
 on June 28, 2015http://rspb.royalsocietypublishing.org/Downloaded from 
rspb.royalsocietypublishing.org
Research
Cite this article: Chen Y-C, Harrison PW,

Kotrschal A, Kolm N, Mank JE, Panula P. 2015

Expression change in Angiopoietin-1 underlies

change in relative brain size in fish.

Proc. R. Soc. B 282: 20150872.

http://dx.doi.org/10.1098/rspb.2015.0872
Received: 15 April 2015

Accepted: 26 May 2015
Subject Areas:
evolution, genetics, cognition

Keywords:
brain size, artificial selection,

neuro-transcriptome, gene expression,

knock down
Author for correspondence:
Niclas Kolm

e-mail: niclas.kolm@zoologi.su.se
*These authors contributed equally to this

work.
†These authors contributed equally to this

work.

Electronic supplementary material is available

at http://dx.doi.org/10.1098/rspb.2015.0872 or

via http://rspb.royalsocietypublishing.org.

& 2015 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Expression change in Angiopoietin-1
underlies change in relative brain size
in fish

Yu-Chia Chen1,*, Peter W. Harrison2,*, Alexander Kotrschal3,4,*,
Niclas Kolm3,4,†, Judith E. Mank2,† and Pertti Panula1,†

1Neuroscience Center and Institute of Biomedicine, Anatomy, University of Helsinki, Haartmaninkatu 8,
Helsinki 00290, Finland
2Department of Genetics, Evolution and Environment, University College London, Gower Street,
London WC1E 6BT, UK
3Department of Ecology and Genetics/Animal Ecology, Uppsala University, Norbyvägen 18D, Uppsala 75236,
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Brain size varies substantially across the animal kingdom and is often associated

with cognitive ability; however, the genetic architecture underpinning natural

variation in these key traits is virtually unknown. In order to identify the genetic

architecture and loci underlying variation in brain size, we analysed both

coding sequence and expression for all the loci expressed in the telencephalon

in replicate populations of guppies (Poecilia reticulata) artificially selected

for large and small relative brain size. A single gene, Angiopoietin-1 (Ang-1),

a regulator of angiogenesis and suspected driver of neural development, was

differentially expressed between large- and small-brain populations. Zebra

fish (Danio rerio) morphants showed that mild knock down of Ang-1 produ-

ces a small-brained phenotype that could be rescued with Ang-1 mRNA.

Translation inhibition of Ang-1 resulted in smaller brains in larvae and increased

expression of Notch-1, which regulates differentiation of neural stem cells. In situ
analysis of newborn large- and small-brained guppies revealed matching

expression patterns of Ang-1 and Notch-1 to those observed in zebrafish

larvae. Taken together, our results suggest that the genetic architecture affecting

brain size in our population may be surprisingly simple, and Ang-1 may be

a potentially important locus in the evolution of vertebrate brain size and

cognitive ability.
1. Introduction
Vertebrate brain size is remarkably variable at all taxonomic levels. This vari-

ation has been proposed to be generated through the balance between

positive selection for cognitive ability and the energetic costs of developing

and maintaining a larger brain [1,2]. Comparative studies across a range of

taxa [3–6] support the link between brain size and cognitive performance,

and the human lineage is distinguished in large part by a dramatic increase

in relative brain size and cognitive ability [7].

Despite the widespread interest in brain size and cognition, identifying the

targets and mechanisms of selection underlying the evolution of vertebrate

brain size and function has proved difficult, and little is known about the gen-

etic basis of variation in relative brain size and cognitive ability [8]. In order to

identify the causative genetic agents underlying adaptive changes in relative

brain size, we used laboratory populations of guppies, Poecilia reticulata, that

have been subject to artificial selection for either increased or decreased relative

brain size [9]. These replicated selection lines showed a 9% difference in rela-

tive brain size after two generations of selection, and this difference in brain

size was associated with differences in cognitive abilities [9,10].
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The rapid convergent response in brain size and cognitive

ability observed in each replicate population across just a few

generations indicates that standing genetic variation, rather

than de novo mutation, was the target of artificial selection in

these selection lines. As such, we do not expect as strong a

signature of selective sweeps as might be expected with

de novo mutations in the loci underlying the phenotypic

change. Furthermore, the rapid response from a small starting

population suggests a relatively simple underlying genetic

architecture, as the relatively small population size makes it

unlikely that many variants of relatively small effect would

be present in the correct combinations in all replicate lines.

Brain-expressed genes show slow rates of functional evolution

in general [11,12], and recent evidence suggests that rapid evol-

utionary changes in the vertebrate brain are the product of

expression differences [13,14]. Hence, the response to artificial

selection for brain size in the experimental populations is likely

the result of shifts in average expression of causative genes.

To investigate the genetic architecture behind guppy brain

size variation, we first used full genome expression analysis of

adults of the large- and small-brained guppy selection lines.

Then, in order to establish functional confirmation of our

gene expression results, we knocked down expression of candi-

date genes in zebrafish (Danio rerio) larvae and quantified

effects on relative brain size. We also compared our results

from zebrafish larvae with in situ hybridization analysis of

candidate genes in newborn guppies with different brain size.
2. Material and methods
(a) Sample collection and preparation
Brain samples were collected from replicate selected populations

and the pre-selected population from sexually mature individuals

[9]. After three generations of brain weight selection, body size

did not differ between populations, but absolute brain weight

showed significant difference; the large-brained males (LBm)

showed 3.9% heavier brains than pre-selected males (PSm) of the

base population, whereas the small-brained males (SBm) showed

8.1% lighter brains than the Psm. Large-brained females (LBf)

exhibited on average 4.0% heavier brains than pre-selected females

(PSf), and small-brained females (SBf) showed 2.8% lighter brains

than the PSf.

In all cases, the telencephalon was dissected and preserved in

RNAlater prior to RNA preparation. In order to obtain sufficient

mRNA for RNA-Seq analysis, we constructed non-overlapping

same-sex pools of telencephalons, each comprised of three to

four individuals. The pre-selected population was assessed

with four male and four female pools. The selection experiments

were run in triplicate, resulting in three lines independently

selected for large brains and three selected for small brains. We

constructed one pool for each sex for each selection line in

order to differentiate any gene expression differences that were

the product of genetic drift or founder effects within single

selected populations from convergent changes underlying brain

size across replicates. In total, we had 12 selected pools (one

male and one female from each of the three large-brain replicate

lines and three small-brain replicate lines) and eight (four male

and four female) pre-selected pools.

Following RNA extraction (Qiagen RNAEasy lipid tissue

kits) using standard manufacturer protocols, RNA samples

were prepared and barcoded by the Wellcome Trust Centre for

Human Genetics, University of Oxford, using standard proto-

cols. All samples were sequenced on an Illumina HiSeq 2000 as

paired-end 100 bp reads.
(b) Transcriptome assembly and analysis
We assessed the quality of the generated reads using FastQC

(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc), and

using Trimmomatic [15] conducted quality filtering and exclu-

sion of read pairs with residual adaptor sequences. Reads were

trimmed if the leading or trailing bases had a Phred score of

less than 4, and reads were also trimmed if a sliding window

average Phred score over four bases was less than 15. Post filter-

ing, reads where either pair was less than 36 bases in length were

removed from subsequent analyses, resulting in 16.6 million

mappable paired-end reads on average per pool.

All of the samples were combined into a single de novo tran-

scriptome assembly in order to enable orthology determination

and comparisons of the generated contigs across the samples.

The de novo transcriptome was constructed using Trinity [16]

producing 466 694 contigs. Matches to ribosomal RNA sequences

were removed prior to mapping to prevent expression bias. To

identify which samples expressed each of the contigs and to

obtain expression levels, we separately mapped back the filtered

reads from each pool to the Trinity contigs using RSEM v. 1.2.4

[17]. In order to remove lowly expressed and erroneous contigs

from the de novo assembly, a minimum expression filter of 2

fragments per kilobase per million (FPKM) in at least half of the

pools for each sex of each treatment was applied, as has been simi-

larly effectively performed in previous studies [18,19], resulting in

19 698 significantly expressed contigs that were used for further

analysis. Of these, 14 227 mapped to the Xiphophorus genome

[20] (Xipmac 4.4.2 assembly, Ensembl release 72 [21]) using a

threshold of E210.

To account for differences in the mass composition of the

RNA-Seq samples, we conducted trimmed mean of M-values

(tmm) normalization of expression values using EdgeR [22].

From the 19 698 significantly expressed contigs, differential

expression between small- and large-brained population pools

was calculated using a twofold expression threshold (log2-fold

change more than 1 or less than 21) as well as the empirical

Bayes estimation and exact tests based on the negative binomial

distribution in EdgeR [22], with a Padj value less than 0.05,

having corrected for multiple testing. The relationship between the

samples was assessed with hierarchical clustering implemented in

the R package ‘pvclust’ [23], using complete Euclidean distance

with 1000 bootstrap replicates and an expression heatmap

employing the R package ‘pheatmap’. Coding sequence variant

calling was conducted using SAMTOOLS (v. 0.1.19 [24]).

To confirm our de novo assembly results, we also mapped our

expression data to the nearest available reference genome, the pla-

tyfish, Xiphophorus maculatus (XIPMAC v. 4.4.2 [20]), obtained from

Ensembl release 72 [21]. Mapping was conducted using TOPHAT 2

(v. 2.0.10 [25]), which leverages the short read aligner BOWTIE 2

(v. 2.1.0 [26]). Raw read counts were extracted using HTSEQ-

count [27]. Differential expression between small- and large-brai-

ned populations was calculated using both a twofold difference

in expression (log2-fold change more than 1 or less than 21)

and a Padj value less than 0.05 correcting for multiple testing [22].
(c) Zebrafish morpholino experiments
Zebrafish were obtained from the breeding line maintained in the

Panula laboratory for more than a decade [28]. Fish were raised

at 288C and staged in hours post-fertilization or days post-

fertilization (dpf) as described previously [29]. The a1-T-GFP

transgenic fish line was a kind gift from Dr Daniel Goldman [30].

The sequence of Ang-1 antisense morpholino oligonucleotide

(MO) (Ang-1 MO, 50-GATAGTGCTGTCTTAATATACCTGG-30;

Gene Tools LLC, Philomath, OR, USA) targeting the splicing-

donor sites of exon 2 and intron 2 was designed according to

Lamont et al. [31]. The working concentration was determined

by injecting serially diluted MO. At 9 ng MO dose, morphants
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exhibited small head size and severe cardiac oedema. Therefore,

the 6 ng of injection dose, which caused mild gross phenotype

that could be rescued by Ang-1 mRNA, was mainly used in

this study. A standard control MO (ctrl MO, 50-CCTCTTACCT-

CAGTTACAATTTATA-30) purchased directly from Gene-Tools

was injected 8 ng per embryo. The efficacy of the splice-blocking

Ang-1 MO was analysed by RT-PCR using 3-dpf cDNA as tem-

plates with primers (Ang-1 forward 50-CAGATTGTGGAGGA

GTTGAG-30 and reverse 50-AGGTCAGATTTCTCCGTCCG-30

(15); b-actin forward 50-GGTTTTGCTGGAGATGATGCC-30 and

reverse 50-CACGGACAATTTCTCTTTCGG-30). The full-length

Ang-1 cDNA construct was prepared by RT-PCR (primers: for-

ward 50-AGATCT AAGCTT CCCAGCATCTGCACTCAATCT-30

and reverse 50-GATATC CTCGAG GGACTATGAGAAGTCGG

CTGG-30) using and Phusion High-Fidelity PCR Master mix

(Finnzymes, Espoo, Finland). The PCR amplicons verified by

sequencing with no mutations were cloned into the pMC expression

vector kindly given by Dr Thomas Czerny [32]. Capped sense full-

length transcripts were generated by the mMESSAGE mMACHINE

kit (Ambion, Austin, TX, USA) using T7 RNA polymerase. For the

mRNA rescue experiment, 500 pg of angpt1 mRNA with Ang-1
MO was coinjected into embryos at the one-cell stage (electronic

supplementary material, figure S1a,b).

(d) Whole-mount in situ hybridization
Whole-mount in situ hybridization was performed on 4% para-

formaldehyde (PFA) fixed 2-dpf zebrafish embryos and

dissected 5-dpf brains and followed Thisses’ protocol [33]. Anti-

sense digoxigenin (DIG)-labelled RNA probes were generated

using the DIG RNA-labelling kit (Roche Diagnostics, Germany),

following the manufacturer’s instructions. Notch-1a, pax2a and

pax6a plasmids were kindly given by Dr Michael Brand. The pre-

hybridization and hybridization were conducted at 658C for all

riboprobes. Guppy Ang-1 and Notch-1 sequences were cloned

with RT-PCR from two adult male guppy brains. Primer

sequences were Notch-1 forward 50-GCACAACCAGACTGACC

GTA-30, Notch-1 reverse 50-CTATGCTGGGAGGGAGGAGT-30,

Ang-1 forward 50-GATGGCTCACCTGCAGCAGA-30 and Ang-1
reverse 50-GCAGCTCCTGATTGGTTGGA-30. The PCR amplicons

were cloned into the pGEM-T Easy vector (Promega, Madison, WI,

USA) and verified by sequencing. The Notch-1 and Ang-1 antisense

riboprobes were synthesized by SP6 RNA polymerase with

plasmids linearized by SacII.

Samples from at least three individual large- and small-brain

parents (n ¼ 8–10 for each group) were examined. Guppy fry

were scarified during the day they were born and fixed in 4%

PFA in PBS buffer at 48C overnight. After fixation, the fixed brains

were dissected from heads. The in situ hybridization was done as

previously described [34]. The hybridization was done at 628C
and washed at 658C. In situ hybridization signals were detected

with sheep anti-digoxigenin-AP Fab fragments (1 : 10 000; Roche

Diagnostics). The colour staining was carried out with chromogen

substrates (NBT and BCIP).

(e) RNA isolation, cDNA synthesis and quantitative real-
time PCR

Total RNA was extracted from 30 pooled 3-dpf embryos or 25

pooled 6-dpf heads (RNeasy mini Kit; Qiagen, Valencia, CA,

USA). To synthesize cDNA, 2 mg total RNA were reverse-

transcribed using SuperScriptTM III reverse transcriptase

(Invitrogen, Eugene, OR, USA) according to instructions provided

by the manufacturer.

Quantitative real-time PCR (qPCR) was performed in the

LightCycler 480 instrument (Roache, Mannheim, Germany)

using the Lightcyclerw480 SYBR GreenI Maxter (Roache). Primers

for amplification were designed by Primer-BLAST (NCBI). Three
housekeeping genes, b-actin, elf1a and ribosomal protein L13a

(rpl-13a), were used as reference controls. b-actin primers were

obtained from the Real-time PCR Primer Databank (http://

medgen.ugent.be/rtprimerdb/). All primers sets were confirmed

to amplify only a single product of the correct size. Sequences of

primers were: b-actin, 50-CGAGCAGGAGATGGGAACC-30 and

50-CAACGGAAACGCTCATTGC-30; elf-1a, 50-CCAACTTCAAC

GCTCAGGTCA-30 and 50-CAAACTTGCAGGCGATGTGA-30;

rpl-13a, 50-AGAGAAAGCGCATGGTTGTCC-30 and 50-GCCTG

GTACTTCCAGCCAACTT-30; Notch-1a, 50-AGAGCCGGATT

CAGCGGTC-30 and 50-TTACAGGGACGTGGAGAACAAG-30).

Cycling parameters were as follows: 958C for 5 min and 45

cycles of the following, 958C for 10 s, 608C for 15 s and 728C for

20 s. Fluorescence changes were monitored with SYBR Green

after every cycle. Dissociation curve analysis was performed

(0.18C s21 increase from 60 to 958C with continuous fluorescence

readings) at the end of cycles to ensure that only single amplicon

was obtained. All reactions were performed in duplicates and

three biological replicates were done for each group (n ¼ 9).

Results were evaluated with the LIGHTCYCLER 480 software. Cycle

thresholds (Ct) obtained from each duplicate were averaged and

normalized against the Ct values of b-actin, elf-1a and rpl-13a,

respectively, as the reference control [35]. As the gene expression

changes showed the same trend when normalized to different

housekeeping genes (data not shown), the result referred to

b-actin was shown in this study. Means and standard deviations

were calculated. Statistical differences among groups were ana-

lysed using a one-way ANOVA, followed by Dunnett’s test

(GraphPad software Inc., San Diego, CA, USA). Differences were

considered statistically significant at p , 0.05.

( f ) Immunocytochemistry and imaging
The whole-mount immunostaining was performed on 4-dpf

zebrafish larvae with 2% PFA fixation. Antibody incubation

was carried out with 4% normal goat serum and 1% DMSO in

0.3% Triton X-100/PBS for 16 h at 48C with gentle agitation.

The primary antibody was chicken anti-green fluorescent protein

(1 : 750; A10263, Invitrogen). The following secondary anti-

bodies were Alexa Fluorw 488 goat anti-mouse or anti-rabbit

IgG (1 : 1000; Invitrogen).

Bright-field images were taken with a Leica DM IRB inverted

microscope with a DFC 480 charge-coupled device camera and z-

stacks were processed with LEICA APPLICATION SUITE software and

COREL DRAW X3 software [34]. Immunofluorescence samples

were examined using a Leica TCS SP2 AOBS confocal micro-

scope. For excitation, an Argon laser (488 nm) was used, and

emission was detected at 500–550 nm [36]. Stacks of images

taken at 0.2–1.2 mm intervals were compiled, and the maximum

intensity projection algorithm was used to produce final images

with Leica Confocal Software and IMARIS IMAGING software v. 6.0

(Bitplane AG, Zurich, Switzerland).

(g) Brain size measurement
Brains of larvae are too small to be removed and weighed. We

therefore measured optic tectum width from dorsal digital micro-

scopic images (using IMAGEJ) as an accurate predictor of overall

brain size [37,38] (as, in zebrafish, the width of the optic

tectum predicts the mass of the brain with 79% accuracy [39]).

We used total length (from the tip of the snout to the tip of the

tail) as a body size measure for 64 individual zebrafish (control

(18), Ang-1 MO (18) and Ang-1 rescue RNA (28)). We analysed

body size using a one-way ANOVA with total length as depen-

dent variable and treatment groups as factor. We analysed

relative brain size using an ANCOVA with brain size as depen-

dent variable, body size as covariate and treatment group as

factors, followed by a post hoc LSD test (SPSS 13.0 software

package, SPSS Inc.)
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Figure 1. Expression profiles of guppy populations. (a) Hierarchical clustering of gene expression across all significantly expressed genes in LBf, LBm, SBf, SBm and
PSm, and PSf telencephalons. Clustering is based on Euclidian distance of expression level, with significance provided by 1000 bootstrap replicates shown on each
node. Yellow indicates relative higher and black relative lower expression for each transcript. (b) Relative expression of Ang-1 in pre-selected and selected male
populations. (c) Relative expression of Ang-1 in pre-selected and selected female populations. In both (b,c), expression is based on log2 relative trimmed mean of
M-values (TMM) normalized FPKM mapped reads. Tails indicate minimum and maximum expression values for each population. Significance of expression difference
between large- and small-brained population pools, assessed with a t-test, is indicated in each panel (****Padj , 0.0001).
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3. Results
(a) Identification of Ang-1 as an important gene

underlying variation in brain size
Within the selected populations, overall transcriptional similarity

was stronger for sex than brain size. Hierarchical clustering

[23] indicates that the selected populations are more similar to

each other in overall expression than they are to the pre-selected

population (figure 1a). This was further supported by the

approximately unbiased p-value separating selected from pre-

selected populations (based on bootstrapping of expression

data, p , 0.05). Furthermore, 13 075 transcripts, corresponding

to 8639 genes in Xiphophorus, showed significant differences in

expression between pre-selected and selected populations,

regardless of brain size (log2-fold change more than 2, Padj ,

0.05). Environmental complexity has been shown to affect

broad patterns of neural gene expression [40], and the differences

we observe in overall transcription between the selected and pre-

selected populations are likely an effect of holding conditions,

with the pre-selected populations kept within large 100 l aquaria

at relatively high density. By contrast, each male–female pair of

the selected populations was kept in a 3 l aquarium with

occasional offspring removed within hours after birth. The tran-

scriptional differences between the pre-selected and selected

populations, although not the focus of this study, illustrate the

remarkable effects of social environment and intra-sexual social

interactions on overall telencephalon transcription.

Importantly, only one gene, Angiopoietin-1 (Ang-1), differed

significantly in expression (average log2-fold change more than

1 or less than 21, Padj , 0.05) between adults in the large-
and small-brain replicate populations, showing an average

log2-fold change of 6.81 between large- and small-brained popu-

lations (Padj¼ 4.83� 10218). Compared to the pre-selected

population, our data indicate that Ang-1 expression increased

in all replicate large-brained populations (average log2-fold

change¼ 1.81, Padj¼ 3.79� 1022) and decreased in average

expression in all replicate small-brain populations (average

log2-fold change¼ 23.75, Padj¼ 4.11� 1029). To confirm

our findings, we also mapped our RNA-Seq data to the

nearest available reference genome, the platyfish. As with the

de novo analysis, Ang-1 was also significantly differentially

expressed (average log2-fold change ¼ 3.1 between large- and

small-brained populations, Padj¼ 4.65� 1027).

We assessed the polymorphism and sequence data from

our RNA-Seq data. We found no evidence of fixed differences

in Ang-1 coding sequence between large- and small-brained

populations, nor between selected and pre-selected popu-

lations. In order to assess the potential for differences in

copy number between the selection lines, we tested for exces-

sive haplotypes in our read data and in the corresponding

polymorphism data. Although we cannot rule out very

recent duplications, there was no indication of differences

in copy number based on polymorphism and haplotype

data, suggesting that variation in Ang-1 expression is not

owing to copy number variation. The continuous range in

expression we observe also suggests that variation is not

owing to gene dose effects, which for any one locus would

result in more discrete expression categories.

Previous work on these populations recovered sex-specific

differences in response to selection for relative brain size and

cognitive ability [9], and it is known that brain structure

http://rspb.royalsocietypublishing.org/
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shows sex-specific patterns [41,42], therefore we also analysed

adult males and females separately for Ang-1 expression

(figure 1b,c). In both sexes, Ang-1 expression was intermediate

in the original pre-selected population, and associated with rela-

tive brain size in selected populations of guppy. Expression was

significantly higher in large-brain populations for both males

(log2-fold change¼ 10.70, Padj ¼ 8.12� 10221) and females

(log2-fold change¼ 4.42, Padj ¼ 6.03� 10211) compared with

small-brain populations. This suggests that changes in relative

brain size in the independent replicate populations are the

result of convergent selection in expression of Ang-1.

(b) Confirmation of the importance of Ang-1 expression
for brain size development in zebrafish

In addition to known functions in vascular development and

angiogenesis [43,44], Ang-1 has recently been implicated in

neuronal growth and development [43,45–47], and therefore

presents a compelling candidate gene to explain the variation

in brain size and cognitive ability observed in these guppy

populations. In order to verify the potential role of Ang-1 in

neural growth and development and to increase the general-

ity of the analysis, we therefore conducted knockdown

experiments using translation inhibition with MOs in zebra-

fish. Although the morphant fish displayed statistically

significantly shorter total body length, this was not a sub-

stantial difference in size (ANOVA: group: F2,63 ¼ 51.92,

p , 0.001; mean+ s.e.; control 4.03 mm+0.01 mm; Ang-1
MO 3.81 mm+0.03 mm; Ang-1 rescue 3.72 mm+0.02 mm).

Importantly, they also displayed smaller relative brain size

relative to controls (figure 2a,b, and electronic supplementary

material, figure S1c). Expression of intermediate filament

nestin as well as two transcription factors, Pax2a and Pax6a
(pair box proteins 2a and 6a), involved in neurogenesis and

brain development [41–43], was not statistically different

between the MO and controls (electronic supplementary

material, figure S2). However, the cell membrane-tethered tran-

scription factor Notch-1 showed higher expression in the Ang-1
morphants than in control MO-injected fish (figure 3a,b; F2,6¼

8.01, p ¼ 0.02). Our data support previous assessments

showing that although Notch-1 is important during brain

development, it is generally lowly expressed in adult tissues

[46,48]. Notch-1 expression in adult guppy telencephalons

was relatively low (in the lower 14th percentile of significantly

expressed contigs) and did not differ significantly between

the large- and small-brained populations (Notch-1 log2 gene

expression levels: large-brained pools ¼ 5.93, small-brained

pools ¼ 5.52, Padj . 0.5). This suggests that changes in Ang-1
act during development to influence Notch-1 expression, how-

ever Ang-1 may also act on adult brains independently of the

Notch-1 pathway owing to the indeterminate growth patterns

that characterize fish.

(c) In situ analysis of Ang-1 and Notch-1 in newborn
guppies with large and small brain size

Fry from large- and small-brain selection lines differ at birth in

relative brain size [9], and we therefore confirmed our zebrafish

developmental findings by performing in situ hybridizations of

Ang-1 and Notch-1 on guppy newborn whole brain samples

from our selection lines (figure 4). The staining results were

consistently reproducible and no signal was present in samples

hybridized with sense probes. Ang-1 transcripts were mainly
found in ventricular zones along the rostrocaudal axis of the

brain. Signal was also present in the dorsal and ventral telence-

phalon, the preoptic region, tectum, the periventricular ventral

and caudal hypothalamus and medulla. The large-brain gup-

pies showed a higher Ang-1 expression than small-brain

samples. This was particularly evident in the telencephalon.

Notch-1 was found in the ventricular zones of the dorsal,

dorsal-medial and ventral telencephalon, the preoptic region,

the anterior dorsal and the ventral thalamus, along the

periventicular ventral hypothalamus throughout its entire ros-

trocaudal extent, tectum, cerebellum and rhombencephalon. In

comparison with large-brain guppies, samples from small-

brain populations showed stronger Notch-1 mRNA expression

in the telencephalon, hypothalamus and medullary areas

where Ang-1 mRNA expression was lower than guppies

from large-brain populations. The expression pattern of zebra-

fish Ang-1 was examined using in situ hybridization on the

one-month-old and 6-dpf zebrafish brain. The regions expres-

sing zebrafish Ang-1 were similar to those for guppy Ang-1,

mainly in ventricular zones and along the rostrocaudal axis

of the brain.

These results show that mRNA distributions of Ang-1 and

Notch-1 are conserved between zebrafish and guppy brains.

Both guppy Ang-1 and Notch-1 transcripts were ventricularly

located along the rostrocaudal axis of telencephalon, diencepha-

lon and medulla where these areas are identified as important

proliferation zones for embryonic and adult neurogenesis in

zebrafish [49,50]. Guppies from large-brain populations exhi-

bit higher Ang-1 expression and lower Notch-1 expression

compared with guppies from small-brain populations, in agree-

ment with the concept that Ang-1 and Notch-1 play crucial roles

in the regulation of brain size.
4. Discussion
Our work suggests that expression changes in Ang-1 underlie

much of the variation in relative brain size in our guppy

populations, and our experimental analyses of the effect of

Ang-1 in zebrafish demonstrate its functionality and provide

generality in our findings across distantly related teleost

species. Although also influenced by environmental effects

and developmental noise, the range of expression levels

(figure 1a–c) suggests polygenic variation in Ang-1
expression, possibly through multiple cis-regulatory variants

and trans-acting factors. Ang-1 is known to interact with

several other genes [51], and although no other genes

showed any variation in expression consistent with brain

size in our adult animals, they may still play a role early in

development and/or in modulating Ang-1. Ang-1 may also

affect brain size via the Notch-1 signalling pathway during

early development, as evidenced by the increase in

Notch-1 mRNA in Ang-1 morphants and the increase

in Notch-1 expression in the newborn small-brained

guppies. Notch-1 is involved in regulation of neural stem cell

differentiation and it may thus be an essential factor in

Ang-1-mediated regulation of brain size. In zebrafish, the

absence of Psen-1, a component of the cell membrane

gamma-secretase complex that regulates Notch-1 processing,

leads to increased numbers of neurotransmitter-specific

neurons (histaminergic neurons) and an alert/anxious behav-

ioural phenotype [52], suggesting that Notch-1 is an

important factor in brain neuron development.
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Ang-1 is not one of the micro-encephaly genes typically

studied in relation to human brain size [53–55]. Nevertheless,

its potential role in neural proliferation and neural density

[45,47,56] makes it a plausible target for selective forces
acting on relative brain size and cognitive evolution in natu-

ral and human populations [57]. Interestingly, Ang-1 also

promotes angiogenesis [43,44,58]. The observed Ang-1
expression differences may therefore be caused by the fact

http://rspb.royalsocietypublishing.org/
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that a large brain requires more blood vessels to ensure ade-

quate blood supply than a small brain. Because this may also

explain smaller brains in zebrafish Ang-1 morphants, more

targeted experiments will need to determine whether differ-

ential Ang-1 expression leads to a change in brain size via a

direct effect on neural growth and development [43,45–47],

or indirectly via a change in angiogenesis [43,44]. It will be
interesting to see how selection for changes in expression of

Ang-1 in relation to brain size affects its other functions.

Future investigations of expression levels of Ang-1 across

other taxa are needed to test the generality of our findings in

vertebrates. Such studies will also offer a novel addition to

previous macroevolutionary studies (e.g. [2,4,59,60]) of eco-

logical correlates of variation in brain size across the animal
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kingdom. The range of Ang-1 expression and rapid change in

average expression over the short-time period indicates that

artificial selection acted on a substantial pool of standing gen-

etic variation present in the pre-selected population. This

predicts that rapid change in relative brain size and cognitive

ability of wild populations is possible when strong selective

forces are present. Finally, our results suggest that Ang-1
may be of potential importance in the evolution of vertebrate

brain size and cognitive ability.

5. Conclusion
Based on a combination of artificial selection, whole genome

transcriptome analysis and functional genetics in two differ-

ent fish species, we find that the genetic architecture affecting

brain size is surprisingly simple and propose that Ang-1 is a

key gene behind evolutionary changes in vertebrate brain size

and cognitive ability.
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