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As part of a program targeted at developing a resorbable valved tube for replacement of the 

right ventricular outflow tract, we compared three biopolymers (polyurethane [PU], 

polyhydroxyalkanoate [PHBVV] and polydioxanone [PDO]) and two biofunctionalization 

techniques (using adipose-derived stem cells [ADSC] or the RGD peptide) in a rat model of 

partial inferior vena cava (IVC) replacement. Fifty-three Wistar rats first underwent partial 

replacement of the IVC with an acellular electrospun PDO, PU or PHBVV patch and 31 nude 

rats subsequently underwent the same procedure using a PDO patch biofunctionalized either 

by ADSC or RGD. Results were assessed both in vitro (proliferation and survival of ADSC 

seeded onto the different materials) and in vivo by magnetic resonance imaging (MRI), 

histology,  immunohistochemistry [against markers of vascular cells (von Willebrand factor 

[vWF], smooth muscle actin [SMA]) and macrophages ([ED1 and ED2] immunostaining)] 

and ELISA (for the expression of various cytokines and iNOS). PDO showed the best in vitro 

properties. Six weeks after implantation, MRI did not detect significant luminal changes in 

any group. All biopolymers were evenly lined by vWF-positive cells but only PDO and 

PHBVV showed a continuous layer of SMA-positive cells at 3 months. PU patches resulted in 

a marked granulomatous inflammatory reaction. ADSC and RGD biofunctionalization yielded 

similar outcomes. These data confirm the good biocompatibility of PDO and support the 

concept that appropriately peptide-functionalized polymers may be successfully substituted 

for cell-loaded materials. 

 

1. Introduction  

 

Congenital heart diseases (CHD) occur at a prevalence of 8 to 12 per 1000 births [1] and often 

require reconstruction of the right ventricular outflow tract (RVOT). However, currently used 

devices lack regeneration and growth potential, leading to subsequent reoperations with high 

 Page 3 of 43 

T
is

su
e 

E
ng

in
ee

ri
ng

 P
ar

t A
PO

L
Y

M
E

R
 B

A
SE

D
 R

E
C

O
N

ST
R

U
C

T
IO

N
 O

F 
T

H
E

 I
N

FE
R

IO
R

 V
E

N
A

 C
A

V
A

 I
N

 R
A

T
 : 

ST
E

M
 C

E
L

L
S 

O
R

 R
G

D
 P

E
PT

ID
E

 ?
 (

do
i: 

10
.1

08
9/

te
n.

T
E

A
.2

01
4.

02
54

)
T

hi
s 

ar
tic

le
 h

as
 b

ee
n 

pe
er

-r
ev

ie
w

ed
 a

nd
 a

cc
ep

te
d 

fo
r 

pu
bl

ic
at

io
n,

 b
ut

 h
as

 y
et

 to
 u

nd
er

go
 c

op
ye

di
tin

g 
an

d 
pr

oo
f 

co
rr

ec
tio

n.
 T

he
 f

in
al

 p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

if
fe

r 
fr

om
 th

is
 p

ro
of

.



4 

 

morbidity and mortality [2-4].  Therefore, the development of biocompatible materials whose 

growth would keep pace with that of the child [5-11] still remains a clinically relevant issue. 

 

In this setting, we have previously demonstrated the ability of a monovalved polydioxanone 

(PDO) patch to restore a functional RVOT in growing lambs [12]. As part of a move towards 

a valved tube, we have then completed this two-stage study. First, a head-to-head comparison 

was performed between a PDO (taken as our reference) and 2 other polymers:  a 

polyhydroxyalkanoate (PHA) and a polyurethane (PU) which have already been used in 

cardiovascular research with encouraging results in terms of endothelialisation and 

biocompatibility [10, 11, 13-15]. In a second step, we leveraged previous findings from our 

laboratory [12] and others [16-18] showing that cells seeded onto polymers implanted in the 

circulation are rapidly cleared, and compared two functionalization modalities of the polymer 

patch based on cell seeding and peptide grafting, respectively.  To this end, we selected 

adipose-derived stem cells (ADSCs) and the tripeptide Arginine-Glycine-Aspartate (RGD) 

with the premise that this motif, which has a long-standing efficacy record in biomaterial 

functionalization [19, 20], might allow scaffold repopulation from the host cells. 

 

2. Materials & Methods  

 

2.1. Patch fabrication 

 

2.1.1 Materials 

 

Polydioxanone (PDO), polyurethane (PU), 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), and 

chloroform were procured from Sigma-Aldrich (Gillingham, UK). Poly(3-hydroxybutyrate-
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co-3-hydroxyvalerate-co-4-hydroxyvalerate) (PHBVV) was a kind gift from Bio-On SRL 

(Bologna, Italy), and supplied to this project as an experimental grade.  RGD peptide (Ac-

Gly-Arg-Cys-Gly-Arg-Gly-Asp-Ser-Pro-Gly-NH2) was provided by QGel SA (Lausanne, 

Switzerland).  

 

2.1.2 Polymer processing 

 

Solutions for electrospinning were prepared by adding the appropriate amount of polymer and 

peptide to the desired solvent; the resultant mixtures were stirred overnight until 

homogeneous solutions were obtained. The RGD-loaded polymers were prepared by directly 

electrospinning a mixture of PDO and RGD, thereby allowing a one-step approach for peptide 

incorporation. The solutions were subsequently loaded into a 5 mL syringe and a metal needle 

(spinneret; 0.61mm inner diameter) attached to the syringe. A high-voltage DC power supply 

(HCP35-35,000; FuG Elektronik, Rosenheim, Germany) was used to apply a positive voltage 

between the spinneret and a grounded metal collector plate (20 × 20 cm) covered in 

aluminium foil. The spinneret to collector distance was kept constant at 12 cm for all 

experiments. The polymer solution was ejected from the syringe at 1 mL / h using a syringe 

pump (KDS100; Cole-Parmer, London, UK). Electrospinning (ES) was carried out under 

ambient conditions (22 ± 3 °C; relative humidity 35 ± 8 %). Full details of the ES parameters 

are given in Table 1. The production of PU and PDO fibres was highly reproducible, while 

the processing of the PHBVV proved to be less consistent, possibly because of the failure of 

using HFIP as the solvent for electrospinning this material and the subsequent switch to 

chloroform. The thickness of the produced patches used for the following in vitro and in vivo 

experiments was approximatively 350 µm. 
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2.1.3 Characterization 

 

Scanning electron microscopy (SEM) was undertaken using a Quanta 200 FEG ESEM (FEI, 

Hillsborough, OR, USA). Samples were gold sputtered prior to examination. The images 

obtained were analysed using the ImageJ software (National Institutes of Health, Bethesda, 

MD, USA); fibre diameters were measured at over 50 locations. X-ray photoelectron 

spectroscopy (XPS) was performed at the NEXUS facility (Newcastle University) with the 

aid of a K-alpha instrument (Thermo Scientific, East Grinsted, UK) equipped with a 

monochromated Al Kα X-ray source. A pass energy of 40 eV and a step size of 0.1 eV were 

employed. Spectra were processed using the CasaXPS software (Casa Software Ltd., 

Teignmouth, UK).  

 

2.2. Adipose-derived stem cell harvest, isolation and characterization 

 

Subcutaneous inguinal adipose tissue was collected from Wistar rats under general 

anaesthesia by isoflurane® (AbbVie, Rungis, France) and shipped to StromaLab (Toulouse, 

France) for ADSC isolation according to a previously described protocol [21]. Subconfluent 

ADSCs were obtained after 6 days and phenotypically characterized by flow cytometry 

(FACSCalibur™, BD Biosciences®, Franklin Lakes, NJ, USA). 

 

2.3. In vitro experimentation 

 

ADSCs were cultivated in an alpha-MEM medium (Gibco, Carlsbad, CA, USA) 

supplemented with 10% FBS (Biowest, Kansas City, MO, USA), 1% antibiotic-antimycotic 

solution (Sigma-Aldrich, Saint Louis, MO, USA) and 0.02% b-FGF (R&D system, 
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Minneapolis, MN, USA). The medium was changed every 2 days. When a sufficient cell 

number was obtained, 1 cm² of the PDO, PU and PHBVV patches were manually seeded with 

ADSCs for 48 hours at 37°C under static conditions. 

 

Cell viability on the seeded grafts was assessed by an MTT (3-[4, 5-dimethylthiazolyl-2]-2, 5-

diphenyltetrazolium bromide) assay. Briefly, 1 cm² patches were seeded with 10
5
, 10

6
 or 3.5 × 

10
6
 ADSCs for 48 hours in 24-well plates. Subsequently 10µL of 5mg/mL MTT solution 

(Sigma-Aldrich, Saint Louis, MO, USA) for 100µL medium were added in each well. After 

three hours of incubation at 37°C, 30µL of isopropanol was added to each well for ten 

minutes. Each sample was transferred in a 96-well plate and read with a Dynex OpsysMR™ 

(Thermo labsystems, Milford, MA, USA) ELISA plate reader (test wavelength of 570 nm, 

reference wavelength of 630 nm). The acellular medium, cells killed by hydrogen peroxide, 

and unseeded cells were used as controls. 

 

An additional set of PDO, PU and PHBVV patches seeded with 3.5 × 10
6
 ADSCs for 48 

hours were trypsinized (Gibco, Carlsbad, CA, USA) for 5 minutes and the cells were 

collected. Cell proliferation, apoptosis and necrosis were then assessed by flow cytometry 

using Ki67, Annexin 5 and 7 AAD (all 3 from BD Pharmingen, San Jose, CA, USA), 

respectively. 

 

2.4. Study design and surgical procedures 

 

Care of animals was in accordance with institutional guidelines. The ethical committee for 

animal experimentation of Paris Descartes reviewed and approved the study protocol (#13-

046). A total of 84 rats were used for the study. 
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The study was divided into 2 parts. The first stage (n=53) consisted of the comparison of three 

bioabsorbable polymers, PDO, PU and PHBVV, in a Wistar female rat model (Janvier Labs 

SAS, Saint-Berthevin, France). The second stage (n=31) consisted of the comparison of two 

biofunctionalization techniques in an immunodeficient female nude rat model (Charles River, 

L'Arbresle, France), chosen because of the use of allogenic cells. In light of the results 

obtained in this initial set of experiments, the polymer selected for the biofunctionalization 

comparison was PDO. 

 

All polymers were implanted as patches on the inferior vena cava (IVC) of rats. On a 

warming pad and under general anaesthesia by isoflurane® (AbbVie, Rungis, France), a 

midline laparotomy was performed. The IVC was gently occluded with microvascular clamps. 

A longitudinal venotomy was performed and the patch was sutured using separated 9-0 

polypropylene sutures (Ethicon, Somerville, NJ, USA). After unclamping, vascular patency 

was visually assessed and the incision was conventionally closed in layers. The animals were 

then closely monitored for the occurrence of hind limb paralysis taken as a surrogate 

manifestation of IVC thrombosis. Animals were sacrificed by an intra-aortic injection of 

penthotal (Thiopenthal®, Ceva Santé Animal, Libourne, France) at 6 weeks or 3 months after 

patch implantation. Macroscopic patch overviews were taken with a digital camera before 

harvesting the patches and the surrounding IVC. 

 

2.5. Magnetic Resonance Imaging (MRI)  

 

Six weeks after patch implantation, MRI was performed in 11 isoflurane-anesthetized animals 

from each group to assess potential luminal changes such as thrombosis, stenosis or dilatation. 
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MRI was performed with a dedicated small-animal 4.7 Tesla MR system (Biospec 47/40 USR 

Bruker, Karlsruhe, Germany), using a quadrature transmit/receive body coil with a 7-cm inner 

diameter. The sequence of interest, a two-dimensional time-of-flight magnetic resonance 

angiography (2D TOF MRA), was performed to study the IVC. Axial slices were acquired 

from the renal vessels to the iliac bifurcation. The distance between the iliac bifurcation and 

the patch was measured before explantation, which allowed to identify the MRI slices 

corresponding to the area of patch implantation. The imaging parameters were chosen to 

provide bright-blood weighting whereas signal from tissue was significantly decreased : 

TR/TE, 18/4 ms ; α = 90°; field of view, 7 × 5 cm; matrix, 359 × 256 ; plane resolution, 195 × 

195 µm; slice thickness, 0.7 mm; interslice distance, 0.55 mm ; 3 excitations. 

 

MRI data were analyzed using an in-house software routine in the Matlab® software 

(Mathworks, Natick, MA, USA). First, the vascular tree was segmented by a thresholding 

technique. Only bright pixels, corresponding to moving volumes of blood, were selected. 

Second, for each examination, the IVC was separated automatically from the aorta and other 

vascular structures using a strategy of contraction/expansion of the segmented vascular tree. A 

visual interface enabled the operator to control the segmentation with the possibility of 

correcting it manually. Finally, the surface of the IVC was evaluated on each slice to calculate 

the corresponding diameter. The native IVC was taken as the reference for diameter 

comparison. A 20% difference (either increase or decrease) between the diameter of the 

native untreated IVC and that of the patched caval segment was considered significant. 

 

2.6. Macroscopic and histological examination 
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After explantation, the samples were longitudinally incised and the luminal surface of the 

explanted patch and the IVC were examined to detect any thrombosis. The samples were then 

embedded in Tissue-TeK Optimal Temperature Cutting (OCT) medium (Sakura, Torrance, 

CA, USA) and frozen at -180°C in liquid nitrogen until they were sliced into 7-µm-thick 

cryosections using an ultramicrotome (LM 1850; Leica, Wetzlar, Germany). Frozen tissue 

sections were stained by standard hematoxylin and eosin (HES), Sirius red and alcian blue. 

For immunochemistry analyses, frozen tissue sections were assessed for markers of ED1 

(1:100, anti-CD68) and ED2 macrophages (1:75, anti-CD163; both from AbdSerotec, 

Raleigh, NC, USA,). Antibody binding was detected using a biotinylated secondary antibody 

[1:200, anti-mouse rat absorbed IgG ; ABCYS, Les Ulis, France,] followed by the binding of 

an ABC/PO complex and color development with 3’,3 diaminobenzidine. Nuclei were 

counterstained with hematoxylin. In immunofluorescence analyses, frozen tissue sections 

were assessed for markers of endothelial cells [von Willebrand factor (vWF), 1:200, 

polyclonal rabbit IgG, Dako, Glostrup, Denmark and smooth muscle cells (SMA), 1:400, 

clone 1A4, Sigma]. The binding of primary antibodies was detected by incubating the sections 

with Texas-red-conjugated anti-rabbit IgG (1:500, Alexa Fluor, Eugene, OR, USA) or FITC-

conjugated anti-mouse IgG (1:300, Vector, Burlingame, CA, USA) antibodies. Nuclear 

counterstaining was performed with 4’,6-diamidino-2-phenylindole. Frozen tissue sections 

from both Wistar and nude rat IVC served as controls. All samples were analyzed with a 

microscope (Leica DMIL, Wetzlar, Germany) equipped with a digital camera (Qicam; 

Qimaging, Burnaby, BC, Canada) at 20× magnification. Digital images were then processed 

with the Metamorph® software (Universal Imaging Corporation, Downington, PA, USA). 

vWF and SMA results are expressed as a ratio between the endoluminal surface occupied by 

vWF- or SMA-positive cells and that of the whole patch. ED1 and ED2 results are expressed 

 Page 10 of 43 

T
is

su
e 

E
ng

in
ee

ri
ng

 P
ar

t A
PO

L
Y

M
E

R
 B

A
SE

D
 R

E
C

O
N

ST
R

U
C

T
IO

N
 O

F 
T

H
E

 I
N

FE
R

IO
R

 V
E

N
A

 C
A

V
A

 I
N

 R
A

T
 : 

ST
E

M
 C

E
L

L
S 

O
R

 R
G

D
 P

E
PT

ID
E

 ?
 (

do
i: 

10
.1

08
9/

te
n.

T
E

A
.2

01
4.

02
54

)
T

hi
s 

ar
tic

le
 h

as
 b

ee
n 

pe
er

-r
ev

ie
w

ed
 a

nd
 a

cc
ep

te
d 

fo
r 

pu
bl

ic
at

io
n,

 b
ut

 h
as

 y
et

 to
 u

nd
er

go
 c

op
ye

di
tin

g 
an

d 
pr

oo
f 

co
rr

ec
tio

n.
 T

he
 f

in
al

 p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

if
fe

r 
fr

om
 th

is
 p

ro
of

.



11 

 

as a ratio between the surface occupied by ED1- or ED2-positive cells and that of the whole 

patch. 

 

2.7. ELISA tests 

 

The explanted patches were separated from the native IVC and dissolved in a Tri-Reagent 

solution (Sigma®) for protein extraction during 24 hours before ELISA testing. Rat 

Monocyte-Chemoattractant Protein-1 (MCP-1), Interleukin-6 (IL-6) and Interleukin-10 (IL-

10) ELISA kits (RayBio®, Norcross, GA, USA) and rat inducible NO Synthase (iNOS) 

ELISA kit (SunRedBio®, Shangai, China) were used per manufacturer’s protocols. The 

results were read in a Dynex OpsysMR (ThermoLabsystems®, Vienna, VA, USA) ELISA 

plate reader (450 nm wavelength). 

 

2.8. Statistical analysis 

 

All values are expressed as mean ± standard deviation for continuous variables and n (%) for 

categorical variables. Comparisons between the 3 biopolymers were performed using analysis 

of variance or analysis of variance on ranks (when appropriate) for quantitative variables and 

using an exact Fisher test for qualitative variables. Multiple comparisons were done using 

pairwise comparison with Tukey correction for post-hoc tests. Comparisons between the 2 

biofunctionalization techniques were performed using Student test or Wilcoxon Mann-

Whitney test when appropriate. For all analyses, a two-tailed p-value <0.05 was considered 

statistically significant. Statistical analyses were performed by an independent statistician 

blinded to the treatment group, using the SAS 9.2 software (Statistical Analysis System, Cary, 

NC, USA). 

 Page 11 of 43 

T
is

su
e 

E
ng

in
ee

ri
ng

 P
ar

t A
PO

L
Y

M
E

R
 B

A
SE

D
 R

E
C

O
N

ST
R

U
C

T
IO

N
 O

F 
T

H
E

 I
N

FE
R

IO
R

 V
E

N
A

 C
A

V
A

 I
N

 R
A

T
 : 

ST
E

M
 C

E
L

L
S 

O
R

 R
G

D
 P

E
PT

ID
E

 ?
 (

do
i: 

10
.1

08
9/

te
n.

T
E

A
.2

01
4.

02
54

)
T

hi
s 

ar
tic

le
 h

as
 b

ee
n 

pe
er

-r
ev

ie
w

ed
 a

nd
 a

cc
ep

te
d 

fo
r 

pu
bl

ic
at

io
n,

 b
ut

 h
as

 y
et

 to
 u

nd
er

go
 c

op
ye

di
tin

g 
an

d 
pr

oo
f 

co
rr

ec
tio

n.
 T

he
 f

in
al

 p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

if
fe

r 
fr

om
 th

is
 p

ro
of

.



12 

 

 

3. Results 

 

3.1. Electrospun patch fabrication and characterization 

 

SEM images of the PDO, PU, and PHBVV fibres are shown in Figure 1. In all cases, the 

materials produced consisted of intertwined meshes of one-dimensional fibre strands. The 

mats were observed to be porous, with maximum pore sizes of ca.  1 – 2 µm. The fibres were 

generally linear and had smooth surfaces. The PU materials appeared “flattened”, while the 

PHBVV materials showed evidence for some “bead-on-string” type morphology, likely 

related to the difficulties in optimizing electrospinning of this polymer. Fibre diameters and 

the porosity are detailed in Table 2. 

To confirm the successful incorporation of the peptide into the PDO-RGD fibres, X-ray 

photoelectron spectroscopy (XPS) was used to probe the fibre surface composition. The 

spectra clearly show the presence of N atoms; these can only come from the RGD peptide, 

thereby demonstrating that peptide is displayed at the surface of the fibres. From three 

independent measurements, the surface composition (as weight %) is calculated to be C: 56.8 

± 0.91 %; O: 40.8 ± 0.72 %; N: 2.38 ± 0.24 %. From the ratio at which the starting materials 

were combined, the bulk fibres should comprise C: 46.8 %; O: 46.7 %; N: 0.46 %; S: 0.064 

%. This therefore indicates that there is some sequestration of peptide to the fibre surfaces 

(the observed N content is ca. 5-fold greater than that calculated for the bulk). 

 

3.2. In vitro assessment 
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Cultivated ADSCs expressed CD44 and CD90, were negative for CD45 and were able to 

differentiate into adipocytes and osteoblasts in response to the appropriate cues (Oil-Red-O 

and Alizarin red, respectively). On the basis of the MTT assay, the viability of ADSC was 

greater on PDO than on PHBVV and PU patches (global p-value < 0.0001; Fig. 2). Flow 

cytometry revealed that ADSCs had high proliferation rates (PDO: 55% ; PHBVV: 64% ; PU: 

55%) and low apoptosis and death rates (PDO: 1.25% (apoptosis) and 1.2% (death) ; 

PHBVV: 3.2% and 5.4% ; PU: 5.65% and 2.2% ; Fig. 3). 

 

3.3. In vivo polymer comparison 

 

Fifty-three female Wistar rats underwent a partial replacement of the IVC with an acellular 

electrospun PDO (n=18), PU (n=21) or PHBVV (n=14) patch. None of them displayed any 

postoperative paralysis. Eleven rats in each group underwent MRI imaging at 6 weeks, which 

showed no stenosis, thrombosis or aneurysm in the area of the patch implantation (Fig. 4). 

Forty-four rats were sacrificed at 6 weeks and 3 rats of each group at 3 months. 

Macroscopically, there was no thrombosis on the endoluminal surface of any of the 3 

polymers tested. At 3 months, the PDO patches could no longer be detected and distinguished 

from the native IVC, whereas the PHBVV patches were not as completely integrated (Fig. 

5(a) and (b)). In the PU group, granulomas were found in 4 (22%) of the 18 patches at 6 

weeks, and in all specimens at 3 months (Fig. 5(c)). Figures 6 and 7 (a, f, k) show the 

different degradation rates of the biopolymers. 

Histological and ELISA results at 6 weeks and 3 months are summarized in Tables 3 and 4, 

respectively. Hematoxylin/Eosin staining reveals that the cells were able to penetrate the 

whole thickness of the PDO (loaded with RGD or not) and PHBVV patches, whereas they 

were only found surrounding the PU patches, either at 6 weeks or 3 months (Figs 6 and 7. [a, 
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f, k]). The 3 polymeric patches were evenly lined by vWF-positive cells at 6 weeks and 3 

months (Figs. 6 and 7(b), (g) and (l)). The number of SMA-positive cells was higher on PDO 

and PHBVV patches than on PU patches (p = 0.006 and p = 0.0173, respectively, at 6 weeks; 

Figs. 6 and 7 (c) , (h) , and (m)). Inflammatory cells were found surrounding the PU patches, 

whereas they infiltrated the PDO and PHBVV ones (Figs. 6 and 7. (d), (e), (i), (j), (n), and 

(o)). The infiltration of pro-inflammatory ED1 macrophages was lower in the PHBVV group 

than in the PDO (p = 0.0084) and PU (p = 0.0066) groups at 6 weeks. At 3 months, ED1 

infiltration had markedly decreased compared to the 6-week time point in the PDO and 

PHBVV patches (-80% and -33%, respectively) whereas it remained stable and high in the PU 

group (92% at 6 weeks and 83% at 3 months). ED2 regulatory macrophages and the 

ED2/ED1 ratio were higher in the PU group at 6 weeks. At 3 months, ED2/ED1 ratios had 

increased in the PDO and PHBVV groups (+45% and +7%, respectively, compared to 6 

weeks), and decreased in the PU group (-16%). The latter polymer yielded the lowest ratio of 

regulatory macrophages relative to the total macrophage pool (ED2/ED1 = 56 ± 6 %, versus 

64 ± 31 % for PHBVV and 100% for PDO). Three months after implantation, there was 

evidence for an extracellular matrix synthesis of varying extent and pattern in the three 

biopolymer-treated groups (Fig. 8). PDO was associated with the greatest collagen and 

glycosaminoglycans density in a well organised extracellular matrix, resembling that of the 

native IVC composition, followed by PHBVV (Fig. 8(a,b,e,f)). Extracellular matrix in contact 

of the PU appeared to be less developed and less organized (Fig. 8 (c,d)). 

 

At 6 weeks, explanted patches of PHBVV and PDO showed higher concentrations of IL-6 

than PU (p = 0.0002 and p < 0.0001 respectively). IL-6 was further upregulated in each group 

at 3 months compared to 6 weeks (PDO : +42% ; PU : +57% ;  PHBVV : +98%). At 6 weeks, 

PDO showed higher concentrations of MCP-1 compared to PHBVV and PU (p < 0.0001 and 
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p = 0.0007, respectively); however, at 3 months values had decreased in all 3 groups (PDO : -

40% ; PU : -14% ; PHBVV : -17%). There were no significant differences in iNOS 

concentrations between the 3 biopolymer patches (p = 0.90). The expression of the anti-

inflammatory IL-10 cytokine was highest in the PDO group at 6 weeks (global p-value = 

0.015). IL-10 production was then stable in the PDO and PU groups, whereas its expression 

nearly doubled in the PHBVV group (+94%) between 6 weeks and 3 months.  

 

3.4. Biofunctionalization techniques comparison 

 

Thirty-one immunodeficient nude rats underwent an IVC partial replacement by either a PDO 

patch seeded with ADSC (n=17) or a PDO patch biofunctionalized by RGD (n=14). MRI 

imaging at 6 weeks failed to detect thrombosis or stenosis in the patch implantation area. No 

granulomas or thrombosis were found during the macroscopic analyses. At 6 weeks, the 

biofunctionnalized patches were well integrated to the native IVC wall and their luminal 

surfaces were evenly lined with continuous layers of endothelial (Fig. 9 (b), and (g)) and 

smooth muscle cells (Fig. 9 (c), and (h)). ED1 macrophage infiltration was more pronounced 

in ADSC-biofunctionalized patches (p = 0.049; Fig. 9. (d), and (i)) whereas ED2 regulatory 

macrophage infiltration was similar in both groups (Fig. 9. (e), and (j)). ELISA measurements 

of IL-6, IL-10, iNOS and MCP-1 showed no statistical differences between ADSC and RGD 

biofunctionalization. The histological and ELISA results at 6 weeks are summarized in Table 

5. 

 

At 3 months, the cell and peptide-biofunctionalized patches had disappeared and were fully 

integrated in the native IVC wall. There were no statistical differences between the two 

biofunctionalization techniques with regard to histological and ELISA end points (Fig. 10 and 
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Table 6). In comparison to the 6-week data, there was a decrease in the number of ED1 

macrophages and an increase of ED2 regulatory macrophages in both groups. There was also 

evidence for a well organized extracellular matrix, similar to that of the native IVC, with no 

difference between the two biofunctionalized polymers (Fig. 11). IL-6, MCP-1 and iNOS 

expression was further upregulated at 3 months in both groups compared to the 6 weeks, 

whereas IL-10 concentrations remained stable. 

 

4. Discussion 

 

Several materials have been tested clinically for reconstructing the RVOT [22-29] but their 

common limitation is the lack of a growth potential which leads to reoperations, with their 

attendant risk of increased morbidity and mortality.  

In an attempt to address this issue, we have undertaken a program aimed at developing a 

degradable valved polymeric tube designed to harness endogenous healing mechanisms to 

achieve the full replacement of the device by an autologous living conduit. Initial proof-of-

principle experiments entailing the placement of a mesenchymal stem cell-seeded PDO 

monocusp patch across the pulmonary annulus in growing lambs confirmed the high 

biocompatibility of this polymer which, over time, was replaced by a host-derived tissue 

histologically similar to the native pulmonary arterial wall [12]. This result is consistent with 

the successful outcomes yielded by PDO valvular rings implanted in children [30]. However, 

a drawback of PDO in our experiments was its fast degradation which led us  to compare it, in 

a head-to-head fashion, with two other polymers (PU and PHBVV). All three materials were 

selected for their alleged biocompatibility, mechanical properties, suitability for 

electrospinning-based manufacturing, and possibility of regulatory approvability for human 

use. Although some teams have made replacements of the RVOT in rats [31], we found 
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partial replacement of the rat IVC, which shares with the pulmonary artery low-pressure 

patterns, a more suitable model for screening experiments. 

In our study, the 3 different acellular electrospun patches displayed complete in vivo 

endothelialisation at 6 weeks and 2 of them, PDO and PHBVV, featured a continuous layer of 

smooth muscle cells at 3 months. We assume that self-endothelialisation and neo-vessel 

regeneration were obtained by both recruitment of circulating progenitor cells and migration 

from the edges of the native vessel [32]. Although we did not investigate endothelial cell 

function, the latter was likely adequate since no thrombosis was found either macroscopically 

or microscopically. Overall, our results are in line with those of Matsumara et al. who 

evaluated cell-free scaffolds in the IVC and pulmonary valve locations in dogs and found 

endothelialisation, vascular smooth muscle cell proliferation and synthesis of an extra-cellular 

matrix [33,34].  

 

Such remodelling of the matrix is a key process in vascular restoration and is impacted by the 

number and polarity of invading monocytes and macrophages. From this standpoint, PDO and 

PHVBB outperformed PU with regard to the predominance of infiltrating regulatory ED2 

macrophages, a phenotype associated with less inflammatory tissue scarring and improved 

remodelling [35, 36]. The enhanced ED2 response to PDO and PHBVV is consistent with our 

concurrent finding of higher expressions of the anti-inflammatory IL-10 cytokine and of the 

MCP-1 chemokine. In contrast, PU was associated with a much greater inflammatory 

response, with a persisting insulation of the patches and, occasionally, granulomas, which 

have also been reported in other applications [37, 38]. Whether a physico-chemically different 

PU might more favourably affect host tissue responses will be the subject of future 

investigations.  
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Another important finding from the previous work of our laboratory and others [12, 16-18] is 

that polymer-seeded cells are cleared over time which leads to speculate that the grafted cells 

do not structurally integrate within the neo-vessel wall, but rather act as platforms releasing 

signalling molecules that may recruit host cells. This hypothesis provides a robust rationale 

for testing whether cells can thus be replaced by biomimetic compounds which could 

duplicate their recruiting effects and promote self-healing. Indeed, the use of different 

bioactive peptides as substitutes for cell therapy has been successfully tested in cardiac 

regeneration and other specialties [17, 39-42].  

 

In the present study, we selected RGD, a tri-peptide composed of Arginine-Glycine-Aspartate 

that mimics the integrin binding site of cells and the extra-cellular matrix [43] and has already 

been successfully tested as a biofunctionalization motif [44]. Grafting of RGD on a polymer 

was compared, again in a head-to-head fashion, with ADSC selected because of their ease of 

procurement, richness of their secretome and potential for human applications. PDO was 

chosen as the material common to these two biologics because it had yielded the most 

encouraging signals in the first set of experiments and with the recognition that its above 

mentioned fast degradation kinetics were not a definite limiting factor in that it could be 

addressed by altering density of the fibre network through fine-tuned electrospinning settings, 

or by combining it with another polymer featuring superior mechanical properties. 

 No significant differences were found between RGD and ADSC in terms of vascular 

remodeling, neo-vessel formation, inflammatory cell response and cytokine secretion. This 

result is consistent with that reported by Roh et al. [17] who showed, in a murine model of 

infrarenal IVC replacement, that the restorative patterns observed after implantation of a 

human bone marrow mononuclear cell seeded polymer could be duplicated by replacing cells 

with MCP-1 grafting on the scaffold. We acknowledge, however, that in the absence of 
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covalent binding, the PDO can dissolve from the surface of the polymer with the possibility 

that its soluble form may, at the opposite of our objective, act as an integrin blocker 

preventing cell adhesion [45-46]. Thus, while the method used in this study for immobilizing 

RGD in the scaffold does not allow to conclusively establish that the tripeptide actually 

contributed to recruit host cells, the slow degradation rate of PDO may still have permitted 

RGD embedded into the network to remain active with regard to cell homing during a 

prolonged period of time while the outer fibres were being dissolved. 

 

Altogether, these data reinforce the idea that engineering of polymeric scaffolds might allow 

to skip seeding of cells, provided the scaffolds are functionalized with bioactive peptides able 

to enhance host cell homing to generate a native-like tissue. Should such a concept be 

confirmed in clinically relevant large animal models, it could dramatically streamline the 

translational process and open clinically relevant perspectives for the RVOT replacement in 

children suffering from congenital cardiac abnormalities. . 
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Figure 1: SEM images of the electrospun fibre mats. (a, b) PDO fibres; (c) PDO-RGD fibres; (d) PU fibres; (e, f) PHBVV 

fibres. (applied voltage : 2.0 kV for PDO; 5.0 kV for PDO-RGD, PU and PHBVV) 
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Figure 2. MTT assay results. PDO shows the best in vitro properties with a significantly higher cell viability after seeding 

than the other materials. With a 3,5  × 106 ADSC cell seeding, cell viability with PDO is significantly higher than that in 

PHBVV (PHBVV: 0.99 ± 0.13 and PDO: 1. 30 ± 0.25 ; p < 0.046). Both cell viabilities in PDO and PHBVV are higher than 

in the PU group (0.59 ± 0.15 ; p < 0.0001 and p < 0.0089, respectively). (Data were compared by analysis of variance and 

pairwise comparison with Tukey correction for multiple comparisons ; * p < 0.05 ; ** p < 0.0001; ns, not significant.) 
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Figure 3. Flow cytometry data for the polymer patches. ADSC seeded on PDO, PHA & PU exhibit high proliferation 

(a,d,g) and low apoptosis and necrosis (b,e,h ; c,f,i) rates. 
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Figure 4. MRI Imaging (a) and reconstruction (b). Example of a PDO patch implanted on the IVC of a Wistar rat. No 

thrombosis, stenosis or dilatation was found in any rat investigated in this study. 
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Figure 5. Macroscopic views of the implanted patches at 3 months. All grafted vessels were patent at 3 months post-

implantation.  The PDO patch is completely integrated in the IVC wall (a) whereas the PHBVV patch can still be 

distinguished from the IVC (b). A granuloma surrounds the PU patch (c). (scale bar : 3mm) 
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Figure 6. Analysis of the biopolymer patches explanted after 6 weeks. All biopolymers are evenly lined with endothelial 

cells (b, g, l). The number of SMA-positive cells is higher on PDO and PHBVV patches in comparison with the PU patches 

(c, h, m). PU patches are insulated by macrophages (i, j) whereas inflammatory cells infiltrate both PDO (d,e) and PHBVV 

patches (n,o). DAPI staining shows a greater cellularisation of the PDO and PHBVV patches compared with PU (b,c,g,h,l,m). 

Scale bar : 50µm. 
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Figure 7. Analysis of the biopolymer patches explanted after 3 months. All biopolymers are evenly lined with endothelial 

(b,g,l) and smooth muscle cells (c,h,m). PDO has totally disappeared and is replaced by a neo-tissue similar to the native IVC 

(a-e). PU is encapsulated in a granulomatous inflammatory reaction (i,j). PHBVV starts to be degraded (n,o). DAPI staining 

again shows a greater cellularisation of the PDO and PHBVV patches compared with PU (b,c,g,h,l,m). Scale bar : 50µm. 
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Figure 8. Extracellular matrix synthesis of the biopolymer patches explanted after 3 months. PDO is the polymer 

showing the most similarities with the native rat IVC in terms of collagen (a) and glycosaminoglycans (b) density, followed 

by PHBVV (e,f). Extra-cellular matrix in contact with the PU material appears less well organized (c,d). 
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Figure 9. Analysis of the biofunctionalized patches removed after 6 weeks. Both ADSC and RGD-biofunctionalized 

patches are evenly lined with endothelial (b,g) and smooth muscle cells (c,h). ED1 (d,i) and ED2 (e,j) macrophages infiltrate 

both patches. Scale bar: 50µm. 
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Figure 10. Analysis of the biofunctionalized patches removed after 3 months. Both ADSC and RGD-biofunctionalized 

patches are evenly lined with endothelial (b,g) and smooth muscle cells (c,h). Macrophage infiltration has distinctly 

decreased from 6 weeks, with a shift towards a regulatory pattern (e,j). Scale bar: 50µm.  
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Figure 11. Extracellular matrix synthesis of the biofunctionalized patches explanted after 3 months. ADSC-seeded 

PDO (a,b) and RGD-grafted PDO (c,d) do not show any differences in extracellular matrix composition or organization, 

which are similar to those of the native IVC extracellular matrix. 
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Supplemental figure 1. SEM images of the electrospun PHBVV fibre mats. Example of a bead on the string morphology 

of the PHBVV materials. It has not been included in the revised manuscript but could do based on the Editor’s decision. 
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Supplementary figure 2 : Macroscopic views of the implanted biofunctionalized PDO patches (a : PDO and RGD ; b : 

PDO and ADSC). Biofuctionalized paches are integrated within the native IVC wall like bare PDO patches in the first set of 

biopolymer comparison (scale bar : 3mm). 
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Supplemental figure 3. Orcein staining failed to detect elastic fibers in the ECM of the native IVC that were consequently 

equally absent in all polymer-treated groups. 

 

 

Table 1. The electrospinning parameters used to prepare patches of PDO, PU, and PHBVV. 

Fibre ID Polymer Solvent Polymer conc. 

(% w/v) 

RGD conc.  

(mg/mL) 

Applied 

voltage (kV) 

PDO PDO HFIP 7 0 13.5 

PU PU HFIP 5 0 15 

PHBVV PHBVV Chloroform 7 0 12 

PDO-RGD PDO HFIP 7 1.7 13.5 
 

Table 2. Characterising data on the ES fibers produced. Diameters are reported as mean ± S.D., and porosity has been 

calculated using the method of Ghasemi-Mobarakeh et al (Ghasemi-Mobarakeh, L., Semnani, D. & Morshed, M. A novel 

method for porosity measurement of various surface layers of nanofibers mat using image analysis for tissue engineering 

applications. J. Appl. Polym. Sci. 106, 2536-2542 (2007).) 

 

Fibre ID Diameter 

(nm) 

Porosity (%) 

PDO 578 ± 234 85.3 

PU 856 ± 198 88.5 

PHBVV 606 ± 268 86.1 

PDO-RGD 133 ± 28.1 84.5 

 

Table 3. Histological and ELISA assessments of non-biofunctionalized polymers at 6 weeks. [Data were analyzed by 

analysis of variance or analysis of variance on ranks (when appropriate) for quantitative variables ; exact Fisher test for 

qualitative variables ; pairwise comparisons with Tukey correction for multiple comparisons ; ns : not significant] 
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   PDO (n=15) PU (n=18) PHBVV (n=11) Global p-value 

VWF (%) 100 100 100 ns 

SMA (%) 96 (±9) 59 (±35) 89 (±22) 0.0006 

ED1 (%) 92 (±14) 92 (±12) 71 (±24) 0.0038 

ED2 (%) 50 (±13) 66 (±19) 37 (±17.5) 0.0002 

ED2/ED1 (%) 55 (±14) 72.5 (±19) 58 (±30) 0.0414 

Granuloma, n(%) 0 4 (22) 0 ns 

IL 6 (pg/mL) 305 (±195) 163 (±143) 6 (±9.85) <0.0001 

MCP 1 (pg/mL) 25073 (±10736) 13009 (±7552) 5782 (±6491) <0.0001 

iNOS (ng/mL) 2.56 (±4.06) 2.58 (±2.88) 1.40 (±1.01) ns 

IL 10 (pg/mL) 2186 (±1279) 1309 (±1177) 807 (±613) 0.015 

 

Table 4. Histological and ELISA assessments of non-biofunctionalized polymers at 3 months. 

   PDO (n=3) PU (n=3) PHBVV (n=3) 

VWF (%) 100 100 100 

SMA (%) 100 78 (±29) 100 

ED1 (%) 12 (±3) 83 (±6) 38 (±28) 

ED2 (%) 12 (±3) 47 (±6) 20 (±9) 

ED2/ED1 (%) 100 56 (±6) 64 (±31) 

Granuloma 0 3 (100) 0 

IL 6 (pg/mL) 433 (±64) 254 (±49) 12 (±9,6) 

MCP 1 (pg/mL) 14998 (±6915) 11170 (±2381) 4800 (±5732) 

iNOS (ng/mL) 1.52 (±0.95) 2.73 (±1.04) 2.74 (±2.45) 

IL 10 (pg/mL) 2117 (±305) 1228 (±307) 1567 (±805) 

 

Table 5. Histological and ELISA assessments of biofunctionalized polymers at 6 weeks. (Data were analyzed by Student and 

Wilcoxon Mann-Whitney tests ; ns : not significant.) 

   ADSC (n=10) RGD  (n=7) p-value 

VWF (%) 100 100 ns 

SMA (%) 97 (±5) 100 ns 

ED1 (%) 100 93 (±9.5) 0.049 

ED2 (%) 36.5 (±12) 43 (±18) ns 

ED2/ED1 (%) 36.5 (±12) 47 (±19) ns 

IL 6 (pg/mL) 16 (±25) 12 (±19) ns 

MCP 1 (pg/mL) 7112 (±9548) 3949 (±6920) ns 

iNOS (ng/mL) 0.67 (±0,40) 0.65 (±0.51) ns 

IL 10 (pg/mL) 1197 (±938) 1088 (±1490) ns 

 

Table 6. Histological and ELISA assessments of biofunctionalized polymers at 3 months. (Data were analyzed by Student 

and Wilcoxon Mann-Whitney tests ; ns : not significant) 

   ADSC (n=7) RGD  (n=7) p-value 
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VWF (%) 100 100 ns 

SMA (%) 100 100 ns 

ED1 (%) 66 (±39) 69 (±25) ns 

ED2 (%) 41 (±30) 51 (±23) ns 

ED2/ED1 (%) 69 (±31) 76 (±21) ns 

IL 6 (pg/mL) 31 (±25) 18 (±19) ns 

MCP 1 (pg/mL) 17594 (±13235) 6574 (±5751) ns 

iNOS (ng/mL) 1.31 (±0,93) 2.79 (±2.86) ns 

IL 10 (pg/mL) 1392 (±645) 1266 (±637) ns 
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