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ABSTRACT. This paper provides weak conditions under which there
is nonparametric interval identification of local features of a structural func-
tion which depends on a discrete endogenous variable and is nonseparable in
a latent variate. The function may deliver values of a discrete or continuous
outcome and instruments may be discrete valued. Application of the analog
principle leads to quantile regression based interval estimators of values and
partial differences of structural functions. The results are used to investigate
the nonparametric identifying power of the quarter of birth instruments used
by Angrist and Krueger (1991) in their study of the returns to schooling.

1. INTRODUCTION
1.1. Discrete variation. This paper explores the limits to identification of struc-
tural features when there is discrete variation. Many of the econometric models
involving discrete variables used in practice embody parametric restrictions. As per-
suasively argued by Roehrig (1988), it is important to know the extent to which para-
metric restrictions make an essential contribution to a model’s identifying power. This
paper sheds light on this issue by studying the identifying power of nonparametric
econometric models when there is discrete variation.

When there is discrete variation parametric restrictions are powerful. That is a
matter for concern because parametric restrictions never flow from economic theory.
Discrete variation in covariates places limits on the values of endogenous variables at
which features of structural functions can be nonparametrically identified and pro-
hibits nonparametric identification of derivatives of structural functions.! Parametric
restrictions allow “interpolation” between points at which nonparametric identifica-
tion is feasible.

*I am grateful to Roger Koenker, Charles Manski, and Joao Santos Silva and to seminar partic-
ipants at cemmap, Northwestern University, University of Chicago and at the Harvard-MIT econo-
metrics workshop for comments on the related paper Chesher (2002) and to Hidehiko Ichimura,
Whitney Newey and Elie Tamer for comments on this paper. The paper was presented at the 14th
EC? Meeting held at cemmap, London, December 12th - 13th 2003.

ISee Chesher (2002).
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Discrete variation in endogenous variables poses particular problems. It is shown
here that point nonparametric identification of values of structural functions is infea-
sible - at best there is interval identification - unless special circumstances prevail.
Consequently, there is generally at best interval nonparametric identification of the
effects on structural functions of varying the values of discrete endogenous variables.

The paper provides conditions under which there is interval nonparametric iden-
tification of:

1. values of structural functions at interior points of support of a discrete endoge-
nous variable, and,

2. partial differences of structural functions for variation across interior points of
support of a discrete endogenous variable.

The exclusion of extreme points of support means that the binary endogenous
variable case lies outside the scope of application of the results given here. The
demonstration of the identifying power of the proposed model is constructive and
points to easily computed analog interval estimators.

1.2. Nonseparable structural functions. A stylised Becker-Chiswick-Mincer
model? of the determination of investment in schooling and the wage provides one
motivation for studying the problem considered in this paper. Let Y7, Y5 and X denote
respectively the log wage, years of schooling and a list of covariates and let p; and
p, denote continuously jointly distributed scalar random variables. The structural
equations:

}/1 - hl(}/%XHOl) (1)
Y, = hQ(X7IO2) (2)

deliver a single value of Y} and Y5 given a value of X, p; and p,. In this context there
is interest in the sensitivity of the structural function h; to variation in Y5 when other
arguments are held fixed, because this bears on the “returns to schooling”. If p; and
p, are correlated this is not identified without further restrictions.

The structural functions (1) and (2) are required to be monotonically varying
(normalised increasing), but not additively separable in the latent variates, so the
returns to schooling may exhibit random variation driven by the variation in p; which
may co-vary with p,. In this situation one might be content to identify some average
value of the returns to schooling, but of much greater interest is identification of the
value of the returns to schooling at particular values of Y2, X and p;. This paper
focusses on the case in which there is discrete variation in schooling as often arises in
practice.

2See Becker and Chiswick (1966), Chiswick (1974), Chiswick and Mincer (1972) and Mincer
(1974). Card (2001) considers parametric nonseparable models of wage determination and schooling
choice. Imbens and Newey (2003) motivate a nonparametric nonseparable specification.
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There are many situations in which an endogenous variable varies discretely and a
nonseparable model is of interest. For example, in an analysis of demand, Y; could be
household expenditure on electricity and Y5 could measure the number of electrical
appliances owned by a household.? In an analysis of firm behaviour, Y; could measure
company sales or profits and Y5 could measure the number of plants a firm operates,
or, in an analysis of innovation, the number of patents registered.*

This paper focusses on the case in which an endogenous variable varies discretely.
Results for the continuous case, already available, emerge on considering the effect of
reducing to zero the distance between the points of support of the discrete endogenous
variable. The analysis allows the outcome, Y; and the covariates, X, to vary discretely
or continuously.

1.3. Related results. Chesher (2002, 2003) and Imbens and Newey (2003)°
study identification in nonseparable models of this sort when endogenous variables
are continuously distributed. Their results do apply in one case in which endogenous
variables vary discretely but this is a case of no econometric interest.’

Matzkin (2003) studies identification and estimation of nonseparable structural
functions when arguments are exogenous. Roehrig (1988) gives results on global
identification in smooth nonseparable models with endogenous variables under con-
tinuous variation. Imbens and Newey (2003) relax Roehrig’s smoothness restriction
and provide estimators and their asymptotic distribution theory for the continuous
endogenous variable case. They also study identification and estimation of various
average structural functions when there are many sources of stochastic variation.

Chesher (2002, 2003) develops local conditions under which there is identification
of values, derivatives and partial differences of nonseparable structural functions at
specific values of their arguments for the continuous endogenous variable case. That
local focus allows relaxation of the restriction requiring latent variates and covariates
to be independently distributed, a restriction essential in a global nonparametric
identification analysis such as that of Roehrig (1988), Imbens and Newey (2003) and
Matzkin (2003).

There is a large literature on nonparametric identification when latent variates
are additively separable. See for example Newey, Powell and Vella (1999), Darolles,
Florens and Renault (200), Pinkse (2000), Newey and Powell (2003) and Severini and
Tripathi (2003) and the references therein.

Nonparametric identification when there are discrete endogenous variables and

the structural function is additively separable in the latent variate is studied in Das
(2003) and Florens and Malavolti (2003).

3See Dubin and McFadden (1984) which employs a parametric specification.

4See for example Cockburn and Griliches (1988) and the work surveyed in Griliches (1990).

SImbens and Newey (2003) is a revised version of a 2001 manuscript with the same title.

In Chesher (2002, 2003) and Imbens and Newey (2003) discrete variation in Y3 is only permitted
if variation in X affects the values of the points of support of the distribution of Y5 but not the
probabilities on the points of support.
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This paper provides conditions under which there is identification of features of
nonseparable structural functions when there are discrete endogenous variables. The
outcome and the covariates may be discrete or continuous. The attack on the problem
follows the approach taken in Chesher (2003). It is helpful to outline that approach
now, as a prelude to describing the method of this paper and presenting its main
results.

1.4. Identification with continuous endogenous variables. Extensive use is
made of conditional quantile functions for which there is the following notation.

Q48(p|b) denotes the conditional p-quantile of scalar random variable A given
vector random variable B = b. With

there is the following definition of Q5 (p|b).

Qap(p|b) = inf {q : Fap(q|b) > p}

When Y5 is continuously distributed, conditions sufficient to identify the value
of the structural function h; and its sensitivity to variation in Y5 are developed as
follows. Substituting for Y5 in (1) gives

Y1 = hi(he(X, ps), X, p1)
and because h; is increasing in p; there is

Qvilpy,x (T1|T2, ) = hi(ho(z,72), 2, Q) |y x (T1]T2, 7))

because of the equivariance of quantiles under monotone transformation.
When Y; is continuously distributed conditioning on p, = 79 and X = =z is
identical to conditioning on Y3 = yo = ho(z,72) and X = x, and so there is

QY1|Y2,X(7'1\?/2, 96) = hl(y2> z, Qpl\pQ,X(ﬁ\M, 96)) (3)

It is convenient to normalise p, to be uniformly distributed on (0,1) independent
of X so that yo = ho(x,72) is the conditional To-quantile of Y given X = z, that
is ho(x,72) = Qyyx(T2|x). With r{ = Q,,p,,x(T1]72,2) equation (3) can then be
written as follows.

QYl\Yg,X(Tl‘QYﬂX(T?’x)a .1') = hl (QY2\X(T2‘x)> x, TT) (4)

The value of the conditional quantile on the left hand side of the equation identifies
the value of the structural function on the right hand side.

Suppose that, at some point of interest, h; and r] are insensitive to some particular
variation, Az in x.” If hy is sensitive to this variation there is a nonzero change in

"Both x and Az may be vectors.
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Qy,|x (T2|7). Then the value of Y5 at which h; is evaluated on the right hand side of
(4) is altered as x is moved by Az, but r} remains constant and there is no effect
through the x argument of h;. The resulting change in the value of the structural
function, entirely attributable to variation in the Y5 argument, is identified by the
effect that moving = by Ax has on the conditional quantile on the left hand side of
(4).8

If X can be continuously varied then this argument leads to conditions under
which there is identification of partial derivatives of structural function, as described
in Chesher (2003). But if X can only vary discretely one must be content with
identifying partial differences of structural functions as described in Chesher (2002).

1.5. Discrete endogenous variables. The argument employed in the case in
which Y3 is continuously distributed cannot be used when Y5 is discrete. When Y5
varies discretely equation (2) no longer defines a one-to-one relationship between
(X, py) and (X, Y5) and the crucial step from (3) to (4) cannot be taken.

Let y3* denote the mth of M points of support of the distribution of discrete Y5.
Fixing Y, = y7* and X = z limits p, to the following interval.’

P2 € (Fraix (y5 %), Fryx (v5' )]

The quantile on the left hand side of equation (4) is constant for variations in 75 in
this interval, but 7 = Q,,|p,,x (71|72, ) which appears as an argument of the right
hand side of (4) varies as 75 is altered or Y; is locally exogenous. So, when Y5 is
discrete and at least locally endogenous equation (4) cannot hold.

Under weak nonparametric restrictions the value of a structural function at specific
values of its arguments cannot be point identified when one of the arguments is a
discrete endogenous variable. Without point identification of the value of a structural
function there is no hope of point identification of the effect on the structural function
of varying an endogenous, or indeed an exogenous, argument.

1.6. Set identification. The fact that fixing Y5 and X restricts p, to an interval
hints at the possibility of set identification. Define

T = Qpylopx (T1]72, 7)
and
p"(zr) = FYzIX(ngM)'

Theorem 1, given in Section 2, states that if, for some point of support y5* and
probability 75, there exist values of X, z™~! and 2™ such that

pm(a™) < Ty <p" ™) ()

®Note that on the left hand side of (4) changing x by Az affects Qy,|x(72|x), and thus the Y;
argument of Qy,|y,x and also the X argument of Qy; |y, x-
9To cover the case m = 1, Fy,|x (y3]x) is defined to be zero for all z, and note that Fy,|x (y3”|z) =

1.
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then under certain conditions and for z € {z™!, 2™}, there is the following interval
identifying inequality.

m—l)

min (Qv,vax (T1]¥5% ™), Qvijvax (T1]957, ™))

< ha(ys',2,7r7) <

max (QY1|Y2X(T1 |y72nu mm—1>7 QYl‘Y2X(T1 |y§n7 mm)) (6)

The conditions under which (6) holds include the following.

1. For ry in a sufficiently wide interval around 77, F), |,,x(71|r2, =) is monotonic in
ro for ro satisfying the following inequality.

pm—l(l,m) S o S pm(l,m—l)

2. The value of the structural function hy(y5*, =, r7) is insensitive to variation in z
e {zm™ 1t 2™},

3. The value r} is insensitive to variation in z € {z™* z™}.

The inequality (6) does not apply when y3* is an extreme point of support, so
the binary endogenous variable case is excluded from consideration. When y5* is
the lowest (respectively highest) point of support of Y3 the probability on the right
(respectively left) of (5) is zero (respectively one). Then (5) could only be satisfied
if 79 were zero (respectively one) but then the probability mass at y5* would be zero
and the object whose identification is sought vanishes.

The argument leading to the interval identification result is now sketched. The
seminal work of Hurwicz (1950) makes clear that in any study of identification one
must consider how the information contained in the conditional distribution of out-
comes (Y; and Y5) given covariates (X) bears on the structural features whose iden-
tification is sought Thus the route to the interval identification result (6) starts with
consideration of the conditional distribution of Y; given Ys = y3* and X = x and the
way in which this is related to the structural function evaluated at y5* and x.

Lemma 2 in the Appendix to the paper provides bounds on this conditional dis-
tribution function and its associated quantile function. The bounds on the quantile
function are as follows.

- ha(y5' 2, Qpypyx (T1p™ T (2), 7)) }
RE (11, y?*, ) = min 1892 5> &5 il ’
(m, 95", 7) { P (45", 7, Qpy o (11 P (), 7))
< QYl\Y2X(T1|y;n7m) <

ha(y5", 2, Qpy o, x (T11P™ (1), 7)) } U
max R " ’ =h" (T, 95", x
R A (7 v5 )

Suppose Qy; v, x (T1|Y5%, ™) > Qyvijvax (T1|y5", ™). Under the conditions stated
above the lower bound on Qy;y,x(71|y5", ™), is no smaller than the upper bound
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on Qv v, x (T1|yy", 2™ 1) and hi(y5", z,7}) lies between these bounds, that is, for
€ {zm 1 2™}

hL(Tlaygnaxm) 2 hl(ygn,:r,rf) Z hU(Tbygl?xm_l)‘

The two quantile functions therefore bound hy(y3*, z, 7). When Qy, v, x (71]y5", ™) <
Qvivox (T1]y5%, ™ 1) the inequalities are reversed and combining the results leads to
the interval identifying inequality (6).

1.7. Main results and the organisation of the paper. The precise results
concerning identification of the value of a structural function are given in Section 2.
In many cases identification of the sensitivity of a structural function to changes in
an endogenous variable is of primary interest. Identification of structural values is
treated first because this is an essential prerequisite for identification of structural
differences.

In Section 2 Theorem 1 defines a model and gives a result which is shown to
imply that the model interval identifies the value of a structural function of a discrete
endogenous variable at specific values of its arguments.

Theorem 2 shows that the interval identifying bounds are sharp in the sense that
there can exist admissible structures such that the bounds are attained. For example
the bounds are attained when p; and p, are distributed independently given X, in
which case Y5 is exogenous.

Theorem 3 implies that if p; and p, co-vary more than minimally then point
identification of the value of a structural function is not feasible if Y] is continuously
distributed and Y; is discrete. In that situation there are no values, 2™ ' and z™,
such that

m—

Qvivax (T1]ys" @ 1) — Qvivax (T1]ys', 2™) =0 (7)
so the interval (6) always has non-zero length.

Analogue estimation of identifying intervals and the issue of determining minimum
length intervals are discussed in Section 2.7.

If y5* is very close to 5"~ ', which happens when Y5 is close to being continuously
distributed, then it may be possible to find 2™~ and 2™ such that (7) is “nearly”
satisfied and the identifying interval is short. Considering the limiting case, if Y5 is
continuously distributed and there exists z* such that 7o = Fy,|x (y5|2*), and therefore
Ys = Qy,x(72|z*), then there is point identification of h(y3,x,71), as described in
Section 1.4. This is the subject of Section 2.8.

Section 3 gives results on the identification of structural partial differences. Iden-
tification of a partial difference can be achieved if each component of the difference is
interval identified and if the structural function and the value of its p; argument are
insensitive to the variations in X required to identify the components. Section 3.1
and 3.2 deal with interval identification of a structural partial difference with respect
to respectively an endogenous variate and a covariate.

Section 4 examines the implications of these results for the well known study of
Angrist and Krueger (1991) (AK) which uses wage information and discrete data on
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years of schooling to estimate returns to schooling. Analysis of the AK data sug-
gests that the weak quarter of birth instruments have insufficient power to identify
the returns to schooling in the absence of parametric restrictions of the sort imposed
by AK.!” Results are presented suggesting that, even if schooling were continuously
recorded, the weakness and discreteness of the quarter of birth instruments severely
limits the structural information that can be extracted from this data without im-
posing the sort of parametric restrictions used by AK.

Section 5 concludes with a discussion of the merits of local identification analysis,
the extension of the analysis to cases in which there are many endogenous variables,
the issue of identification when an endogenous variate is binary, and the relationship
of this analysis to the classical Cowles Commission analysis of identification.

2. IDENTIFICATION OF A VALUE DELIVERED BY A STRUCTURAL FUNCTION

2.1. Introduction and definitions. This Section considers nonparametric iden-
tification of the value of a discrete or continuous random variable Y; delivered by a
structural function when one of the arguments of the structural function, Y3, is a dis-
crete endogenous variable. Identification of structural partial differences is addressed
in Section 3.

First there are the following definitions.

Definition 1. X = {X;}X | is a vector of covariates. The conditional distribution
and quantile functions of p, given p, and X are denoted by respectively F, |, x
and Qp,|p,x- p1 and py are jointly continuously distributed latent variates and py is
normalised uniformly distributed on (0,1) independent of X.

Definition 2. Y; is a discrete, continuous or mixed discrete-continuous random
variable. The conditional distribution of Yo given X = x is discrete with countable
points of support {yy}M_,  invariant with respect to x, and with positive probability

masses {pm(2)YM_,. Cumulative probabilities {p™(x)}_, are defined as:

Py =Y mlz),  me{l,... M}

with p°(x) = 0 and p™(z) = 1.

Restriction A1 imposes conditions on the structural functions determining Y; and
Y, and will be maintained throughout.

(Al). Structural functions. At any value of X, p; and p,, the value of the outcomes
Y] and Y; is uniquely determined by the following equations.

}/1 = hl(}/%X?pl) (8)
Yo = ha(X.py) (9)

10This is additional to the problem weak instruments pose for inference discussed in Bound, Jaeger
and Baker (1995).
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The function hy is weakly monotonic with respect to variation in p,, normalised
caglad and non-decreasing. The function hy evaluated at X = x, ho(z, py) is
Qv,|x (po|x), the conditional quantile functionof Ys given X = x, as follows.

Y PP(z) =0 < py < p'(x)
ha(@, p3) = § ¥5° prN@) < pp <pT(x), meEe{2,...,M-1}
ya' pM () < py < pM(z) =1

The structural equations (8) and (9) are in triangular form. This is essential in
what follows but is less restrictive than it seems at first sight. The second equation can
be regarded as a “reduced form” equation in a fully simultaneous structural system,
so the analysis which follows can be regarded as an analysis of the identification of
features of a single structural equation embedded in a fully simultaneous system.

2.2. Identifying restrictions. This Section provides nonparametric restrictions
under which there is identification of the value, hy(y3*, x,r}), delivered by the struc-
tural function h;. The value y5*, m € {2,..., M — 1}, is an interior point of support
of the distribution of Ys. The term rj is a value of p; defined as

= Qplp,x (T1]T2,2) (10)

where 7 = {71,72} € (0,1)? and z lies in a set of instrumental values of X to be
specified shortly.!!

Four restrictions additional to Al are now introduced. These define a set, Z,,,
of instrumental values of X and ensure that i and hq(y3*, x,r]) are invariant with
respect to choice of x within the set Z,,.

(B1) There exist instrumental values of X, T, = {z™ 1, 2™}, such that
pT(a™) = Fyyx(y5'1a™) < 72 < Fyyx (g Ha™ ) =p™ (@) (1)

(B2) For x € &y, and all v, and ro € Ry = (p™ 1(a™),p™ (2™ 1)), F, p,x(T1|r2, )
is a monotonic function of rs.

(B3) The value of r{ = Qp,1p,x(T1|T2,2) is invariant with respect to choice of = €
.

(B4) The value of hy(yy, x,r}) is invariant with respect to choice of © € &, that
18:
hl(y;nuxm77ﬂf) = hl(yglaxm_177ﬂf)'

Tn a classical analysis of identifcation, one identifies a subset of the covariates as instrumental
variables. In this analysis of local identification it is allowed that variables can play the classical
role of instrumental variables at some values but not at others. Hence the term instrumental values
is used.
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2.3. Remarks on the restrictions. Restrictions B1 and B4 taken together are
analogous to the rank condition in the classical analysis of identification!? of the values
of parameters of a linear structural equation, Restriction B1 requiring the distribution
of Y5 given X to have a degree of sensitivity to variation in X, Restriction B4 limiting
the sensitivity of the structural function to variation in X

It follows directly from (11) that

Qv x (Ta|z™ 1) <y ™' < Y8 < Qyyx(T2|z™) (12)

the strong inequality, 5" ' < 47", holding because Y, has a discrete distribution with
positive probability masses on each point of support. So Restriction Bl requires X to
have impact on the conditional distribution of Y5 given X sufficient that both y5* and
y5*~! are bounded by To-quantiles of the distribution of Y3 given X and that there
exist values of X such that this bound can be achieved.

If {z™~!, 2™} are such that equalities hold throughout in (11) then y%* and 33" *
are To-quantiles of Y5 given X equal to respectively 2™ and ™!, Such pairs of values
of X may exist if X has rich support, for example if X is continuously distributed,
and the impact of  on Qy,x(72|z) is sufficiently strong.

Restriction B4 is a weak “local exclusion” restriction requiring insensitivity of the
structural function h; to variation in X within Z,, at the point of interest. It would
hold if X were entirely excluded from h;. It would hold if certain elements of X were
excluded from hq, in which case the non-excluded elements would be required to be
equal in 2™~ ! and ™. Restriction B4 is rather weak, requiring only local insensitivity
of h; to variation in X.

The essential requirement covered by Restriction B2 is that F), ,,x, and therefore
Qp,p,x» have a degree of bounded variation with respect to p, sufficient to allow the
impact of p, on hy (via the dependence of p; on p,) to be limited when Y, = y".
The monotonicity restriction of B2 is sufficient for this purpose and can be slightly
weakened.

Restriction B3 limits the dependence of p; on X given p,. It would hold if p; were
distributed independently of X given p, but is much weaker being local to 7 and to
the values of x in Z,,.

Identification of hq(y3*, xz,r]) when y3* is the lowest or highest point of support
of Y5 is excluded from consideration. Thus the identification results developed here
have no force when Y3 is binary.

Restriction B1, which plays a key role in this nonparametric analysis, cannot
be satisfied in either of these cases. Consider the case m = M, so that y3' is the
maximum value of Y5. The cumulative probability p™(x™) must be equal to one
for all z™ and there can be no value of 7o € (0,1) such that 79 > pM(zM) = 1.
If 75 = 1 were admitted then Restriction B1 could only be satisfied for 2™~ such
that pM~1(z™~1) = 1 but then there is no probability mass on )/ which violates the
requirement that all points of support of Y5 carry positive probability.

12Koopmans, Rubin and Leipnik (1950).
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Consider the case m = 1, so that y3* is the minimum value of Y5. The cumulative
probability p°(x) = 0 for all x so Restriction Bl requires 79 < 0 which cannot be
satisfied if 79 € (0,1). If 79 = 0 were admitted then Restriction B1 requires z! to
be chosen such that p'(z') = 0 but then there is no probability mass on y3 which
violates the requirement that all points of support of Y carry positive probability.

The latent variate p, is not an argument of the structural function h;. Chesher
(2002, 2003) and Imbens and Newey (2003), both effectively considering the case
in which Y5 is continuously distributed, demonstrate identification of the value of a
structural function when p, and p, are arguments of h;. This case can be addressed
using the methods of this paper if Restriction B2 is modified. The case in which the
structural function (8) has the form

le = hl(}/QaX7p17p2)

can be addressed if Restriction B2 is replaced by the following restriction.

(B2%) For x € &, and all t;, and 75 € Ry = (p™~(z™), p™(x™ 1),

hl(ygna xz, Qp1p2X(t1’7’2, $), TQ)

s a monotonic function of rs.

The results which follow apply with this modification. Like Restriction B2, B28
can be weakened to a local (to 71) bounded variation restriction.

2.4. Set identification. Hurwicz (1950) defines the concept of point identifica-
tion of a feature of a structure. The definition is extended to cover set identification
as follows.

Definition 3. A model identifies the value of a feature of a structure Sy within a set
Ag if in all structures admitted by the model and observationally equivalent to Sy the
value of the feature lies in Ag.

The model defined by the restrictions given in Section 2.2 set identifies hq (y3, x, 7).
This is the subject of Theorem 1. Define

qL(T> yéna im) = min (QY1|Y2X(7-1‘y£n7 xm—l)’ QYl\YzX(Tl ’y;n> xm)) (13)
qU(T7 y;na jm) = mnax (QYl\Y2X(T1|y;n7 xm—1)7 QY1|Y2X(Tl|y72n7 mm)) (14)
and recall the definition (10) of r7.
Theorem 1. Under Restrictions A1 and B1 - B/ there is the inequality:

q" (T, Y5 Tm) < ha (Y 2, 1}) < ¢V (T, 45 ) (15)

where © € Ty, = {z™ 1 a™}.
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The proof is in the Appendix. The following argument shows that Theorem 1
implies set identification of the value of hy(y3*, z,77).

The objects ¢ (7,95, Zm) and ¢V (7, Y5, T,,) are well-defined, single valued func-
tionals of the distribution of Y; and Y, given X. Consider any admissible structure, S,
that is a structure satisfying Restrictions A1 and B1 - B4, in which hy (y5*, z, r}) = h°.
Theorem 1 states that

g5 < hi <qj

where ¢ and ¢¥ are the values obtained when the functionals (13) and (14) are applied
to the distribution of Y7 and Y5 given X generated by the structure S. Consider any
admissible structure S’ observationally equivalent to S with hy (y5*, z,7%) = . Since
S’ is observationally equivalent to S it generates the same distribution for Y7 and Y5
given X as does the structure S, and so it yields the same values of ¢” and ¢V, that
is gk = ¢k, and ¢¥ = ¢% and Theorem 1 tells us that

L s U
qs < hl < qs

whatever the value of hy". Theorem 1 therefore implies that the model defined by
the restrictions of Theorem 1 set identifies the value of hi(y5*, z,r7) in the sense of
Definition 3.

2.5. Sharpness of the bounds and locally exogenous Y;. The bounds of
Theorem 1 are sharp in the sense that there can exist admissible structures in which
equalities hold throughout in (15). One such case is the subject of Theorem 2.
Consider the following restriction in place of Restriction B2.

(B2*) For each x € &, and all 1, F, ,,x(r1|r2, ) is constant for variation in ry in
Ry = (pmH(a™), p™ (@™ )]

Theorem 2. Under Restrictions A1, B1, B2*, B3 and B/ there is the equality

h1(y§n,$>7’T) = QY1|Y2X(Tl\y£n,$m) = QY1|Y2X(71’Z/§”,$m_1)

where T € T,,.

Theorem 2 not only demonstrates the sharpness of the bounds of Theorem 1, but
also shows that when Y5 is “locally exogenous” point identification of hy(y5*, z,r7) is
possible if suitable instrumental values can be found.'?

13This result was given in Chesher (2002).
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2.6. Point and interval identification. Theorem 1 implies that the value of
hy(y5*, x,r}) is point identified if:

QYHYQX(T].‘y;n?xm_l) = QY1|Y2X(T].’y£n7xm)‘ (16)

When Y is a discrete random variable this equality can hold because the discretely
varying quantiles of Y] given Y5 and X can be insensitive to variation in x € Z,,.

When Y; is continuously distributed the equality (16) cannot hold unless the
conditions of Theorem 2 prevail. This is the subject of Theorem 3. Consider the
following restriction in place of Restriction B2.

(B2**) For each x € Ty, and all 1, F, , x(r1|r2, x) is monotonic and non-constant for
variation in o in Ry = (p™ (™), p™(x™ Y)]. hy is strictly montonic in p;.

Theorem 3. Under Restrictions A1, B1, B2**, B3 and B/

Qyvivax (T11Y5" 2™ 1) # Qi pvax (1115, ™).

and hy(y5', z,r7) is not point identified.

An implication of Theorem 3 is that when Y7 is continuous and Y5 is discrete, the
model defined by the restrictions of the Theorem 1 only interval identifies the value
of hy(yg*, x,ry).

There may be many values {z™ !, 2™} for which the conditions of Theorem 1 are
satisfied and so many identifying intervals. Clearly the interval with minimum length
is obtained using {5, 2} defined as:

{wgyt—lax%t} = argmin }QY1|Y2X(T1|y§n7$m_1) — QYl‘YQX(T1|y£n7mm)‘
{zm-1,2m}eB
where B is the set of values of X for which Restrictions B1 - B4 hold.

There is interval overidentification of hy(yy*, x,r}) if there are many pairs Z,,
satisfying the conditions of Theorem 1 leading to the same interval (15). Such a
situation can arise, for example, when X contains many elements with more than one
of them “excluded” from the structural function A;.

The support of X may limit the values of Y3 and 7, at which interval identification
can be obtained. Even if there is rich support, when instruments (X) are weak, having
only a small influence on the conditional distribution of Y5 given X, it may not be
possible to find values of X satisfying (11) for any value of 75. The combination of
weak instruments and sparse support can combine to produce underidentification at
all values of Y5, 71 and 74, as is illustrated in Section 4 using data employed in the
study of the returns to schooling reported in Angrist and Krueger (1991).
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2.7. Estimation. Identifying intervals can be estimated by applying the analog
principle, employing non-, semi- or fully- parametric estimates of the conditional
distribution or quantile functions of Y5 given X and of Y; given Y, and X .1

Given a value, y5* of interest, a value 7o and an estimate Fy2‘ x of the conditional
distribution function of Y5 given X one seeks values 2™~ ! and 2™ such that

FYQ\X(?J?@m) <73 < FY2|X(Z/£”_1\§C’”_1)

and calculates the values of an estimate of the conditional 7;-quantile function of Y;
given Yy = yi" and X = x with z € {#™~! 2™}. This procedure delivers an estimated
interval . .

-y En), & (g En)|

A minimum length interval can be calculated using {#}; ',&7,} obtained as

Qvirax (T1l15", 2™ ) — Qvipvax (1|93, &™)

~m—1 ~m | _ :
{xopt 7xopt} - arg min R
{zm—1,zm}eBNC

where, as above B defines the set of values of X satisfying Restrictions B1 - B4 and

~

C={(zm"a™) : Frx(y'|a™) < 72 < Fryx(y3 2™ N}
This throws up challenging inferential issues, not addressed here.!®

2.8. Continuous endogenous variables. If Y; is continuously distributed then
in (11) we can set yJ° = y5*~' = y5 say. The monotonicity restriction B2 is then
irrelevant. Suppose there exist {2’, 2"} such that

Fyyix (y3]2") < 79 < Fyyx (y5]2") (17)

and that 7 = Q,,|p,x (71|72, x) and hy(y5,z,r]) are invariant with respect to choice
of x € {«’,2"}. Then the argument employed in the proof of Theorem 1 leads to the
identifying inequality

min (Qv; v, x (11143, 7'), Qvivax (71|93, 2”))

< hl(y§,$,7’f) < (18)

max (Qyvax (71|43, 2'), Qvivax (T1]15, 2”))

YFor the case in which Y; is continuous see Koenker and Bassett (1978), Koenker and d’Orey
(1987) and Ma and Koenker (2003) for parametric estimation, see Chaudhuri, Doksum and Samarov
(1997), Kahn (2001) and Lee (2003a, 2003b) for semi-parametric estimation and see Chaudhuri
(1991) for nonparametric estimation. There are fewer options for the case in which Y; is discrete.
Machado and Santos Silva (2002) propose a procedure for the parametric case. One could proceed
by estimating the conditional distribution function of Y; given Y5 and X, and obtain an estimated
quantile function by inversion.

15See Chernozhukov, Hong and Tamer (2003) and Imbens and Manski (2003) for results on infer-
ence when there is interval identification of structural features.
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where x € {2/, 2"}.
When X has rich support there may exist z* such that Fy,x(y;|z*) = 7, and
setting ' = 2” = z* in (18) leads to the point identifying equality

hl(ygu (L‘*, TI) = QY1|Y2X(T1|y>2k? (L‘*)

where y5 = Qy,x(72|2%)."°

3. IDENTIFICATION OF STRUCTURAL PARTIAL DIFFERENCES

3.1. Identification of a partial difference with respect to an endogenous
variable. This Section provides conditions under which there is identification of the
value of the structural partial difference A;;jh] defined as follows.

Awhi = hl(yéumﬂﬂf) - hl(ygumﬂq)

Here g5 and y% are two interior points of support of the distribution of Ys with, r] is
a value of p; defined as

TT = QPl\P2X(T1‘T27 .1‘)

where 7 = {71,72} € (0,1)® and 7} is invariant with respect to choice of x € Z;;, a
set of instrumental values of X.

The identification strategy involves putting in place conditions sufficient to iden-
tify the values of the two structural functions that appear in the partial difference.
Then additional restrictions (C1 and C2 below) are introduced which make these
values invariant with respect to the variations in x required to identify the two values
of the structural functions that appear in A;;h].

For k € {i,j}, let Zx be a set of instrumental values for which conditions B1 -
B4 hold, conditions sufficient to interval identify hi(y%,x,r}) with x € #;. Define
Z;; = I; U Z; and consider conditions C1 - C2.

(C1) The value of ri is invariant with respect to choice of © € T;;.
(C2) For ke {i,j} and {«',2"} € 7;;:
ha(ys, @',r7) = ha(ys, 2", 77).
Under these conditions there are the interval identifying inequalities:

qL(T7 y§7 ‘%2) S hl(yév xz, TI) S qU(T7 yév jl)
_qU(T> y%a i]) S _hl(yéa z, TT) S _qL(Ta y%? i‘J)
where z € Z;;. Addition yields an inequality which interval identifies the structural
partial difference A;;h], a result formally expressed in Theorem 4.

16T his local point identification result is given in Chesher (2003).
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Theorem 4. Suppose that (i) Restriction A1 holds, (ii) with {i,j} C {2,...,M —
1}, for k € {i,j}, T = {21, 2%} is such that the conditions of Theorem 1 hold when
identification of the value of hy(y,x,r}) is considered and x € Ty, (iii) restrictions
C1 and C2 hold. Then :

qL(T7yé7ji) - qU(T7y%7:z‘j) S Ath S qU(T7yé7‘i‘i> - qL(Tay%7jj)

where . '
Awhi = hl(yéumﬂﬂf) - hl(yéumﬂq)

and r € i” = iz U.i'J
The proof is omitted, being straightforward following the argument outlined above.

3.2. Identification of a partial difference with respect to covariates. Par-
tition  thus x = [Z, Z] and write the structural function thus: hy(ys, %, Z, p;) making
explicit the dependence on the components of . This Section provides conditions
under which there is identification of the value of the structural partial difference
Agphi defined as follows.

Aath = hl(yé7ia7:ﬁ7ri) - hl(y;ibui‘urT)

Here %3 is a point of support of the distribution of Y, with i € {2,..., M — 1}, r} is
a value of p,; defined as
1= Qpylp,x (T1] T2, 7)

where 7 = {71,72} € (0,1)? and 77 is invariant with respect to choice of z € Zy, a
set of instrumental values of X.

For ¢ € {a,b} let Z. be a set of instrumental values for which conditions B1 - B4
hold, conditions sufficient to interval identify hy(y, Z., ¥, 77) with z € 7. = {2 2%}
where

mf:_l = [Amjfz_l]
T, = [‘%67 vzc]

so that the component # takes a common value, ., in i1 and xi. Define Z,, = 7,UZ,
and consider conditions D1 and D2.

(D1) The value of 75 is invariant with respect to choice of x € Zap.
(D2) For c € {a,b} and {#',3"} € {771, %% &) ' it}

hl(y;7 i‘o? ‘;I//‘,7 TT) - hl(y%? ‘/2‘07 ‘;I//‘//7 rT)'
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Condition D2 is clearly satisfied if & is excluded from h;. Under these conditions
there are the interval identifying inequalities:

¢“(T,95,%a) < PMa(ys, Za, ,77) < 4" (T, 43, Za)
—q" (7,9, @) < —Ta(Yo, @0, 7,77) < —q"(T, 5, )
where x € T,,. Addition yields an inequality which interval identifies the structural
partial difference Ay phT, a result formally expressed in the following Theorem.

Theorem 5. Suppose that (i) Restriction A1 holds, (i) with i € {2,..., M — 1},
for ¢ € {a,b}, T. = {2571, 21} with
= o)

%
Le

[, 2]

is such that the conditions of Theorem 1 hold when identification of the value of
hi(ys, Ze, Ee,13) is considered, (ii1) restrictions D1 and D2 hold. Then :

qL(Ta y;> 'i'a) - qU(T> y; i'b) < Aabh;{ < qU(7-> yéa ia) - qL(T> yéa 'i'b)
where
Aaphy = P (Y, Ta, B, 75) — ha (s, B, 2,77)
and T € Top =T, U Ty and & € {3571 30 701w
The proof is omitted, being straightforward following the argument outlined above.
If an element of X exhibits continuous variation and h; is differentiable with respect

to that element then a simple extension of Theorem 5 leads to a result on interval
identification of a partial derivative of h; with respect to a covariate.

3.3. Minimum length identifying intervals. Consider the length of an interval
that identifies a partial difference, for example with respect to a discrete endogenous
variable.

Lij = (qU(Ta yé? ‘%2) - qL(T7 y%7 j])) - (qL(Tu y%7 jz) - qU(T7 y%7 j]))
This is necessarily nonnegative and can be written as the sum of the lengths of the

identifying intervals for the two components of the difference, also nonnegative, as
follows.
Lij = (qU(Ta yév ‘%2) - qL(Tv yé7 ‘i‘l)) + (qU(Tv y%? ‘%j) - qL(Tv y%7 jj))

Therefore choices of Z; and Z; which minimise the lengths of the identifying inter-
vals for respectively hi(yb, z,7%) and hi(y3, z,7;) yield minimum length identifying
intervals for the partial difference A;jh]. So an estimate of a minimum length identify-
ing interval for a structural partial difference can be obtained by combining estimates
of minimum length intervals for each component of the difference.

Point identification of a structural partial difference cannot be achieved when Y;
is continuous and Y5 is discrete under the weak nonparametric restrictions consid-
ered here because, under those conditions, point identification of values delivered by
structural functions is infeasible.
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4. WEAK INSTRUMENTS

Crucial to the identification of the value of a structural function at a point of sup-
port, y5*, of a discrete endogenous variable is the ability to find instrumental values,
z™ ! and ™ such that for a chosen value of 75 € (0,1) the following inequality of

Restriction Bl of Theorem 1 is satisfied.
PlY, <yg|X = 2™ =p"(a™) <72 <p" @) = PYa <y X = 2™

When X has only a weak effect on the conditional distribution of Y5 given X or when
the support of X is limited this may not be possible. The model and data studied by
Angrist and Krueger (1991) (AK) illustrate the difficulty.

AK consider a parametric model in which the log wage, Y7, is a linear function of
endogenous years of schooling, Y5. The returns to schooling is the focus of interest,
that is the coefficient on Y3 in the linear structural log wage equation.

AK propose binary indicators of quarter of birth (QOB) as instrumental variables.
They argue that QOB is an influence on years of schooling because people born in
different quarters of the year enter school at different ages, yet can leave school at any
point in the year. The influence of QOB on attained years of schooling is evident in the
data, but the effect is rather weak. AK argue that QOB does not influence the wage
given years of schooling and assume that the latent variable in the structural wage
equation is mean independent of QOB. Their parametric model, which incorporates
these restrictions, identifies the returns to schooling.

In this Section the identifying power of the QOB instruments in the absence of
AK’s parametric restrictions is considered.

4.1. Discrete years of schooling. The AK data record years of schooling as
integers, so Y, is discrete. The instrumental variables employed by AK are binary
variables, X = [X,..., X4 indicating quarter of birth with X; = 1 for a person
born in quarter ¢ and equal to zero otherwise. These are weak instruments so far as
Restriction B1 is concerned because variation in their values can only exert a small
influence on the distribution of years of schooling given X. For someone who leaves
school at the earliest legal opportunity, say at age 15, the difference in schooling
comparing people born in quarter 1 and quarter 4 is only a few months.

Table 1 shows nonparametric estimates of the distribution function of years of
schooling for each quarter of birth.!” The data come from 329,509 members of the
1930-39 cohort observed in 1980, around 80,000 born in each of the four quarters.'®
The QOB 1 and QOB 4 estimated distribution functions are plotted in Figure 1.

m

"These are the empirical distribution functions. The estimate of P[Ys < y%'|X; = 1] is simply
the proportion of those with X; = 1 having recorded years of schooling no greater than y™.

18Sample sizes used in producing each entry in a row of Table 1 exceed 1,000 for Yo > 4 and
exceed 7,000 for Y5 > 7 after which the estimates are very accurate. For example the estimated
standard errors at Y, = 8 are all close to 0.0033.
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Table 1: Estimated distribution function of years of schooling for each quarter of
birth

Years of QOB QOB QOB QOB
schooling 1 2 3 4
1 .002 .003 .002 .002
2 .005 .005 .004 .004
3 .008 .009 .007 .007
4 .013 013 011 .010
5 .020 .019 016 .016
6 .032 .032 028 027
7 .052 .050 .046 .045
8 104 101 .094 .090
9 .146 142 133 128
10 197 194 182 77
11 238 .236 223 218
12 .612 .604 598 .595
13 .666 .658 .653 .652
14 742 734 734 732
15 771 763 764 763
16 877 873 874 872
17 913 .909 911 .909
18 947 .945 947 .946
19 .966 .964 966 .966
20 1.00 1.00 1.00 1.00

Inspecting Table 1 it can be seen that for every value of m
max(P[Yz < g5 |X; = 1)) < min(P[Yz < 51X = 1))

and it follows that there is no value of 79 and m for which there are configurations
of the four binary indicators, 2™ and ™! such that:

ﬁm(mm) S To S ﬁm—l(:rm—l).

This strongly suggests that the AK quarter of birth instruments are too weak to
nonparametrically identify the returns to schooling.

4.2. “Continuous” years of schooling. It is interesting to consider what the
identifying power of the quarter of birth instruments would have been had years of
schooling been recorded continuously. This also provides the opportunity to illustrate
some of the results set out earlier in the paper.
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For this exercise the estimated distribution functions reported in Table 1 are
treated as if they were the actual distribution functions. The integer years of schooling
recorded in the AK data are treated as if they were the result of rounding exact figures
to the nearest integer in a situation in which a value recorded as ys is equally likely
to be any value in the interval y, £ 0.5. Figure 2 shows the resulting hypothetical
distribution functions of continuous years of schooling for QOB 1 (solid) and QOB 4
(dashed).

Write the structural log wage function as

Y) = hl(Yé>Xap1)

where Y; denotes the log wage, X = {X1, X5, X3, Xy} lists the QOB indicators and
Y5 denotes schooling. Let ;) denote the configuration of QOB indicators in which

Section 2.8 considered nonparametric identification in the presence of a continuous
endogenous variable. Suppose that, for some 79 and 3, there are QOB configurations
xp) and xp), {4,7} C {1,2,3,4}, not necessarily distinct, such that the inequality

Fyy x(y5]7p) < 2 < Fyyx (3 |7() (19)

is satisfied. The discussion of the remainder of this Section is predicated on the
validity of the other required identifying restrictions.?’

If (19) holds there is interval identification of the value of the log wage structural
function evaluated at Yy = 35, X = = € {z};, z};} and

P1= TT(TQ) = QP1|P2X(T1‘T27x)'

It is convenient to make the dependence of 7} on 79 explicit here. The additional iden-
tifying restrictions ensure that h; and r{(72) are invariant to choice of x € {x};, z};}.

Figure 3 zooms in on Figure 2, focussing on years of schooling between 5 and
12 years. The vertical line in Figure 3 marks 8 years of schooling. It intersects the
distribution functions at @ = .109 and at b = .125. Considering the inequality (19)
there is therefore interval identification of hy(8,z,r{(72)) for € {xp, x4} at all
values 79 € [.109,.125], and for 75 in this interval:

min (QYl\YQX(7-1’8> 13[1})7 QYl\YgX(7—1’8> 15[4]))

< hi(8,2,17(72)) <

max (Qy; v, x (7118, z(1)), Qv vax (7118, 714)) )

9These conjectured distribution functions are obtained by joining midpoints of each successive
step of each of the estimated distribution functions graphed in Figure 1. The midpoints are joined
with straight lines because the result is intended to reflect the distribution of “continuous” years of
schooling in the situation in which schooling is uniformly distributed within each one year interval.
Alternative “assumptions” about the distribution of schooling within one year intervals are captured
using alternative increasing functions to join the midpoints.

?OThus it is supposed that hy and Q, |,, x (71|72, ) are insensitive to variations in z € {xf;, z[;}
and the required montonicity conditions hold.
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where x € {xp], v}
At 79 = .109 and 7o = .125 the structural log wage function hy(8,x,r}(72)) is
point identified because in (19)

Fyy x (82p)
Py, x (8|7)

109 < Py, x(8lzp)
125 < Py, x(8lzy)

VANVAN

which are of course equalities, and so:

hi(8,2,7r7(109)) = Qvijvax(71(8,211)) (20)
h1(8,l‘,7“1<(125)) = Qy1|y2X(T1|8,ZE[4]) (21)

where z € {zp}, 24}

Now consider the horizontal line drawn in Figure 3 at 7o = 0.2. This intersects
the distribution functions at ¢ = 9.58 and d = 10.06. Considering the inequality (19)
there is

Fy,|x(9.58|z)
Fy2‘X(1OO6|ZE[4])

0.2 < Fy, x(9.582)

<
and therefore at yo = 9.58 and y, = 10.06 the value of the structural function
hi(ya, x,77(0.2)) is point identified, thus:

h1(958, x, T'T (O2)) = Qy1|y2X(T1|9.58, IE[l]) (22)
h1(1006, Z, ’I“T(OQ)) = le|y2)((7'1‘1006, $[4}) (23)

where € {xpn), 24}
For any choice of 7; the structural functions in (22) and (23) are evaluated at the
same value of p;, that is

17(0.2) = Qp,|p,x(71]0.2, ).

Therefore the difference between the quantile functions in (22) and (23) point identi-
fies a partial difference of the structural function with respect to years of schooling.
The returns to schooling to increasing schooling by 0.48 years, from 9.58 years to 10.06
years, for a person at the 0.2-quantile of the distribution of p, and the 71-quantile of
the distribution of p; conditional on 75 = 0.2 and x € {xp, x4} is identified by

1
— (Qy1|y2x(7'1|10.06, (L‘M) — Qy1|y2X(T1|9.58, I[l])) .

0.48
Returning to Figure 3, moving the horizontal line away from 7o = 0.2 produces a
sequence of pairs of values of years of schooling generated by the intersection of the
horizontal line with the two estimated distribution functions. These are the pairs of
values at which the returns to schooling can be identified.
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The binary and weak nature of the QOB instruments have significant implications
in the absence of parametric restrictions. Because the two QOB instruments are
binary each pair of values is associated with a different value of 75. One could never
learn about the returns to schooling at low levels of schooling for a person at a high
quantile of the distribution of p,. Because the instruments are weak the pairs of
values exhibit very little separation. One could not learn about the returns to a large
change in schooling.

5. CONCLUDING REMARKS

5.1. Local identification. The objects whose identification is studied in this
paper are local features of structures: values and partial differences of structural
functions at specific values of their arguments. The conditions under which they are
identified are specific to the objects considered and local in character: for example
they require structural functions to be locally insensitive to particular variations
in covariates; they require insensitivity of a specific quantile of a latent variate to
particular variations in covariates.

Local conditions of this sort allow one to understand when a structural inter-
pretation can be placed on particular features of estimated conditional quantile and
distribution functions. Nonparametric identification of entire nonseparable structural
functions seems to require the unpalatable restriction that latent variates and covari-
ates are independently distributed as in the analysis of Roehrig (1988), Imbens and
Newey (2003) and Matzkin (2003). One might be prepared to believe in a degree of
local independence even in situations in which global independence seems untenable.

5.2. Many endogenous variables. The results given here are for the case in
which there is a single endogenous variable. Extension to the case in which one en-
dogenous variable (Y3) is discrete and there is another continuous endogenous variable
(Y3) is straightforward. Among the conditions under which there is interval identifi-
cation of the value of a structural function at Y, = ¢3* and Y3 = y3 is an extension of
Restriction B1 in which in the inequality (11) probabilities are conditional on X and
on Y3 = y3. Further, the instrumental values must be chosen so that y5 is a quantile
of the distribution of Y3 given X at all of the instrumental values. This may be dif-
ficult to achieve is X does not have rich support but arguments like those employed
here still yield interval identification when y3 cannot be set to a chosen quantile of Y3
by choice of X. When Y3 is discrete the extension of the results given here requires
extension of Lemma 2 to provide bounds on Fy,|v,y,x (v1|y5", %, ) and thus bounds
on conditional quantiles of Y;.

5.3. Binary endogenous variables. The conditions employed in this paper ex-
ploit the ordering of discrete outcomes but when an endogenous variable is binary
there is no ordering of outcomes. Nonparametric identification of features of non-
separable structural functions that depend on binary endogenous variables requires
stronger conditions than those developed here.
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5.4. Classical identification analysis. The classical analysis of the identifica-
tion problem encapsulated in Koopmans, Rubin and Leipnik (1950) was set in the
context of a linear simultaneous equations system. That analysis produced the well
known rank condition which, under the restriction that latent variates are mean inde-
pendent of covariates (instruments), is necessary and sufficient for the identification
of the values of the coefficients of a linear structural function of the system.

This rank condition requires that there are covariates, variation in which has effect
on the conditional means of the endogenous variables that appear in the structural
function and has no direct effect on the structural functions.

The identification conditions deployed in this paper are extensions of these clas-
sical conditions, constructed within the framework for the study of parametric and
nonparametric identification proposed by Hurwicz (1950).2! The mean independence
covariation restriction of Koopmans, Rubin and Leipnik (1950) must be modified
when a structural function is nonseparable in its latent variate because, when a struc-
tural functions is nonseparable in its latent variate, conditional mean independence
is an uninformative restriction unless there are highly restrictive conditions on the
functional form of the structural function. If the structural function is restricted
to be monotonic in its latent variate, a restriction of course satisfied in a separable
model, a conditional quantile restriction is informative when a structural function is
nonseparable.

The rank condition of the classical analysis appears here in the requirement that
(a) there exist variation in covariates with an effect on the conditional distribution
function of an endogenous variate given covariates of sufficient magnitude, as set out
in Restriction B1, and (b) that the structural function is insensitive to this variation.

21This early development by Leonid Hurwicz is remarkable given that it was done at a time
when linear separable parametric models preoccupied most people working in econometrics. The
contribution is clearly acknowledged in Koopmans and Reiersgl (1950): “We shall therefore use the
terms and concepts introduced by Hurwicz ... which cover both parametric and non-parametric
specifications”. Hurwicz (1950) is one of five papers which Koopmans “draws freely on” in his
expository paper Koopmans (1949), the others authored by Koopmans and Rubin, Wald, Koopmans
and Reiersgl, and Leonid Hurwicz himself.
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APPENDIX: PROOFS OF THEOREMS

First, two lemmata employed in the proofs of the theorems are stated and proved.
The inverse function h;' will be used, defined as follows.

Rt (vst, z,y1) = sup{p : (v 2, p) < w1}
p

When hy (ya, x, p;) varies strictly monotonically with p; this is the conventional inverse
function satisfying
1 = (s, b (s )

for all y5*,  and ;.
Lemma 1

Under Restriction (I) the conditional distribution and T1-quantile functions of Y;
gwen Yo = yi* and X = x are as follows.

. 1 p™ () m
Fyvox (yilyg's z) = —/ Foox (h (W57, @, 1) [, ) dry
Pm() Jym-1(z)

Qvivax(T1lyy', x) = i{;f{q :

" (%)
F, hit (s dry >
pm(l') /p p1|p2X( 1 (y2 ,x,q)\rg,x) T2 2 Tl}

mfl(x)

Proof of Lemma 1
The conditional distribution function of Y; given Y, = yJ* and X = x is defined

as follows.
PYy <y NYy =y X =z

P[Y; = y5*| X = z]

Given X = z, in terms of events, since h; is a non-decreasing function of p,,

Vi <yinYo=ys"} ={py < hi' (5" z,p1) N {p™ (z) < py < p™(2)}

FY1|Y2X(y1|y5n? ZE)

and so
p™ () )
PYi <yinNYs =y'|X = 2] = / Epppx (hy (45" 1) [re, 2)drs - (L1.1)
pm—1

and the expression for Fy,|v,x(y1]y5", ) is delivered on dividing by pn,(z) = P[Y, =
y5'|X = z]. The expression for the conditional quantile function follows directly. O
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Lemma 2 places bounds on the conditional quantile function of Y; conditional on
Yo =93 and X = =z.

Lemma 2

Assume Restriction A1 holds. If for all r1, F, |,,x(r1|r2,x) is monotonic in ry
for ro € (p™~(z),p™ ()] then

min{ ha(ys', @, Qpyp,x (T1[p™ 7 (2), 7)) }
hl (yéna T, QP1|P2X(T1 ‘pm(l' , L )

< Qyiyx(T1lyy' ) <

max { hl(yg”7 €, QP1\P2X(T1|pm_1(‘,E)’ :E)) }
hl(ygnax>QP1|P2X(7—1’pm(x)7'T)) ‘

If p; and p, are independently distributed given X = x over the interval [p™ *(z), p™ ()]
in the sense that for ry in this interval Q,,|p,x(T1|r2, 7)) = ri(x), a constant, then:

QY1\Y2X(7-1’y£n>x) = hl(y;na%flk(x))'

Remark Al. The weak monotonicity condition on F, |,,x(71|rs, z) is sufficient
but not necessary, a degree of bounded variation being all that is required. Specifi-
cally, the result of Lemma 2 also applies if, for all r; in a wide enough interval around
Qp,1p,x (T11p™(2), x), there exists 6 € [0, 1] such that for all 7, € (p™ *(x), p™(z)]

FP1|P2X(TI|T27 ‘T) = 9FP1|92X(T1|pm_1(m)7 ‘T) + (1 - Q)Fpl‘be(rl |pm(m>7 fL‘)

Remark A2. If the structural function depends on both latent variates, thus:
hi(Ya, X, py, p5), then the result of Lemma 2 applies if for all ¢; in a wide enough
interval around 7y, there exists 6 € [0,1] such that for all ro € (p™(z), p™(z)]

hl(ygl7 z, Qpl\p2X(Tl |7"2, ZE), 7"2) = ehl(ygl7 xz, Qpl\p2X(Tl |pm_1(m)7 ZE), pm_l(m))
+(1 - 9>h1(y;n7 x, Qpl\ng(Tl|pm(m ; I),pm((L‘))
for which the monotonicity of hi(y5", z, Qp,|p,x (71|72, %), 72) With respect to ry is suf-
ficient.

Remark A3. The bounds of Lemma 2 apply when m = M but note that in that
case pM(x) = 1 for all x. They also apply when m = 1 with p°(z) = 0.

Proof of Lemma 2

First consider the case in which F), |, x is non-decreasing in p, for p, € (p™!(z), p™(z)].
Recalling the result of Lemma 1, replacing p, in the integrand first by p™~!(z) and
then by p™(x) yields the following inequality.

1 P (x) ) )
p (x)/ " )Fplsz(h11(y§Za$7?Jl)|pm Y(z), z)dp,
m pm— T
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S FY1‘Y2X(y1’y;n7x) S

1 P () o .
m prT (@

Since, for example,

1 " () o .
) o Folex 06 207, ),
m pmH(x

= F, px (R (5 2z, p1) 0™ (2), 2)

there is, for all y;, the following inequality.

m—l(

Fp1|p2X(h1_1(y;n>xayl)‘p x),x)

< Fyyx(lys', o) <
Fypox (i (y5" 90 [p™ (), ) (L2.1)

When F, |,,x is non-increasing in p, for p, € (p™*(z),p™(z)] the inequality
(L2.1) is reversed.

Since the functions on the left and the right of the inequality (L2.1) bound
Fy v, x (y1]y5*, ) respectively below and above, the values, ¢,,—1 and gy, defined by:

Gm—1 = i%f{q L Fy i x (BTN Yy 2, ) [p" N (2), ) > 71}

Gm = inf{q : Eypx (b (w5t 2, q) p™ (x), ) > 71}

bound
q= QY1|Y2X(T1|?J§Z=$) = iI;f{q : FY1|Y2X(Q|9?7$) > T}

respectively above and below, that is:
dm S q S qm—1-

The final step is to obtain the relationships between the bounding functions, ¢,
and ¢,,, and the structural function h;.
First consider g, - a similar argument will apply for ¢,,_;. For any choice of ¢*

F91|sz(h1_1(y;n>$aq*)‘pm(x)>x) > T

if and only if
Qploox (TP (2), 2) < By (3", 2, 7).
Therefore, recalling the definition of h;! given at the start of the Appendix,

gm = ilgf{q L Qoo x (T1|P™ (), 2) < sup{p : hi(y3', x,p) < q}}.
p
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When h, is a strictly increasing function of p;
Gm = 10H{q : Qpy o x (T1[p™ (@), 2) < by (45", 7, )}

and therefore
dm = hl(yéna xz, QPl‘P2X(71’pm(x)’ .T))

It is now shown that the same expression obtains when h; is a weakly increasing
function of p;.
Consider

q" = ha(ys', @, Qpyp,x (T1p™ (2), 7))

which is a candidate value for g, in the weakly increasing case because,

sup{p : hi(y5", 2, p) < ¢} = Qpyjp,x (110" (), 2), (L2.2)
p

as Figure 4 makes clear.

In Figure 4 a non-decreasing caglad step function of p;, hi, is drawn with ends of
steps at which h; is continuous from the left drawn as filled circles. The graph show
a value of Q, |,,x(71[p™(z), z) and the candidate value ¢*. The value of

pt =sup{p: hi(vy", z,p) < q"}
p

is indicated in Figure 4 and clearly p* > @, ,,x(71[p™(2),2), demonstrating that
the inequality (L.2.2) does hold.

It is evident from Figure 4 that for ¢ < ¢ there is no p > Q,, |, x(71[p™(x), )
such that

sup{p : hl(y;”,x,p) < Q} > Qpllng(Tl‘pm(x)ax)
p

and so ¢, = q7.
A similar argument produces the following expression for ¢, 1.

gm-1 = hl(ygz7 xz, Qpl\pQX(Tl|pm_1(m)7 :L‘))

Therefore, in the case in which F), |, x is non-decreasing in p, for p, € (p™ !(z), p™(z)],
there is the following inequality.

hy (y§”> z, Qpllng(Tl‘pm(x)> x))

< Qviyx(T1lyy's ) <
hl(y;n? xz, Qpl\ng(Tl |pm_1(‘r)7 IE)) (L23)

A similar argument for the case in which F}, |,,x is non-increasing in p, for p, €
(p™~1(x), p™(z)] produces the reverse of this inequality

h (Y5, 2, Qpy o, x (T1|p™ ! (2), 7))
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< QY1\Y2X(7—1’y72n>x) <
hi(ys', ©, Qpyppx (T1[p™ (%), 7)) (L2.4)

and combining (L2.3) and (L2.4) gives the result of the first part of the Lemma.

Suppose @, |p,x (71|72, ) is constant and equal to 7}(x) for variation in ry over
the interval [p™~!(x), p™(x)]. Then in each of (12.3) and (L2.4) the lower and upper
bounds are equal and so:

QYl\Y2X(7—1’y;n>x) = hl(y?% Qpl\pQX(Tl‘pm_l(x)7x))
- hl(y;nwruQpl\pgx(Tﬂpm(m)?m))
= hl(y;n?xa Tf(x))

which gives the result of the final part of the Lemma. OJ

Proof of Theorem 1.

Consider the case in which for all 71, F}, , x(r1|rs, z) is a weakly increasing func-
tion of 7y for ro € Ry. In this case, for all 7, @, ,,x(7|r2, z) is a weakly decreasing
function of ry for ry € R,.

Lemma 2 implies the following inequalities.

QY1|Y2X(7—1 ’y;n’ xm_l) S hl (y;n’ xm—l’ Qpl\ng(Tl‘pm_l(mm_l)a xm_l)) (Tl'l)

hi(ys', 2™, Qpylppx (T1p™ (™), ™)) < Qvivax (T1lyy', ™) (T1.2)

Because p™ (™) < 7o < p™ (2™ ') and in the case under consideration @, ,, x (71|72, z)
is a weakly decreasing function of ry for ro € Ry there are the inequalities

QplﬁzX(Tl‘pm_l(xm_l)a xm_l) < QP1P2X(7—1 ’T27 xm—l)

QppoX(Tl ’7—27 ~Tm) S QppoX(Tl ’pm (xm)’ xm)
and because h; is monotonic in p; and normalised non-decreasing there are the fol-

lowing inequalities.

hl (y;nj mm—17 QP1\PQX(T1|pm_1(mm_1)7 mm—l)) < hl(yénv :L,m—17 Qﬂ1|P2X(T1|T27 mm(—l)) )
T1.3

hl (ygn> xm’ QplpoX(Tl ’TQ, xm)) < hl (ygn> xm> Qpllng(Tl ’pm(xm)a xm)) (T1'4)

Combining (T1.1) with (T1.3) and (T1.2) with (T1.4), produces the following
inequalities.

QY1|Y2X(7—1 ’ygn’ xm_l) < hl (ygn’ xm—l’ Q01|P2X(T1‘7—27 xm—l)) (T15)

ha(ys', 2™, Qp 1oy x (T1]72,2™)) < Qvivax (T1]ys", ™)
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Finally, under the covariation and exclusion restriction, B3 and B4 there is the fol-
lowing inequality for x € {z™~1, z™}.

Qvivax (T1]y5", 2™ < ha (Y5 2, 1r7) < Qvipax (T1lys', ™)

Arguing as above for the case in which for all ry, F}, , x(ri|rs,z) is a weakly
decreasing function of ry for ro € Ry there is

Qvivax (T1ly5', ™) < ha(ys',z,71) < Qvapx (T1|y5", 2™ )
and combining the two cases gives the inequality of Theorem 1. [J

Proof of Theorem 2

Since 75 lies in Ry and

VA G N €|
(pm_l(l'm_l), pm(l'm_l)]
the constant value of F), , x(71|rz,#) in Restriction B2* is v} = F}, , x(71|72, )

which, by Restriction B3 is invariant with respect to choice of x € z,,. The final
result of Lemma 2 implies that

R
Ry

N 1N

QYl\Y2X(Tl|y£nu wm) - hl(ygz7 T, TI)
QYl\Y2X(7-1’y;na xm_l) = hl(y;n> z, TI)
the terms on the right hand sides of these equations being invariant with respect to
choice of = € Z,, by virtue of Restriction B4. [
Lemma 3 is used in the proof of Theorem 3.
Lemma 3

Assume hy is strictly increasing in p,. If, for all v, F, ,,x(r1|r2,x) is weakly
monotonic and non-constant in ro for ro € (p™ (), p™(x)] over a set of values of
nonzero measure then the inequalities of Lemma 2 are strong.

Proof of Lemma 3
Consider the case in which F), |, x (r1|rs, ) is non-decreasing for ro € (p™ !(z), p™(z)].
Then with r; = i (y9, 2, y1):
Fppx(rilre, @) = F,p,x(rilp™ H(z), z) + A" (ry,re, )
Eypx(rilra,x) = F, p,x(ri|p™(z), x) + A" (r1, 2, )
with A1 > 0 and A™ < 0 for some 5 € (p™ !(z),p™(x)] in a set of values of
nonzero measure. The following strong inequalities result.

m—l(

Fp1|p2X(h1_1(y;n>xayl)‘p x),x)
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< Fy,vex(nlys's ) <
Fpl\pgx(hl_l(y;na x? yl) ’pm(x)’ x)

The inequalities are reversed if F), |,, x (r1|r2, ) is non-increasing for r, € (p™~ (), p™(x)].
Considering the solutions obtained on setting each term in the preceding inequal-
ities equal to 71 there is, arguing as in Lemma 2,

hl(y;n7 z, Qpllng(T1|pm($)7 l‘))

< Qvivax (Tilys' ) <
h (Y5 @, Qpylpyx (T2 (2), 7))

with the inequalities reversed if F), |,, x (r1|r2, ) is non-increasing for ro € (p™!(z), p™(x)).
Thus the inequalities of Lemma 2 are strong under the stated conditions. [

Remark A4. The conditions of Lemma 3 are somewhat stronger than required
since the non-constancy of F}, |,,x (71|72, ) need only hold for r; in a sufficiently large

region containing hi' (43", , Qvijyax (T1/y5", 2)))-

Proof of Theorem 3

Consider the case in which F), ,, x(r1|r2, z) is a weakly increasing function of r,
for r9 € Rs.

Under Restriction B2** the conditions of Lemma 3 are satisfied. Therefore in the
proof of Theorem 1, the weak inequalities (T1.1) and (T1.2) are strong. Therefore
the inequalities (T1.3) and (T1.4) are strong.

The same argument applies, with inequalities reversed, in the case in which
F, p,x(r1|re, z) is a weakly decreasing function of 7y for ro € Ry. It follows that
the inequalities of Theorem 1 are strong and therefore that

Qyvivax (T11Y5" 2™ 1) # Qi pvax (1115, ™).
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Figure 1: Estimated distribution functions of discrete years of schooling for quarter
of birth 1 and 4
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Figure 2: Conjectured distribution functions of continuous years of schooling for
quarter of birth 1 and 4
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Figure 3: Conjectured distribution functions of continuous years of schooling (5 - 12
years) for quarter of birth 1 and 4
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