particles that can be shielded with paper and 

aluminium respectively) 

 Ease of production and availability  

 Suitability for labelling the ligand  

With the exception of radio metals such as 
68

Ga and 
82

Rb which are obtained from a 

generator, radionuclides used for PET imaging are produced in cyclotrons. Nearly all 

positron emitters have to be produced on site due to their rapid decay. In contrast, 

SPECT radionuclides have longer half-lives (Table 1), thus can be produced at a 

distant commercial centre and delivered to the site of radiotracer synthesis. This can 

be more cost effective as cyclotrons are expensive ($1 - $2 million) and require 

highly skilled staff for operation and maintenance.  

 

1.2.2 Isotopes and Radioisotopes of Iodine  

 

Radionuclides can also be referred to as radioisotopes of an element. Isotopes of an 

element are atoms that have the same atomic number (identical number of protons) 

but different atomic masses (different number of neutrons). The nuclear imaging 

studies outlined herein feature radio-iodinated tracers. Iodine has numerous 

radioisotopes and the naturally occurring isotope, iodine-127, can be used for 

modelling radiolabelling reactions. With its short half-life (13 hours) and medium 

energy gamma emission (159 KeV), iodine-123 is the preferred choice for SPECT 

scintigraphy. With a convenient half-life of 4.2 days, iodine-124 labelled 

radiopharmaceuticals are increasingly becoming useful tools for PET imaging.
22

 In 

other instances, iodine-131 is routinely used for SPECT radiotherapy studies, in 

particular treatment of hyperthyroidism, due to its emission of short-range beta 

radiation.
23

  

Iodine-125, the choice of radionuclide in this thesis, has low energy gamma emission 

and long half-life (35 KeV and 60 days respectively). These properties make iodine-

125 extremely useful for radioimmunoassays
24

 and brachytherapy, which involves 
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the use of small radioactive pellets or seeds.
25

 Furthermore, iodine-125 is extensively 

used in pre-clinical studies, especially for preliminary evaluations of lead tracer 

candidates. 

 

 

Table 1. The properties of common SPECT and PET radioisotopes.  

 

1.2.3 Pharmacokinetics  

 

Radiotracers must display favourable pharmacokinetics, which can be defined as the 

interaction between the drug and body, encompassing the processes of absorption, 

distribution, biotransformation (metabolism) and excretion over time.
26

 The 

pharmacokinetics of a radiotracer is predominantly dependant on its chemical 

structure.   

The ligand carrying the reporter radionuclide must possess a number of vital 

properties which include: 

 Accessible sites for efficient and rapid radiolabelling 

 High structural stability to withstand the radiolabelling conditions 
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 High metabolic stability after administration into the living organism  

After intravenous injection of a radiotracer, it is distributed throughout the body via 

the systemic circulation. During transit, the radiotracer can undergo metabolism and 

be excreted from the circulation. This process is known as clearance and can be 

defined as the notional volume of blood from which a substance is completely 

removed per unit time
27

: 

 

 
Clearance =  

Dose

AUC
 Equation 2 

 

The area under curve (AUC) is the total area beneath a plot of plasma concentration 

against time after administration of the radiotracer. Radio – High Performance 

Liquid Chromatography (Radio-HPLC) can identify and measure the concentration 

of radiotracers in the plasma whilst a gamma counter can determine the tissue 

distribution over time, revealing the total amount of radioactivity in the tissues of 

interest. This provides important information about how rapidly radiotracers are 

distributed, metabolised or excreted. Further information about these two techniques 

is provided in chapter 2.       

Biodistribution studies can quantify the amount of radioactivity in different organs of 

the body over time. The results provide an insight as to which tissues have the 

highest uptake of the radiotracer and how this distribution varies over time between 

healthy and diseased states. The stability of the parent radiotracer can also be 

evaluated from biodistribution experiments. For example, de-fluorination will give 

18
F

-
 which accumulates in bone tissue, and specifically within hydroxyapatite: a 

naturally occurring mineral with the formula Ca10(PO4)6(OH)2.
28

 The OH
-
 ion can be 

replaced by fluoride to produce fluoroapatite. Therefore, high uptake of radioactivity 

in bone tissue following administration of an 
18

F-labelled tracer is strongly indicative 

of de-fluorination in vivo. Similarly, high uptake of radioactivity in the thyroid is 

suggestive of de-iodination. This is because the sodium iodide symporter (NIS) 

mediates uptake of iodide into follicular cells of the thyroid gland, which is the first 

step in the synthesis of thyroid hormones. These hormones (thyroxine and 

triiodothyronine) play an important role in the development and functional 
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maintenance of the CNS. Apart from thyroid cells, NIS can also be found, although 

less expressed, in the salivary glands, kidneys and the gastric mucosa. Therefore, 

high levels of radioactivity in these tissues following administration of radio-

iodinated tracers imply that de-iodination is a major metabolic route.         

Metabolic processes alter the core scaffold of radiotracers by transforming lipophilic 

substances into hydrophilic products that can be excreted. Metabolites of radiotracers 

in vivo can cause unwanted distribution of radioactivity and this reduces image 

quality. Although imaging modalities such as PET and SPECT reveal the 

distribution of radioactivity and changes in their concentration over time, they 

provide no information about the chemical composition of the radiotracer. Therefore, 

it is important to determine the stability of a radiotracer as it gives a measure of the 

proportion of radioactivity that corresponds to the parent tracer.  

Ideally, radiotracers should give high target-to-background ratios: a high uptake of 

the radiotracer in the tissue of interest compared to its (non-specific) localisation 

elsewhere throughout the body. The ability of small molecule radiotracers to reach 

their target is dictated by physicochemical properties (for example molecular weight 

and lipophilicity) which for those targeting the brain should in most cases adhere to 

the rules established by Lipinski.
29

 

Small molecules or peptides are cleared from the circulation and localise to the target 

tissue more rapidly compared to large molecules such as proteins and antibodies.
30

 

This is because, although the structure of the vascular endothelial cell monolayer 

varies throughout the body, the effective pore size in normal intact endothelium is 

less than 5 nM, enabling small molecules to achieve rapid equilibrium with the 

extravascular extracellular space. Furthermore, renal clearance of larger molecules is 

impeded by the small pores (4.5 – 5 nM in diameter) of the glomerular capillary 

wall.  

Lipophilicity is a measure of the polarity of a compound. The traditional measure of 

lipophilicity is Log P: the partition coefficient of a molecule between an aqueous and 

lipophilic phase, usually water and octanol.
31
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Log P = Log 

[Organic Phase]

[Aqueous Phase]
 Equation 3 

 

Therefore, lipophilic substances are non-polar and have a low solubility for water 

and thus can also be referred to as hydrophobic. Many compounds however contain 

ionisable groups and are likely to be charged at physiological pH. Log P only 

describes the coefficient of neutral (uncharged) molecules. Log D is the distribution 

coefficient of a compound in a mixture of two immiscible phases at equilibrium and 

can be determined in a similar manner to Log P, however, instead of using water, the 

aqueous phase is adjusted to a specific pH using a buffer.
32

 

Polar compounds are highly soluble in water and tend to be cleared rapidly via the 

kidneys whereas lipophilic compounds are commonly excreted via the liver. 

However, the elimination of lipophilic compounds can be slow due to  reabsorption 

across the kidney tubules back into the bloodstream.
26

 Lipophilic compounds can 

also bind to a higher degree to plasma proteins such as serum albumin and, as a 

result, are unavailable to bind to the intended target.
33, 34

 Essentially, this can 

influence the distribution of the compound and compromise its ability to cross 

biological membranes (Figure 6). In addition, changes in plasma protein 

concentrations, which occur in certain disease states and under various 

pathophysiological conditions such as age, can change the unbound concentrations 

of lipophilic compounds.    
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Figure 6. A two compartment model representing the influence of plasma protein binding 
on drug distribution.  

 

The distribution of radiotracers should reflect the presence of the biological target in 

a concentration dependent manner, giving a high target-to-background ratio. For 

imaging of a receptor, the interaction of a radiotracer with its target depends on 

binding affinity. The binding of a particular drug (D) or radiotracer to the biological 

target or receptor (R) can be described by the following expression
35

: 

 

 
[D]+[R]= 

k1

⇌ 
k-1

[DR] Equation 4 

 

k1 = rate constant for association between the drug and receptor 

k-1 = rate constant for DR complex dissociation 

Affinity describes the strength with which a ligand binds to a receptor and is equal to 

the k1/ k-1 ratio.  A high affinity ligand has a greater tendency to bind to the receptor 

(a large k1 value) relative to its dissociation from the receptor (a small k-1 value). Kd 

is the equilibrium dissociation constant and is the reciprocal of the affinity (k-1/k1). 

This value is widely used to describe the binding of drugs to a receptor. The Kd value 
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relates to the amount of ligand needed for a particular experiment and so the lower 

the value of Kd, the higher the affinity.   

Radioligand binding assays reveal the affinity and specificity of a radiotracer to the 

receptor of interest. In saturation experiments, tissue sections, cultured cells or 

homogenates are incubated with an increasing concentration of a radiolabelled ligand 

or drug (Figure 7).
36

 Analysis using curve fitting programmes measure the affinity of 

the labelled compound for a receptor (Kd and receptor density (Bmax)). 

 

Figure 7. Graph of bound versus free drug showing relationship between Kd and Bmax. 

 

The graph represented in Figure 7 has the following equation:  

 

 

When [D] (drug or radiotracer concentration) is equal to Kd, the term [D] / (Kd + [D]) 

will equal 0.5 and therefore the Y value will be half the of Bmax. Binding potential, 

(BP), is defined as:  

𝑌 =  
𝐵max  × [𝐷]

𝐾𝑑 + [𝐷]
 

                                                                         Equation 5 

 

𝐵𝑃 =  
𝐵𝑚𝑎𝑥

𝐾𝑑
 

                                                                         Equation 6 
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and is proportional to the total number of receptors in the region of interest.  

However, there will be some degree of non-specific binding. The degree of non-

specific binding can be determined using a saturating concentration of an unlabelled 

compound which competes for the target receptor binding site against a fixed 

concentration of the labelled compound. Under such conditions, virtually all the 

target receptors are occupied by the unlabelled compound and any radioactivity 

detected corresponds to radiotracer binding that cannot be displaced. The choice of 

compound is usually one that has a known affinity for the target of interest or the 

non-radiolabelled version of the radiotracer investigated. Specific binding can then 

be determined from total binding and non-specific binding by the relationship:  

 

 Total Binding = Specific Binding + Non-Specific Binding 

 

Equation 7 

For a competitive interaction, the concentration of a compound which inhibits the 

specific binding by 50% at equilibrium is known as the half maximal inhibitory 

concentration (IC50). Similarly, the concentration or dose of a drug that gives half 

maximal response is known as the half maximal effective concentration (EC50). The 

IC50 value can be converted to ki using the Cheng-Prusoff equation
37

: 

 

 
Ki= 

IC50

1+(
[L]
Kd

)
 

Equation 8 

 

[L] = the concentration of the free radioligand used in the assay  

Ki : the concentration of competing ligand that would occupy 50% of the receptors if 

no radioligand was present. Whereas the IC50 value for a compound may vary 

between experiments depending on radioligand concentration, the Ki is an absolute 

value dependant only on the target and inhibitor concentrations. The Ki value for an 



36 
 

unlabelled drug should be the same as the Kd for the same drug in its radiolabelled 

form.  

 

1.3 Radiotracer Development  

  

For nuclear imaging to remain at the forefront of diagnostic imaging, new 

radiotracers need to be established. Nevertheless, the small number of novel 

radiotracers emerging in the clinic reflects the lengthy and costly process 

underpinning their development. For example, Schering and Amersham invested 

roughly $150 million dollars during 1999 – 2004 for new imaging agents, but were 

not successful in delivering a product until mid-2007.
38

 This high rate of failure is a 

cause of concern when attempting to develop new radiotracers in industry or 

academia.
39

  

The process for radiotracer development is summarised in Figure 8. The first phase 

identifies potential targets, (e.g. ion channels, receptors) that play a vital role in the 

generation or exacerbation of disease. At this stage, the clinical questions that need 

to be addressed are formed: what is the mechanistic role of this target in the 

pathophysiology of the disease, how can the actions of this target be suppressed, 

which chemical moieties will have the best fit at the target binding sites? Once these 

have been tackled and the aims are set, a library of compounds is assembled, or an 

existing library of compounds is used to test for target affinity. From this a lead 

molecule to be radiolabelled is identified and its molecular properties as well its 

specificity and selectivity for the target of interest are investigated through binding 

assays (section 1.2.3).  

After in vitro evaluations, in vivo animal (pre-clinical) research is performed to 

ascertain the pharmacokinetics (section 1.2.2) of the radiotracer candidate: it is this 

stage of radiotracer development that forms the core research of this thesis. Multiple 

factors need to be reviewed for in vivo imaging of animals, and hence ensure reliable 

results are obtained. For example, gender, species and strain can have significant 

effects on the pharmacokinetics and metabolism of a radiotracer, as well as on the 

physiological parameters. This in part can be due to the varying levels of hormones, 

glucose and hepatic enzymes. Equally, fasting and dietary patterns may influence the 
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distribution and metabolism of the radiotracer. The injection volume and the 

physiological effects of the radiotracer itself also need to be considered when 

performing sequential imaging in the same animal. The general recommendation for 

the maximum volume on an intravenous injection is around 4% to 5% of the 

animal’s blood volume. Accordingly, the volume injected into a mouse should be no 

more than 200 µL and 1000 µL for a rat.
40

 Anaesthesia affects respiration and 

cardiac function, thus affecting radiotracer distribution and kinetics. Rigorous 

control of anaesthesia is therefore imperative in in vivo imaging experiments to 

ensure the results are not confounded and to obtain highly reproducible data.
40, 41

           

Clinical trials are conducted to determine how faithfully the pre-clinical findings 

translate into humans. To reach this stage, the pre-clinical data must prove the 

radiotracer is efficacious with a high benefit-to-risk ratio. Many clinical trials 

however have a high failure rate, particularly at the early stages (Phase 1). This is 

attributed to species variation between humans and rodents, in particular metabolism, 

radiotracer affinity to efflux pumps, the density and distribution of the target, and 

ability for the radiotracer to cross the blood-brain-barrier (BBB). Consequently, 

radiotracers that exhibit ideal properties in rodents may fail in humans. This is 

proven by epibatidine derivatives, developed as radiotracers for imaging of the 

nicotinic cholinergic receptors.
42

     

 

 

Figure 8. The process of radiotracer development.  

 

In addition, evaluating the actions of potential drug candidates both at the pre-

clinical and clinical stages can be a lengthy process. Molecular imaging with PET 

and SPECT can facilitate faster and more cost-effective decision-making to eliminate 

failures early in the drug evaluation process, whilst advancing promising candidates 

sooner.
43
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1.4 Radiotracers for Neuroimaging  

 

At each stage of the long and complex pipeline for radiotracer development, 

processes are finely tuned depending on the imaging target. In this section, the 

desirable characteristics that have been proposed for small molecule radiotracers to 

target the brain are discussed. In general, the criterion is fairly demanding, and 

therefore successful brain radiotracers have been rather sporadic.  

Radiotracers can enter the brain by passive diffusion across the Blood Brain Barrier 

(BBB), which is a highly selective permeability barrier, maintaining the necessary 

environment for brain function.
44

 The BBB is well equipped with efflux pumps such 

as P-glycoprotein (P-gp) and multi-drug resistant-associated proteins that function to 

repel many unwanted xenobiotic compounds. The properties that small molecule 

radiotracers must therefore exhibit to cross the BBB include:
45

  

 A molecular weight lower than 500 g/mol 

 A polar surface area below 60-90 Å
2
 

 The number of hydrogen bond donors lower than five or the sum of 

nitrogen and oxygen atoms less than 10  

 A Log P between 1 and 3.5. (Exceptionally, some useful radiotracers with 

lower or higher lipophilicity readily enter the brain, shown by 

[
11

C]MePPEP (cLog P: 5.7): a radiotracer for brain cannabinoid subtype 1 

(CB1) receptors.
46

)   

 Minimal affinity for efflux pumps and enzymes at the BBB  

Ideally, metabolism for brain radiotracers should dominate outside of the brain 

yielding less lipophilic radio-metabolites with poor brain entry and no interaction 

with the target. Radio-metabolites that are formed in the brain can be problematic as 

they can give a false impression of the parent radiotracer distribution. This is because 

SPECT and PET have no means to discriminate between the chemical identities of 

detected radioactivity.  

Additional parameters that will suit radiotracers for neuroimaging include:  

 The absence of functional groups that will strongly ionise at physiological pH 
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 A high brain uptake of the desired radiotracer in rodent and non-human 

primate  

 Disassociation or inhibition constants for the target in the nanomolar range 

A convenient measure for radiotracer concentration in the brain is the standardised 

uptake value (SUV) which normalises radioactive concentration (e.g. Bq/mL) to 

injected radioactive dose and subject body weight (%ID/g).  

When developing radiotracers for the brain, it is also important to ascertain 

differences in target density and structure between species. Having this determined at 

an early stage would assist in interpreting results and potentially reduce problems 

when translating the radiotracers to human studies. Furthermore, in order to 

maximise the image-ability of the radiotracer, the target should be highly localised 

and abundant in the organ of interest. This could explain why [
11

C]MePPEP works 

well as a brain radiotracer despite its high lipophilicity: CB1 receptors are one of the 

most abundant G-protein-coupled receptors in the brain, so give a high receptor-

specific to non-specific signal. 

 

1.5 Summary  

 

The fundamental principles of nuclear imaging and radiotracers have been 

introduced. It has also been shown that radiotracer development is an intricately long 

process and that successful tracers for neuroimaging must conform to specific 

properties.  
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Chapter 2 Experimental Methods for Radiolabelling and 

Quantitative Analysis   

 
 

The radiotracers used for SPECT and PET imaging should be synthesised with a 

high yield, purity and specific activity (SA). How this can be achieved and 

determined is discussed in the first part of this chapter. In addition, attention is given 

to the methods employed to incorporate radio-iodide onto chemical moieties.  

Nuclear imaging only requires small quantities of the radiotracer (picomolar) for 

detection and thus offers exceptional sensitivity. To maximise this utility and extract 

accurate information from the data, the quantitative accuracy of the imaging 

modality needs to be determined. How best to attain this is detailed in the second 

part of this chapter.   

 

2.1 Radiolabelling with Iodine    

 
 

As part of the research outlined in this thesis, SPECT radiotracers have been 

developed and the principal radionuclide used is iodine-125 (
125

I). Aliphatic carbon-

iodine bonds are weak (222 kJ/mol) and so are prone to breaking, especially in vivo 

due to a plethora of enzymatic systems. As a result, when radioiodine is used to 

radiolabel a chemical construct, it is preferentially targeted to an sp
2 

carbon atom in a 

vinylic or aromatic system since the resulting carbon-iodine bond is stronger (268 

and 297 kJ/mol respectively).  

Several strategies have been developed to radiolabel compounds with radioisotopes 

of iodine (*I). The ideal method for any given radiochemical reaction is dependent 

on a variety of factors and is individually optimised to suit particular needs. 

Oxidative electrophilic radioiodination techniques are routinely used for labelling 

proteins and small organic molecules.  

In electrophilic substitution reactions, a moiety with high electron density such as an 

aromatic ring, will attack electrophiles (atoms, molecules or ions which have an 

affinity for negative charge and will accept electrons). As a result, a new bond is 

formed accompanied by bond cleavage and loss of a positively charged group. 
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Electrophilic radioiodination reactions require an oxidising agent to generate the 

electrophilic species (HO
+
I, H2O

+
I, ICl). Oxidising agents accept electrons and in 

turn become reduced whilst the reactant is oxidised. The most frequently used 

oxidising agents are peracetic acid and the N-chloro compounds such as chloramine-

T, Iodogen and succinimides. N-chloro compounds are the most popular oxidants 

used
47

, however their relatively strong oxidising properties can induce unwanted by-

products. To minimise this, chloramine-T can be immobilised on spherical 

polystyrene particles while a thin layer of Iodogen can be applied to the walls of 

reaction vessels.  

Of the N-chloro compounds, radioiodination using Iodogen (1,3,4,6–tetrachloro-

3α,6α-diphenylglycoluril, Figure 9) occurs in milder conditions than those required 

for the chloramine-T reaction.
48

 This results in less oxidative damage, although in 

some cases, at the expense of reduced yields.  

 

 

Figure 9. The chemical structure of Iodogen™. 

 

Overall, radioiodination with Iodogen is extremely simple and reliable.
48

 In brief, a 

solution of iodogen in an organic solvent such as dichloromethane is used to coat the 

inside of reaction vessels. Following evaporation of the solvent, the protein, peptide 

or compound to be labelled is added in a suitable buffer (e.g. PBS, pH 7.4) to the 

reaction vessel. The reaction commences following addition of [
*
I]NaI and can be 

monitored by chromatographic techniques. Reactions are then stopped 

approximately 30 minutes later by simply removing the solution from the reaction 
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vessel (Figure 10). For practical ease, pre-coated iodogen tubes are commercially 

available.  

 

 

Figure 10. Radioiodination of proteins using pre-coated iodination tubes. 

 

Proteins labelled with radioiodine using oxidative electrophilic radioiodination have 

long been used in nuclear medicine and biomedical research.
49

 The reaction of 

Iodogen with iodide ion in solution (NaI) results in the oxidation of I
- 
to I

+
, (I-Cl) 

which then rapidly reacts with sites within the target molecules that can undergo 

electrophilic substitution reactions. 

Aromatic rings within amino acids, principally tyrosine are the sites of iodination in 

many proteins.
50

 The point of attachment is at the most electron-dense part of the 

ring. Therefore, with tyrosine, substitution of a hydrogen ion with the reactive 

iodonium ion occurs ortho to the phenolic hydroxyl group (Scheme 1). This is due to 

resonance stabilisation provided by the lone pair of electrons on the oxygen atom.   
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Scheme 1. (Radio)-iodination of tyrosine.   

 

Essentially, the functional (-R) groups present on the aromatic ring that is to be 

radiolabelled is key in determining the radiolabelling methodology. Electron rich 

substituents will activate towards electrophilic substitution, which on the whole have 

shorter reaction times, require lower temperatures and entail more facile purification 

compared to nucleophilic substitution reactions. 

 

2.1.1 Radioiodination of Small Organic Molecules  

 
 

For the radioiodination of small organic molecules, the exchange reaction can either 

be isotopic (*I for I) or non-isotopic (*I for Br).
51

 In other cases, the exchange can be 

for a metal atom (M). One of the main advantages of this method is the opportunity 

to regioselectively radioiodinate activated and de-activated arenes under very mild 

conditions. This attractive method relies on the fact that the electropositive character 

of the metals used and the resulting polarisation of the C-M bond makes carbon-

metal bonds much more activated for an electrophilic attack than carbon-hydrogen 

bonds. Therefore, substitution of M by *I is easier than substitution of H by *I.  

The most commonly used exchange method for radioiodination involves organotin 

compounds, which readily affords site specific radioiodination, even at room 

temperature.
52

 Due to their inductive effects, alkyl groups attached to the tin increase 

electron density at the aromatic or vinylic carbon bound to the metal, thus facilitating 

attack of the ‘*I
+
’ species (Scheme 2). Overall, there is a plethora of reactions 
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described in the literature where organotin precursors are used for radioiodination.
53-

56
 Also, the carbon-silicon bond shares similar properties to the carbon-tin bond thus 

organosilanes (e.g. trimethylsilane) can be used in exchange reactions to give 

iodinated compounds.  

 

 

Scheme 2. Radioiodination of organotin compounds. 

 

2.2 Radio - High Performance Liquid Chromatography 

 

High Performance Liquid Chromatography (HPLC) is a powerful tool in analytical 

chemistry and is used to separate, identify and quantify chemical components in a 

mixture.
57

 It is a highly improved version of column chromatography: instead of a 

solvent eluted through a column under gravity, it is forced through by high pressure 

and so experimental times are substantially reduced (Figure 11). Furthermore, the 

particles for loading the HPLC columns are considerably smaller in size, which 

provide a larger surface area to maximise interactions between the stationary and 

mobile phases. This facilitates the separation of chemical components which are 

structurally very similar.     

Purification by means of HPLC is also robust as it provides automated radioactivity 

and UV detection of the chemical constituents. In most set ups, the UV and 

radioactive detectors are in tandem with each other, thus the data is collected a few 

seconds apart, with the time lag dependant on the flow rate of solvents eluting 

through the column and the volume of tubing between the two detectors. UV 

detection relies on the fact that organic compounds with chromophore groups absorb 

UV light set to a particular wavelength (usually 254 nm). A beam of UV light is 

directed at the stream of liquid eluting from the column and a UV detector is placed 



45 
 

at the opposite side to record how much of the light has been absorbed (Figure 11). 

The amount of light absorbed will depend on the concentration of a particular 

chemical moiety passing through the UV beam at a certain time. This relationship is 

described by the Lambert-Beer law where absorbance is directly proportional to the 

concentration of the absorbing compound if the path length of the measuring cell is 

held constant.  

 

 

Figure 11. Schematic representation of HPLC. 

 

There are two main types of HPLC: 

 Normal HPLC: Essentially, the principles are the same as column 

chromatography and thin layer chromatography (TLC) where the column is 

packed with small silica particles. Therefore, polar compounds will adhere 

strongly to the polar silica compared to lipophilic compounds which will 

elute first.  

 Reverse Phase HPLC: This is the more commonly used method where the 

stationary phase silica particles are modified with long hydrocarbon chains - 

typically between 8 to 18 carbons - rendering it non-polar. The analytes are 

separated according to their lipophilicity: the most lipophilic compounds 

have a stronger adsorption with the hydrophobic stationary phase and elute 
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relatively late, requiring a higher proportion of non-polar solvent (usually 

methanol or acetonitrile mixed with water) in the mobile phase. Modifiers 

such as organo-soluble salts and acids (e.g. tetrabutylammonium salts, 

trifluoroacetic acid) are often added to the mobile phase solvents in order to 

improve the chromatographic peak shape.
58

   

The time taken for a compound to elute through the column and reach the detector is 

known as the retention time which will depend on: 

 The flow rate used (as this will affect the flow rate of the solvent) 

 The nature of the stationary phase (including composition and particle size) 

 The temperature of the column 

 The physiochemical properties of the compound 

 The composition of the eluent used   

For radiotracer synthesis, it is paramount that the retention time of the pure, non-

radiolabelled product is determined under the same HPLC conditions in order to 

elucidate the chemical identity and hence the desired fraction within the 

radiolabelled mixture.    

HPLC results are presented in a chromatogram where the retention times are 

assigned on the x-axis and the intensity of UV or radioactivity detection is plotted on 

the y-axis. The area under a peak is proportional to the quantity of compounds which 

have passed the detectors at that time, and this is calculated automatically by a 

computer linked to the system. This makes it possible to calibrate the system to 

ascertain concentrations of the relevant compounds.    

 

2.3 Specific Activity  

 
 

Specific activity, defined as radioactivity per unit mass of the sample, can determine 

the chemical contamination of the sample with nonradioactive isotopes of the 

radionuclide. Therefore, low SA can result in unwanted pharmacological effects 

which can cause potential toxicity as well as affecting measurements.    
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To calculate SA of the radiolabelled product, the UV responses of the pure, non-

radiolabelled (cold) product in a range of suitable concentrations are analysed by 

HPLC.
59

 This concentration range is tailored around the analytical radiochemical 

yield obtained for that particular radiotracer. The resulting concentration-response 

curve is then applied to convert the UV response eluting with the radiolabelled 

product into moles. The amount of radioactivity corresponding to the product is 

determined by integration of the radio-detected peaks on the HPLC chromatogram 

and the injected activity, assuming there is no loss of radioactivity on the HPLC 

system. The specific activity can then be reported as the amount of radioactivity per 

mol (MBq/µmol).  

 

2.4 Quantitative Accuracy for Imaging  

 

In the studies performed as part of this PhD, radioactivity levels were measured 

using an ion chamber, SPECT/CT scanner, typhoon scanner and gamma counter, 

where results are presented in varying units (for example, Bq and CPM). Therefore, 

in the subsequent sections of this chapter, the methods employed to cross calibrate 

and acquire quantification factors for these equipment are outlined. This is 

particularly important for normalising the recorded counts in ROIs to the amount of 

radioactivity initially injected.   

 

2.4.1 In Vivo SPECT  

 

For nuclear imaging, PET allows more accurate quantification primarily due to its 

higher energy gamma emitters, coincident detection and superior correction for 

confounding factors such as attenuation. Nevertheless, developments in the hardware 

and reconstruction algorithms for SPECT systems over the years have increased its 

detection capability, thus making it an attractive option for in vivo imaging using 

longer-lived radionuclides.
60

  

However, several physical factors compromise the quantitative accuracy of SPECT 

and PET. These include:  
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 Attenuation: the loss of detected signals from the radionuclide because of 

their absorption in the body 

 Spatial Resolution: the ability of the imaging system to discriminate between 

two adjacent objects. This can be expressed by the full width at half 

maximum (FWHM). FWHM is given by the difference between the two 

extreme values of the independent variable at which the dependant variable is 

equal to half its maximum value (Figure 12). If the points are separated by 

less than the FWHM distance of the system, then two separate points will be 

visualised as one 

 Partial volume effects: the loss of apparent activity in small objects or regions 

due to the limited resolution of the imaging system 

 Scatter: deviations from the expected trajectory (and hence part loss of 

energy) of a gamma ray upon interaction with matter 

 

 

Figure 12. Graphical representation of the FWHM. 

 

These effects can lead to a wrong interpretation of the results. For example, photons 

which deviate from the detectors may lead to a missed count. In other cases, the 

scattered photon could be detected in the wrong location, leading to an over- or 

underestimation of counts.
61

 It is therefore important to consider the magnitude of 

these effects when quantifying in vivo images. Also, since the uptake in organs of 

interest typically varies from <1% to 30%, there is a need to determine the validity 
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of measurements from SPECT imaging, especially when low radioactivity levels 

have been injected and there is minimal uptake in regions-of-interest (ROI). In the 

next section is discussed how the attenuation and calibration factors were attained.  

In this body of work, SPECT/CT imaging was performed on a Nano-SPECT/CT 

small animal in vivo scanner. Calibrations on this system followed the protocols 

outlined in the manufacturers manual and have been conducted for each 

radionuclide-aperture combination used. The camera was calibrated for I-125 

attenuation using a syringe filled with a known amount of radioactivity (measured in 

an ion chamber). To mimic the attenuation caused by the animal body, the syringe 

was placed inside a Plexiglas phantom filled with water (Figure 13). This water-

filled phantom is likely to more closely resemble the attenuation caused by soft 

tissue rather than bones such as the skull. However it would be very difficult to find 

a phantom that suits both soft and hard tissues exactly. The phantom was 

subsequently scanned using the manufacturer’s specifications.   

The phantom images were reconstructed using InVivo Quant software, which 

converts dimensionless image count values to units of radioactivity in mega 

Becquerel (MBq) or kilo Becquerel (KBq). A calibration factor was obtained from 

the radioactivity levels measured in the ion chamber and the InVivo Quant software, 

which was stored and implemented in the reconstruction of subsequent images.   
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Figure 13. Quantification phantoms used for rat (a) and mouse apertures (b) on the 
SPECT/CT scanner. 

 

2.4.2 Phosphorimaging  

 

Phosphorimaging is a powerful tool for ex vivo analysis, to visualise the distribution 

of the radiotracer at higher resolutions, particularly on the sub-organ level, than that 

obtained in vivo with SPECT. For the studies outlined in this thesis, unmounted 

phosphor screens were used, which were scanned on a Typhoon 9410 Trio
+
 

Phosphorimager.  

Many precautions were undertaken so that the results would not be confounded by 

factors un-related to the study. For example, because phosphor screens are light 

sensitive and white light will erase them, the screens were stored at room 

temperature within a cassette which provided a dark and dry environment. It was 

also imperative that the screens had minimal exposure to white light when being 

transferred from the cassette to the scanner as direct exposure to bright light can 

erase up to 90% of the stored energy in less than 1 minute.      



51 
 

The screens were erased using a light box and cleaned with MIN-R Screen cleaner 

wipes before use. Also, to minimise the chances of blurred images, the screen was 

not adjusted once placed in contact with the radioactive samples.  

To obtain sound quantitative data, the optimum exposure time was determined based 

on the radionuclide and the amount of radioactivity in the sample. Furthermore, the 

screens were scanned immediately after exposure as they lose intensity of the stored 

data with time (signal fading).
20

  

Phosphorimages have been quantified using radioactive standards comprising the 

radionuclide used in the study. These standards were co-exposed with the relevant 

brain sections to ensure they have the same exposure time and thus the same level of 

potential signal fading. The counts recorded from the standards were used to produce 

a calibration curve, correlating the amount of radioactivity measured in MBq by the 

ion chamber to the amount of counts recorded by the Typhoon scanner. This 

furnished the calibration factor for quantification and for normalising the results to 

the amount of radioactivity injected into the animals.     

Radioactive standards for phosphorimaging quantification were prepared in buffer 

solutions (PBS). Depending on the levels of radiotracer uptake in the brain, the 

highest radioactivity concentration was measured in the ion chamber. Subsequent 

concentrations were obtained by serial dilutions (1:2). Aliquots of the standards were 

spotted onto quadrilateral filter paper mounted on microscope glass slides and 

allowed to dry. The volume spotted for each radioactive concentration was identical 

and the size of the quadrilaterals ensured uniform distribution of the radioactive 

solutions.  

 

2.4.3 Biodistribution  

 

Results for biodistribution studies are reported as % injected dose per gram of body 

weight (%ID/g). This was calculated by creating a calibration curve: appropriate 

concentrations of radioactivity in identical volumes were prepared by serial dilutions 

and measured in a Wizard
2
 2470 Automatic Gamma Counter, which was also used to 

measure radioactivity content in the tissues of interest. This calibration curve 

correlated the measured radioactivity in MBq from the ion chamber, (which was 
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used to determine the dose of radioactivity injected into animals), to that in counts 

per minute (CPM) recorded by the gamma counter and thus provided a conversion 

factor for quantification. 

The Wizard
2
 2470 Gamma Counter consists of 10 detectors made of thallium 

activated, NaI crystals. For each new study, normalisation was conducted using 

solutions of the relevant radionuclide to correct for differences in efficiency between 

the detectors (Figure 14). Normalisation involves measuring the same radioactive 

solution in each of the wells and varies the amplification of the pulses from each 

detector, which then pass through a common energy window. This ensures that there 

is uniformity in the detection window across the gamma counter wells.  

 

 

Figure 14. Results of the gamma counter after normalisation. Normalisation ensures there 
is a uniform detection window between the detectors.   

 

2.5 Summary 

 

In this chapter the basic concepts of radiolabelling and how to accurately quantify 

SPECT data have been introduced. The methods for calibrating and determining 

conversion factors between the equipment used have also been outlined.  
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Chapter 3 Evaluation of Voltage Gated Sodium Channel Blockers 

for Imaging with SPECT and PET   

 

3.1 Aim and Hypothesis  

 
 

In the studies outlined in this chapter, the core aim was to develop radiotracers and 

evaluate their potential to image the expression of Voltage Gated Sodium Channels 

(VGSCs). It was assumed that radioiodinated analogues of the BNZA and 

WIN17317-3 compound class would bind to neuronal VGSCs.  

3.2 Sodium Channels  

 

Abnormal expression and function of VGSCs has been identified in a number of 

neurological conditions including multiple sclerosis and epilepsy. Radiotracers for 

imaging VGSCs therefore hold significant potential as tools to study neuronal 

pathways as well as for diagnostic imaging and treatment monitoring. Despite this 

potential, the field of VGSC imaging remains largely unexplored.  

 

3.2.1 Structure and Function  

 
 

Sodium channels are integral membrane proteins, which conduct sodium ions (Na
+
) 

through a cell’s plasma membrane, either in response to binding of a ligand, (ligand 

gated sodium channels) or changes in the electrical membrane potential (voltage-

gated sodium channels). This conduction triggers action potentials that propagate 

along neurons and to other electrically excitable cells.
62

 As a result, this allows 

communication and co-ordination of processes ranging from locomotion to 

cognition, particularly when speed is of the essence.
63

 

Pioneering studies have revealed three conformational states for VGSCs: at resting 

membrane potentials, sodium channels are closed and thus non-conductive.
64

 

Depolarisations open and activate the channels, permitting Na
+
 ions to flow through. 

Following this, the channels enter the inactive state before returning to the non-

conductive, resting state (Figure 15). During prolonged depolarisations, slow 
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inactivation occurs. This inactivation is about four times slower compared to fast 

inactivation, and involves rearrangements of the channel pore.
65

 In some neurons, 

inactivation of the sodium current is incomplete, resulting in a slow inactivating 

current, often referred to as a slow, persistent Na
+
 current (INaP).   

 

 

Figure 15. Conformational states of VGSCs.  

 

VGSCs are composed of a principal α subunit, which can be associated with one or 

more auxiliary β subunits. Ten genes encoding the α subunit have been identified, 

nine of which have been characterised by their distinct pharmacological and 

electrophysiological properties.
62

 The remaining isoform seems to be gated by 

sodium concentration rather than voltage change. The nomenclature for VGSC 

isoforms uses a numerical system to define subfamilies and subtypes based on 

similarities between the amino acid sequences: Na refers to the chemical symbol of 

the principal permeating ion with the principal physiological regulator (voltage) 

indicated as a subscript (NaV).
66

 The number following indicates the gene subfamily 

(currently only NaV1), which is succeeded by a number identifying the specific 

channel isoform (e.g., NaV1.1). This last number has been assigned according to the 

approximate order in which each gene was identified.  

The ion conducting pore of the channel is found within the α subunit, which folds 

into four domains, each containing six transmembrane helices (S1-S6, Figure 16). 

Extra- and intracellular loops connect these six helices, with the N and C terminals 

both located intracellularly.
67

 The S4 helix has positively charged amino acid 

residues which serve as gating charges, moving across the membrane to initiate 
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channel opening in response to a depolarisation of the membrane. The pore module 

is formed by the S5 and S6 helices where the S6 helix contains binding sites for 

various therapeutically important pore blocking drugs. The β subunits modulate the 

function of the α subunits and help their integration into the plasma membrane.
67

    

 

 

Figure 16. Structural representation of VGSCs. The pore forming α subunit comprises four 
domains (labelled I – IV), each with six transmembrane helices. The circles on helices I6, III6 
and IV6 represent the binding sites for therapeutic blocking drugs.63 

 

Recently, studies elucidating the crystal structure of the Arcobacter butzleri VGSC 

NavAb have revealed the molecular basis of voltage sensing, ion conductance and 

voltage dependant gating.
68

 Hydrophilic interactions between arginine charges 

within the voltage sensor (S4) appeared to catalyse gating charge movements during 

activation. Investigations have also indicated that the voltage sensor domains, along 

with the S4-S5 linkers, dilated the central pore by pivoting together around a hinge at 

the base of the pore module.  Furthermore, the selectivity filter for the channels was 

found to be short, about 4.6 Å wide, and water filled with four acidic side chains 

surrounding the narrowest part of the ion conduction pathway.
68

  

The classification of VGSCs is based on their sensitivity to tetrodotoxin (TTX), 

which is a potent neurotoxin produced by marine organisms such as the tetraodon 

pufferfish.
69

 Nanomolar concentrations of TTX blocked NaV1.1-1.4, NaV1.6 and 

NaV1.7 whilst significantly higher (micro molar) concentrations were needed to 

block NaV1.5, NaV1.8 and NaV1.9.
69

 The isoforms in TTX-sensitive and TTX-
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resistant groups are nevertheless closely related based on their amino acid sequences. 

The VGSC subtypes are differentially distributed throughout the body, as shown in 

Table 2.  

 

 

Table 2. VGSC subtypes located throughout the body. NaV1.2 appears to predominate in 
the immature brain, with NaV1.6 becoming more prevalent during maturation.70 

 

The research outlined in this chapter focuses on neuronal VGSCs, in which their 

dysfunction or over expression along axons and neurons has been implicated in a 

number of neurological diseases, in particular multiple sclerosis and epilepsy. The 

next section of this chapter will present some of the evidence linking VGSCs to 

these brain disorders.    

 

3.2.2 VGSCs in Disease  

 
 

3.2.2.1 Multiple Sclerosis  

 
 

Multiple Sclerosis (MS) is an inflammatory disease of the Central Nervous System 

(CNS) with a wide range of symptoms including problems with muscle control, 

vision and balance. There is currently no cure for MS and although a number of 

treatments are available, none can halt the progression of primary progressive MS.
71

 

Therefore, more effective treatments are required and to achieve this, early 

biomarkers need to be established.    

Two processes have been implicated in the pathogenesis of MS. The first is axonal 

damage, where the axon becomes severed or destroyed and so electrical impulses are 

impeded along the nerve or across the synapse.
72

 The second process is 
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demyelination, which describes the loss of the protective myelin sheath that insulates 

nerve fibres and allows the efficient transmission of impulses along them. These two 

processes affect the ability of neurones to communicate with each other, resulting in 

loss of neurological function and the debilitating effects observed in MS patients.  

Numerous ex-vivo studies have identified changes in VGSC expression under MS 

conditions. Immunocytochemistry with subtype specific antibodies revealed a 52% 

reduction in NaV1.6 and a 63% increase in NaV1.2 expression along the optic nerve 

in animal models of MS compared to controls.
73

 A similar pattern was observed in 

the retinal ganglion cells, suggesting that NaV1.2 can support conduction in 

demyelinated axons.
73

  

As mentioned, axonal degeneration is one of the pathological features of MS. A 

marker for axonal injury is β-amyloid precursor protein (β-APP). Using fluorescently 

labelled antibodies, it has been shown that 74 ± 4% of β-APP positive axons co-

express NaV1.6 and the sodium calcium exchanger (NCX), compared to 4 ± 1% in β-

APP negative axons.
65

 The high expression of NaV1.6 is thought to produce a 

persistent sodium current, triggering a reversal of NCX. As a result, NCX imports 

Ca
2+

 whilst exporting Na
+
 and the subsequent accumulation of intraaxonal calcium 

ions triggers injurious secondary cascades and axonal injury.
65

  

Interestingly, lamotrigine, a sodium channel blocking agent, was found to be 

effective in preventing axonal degeneration in an animal model of MS whilst various 

sodium channel blocking agents have ameliorated spinal cord inflammation.
74

 These 

include TTX, lidocaine, phenytoin and carbamazepine which exhibit protective 

effects at concentrations that do not compromise the conduction of action potentials. 

The protective role of sodium channel blockers is based on the assumption that 

sodium channels contribute to activation of microglia and macrophages.
75

  

 

3.2.2.2 Epilepsy 

 
 

Epilepsy is a neurological disorder characterised by recurrent seizures (further details 

about this disease are given in chapter 5). Alterations in the density and distribution 

of VGSCs have been observed in animal models of acute or chronic epilepsy. 
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Genetic studies on the E1 (epileptic) mouse strain found an over expression of 

NaV1.2 mRNA levels (by 30 - 40% compared to controls), suggesting that altered 

VGSC expression may be one of the intimate processes underlying epileptogenesis.
76

 

The origin of epileptic seizures is thought to involve hyperexcitability caused by 

excessive depolarisations. This increase in depolarisations is thought to result from 

high frequency action potentials generated by VGSCs.
77, 78

 Blockade of VGSCs is 

the most common mechanism of action among currently available antiepileptic drugs 

(AEDs), including phenytoin, carbamazepine and lamotrinine.
79

 As mentioned, 

VGSCs cycle through three states (resting to open, open to inactivated, inactivated to 

resting, Figure 15). During seizures, the aberrant firing of action potentials results in 

a high proportion of sodium channels in the inactivated states.
80

 VGSCs are unable 

to respond to further depolarisations until they have returned from the inactivated to 

the resting state. AEDs bind preferentially to the inactivated state and thus slow the 

fast inactivation pathway of VGSCs. In doing so, these drugs can suppress the rapid 

and excessive firing of neurons that can start a seizure.  

 

3.3 VGSC Blockers  

 
 

Compounds can bind selectively to distinct conformational states of VGSCs. Drugs 

can impair the conduction of Na
+
 either by binding to the extracellular pore opening 

(TTX, Saxitoxin) or by blocking the channels from the intracellular side (local 

anaesthetics, antiarrhythmic agents) triggering conformational changes.   

Toxins have been useful for unravelling the structural and molecular determinants of 

VGSCs by modifying gating actions.
81

 At least six toxin-binding sites (sites 1-6) 

have been identified with site 1 toxins inhibiting and 2-6 site toxins enhancing 

sodium current.
82

 The usefulness of toxins as clinically relevant drugs is limited by 

their high molecular weights and lack of subtype specificity.
83

 Furthermore toxins, 

which have affinity for resting state VGSCs, cannot be removed by changing the 

membrane voltage or the gating of the channel. However, promising success has 

been demonstrated with ProTx-II, a peptide derived from tarantula venom which is 

two orders of magnitude more selective for Nav1.7 and inhibited action potential 
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propagation in nociceptors
84

, whilst µO-conotoxin has been shown to selectively 

block Nav1.8 currents in chronic pain animal models.
85

  

Inhibition of VGSCs from the intracellular side requires binding at sites located at 

the surface of the S6 helices which will occlude the pore opening.
86

 It has been 

hypothesised that these binding sites can be accessed by two distinct mechanisms: a 

hydrophilic pathway requiring binding of the drug from the intracellular side during 

channel opening and a hydrophobic pathway.
87

 Indeed, the recent crystal structure of 

the Arcobacter butzleri VGSC NavAb confirmed the existence of hydrophobic 

fenestrations within the protein lipid interface.
68

 This suggests a molecular 

mechanism featuring a closed state for VGSC inhibition. Hydrophilic compounds 

will be incompatible for the hydrophobic route, thus requiring channel opening. In 

this case, cumulative block of VGSCs occurs with high-frequency opening, with 

drug dissociation from the binding site slower than its association rate (i.e. K1 > 1). 

In contrast, neutral or hydrophobic compounds can access the intracellular binding 

site through the hydrophobic pathway when VGSCs are in the closed state, as well as 

the hydrophilic pathway during channel opening.   

Many neurological conditions involve neurons firing action potentials with high 

frequency and thus cells display a tonically depolarised membrane potential. 

Consequently, compounds exhibiting a frequency dependant inhibition of neuronal 

VGSCs are desirable as they will tend to only target VGSCs in the affected areas. 

Drugs which have a slow dissociation from VGSCs when the membrane potential is 

returned to the resting value upon repolarisation are most effective at affecting high 

frequency firing, as demonstrated by phenytoin and carbamazepine.
83

 

Although many VGSC blockers have been developed (Figure 17), there are currently 

still no established tracers for imaging of excitatory ion channels in vivo. 

Nevertheless, a number of tracers have been evaluated for imaging of N-methyl-D-

aspartate receptors (NMDARs), which is explored in chapter 6. For VGSC tracers, it 

is likely that both ion channel expression and function can influence the binding 

pattern, at least for state dependant ligands. In addition, the subtype selectivity of a 

tracer will determine its potential applications. Therefore, in order to diagnose and/or 

treat CNS-related diseases, potential new drugs have to be significantly more active 

at neuronal VGSCs (NaV1.1-NaV1.3) compared to those at other regions such as in 
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cardiovascular tissue (NaV1.4, NaV1.5), whilst demonstrating minimal effect on 

normal action potentials.
88

 However, the high degree of homology between VGSC 

isoforms makes development of subtype selective ligands challenging. The similarity 

in the amino acid sequence between the brain sodium channel genes, SCN1A, 

SCN2A, and SCN3A is greater than 90% and these three genes closely resemble 

additional brain genes (SCN8A), as well as sodium channel genes in the peripheral 

tissue and sensory neurones.
88

 The binding of VGSC tracers in vivo is therefore 

likely to reflect VGSC expression in the periphery as well as in the brain, with state 

dependant ligands showing increased uptake in tissues with high electrical activity.     

 

 

Figure 17. Structures of VGSC blockers. 

 

As part of this research, two radiotracers have been developed and their ability to 

target neuronal VGSCs has been evaluated by biodistribution, metabolite analysis, 

and in vivo SPECT/CT imaging in healthy mice. In the subsequent section, the 

results from the two studies are reported, beginning in each case with a short 

introduction, reasoning why that particular compound class was selected for tracer 

development and evaluation. The experimental methods for the synthesis and 

evaluation of the two tracers are reported in chapter 8. 
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3.4 Benzazepinone Derived VGSC Blocker for SPECT Imaging  
 

3.4.1 BNZA  

 
 

It has been reported that the 1-benzazepin-2-one derivative [
3
H]BNZA (Figure 18, 1) 

is a highly potent and state dependant VGSC blocker, displaying high affinity to rat 

brain synaptosomal membranes (Kd = 1.53 ± 0.46 nM) as well as to transfected 

human hNaV1.5 (Kd = 0.97 nM) and hNaV1.7 (Kd = 1.6 nM) VGSC isoforms.
89

 

Furthermore, sodium channel modulators inhibited binding of [
3
H]BNZA to rat brain 

membranes in a concentration dependant manner and displayed Ki values 

(veratridine: Ki = 6.8 ± 2.4 µM, phenytoin: Ki = 8.0 ± 1 µM) similar to those found 

in competition experiments with other well characterised sodium channel ligands 

such as [
3
H]batrachotoxin (Ki = 7.0 µM).

90
 Batrachotoxin (BTX) is an extremely 

toxic alkaloid that binds with high affinity to VGSCs in nerve and muscle 

membranes and due to its potency and specificity, is commonly used to study the 

function of sodium channels.
91, 92

 

 

 

Figure 18. Structure of BNZA (1) and one of its analogues (2). 

 

Analogues of BNZA have demonstrated good metabolic stability, and have been 

shown to be highly efficacious in the maximal electroshock (MES) model of 

epilepsy in mice.
80

 When orally dosed at 3 mg/kg, analogue 2 (Figure 18) prevented 

shock induced tonic-clonic seizures in 90% of subjects (n = 10) at 30 min post 

dosing. These results are comparable to those obtained with clinical standards such 

as carbamazepine (MES ED50 = 3.4 mg/kg) and lamotrigine (MES ED50 = 2.2. 
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mg/kg), and imply that derivatives of this compound class can cross the blood-brain 

barrier (BBB).  

Collectively, these data suggest that 1-benzazepin-2-ones meet many of the key 

criteria for developing neuronal radiotracers, and that suitably radiolabelled 

derivatives of BNZA have the potential for imaging of VGSCs.  

 

3.4.2 Results  

 

3.4.2.1 Radioiodinated BNZA Analogue  

 

The precursor (3) for the radioiodinated BNZA analogue (4) was prepared by Dr C 

Perèz-Medina in an excellent overall yield (46%).
93

 In one of the synthetic steps to 

obtain 3, a racemic substrate (N-Boc-DL-3-fluorophenylalanine) was used, and 

therefore the precursor (3) and the radiolabelled product ([
125

I]4) were obtained as a 

mixture of diastereoisomers. Semi-preparative HPLC was used to separate the 

diastereoisomers of the radiolabelled product ([
125

I]4), whilst enriched fractions of 

the non-radiolabelled product (4) were obtained by column chromatography. The 

two diastereoisomers of 4 were termed high-4 (h-4) and low-4 (l-4) according to 

their relative affinities towards neuronal VGSCs. The absolute configuration around 

the α-carbon (denoted by *) was not determined for this study.  

 

 

Scheme 3. Radiolabelling of the trimethyltin tin precursor to obtain a radioiodinated 
derivative of BNZA.  
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A mixture of the two diastereomers of [
125

I]4 was obtained with a radiochemical 

yield of 24 ± 4% ( n = 11) and specific activity  37.0 ± 10.4 GBq µmol
-1

 (n = 8) upon 

treatment of the trimethyltin precursor (3) with [
125

I]NaI in the presence of 0.1 M 

HCl and 1.4% H2O2 for 30 min at 60 °C. Retention times of [
125

I]h-4 and [
125

I]l-4 

were 21 and 22 min respectively (Figure 19 a) with excellent radiochemical (>99 %) 

and diastereomeric (>99 %) purities (Figure 19 b-d). Using the traditional n-octanol 

shake flask method, The Log D7.4 of [
125

I]h-4 was measured to be 3.93 ± 0.01 (n=4) 

by Dr C Perèz-Medina.  

 

 

Figure 19. HPLC chromatograms for the synthesis of [125I]4. The chromatograms show 
radioactivity (blue trace) and UV absorption at 254 nm (red trace). A = The crude reaction 
mixture from the radiolabelling of 3 (*unidentified impurities), b = co-injection of h-4 with 
[125I]h-4, c = co-injection of a mixture of h-4 and l-4 with [125I]h-4, d = co-injection of a 
mixture of h-4 and l-4 with [125I]l-4. For diagrammatic purposes, the radioactivity signal is 
offset from the UV-signal in b-d.   

 

3.4.2.2 In Vitro Evaluation  

 
 

A diastereomeric mixture of 4 was sent for evaluation against the cloned human 

NaV1.2 (hNaV1.2, SCN2A gene) and NaV1.7 (hNaV1.7, SCN9A gene) isoforms 
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expressed in Chinese Hamster Ovary Cells (CHO) by means of automated patch 

clamp (ChanTest Corp., U.S.A.).
94

 The IC50 values for compound 4 were 4.1 ± 1.5 

µM and 0.25 ± 0.07 μm, for NaV1.2 and NaV1.7 respectively. While the amino acid 

sequence of mammalian VGSCs has been largely preserved across species, distinct 

pharmacological profiles have been reported for human and rodent isoforms.
95

 

Therefore, a receptor [
3
H]BTX binding assay (by Ricerca Taiwan Ltd, Taiwan) was 

carried out using rat brain homogenates.
90

  Compound h-4 displaced [
3
H]BTX with 

an IC50 of 0.15 µM whereas l-4 had three times lower affinity (IC50 = 0.48 µm). 

From this result, the terms high (h) and low (l) were assigned to the relevant 

diastereoisomer.  

 

3.4.2.3 Biodistribution  

 

The distribution of radioactivity was measured ex-vivo 5, 15, 30 and 60 min after i.v. 

injection of [
125

I]h-4, and in a separate set of animals, 5 and 30 min after i.v. 

injection of [
125

I]l-4 (n ≥ 3, Table 3). Initially a high uptake in the liver (36.0 ± 

2.10% ID/g) and kidneys (24.0 ± 1.0% ID/g) was observed for [
125

I]h-4 with later 

time points dominated by high uptake in the intestines. The brain uptake was 

moderate for [
125

I]h-4 (0.92% ID/g at 5 min post injection) and gradually decreased 

over time. Blood clearance was slow, with 7.0 ± 1.10% ID/g at 5 min post injection 

and 3.0 ± 0.45% ID/g at 60 min, resulting in poor brain-to-blood ratios at all time 

points. 

The tissue distribution of [
125

I]l-4 was similar to that of [
125

I]h-4, with high uptake in 

the liver and kidneys 5 min post injection, and high uptake in the intestines at 30 

min. The brain uptake was lower than that of [
125

I]h-4 (0.68 vs. 0.92% ID/g at 5 

min).  
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Table 3. Biodistribution of [125I]h-4 and [125I]l-4. Values are expressed as %ID/g ± SD (n ≥ 3).  

 

3.4.2.4 Metabolite Analysis  

 
 

Radio-HPLC was used to analyse the composition of radioactive species in plasma 

and brain tissue over a period of one hour after injection of [
125

I]h-4. In both plasma 

and brain, [
125

I]h-4 was found to have excellent stability, and was the predominant 

radioactive species at all time points. The fraction of the intact tracer [
125

I]h-4 was 

93% at 5 min post-injection, 70% at 30 min, and 58% at 60 min (n = 2) in plasma. 15 

min after tracer administration, three metabolites, all more polar than the parent 

compound, were identified. In the brain, the intact tracer [
125

I]h-9 was the only 

radioactive species found at the earlier times points (5, 10 and 15 min), with some 

minor metabolites (20%, n = 2) occurring 60 min after administration.   
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Figure 20. HPLC radioactivity profiles of plasma (a) and brain (b) samples after [125I]h-4 
injection. Plasma and brain samples were injected for HPLC analysis 5, 10, 15, 30 and 60 
min post administration of [125I]h-4. The chromatographic peaks have been offset from 
each other in order to distinguish the results at each time point.  

 

3.4.2.5 SPECT/CT Imaging  

 
 

Whole body SPECT/CT scans were recorded for both diastereoisomers of [
125

I]4. 

Initially, a high uptake of radioactivity was observed in the liver (first scan, 15-25 

min post-injection) and therefore, the SPECT images (Figure 21) were in overall 

good agreement with the biodistribution data. At the later time points (second scan, 

35-55 min post-injection) the images were dominated by high levels of activity in the 

intestines. Interestingly, in three out of a total of seven mice imaged, a high uptake 

was observed in the interscapular region (Figure 21e). The uptake in this region 

appeared to be age related, as it was observed in adult mice (8-10 weeks old, [
125

I]h-

4 (n = 2) and [
125

I]l-4 (n = 1)), but not in a group of younger animals (4-6 weeks, 

[
125

I]h-4 (n = 2) and [
125

I]l-4 (n = 2)). Unfortunately, the activity levels were too low 

in order for SPECT imaging to show the regional distribution of [
125

I]4 in the brain.    

 

 



67 
 

 

Figure 21. SPECT/CT images showing the distribution of [125I]4. The images show the 
distribution of [125I]h-4 (a and b) and [125I]l-4 (c and d) at an early time point (5-25 min post 
tracer administration, a and c) and at a late time point (35-55 min post tracer 
administration, b and d). e = SPECT/CT image showing the uptake of [125I]h-4 in the 
interscapular region, 55-65 min post injection.    

 

3.4.3 Discussion  

 
 

In this collaborative study, the novel radioiodinated 1-benzazepin-2-one [
125

I]4 has 

been synthesised and evaluated to assess the suitability of this compound class for 

imaging of VGSCs. Inspired by binding studies with [
3
H]BNZA using rat brain 

synaptosomal membranes, it was anticipated that radiolabelled 1-benzazepin-2-ones 

could be developed with sufficient affinity and binding potential for in vivo imaging 

of VGSCs. One of the goals for this study was to assess the organ distribution and 

metabolic stability of [
125

I]4 over a time frame suitable for imaging with PET and 

SPECT. 

In vitro assessment of the non-radioactive, diastereoisomer mixture of the target 

compound (4) was concurrently carried out with the control –Boc derivative (5, 

Figure 22) against the human NaV1.2 (hNaV1.2, SCN2A gene) and NaV1.7 (hNaV1.7, 

SCN9A gene) isoform expressed in CHO cells. Compound 4 was found to block 

hNaV1.2 and hNaV1.7 with IC50 of 4.1 ± 1.5 µM and 0.25 ± 0.07 µM respectively 

whilst the IC50 values of 5 were 0.52 ± 0.2 µM (hNaV1.2) and 0.13 ± 0.02 µM 

(hNaV1.7). This suggests that the 2-iodobenzamide moiety is well tolerated in the 

binding site. The relative affinities of the two diastereoisomers of 4 were assessed by 

a [
3
H]BTX displacement study. The diastereomer with the shorter retention on 

HPLC displaced [
3
H]BTX with an IC50 of 0.15 μM, comparable to that of 5 (0.10 

µM) whereas the slower eluting diastereomer had three times lower affinity (IC50 = 

0.48 μM). Whilst overall, these IC50 values for 4 were well above the low nanomolar 
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affinity range typically required for in vivo imaging, the data cannot be directly 

related to binding affinities as the relationship with blocking potency and [
3
H]BTX 

displacement is rather complex. 

 

 

Figure 22. BNZA (1) and its derivatives (4 and 5) evaluated in vitro.  The –Boc group and 2-
iodobenzamide moiety have been highlighted in red and blue respectively.  

 

It was important to determine the log D7.4 of [
125

I]h-4 as lipophilicity affects brain 

uptake, metabolism and protein binding.
93

 The high lipophilicity of [
125

I]h-4 (log D7.4 

= 3.93 ± 0.01, calculated log P = 5.20) is a limitation with this study as it is likely to 

have impaired brain uptake. Studies have shown that for better brain penetration, log 

D values of potential drugs should be in the range of 1-3.
96

 For compounds over this 

range, there is increased probability of binding to hydrophobic proteins in vivo other 

than the target which can impair clearance and reduce the ratio of specific to non-

specific binding.  

Furthermore, for small molecules to readily cross the BBB, their molecular weight 

should be in the range of 100-500.
97

 Therefore another limitation of this study was 

the high molecular weight of 4 (612.45). Whilst having a long half-life (60 days) and 

thus facilitating ex vivo evaluations, the use of radioiodine for small molecule tracers 

can be problematic as it results in high lipophilicity and a significant increase in 

molecular weight. Therefore, substituting iodine with a radionuclide of lower 

molecular weight and size (for example 
18

F) may improve the pharmacokinetic 

properties and in particular, increase brain uptake. The attempts to achieve this are 

reported in section 3.4.3.1.  

Results of the metabolite analysis showed that [
125

I]h-4 exhibited excellent stability 

in both plasma and brain, as it was the predominant species at all-time points. 
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Deiodination appeared to be low, corroborating results from SPECT imaging and 

biodistribution, since no thyroid uptake was observed. Figure 20b illustrates how the 

parent compound had a longer retention time than normal for the 15 minute time 

point, potentially caused by a drift in the HPLC column, most likely due to a minor 

variation in the sample or eluent preparation.  

The distribution of [
125

I]h-4 and [
125

I]l-4 was similar, with brain uptake initially 

moderate and gradually decreasing over time. The lack of retention in the brain 

implies that no specific binding to neuronal VGSCs was achieved. At later time 

points, the majority of the activity was found in the intestines, consistent with 

hepatic clearance.  

Surprisingly, whilst the SPECT images overall confirmed the biodistribution results, 

a high uptake was observed in the interscapular region in the older animals (8-10 

weeks). The clearance of [
125

I]l-4 from the interscapular region appeared to be faster 

(Figure 21, c to d), whilst for [
125

I]h-4 the signal persisted up until 6 hours post tracer 

administration (image not shown). Within this region, brown adipose tissue (BAT) is 

known to build up yet BAT has no known expression of VGSCs.
98

 Accordingly, the 

high uptake of [
125

I]4 in the interscapular region may therefore be due to a 

physiological effect, or potentially, cross activity with an unknown protein. 

Nevertheless, the highly localized uptake of [
125

I]4 in the interscapular region 

demonstrates the potential of 1-benzazepin-2-ones for in vivo imaging, provided that 

sufficient VGSC binding affinity can be achieved. To achieve this, the next section 

details attempts to modify structure 4 in order to lower its lipophilicity.  

 

3.4.3.1 [
18

F]-Derivative of BNZA  

 
 

As part of this PhD, attempts were made to synthesise a fluorinated (PET) analogue 

([
18

F]14) more structurally related to the parent (BNZA) compound, whilst 

exhibiting a lower molecular weight (482.59) and lipophilicity (calculated log P of 

14 = 4.48) than [
125

I]4. The proposed synthetic route involved radiolabelling the 

precursor (11) with 
18

F to obtain an intermediate ([
18

F]12) (Scheme 4).  
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Scheme 4. Retrosynthetic analysis to obtain [18F]14. R = -Ms or –Ts. Synthetic procedures 
for each reaction are discussed in chapter 8.  

 

It was envisioned that following radiolabelling, the protecting trityl group on the 

radiolabelled product ([
18

F]12) would have been cleaved and [
18

F]13 coupled to the 

appropriate boc-protected amino acid. However, attempts to obtain the precursor 

(11) for 
18

F radiolabelling were unsuccessful (Scheme 5).  
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Scheme 5. Attempts to obtain the precursor (11) for 18F radiolabelling. (I): NaH (1.1 equiv.), 
propane-1,3-diyl bis(4-methylbenzenesulfonate) or propane-1,3-diyl dimethanesulfonate, 
DMF, 24 hours, 0 °C → RT. (II): Methane or tosyl sulfonyl chloride, TEA, DCM, 90 Min.   

 

Compound 9 was synthesised by methods that have been reported in the literature.
93

 

In one attempt, overnight reaction of 9 with either propane-1,3-diyl bis(4-

methylbenzenesulfonate) or propane-1,3-diyl dimethanesulfonate in the presence of 

sodium hydride in anhydrous dimethyl formamide (DMF), followed by aqueous 

extraction and column chromatography purification did not lead to the desired 

product, (11). Proton NMR and liquid chromatography – mass spectrometry (LC-

MS) revealed the hydrolysed product had been formed (15) for both the mesyl (Ms) 

and tosyl (Ts) groups.  In the second attempt, 15 was reacted with either meth or 

tosyl sulfonyl chloride (MsCl or TsCl) for 90 minutes in the presence of anhydrous 

DCM and TEA. Analysis of the crude mixture by proton NMR revealed that 15 had 

not reacted and thus the desired product (11) was not formed.  

Essentially, the precursor required to obtain [
18

F]12 was not obtained. A possible 

explanation for this is that 9 was incorporated onto both ends of the propane chain 

(10) and thus a dimer was produced (Figure 23). This is probable taking into 

consideration that although 2 equivalents of either propane-1,3-diyl bis(4-

methylbenzenesulfonate) or propane-1,3-diyl dimethanesulfonate was added, this 

was done by drop wise addition, resulting in an initial excess of 9.    
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Figure 23. A possible product formed in the attempts to obtain a precursor for 18F 
radiolabelling. 

 

3.5 Evaluation of an Iminodihydroquinoline Tracer for Imaging of 

VGSCs 

 
 

3.5.1 WIN17317-3  

 
 

Initially, WIN17317-3 (Scheme 6) was reported to be a selective voltage gated 

potassium channel blocker.
99, 100

 In subsequent studies however, the binding of 

[
3
H]WIN17317-3 to rat brain synaptosomal membranes (Kd = 2.2 ± 0.3 nM) was 

found to be insensitive in the presence of a number of potassium channel modulators. 

Interestingly, several sodium channel ligands did block binding.
101

 Encouragingly, 

exposure of the brain preparations to [
3
H]WIN17317-3 resulted in a concentration 

dependant association, whilst unlabelled WIN17317-3 displaced binding of its 

radiolabelled congener (Ki = 1.30 nM).  

Furthermore, autoradiography of rat brain sections incubated with [
3
H]WIN17317-3 

revealed high specific binding to sites (cerebral cortex, substantia nigra and 

hippocampus) that correspond with the known distribution of VGSCs in the CNS.
101

 

Electrophysiological studies using CHO cells transfected with NaV1.2 showed that 

WIN17317-3 dose dependently inhibited agonist stimulated sodium currents. As a 

result, WIN17317-3 represents a high-affinity ligand for VGSCs. The ability to 

depict VGSC distribution in vitro makes WIN17317-3 appealing as a lead tracer for 

development. 
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3.5.2 Results  

 

3.5.2.1 Radioiodinated WIN17317-3 Analogue  

 
 

The tin precursor (16) for radiolabelling with 
125

I and the non-radioactive reference 

compound (17) were prepared by Dr C Perèz-Medina in excellent yields (37% and 

25% respectively).
102

   

 

 

Scheme 6. 125I Radiolabelling of WIN17317-3.  

 

The radiotracer ([
125

I]17) was obtained by Dr C Perèz-Medina by  iodo-

destannylation of 16 with [
125

I]NaI in the presence of dilute hydrogen peroxide for 

30 min at room temperature (58 ± 9% radiochemical yield with >99% radiochemical 

purity and a specific activity of 53.2 ± 7.1 GBq µmol
-1

, retention time on HPLC = 

12.5 minutes), (Scheme 6).  

Using the traditional n-octanol shake flask method, the Log D7.4 of 17 was measured 

to be 2.98 ± 0.08 (n = 3) by Dr C Perèz-Medina and is within the optimal range for 

brain penetration. 
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3.5.2.2 In Vitro Evaluation   

 

The iodinated reference compound (17) was sent for evaluation in an automated 

patch clamp assay using CHO cells transfected with the human (hNaV1.2, SCN2A 

gene) NaV1.2 isoform. The blocking potency of 17 was IC50 1.5 ± 0.5 µM and that of  

WIN17317-3 (which was included as a positive control) was IC50 2.2 ± 1.2 µm. 

Displacement studies with [
3
H]BTX using rat brain homogenates suggests that the 

binding affinity of 17 (IC50 21.1 nM) was comparable with WIN17317-3 (IC50 25.6 

nM).
101

  

 

3.5.2.3 Biodistribution  

 
 

The distribution of radioactivity was measured ex vivo after i.v. injection of [
125

I]17 

at predetermined time points (5, 15, 30 and 60 min n ≥ 3) in female mice. At the 

early time points, a high uptake was observed in the kidneys and liver, which over 

time decreased in parallel to an increase uptake in the intestines, consistent with 

hepatobiliary excretion. Brain uptake was initially low (0.48 ± 0.04% 5 min post 

[
125

I]17 administration) and showed no sign of retention. Clearance from the blood, 

heart and spleen was rapid.  
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Table 4. Tissue distribution of [125I]17 expressed as %ID/g ± SD (n ≥ 3).   

 

3.5.2.4 Metabolite Analysis  

 
 

To assess the metabolic stability of [
125

I]17, the composition of radioactive species in 

plasma and brain tissues were analysed by radio-HPLC over a period of one hour 

after injection. In plasma, the fraction of the intact tracer [
125

I]17 was 22.8% at 5 

min, 12.5% at 15 min, and 5.2% at 30 min (n = 2). At 60 min, minimal traces of 

[
125

I]17 were detected (Figure 24). In the brain, polar metabolites were predominant 

at all time points, and additional metabolites of intermediate polarity along with the 

parent compound [
125

I]17 were also observed. The low radioactivity levels recorded 

in the brain made quantification of the metabolite concentrations difficult.   
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Figure 24. HPLC radioactivity profiles of plasma samples after [125I]17 administration. 
Plasma samples were injected for HPLC analysis 5, 15, 30 and 60 min post administration of 
[125I]17.   

 

3.5.2.5 SPECT/CT Imaging 

 

Whole body SPECT/CT scans were recorded following injection of [
125

I]17 in 

female mice (4-10 weeks old). Similar to the biodistribution results, high 

radioactivity levels were observed in the liver (0-15 min post injection). At the later 

time points, (15-35 min post injection, Figure 25) high levels of radioactivity were 

observed in the intestines. Unfortunately, uptake in the brain was too low for SPECT 

imaging to show the regional distribution of [
125

I]17. Low levels of radioactivity 

were observed in the thyroid, stomach and bladder, thus excluding de-iodination as a 

major metabolic route.  

 

 

Figure 25. SPECT/CT image showing the distribution of [125I]17, 15-30 min after injection. At 
this later time point, radioactive uptake is dominated within the intestines.   
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3.5.3 Discussion  

 

The tritiated derivative of WIN17317-3 displayed high affinity to VGSCs in rat brain 

tissue (Kd = 2.2 ± 0.3 nM) as well as successfully imaging neuronal VGSC 

expression in in vitro autoradiography.
101

 Due to these promising findings, 

WIN17317-3 was selected as a lead candidate for tracer development. 

Encouragingly, the results from the patch clamp and [
3
H]BTX displacement studies 

of WIN17317-3 and the non-radioiodinated analogue 17, suggests that iodine is well 

tolerated in the binding site and that 17 largely retains the biological properties of the 

parent compound.   

Nevertheless, (in vivo and ex vivo) biological evaluation of [
125

I]17 failed to 

demonstrate any binding that could be attributed to neuronal VGSCs. High 

accumulation of radioactivity was observed in the intestines 15 min post tracer 

administration. Consequently, this is highly suggestive of rapid excretion of the 

parent tracer and its metabolites. To rule out the possibility that the distribution 

pattern was the result of specific binding to VGSCs expressed in the intestines,
103

 the 

composition of radioactivity in this tissue sample was also analysed by radio-HPLC. 

It was found that [
125

I]17 constituted only a minor component, with various other 

metabolites observed.  

The metabolic stability of [
125

I]17 was very poor both in the plasma and brain. De-

iodination as a major metabolic route can be excluded due to minimal uptake of 

radioactivity observed in the bladder, stomach and thyroid. As a result, the low 

metabolic stability of [
125

I]17 is likely related to the core iminodihydroquinoline 

scaffold, and hence compromises other derivatives of this compound class for further 

tracer development. This rapid metabolism provides a plausible explanation for the 

lack of uptake observed in the brain. However, the low activity level in the brain at 5 

min post [
125

I]17 injection points to additional contributing factors, such as high 

protein binding or active extrusion by drug efflux pumps. It is noteworthy that the 

parent compound is ionized at physiological pH, which may also impair its passage 

through the BBB.
104
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3.6 Conclusion 

 

Two lead structures have been radiolabelled and evaluated as potential imaging 

agents for neuronal VGSCs. The two diastereoisomers of [
125

I]4 and the 
125

I-labelled 

derivative of WIN17317-3 exhibited minimal brain uptake in vivo.  

Taking into consideration the highly localised uptake of [
125

I]4 in the interscapular 

region of mice, as well as its excellent metabolic stability, attempts were made to 

synthesise a fluorinated derivative. It was anticipated that such a tracer, with a lower 

lipophilicity and molecular weight, would have improved brain uptake compared to 

[
125

I]4. However, efforts to modify the BNZA structure and obtain a precursor for 

18
F labelling were unsuccessful.  

[
125

I]17 suffered not only from poor brain uptake, but was also found to have a low 

metabolic stability. Essentially, these findings are important as they provide evidence 

to rule out this compound class for future tracer development.            
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Chapter 4 Multimodal Imaging of Neuroinflammation  

 

4.1 Aims and Hypothesis  

 
 

The study devised to explore the feasibility of imaging neuroinflammation with 

SPECT, MRI and Phosphorimaging is detailed in this chapter. The aim was to 

provide a more robust method for imaging Vascular Cell Adhesion Molecule-1 

(VCAM-1) expression.  

By radiolabelling VCAM-1 targeting antibodies conjugated to Micron Sized 

Particles of Iron Oxide (MPIOs), it was assumed that VCAM-1 expression could be 

monitored in the same animal following administration of the inflammatory cytokine 

TNF-α, by both SPECT/CT and MRI.   

      

4.2 Neuroinflammation  

 
 

Inflammation, defined as local reaction to injury, is the body’s self-protection 

mechanism, with the aim to remove harmful stimuli such as damaged cells, irritants 

or pathogens. Leukocyte recruitment to regions of inflamed tissue is vital for the 

removal of these inflammatory stimuli.
105

 When this removal is not efficient, the 

beneficial inflammatory response can become chronic. Therefore, the inflammation 

response must be well-orchestrated.  

Exposure to an antigenic stimulus triggers an immune response, which involves the 

release of inflammatory mediators from activated T-cells and monocytes
105

, as well 

as microglia in the brain.
106

 Furthermore, supportive and regulatory glial cells such 

as astrocytes and oligodendrocytes in the brain and spinal cord; Schwann cells in the 

peripheral nerves; satellite glial cells in the dorsal root ganglia; as well as endothelial 

cells, can secrete immunoregulatory factors capable of mediating 

neuroinflammation.
107

 Although these factors can induce beneficial effects that help 

to limit disease, for instance by killing infectious microorganisms, uncontrolled 

inflammation may amplify underlying disease states. For example, in MS, a 

breakdown of tolerance to self-antigens occurs by an unknown mechanism, leading 

immune cells to degrade the protective myelin sheath that surrounds axons.
107
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Cerebral inflammation also occurs in various other neurological conditions, such as 

stroke, traumatic brain injury, brain tumours and Alzheimer’s disease.  

One of the critical pro-inflammatory mediators released is the cytokine Tumour 

Necrosis Factor – alpha (TNF-α). TNF-α stimulates endothelial cells within the 

inflamed microenvironment and induces the expression of cell adhesion molecules 

such as VCAM-1 and other endothelial adhesion molecules. VCAM-1 binds to α4β1 

integrin, which is constitutively expressed on lymphocytes, monocytes and 

eosinophils. Furthermore, VCAM-1 is a member of the immunoglobulin supergene 

family that mediates the rolling and extravasation of leukocytes across the vascular 

endothelium.
108

 This is an important inflammatory event and has been implicated in 

the progression of epilepsy (epileptogenesis)
109

 and may underpin development of 

brain tumours as VCAM-1 can be hijacked by tumour cells to aid adhesion to the 

vascular endothelium.
110

  

VCAM-1’s pattern of regulation is unique and under baseline conditions there is a 

low expression. In rabbits, mice and humans, VCAM-1 is rapidly induced by 

proatherosclerotic conditions, including in early lesions.
111

 Equally, using cultured 

human endothelial cells, it has been shown that VCAM-1 first appears 4-6 hours 

after cytokine treatment.
112

 Its maximum expression occurs 12-18 hours, then 

gradually declines over several days. Also, significant up-regulation of VCAM-1 is 

noted at a TNF-α dose of 5 µg/kg with optimal expression occurring at 10 to 25 

µg/kg.
113

  

A biomarker can be defined as “a characteristic that is objectively measured and 

evaluated as an indicator of normal biological processes, pathogenic processes, or 

pharmacological responses to a therapeutic intervention”.
114

 As inflammation is 

characterised by a cascade of signalling pathways and cellular interactions acting in 

concert, the degree, severity and localisation cannot be ascertained using a single 

biomarker. Nevertheless, VCAM-1 expression is an attractive marker for 

inflammation as its low constitutive expression renders it an ideal target for 

molecular imaging. Furthermore, VCAM-1 are localised on the surface of 

endothelial cells within blood vessels, and can therefore be used to monitor 

pathology or therapies in the brain without the need for contrast agents (CA) to cross 

the BBB.  
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Recently, the development of Micron sized Particles of Iron Oxide (MPIOs) coated 

with VCAM-1 targeting antibodies as CA for imaging VCAM-1 expression with 

MRI has been a major technological advance, as it enables neuroinflammation to be 

detected and localised with exquisite sensitivity and specificity.
115-120

 This has 

expanded the MRI landscape to enable imaging of molecular events in vivo, a 

domain traditionally restricted to optical techniques and imaging with SPECT and 

PET. Iron oxide particles can provide image contrast due to unpaired electrons (4 for 

Fe
2+

 and 5 for Fe
3+

) in the outer shell of the iron atoms giving it superparamagnetic 

properties that can distort magnetic fields. MPIOs provide marked contrast attributed 

to the sizable payload of iron oxide which results in regions of hypointensities up to 

50 times the physical diameter of the microparticle.
115

  

 

4.3 Study Outline     

 
 

In order to identify the potential of SPECT for imaging of neuroinflammation and to 

explore the value of complimentary multimodal imaging, VCAM-1 targeting MPIOs 

were radiolabelled with iodine-125. To characterise this imaging agent for in vivo 

neuroimaging, its biodistribution and blood clearance properties have been 

investigated. This radiolabelled CA was then evaluated in a rat model of cerebral 

inflammation based on intra-striatal injection of TNF-α. To ensure that inflammation 

was induced by TNF-α and not the injection procedure itself, saline was injected in 

place of TNF-α for the control groups. Equally, to control for non-specific binding, 

isotype matched, generic antibodies (IgG) were conjugated to MPIOs, radiolabelled 

and evaluated in TNF-α treated rats. Experimental details for this study can be found 

in chapter 8.  

MPIOs were purchased commercially as Dynabeads
®
 MyOne

TM
 tosyl-activated 

particles consisting of polystyrene beads coated with a polyurethane layer. Briefly, 

the hydroxyl groups found on this coating are activated by reaction with p-

toluensulphonyl chloride. The resulting sulphonyl ester can react with proteins or 

ligands containing sulfhydryl or amino groups (Scheme 7. In this study, the 

monoclonal antibodies conjugated to MPIOs were radiolabelled with 
125

I.  
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Scheme 7.  

 

Unless stated otherwise, [
125

I]VCAM-MPIO or [
125

I]IgG-MPIO was administered 7 

hours after rats were treated with TNF-α whilst [
125

I]VCAM-MPIO was injected in 

rats that received saline in place of TNF-α. The CA (5 mg of iron per kg of animal 

weight, which approximately equates to 19.2 mg of tosyl activated Dynabeads, 4 x 

10
8
 particles

115
, 30-150 MBq) in heparinised phosphate-buffered saline (1 mL, pH 

7.4), was delivered via a cannula inserted into the right external jugular vein.  

In this collaborative study, the quantification represented in Figure 30 was obtained 

by Dr B Duffy who also performed the intra-cerebral injections, as well as 

processing the MRI images for co-registering with SPECT.   

4.4 Results  

 

4.4.1 Conjugation Radiochemistry 

 
 

As the iron content in MPIOs is responsible for the signal hypointensities on MRI 

images, the percentage of iron was normalised to the weight of animal (in kg) when 

determining the amount of MPIOs to use for each animal. After conjugation, the 

final product was anti-VCAM-1 antibodies bound to MPIO and henceforth will be 

referred to as VCAM-MPIO. The radiolabelled CA was obtained directly from 

antibody coated MPIOs by incubation with [
125

I]NaI in pre-coated iodogen tubes. 
125

I 

was introduced onto tyrosine residues present on the antibodies and isolated by 

magnetic immobilisation to give [
125

I]VCAM-MPIO in 85 ± 5% (n = 11) 

radiochemical yield.  
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4.4.2 Blood Clearance and Biodistribution 

 
 

In healthy rats, [
125

I]VCAM-MPIO displayed rapid kinetics and was effectively 

cleared from the blood pool 2 min post-injection (Figure 26a). Within 10 min, the 

CA accumulated in the lungs (4.8 ± 1.3 %ID/g), spleen (3.4 ± 1.4 %ID/g) and liver 

(1.5 ± 0.5 %ID/g), with negligible uptake in the brain (0.016 ± 0.005 %ID/g) (Figure 

26b). The low radioactivity levels in the bladder and thyroid, as seen by whole body 

SPECT/CT (Figure 26c), suggest that [
125

I]VCAM-MPIO remains largely intact after 

administration in vivo.  

 

Figure 26. (a) Blood clearance and (b) ex-vivo biodistribution of [125I ]VCAM-MPIO in healthy 
rats. For biodistribution studies, the animals were euthanized 10 min post tracer 
administration and the results displayed are averaged (n=3) ± SEM. (c) In vivo, 
biodistribution of [125I]VCAM-MPIO, (whole body SPECT/CT maximum intensity projection), 
20 min post CA administration (5 mg Fe/kg, 0.2 MBq/g per gram).   
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4.4.3 Dose Optimisation 

 
 

In order to facilitate sequential imaging with SPECT/CT and MRI in individual 

animals, dose optimisation studies were performed in rats that were injected with 

TNF-α in the right striatum to induce inflammation. Although in preliminary studies 

2 mg of Fe/kg of [
125

I]VCAM-MPIO (0.043 MBq/g) was sufficient for imaging with 

SPECT/CT, this concentration appeared to be too low to give discernible 

hypointensities with MRI (Figure 27a). Therefore, higher doses of MPIO were used 

to determine the optimum concentration for MRI. The MRI contrast effect seemed 

dependant on the amount of [
125

I]VCAM-MPIO administered, and was only apparent 

at higher doses of iron oxide (Figure 27b and c). At 5 mg Fe/kg, there was a 

pronounced difference between TNF-α treated animals, animals sham treated with 

saline, and TNF-α treated animals that received non-specific CA (IgG-MPIO). A few 

hypointensities were noted in the brains from the two control groups, most likely due 

to dephasing from the vasculature (Figure 27d and e). At the optimised concentration 

of iron oxide (5 mg Fe/kg), imaging with SPECT/CT showed localised binding of 

the CA in the brains of TNF-α treated animals, consistent with neuroinflammation, 

when using radioactivity levels at both a low and high range (0.20-0.25 and 0.70-

0.90 MBq per gram of body weight, Figure 27f and g). In the TNF-α group, 0.23 

MBq/g resulted in a clear difference between the signal from the brain and the 

extracranial regions (Figure 27f). No CA binding could be detected in the brains of 

animals from the control groups with SPECT (Figure 27h and i). Instead, at both the 

low (0.25 MBq/g) and high (0.71 MBq/g) levels of radioactivity, signals from the 

extracranial region dominated.  
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Figure 27. Dose optimisation studies of [125I]VCAM-MPIO for in vivo imaging. (a) Coronal 
MRI and SPECT/CT images and (b-c) coronal MRI images demonstrating binding of 
[125I]VCAM-MPIO (0.043 MBq/g) at different doses of iron oxide (2, 5 and 6 mg Fe/kg), 
administered 7 hours after intra-cerebral TNF-α injection. The optimum dose of iron oxide 
(5 mg Fe/kg) was assessed in two control groups by MRI; (d) Rat sham treated with saline; 
(e) TNF-α treated rat administered IgG-MPIO. SPECT/CT imaging was performed 20 min 
after administration of [125I]VCAM-MPIO (5 mg Fe/kg, 0.23-0.9 MBq/g) in animals treated 
with (f and g) TNF-α or (h and i) saline. SPECT/CT imaging was conducted on animals which 
received (f and h) a low radioactive dose and on animals administered with (g and i) a high 
radioactive dose of the CA.  

 

4.4.4 Qualitative Comparison of MRI, SPECT/CT and Phosphorimaging 

 
 

To facilitate qualitative comparison between the data, MRI images were co-

registered with CT enabling SPECT images to be overlaid on the MRI (Figure 28a-

d). In TNF-α treated rats (n=4), the hypointensities present on MRI were in good 

agreement with the SPECT signals in the brain, and also correlated well with 

phosphorimaging of cryosections from the site of TNF-α injection (Figure 28e and 

f). Interestingly, in the saline treated control group, phosphorimaging showed 

localised uptake of the CA at the injection site, suggesting that the sham treatment 

also induced local inflammation (Figure 28g). The low and homogenous 

radioactivity levels observed with phosphorimaging in brains from animals that 

received [
125

I]IgG-MPIO confirms that non-specific binding of the CA is negligible 

(Figure 28h).  
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Figure 28. Multimodal imaging of VCAM-1 expression in a TNF-α treated rat using 
[125I]VCAM-MPIO (5 mg Fe/kg, 0.25-0.90 MBq/g). (a): Coronal MRI image, (b): Coronal 
SPECT/CT image, (c): Co-registration of MRI and CT images, (d): SPECT overlaid on MRI 
image; (e) Representation of the coronal sections from the plane of injection; (f) 
Phosphorimages of brain sections with [125I]VCAM-MPIO in TNF-α treated rat, (g) a saline 
sham treated rat, and with (h) [125I]IgG-MPIO (5 mg Fe/kg, 0.2 MBq/g) in the TNF-α model. 

 

4.4.5 Quantitative Comparison of MRI and SPECT  

 
 

For MRI, local thresholding performed well for the segmentation of hypointense 

regions (Figure 29).  

 

Figure 29. Illustration of the procedure for MRI quantification. (a) Brain extraction; (b) 
hypointense regions segmented using local thresholding; (c) segmented regions overlaid in 
red upon the original MRI image.  
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Injection of TNF-α into the right striatum induced widespread inflammation, which 

included the left hemisphere (Figure 30a and b). For this reason, the total signal from 

[
125

I]VCAM-MPIO in the whole brain, as well as in the two hemispheres was 

determined for quantitative comparison between the data obtained with MRI and 

SPECT/CT. By comparing the signal in the two brain hemispheres, bias from 

manually defining ROIs is avoided. Furthermore, direct comparisons between the 

two hemispheres enables differences in the data obtained with MRI and SPECT to be 

highlighted.  

Quantification of both MRI and SPECT signals revealed higher CA binding in TNF-

α treated animals compared to the two control groups, globally as well as in each of 

the brain hemispheres (Figure 30c-e). Therefore, there is overall good agreement 

between the two modalities. Nevertheless, MRI analysis indicated more pronounced 

difference in CA uptake between the left and right hemispheres in the TNF-α group: 

the difference in the group means when comparing CA uptake in the right 

hemisphere reached a significance of p = 1x10
-6

 with MRI, but only p = 0.045 with 

SPECT (Figure 30e). Quantification of signals observed on the cryo-sections from 

phosphorimaging was unfortunately not feasible, because the radioactivity levels that 

were used for imaging with in vivo SPECT/CT were too high.  
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Figure 30. 3-D representation and quantification of CA binding.  3D representation of CA 
binding (VCAM-MPIO, 5 mg Fe/kg) based on in vivo MRI images for the (a) saline control 
group and (b) the TNF-α treated group. This was produced by Dr B Duffy. Segmented 
hypointense regions are shown in red, whilst the green and blue areas indicate the left and 
right brain regions (respectively) used for quantification. MRI quantification has been 
achieved by determining the percentage of hypointense signals within the ROI volume 
(either left, right or whole brain). C-e: Quantification of CA binding as assessed by in vivo 
MRI (red) and in vivo SPECT (blue). Quantification was carried out over the (c) whole brain 
as well as the (d) left and (e) right cerebral hemispheres. Following intracerebral saline 
(n=3) or TNF-α injections (n=4), animals were administered [125I]-VCAM-MPIO or [125I]-IgG-
MPIO (n=3) (5 mg Fe/kg, 0.23-0.9 MBq/g).  

 

In the TNF-α group, dynamic imaging with SPECT using 5 min frames from 20 to 

45 min post-injection revealed that [
125

I]VCAM-MPIO binds strongly to the brain 

(Figure 31).  
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Figure 31. Dynamic SPECT (5 min frames) from 20-45 min following administration of the 
CA (5 mg Fe/kg, 0.20 MBq/g). For each group, the quantification from a representative 
animal is shown. Quantification was performed across the whole brain.  

 

4.4.6 Distribution of [
125

I]VCAM-MPIO within the Brain Vasculature 

 
 

To determine the distribution of [
125

I]VCAM-MPIO within the brain vasculature, 

one TNF-α treated rat was administered a reduced dose of [
125

I]VCAM-MPIO (3 

Fe/kg, 30 KBq/g). Phosphorimaging of brain cryosections (obtained 1 hour after CA 

administration) revealed a highly heterogeneous distribution, with the CA 

predominately confined to large blood vessels (Figure 32a). This was consistent with 

the pattern of hypointensities observed with MRI (Figure 32b) on slices both anterior 

and posterior to the bregma (Figure 32c). Whether the CA localised on vessels on the 

arterial or venous side of the circulation was not determined in this study. However, 

several large vessels indicative of major arteries were identified. These include the 

anterior striate arteries (astr), anterior choroidal arteries (ach), transverse 

hippocampal arteries (trhi), the supracollicular network (scol),
121

 as well as the 

choroidal artery. The prominent vessels which lie on the dorsal surface of both 

hemispheres also contained high levels of the CA.  
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Figure 32. CA distribution within the brain vasculature. (a) Phosphorimages of coronal brain 
sections (20 µm) from a TNF-α treated animal administered  [125I]VCAM-MPIO (3 mg Fe/kg, 
30 KBq/g). The sections anterior (+) and posterior (-) relative to the bregma have been 
indicated in mm and the animal was culled 40 min after CA administration.  (b) Coronal MRI 
images from a separate study of a TNF-α treated rat administered [125I]VCAM-MPIO (5 mg 
Fe/kg, 0.20 MBq/g) showing uptake in large blood vessels. In vivo MRI was conducted 
approximately 40 min after CA administration. (c) The approximate locations of the bregma 
(red) and lambda (green) shown on a rat brain, and on the skull which were used as 
indicators to ensure that intra-cerebral injections (of TNF-α or saline for controls) on each 
animal was at the same co-ordinates, which was always located at the right brain 
hemisphere.  

 

4.5 Discussion  

 
 

The assessment of radiolabelled, VCAM-1 targeting micro-sized particles of iron 

oxide, in a model of neuroinflammation has revealed for the first time, its potential 

as a multi – modal imaging agent; conspicuity of the CA was not only evident by 

MRI, but was also seen with SPECT/CT and phosphorimaging. In vivo 

quantification of both the MRI and SPECT signals in the affected right brain 

hemisphere revealed that binding of [
125

I]VCAM-MPIO was almost four times 

higher in the disease model, (TNF-α treated animals), compared to the two controls.  

From the synthesis perspective, the presence of superparamagnetic iron oxide 

enabled rapid and efficient purification of the radiolabelled CA. The simplicity and 

highly practical nature of this method means that it can easily be adopted for 

radiolabelling and purifying MPIO/antibody constructs with shorter lived, higher 

energy, gamma emitting radionuclides such as 
123

I.  

MPIOs were selected primarily due to their exquisite sensitivity by the contrast 

“blooming effect”; a phenomenon where the effects of MPIO on local magnetic field 
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homogeneity and detectable contrast extend 50 times the physical diameter of the 

microparticle.
122, 123

 p-Toluenesulfonyl (tosyl) activated MyOne
TM 

Dynabeads® 

were used due to their large binding capacities (0.04-0.06 mmol/g) and the ease by 

which they can be conjugated to primary amine or sulfhydryl groups on antibodies, 

producing high yields. This strategy has been reported in several in vivo VCAM-1 

targeting studies
115-120

, suggesting that their physiochemical properties are suitable 

for in vivo imaging. 

The manufacturers’ specifications state that per mg of MyOne
TM 

Dynabeads®, 14-19 

µg of whole antibodies can be conjugated, which in the best case scenario, equates to 

approximately 173 pmol per mg of particle (or 104,180 antibodies per particle). For 

the synthesis of VCAM-MPIO, 40 µg of antibody were used in the conjugation 

reaction per mg of iron/MPIO (Fe-MPIO), and the final radiochemical yield of 

[
125

I]VCAM-MPIO was excellent (85 ± 5% n = 11). An excess of antibody was used 

for the conjugation in order to account for factors that may impede binding between 

the amine or sulfhydryl groups on the antibody with the tosyl activated groups on the 

particles, such as steric hindrance or hydrolysis of the tosyl functional group.  

Kinetic studies revealed that [
125

I]VCAM-MPIO binds strongly within the brain 

vasculature and clears rapidly (within minutes) from the blood pool, which is in 

good agreement with previously published results.
124, 125

 Due to this rapid clearance, 

in vivo imaging was performed soon after CA administration in order to maximise 

the signal-to-background ratio. It is noteworthy that efforts to develop particle-

derived radiotracers have focused considerably on nanoparticles.
126, 127

 However, 

nanoparticles typically exhibit blood clearance rates on the order of hours or days.
128

 

Accordingly, these results suggest that micron-sized particles could improve image 

contrast compared to vascular-targeted nanoparticles. Moreover, by validating the 

rapid clearance of micron-sized imaging agents, there is now further scope for their 

use with a wider range of radionuclides, including short-lived positron emitters, such 

as 
68

Ga and 
18

F for imaging with PET.  

To obtain blood for the kinetic study, a cannula was implanted into the right external 

jugular vein of the rats.
129

 This permitted sufficient volumes of blood to be 

withdrawn and then to be replaced with an equivalent volume of saline. Replacing 
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the sample volume ensured that repeated withdrawals were possible without 

compromising blood volume.  

Biodistribution studies in healthy rats showed high uptake of [
125

I]VCAM-MPIO in 

organs known to clear iron oxide particles.
130

 The high accumulation in the lungs 

displays pulmonary first pass effect, whilst high liver and spleen uptake displays 

clearance of the iron oxide particles by the reticuloendothelial system. The high lung 

uptake observed in ex vivo biodistribution was not observed in the in vivo image 

(Figure 26). This discrepancy is likely due to differences in how radioactivity is 

measured with the two techniques: in ex vivo biodistribution, radioactivity is 

correlated to the weight of the tissue samples (%ID/g), whereas in vivo SPECT 

imaging reflects activity per volume. As the lungs contain a high proportion of air, 

they may contain high activity levels relative to their weight, yet fairly low activity 

levels relative to their volume. Fundamentally, the in vivo and ex vivo biodistribution 

revealed that uptake in the thyroid and bladder was minimal, suggesting that the rate 

of deiodination from the particle was low and hence good stability of the CA.  

SPECT/CT imaging was conducted approximately 20 minutes after CA 

administration, followed by MRI (which commenced roughly 1 hour after CA 

administration). To allow sequential imaging with SPECT/CT and MRI in individual 

animals, dose optimisation studies were performed in rats that were pre-treated with 

TNF-α. Marked hypointensities in TNF-α treated rats were only observed at high 

concentrations, with 5 mg Fe/kg appearing to be the optimal dose. It is worth noting 

that incorporating iodine-125 on the antibody may reduce the binding affinity of the 

iron oxide particles to the target antigen. Determining the effects (if any) of 

radiolabelling on the affinity of VCAM-MPIO will provide a better indication of 

how sensitive the technique is.  Quantifying the observed MRI signals at different 

MPIO doses and keeping the amount of radioactivity consistent will help to achieve 

this.   

At the optimised concentration of MPIOs for MRI (5 mg Fe/kg), imaging with 

SPECT/CT showed localised uptake of CA in the brain, consistent with 

neuroinflammation. Promisingly, this was apparent when using radioactivity levels 

as low as 0.25 MBq per gram of animal weight. Dynamic imaging with SPECT 

using 5 min frames from 20 to 45 min post-injection revealed that [
125

I]VCAM-
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MPIO binds strongly to the brain vasculature, with no change in the global 

radioactivity levels observed over this period of time (Figure 31).  

In TNF-α treated rats (n = 4), considerably more CA was detected compared to the 

control groups; the hypointensities present on MRI were in good agreement with the 

SPECT signals in the brain, and also correlated well with phosphorimaging of 

cryosections from the site of TNF-α injection. In particular, MRI and 

phosphorimaging showed that in the TNF-α group, the CA tended to localise to 

larger vessels in favour of smaller ones. Further work will be needed to determine 

how faithfully this reflects the distribution of the VCAM-1 receptor in the brain’s 

pathological state or whether this phenomenon might to some extent be due to blood 

flow.  

Any discrepancies in the results, especially in terms of quantification between 

SPECT and MRI were in part due to the use of iodine-125. Attenuation and scatter 

of the low energy gamma rays (35.5 KeV) makes iodine-125 poorly suited for in 

vivo imaging. Attenuation is likely to have affected the results from the TNF-α 

group, where inflammation is most pronounced within deeper brain tissues. Despite 

this limitation, imaging of [
125

I]VCAM-MPIO with SPECT/CT enabled 

inflammation to be detected and localised at least in the outer regions of the rat brain, 

using moderate amounts of radioactivity and short imaging sequences (5 min 

frames). The use of iodine-123, which emits higher energy gamma rays (159 KeV), 

will provide improved image quality and also allow imaging of deep brain tissue; 

however it is worth noting that the half-life of 13 h makes it less practical than 

iodine-125, and it is also more costly to use. 

 

4.6 Conclusion 

 
 

Using a highly efficient, practical method to label antibody-MPIO constructs, a 

versatile imaging probe has been synthesised and characterised in a neuro-

inflammatory model based on intra-cerebral administration of TNF-α. The 

conspicuity of the CA was not only evident by MRI, but was also seen with 

SPECT/CT and phosphorimaging, which showed increased binding of [
125

I]VCAM-

MPIO in the brains of TNF-α treated rats. This, to our knowledge, is the first study to 
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employ SPECT for imaging of VCAM-1 expression. The optimisation studies 

highlighted that as expected, the absolute sensitivity of SPECT is superior to that of 

MRI. Nonetheless, with optimal dose of CA, the MRI appeared to provide better and 

more defined contrast than SPECT. This demonstrates the value of cross-validation, 

and the importance of multi-modal, complimentary imaging.    
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Chapter 5 Multimodal Imaging of Seizure-Induced Inflammation 

 
 

5.1 Aim and Hypothesis  

 
 

In the follow up study described herein, the goal is to assess if [
125

I]VCAM-MPIO 

can detect cerebral inflammation that occurs after status epilepticus (SE) and thus 

characterise the imaging agent in a pre-clinical model which more closely resembles 

human disease, compared to the cerebral inflammatory model used in chapter 4.   

In spite of intensive efforts, there is currently no biological marker predictive for 

seizure outcome. This Holy Grail for in vivo imaging research would make it 

possible to identify patients at high risk for developing epilepsy after a predisposing 

insult such as head injury or stroke. The subsequent sections discuss attempts to 

identify neurobiological processes or receptors that could be useful predicative 

markers for seizure outcome. It was hypothesised that the radiolabelled CA 

developed in chapter 4 could enable MRI and SPECT imaging of VCAM-1 

expression in the same animal, and thus provide further information about the 

neurological changes which occur after SE.      

 

5.2 Epilepsy 

 
 

Epilepsy is a group of neurological disorders characterised by recurrent seizures or 

an enduring predisposition to generate seizures. A seizure is an abnormal electrical 

discharge in the brain that causes alteration in consciousness, sensation and/or 

behaviour. Epileptic seizures can be classified as partial (60% of cases) or 

generalised (40% of all epilepsies), in which the former refers to epileptic activity 

originating focally in the brain whereas the latter relates to seizure activity involving 

both cerebral hemispheres from the outset.
131

  

Temporal lobe epilepsy (TLE) is the most common form of partial epilepsy 

associated with atrophy of mesial temporal structures.
132

 The most common 

structural abnormality in TLE is observed in the hippocampus, which involves 

neuronal loss and gliosis (hippocampal sclerosis).  
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Despite the wide range of available anti-epileptic drugs (AEDs), about one third of 

individuals with epilepsy still experience seizures, and do not respond to 

medication.
133

 There is thus a pressing need for more effective therapies to exist, 

especially since current AEDs are mainly symptomatic: they inhibit seizures but do 

not tackle the underlying pathology or progression of the disease.
134, 135

 Elucidating 

the mechanisms involved in the generation of epilepsy should aid the development of 

novel, therapeutic drugs that modify the epileptic process. 

The term epileptogenesis is used to describe the complex changes in the brain that 

following a precipitating insult or injury, convert a normal brain into a brain 

debilitated by recurrent seizures.
136

 For example, TLE often ensues after an 

identifiable cerebral insult such as febrile seizures, prolonged seizures (status 

epilepticus, section 5.2.1), hypoxia-ischemia or head injury. Febrile seizures are 

associated with fever in the absence of other precipitating events, such as central 

nervous system infection or electrolyte imbalance.
137

   

The epileptogenesis process can be broken down into three main stages: 1) the initial 

precipitating event; 2) the latent period; and 3) the chronic period with spontaneous 

seizures.
136

 The latent period offers a window of opportunity for testing interventions 

in patients at high risk for epilepsy. Nonetheless, there is no definite marker to 

identify such patients and consequently this study explores if VCAM-1 could be a 

suitable option. The motivation for selecting VCAM-1 stems from experimental and 

clinical evidence proposing that inflammatory processes in the brain may constitute a 

vital mechanism in the pathophysiology of seizures and epilepsy.
138

 In particular and 

as mentioned in chapter 4, VCAM-1 mediates the rolling and extravasation of 

leukocytes across the vascular endothelium
108

: an important inflammatory event that 

has been implicated in epileptogenesis.
109
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Figure 33. The stages of epileptogenesis following SE. SE-induced neuronal injury activates 
diverse signalling events, such as inflammation, oxidation, apoptosis, neurogenesis and 
synaptic plasticity, which eventually leads to structural and functional changes (stage 1).136 
These changes are progressive, causing rearrangement of synaptic circuitry, neurogenesis 
and hyperexcitability over weeks, months or years (stage 2). These changes eventually 
manifest as spontaneous recurrent seizures (epilepsy) in susceptible individuals (stage 3).  

 

5.2.1 Status Epilepticus 

 
 

Status Epilepticus (SE) can be defined as a continuous seizure lasting more than 30 

min; however during the past 10 years there has been considerable rethinking about 

the precise duration that a seizure must last for it to be designated as SE.
139

 

Therefore, the definition of SE in the World Health Organisation’s Dictionary of 

epilepsy is “a condition characterised by an epileptic seizure that is sufficiently 

prolonged or repeated at sufficiently brief intervals so as to produce an unvarying 

and enduring epileptic condition.”
140

 There are numerous forms of SE, resulting in 

various types of seizures.
141

 Uninterrupted convulsive status epilepticus (CSE) is 

thought to cause brain injury or even lead to chronic epilepsy. For example, in one 

study it was found that the risk of unprovoked seizures in patients was 3.3 fold 

higher after CSE than after a single brief seizure.
142

 Nevertheless, it is noteworthy 

that CSE does not necessarily cause epilepsy as a prolonged seizure may be 

indicative of substantial brain injury already present at the time of the initial seizure.   
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5.2.2 Animal Models  

 
 

Investigating early epileptogenic processes in the clinical setting is challenging as 

currently, epilepsy is diagnosed after the onset of recurrent seizures, which 

represents the culmination of epileptogenesis.
143

 Animal models provide the 

opportunity to rigorously evaluate the epileptogenic process and thus can be valuable 

for increasing our understanding and identifying early biomarkers of this disease. 

Innumerable models of epilepsy and epileptic seizures have been described in the 

literature.
144

 Experimental models have been developed that mimic the continuous 

seizure state or SE. Such models are used to study: the transition of a single episode 

of SE into chronic epilepsy; the mechanism of neuronal injury; synaptic 

reorganisation (sprouting); hippocampal sclerosis; and the development of new anti-

convulsant drugs.
136

 In addition, SE is the most widely used approach for inducing 

chronic epilepsy, with the SE episode considered a trigger to initiate epileptogenesis 

that will culminate into TLE.    

Animal models used for chronic epilepsy can fall under two main types: genetic and 

acquired, both of which allow investigations at all stages of the disease. Of the two, 

the focus of this chapter and chapter 6 is on acquired epilepsy models. Models of 

acquired epilepsy can be established either by chemical or electrical induction. As 

part of this research, acquired epilepsy models have been established via the 

administration of pilocarpine, and the experimental details of this have been outlined 

in chapter 8. It is important to note that because human SE is a complex neurological 

disorder that encompasses many causes and seizure phenotypes, it is highly likely 

that no single animal model is capable of mimicking the full spectrum of clinical SE 

features. Overall, models of acquired epilepsy to some extent reproduce the 

pathophysiological alterations that are identified in patients with this disease. 

Pilocarpine can induce SE by activating the M1 muscarinic receptor subtype and is 

currently one of the most widely used models of chronic epilepsy.
145

  Some 

important features of the pilocarpine model are: 

 More rapid induction of self-sustaining SE compared to intraperitoneal (i.p.) 

administration of kainic acid: another convulsant drug commonly used to 

reproduce chronic epilepsy in rodents
146
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 Substantial injury to the piriform and entorhinal cortices, amygdala, CA1 

and CA3 sub regions of the hippocampus, hypothalamus and sub regions of 

the thalamus following self-sustaining SE 

 The presence of a latent (seizure free) period of several weeks, followed by 

the appearance of spontaneous recurrent seizures (SRS) 

As observed in the human condition
147

, there appears to be a strong positive 

correlation between mortality and age in the pilocarpine model of SE.
148

 In fact, in 

both species, the immature brain seems to be more susceptible to seizures whilst 

displaying a high degree of resistance to neuronal injury.
146

 

Variations of the pilocarpine model have been established, namely the lithium-

pilocarpine model of SE.
149

 Pre-treatment with lithium chloride 24 hours before the 

initiation of SE allows a conspicuous reduction of the pilocarpine dose 

(approximately ten-fold). Essentially, the neuronal damage observed  in the lithium-

pilocarpine model post SE have been similar to that reported in the high-dose 

pilocarpine models.
150

 Moreover, the rate of success in developing SE after lithium 

pre-treatment has been reported to be 100%; a considerable improvement when 

compared to the high-dose pilocarpine model (60%).
151

 In general, there is a lower 

mortality rate with lithium-pilocarpine treated rats
152

 and this can be further reduced 

by the administration of diazepam to terminate seizures 60-120 min after the 

induction of SE.
153

  

Seizure severity in rodents can be assessed using behavioural scoring. This 

circumvents the implantation for more labour intensive electroencephalography 

(EEG) electrodes. The Racine scale is the accepted scoring method for limbic 

seizures and is composed of five stages:
154

 

1. Mouth and facial automatisms  

2. Head nodding or wet dog shakes  

3. Unilateral/bilateral forelimb clonus 

4. Forelimb clonus with rearing  

5. Rearing and falling 
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Partial seizures are at times considered to be stages 1 and 2, whilst the latter stages 

(3-5) are associated with generalised seizures.
151

 Often, the onset of self-sustaining 

SE is defined as stage 3 on the Racine scale.
155, 156

 

 

5.3 Neuroimaging the Epileptogenic Process  

 
 

Neuroimaging has enabled researchers to identify in vivo changes during 

epileptogenesis as well as monitor treatment responses through serial acquisitions in 

the same patient.
143

 Numerous approaches to identify early biomarkers involved in 

epilepsy and to study related pathology have emerged for pre-clinical and clinical 

investigations. For example, impairment of the BBB, a hallmark of 

epileptogenesis
157

, can be visualised by systemic injection of imaging agents that 

under physiological conditions do not cross the intact BBB (e.g. gadolinium based 

contrast agents for MRI).
158

 Furthermore, structural MRI has been valuable for 

revealing volumetric and morphological changes in the hippocampus and other 

limbic structures in SE models,
159, 160

 whilst functional MRI (fMRI) has been useful 

for evaluating the abnormalities in neural activity and circuitry introduced in 

epilepsy.
161

 

Nuclear imaging, in particular PET, is proving to be a promising technique in 

epilepsy research.
162

 Fluorodeoxyglucose (2-deoxy-2[
18

F]fluoro-D-glucose, 

[
18

F]FDG), which maps glucose uptake and metabolism has been at the forefront of 

radiotracers used for PET. FDG is taken up by cells in a similar manner to glucose 

but it is not metabolised further after phosphorylation by hexokinase. As a result, 

FDG gets trapped in cells and thus provides an indication of glucose utilisation in the 

cell/region of interest. During seizures, it has been reported that [
18

F]FDG uptake is 

increased in several brain regions, most notably in the ventral and dorsal 

hippocampus (by 2.3 and 1.6 fold respectively), as well as the entorhinal cortex.
163

 

Such findings have been routinely reported
164

 and demonstrate the usefulness of PET 

for detecting elevated neuronal activity during seizures. Hypometabolism in the 

epileptogenic zone during the interictal state (the intervals between convulsions or 

seizures) is a well-described phenomenon in humans with temporal lobe epilepsy.
165

 

One recent study has suggested that whole brain [
18

F]FDG uptake was dramatically 
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reduced as early as 24 h after kainic acid treatment, before and independently from 

hippocampal volume loss and the onset of spontaneous recurrent seizures (SRS).
162

 

However at this infant stage, there is insufficient data to conclude whether [
18

F]FDG 

hypometabolism is a biomarker for the development of SRS.    

One of the most commonly used target for imaging in epilepsy patients is the 18 kDa 

translocator protein (TSPO), formerly known as peripheral benzodiazepine receptor 

(PBR).  Under physiological conditions, TSPO expression in the brain is relatively 

low and is found predominantly in ependymal cells lining the ventricles, in cells of 

the olfactory bulb and the choroid plexus as well as in resting glial cells, including 

microglia and astrocytes.
166

 As a result of cerebral inflammation triggered by brain 

injury, TSPO expression markedly increases in activated glial cells, especially 

microglia, and in blood-borne macrophages/monocytes infiltrating the lesions.
167

 A 

variety of radiolabelled ligands have been developed and evaluated to monitor 

changes in TSPO expression in animal models of epilepsy and in humans (Figure 

34).
166, 168, 169

 

Of particular interest is the radiotracer 
11

C-flumazenil, which has been extensively 

used to evaluate central benzodiazepine receptors in human epilepsy studies. 

Complex mechanisms of epileptogenesis are characterised by metabolic and 

neurotransmitter/receptor disturbances, with functional impairment of 

neurotransmission likely to play a vital role. γ-Aminobutyric acid (GABA) is the 

principal inhibitory transmitter in the brain and plays an important role in the genesis 

of partial seizures. Many studies have shown that 
11

C-flumazenil (a specific 

antagonist for central benzodiazepine receptors (cBZR))-PET can detect 

abnormalities (mostly decreased binding) in the epileptogenic zone of patients with 

both temporal lobe epilepsy and extratemporal epilepsy.
151 
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Figure 34. Structures of radiotracers used for imaging TSPO expression in epilepsy 
patients.166

 

 

5.4 Study Outline  

 
 

The purpose of this study was to determine if the radiolabelled CA, first discussed in 

chapter 4, could detect increased VCAM-1 expression in the lithium pilocarpine 

model of SE, by SPECT and MRI. The lithium pilocarpine model of SE was induced 

in male Sprague-Dawley rats. The radiolabelled CA (5 mg Fe/kg, 0.08 – 0.20 

MBq/g) was administered via a cannula implanted in the external right jugular vein, 

20 hours after the termination of seizures. SPECT/CT imaging commenced 20 min 

after administration of the CA, followed by imaging with MRI 45 min later. At the 

end of the acquisition, the animals were sacrificed and the brains were cryosectioned 

coronally (40 µm). The distribution of the CA was determined with 

phosphorimaging after the brain sections were exposed on the phosphor screens for 

48 hours. The two control groups used were rats that received saline in place of 

pilocarpine (SALINEVCAM) and rats that received [
125

I]IgG-MPIO in place of 

[
125

I]VCAM-MPIO (SEIgG).  
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5.5 Results    

 
 

The lithium-pilocarpine model of SE was used to further evaluate the properties of 

[
125

I]VCAM-MPIO as a CA. All pilocarpine treated animals progressed to SE and 

displayed akinesia and facial automatisms. Tonic-clonic seizures and SE were 

induced 40-50 minutes after pilocarpine administration. The seizures were 

terminated 90 min after SE onset by administration of diazepam. None of the 

animals in the SALINEVCAM group exhibited any signs of behavioural seizures.   

With SPECT/CT, highly localised uptake of the CA was apparent in the cerebellum, 

brain stem and olfactory bulb for animals in the SEVCAM group (n = 3, Figure 35a-c). 

With MRI, hypointensities were mainly observed near the hippocampus and 

ventricles, but also in the hypothalamic regions (Figure 35d). Both SPECT/CT and 

MRI displayed high uptake of the CA in the cortex. Phosphorimaging of coronal 

brain cryosections confirmed high uptake of [
125

I]VCAM-MPIO in the cortex, 

hippocampus and hypothalamus (Figure 35e and f).  
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Figure 35. Evaluation of [125I]VCAM-MPIO in the lithium -pilocarpine model of SE. (a) 
Representative SPECT/CT images from a rat administered [125I]VCAM-MPIO (5 mg Fe/kg, 
0.20 MB/g) approximately 20 hours after SE onset.  Avid signals can be seen in the 
cerebellum, cortex, brain stem and olfactory bulb as viewed in the sagittal (cerebellum and 
brain stem), coronal (cortex) and transversal (olfactory bulb) slices. The, (b) brain stem, (c) 
cerebellum and olfactory bulb are highlighted on a perfused rat brain. Uptake of the CA 
was also observed with (d) MRI and (e) phosphorimaging near the hippocampus (white 
arrows), as well as at the cortex (red arrows) and hypothalamus (green arrows). (f) Optical 
image of the brain section shown in (e);  P = Posterior A = anterior from the injection site.   

 

No uptake of the CA was observed in brains from sham treated animals 

(SALINEVCAM, n =3), and in control animals that received [
125

I]IgG-MPIO (SEIgG, n 

= 3) as observed with in vivo SPECT and MRI (Figure 36). 
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Figure 36. Bimodal in vivo imaging of seizure induced inflammation.  The distribution of the 
CA (5 mg Fe/kg, 0.08 – 0.20 MBq/g) was assessed by SPECT/CT (top row) and MRI (bottom 
row) in the SEVCAM group and the two control groups (SALINEVCAM, SEIgG).  

 

Since the radioactivity content was too low to determine the distribution of the CA in 

vivo, the relevant brain sections were analysed by phosphorimaging (Figure 37). As 

seen in the TNF-α treated animals (chapter 4), [
125

I]VCAM-MPIO distributed 

predominantly to larger blood vessels in the SEVCAM group. In the slices proximal to 

the lambda, uptake of the CA was dominant at the choroid plexus and within the 

vasculature, in particular the middle cerebral artery. Minimal signals were observed 

in the brain slices from the two control groups.   

 

 

Figure 37. The distribution of the CA assessed by phosphorimaging. Phosphorimages of 
coronal brain sections (40 µm) from the SEVCAM group ([125I]VCAM-MPIO: 5 mg Fe/kg, 0.25 
MBq/g), SalineVCAM ([125I]VCAM-MPIO: 5 mg Fe/kg, 0.08 MBq/g) and SEIgG ([125I]IgG-MPIO: 5 
mg Fe/kg, 0.08 MBq/g). The thresholding of the phosphorimages have been adjusted to 
account for the amount of radioactivity administered. The distance of the brain sections 
shown from the bregma are approximately indicated in mm.  
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Dynamic imaging with SPECT using 5 min frames from 20 to 45 min post-injection 

of the CA revealed that the levels of radioactivity remained constant (Figure 38). 

Considerably higher counts were recorded in the SEVCAM group compared to 

controls. 

 

 

Figure 38. Quantification of the dynamic SPECT images captured from 20 to 45 min 
following administration of the CA (5 mg Fe/kg, 0.08 – 0.25 MBq/g) in seizure induced rats. 
Averages from the SEVCAM (n = 3, ± SD), SALINEvcam (n = 3, ± SD), and SEIgG (n = 3, ± SD) groups 
are presented.  

    

5.6 Discussion  

 
 

This study has characterised [
125

I]VCAM-MPIO in a model that has relevance to 

human disease: the lithium-pilocarpine model of SE. A strong inflammatory 

component
138

 and several anti-inflammatory therapies have been identified and 

evaluated in this model.
170, 171

 In particular the distribution of the non-radiolabelled 

contrast agent, VCAM-MPIO, has previously been assessed in the lithium-

pilocarpine model, with significant hypointensities observed in the choroid plexus, 

hippocampus, cerebral cortex and to a lesser extent, the thalamus, 20 hours after 

SE.
117

 These findings have been corroborated in the current study, which has 

additionally demonstrated for the first time that complimentary SPECT imaging of 

seizure induced inflammation is feasible.  
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Avid SPECT signals in the SEVCAM group were localised to the cerebellum, cortex, 

brain stem and olfactory bulb which can be linked to the behavioural changes 

observed in rats administered pilocarpine. These included olfactory automatisms, eye 

blinking and salivation. In contrast, in vivo SPECT imaging suggests there was 

minimal uptake of the CA in the brains of the two control groups (SEIgG and 

SALINEVCAM). In part, this could be due to the low radioactivity content 

administered (0.08 MBq/g). Such a low dose was administered as in the TNF-α 

study, (chapter 4), in vivo SPECT and MRI failed to demonstrate any considerable 

uptake of the CA (0.20 – 0.90 MBq/g) in the control groups. As a result of this, as 

well as to save costs and minimise exposure to ionising radiation, this study focused 

on evaluating the distribution of the CA in the control groups by ex vivo 

phosphorimaging. Therefore, the doses of radiolabelled CA administered (5 mg 

Fe/kg, 0.08 MBq/g) reflect this and the phosphorimages have been thresholded 

accordingly.   

Qualitative evaluation of the phosphorimages show that, similar to the TNF-α group, 

the CA was predominantly distributed to larger blood vessels in the SEVCAM group, 

with uptake foremost at the choroid plexus and middle cerebral artery. Whilst 

phosphorimaging showed localised uptake of the CA at the TNF-α injection site, and 

thus suggested that local inflammation was induced in the sham treatment (Figure 

28g), minimal signals were observed in the SALINEVCAM group across the whole 

brain. Moreover, as demonstrated in the TNF-α model, the lack of signals detected in 

the SEIgG group suggests there was little non-specific binding.   

Quantitative assessment of the SPECT images obtained 20 – 45 min post CA 

administration revealed that the radioactivity content in the brain did not change over 

this period of time. Considerably higher counts were recorded in the SEVCAM group 

compared to the controls, indicating substantial uptake of [
125

I]VCAM-MPIO and 

hence increased VCAM-1 expression in SE induced rats.  

In vivo imaging was approximately conducted 20 hours after the termination of 

seizures. Therefore, this study has investigated neuronal changes in the acute phase 

of the model. The results presented warrant further investigations at the chronic 

phase in order to increase our understanding of the epileptogenesis process. 

Additionally, it will be vital to determine how much of the CA distribution is blood 
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flow dominated, especially considering the fact that marked hypermetabolism
172

 and 

changes in cerebral blood flow
173

 have been reported during and after SE.   

 

5.7 Conclusion 

 

This study has demonstrated that complimentary SPECT imaging of seizure induced 

inflammation is feasible and showcases the potential of multimodal validation. 

Nevertheless, due to a lack of ex-vivo immunohistochemical analysis and the number 

of animals in each group (n = 3), it was difficult to ascertain how closely the SPECT 

images agree with those of the MRI and how faithfully the signals represent VCAM-

1 expression or alterations in blood flow. Promisingly, based on qualitative 

evaluation, both MRI and SPECT highlighted an increase of CA uptake within the 

cortex in the disease model compared to the controls.      

The fact that a single CA can be used to study the epileptogenesis process by MRI, 

SPECT and phosphorimaging presents exciting opportunities to gain a deeper 

understanding of the role of inflammation in epilepsy. To the best of our knowledge, 

this is the first study to ascertain a biomarker for epileptogenesis using multiple 

imaging modalities within the same animal. Combining the high resolution offered 

by MRI with the high sensitivity of SPECT or PET imaging, could enable earlier 

diagnosis and identification of biomarkers for epileptogenesis, which is currently 

lacking. The results presented in this proof-of-principle study indicate that 

radiolabelled VCAM-MPIO to target VCAM-1 expression could be a viable option 

to achieve this.                  
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Chapter 6 Synthesis and Evaluation of [125I]CNS-1261 for 

Targeting Activated NMDA Receptors  

 

6.1 Aim and Hypothesis  

 
 

The study outlined in this chapter investigates the interplay between 

neuroinflammation, hyperexcitability and dysfunction of fast neurotransmission, 

each which have been investigated in the studies discussed in the previous chapters. 

The motivation is to assess if the functional activity of NMDA receptors becomes 

altered post SE.  

Since radioiodinated CNS-1261 has displayed favourable kinetic properties in 

clinical studies, it was assumed this tracer would be a good candidate to determine if 

activated NMDA receptor expression becomes altered in adult male rats, 7 days after 

SE. This would allow us to further understand the mechanisms involved in epilepsy.    

  

6.2 NMDA Receptors    

 
 

Excitotoxicity refers to cell death resulting from the toxic actions of excitatory amino 

acids.
174

 The amino acid glutamate is the principal excitatory neurotransmitter and its 

two main receptors are ionotropic or metabotropic. The ionotropic receptor can be 

further subdivided into three subtypes: NMDA (N-methyl-D-aspartate), AMPA (α-

amino-3-hydroxy-5-methyl-4-isoxazoleproprionate), and kainate. The NMDA 

receptors (NMDARs) are tetrameric ion channels with multiple ligand recognition 

sites, both inside and outside the channel (Figure 39). For activation, NMDARs 

require the binding of both glutamate to the NR2 subunit and a co-agonist such as 

glycine to the NR1 subunit. Simultaneous binding of glutamate and glycine results in 

channel opening thus permitting the influx of calcium and to a lesser extent, sodium 

ions into neurons.
175

 A voltage dependant Mg
2+

 block is present on NMDARs which 

closes the channels when a certain membrane potential is exceeded (as shown in red 

on Figure 39).  
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Figure 39. Representation of NMDA receptors. MK-801, Ketamine and Memantine act as 
non-competitive antagonists whose binding sites are within the ion channel pore, whilst 
the binding sites for glutamate and glycine are found on the extracellular portions of the 
NR2 and NR1 subunits.    

 
 

Normal extracellular glutamate concentration is about 0.6 µmol/L. Substantial 

neuronal excitotoxic injury occurs with glutamate concentrations of 2 to 5 µmol/L.
175

 

At such high concentrations, NMDARs can become over stimulated resulting in 

neuronal calcium overload. Accumulation of intracellular calcium ions leads to 

activation of enzymes, including phospholipases that degrade proteins, membranes 

and nucleic acids.
174

 Pharmacological blockade of NMDARs by compounds that 

interact at a site within the open ion channel may therefore have therapeutic effects. 

Examples of such agents include MK-801 (dizocilpine),
176

 and memantine,
177

 which 

has shown to have neuroprotective effects in preclinical studies.
178

 

The NMDA receptor complex has been suggested as a therapeutic target in 

epilepsy.
179

 A variety of techniques such as subunit gene expression, 

immunoblotting and binding affinities, have found alterations in NMDA receptor 

expression in patients with epilepsy. Studies have found elevated mRNA levels for 

the NR2 subunits in patients with hippocampal sclerosis, which is one of the most 

frequently encountered pathologies in temporal lobe epilepsy.
180

 Antagonists acting 

at NMDARs have also had potent anticonvulsant actions.
181

 In animal models of 

chronic epilepsy, it has been shown that 28 days after the last evoked seizure, 
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kindling, (focal electrical stimulation of the brain), induced a 2.8 fold increase in the 

number of binding sites for the competitive NMDAR agonist 
3
H-CPP. This increase 

was confined to the CA3 region within the hippocampus.
182

  

Furthermore, increases in glutamate levels have been observed in rodent models of 

epilepsy. In vivo microdialysis on rats induced with seizures using the maximal 

electroshock (MES) protocol,
183

 has shown that in the ventral hippocampus, there 

was a significant increase (29 ± 2%)  in extracellular glutamate and this had peaked 

50 min post seizures (54 ± 6%).
184

 Repeated seizures significantly increased 

glutamate release compared with a single MES, (84 ± 8% compared to 29 ± 2%). 

Concentrations of glutamate, aspartate and glycine have also been shown to be 

increased in epileptogenic cerebral cortex.
185

   

Reports have shown that ictogenesis may be exacerbated by inflammatory cytokines 

such as interleukin-1 beta (IL-1β) and TNF-ɑ, possibly by increasing activated 

NMDA receptor states: using primary cultures of rat hippocampal neurons, IL-1β 

(0.01-0.1 ng/ml) enhanced NMDA-induced Ca
2+

 concentration by up to 45% in a 

dose dependant manner.
186

 Additional inflammatory mediators, such as cytokines 

(IL-1β, IL-6, TNF-α) and prostaglandin E2 whose specific functions remain 

unresolved, are thought to play an active role in seizure generation and 

exacerbation.
138

 The mechanism of action is thought to involve increases in ion 

channel conductance, enhanced glutamate release and impairment of potassium and 

glutamate buffering. In particular, IL-1β has been shown to inhibit GABA receptor 

function in cultured hippocampal neurones
187

 whilst enhancing calcium influx and 

NMDA receptor mediated transmission,
186

 culminating in hyperexcitation.  

In this study, the expression of activated NMDARs was investigated in the lithium 

pilocarpine model of SE. By investigating the functional activity of these receptors 

in this model, the aim was to establish a potential new biomarker for epileptogenesis. 

In order to target and hence monitor the expression of activated NMDARs, the 

diarylguanidine derivative, CNS-1261 was radiolabelled and administered into rats 1 

week post SE induced seizures. The distribution of radioactivity, which is likely to 

reflect the expression pattern of activated NMDARs, in the relevant brain regions 

were analysed by phosphorimaging. In the next section, evidence is presented to 
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justify why this compound was selected for tracer development in order to target 

activated NMDARs.  

 

6.3 [
125

I]CNS-1261 

 
 

The lack of suitable SPECT and PET ligands has limited direct evaluation of 

NMDARs in vivo. To target and image neuroreceptors, appropriate radiotracers must 

exhibit high specificity and affinity, and have apt lipophilicity. Studies have 

indicated that N-(1-Napthyl)-N’-(3-[
125

I]-iodophenyl)-N’-methylguanidine 

([
125

I]CNS-1261, [
125

I]19), meets this criterion and has thus been proposed as a 

SPECT tracer for imaging activated NMDARs.
188-190

 

In radioligand binding assays, CNS126-1 exhibited high selectivity for NMDARs.
188

  

At a concentration of 10 nM, CNS-1261 was selective for NMDARs and no 

significant binding was observed to receptors in any of the 41 other assays 

investigated. At a higher concentration (1 µM), CNS126-1 showed complete 

occupancy of the [
3
H]MK-801 binding site, whilst displaying marginal binding at the 

Na
+
 channel (38%), ɑ-1 adrenoceptor (33%) and GABA transporter (21%).  

Furthermore, in ischemic rat brains, [
125

I]CNS-1261 uptake was markedly increased 

in the neocortex and striatum, with a twofold higher uptake in the ipsilateral caudate 

compared to the equivalent area of the contralateral hemisphere.
189

 These results are 

in good agreement with the increased uptake observed of [
125

I]MK-801 in 

periischemic areas. Equally, autoradiography experiments showed that, in normal rat 

brain, the uptake of [
125

I]CNS-1261 in NMDA receptor-rich regions relative to the 

cerebellum was superior than that of [
125

I]MK-801.
188

  

In preclinical studies, CNS- 1261 was found to have a high affinity to the 

intrachannel site on NMDARs with a Ki value of 4.21 ± 0.4 nM against [
3
H]MK-

801.
188

 Furthermore, the high affinity and selectivity of [
123

I]CNS-1261 to the MK-

801/ketamine site on activated NMDARs has also been demonstrated in clinical 

studies.
190

  

In vivo metabolic studies using rat plasma and brain samples have shown that the 

plasma half-life of [
125

I]CNS-1261 is 2.17 ± 0.44 min and deiodination occurred 
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rapidly.
188

 However, extracts of brain homogenates showed that at 120 min post 

injection, >95% of radioactivity in the brain was due to intact [
125

I]CNS126-1.  

The high selectivity and affinity of [
125

I]CNS126-1 to activated NMDARs, and its 

high metabolic brain stability, suggests that that the distribution and density of 

radiolabelled CNS-1261 should theoretically reflect dynamic changes in NMDAR 

expression.   

Above all, in vivo evaluations of [
123

I]CNS-1261in humans have proven to be 

successful and its pharmacokinetic properties render it to be a suitable tracer for in 

vivo imaging in the brain.
190

 

 

6.4 Study Outline  

 

To determine if activated NMDA receptors play a role in seizure generation, changes 

in their expression have been monitored in animals induced with SE using the 

lithium pilocarpine model. CNS-1261 was radiolabelled with iodine-125 to reveal 

whether this radiotracer could highlight any changes in receptor expression.   

6.4.1 Animal Model  

 
 

The lithium pilocarpine model of SE (n = 5) was induced in Male Sprague Dawley 

rats (170-200g). The animals in the control group received saline in place of 

pilocarpine (n = 5).   

One week after the termination of seizures, [
125

I]CNS-1261(25-30 MBq in saline 

(10% ethanol)) was administered by V. Taylor. The animals were anesthetised two 

hours post tracer injection with 4% isoflurane mixed with medical air. After culling 

the animals by cervical dislocation, the brains were removed and fixed overnight in 

paraformaldehyde (4%), cryoprotected overnight in sucrose solution (45%) and 

sectioned coronally at 16 µM.  
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6.4.2 Phosphorimaging  

 
 

Brain slices were mounted on polylysine coated glass slides. These were placed on a 

phosphor screen along with a set of [
125

I]NaI standards (0.5 - 0.0001 MBq). One 

week after exposure, the screen was scanned, (25 µm resolution, acquisition time = 2 

h 30 min).   

 

6.4.3 Phosphorimaging Quantification  

 
 

Image Quant TL 7.0 software was used to quantify the signals observed in the brain 

slices. Using the HE stained slices to identify anatomical regions, ROIs were set on 

the hippocampus, thalamus, hypothalamus, amygdala and piriform cortex (Figure 

40). Counts per pixel within these ROIs were normalised to the amount of 

radioactivity administered into each animal. The amount of radioactivity in each 

region is expressed as a ratio to the amount of radioactivity recorded in the 

cerebellum. Group means were compared using an unpaired t-test. Statistical 

significance was assigned at P < 0.05.  

 

 

Figure 40. Representation of ROIs selected for quantification of phosphorimaging signals. 
Red = hippocampus; Green = thalamus; Brown = hypothalamus; Yellow; amygdala; Blue = 
piriform cortex.  
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6.5 Results 

 

6.5.1 Radiolabelling  

 

 

Scheme 8. Radiolabelling of the tributyl tin precursor (18) to obtain [125I]CNS-1261 ([125I]19) 
and a possible side product ([125I]20) which may have been formed.  

 
 

The results from the radiolabelling experiments are summarised in Table 5 and the 

representative HPLC chromatograms are displayed in Figure 41. The retention time 

of 18 was 25 min and for [
125

I]19 was 15 min. The highest analytical (62%) and 

isolated (42%) radiochemical yields for [
125

I]CNS-1261 was with method 2, 30 min 

reaction time, (SA = 21.0 GBq/µg). This was the method therefore used to obtain 

[
125

I]CNS-1261 for the ex vivo evaluations. At higher HCl concentrations (0.4 M, 

method 1) there was a 40% reduction in yields when reaction times were increased, 

whilst at the lower concentration (0.1 M), the yield was 72%, (method 2, 10 to 30 

min reaction time). Longer reaction times (method 2, 60 min) did not improve the 

yields. Overall, the combination of acetic acid and peracetic acid gave lower yields 

compared to HCl and H2O2. The exception was method 4, which for the 30 min 

reaction time, gave a 28% higher yield compared to method 1. Diluting the glacial 

acetic acid to 5% led to an 8 fold increase in the yield at 30 min reaction time 

(methods 3 and 4).  
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Table 5. Analytical radiochemical yields (RCY) for the radiolabelling of CNS-1261. All 
reactions were carried out at room temperature.  
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Figure 41. Analytical Radio-HPLC chromatograms for the radiolabelling of CNS-1261. 
Retention time of [125I]CNS-1261 = 15 min. The radiolabelling reactions represented by  
each chromatogram are as follows: a: method 1, 10 min reaction time; b: method 1,  30 
min reaction time; c: method 2, 10 min reaction time; d: method 2, 60 min reaction time; e: 
method 2, 30 min reaction time; f: method 2, 30 min reaction time showing both radio 
(blue) and UV (red) signals for the isolated, purified product co-injected with 19; g: method 
3, 10 min reaction time; h: method 3, 30 min reaction time; i: method 4, 30 min reaction 
time. Reaction conditions for each method are given in table 5.  
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6.5.2 Animal Model  

 
 

All of the rats administered pilocarpine reached stage 5 on the Racine scale and 

seizure severity alternated between stages 3 and 5 over 90 minutes. None of the 

animals which received saline in place of pilocarpine exhibited any behavioural 

change. Two doses of diazepam were sufficient to terminate SE and no overt signs of 

sustained seizures were observed within the following 24 hours. Over the course of a 

week, all rats began to feed and drink themselves which resulted in a steady weight 

increase. However, one of the animals was terminated 3 days post SE as his weight 

had decreased by more than 20%.  

 

6.5.3 Phosphorimaging  

 
     

The brains for phosphorimaging were removed 2 hours after tracer injection. In 

pilocarpine treated rats, the amount of radioactivity measured in discrete brain 

regions was higher compared to the saline controls (Figure 42). However, this 

increase was not statistically significant based on an unpaired t-test (P < 0.05). 

Furthermore, there were no significant differences in tracer uptake between the brain 

regions investigated. There was a large spread in counts recorded between animals in 

each group (n = 5), particularly for the piriform cortex and amygdala.  
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Figure 42. Quantification of the phosphorimaging signals. Quantification was performed 
using the ROIs shown in Figure 40.  For both the SE and control group, n=5 with the animals 
sacrificed two hours after the administration of [125I]CNS-1261. For all animals, the counts 
in each brain region are expressed as a ratio to the counts recorded in the cerebellum.  
Error bars are mean ± standard error of the mean.  

 

6.6 Discussion  

 

6.6.1 Radiochemistry  

 
 

In general, electrophilic iodo-destannylation provides an excellent method for the 

introduction of iodine into organic molecules.
93, 188

 The oxidant, acid and reaction 

time which gave the highest isolated radiochemical yield (42%) and purity (>98%) 

of [
125

I]CNS-1261, was H2O2,  HCl (0.1 M) and 30 minutes (method 2, Figure 41f, 

specific activity = 21.0 GBq/µg).  

The use of peracetic acid and acetic acid gave considerably lower yields (5%) and 

purity (method 3, Figure 41g). The major radiolabelled products under these 

conditions exhibited higher lipophilicity compared to the desired product (Figure 

41g, h). Due to the electron donating capability of nitrogen atoms, one of these 

impurities is likely to be compound [
125

I]20 highlighted in scheme 7. This inductive 

effect would be less pronounced with strong acids as under such conditions (methods 

1 and 2), nitrogen atoms are more likely to become protonated. HCl has a lower pH 

compared to acetic acid and it is therefore a stronger acid. By definition, this means 
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that HCl will dissociate completely to form H
+
 ions whereas acetic acid weakly 

ionizes, so there will be fewer H
+
 ions.  

 

6.6.2 Phosphorimaging  

 
 

Radioactivity levels in discrete brain regions have been presented as a ratio to the 

radioactive levels in the cerebellum since relatively low NMDA receptor binding 

sites have been reported in this structure.
191, 192

 Biodistribution studies have revealed 

that the hippocampus/cerebellum ratio peaks 2 hours post [
123

I]CNS-1261  injection 

in healthy rats.
193

 As a result, this was the time post tracer administration when 

brains were obtained for phosphorimaging. Nevertheless, the expression pattern of 

activated NMDARs and so tracer distribution over time in SE models may differ 

considerably, especially since marked changes in blood flow have been reported in 

this model at different stages post SE.
194, 195

 This may explain why no significant 

differences were observed between the control and SE groups. Therefore, future 

investigations should ascertain time points where NMDA receptor activation is 

maximised in the lithium-pilocarpine models.  

 [
125

I]CNS-1261 was administered seven days after the termination of SE and so 

investigations were conducted in the chronic stage of the disease as studies have 

reported increases in glutamate levels only at this point.
196

   

In this study, pilocarpine hydrochloride (30 mg/kg) was administered to induce SE. 

One notable study found no significant changes in the levels of glutamate following 

the administration of a higher pilocarpine dose (400 mg/kg) or after the onset of 

seizures.
197

 Only when pilocarpine (10 mM) was delivered focally into the 

hippocampus did extracellular glutamate concentrations increase. This suggests that 

a greater local concentration of pilocarpine is required to increase glutamate levels in 

this model. Furthermore, whilst increases in glutamate concentration in epileptogenic 

cerebral cortex have been reported, increases in the activity of glutamate 

dehydrogenase, which is involved in glutamate metabolism, have also been 

observed.
185

 Therefore, insufficient concentrations of pilocarpine, increases in 

enzyme metabolising activity, and the action of glutamate re-uptake systems 

indicates there will be reduced levels of agonists for NMDAR activation. This may 
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explain the lack of activated NMDARs observed in the lithium pilocarpine model.
198

 

There have also been reports showing increases in glutamate levels preceding seizure 

onset.
197

 However, in this study, [
125

I]CNS-1261 was administered seven days post 

SE. Therefore, injection of the tracer immediately after pilocarpine administration, 

and subsequent evaluation of its distribution prior to seizure onset may produce more 

fruitful results.  

High variability was observed in the quantified signals between animals in the same 

group. One possible explanation for this is that ROIs could not be manually drawn 

around discrete brain regions, and instead predefined shapes were used as 

represented in Figure 40. Also, published observations for the lithium pilocarpine 

model have been inconsistent due to the highly variable nature of the model, 

especially in terms of the apparent site of origin for electrographic seizures.
145

 

 

6.7 Conclusion  

 
 

Although excessive activation of NMDARs and the accompanying hyperexcitability 

has been implicated in the pathogenesis of (epileptic) seizures,
181, 197

 this study found 

no differences in receptor activity between the lithium pilocarpine model and saline 

controls. To the best of our knowledge, this is only the second study to evaluate the 

targeting ability of [
125

I]CNS-1261 in a disease model, and the first to do so in the 

lithium pilocarpine model of SE. Whilst this study was unsuccessful in reflecting the 

distribution of functionally active NMDARs in distinct brain regions, the potential of 

this tracer for further investigations remain promising. This is especially true as its in 

vivo evaluations in humans have proven to be successful and its pharmacokinetic 

properties render it to be a suitable tracer for in vivo imaging in the brain. 
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Chapter 7 Summary and Further Work  

 
 

Nuclear imaging (PET, SPECT and phosphorimaging) has been instrumental in 

evaluating the efficacy of therapies and delineating key pathological processes in 

neurological diseases. The aim of the work described in this thesis entitled: 

‘Development of Radiotracers for Neuroimaging’, was to gain further insights into 

the key pathological processes involved in hyperexcitation and epileptogenesis. 

Whilst it was beyond the scope to deconstruct the mathematical reconstruction 

algorithms and the core physics underlying image generation, the principles of 

radioactivity detection and factors affecting image quality have been discussed. In 

the latter part of chapter 1, the key properties of a suitable brain radiotracer, and the 

radiotracer discovery and development pipeline were analysed. 

In chapter 2, the experimental methods used to analyse and quantify detected signals 

were discussed. These methods were based on manufacturers’ recommended 

calibrations, and the standardisation methods routinely employed both in the pre-

clinical and clinical practice.   

 Nuclear imaging, namely SPECT and phosphorimaging have been used to evaluate 

the capabilities of radiotracers to target and monitor the expression of neuronal 

VGSCs (chapter 3), VCAM-1 (chapters 4 and 5) and activated NMDA receptors 

(chapter 6).    

There has been limited success in imaging neuronal VGSC expression despite their 

role in many life limiting conditions. From the identification of two lead compounds, 

radiotracers for VGSCs in the brain have been developed and analysed in vitro, in 

vivo and ex vivo. The WIN17317-3 compound class proved to be un-suitable for in 

vivo imaging and thus should not be pursued for radiotracer development, primarily 

due to its poor metabolic stability. In contrast, the BNZA family exhibited 

encouraging results, with moderate brain uptake and excellent metabolic stability.  

In the pursuit of developing a novel, neuronal VGSC radiotracer, modifications to 

the BNZA analogue were attempted with the aim to produce a PET tracer. However, 

synthesising the desired pre-cursor for radiolabelling was unsuccessful. The reason 

for this is not known but may involve the formation of a dimer. In order to 
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circumvent this, future attempts should initially focus on adding 9 to either propane-

1,3-diyl bis(4-methylbenzenesulfonate) or propane-1,3-diyl dimethanesulfonate, 

therefore ensuring that 9 is always the limiting reagent.   

In spite of the results obtained thus far, the BNZA compound class cannot yet be 

ruled out for in vivo imaging, largely due to its highly localised uptake observed at 

regions corresponding to brown adipose fat tissue. Further work should focus on this 

potential as well as exploring alternative methods to lower the lipophilicity and thus 

increase brain uptake of BNZA analogues. Overall, to the best of our knowledge, we 

are the first to develop radioiodinated tracers for neuronal VGSCs and have revealed 

that a derivative of BNZA exhibits excellent metabolic stability. Therefore, this 

compound class could be well suited for radiotracer development. On the other hand, 

the WIN17317-3 structural class should be avoided for tracer development.   

The need to identify early biomarkers for neuroinflammation and epileptogenesis has 

been stressed in the introduction for chapters 4 and 5 respectively. The value of 

using SPECT for imaging VCAM-1 expression with targeted MPIOs as well as the 

importance of multimodal imaging and cross validation has been highlighted. 

Radiolabelling VCAM-1 targeting antibodies conjugated to micron sized particles of 

iron oxide enabled the kinetics and for the first time, the biodistribution properties of 

this contrast agent to be determined. Moreover, in both the inflammatory model and 

in the lithium pilocarpine model of status epilepticus, it has been shown that imaging 

of inflammation with MRI and SPECT is feasible. To the best of our knowledge, this 

is the first study whereby dual imaging of VCAM-1 in the brain has been achieved. 

This novel approach to image neuroinflammation should inspire future studies to 

adopt a multi-modal imaging methodology, allowing the attributes of various 

imaging techniques to be combined. 

The use of VCAM-1 targeting antibodies, conjugated to MPIOs for imaging studies 

has been reported previously in the literature.
115-118

 The work presented in this thesis 

took the extra step of radiolabelling the antibodies to facilitate multimodal imaging. 

Nevertheless, a limitation in the work presented, and in the studies which have 

assessed the non-radiolabelled CA, is the lack of CA characterisation. The degree to 

which the CA polymerises, (illustrated in Figure 43) can have profound effects on its 
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targeting ability, clearance rate and hence toxicity. Future studies should determine 

the size and make-up of this CA before administration into subjects.  

 

 

Figure 43. Polymerisation of VCAM-MPIO.  

 

Whilst it would be of interest to determine how the targeting ability of radiolabelled 

antibodies compared to radiolabelled antibodies conjugated to MPIOs, the main 

focus of this work has been to develop a dual, MRI/SPECT imaging agent for 

VCAM-1 expression.        

In chapters 4 and 5, despite the good agreement in CA distribution between SPECT 

and MRI, there were notable differences that needed addressing. Primarily, SPECT 

signals could be detected using a low dose of iron oxide and with relatively low 

activity levels of a weak gamma emitting radionuclide. This showcases the superior 

sensitivity of the technique and warrants further investigations. Such investigations 

should initially focus on reproducing the results presented in chapter 5 with a larger 

cohort to determine the significance of CA uptake in the disease animals compared 

to controls. This would justify using a more expensive, higher energy gamma 

emitting radioisotope in future experiments. Moreover, radioisotopes, such as I-123 

will allow imaging of deeper brain tissues and so would determine how faithfully 

SPECT detects the neuronal damages known to occur after status epilepticus.  

The results presented in chapters 4 and 5 have shown that SPECT and MRI are 

complimentary methods for detecting inflammation. A future study using this CA 

could ascertain if SPECT is more powerful in identifying earlier diagnostic markers 

for epileptogenesis. This is because [
125

I]VCAM-MPIO is a versatile CA which 

enables SPECT and MRI to be conducted in the same animal, within a suitable time 

frame for imaging. For a fair comparison, the imaging protocol should feature 
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instances whereby animals initially undergo MRI post CA administration followed 

by SPECT or PET. Whilst this may be a challenge for shorter – lived radionuclides, 

it would nevertheless be feasible for commonly used radioisotopes of iodine (e.g. I-

123, half-life = 13 hours) for SPECT or longer-lived radionuclides for PET (e.g. 

zirconium-89, half-life = 3.3 days).  

The commercial MPIOs that have been used are non-biodegradable due to their 

polyurethane coat, and are thus not suitable for human applications. For clinical 

translation, it should be possible to synthesize biodegradable MPIOs with suitable 

modification of the surface coat, and this is currently being explored.
199-201

 

Imaging of NMDAR expression in the brain by SPECT or PET could provide useful 

information on the role of these receptors in epileptogenesis as discussed in the 

introduction of chapter 6. The study detailed in chapter 6 was designed to image the 

distribution of [
125

I]CNS-1261, and thus assess changes in NMDAR expression 

between healthy rats and in rats at the chronic period of epileptogenesis, (7 days after 

a 90 minutes status epilepticus seizure). Unfortunately, this goal was not 

accomplished. Indeed, a limitation was the fact that ROIs for quantification were not 

selected around the entire discrete locations, due to the restrictions imposed by the 

software analysis programme (Image Quant TL 7.0) used. Nevertheless, based on 

qualitative comparisons, there were no changes in radiotracer uptake between the 

disease model and the control group.   

Moving forward, in this study a single time point was selected for investigation (7 

days post SE). Changes in NMDAR expression may become significant at a different 

time point. With a radiotracer exhibiting appropriate kinetics and half-life, 

monitoring NMDAR expression over a period of time may identify the stage at 

which changes in receptor expression become optimal. Contextually, targeting and 

imaging of NMDA receptor expression is an active area of research in pre-clinical 

and clinical settings. This portrays the consensus that NMDA receptors play a vital 

role in neurological diseases and are potential therapeutic targets. Of value are the 

recent structure activity relationships that have been explored to identify more 

suitable scaffolds for radiolabelling and imaging NMDA receptors. A promising lead 

is the PET tracer 
18

F-Ge-179, which has exhibited favourable kinetics in initial 

studies conducted on healthy patients.
202
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As in all research practices, the success of radiotracers is dependent on multiple 

factors ranging from chemical and radiolabelling reactions to biological 

examinations. For this reason, the development and assessment of radiotracers is 

challenging and in most cases, met with limited success. This has certainly been the 

case for the studies outlined in chapters 3 and 6.  Nevertheless, the showpiece from 

this body of work is the results presented in chapters 4 and 5. Accordingly, future 

attention should focus primarily on this work, to help establish a multi-modal 

radiotracer and an early biomarker for epileptogenesis. It is noteworthy that the 

results presented in chapter 5 were included in a successful grant to pursue this work 

further. 
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Chapter 8 Materials and Methods  

 

8.1 Chemistry  

 

All reagents were purchased from Sigma Aldrich (Dorset, U.K.) except for 3-bromo-

1,3,4,5-tetrahydro-benzo[b]azepin-2-one (6), which was purchased from Fluorochem 

(Derbyshire, U.K.) and Propane-1,3-diyl bis(4-methylbenzenesulfonate), which was 

kindly donated by Dr Eva Galante. Unless stated otherwise, all reagents were 

purchased and used without further purification. Column chromatography was 

performed on silica-gel (VWR BDH-Prolabo 40–63 μm). 
1
H and 

13
C NMR spectra 

were recorded at room temperature on Bruker Avance 300 or 600 instruments 

operating at the frequency of 300 or 600 MHz for 
1
H, and 150 MHz for 

13
C. All 

NMR signals are reported as chemical shifts (δ) in ppm downfield from the internal 

standard tetramethylsilane and were internally referenced to the residual solvent 

peak, CDCl3 (7.26 ppm) or DMSO-d6 (2.49 ppm) for 
1
H, CDCl3 (δ 77.0 ppm) or  

DMSO-d6 (39.5 ppm) for 
13

C. Melting points were determined using a Gallenkamp 

Sanyo melting point apparatus. IR spectra were obtained using a PerkinElmer 

Spectrum 100 FT-IR spectrometer. High resolution mass data were recorded on a 

thermo Finnigan MAT900xp (CI/EI) or a Waters LCT Premier XE (ES) mass 

spectrometers.  

The analytical data presented for compounds 7
203

, 8
204

, 9
205

 and 10
206

 are in good 

agreement with published results, whilst 11 is a novel compound.   

The following section describes the synthetic procedures to obtain a precursor for an 

[
18

F]-derivative of BNZA, the results of which are presented in chapter 3, (section 

3.4.3.1), pp. 69 – 72, scheme 4.  

8.1.1 3-azido-4,5-dihydro-1H-benzo[b]azepin-2(3H)-one (7) 

 

 

Scheme 9.  
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A solution of 3-bromo-1,3,4,5-tetrahydrobenzo[b]azepin-2-one (6), (10 g, 42 mmol), 

sodium azide (4.1 g, 1.5 equivalent) and sodium iodide (6.2 g, 1 equivalent) in  

Dimethyl formamide (DMF, 20 mL) was stirred under argon for 24 hours at room 

temperature. Upon addition of water, a solid was formed which was filtered and 

washed with water. After drying, 7 was obtained as a white solid (95%), mp 142 °C 

(lit.
203

 mp 142-145 °C); IR (neat): 3187, 1669, 1486, 1399, 1246 cm
-1

; 
1
H NMR (600 

MHz, CDCl3) δ in ppm: 8.14 (s, 1H), 7.29 (m, 2H), 7.12 (dd, 
3
J = 7.4, 

4
J = 1.0 Hz, 

1H), 7.08 (d, 
3
J = 7.8 Hz, 1H), 3.87 (dd, 

3
J = 11.3, 

3
J = 8.0 Hz, 1H), 2.98 (m, 1H), 

2.72 (m, 1H), 2.53 (m, 1H), 2.34 (m, 1H). 
13

C-NMR (150 MHz, CDCl3) δ in ppm: 

28.4 (CH2), 35.0 (CH2), 59.2 (CH), 122.5 (CH), 126.7 (CH), 128.2 (CH), 129.9 

(CH), 133.6, 136.1, 171.3. HRMS-CI [(M+H)
+
]: 203.1048 (Calculated for 

C10H11N4O 203.0933).    

 

8.1.2 3-amino-4,5-dihydro-1H-benzo[b]azepin-2(3H)-one (8) 

 

 

Scheme 10. 

 

To a solution of 7 (9 g, 45 mmol) and ammonium chloride (6 g, 2.3 equivalents) in 

ethanol (80 ml) and water (50 ml), was added zinc powder (4 g, 1.3 equivalents). 

The mixture was stirred vigorously at 80 °C for 20 minutes. After cooling down to 

room temperature, ethyl acetate (100 ml) and aqueous ammonia (10 ml) were added. 

The mixture was filtered and the filtrate was washed with brine (x 3). The organic 

layers were combined, dried, and concentrated to leave behind a white solid, (50%), 

mp 145 °C (lit.
204

 mp 147-149 °C); IR (neat): 1662, 1489, 1401, 1273 cm
-1

; 
1
H-NMR  

(600 MHz, DMSO) δ in ppm: 8.12 (s, 1H), 7.20 (m, 2H), 7.06 (m, 1H), 6.94 (m, 

1H), 2.50 (dd, 
3
J = 11.4, 

3
J = 8.0 Hz, 1H), 2.30 (m, 2H), 2.12 (dd, 

2
J = 13.7, 

3
J = 6.9 

Hz, 1H), 1.88 (m, 1H), 1.7 (bs, 2H) . 
13

C-NMR (150 MHz, DMSO) δ in ppm: 28.6 

(CH2), 38.9 (CH2), 51.0 (CH), 121.9 (CH), 125.0 (CH), 127.1 (CH), 129.3 (CH), 
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134.2, 137.9, 175.8. HRMS-EI [(M+H)
+
]: 176.0924 m/z (calculated for C10H12N2O 

176.0944).  

8.1.3 3-(tritylamino)-4,5-dihydro-1H-benzo[b]azepin-2(3H)-one (9) 

 

 

Scheme 11. 

 

Over a solution of 8 (0.7 g, 3.9 mmol) in anhydrous DMF (5 mL) was added 

triethylamine (TEA, 0.8 g, 1.1 mL, 2 equiv.), followed by trityl chloride 

(recrystallized from hexane, 1.2 g, 1.1 equiv.), dissolved in chloroform 30 mL). The 

mixture was stirred under argon for 20 hours, after which time, water was added (25 

mL). The organic layer was collected and washed with water (x 2), dried over 

magnesium sulphate and the solvent removed under reduced pressure. The resulting 

syrupy residue was treated with methanol/water 1:1 (50 mL) in an ultrasound bath 

for an hour. Filtration of the mixture afforded 9 as a white solid which was purified 

by crystallisation using ethyl acetate (32%), mp 98 °C; IR (neat): 3055, 2858, 1667, 

1447, 1384 cm
-1

; 
1
H-NMR (600 MHz, CDCl3) δ in ppm: 7.32 (m, 6H), 7.07-7.16 (m, 

12H), 6.65 (d, 7.6, 1H), 3.30 (m, 1H), 3.22 (m, 1H), 2.71 (m, 1H), 2.57 (m, 1H), 2.23 

(m, 1H). 
13

C-NMR (150 MHz, CDCl3), δ in ppm: 29.1 (CH2), 38.9 (CH2), 53.0 (CH), 

71.6 (CH), 122.1 (CH), 126.1 (CH), 126.3 (CH), 127.5 (CH), 127.7 (CH), 128.8 

(CH), 129.9 (CH), 134.8, 136.7, 146.5, 175.4. HRMS-ES [(M+Na)
+
]: m/z 441.1895 

(calculated for C29H26N2ONa 441.1943). 
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8.1.4 Propane-1,3-diyl dimethane sulfonate (10) 

 

 

Scheme 12. 

 

Propane-1,3-diol (1.5 g, 19.7 mmol) dissolved in anhydrous dichloro-methane 

(DCM, 20 mL) was added to a flask and placed in an ice/salt bath. Following drop-

wise addition of TEA (6 g, 8.3 mL, 59 mmol, 3 equiv.) and methanesulfonyl 

Chloride, (5 g, 3.4 mL, 43.4 mmol, 2.2 equiv.), the mixture was stirred for 30 

minutes, then for 10 minutes at room temperature. Ice cold water, (50 mL) quenched 

the reaction and the aqueous layer was extracted with cold DCM (x 3). The 

combined organic layers were washed with cold brine, dried and concentrated to 

leave behind a pale yellow oil (92%). IR (neat): 1328, 1167, 1024 cm
-1

; 
1
H NMR 

(600 MHz, CDCl3) δ in ppm: 4.31 (t, J = 6.00 Hz, 4H), 3.00 (s, 6H), 2.12 (hept. J = 5 

Hz, 2H). 
13

C-NMR (150 MHz, CDCl3) δ in ppm: 27.2 (CH2), 38.2 (CH3), 38.2 

(CH3), 67.2 (CH2), 67.2 (CH2). HRMS-CI [(M+H)
+
]: 232.178 m/z (calculated for  

C5H12O6S2).  

 

8.1.5 Attempts to synthesise the precursor (11) for 
18

F- Radiolabelling  

 

 

Scheme 13. R = -Ms, -Ts.  

 

A two necked round bottomed flask was flame dried. Once cooled to room 

temperature, 9 dissolved in anhydrous DMF was added and the flask was immersed 

in an ice/water bath. Under a steady flow of argon, sodium hydride (NaH) (1.1 
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equiv.) was added. Thirty minutes later, propane-1,3-diyl bis(4-

methylbenzenesulfonate) or propane-1,3-diyl dimethanesulfonate  (1.5 equiv.) 

dissolved in anhydrous DMF was added drop wise. The reaction was left to stir at 

room temperature overnight and was then quenched with water. The resulting 

precipitate was filtered and washed further with water. Efforts to purify the solid 

involved column chromatography, using an eluent of petroleum and ethyl acetate, 

which reached a final gradient of (7:3). The analytical results for the obtained 

product revealed an amalgamation of structures including 9, 10, 15 and only a small 

fraction of 11.    

 

 

Scheme 14.  

 

15 dissolved in anhydrous DCM was added to a cooled two necked round bottomed 

flask which had been flame dried. The flask was then immersed in an ice/water bath 

to which TEA, (3 equiv.) and methane- or toluene- sulfonyl chloride (MsCl or TsCl, 

2.2 equiv.) was added drop wise. The mixture was stirred for 90 minutes at room 

temperature and then quenched with ice cold water. The aqueous layer was separated 

from the organic layer and was washed thrice with cold DCM. The organic fractions 

were then washed with cold brine (x 3), dried over magnesium sulphate and 

concentrated. Analysis of the crude mixture by LC-MS revealed a mixture of 

substances and large amounts of impurities whose identities were difficult to 

determine.   
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8.1.6 VCAM-MPIO (used in the studies described in chapters 4 and 5).    

 

 

 

Scheme 15.  

 

Monoclonal antibodies specific to rat VCAM-1 (MR106) (ebioscience, USA) were 

conjugated to micron sized particles of iron oxide (MPIOs, 1 µm diameter, iron 

content: 26%, Invitrogen, Life Technologies, U.K.). In general, 40 µg of antibody 

were reacted per mg of iron/MPIO (Fe-MPIO) via a tosyl alkylation reaction 

following the manufacturers’ guidelines and as previously reported.
115

 First, MPIOs 

were washed: the beads in the original vial were resuspended by vortexxing for > 30 

seconds. The beads (5 mg of Fe per Kg of animal weight, 19.2 mg MPIO, 38 µl) 

were then placed in an eppendorf tube to which sodium borate buffer solution (1000 

µl, 0.1 M, pH 9.5) was added and vortexxed for > 30 seconds.  The eppendorf was 

placed next to a magnet (0.5 T, nickel plated, K&J Magnetics Inc. USA) to 

immobilise the particles and the supernatant was removed with a Gilson pipette 

(Gilson Scientific LTD. U.K.). After removing the tube from the magnet, to the 

washed beads was then added sodium borate solution (415 µl, 0.1 M, pH 9.5) 

followed by the antibodies (approx. 154 µg, 154 µl). Finally, ammonium sulphate 

solution (138 µl, 3 M, pH 9.4) was added and the mixture was incubated overnight at 

37 °C with slow stirring to ensure the beads did not settle during the incubation 

period. Following antibody conjugation, a magnet was used to immobilise VCAM-

MPIO. The supernatant containing unbound antibodies was removed and VCAM-

MPIO was re-suspended in heparinised PBS (0.1%, 100 µL).  

 

8.2 Radiochemistry 

 
 

[
125

I]NaI was purchased from Perkin Elmer Life and Analytical Sciences (MA, USA) 

as a non-carrier added solution in reductant free 10
-5

 M aqueous sodium hydroxide 
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solution (pH 8 - 11). Non-carrier refers to samples that have no non-radioactive 

additives but may contain naturally occurring isotopic dilutions. The SA of this 

solution was reported to be 629 GBq mg-1.  

HPLC analysis and purification were performed on an Agilent 1200 HPLC system 

equipped with a 1200 Series Diode Array Detector. Runs were monitored with a 254 

UV detector and a Raytest Gabi Sodium Iodide (NaI) detector.  

Isolated Radiochemical Yields (RCY) were measured using a Curiementor 4 ion 

chamber (PTW, Germany).  

 

8.2.1 Radioiodinated BNZA Analogue ([
125

I]4) – (Evaluated in the study discussed in 

chapter 3 (section 3.4.1), pp. 61- 69)  

 
 

For HPLC purification and analytical runs, a C18 Agilent Eclipse Plus column (4.6 x 

150 mm, 5 µm) was used. The solvent systems used were water (0.1% TFA, solvent 

A), and methanol (0.1% TFA, solvent B) with a flow rate of 1 mL min
-1

. 

The precursor (N-(3-(3-fluorophenyl)-1-(((R)-1-isopropyl-2-oxo-2,3,4,5-tetrahydro-

1H-benzo[b]azepin-3-yl)amino)-1-oxopropan-2-yl)-2-(trimethylstannyl)benzamide, 

3) to obtain the radioiodinated BNZA analogue ([
125

I]4) was synthesised by Dr 

Perèz-Medina. 

 

 

Scheme 16.  

 

Hydrochloric acid (HCl, 60 µL, 0.4 M), hydrogen peroxide (H2O2, 50 µL, 6%) and 

[
125

I]NaI (5 µL, 130 MBq), were sequentially added to 3 (50 µg) dissolved in 

methanol (100 µL). The mixture was left to stir for 30 minutes at 60°C. The cooled 
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mixture was then diluted with MeOH/water 1:1 (500 µL) and injected into the HPLC 

system. The two diastereoisomer products of [
125

I]4 were separated by radio-HPLC 

with the following gradient: 60 % B to 90 % B over 32 min. Each diastereoisomer 

obtained was then diluted with water (10 mL) and passed through a Sep-Pak C18 

light cartridge (Waters) activated with methanol (5 mL) and water (10 mL). The 

radioactive diastereoisomers were eluted with ethanol (0.5 mL) which was removed 

under a stream of nitrogen. Prior to administration into the animals, the radioactive 

diastereoisomers were formulated in 10% ethanol/saline solution and filtered using a 

Millex-GV 0.22 µm filter.   

 

8.2.2 [
125

I]VCAM-MPIO (Assessed in a rat model of cerebral inflammation: Chapter 4 (pp. 

81 – 94) and in the lithium pilocarpine model of SE: Chapter 5 (pp. 102 – 108) 

 
 

VCAM-MPIO (19.2 mg MPIO, approx. 40 µl), suspended in heparinised PBS (100 

µL, pH 7.4), was transferred to pre-coated 1,3,4,6-tetrachloro-3α,6α-

diphenylglycouril (Iodogen) tubes (Thermo Fischer Scientific, USA). To this, 

[
125

I]NaI (30-150 MBq) was added and the mixture was left to incubate at room 

temperature for 30 minutes. After this time, the radioactive mixture was transferred 

into an eppendorf tube and radiolabelled VCAM-MPIO ([
125

I]VCAM-MPIO) was 

purified by magnetic immobilisation (RCY = 85 ± 5% (n = 11)). The particles were 

washed with heparinised PBS (1 mL, x 5) prior to their administration into rats.  

Using this same protocol, [
125

I]IgG-MPIO was synthesised using non-specific IgG 

antibodies (Southern Biotech. USA) (RCY = 82% (n = 11)).   

 

8.2.3 [
125

I]CNS- 1261 ([
125

I]19) – Investigated in the lithium pilocarpine model of SE 

(chapter 6, pp. 113 – 121)  

 

The tri-butylstannyl precursor (18) and non-radiolabelled CNS-1261 (19) were 

purchased from ABX-advanced biochemical compounds (Radeberg, Germany). 

Upon arrival, the compounds were separated into 50 µg fractions using DCM, which 

was removed under a stream of nitrogen. The fractions were stored under nitrogen at 

- 4 °C.  
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HPLC analysis and purification was performed with a semi preparative C18 Agilent 

Eclipse Plus column (4.6 x 150 mm, 5 µm particle size) and a solvent system of 

water (0.1% TFA, solvent A) and methanol (0.1% TFA, solvent B) with a flow rate 

of 3 mL min
-1

. Purification and analytical runs were carried out using a gradient 

elution of 40% to 70% solvent B over 15 min, then up to 95% within 5 min, at 95% 

for 8 min before returning to 40% of solvent B in 12 min.  

 

 

Scheme 17.  

 

Method 1: 18 (50 µg) was dissolved in MeOH (100 µl). To this was added HCl (60 

µl, 0.4 M), H2O2 (50 µl, 6%) and [
125

I]NaI in water (25 µl, 2.6 MBq). The mixture 

was vortexxed and left to stand at room temperature. After 10 and 30 min, an aliquot 

(quenched with H2O/MeOH 60:40, 500 µL) was co-injected with 19 diluted in 

H2O/MeOH (60:40, 500 µL) for HPLC analysis, (Figure 41 a and b)  

Method 2: HCl (250 µl, 0.1 M), followed by a solution of 18 (50 µg) in ethanol (100 

µl), was added to [
125

I]NaI in water (2-4 MBq, 25-35 µl). H2O2 (50 µl, 3%) was then 

added and the resulting mixture was vortexxed and left to stand at room temperature. 

10 and 60 min later, an aliquot of the reaction mixture was diluted with H2O and 

MeOH (60:40, 500 µL) and co-injected with 19 diluted in H2O/MeOH (60:40, 500 

µL) for HPLC analysis (Figure 41 c and d).   

An aliquot, obtained 30 min after incubation, was diluted with H2O/MeOH (60:40, 

500 µL) and injected for HPLC analysis (Figure 41 e). The eluent containing the 

radioiodinated product ([
125

I]19) was collected and diluted with water (10 mL) 

before passing through a Sep-Pak C18 light cartridge (Waters, Herts., U.K.), which 

had been activated with MeOH (5 mL) and H2O (10 mL). The loaded cartridge was 

washed with water (10 mL) and [
125

I]19 was released with ethanol (0.4 mL, > 99% 
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recovery, n =5). The ethanol was then removed by a stream of nitrogen. Prior to 

administration into the animals, [
125

I]19 was formulated in 10% ethanol/saline 

solution and filtered using a Millex-GV 0.22 µm filter (Fischer Scientific, 

Loughborough, U.K.). The purity of the product fraction was determined by co-

injection with the non-radiolabelled compound 19 into the HPLC system (Figure 41 

f).   

Method 3: Peracetic acid was prepared 2 hours prior to use from 30% H2O2 (1.7 mL) 

and glacial acetic acid (1 mL).  In a vial containing 18 (50 µg) was added acetic acid 

(130 µl), [
125

I]NaI in water (30 µl, 3 MBq) and peracetic acid (20 µl). The mixture 

was vortexxed and left to stand at room temperature. After 10 and 30 min, aliquots 

of the reaction mixture were diluted with H2O/MeOH (60:40, 500 µL) and co-

injected with 19 for HPLC analysis (Figure 41 g and h).  

Method 4: To a vial containing 18 (50 µg) was added 5% acetic acid diluted in 

MeOH (34 µl) and 0.2% peracetic acid diluted in acetic acid (10 µl). [
125

I]NaI in 

water (30 µl, 3 MBq) was then added and 30 min later, H2O/MeOH (60:40, 500 µL) 

quenched the solution which was then co-injected with 19 for HPLC analysis (Figure 

41 i).   

 

8.3 Biological Evaluations  

 

8.3.1 General  

 
 

All animal work conducted as part of this PhD was performed in accordance with the 

U.K. Animal (Scientific Procedures) 1986 Act and institutional ethics regulations. 

Upon arrival, animals were housed in a controlled environment: temperature = 21 °C 

± 2 °C, humidity = 55% ± 10%, 12 hour light/dark cycle with 30 min twilight 

between the switch to light and to dark. Food and water was provided ad libitum.   

The species used for the studies presented in chapter 3 were female Balb/C mice (6–

10 weeks old and 15–20 g of weight), which were obtained from Charles River, UK. 

Adult male Sprague-Dawley rats, used for the studies discussed in chapters 4-6 (170 

– 270 g) were obtained from the animal facility breeding colony of University 

College London (UCL).  
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SPECT/CT imaging was performed on a Nano-SPECT/CT small animal in vivo 

scanner (Mediso, Hungary). MRI imaging was performed using a 9.4 Tesla 

horizontal bore scanner (Agilent Technologies, USA) with a shielded gradient 

system (Agilent Technologies) and a 4-channel rat head phased-array coil (Rapid 

Biomedical GmbH, Germany). For the duration of in vivo imaging, a physiological 

monitoring system (SA Instruments, USA) was used to monitor respiration rate and 

rectal temperature whilst isoflurane (1% in pure oxygen) was used to maintain 

anaesthesia. Temperature was maintained at 37 ± 0.5 °C using an air and water 

tubing warming system. 

The amounts of radioactivity for dosing was measured in a Curiementor 4 ion 

chamber (PTW, Germany) whilst radioactivity in tissues of interest was measured in 

a Wizard
2
 2470 Automatic Gamma Counter (Perkin Elmer, U.K.). 

For phosphorimaging, the animals were euthanized, their brains were removed and 

fixed overnight in 4% paraformaldehyde (PFA) in PBS (pH 7.4). The brains were 

then cryoprotected overnight in sucrose solution (45%) and sectioned coronally. 

Brains were sectioned using a cryostat (Bright Instrument Co Ltd. U.K.) in which the 

chamber and specimen temperature was set at -15 °C ± 3 °C. The sections were 

mounted on polysine coated glass slides (25 x 75 x 1.0 mm, VWR international 

LTD. U.K.) and placed onto unmounted GP 20 x 25 cm phosphor screens (VWR 

international LTD, U.K.), which were scanned on a Typhoon 9410 Trio
+
 

Phosphorimager (GE Healthcare, U.K.). The phosphorimages were analysed using 

the Typhoon Image Quant software or Image J. MIN-R Screen cleaner wipes were 

purchased from Carestream Dental LTD. U.K.  

Optical images of the brain sections were captured on a bright field AxioSkop 2 

system (Gottingen, Germany) at x 5 magnification. Images of the brain sections were 

processed using the tiling and stitching method (www.mediacy.com, Application 

Highlights – Stitching and Tiling Images) on the Zeiss Axio Vision 4.8 software 

(Imaging Associates, Germany).
207

 

 

 

 

http://www.mediacy.com/
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Animal Models  

 

Cerebral Inflammation (For the studies discussed in chapter 4, pp.81 – 94) 

Adult male Sprague-Dawley rats were anaesthetised using a combination of 

isoflurane (1% in pure oxygen) and urethane (administered intraperitoneally, 1.5 

g/kg). TNF-α (300 ng, Life Technologies LTD. U.K.) in saline (5 µL) was injected 

into the right striatum (coordinates from bregma: -0.5 mm anteroposterior, 3 mm 

mediolateral, 4 mm dorsoventral from dura) using a Hamilton syringe (Hamilton 

Company, USA) attached to a 31G needle. Saline (5 µL) was administered in place 

of TNF-α for the control group.  

 

Lithium Pilocarpine Model of Status Epilepticus (Used in the studies presented in 

chapter 5, pp.102 – 108 and chapter 6, pp. 113 – 121)     

All drugs were administered intraperitoneally. Adult, male Sprague Dawley rats 

were injected with lithium chloride (3 mEq/kg) 3 h prior to methyl scopolamine 

nitrate (5 mg/kg) administration. Methyl scopolamine nitrate was administered to 

reduce the peripheral effects of pilocarpine.
208

 30 min later, pilocarpine 

hydrochloride (30 mg/kg) was administered in order to induce SE. Animals were 

behaviourally assessed and the onset of SE was defined as stage 3 on the Racine 

scale. Diazepam (10 mg/kg, Hameln Pharmaceuticals, U.K.) was administered 90 

min after SE onset to terminate the seizures. Further injections of diazepam were 

administered as required. The control group (SALINEVCAM) received lithium 

chloride, methyl scopolamine nitrate and saline in place of pilocarpine 

hydrochloride.  

All animals induced with SE were monitored daily. Animals whose weight had 

decreased by more than 20% of their initial weight were not included in the studies.   

 

8.3.2 Radioiodinated BNZA and WIN17317-3 Analogues (results of which are presented 

in chapter 3, pp. 61 - 78)  

 

Upon arrival, female Balb/C mice were allowed to acclimatise for at least 5 days in a 

room with constant temperature and humidity. The radiotracers (suspended in 150 – 
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300 μL saline solution (5–7% ethanol)) were administered intravenously via the 

lateral tail vein by Mr M Robson, who also performed the cardiac punctures to 

obtain blood. 

Biodistribution (results shown in Table 3, p. 65 and in Table 4, p. 75) 

 

Following administration of the radiotracer (0.2–0.4 MBq), the mice were 

anesthetized at predetermined time points with isoflurane. Blood was obtained and 

the animals were then sacrificed by cervical dislocation. The radioactivity content in 

the tissues of interest, (large and small intestine, stomach, kidneys, brain, bone 

(femur), liver, lungs, heart, skin, spleen, bladder, tail) was measured. For each time 

point, n = 4 and the radioactivity uptake was calculated as the mean percentage 

injected dose per gram of tissue ± S.D.  

 

Metabolite Analysis (results shown in Figure 20, p. 66 and in Figure 24, p. 76) 

 
In collaboration with Dr C. Perèz-Medina  

Female Balb/C mice were injected with 2.4–3.4 MBq of the radiotracer. The mice 

were then anesthetized using isoflurane 5, 15, 30 and 60 min post tracer injection. 

Blood and brains were obtained.  

 

Blood Preparation  

Blood was collected into heparised tubes and centrifuged at 13 000 rpm for 1 min to 

separate plasma. 300 μL of plasma were mixed with 1200 μL of cold acetonitrile, 

vortexxed and centrifuged at 13 000 rpm for 1 min. The supernatant was then mixed 

with 900 μL of water.  

Brain Preparation  

Brain tissues were mixed with 1.5 mL acetonitrile–water (2 : 1) and homogenized, 

vortexxed and centrifuged at 13 000 rpm for 1 min. The resulting supernatant was 

then mixed with 500 μL of water and the solution was centrifuged as described 

above. Pellets and supernatants were separated and counted for radioactivity to 

determine recovery efficiency.  



140 
 

An aliquot (1000 μL) of the supernatant from the plasma and brain extracts was 

analysed by reverse-phase HPLC (Agilent C18 XDB column, 4.6 × 150 mm, 5 μm) 

using a gradient elution from 50 to 90% Methanol (0.1% formic acid) over 15 

minutes at a flow rate of 1 mL min
−1

. Results are expressed as percentages of the 

total activity administered into the animals ± S.D.   

 

SPECT/CT Imaging (Figure 21, p. 67 and Figure 25, p. 76) 

 

Female Balb/C mice (4–10 weeks old) were injected with 20–35 MBq of radiotracer 

via the lateral tail vein. Animals were then anaesthetised with isoflurane (4% in 

oxygen) and placed in a prone position. Scans were performed approximately 20 min 

post tracer administration using 1 mm pinhole apertures. Whole body scans 

consisted of sixteen projections of varying duration (10-60 seconds per projection) 

and CT were recorded once the SPECT scans were completed. SPECT images were 

reconstructed using HiSPECT software (Bioscan, USA) with the following 

parameters: smoothing = 35%, iterations = 9 and In Vivo Scope software was used 

for CT image reconstruction.  

 

8.3.3 [
125

I]VCAM-MPIO (Assessed in the studies presented in chapter 4 and 5)  

 
 

[
125

I]VCAM-MPIO or [
125

I]IgG-MPIO, suspended in heparinised PBS (0.1%, 1 mL), 

was administered via a cannula implanted in the external right jugular vein of 

anesthetised rats. The CA was administered approximately 7 hours after the 

administration of TNF-α and 20 hours after the termination of SE. After each 

administration, the cannula was flushed with PBS (1 mL) to remove residual 

radioactivity. 

 

Blood Clearance and Biodistribution (results represented in Figure 26, p. 83) 

 

Blood samples (n = 3) were collected via a jugular vein cannula at predetermined 

time points (approximately: 85, 120, 170, 230, 290 s) following [
125

I]VCAM-MPIO 

administration in rats anaesthetised using a combination of isoflurane and urethane. 

For biodistribution studies, [
125

I]VCAM-MPIO in PBS (8-10 MBq, 1 mL) was 
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administered via the lateral tail vein (n = 3). 10 minutes later, the rats were 

anaesthetised with isoflurane (4% in pure oxygen) and blood was sampled through 

cardiac puncture. Animals were then sacrificed by cervical dislocation and the 

organs of interest were removed. The radioactivity content in the blood samples and 

organs was measured and results are expressed as injected dose per gram of tissue ± 

S.D.  

 

In Vivo Imaging (images displayed on p. 85 - Figure 27, p. 86-  Figure 28, p. 104 - 

Figure 35 and p. 105-  Figure 36) 

 

In vivo SPECT/CT was performed approximately 20 min post CA administration. A 

CT scan was conducted with the following parameters: radial field of view (FOV) = 

40. 5 mm
2
, axial FOV = 40.9 mm, exposure time per projection = 1 s, 360 

projections and 55 KvP tube voltage, which resulted in an acquisition time of 6 

minutes. Helical SPECT was performed across the same FOV using 2.5 mm pinhole 

apertures with 20 projections and an exposure time of 15 s per projection. For 

dynamic imaging, 5 scans were performed in succession resulting in a total 

acquisition time of 25 min. All SPECT/CT images shown are from the first frames 

captured 20 min post CA administration. To show the in vivo distribution of the CA, 

a scan was performed across the entire FOV of the animal with 2.5 mm pinhole 

apertures and an imaging time of 40 min.   

In vivo MRI was performed immediately after SPECT/CT imaging, approximately 1 

h following administration of [
125

I]VCAM-MPIO or [
125

I]IgG-MPIO (disease 

models and control groups). Iron oxide was detected using a 3D gradient echo 

sequence (TR = 100 ms, TE = 11 ms, matrix = 192×192×160, FOV = 25×25×25 

mm
3
, acquisition time  51 min).  

 

Phosphorimaging  

 

Sectioning (20 µm) of the brain commenced close to the bregma. The sections were 

subsequently exposed on phosphor screens for 15 minutes. After this time, the 

screens were scanned by the Phosphorimager, (25 µm resolution, acquisition time = 
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2 h 30 min) and the resulting images were processed by Image J (Softonic, Spain). 

The relative distance of the slices displayed either anterior or posterior from the 

bregma are estimated in mm based on the stereotaxic coordinates determined by 

Paxinos and Watson.
121

   

As the radioactivity levels in the brain sections were above the optimal range for 

phosphorimaging, one animal in the TNF-α group was administered a reduced dose 

of [
125

I]VCAM-MPIO (3 mg of Fe/kg, 30 KBq/g). The animal was sacrificed 1 h 

post CA administration, the brain was removed and treated with PFA and sucrose as 

previously described. Coronal sections (20 µm) of the brain were exposed on a 

phosphor screen for 1 week, which was then scanned using the parameters described 

above. Images from this study are displayed on p. 90, Figure 32).   

 

Image Analysis  

 

SPECT images were reconstructed in HiSPECT using the following parameters: 

smoothing = 45%, resolution = 67%, number of iterations = 10. CT reconstruction 

was performed in InVivo Quant.  

MRI data were processed and quantified in MATLAB 2013a (MathWorks, USA). 

ROIs were defined over the left or right cerebral hemisphere surrounding the 

injection site. These consisted of 30 consecutive slices (3 mm) anterior and 30 

consecutive slices posterior to the injection site. Hypointense regions are expressed 

as the percentage contrast void across the brain volume.  

Coregistration of MRI and CT images shown in chapter 4, Figure 28, p. 86 was 

performed in AMIRA® (Visualization Sciences Group, USA), on the gradient 

images of the brain extracted MRI magnitude data and the CT intensity images using 

normalised correlation as the cost function. This was performed by Dr B Duffy.   

For the SPECT quantification presented in chapter 4, p.88, Figure 30 ROIs as 

defined on MRI images were propagated to the SPECT/CT native space using the 

same transformation matrix. In this way, identical ROIs were used for both the MRI 

and SPECT analysis. Background signal intensity was defined as the mean signal 

intensity across all non-brain tissue in the entire field of view. The binding of CA is 
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expressed as the signal-to-background ratio to normalise for body weight and the 

amount of radioactivity that was administered in each animal.  

Statistical analysis was performed in MATLAB by Dr B Duffy. All error bars are 

shown as mean ± standard error of the mean (SEM). Statistical significance was 

assigned at p < 0.05.  

For the results presented in chapter 5, p. 106. Figure 38, SPECT signals in each 

image frame were quantified from the re-constructed images using InVivo Quant 

(Mediso, Hungary). Regions of interest (ROIs) were manually drawn across the 

whole brain. Identical ROIs were used to analyse the frames (n = 5) for each animal.  

 

8.3.4 [
125

I]CNS-1261 (Results of which are discussed in chapter 6, pp. 113 - 121) 

 
 

Phosphorimaging   

  

Brain slices (16 µm) were exposed on a phosphor screen along with a set of [
125

I]NaI 

standards (0.5 - 0.0001 MBq) for one week, after which the screen was scanned, (25 

µm resolution, acquisition time = 2 h 30 min).   

 

HE Staining (Represented on Figure 40, p. 114) 

 

Brain slices (16 µm) were stained with Hematoxylin and Eosin (HE) using a protocol 

similar to Zeller et al.
209

 Tissue sections were re-hydrated by agitation in H2O for 30 

seconds. The slides were then dipped into Harris’ hematoxylin and agitated for 5 

minutes. The slides were rinsed in H2O for 1 minute and staining intensity was 

determined under the microscope. Further agitation in hematoxylin was performed if 

required. The slides were next immersed in Eosin solution (1%) for 4-5 minutes. The 

sections were then dehydrated by 30 second incubations in 70%, and 100% (x 2) 

ethanol. The alcohol was extracted with 10 second immersions in histoclear (III to I) 

(Fischer Scientific, U.K.). Using Xylene, the sections were then cover slipped (VWR 

International LTD.).  
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