UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Developmental regulation of tau splicing is disrupted in stem cell-derived neurons from frontotemporal dementia patients with the 10 + 16 splice-site mutation in MAPT

Sposito, T; Preza, E; Mahoney, CJ; Setó-Salvia, N; Ryan, NS; Morris, HR; Arber, C; ... Wray, S; + view all (2015) Developmental regulation of tau splicing is disrupted in stem cell-derived neurons from frontotemporal dementia patients with the 10 + 16 splice-site mutation in MAPT. Human Molecular Genetics , 24 (18) pp. 5260-5269. 10.1093/hmg/ddv246. Green open access

[thumbnail of Article]
Preview
Text (Article)
Developmental regulation of tau splicing is disrupted in stem cell-derived neurons from frontotemporal dementia patients with the 10 + 16 splice-site mutation in MAPT.pdf

Download (707kB) | Preview

Abstract

The alternative splicing of the tau gene, MAPT, generates six protein isoforms in the adult human central nervous system (CNS). Tau splicing is developmentally regulated and dysregulated in disease. Mutations in MAPT that alter tau splicing cause frontotemporal dementia (FTD) with tau pathology, providing evidence for a causal link between altered tau splicing and disease. The use of induced pluripotent stem cell (iPSC)-derived neurons has revolutionized the way we model neurological disease in vitro. However, as most tau mutations are located within or around the alternatively spliced exon 10, it is important that iPSC-neurons splice tau appropriately in order to be used as disease models. To address this issue, we analyzed the expression and splicing of tau in iPSC-derived cortical neurons from control patients and FTD patients with the 10 + 16 intronic mutation in MAPT. We show that control neurons only express the fetal tau isoform (0N3R), even at extended time points of 100 days in vitro. Neurons from FTD patients with the 10 + 16 mutation in MAPT express both 0N3R and 0N4R tau isoforms, demonstrating that this mutation overrides the developmental regulation of exon 10 inclusion in our in vitro model. Further, at extended time points of 365 days in vitro, we observe a switch in tau splicing to include six tau isoforms as seen in the adult human CNS. Our results demonstrate the importance of neuronal maturity for use in in vitro modeling and provide a system that will be important for understanding the functional consequences of altered tau splicing.

Type: Article
Title: Developmental regulation of tau splicing is disrupted in stem cell-derived neurons from frontotemporal dementia patients with the 10 + 16 splice-site mutation in MAPT
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1093/hmg/ddv246
Publisher version: http://dx.doi.org/10.1093/hmg/ddv246
Additional information: © The Author 2015. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Clinical and Movement Neurosciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Department of Neuromuscular Diseases
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Neurodegenerative Diseases
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health > Developmental Biology and Cancer Dept
URI: https://discovery.ucl.ac.uk/id/eprint/1469609
Downloads since deposit
149Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item