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Abstract

This thesis concerns face recognition in uncontrolled environments in which the images used for train-

ing and test are collected from the real world instead of laboratories. Compared with controlled envi-

ronments, images from uncontrolled environments contain more variation in pose, lighting, expression,

occlusion, background, image quality, scale, and makeup. Therefore, face recognition in uncontrolled

environments is much more challenging than in controlled conditions. Moreover, many real world ap-

plications require good recognition performance in uncontrolled environments. Example applications

include social networking, human-computer interaction and electronic entertainment. Therefore, re-

searchers and companies have shifted their interest from controlled environments to uncontrolled envi-

ronments over the past seven years.

In this thesis, we divide the history of face recognition into four stages and list the main problems

and algorithms at each stage. We find that face recognition inunconstrained environments is still an

unsolved problem although many face recognition algorithms have been proposed in the last decade.

Existing approaches have two major limitations. First, many methods do not perform well when tested

in uncontrolled databases even when all the faces are close to frontal. Second, most current algorithms

cannot handle large pose variation, which has become a bottleneck for improving performance.

In this thesis, we investigate Bayesian models for face recognition. Our contributions extend Prob-

abilistic Linear Discriminant Analysis (PLDA) [Prince andElder 2007]. In PLDA, images are described

as a sum of signal and noise components. Each component is a weighted combination of basis functions.

We firstly investigate the effect of degree of the localization of these basis functions and find better per-

formance is obtained when the signal is treated more locallyand the noise more globally. We call this

new algorithm multi-scale PLDA and our experiments show it can handle lighting variation better than

PLDA but fails for pose variation.

We then analyze three existing Bayesian face recognition algorithms and combine the advantages

of PLDA and the Joint Bayesian Face algorithm [Chen et al. 2012] to propose Joint PLDA. We find that

our new algorithm improves performance compared to existing Bayesian face recognition algorithms.

Finally, we propose Tied Joint Bayesian Face algorithm and Tied Joint PLDA to address large pose vari-

ations in the data, which drastically decreases performance in most existing face recognition algorithms.

To provide sufficient training images with large pose difference, we introduce a new database called the

UCL Multi-pose database. We demonstrate that our Bayesian models improve face recognition perfor-

mance when the pose of the face images varies.
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Chapter 1

Introduction

1.1 What is Face Recognition?

1.1.1 Definition of Face Recognition

The motivation of automatic face recognition is to give the computer the same capability as human beings

to recognize faces. The general definition to face recognition is to estimate the identity of one or more

people from static images or video sequences using a stored database of gallery faces. There are two

types of face recognition: closed set and open set. In closed-set recognition, we can definitely find a

gallery face matching the input image. In open-set recognition, we might not find any matched gallery

image to the input face image.

1.1.2 Typical Recognition Pipeline

Face recognition is a visual pattern recognition problem. Figure 1.1 shows the basic pipeline of a face

recognition algorithm. Generally the process for a computer to recognize faces can be divided into the

following subtasks:

1. Face Detection. Detect the presence of faces and give the location, size and orientation of the faces

in the image if faces exist. Normally the output is a boundingbox around each face.

2. Face Alignment. Locate the facial landmarks, such as the eyes, nose, mouth, etc. and align the

input face image to a pre-defined template to eliminate the size, location and orientation variation

of face.

3. Feature Extraction. Describe a face image by a representation method.

4. Face Identification. Compare the similarity between the input image and all the faces in the gallery

database and then estimate the identity of the input face image.

1.1.3 Advantages of Face Recognition

Face identification is a very common activity in everyday life. Everyone has to identify other people and

prove their own identity to others. Examples include showing a passport to open a bank account and

inputting a password to login on a computer. In most cases we rely on traditional identification methods

which include identification cards, keys, passwords, etc. However, these methods are not necessarily



1.1 What is Face Recognition?

a) Input Image b) Face Detection c) Face Alignment e) Recognition 

Name: 
 David  Cameron 

d) Feature Extraction 

Figure 1.1:Face recognition pipeline.a) Given an input face image. b) We detect the presence of a face

and put a bounding box around it. c) We crop out the face regionand align it to a pre-defined template

to compensate for size, location and orientation variation. d) We extract features. e) We recognize the

identity of the face.

safe or convenient: identification cards and keys might be counterfeited; passwords might be forgotten

and stolen; cards and keys are not easy to carry. Therefore, amore secure and convenient method is

desirable. It is widely believed that biometrics are the ideal solution.

The term ‘biometric’ means to use one or more intrinsic physical or behavioral traits to recognize

people. Because these biometric traits are unique and part of the individual, they are difficult to counter-

feit or steal. Biometrics are believed to be reliable, practical and convenient. There are different kinds of

biometric characteristics to identify people, for exampleiris, fingerprint, DNA, palm print, voice, gait,

etc. Among these, the face is the most important characteristic to recognize people.

Compared with other biometrics, face recognition has the following advantages:

• Natural. The face is the most natural way to identify a humanbeing. Compared with fingerprint

and iris recognition, it is easier for normal users to get involved.

• Ideal for surveillance. Face recognition does not need theparticipant’s cooperation, so security

cameras can be installed secretly. This is especially useful for investigating criminals. It is the

biggest advantage of face recognition compared to other biometrics.

• Easy to be accepted. There is no direct contact when acquiring the face image, so normally it will

be unobtrusive.

• Cheap and widely-distributed image acquisition equipment. Current CMOS cameras are very

cheap. The webcam has already become a standard external device and CCTV cameras are in-

stalled in many companies and cities. Many people own digital cameras, camcorders and photo-

scanners.

Because of the above advantages, face recognition has become a very popular research topic in the past

twenty years.

1.1.4 Applications

Face recognition has great potential in numerous government and commercial applications. Generally

these applications can be classified into the following categories:

10



1.2 Uncontrolled Environments

• Access Control: computer login and building access. Face recognition can prevent misuse of

stolen or lost passwords and keys effectively. The recognition accuracy in this type of application

is quite high because the number of people is relatively small and input images are normally frontal

face under indoor illumination. For example, Omron [131] provided a face recognition system to

the University of Missouri-Rolla to secure a nuclear reactor.

• Security. Face recognition is often combined with a smart card to confirm a user’s real identity. The

organizers of Beijing Olympics installed a face recognition system developed by Authenmetric to

make sure only the valid ticket holders can enter the sport venues in 2008 [1].

• Surveillance. Many airports have installed face recognition systems to identify known terrorists.

However, false alarms are quite high for most current face recognition systems. For example,

a face recognition system developed by Viisage was deployedin Fresno Yosemite International

airport in California in 2001. However, they finally gave up the system because of frequent false

alarms [87].

• Human Computer Interaction and entertainment. The human body is a natural input device to

achieve user-friendly and efficient human computer interaction. The Xbox 360 Kinect developed

by Microsoft can make users’ avatars simulate their talkingstyle during the game.

• Law enforcement. Face recognition could help investigators obtain the identity of a person from

a face database quickly. For example, a face recognition system called Imigis helps California’s

police officers identify unknown bodies.

• Labeling face images. It has become more and more difficult to label images manually as the

number of images increases. Face recognition can be used to label images automatically. Pi-

casa developed by Google uses face recognition technology help its users manage their photos

efficiently.

• Video Management. Human faces appear very frequently in news, films and home video. In order

to generate summaries from these videos for video browsing,skimming and summarization, face

recognition technology is often used. For example, a software developed by Ma and Zhang can

collect a set of video segments from original video files by using face recognition technology [91].

1.2 Uncontrolled Environments

In the past decades people focused on developing fundamental face recognition algorithms [132] [10]

based on controlled environments which have simple backgrounds and limited variation in pose and light-

ing. To compare the performance of face recognition algorithms, a number of standard face databases

were published, for example FERET [106], XM2VTS [95] and Multi-PIE [56]. Images from controlled

databases are illustrated in Figure 1.2a. After years of development many proposed face recognition

algorithms have produced very impressive results in these controlled databases.
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a) 

b)

Figure 1.2:Images from controlled and uncontrolled environments.a) In the past, face recognition

algorithms were evaluated on controlled face databases in which images have simple backgrounds and

limited variation in pose and lighting. From left to right, example images are from XM2VTS [95],

Yale[52], Multi-PIE [56] and FERET [106] face databases respectively. b) Recently research has shifted

to face recognition in uncontrolled environments in which images have complex backgrounds, partial

occlusions and large variations in pose, lighting and race.Example images are from the most famous

uncontrolled face database: Labeled Faces in the Wild [65].

Recently, research has shifted toward face recognition in uncontrolled environments to encourage

real-world applications. Images are collected from the internet and have complex backgrounds, partial

occlusion and large variations in pose, lighting, image quality, race and expression. The most famous

uncontrolled face database is the Labeled Faces in the Wild database with over 600 citations in the

face recognition literature [126]. Examples from this database are shown in Figure 1.2b. An ideal face

recognition algorithm should perform well in uncontrolledenvironments to satisfy the requirements of

real-world applications. However, this still remains a bigchallenge for most current face recognition

algorithms.

1.3 Challenges of Uncontrolled Environments

The three main challenges for face recognition in uncontrolled environments are large variation in pose,

lighting and partial occlusion.

The first challenge is pose variation. A person appears very differently from different viewpoints

(see Figure 1.3a). Pose variations make the feature matching between two face images under different

pose very difficult. In general, non-matching frontal facesare more similar to each other in terms of

pixel values than matching faces of different poses.

A second major obstacle is lighting variation (Figure 1.3b). It is hard to recognize the face un-

der varying lighting. Even two images from the same person but under different lighting can appear

dramatically different.

12



1.4 Problem Statement

a) 

b) 

c) 

Figure 1.3:Main challenges for face recognition under uncontrolled Environments. a) Pose vari-

ation: the appearance of a face varies significantly as the position of the camera varies. b) Lighting

variation: the face looks very different when lighting changes. c) It is hard to recognize the face when

face expression varies. All example images are from the Labeled Faces in the Wild database [65].

Finally, expression is also an impeding factor (Figure 1.3c). Varying face expression can reduce

recognition performance dramatically.

In this thesis we mainly focus on overcoming these challenges to improve the face recognition

performance in uncontrolled environments.

1.4 Problem Statement

Face recognition in uncontrolled environments is a challenging task and many existing algorithms do not

perform well. In this thesis we propose a series of robust generative probabilistic face algorithms which

can handle the challenges of uncontrolled environments. Toverify the performance of our algorithms,

we test our algorithms in the well-known uncontrolled face database, Labeled Faces in the Wild [65].

1.5 Main Contributions

In this report we discuss how to overcome the main challengesfor a reliable face recognition system

under uncontrolled environments. The main contributions are:

13
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1. We review existing face recognition algorithms. We review the history of face recognition research

by dividing it into four development categories. We list themain problems and representative

methods in each category. We also summarise the main publically accessible face databases and

describe the evaluation methods and conclusions of famous Face Recognition Technology Test

(FERET) and Face Recognition Vendor Test (FRVT).

2. We investigate the role of the spatial support of signal and noise for face recognition. We develop a

model for face recognition that describes the image as a sum of signal and noise components. We

describe each component as a weighted combination of basis functions. We investigate the effect

of degree of localization of these basis functions: each might describe the whole image (describe

global pixel covariance) or only a small part of the face (describe only local pixel covariance). We

called this new algorithm Multi-Scale PLDA. Our experiments show that we can extract a more

robust recognition signal from face images and produce better performance by treating the signal

more locally and the noise more globally.

3. We analyze three existing Bayesian face recognition algorithms and propose a new algorithm:

Joint PLDA. Probabilistic linear discriminant analysis (PLDA) [111] and the Joint Bayesian Face

algorithm [30] are two state of the art face recognition algorithms. We compare the two algo-

rithms to identify their similarities and differences. Then we combine the advantages of PLDA and

the Joint Bayesian Face algorithm to propose Joint PLDA. We compare the performance of four

Bayesian face recognition algorithms (The Bayesian Face algorithm, PLDA, the Joint Bayesian

Face algorithm and Joint PLDA) when different image descriptors are used. Our experimental

results demonstrate that Joint PLDA performs better than PLDA and the Joint Bayesian Face al-

gorithm in the LFW database.

4. We identify the challenge in the LFW database and propose two new algorithms to overcome the

challenge. We analyse the verification results of three Bayesian face recognition algorithms in

the LFW database and find that large pose variability is the challenge for improving performance.

Tied PLDA [82] is one possible solution to overcome this problem. However, there are insufficient

LFW training images for Tied PLDA, especially where there isa large pose difference. To address

this issue, we introduce a new database called the UCL Multi-pose database with more training

images for large pose changes. We also describe tied versionof the Joint Bayesian Face algorithm

and Joint PLDA. We compare performance of three Tied Bayesian face recognition algorithms

(Tied PLDA, Tied Joint Bayesian Face algorithm and Tied Joint PLDA) when different image

descriptors are used. Our experiments show Tied Bayesian face recognition algorithms perform

better than Bayesian face recognition algorithms (PLDA, the Joint Bayesian Face algorithm and

Joint PLDA) when large pose variation exists.

1.6 Report Structure
In chapter 2 we describe previous related work. In chapter 3,face generation is divided into signal

and noise components and we investigate the optimal spatialsupport for these two components. In

14
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chapter 4, we compare the existing three Bayesian face recognition algorithms and propose Joint PLDA

to combine the advantages of PLDA and the Joint Bayesian Facealgorithm. In chapter 5, we propose

Tied Joint Bayesian Face and Tied Joint PLDA to improve the performance for large pose variation. In

the final chapter, we draw conclusions and describe future work.
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Chapter 2

Literature Review

In this chapter we will analyse the generation process of face images and discuss the general model for

face recognition. Then we divide the development of face recognition into four historical stages and

introduce the main targeted problems and face recognition algorithms at each stage. Finally, we discuss

publicly-accessible face databases and evaluation methods.

2.1 The General Model for Face Recognition

The generation of face images can be described as follows: the light interacts with the face through

physical processes such as reflection and then the charge-coupled device (CCD) of the camera captures

the reflected light to form the pixel intensity for each pixellocation [138]. Therefore, the process includes

three factors:

1. The intrinsic structure of the face. It includes the 3D shape of the face, the reflectance of the face

surface (texture) and variations caused by expression.

2. External factors. These include the luminance and direction of the light source.

3. The parameters of the camera. These include the location,focus, shutter speed and aperture size

of the camera.

From the face image generation process we know the 3D structure of a face and its reflectance

characteristics are the intrinsic features of the face which can be used to identify people. Obviously, face

expressions cannot be used to distinguish different peoplealthough they belong to the intrinsic feature

of the face. Clearly, the external factors and the camera parameters cannot be used to discriminate

between identities. Consequently, the intrinsic structure of the face is called ‘the signal’ and can be used

to estimate the identity of people. The other factors are called ‘the noise’ and are not useful for face

recognition.

The ideal face recognition algorithm can divide the face image into two parts: signal (stable intrin-

sic structure of the face) and noise (expression, external conditions and camera parameters). Then we

identify faces based on the extracted signal. So the processto identify people from an input face image

Υ is as follows



2.2 Overview of Existing Face Recognition Algorithms

1. Image decomposition. We decompose a face image into stable intrinsic structure of face, light

source and parameters of camera.

2. Feature extraction. We extract discriminant featuress from the stable intrinsic structure of the

face.

3. Identification. We compare the featuress of the input face imageΥ with the features{sj}Jj=1

of all the J gallery face images to identify the input face image by the gallery image with the

maximum similarity

ĥ = argmax
j∈N

(Sim(s, sj)), (2.1)

where the term̂h denotes the identity of the face, the functionSim calculates the similarity score,

andN is the number of images in gallery face database. Here we assume we can definitely find a

gallery face matching the input image.

In fact the process to determine the 3D shape and the reflectance of face is a very difficult vision

problem even when there is only a single point light source [150]. At the present time it is still an

unsolved problem although researchers made some process byusing different kinds of constraints and

priors [152] [17] particularly in the case where there are multiple images under different illuminations

[52] [147]. Therefore, most current face recognition algorithms do not decompose the face image to

obtain 3D shape and the reflectance of face but extract the discriminant features from the image directly.

For local feature-based face recognition algorithms such as the Elastic Bunch Graph Matching al-

gorithm [139], the features comprises local statistics (geometric and appearance) extracted from facial

landmarks, such as the eyebrows, eyes, nose, mouth, etc. Forholistic subspace methods such as the

Eigenfaces algorithm [132], the Fisherfaces algorithm [10] and Probabilistic Linear Discriminant Anal-

ysis (PLDA) [111], the features is a point in a low dimensional subspace.

2.2 Overview of Existing Face Recognition Algorithms

Research in face recognition goes back to 1965 with the work of Chan and Bledsoe [28]. Since then,

face recognition has become more and more popular, especially after the Eigenfaces algorithm [132] was

published in 1990. It is likely that face recognition will become more widespread as potential applica-

tions have extended from traditional security applications to the areas of human-computer interaction,

electronic entertainment and social networking.

After decades of development there is a huge literature concerning face recognition. To describe the

development more clearly, we divide research history into four historical stages according to the targeted

problems. Table 2.1 summaries the four stages. We now describe each stage in turn.
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Stages I II III IV 

Targeted 
Problems 

Use geometry 

methods to do 

face recognition 

Face recognition 

under controlled 

environments 

Pose and lighting 

variation under 

controlled 

environments  

Face recognition under 

uncontrolled environments 

Main 
Achievement 

The first face 

recognition paper 

and the first PhD 

thesis was 

proposed 

Subspace 

algorithms were 

proposed and  

automatic face 

recognition  

become possible; 

The first 

commercial face 

recognition 

system  was 

proposed 

The performance of 

face recognition is 

improved when pose 

varies and lighting 

changes; Many 

commercial face 

recognition systems 

are developed and 

three FRVT tests are 

organized to compare 

these products.      

There has been significant 

performance improvement for 

face recognition under 

uncontrolled environments; The 

commercial applications of face 

recognition have been 

expanded to social networks, 

electronic entertainment, and 

online search 

Limitations 

The algorithms 

cannot recognize 

people without 

human 

intervention 

Recognition 

performance 

decreases 

significantly when 

pose and lighting 

variation exists 

The algorithms 

perform badly under 

uncontrolled 

environments 

A performance gap still exists 

when comparing to human 

accuracy  

Main 
Algorithms 

The first face 

recognition paper 

[73], The first 

recognition PhD 

thesis [71] 

Eigenfaces [132], 

Bayesian Faces 

[97], Fisherfaces 

[10], EBGM [139] 

3D Morphable model 

[17], Eigen Light 

Fields [54], Tied PLDA 

[82], Quotient image 

[122], Illumination 

cones [52] 

Nowak similarity learning[101], 

Attribute and Simile Classifiers 

[76], Multi-shot [127], PLDA 

[111], Deepfaces [128] 

Table 2.1:Summary of four development stages.

2.2.1 Stage I (1964 - 1990)

In this stage researchers focussed on extracting geometricfeatures of different people to distinguish

individuals. Most methods were purely geometric. For example, Kelly [73] used the width of the head,

the distances between the eyes and from the eyes to the mouth to identify people in 1971. Two years later,

Kanade [71] proposed a method which used distances and angles between the eye corners, the mouth

extremal, the nostrils and the chin top (see Figure 2.1). Because these distances have to be extracted

manually, automatic face recognition is not practical in this stage.

2.2.2 Stage II (1991 - 1997)

This stage is quite short but very important because a numberof very important algorithms were pro-

posed. Moreover, during this period, the Department of Defense of American government sponsored

George Mason University to collect face images for the Face Recognition Technology (FERET) database

and organized three famous tests [106] [115] [110]. The firstcommercial face recognition systems were

also set up during this period (e.g. FaceIt).

In 1991 Turk and Pentland proposed the Eigenfaces algorithm[132] which is the most well-known

algorithm in this stage. Many of the subsequent algorithms were variations of the Eigenfaces algorithm.

Nowadays, the Eigenfaces algorithm has become the benchmark algorithm for face recognition evalua-

tion.

The motivation behind the Eigenfaces algorithm is that natural images such as face images have

significant statistical redundancy. Principal Component Analysis (PCA) can be applied to reduce the
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Figure 2.1: Geometric parameters of the Kanade’s face recognition algorithm [71]. Kanade ex-

tracted 16 geometric parametersx = {x1, · · · , x16} manually from each face and used them to identify

people. (Adapted from Kanade [71])

dimensions to form a more compact representation to face images. Using this approach the signal-to-

noise ratio can be increased.

In the Eigenfaces algorithm a face imagex is represented by the following equation:

x ≈ µ+Φω, (2.2)

wherex is a pixel intensity vector obtained by concatenating the columns of pixels in the imageΥ

(shown in Figure 2.2),µ is the mean vector of all the training images,Φ contains the basis functions of

the feature subspace in its columns, andω is a coefficient vector.

In the training phase of the Eigenfaces algorithm, the goal is to learn the basis functions of the

feature subspace. Firstly the mean image vectorµ is subtracted from each of the training images. The

resulting vectors are concatenated to form an × m matrix B, wheren denotes the vector dimensions

andm is the number of training data. Then Principal Component Analysis (PCA) is applied to the

covariance matrixBBT to obtainm eigenvectors. However, to have a compact representation only p

eigenvectors with the largest eigenvalues will be chosen from m eigenvectors. The subspace spanned

by p eigenvectors is called feature space. The 4 eigenvectors with the largest eigenvalue are reshaped

to form RGB images, which are shown in Figure 2.3. Each training image can be represented by a

corresponding point in the feature space.

In the testing phase we assign identity to input images. Eachinput image is projected into feature

space and the Euclidean distance is measured to all the training images in the feature space. If the

distance is smaller than a certain threshold, the input image is assigned to the same identity as the closest

training image in feature space.
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x1 

x2 

x3 

 
xn 

Figure 2.2:The face representation method of the Eigenfaces algorithm[132]. In the Eigenfaces

algorithm the input face imageΥ is represented by an intensity vectorx, which is obtained by concate-

nating the columns of image pixels.

Mean, µ (:,1) (:,2) (:,3) (:,4) 

(b) (a) 

Figure 2.3: Eigenfaces [132]. (a) Mean face. (b) Four eigenvectors with the largest eigenvalue are

reshaped to form RGB images.

After the Eigenfaces algorithm was proposed, there was great interest in comparing these new

appearance-based subspace algorithms with traditional geometry-based algorithms, which were widely

used in Stage I. In 1993 Brunelli and Poggio [20] conducted a comparison experiment and drew

the conclusion that appearance-based subspace algorithmsproduce better performance than geometry-

based algorithms. Their conclusion drove researchers awayfrom geometry-based algorithms and made

appearance-based algorithms dominant.

One drawback of the Eigenfaces algorithm is that it only extracts global facial features but cannot

use local features to describe local facial structures. However, representations to the local facial structure

can offer robustness against within-individual variation. Atick et al. [103] proposed the local feature

analysis (LFA) algorithm to overcome this drawback in 1996.The LFA algorithm represents face images

in terms of statistically derived local features. They demonstrated the LFA algorithm produced better

discriminant performance than the Eigenfaces algorithm. The LFA algorithm was commercialized and

became the well-known FaceIt system.

Inspired by the Eigenfaces algorithm, Moghaddam et al. [98]proposed a Bayesian probability-

based algorithm which measures the similarity of two face images by Bayesian probability instead of Eu-

clidean distance. They define two subspaces to describe two types of image variation: within-individual

variation and between-individual variation. The pixelwise difference of two face images is projected into

within-individual subspace to obtain the within-individual probability density and the between-individual
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(b) 

(a) 

Figure 2.4:Two subspaces of the Bayesian Face algorithm [98].The Bayesian Face algorithm defines

two subspaces to describe two types of image variation. (a) Four directions in the between-individual

subspace. Images look like different people. (b) Four directions in the within-individual subspace.

Images appear to be from the same person.

subspace to obtain between-individual probability density respectively. Figure 2.4 illustrates the two sub-

spaces. Then the maximum a posteriori (MAP) approach is usedto estimate which type of variation is

the main reason for the image difference. If the difference is caused mainly by the within-individual

variation, then two images are assumed from the same person.If the between-individual variation is the

main reason, then two images do not match. In the FERET 2000 [110] this new Bayesian probability

based algorithm produced better performance than the Eigenfaces algorithm.

The Fisherfaces algorithm proposed by Belhumeur et al. [10]is another well-known algorithm that

exploits between- and within- individual statistics. The Eigenfaces algorithm maximizes the scatter of all

face images by projecting the high-dimensional image into alow dimension subspace. Thus the Eigen-

faces algorithm not only maximizes the between-individualscatter which is important for classification

but also to the within-individual scatter that should be eliminated. Unwanted within-individual variations

due to noise are retained. The Fisherfaces algorithm applied Fisher’s linear discriminant analysis (LDA)

to project images into a low dimensional subspace, which maximizes the between-individual scatter and

minimizes the within-individual scatter simultaneously.In this way the Fisherfaces algorithm obtains a

more optimal subspace and performs much better than the Eigenfaces algorithm when there is lighting

and expression variation in face images.

Linear discriminant analysis was a well-known classification method but it was difficult to use until

the Fisherfaces algorithm was proposed. The main reason is that the within-individual scatter matrix of

LDA becomes singular when the number of images from a person is less than the number of pixels in

the image. In fact, this situation is present in nearly all face databases. To overcome this problem the

Fisherfaces algorithm first uses PCA to reduce data dimensionality and this makes the application of

LDA possible.
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Figure 2.5:Generation process of label graph of the EBGM algorithm [139]. Firstly, the input image

is processed by the Gabor wavelets as shown in the middle image. Then the corresponding label graph

as shown in the right image is generated. (Adapted from Wiskott et al. [139])

Although the most mainstream face recognition algorithms in Stage II were subspace-based al-

gorithms, Wiskott et al. [139] proposed the elastic bunch graph matching (EBGM) algorithm to use

information from some local facial landmarks instead of thewhole face image to do face recognition. In

their algorithm a face image is described by a graph which includesN nodes andE edges. The nodes

correspond to fiducial points, which are a set of salient facial points and usually located on corners of the

eyebrows, the corners of the eyes, tip of the nose, and corners and outer mid points of the lip. The pixels

around each node are processed by Gabor Wavelets. Each edge represents the geometric relationship

between two nodes.

In training each gallery image is represented by a graph. Figure 2.5 demonstrates the process to

generate a labeled graph for a face image. In test an input image is firstly processed to generate a graph

to represent the new image and then we compare the graph of theinput image with the graph of each

gallery image. The input image is assigned the identity of gallery image which has the most similar

graph. The advantage of this algorithm is that it considers the global structure and the local features

together. The main disadvantage is that this algorithm requires good alignment and accurate localization

of the fiducial points.

During Stage II the Face Recognition Technology Test (FERET) sponsored by the Department of

Defense of the American government played a important role to encourage the improvement of face

recognition algorithms. The target of the FERET project wasto develop a reliable face recognition

system for the American government. The project included three parts: sponsoring research on face

recognition, constructing the FERET face database and organizing performance evaluations. They ar-

ranged three evaluations in 1994, 1995, and 1996 respectively. The evaluations record the development

of face recognition but also indicate the drawback of Stage II algorithms: the performance of face recog-

nition fails when large pose and lighting variation exists [110]. The test report guided researchers into

the third stage to propose new algorithms to solve the two problems.

To conclude, face recognition developed very quickly and automatic face recognition became prac-
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tical in Stage II. The proposed algorithms produced good performance when users cooperate, pose is

frontal, lighting is controlled, and the size of databases is relatively small. However, they fail when large

pose variation and lighting variation exists.

2.2.3 Stage III (1998 - 2007)

According to the evaluation results of FERET 1996 pose and lighting variation were the main challenges

for face recognition systems [110]. Therefore, methods to handle pose and lighting variation became

popular in this stage. Moreover, the development of real time face detection and face alignment made

commercial applications of face recognition systems more practical. Many commercial face recognition

systems were produced. Subsequently, the American government organized three evaluations to the

commercial face recognition systems in 2000 [106], 2002 [109] and 2006 [105] respectively. In the

following text we will introduce the development of face recognition in this stage by four sub-tasks: face

detection, face alignment, pose invariant face recognition, and illumination invariant face recognition.

Face Detection

In 2001 Viola and Jones [133] proposed an AdaBoost-based face detection algorithm which was the first

algorithm to achieve real-time high-quality face detection. Their algorithm could detect frontal faces at

a speed of five frames in a second. Their main contributions include: using simple features which can

be computed very fast; weighting multiple weak classifiers to form a final strong classifier by AdaBoost

method; applying a cascade method to improve detection speed.

Face Alignment

The output of face detection algorithms is normally a rough bounding box around each face. We require

an automated alignment method to align the detected face image to a pre-defined template to compensate

for variation of size, rotation and location.

Flexible models [77] played a important role in automatic face alignment. These include active

shape models (ASM) [33] and active appearance models (AAM) [46] [34]. The AAM algorithm is the

extension to the ASM algorithm. The ASM algorithm only models the shapes of face images whereas

the AAM algorithm models the shapes and textures of face images. The AAM algorithm firstly applies

PCA to model the shape and the 2D texture separately and then combines the two models to obtain a

set of unified appearance parameters which describe shape and 2D texture synchronously. The AAM

algorithm can be used to align face images. It can also be usedto synthesize model faces, locate fiducial

points and recognize faces [94].

The AAM algorithm has a drawback in that a number of fiducial points are required to be manually

labeled in the training phase. In 2004 Learned-Miller [79] proposed an unsupervised face alignment

algorithm called ‘congealing’ to overcome this problem. The principle of congealing is to apply affine

transformations to a set of face images to make them look similar. Congealing performs very well

in aligning binary images, such as binary handwritten digits and magnetic resonance image volumes.

However, it fails for complex real world images. Huang et al.[64] extended Learned-Miller’s work

to align real world images by using SIFT descriptors [88] instead of pixel intensities. Their method

demonstrated good performance to align real-world images.Later Cox et al. [37] extended Huang’s
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work to speed up alignment by using sum of squared error instead of entropy to measure the image

similarity. However, the congealing algorithm has a drawback that it only uses affine transformations

and cannot deal with pose variations.

Pose Invariant Face Recognition

Depending on the type of gallery and probe images, algorithms addressing pose variation can be clas-

sified into two categories: multi-view face recognition andface recognition across pose. Multi-view

face recognition algorithms [14] [83] [104] compare probe and gallery images at the same pose using

the same methods as frontal face recognition. Therefore, these algorithms are simple extensions of the

existing frontal face recognition algorithms. For face recognition across pose, the viewpoint of the probe

images are different from the gallery images, so it is more difficult. In this part, we focus on face recog-

nition across pose. Generally there are two types of algorithms to solve face recognition across pose: the

3D model based algorithms and the 2D statistically based algorithms.

Early three-dimensional algorithms [50] use several face images at different poses but from the

same individual to generate a 3D model of each gallery individual’s head and then compare the input

image with a re-rendered gallery image at the same pose as theinput image. Here, gallery images are the

images with known identities to a face recognition system and probe images are the images presented to

the system for recognition. The drawback of this type of algorithm is that it requires multiple images for

a individual and it is not practical for many face databases.In 2003 Blanz et al. [16] [17] [15] proposed

a morphable model based algorithm which only requires a single face image to construct a 3D model.

Their algorithm provides two distinct methods to do face recognition. The first method is to re-render the

frontal view of the probe image. Recognition is performed bycomparing the transformed frontal probe

image with each frontal gallery image. Figure 2.6 (a) shows the pipeline of the first method. In the second

method, 3D model coefficients are estimated for the probe andgallery images respectively. Recognition

is performed directly by comparing the coefficients of the input image and each gallery image. The

second method is demonstrated in Figure 2.6 (b). Their experimental results show the performance of

the first method is better than the second method at some viewing angles but overall there is not much

difference. This 3D morphable model algorithm achieved 87% correct in a database which includes 87

people with pose variation of up to±45◦. Unfortunately, it is very slow to estimate 3D coefficients of

an image in practical applications and any noise in the face image often makes the estimation to the 3D

coefficients inaccurate.

Two-dimensional statistical models treat the transformation between frontal and non-frontal images

as a learning problem. Vasilescu et al. [143] presented an algorithm in which an unseen view image of

the person can be generated. Later, Gross et al. [54] proposed the Eigen Light Fields algorithm which

treats pose invariant face recognition as a missing data problem. They assume there is a large data vector

containing all the images of a subject under all the possibleviewpoints. Their algorithm can achieve

75% correct in a database of 100 subjects with pose variation of up to±30◦.

In contrast with the above statistical algorithms, which model the transformation of the entire facial

region between frontal and non frontal images, Yamada et al.[72] proposed a patch based approach
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(a) (b) 

Figure 2.6:Two recognition approaches of the 3D morphable model based algorithm [15]. a) A

frontal view of an input probe image is firstly generated and then the generated frontal probe image is

compared with each gallery face image. b) The model coefficients of probe and gallery images are firstly

estimated and then face recognition is conducted by comparing the model coefficients directly. (Adapted

from Blanz et al. [15])
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(a) 

(b) 

Figure 2.7:Maximizing within-individual correlations improves pose invariance [81]. (a) Pose vari-

ation confuses the correlation distribution of two images.(b) Pose invariance can be achieved in the

correlation maximized subspace. (Adapted from Li et al. [81])

to do face recognition across pose. They demonstrated that patches are more robust to pose variations

than the holistic appearance. They applied a Gaussian probabilistic model and a Bayesian classifier to

recognize faces. Lucey et al. [90] extended Yamada’s algorithm by modeling the statistical relation-

ship between the frontal patches and holistic non-frontal image. Ashraf et al. [7] made the further

improvement by applying a 2D affine transform to learn the patch correspondences. However, human

faces have a complex 3D geometric structure and misalignment still exists. Thus Li et al. [81] applied

a generic mean 3D face model to reduce the patch misalignment. Although their method obtains better

patch correspondences of different poses, they found that the size of the corresponding patches might

be different. The reason is because some surface points are visible and some points are not. To solve

this problem, Li et al. used Canonical Correlation Analysis[61] to construct a intermediate subspace

between the frontal and non-frontal subspaces. When the unequal-length vectors of different poses are

projected into the intermediate subspace, the length of theprojected vectors will become equal. They

measure the similarity of patches from different poses by correlations in the intermediate subspace, in

which the within-individual correlations are maximized and pose invariance can be improved as shown

in Figure 2.7. They used two approaches to do recognition. Inthe first way, they transform non-frontal

face images into frontal and then compare with the frontal gallery images. The second approach is to

transform both the frontal gallery images and non-frontal probe images into the intermediate subspace

and then compare them directly in the intermediate subspace.

Although the aforementioned 2D statistical methods are easy to implement and have low compu-

tation cost, their performance was worse than the 3D morphable model based algorithm until the tied
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model was proposed [112]. The ‘Tied’ model means images fromthe same person but under two viewing

conditions have a common hidden variable but different generation processes. The tied generative model

produces better performance than the 3D morphable model. InTable 2.2 we compare the performance

of the important pose invariant face recognition algorithms. The table demonstrates that a version of the

tied generative model, Tied PLDA [82], produces the best performance.

Algorithm Database Pose Diff % Correct 

Light Fields [54] FERET (100) 30 75 

3D Morphable Model [15] FRVT(87) 45 86 

LLDA [75] XM2VTS(125) 30 53 

Tied Factor Analysis [113] XM2VTS(100) 90 77 

Tied PLDA [83] XM2VTS(100) 90 87 

Table 2.2:Performance comparison among pose invariant face recognition algorithms.

In Tied PLDA, face images are considered to be generated fromthe underlying identity variables

which denote the identity of images. The generation processis different for different poses. More

formally, the model can be described by the following equation:

xijk = µk + Fkhi +Gkwij + ǫijk, (2.3)

wherexijk denotes thekth pose of thejth image of theith individual,µk represents the mean image at

posek,Fk is a matrix containing the between-individual basis functions in columns for pose k. The term

hi represents the hidden identity variable which is constant for all the images from the ith individual.

The matrixGk is a matrix containing the within-individual basis functions in columns for pose k. The

termwij denotes the hidden noise variable which is different for each image. The termǫijk represents a

stochastic noise. We will introduce more details in section5.3.2.

Although the 3D model based algorithms demonstrated a greatpotential to solve face recognition

across pose, in practice most 3D model based algorithms are too slow to be applied in real time appli-

cations and noise within image reduces performance dramatically. It is probably preferable to use a 2D

static method to solve face recognition across pose variation because it produces good performance, can

be easily implemented and requires low computation cost.

Illumination Invariant Face Recognition

It has been argued in [2] that the variation among images of the same person due to illumination and

viewing direction is almost always larger than image variation due to face identity. This observation

has been confirmed by [106] [109]: the performance of face recognition methods of Stage III degrades

significantly when illumination changes. As shown in Figure2.8, there are four illumination components

that affect the appearance of face images: diffuse reflection, specular reflection, attached shadow and cast

shadow. The goal of research into lighting invariant face recognition is to handle the four components.

Shashua and Riklin-Raviv [122] proposed a quotient image based algorithm which models face ap-

pearance variation under the assumption of diffuse reflectance. However, the assumption of only diffuse
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(a) Diffuse reflection (b) Specular reflection 

(c) Attached Shadow (d) Cast Shadow 

Figure 2.8:Four illumination components to affect appearance of face images [100]. (a) Diffuse

reflection occurs when incident light is scattered by an object. (b) Specular reflection occurs when

incident light is reflected by an object. (c) Attached shadows occur when an object itself blocks the

incident light. (d) Cast shadows occur when an other object blocks the incident light. (Adapted from

Nishiyama et al. [100])

reflection existing is too strict for images in real life. Ramamoorthi [114] demonstrated that the appear-

ance of a convex Lambertian object under distant illumination without cast and attached shadow can be

completely described by a 3D linear subspace. Their algorithm only requires three images per person

if images are taken under linear independent lighting. However, this requirement is still too difficult

to be satisfied because normally only a single training imageis available per individual in many face

databases. To solve the problem, Wang et al. [125] presentedthe Self-Quotient image based algorithm

which can use a training image to synthesize images under different lighting. However, their algorithm

fails when cast shadows and attached shadows exist.

To handle cast shadows and attached shadows, Georghiades etal. proposed an algorithm based

on illumination cones [52]. Their algorithm used seven images per person to synthesize the face image

under different lighting. They demonstrated that their algorithm produced very good performance under

different illumination conditions. However, similar to [122], it is unrealistic to have seven training

images for each individual in a practical face recognition system. In Stage III illumination invariant face

recognition is still an unsolved problem.

Overall, the performance of face recognition algorithms increased dramatically in Stage III. How-

ever, the algorithms in this stage are still sensitive to pose, lighting variation and long image capture

intervals between probe and gallery images [105]. To obtaina wider application of face recognition,

research was required to shift from controlled environments to uncontrolled environments.
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2.2.4 Stave IV (2008 - present)

In the past 7 years, researchers focused on face recognitionin uncontrolled environments. The Labeled

Faces in the Wild (LFW) database [65] is the evaluation benchmark for face recognition under uncon-

trolled environments since its images are collected from the internet and it also provided a rigorous

evaluation framework. Many new algorithms were proposed toimprove the verification performance in

the LFW database. We will describe the development of face recognition algorithms in this stage by

introducing the progress in the four steps of a modern face recognition pipeline: face alignment, facial

landmark detection, face representation methods and recognition algorithms. In Table 2.3 we list the

important methods in each category.

Category Main Algorithms 

Face 

Alignment 

Congealing [69], Fiducial Points Based Similarity Alignment [134], 
Identity Preserving Alignment [13], 3D Alignment [135] 

Landmarks 

Detection 

Component Based Detector [91], Shape Regression Based Detector 
[27], Local Model and Global Exemplar Combined Detector [11] 

Face 

Representation 
Methods 

LBP [109], TPLBP FPLBP [147], Multi-Region Histogram [126], LE 
[28], LARK [128], LQP [71], Discriminant Face Descriptor [85], Large-

Scale-Search-derived Feature [39], Spatial Face Region Descriptor 
[41], High Dimension LBP [33], Dense SIFT [131], Over-complete 
LBP [9] 

Verification 

Algorithms 

Similarity 
Learning 

Nowak Similarity Learning [107], Joint Bayesian   
Face [32] 

Reference Based 
Algorithm 

Attribute and Simile Classifier [81], Multishot 
[134], Associate Predict Model [153], Tom-Vs-
Pete Classifier [13] 

Metric Learning 
LDML [62], CSML [105], DML-EIG [154], CMD 
[67], SUB-SML [26] 

Discriminative 
Subspace 

PLDA [88] 

Table 2.3:Main papers in Stage IV.

Face alignment

Alignment is critical to recognize uncontrolled images [13] [140] because alignment can reduce the

image variation effectively. The authors of the LFW database provided the aligned images using the

congealing alignment method [64]. However, misalignment still exists for some facial landmarks [127],

for example, the eyes, mouth, nose. Wolf at el. [127] demonstrated that their fiducial points based align-

ment method can remove these misalignments. They first used acommercial fiducial points detector

to locate seven fiducial points (the corners of the eyes, the mouth and the nose tip) and then applied a

similarity transformation to register these fiducial points into a pre-defined template. They demonstrated

that their alignment method helped improve the recognitionperformance [124]. This similarity transfor-

mation based alignment method was adopted by other literature [82] [30] [124]. However, the similarity
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transformation fails for out-of-plane rotation caused by pose variation. To address the issue, Taigman

et al. [128] proposed a 3D alignment method. They firstly detected 67 facial landmarks in the input

face image and built up a correspondence of 67 detected landmarks between the input image and a 3D

generic shape model. Then they obtained an affine 3D-to-2D camera by minimizing the loss between

2D points and their 3D references. Lastly they applied a piece-wise affine transformation to obtain the

frontalizated image of the input image. Figure 2.9 shows thepipeline of the 3D alignment method. They

demonstrated that their method can handle out-of-plane rotations and this 3D frontalization alignment

method obtained a 3% improvement from 94.3% to 97.33% in the LFW verification test when the rest

of the pipeline (feature extraction and verification) was held constant.

Figure 2.9:3D alignment method pipeline [128].(a) A face is detected and 6 labeled landmarks are

located. (b) The detected image is aligned and face region iscropped. (c) 67 landmarks are detected

from the aligned image and the corresponding Delaunay triangulation is generated. (d) The reference

3D shape. (e) In the Delaunay triangulation, images are marked darker when they are less visible. (f) A

piece-wise affine wrapping is conducted to generate frontalimage based on 67 fiducial points. (g) The

generated frontal image. (h) The generated non-frontal image. (Adapted from Taigman et al. [128])

Facial Landmarks Detection

Facial landmarks detection is a very important step in the face recognition pipeline. Face alignment and

facial feature extraction depend on accurate facial landmarks localization. An early study [21] described

facial landmarks detection as a component of face detection. For example Ding et al. [44] provided

bounding boxes around facial components when detecting faces from images. Recently many landmark

detectors are trained to respond to a specific landmark [24] (e.g. the eye corners or nose tip). These

landmark detectors search over a small image region and return a score at each location. One or multiple

locations with the highest score are selected to be candidates for the specific landmark. However, false

detection results are often obtained. A common mistake [148] [24] [135] is that the left corner of the left

eye detector often locates the left corner of the right eye.
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(b) (a) (c) 

Figure 2.10:Facial components and the corresponding patches used for training of [85]. Facial

components are located by red points. Blue rectangles denote image patches used to train component

detector. (a) Eyes, nose and mouth. (b) Brows, upper and lower lips. (c) Left, right, lower profiles.

(Adapted from Liang et al. [85])

Eckhardt et al. [45] solved the problem by detecting a largerarea, for example increasing the

detection region from one eye to the whole area of two eyes. However, searching a larger area increased

the chances of false detections. Therefore, researchers established constraints about the relative locations

of landmarks to each other rather than the locations of landmarks to the detected face bounding box [120].

The predicted location of a facial landmark can be expressedas a conditional probability distribution

given the other landmark positions. In this way, local landmark detectors are often combined with prior

global landmark configurations [57] [96].

The locations of some facial landmarks vary significantly with expression. Examples include the

eyebrows and lip. The solutions of [57] and [96] are to detectstable points, for example eye corners.

However, these stable points might be difficult to detect when partial occlusion exists. To address this

issue, Belhumeur et al. [11] proposed a RANSAC-like method to sample different types of landmark

exemplars. Their method can locate facial landmarks accurately even for uncontrolled images from the

internet.

Instead of searching for a single landmark, Liang et al. [85]proposed a component-based method

to search face landmarks in a large range at the facial component level. Figure 2.10 shows facial com-

ponents (e.g., eyes, nose, mouth and profiles) they defined. They showed their approach can discover

the configuration of facial components effectively and rapidly in a large searching range. A very good

fitted face shape can be refined within a few iterations. Chen et al. demonstrated this alignment approach

helped improve their recognition performance in LFW verification test [30].

Due to large pose change, expression variation and partial occlusion, current facial landmark detec-

tors still fail for some uncontrolled images. A more robust and efficient method is still required.

Face representation methods

It has been shown in many studies [140] [121] that extractingfacial features to represent a face image

instead of using raw pixels improves performance significantly. Local binary patterns (LBP) [102], one

of the most successful features, are found to be very effective for the face verification task in the LFW

database [5] [140] [82]. Variants, such as Three-Patch LBP (TPLBP) [140], Four-Patch LBP (FPLBP)
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[140], and Local Quantized Patterns (LQP) [66], have been proposed to improve the discriminative

performance. Other local image descriptors, such as the Scale Invariant Feature Transform (SIFT) [88]

and the Histogram of Oriented Gradients (HOG) [38], have also been applied to verify face images in

[58]. The aforemetioned descriptors describe local geometric structures of face images by quantising

gray level patterns or the image gradients. Seo et al. [121] proposed the Locally Adaptive Regression

Kernel (LARK) feature without using any quantization. Theyuse the geodesic distance between a center

pixel and surrounding neighbor pixels to encode the local image structure. They demonstrated that their

method can capture the local image structure more robustly and their feature has more discriminative

ability. Their experiments demonstrate that the LARK feature outperforms LBP feature.

Unlike for the above features [102] [88] [121], Cao et al. [26] learn the local image structure

encoder from training images. Therefore, they called theirfeature a learning-based (LE) descriptor. They

indicated the above handcrafted features (LBP, SIFT and HOGfeatures) can be viewed as a quantized

code of the image gradient. The handcrafted features have two limitations: an optimal encoding method

is difficult to define manually and the code distribution of real images is uneven. Some codes rarely

appear for real life images. This uneven distribution meansthe final code histograms are less informative

and will decrease the discriminant power. They demonstrated that these issues can be addressed if an

unsupervised method is applied to learn the encoding method. They demonstrated that their learned

encoder could achieve a good balance between invariance andverification power automatically. Their

experiments demonstrated that their LE feature produced better performance than the LBP and HOG

features.

Generally the dimensions of the above features [140] [82] [30] vary from 1K to 5K. Cao et al. [31]

found high dimensional features can improve performance significantly. They built an image pyramid

with different resize scales for each image and extracted LBP features from 27 fiducial points of each

sample scale. Using this approach, the dimensions of LBP features from an image can be 100K. Their

experiment results demonstrate 5% improvement by using high dimensional features instead of the tra-

ditional way to extract features. This conclusion is confirmed by other studies [124] [9]. For example,

Simonyan et al. [124] extracted high dimensional dense SIFTfeatures from face image and also achieved

a significant performance improvement. By applying a similar principle, Barkan et al. [9] proposed high

dimensional OCLBP features and confirmed that high dimensionality helps achieve high performance.

Instead of using high dimensional features, Taigman et al. [48] demonstrated that an extremely

compact face representation can also produce very good performance. They applied a nine-layer deep

neural network to derive a compact face representation method. The advantage of this new deep neural

method is that it can be trained by using millions of face images efficiently and learnt nearly all the

possible variations from the huge training data. Their method produced good performance in the LFW

database [63].

Many researchers [140] [82] [26] [30] found performance canbe improved by combining multiple

features. For example, Wolf et al. [140] obtained 3.1% improvement by combining four features (LBP,

TPLBP, FPLBP, SIFT) instead of only using the LBP feature.
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Figure 2.11:Calculation of similarity score in [101]. (a) Patch pairs are collected from two images. (b)

Some randomized trees are applied to these patch pairs to obtain a binary vectorx. (c) A SVM classifier

is used to calculate the similarity score by aggregating theoutput of all decision trees. (Adapted from

Nowak and Jurie [101])

Verification algorithms

The verification algorithms in Stage IV can be divided into four categories: similarity learning, reference

based algorithms, metric learning and discriminative subspace algorithms. We will introduce each in

turn. We describe the performance of these algorithms in theLFW database. The LFW verification

scheme defines two testing protocols: unrestricted and restricted protocol. In the unrestricted protocol,

identity labels associated with images can be used to generate more training pairs. In the restricted

protocol, identity labels cannot be used.

Similarity learning algorithms estimate the visual similarities between two images and then de-

termine whether two images are from the same person. Nowak and Jurie [101] proposed the first veri-

fication result in the LFW database in 2007. They used Randomized Decision Trees [53] and Support

Vector Machines (SVM) [36] to estimate the similarity of twoface images. For two face images they

firstly chose a patch of random size at a random position in thefirst image and then searched for the
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most similar patch at a nearby location in the second image. Using this approach many patch pairs can

be generated from the two images. Then several randomized binary decision trees are trained to label

each patch pair. If the patch pair reaches the leafs of a tree,the label of leaf is set to 1; If a leaf is never

reached, it is set to 0. So each patch pair can be represented by a binary vector and an image pair can be

represented by a concatenating vector from all patches. Thesimilarity score of two images is calculated

by applying a SVM classifier. Figure 2.11 illustrates how to compute the similarity score between two

images. When the similarity score is bigger than a threshold, two face images are considered to be from

the same person. Their algorithm achieves 84.2% correct under the restricted test protocol in the LFW

database. However, their algorithm performs slowly because it needs to search all the similar patches

among two face images. Later Chen et al. [30] proposed the Joint Bayesian Face algorithm. The Joint

Bayesian Face algorithm divided each face image into two components: identity and within-individual

variation. In training, an EM-like algorithm is used to estimate two components of each image and learn

the between-individual covariance matrix and the within-individual covariance matrix. In test, the match

and non-match covariance matrix are derived based on the between-individual covariance matrix and

the within-individual covariance matrix, then a log likelihood ratio between two images is computed to

decide identity assignment. Their algorithm achieved 90.9% correct by combining four types of facial

features and 93.18 % correct by using high dimensional localbinary patterns (LBP) feature in the LFW

database [31].

Reference based algorithmsrepresent a face image by comparing to a set of reference images. In

2009 Kumar et al. [76] proposed the first reference based algorithm. They use the output of attribute

and simile classifiers to represent an image. Attribute classifiers are to use binary classifiers to estimate

the presence of 65 describable aspects of visual appearance, such as gender, race, age, hair color, etc.

These visual traits were called attributes. Each face is represented by a vector in which each element

represents the presence of attribute. Simile classifiers isto compare the whole faces or facial component

with a pre-defined image set. For example a face can be described as having eyes similar to George Bush

and a mouth similar to David Cameron. These traits are called‘similes’. A face is represented by a

vector, in which each element represents whether a visual feature of the input face is similar to one of the

reference people. Figure 2.12 shows the attribute classifier and simile classifier. Their experiments show

attribute classifiers can achieve 83.62% correct and simileclassifiers can achieve 84.14% correct in the

LFW database. Their algorithm can achieve 85.29% correct bycombining the two classifiers. However,

their algorithm has a drawback that it requires a large amount of manual labeling.

Wolf et al. [75] proposed another reference based algorithmin the same year. Their algorithm is

called One-Shot Similarity (OSS) measure. They assume there are two face image vectorsxi, xj and

a face image setA which has different identities from imagesxi andxj . Firstly image setA is used

as negative examples andxi as a positive example to train a model and then the learned model is used

to classify imagexj to get a classification scoreη1. This score represents the likelihood of imagexi

having the same identity asxj . Then switch the role ofxi andxj to obtain another scoreη2. The final

similarity score for two images is given by the average ofη1 andη2. Their algorithm produced 82.5%
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(b) (a) 

Figure 2.12:Attribute and simile classifiers in [76]. (a) Attribute classifiers are trained to judge de-

scribable aspects of visual appearance are present or absent. (b) Simile classifiers are trained to judge

whether some parts of faces are similar to the predefined reference people. (Adapted from Kumar et al.

[76])

correct under the unrestricted testing protocol in the LFW database. Later they extended their algorithm

to propose Multiple One-Shots to handle pose variation and improve the performance to achieve 89.5%

correct [127].

Yin et al. [146] demonstrated that large within-individualvariations are the bottleneck for improv-

ing performance in the LFW database. They proposed an associate-predict model to address this issue.

Their model is built on a reference identity data set in whicheach of 200 identities have 28 images

with seven pose categories and four lighting conditions. Tocompare two face imagesxi andxj , they

firstly estimate the pose category and lighting condition ofeach image. If the input image pair has very

similar pose and lighting condition, they apply a direct appearance matching method [10] to compute a

similarity score; otherwise, they apply associate-predict model to handle large within-individual varia-

tion. They demonstrated that their associate-predict model produced better performance by using facial

components than the holistic face, so they divided each input image into 12 facial components as shown

in Figure 2.13 (a). The associate-predict model contains two models: appearance-prediction model and

likelihood-prediction model. In the appearance-prediction model they selected a reference identity from

the reference identity data set for each of 12 facial components of imagexi. The selected reference iden-

tity has the most alike component as the component of imagexi. A different component may associate

a different alike identity. Then they chose the image with the same pose and lighting condition as image

xj from 28 images of the selected reference identity and pickedthe corresponding facial component.

By this approach they selected 12 reference components and formed a new face imagex′
i, which has

the same pose and lighting condition as imagexj . The new face imagex′
i is shown in Figure 2.13 (b).

Lastly the 12 distances of the corresponding component pairs between imagex′
i andxj were calcu-

lated and a linear SVM [29] was applied to fuse these distances to obtain a final similarity score. In the

likelihood-prediction model they selected 3 most alike reference identities for each component of image
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(b) (a) 

Figure 2.13:The frontalization effect of the appearance-prediction model in [146]. (a) Each input

image is divided into 12 facial components. (b) A frontal image is formed by selecting facial components

from reference data set. (Adapted from Yin et al. [146])

xi. After that they constructed a component discriminative classifier [10] by using all the components of

the 3 selected reference identities and the input components ofxi. Then each of the corresponding com-

ponents ofxj was fed to this classifier to compute a component distance. Lastly a linear SVM [29] was

applied to fuse 12 component distances to compute the final similarity score. Their algorithm achieved

90.57% correct under the unrestricted protocol in the LFW database when they fused 24 distances of

appearance-prediction model and likelihood-prediction model by a linear SVM.

Metric learning algorithms aim to find a metric to separate two classes. The main goal is tolearn a

Mahalanobis distance(x1−x2)
TΨ(x1−x2), whereΨ is a positive definite matrix. In 2009 Guillaumin

et al. [58] proposed two approaches to learn robust distancemeasures for two images: a) the logistic

discriminant base metric learning method (LDML) used a logistic discriminant to learn a metric from a

set of labeled image pairs; b) Marginalized k-nearest-neighbour (MkNN) method computed the number

of positive neighbor pairs (having the same class) out of thepossible pairs within the neighborhoods

of imagesxi andxj to obtain a similarity score. Figure 2.14 describes LDML andMKNN. Their

experiments demonstrated that applying LDML could achieve79.27% correct under the restricted testing

protocol and combining LDML and MkNN can achieve 87.5% underthe unrestricted test protocol in the

LFW database. Later Nguyen and Bai [99] proposed a cosine similarity metric to replace the Euclidean

distance in the learning problem. Their experiment showed that they could achieve 88% correct under

the unrestricted test protocol in the LFW database.

Discriminative subspace algorithmsmodel the image difference by projecting the two images

into a low-dimensional subspace. The Eigenfaces algorithm[132] is the earliest subspace algorithm and

became the benchmark algorithm in the LFW evaluation. Probabilistic LDA (PLDA) [111] divides the

image into three components: identity, within-individualvariation and unexplained noise. In training,

the basis functions for between-individual and within-individual subspace are estimated. In test, the
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(b) (a) 

Figure 2.14:Visualization of the logistic discriminant base metric learning (LDML) algorithm and

the marginalized k-nearest-neighbour (MKNN) method [58]. (a) LDML aims to find an ellipsoid

to separate classes. (b) MKNN aims to find the number of the corresponding positive pairs within the

neighborhoods of imagexi andxj , where a positive pair means two members belong to the same class.

Here each imagexi andxj has 10 neighborhoods and there are three classes A, B and C within the

neighborhoods of the image pair. There are 24 positive pairsout of 100 possible pairs and thus the

similarity score is 0.24. (Adapted from Guillaumin et al. [58])

match and non-match covariance matrix is obtained to give the match and non-match likelihood for two

input images. PLDA achieved 90.03% under the restricted testing protocol in the LFW database [82].

Overall, in recent years, significant performance improvement has been achieved for face recog-

nition under uncontrolled environments. This improvementcomes from larger training database, better

alignment, more accurate landmarks detector, more sophisticated face features and better verification

algorithms. More training images and more accurate landmark detectors are probably the most signifi-

cant to cause the improvement. Outside academic research, commercial applications to face recognition

have extended from the traditional security domain to social networks, electronic entertainment, online

face search. Examples include automatically tagging identity in Facebook.com and searching the best

potential lover based on faces in Jiayuan.com.

2.3 Face Databases and Performance Evaluation

Performance evaluation schemes play an important role in the development of face recognition as they

determine the most promising algorithms and indicate future research directions. Face databases play an

important role in algorithm development, model training and performance evaluation in face recognition

research. In this section we will introduce the main face databases and performance evaluation methods.

2.3.1 Face Databases

In a performance evaluation scheme, it is important to choose a proper face database. There are a number

of face databases available to researchers. We list the maindatabases at each development stage in Table

2.4 and give a brief introduction to each database:
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Stage Database Year Identities Images Poses Illumination Expressions Sessions  

II 

FERET [106] 1993 1,199 14,051 9-20 2 2  2 

ORL [119] 1994 40 400 3 3 2 2 

Yale [10] 1997 16 160 1 3 6 1 

AR [92] 1998 116 3,288 1 4 4 2 

III 

XM2VTS [95] 1997 295 1,526 1 1 1 4 

PIE [123] 2000 68 41,368 13 43 3 1 

Yale B [52] 2001 10 5,760 9 64 1 1 

KFDB [18] 2002 1,000 52,000 7 16 5 1 

CAS-PEAL [51] 2003 1,040 99,954 9 15 5 2 

FRGC [107] 2004 4,003 50,000 2 2 

Multi-PIE [56] 2008 337 750,000 15 19 6 4 

IV 

LFW [65] 2007 5,749 13,233 

Pubfig [76] 2009 200 58,797 

WDRef [30] 2012 2,995 99,773 

Table 2.4:Main face databases at each development stage.For each database we list its key features,

which include (where available) collection date, the number of subjects, images, poses, lighting condi-

tions, expressions and recording sessions. Blank entries indicate that image capture was not controlled.

The Facial Recognition Technology (FERET) Database[106] was sponsored by the Department

of Defense of the American government and was collected by George Mason University. The famous

three FERET tests [106] [116] [110] and facial recognition vendor test (FRVT) 2002 [109] used this

database. Recognition performance from many academic and commercial algorithms [139] [118] [17]

are available and the direct comparison with other algorithms is possible. All the images are gray and

the image size is256× 384 pixels.

The Olivetti Research Ltd (ORL) Database[119] was collected by Cambridge University be-

tween 1992 and 1994. Each subject has ten images with varyingpose (left or right head movement),

facial expression (open/close eyes, smiling/neutral), illumination, and facial attributes (glasses/without

glasses). All the images are grey and with the size92× 110 pixels. This database was often used in the

1990s [78] [59] [4], but now it is regarded as too easy since the variation is relatively limited.

The Yale Face Database[10] was collected by Yale University. It contains 160 frontal images

from 16 people under 10 conditions: an image under ambient lighting, one with or without glasses, three

images under different light sources, and five images with different expressions. All the images are grey

and the image size is320× 243 pixels. The motivation of Belhumeur et al. to collect this database is to

test his well-known Fisherfaces algorithm [10]. However, it has been regarded as an easy database now.

The AR Face Database[92] was collected by the Universitat Autnoma de Barcelona in 1998. It

includes 3,288 images from 63 men and 53 women. All the imagesare color and of the size768× 576
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pixels. Images were collected in two sessions. The databasehas been accessed by more than 200 research

groups [145] [142].

The Extended M2VTS Database (XM2VTSDB)[95] was collected by the University of Surrey.

It is designed for the development of multi modal verification. The database contains 295 subjects, each

of which was recorded at four sessions over a period of four months. All the images are color and with

the size92× 110 pixels. They also provide 3D head models for 293 subjects. Itwas a popular database

[69] [35] [111] at Stage III.

The CMU Pose, Illumination, and Expression (PIE) Database[123] was collected by the

Carnegie Mellon University. The database designers sampled images by varying the pose, illumina-

tion and expression. This database has an important influence in face recognition across pose [117] [55]

[22]. All the images were color and with the size640× 480 pixels.

The Yale Face Database B[52] was collected by Yale University. It is a extended version of

the Yale Face database [10]. Its purpose was to verify the performance of the database designers’ new

algorithm under large variation of pose and illumination. All the images are grey images with the size

640× 480 pixels. It has been used by many researchers [142] [141] [25].

The Korean Face (KFDB) Database[18] was collected only from Korean people. The collection

scheme is quite similar as the FERET database. The database was designed to evaluate face recognition

performance for Asian people.

The CAS-PEAL Face Database[51] was collected by the Chinese Academy of Science. All the

subjects are Chinese. All the images are grey and with the size 360 × 480 pixels. It has been used by

many Chinese researchers [84] [149] [130].

The Face Recognition Grand Challenge (FRGC) Data Set[107] is the publicly accessible face

data set of Face Recognition Vendor Test (FRVT) 2006, which is sponsored by the Federal Bureau

of Investigation (FBI), the Department of Homeland Security of United States, the National Institute

of Standards and Technology of United States, etc. The FRGC data set was collected for the Face

Recognition Grand Challenge project, whose goal is to advance face recognition technology for the U.S.

Government. It is a very important database for face recognition research [19] [108].

The Multi-PIE Face Database [56]is the extended version of the PIE database. It is designed

to address the shortcomings of the PIE database: a limited number of identities, few expressions and a

single recording session. The Multi-PIE database consistsof 750,000 images from 337 identities under

15 view points and 19 lighting conditions. Many researchers[26] [153] [136] used it for face recognition

across pose and illumination.

The Labeled Faces in the Wild (LFW) Database[65] includes 13233 images, which were col-

lected from the internet by the University of MassachusettsAmherst. The database was designed to study

unconstrained face recognition. It is the most important face database at Stage IV. Most important papers

[127] [76] [82] [48] regarding face recognition under uncontrolled environments used this database.

The Public Figures (Pubfig) Database[76] contains 58,797 images from 200 people, which were

collected from the internet by using the same method as the LFW database. There are fewer identities
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but much more images per person than the LFW database. Its disadvantage is that the database designers

only provide image URLs instead of images because of copyright issues. As of 2014, 15% of the image

URLs have been expired, so using this database to have a fair comparison among algorithms has became

impossible.

The Wide and Deep Reference (WDRef) Database[30] consists of 99,773 images from 2995

identities. It is more wide (more images in total) and deep (more images per person) than the LFW

database. However, the disadvantage of the database is thatit only provides the extracted LBP [5] and

LE [26] image descriptors for each image rather than the images themselves because of copyright issues.

Therefore, it restricts other researchers from using this database.

The aforementioned databases can be divided into three categories based on image acquisition

method. The first type of database is built by a small group of researchers in the laboratory. Exam-

ples include the Yale database [52], the AT&T face database [12]. Images are obtained in a short time

and the database size is small. The variabilities of images in these databases are well controlled. The sec-

ond type of database is still collected in the laboratory butwith much greater variation. Examples include

the XM2VTS database [95] and the Multi-PIE database [56]. The designers of these databases attempt

to capture the face distribution of various parameters to make the most useful database. However, there

is a drawback for this type of database that it is difficult to capture the correct statistics. For example,

it is not clear how researchers should decide the ratio of face images wearing glasses, the percentage

of images with smile expression, the proportion of images with office or conference background. The

third type of database collects the existing images from theinternet rather than capturing images in the

laboratory. Examples include the LFW database [65], the Pubfig database [76], and the WDRef database

[30]. Although this type of database has its own biases, for example there are limited non-frontal images

because of using Viola-Jones [134] frontal face detector. However, the third type of database contains

images with very large of diversity: it is more suitable for studying face recognition in uncontrolled

environments when comparing with the previous two types of databases.

Based on the above analysis, the LFW database has many advantages and is most appropriate to be

used to evaluate face recognition in uncontrolled environments.

2.3.2 Performance Evaluation

Performance evaluation for face recognition algorithms provides a framework to measure recognition

performance, determine the most promising algorithms and indicate future development directions. We

will firstly introduce the precepts and methodology of performance evaluation [47] proposed by Phillips

et al., then we will describe the most popular evaluation methods at each development stage of face

recognition. Lastly I will summarise the results of FERET tests, Face Recognition Vendor Tests (FRVT)

and LFW tests.

Evaluation Precepts

Phillips et al. [47] proposed evaluation precepts and applied them to design three FERET tests at Stage

II and three FRVT tests at Stage III. The details of the precepts are as following:

1. Evaluation should be designed and administered by groupsthat are independent of the
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algorithm developers and vendors.

2. Test data should be sequestered and not seen by the participants prior to the evaluation.

3. The design, protocol and methodology of the evaluation should be published

4. Evaluation results should be spread in a manner that showsmeaningful differences

among the participants.

Evaluation Methodology

In a typical evaluation there are three sets of images. The first set is called the gallery image setG, in

which we have already known the identity of each image. The other two sets are both probe set. The

first probe set, in which identities of images can be found in the gallery setG, is denoted asPg. The

second probe set, in which identities of images cannot be found in the gallery set, is denoted asPn.

The similarity between a probe image and a gallery image is measured by the similarity scoreS. If

the similarity score is higher than an pre-defined thresholdτ , the probe image and gallery image are

considered as matching. If we want to obtain then most similar gallery images for a probe image, we

refer to this as rankn match. The rank 1 match is called first match or top match.

There are three fundamental face recognition tasks: open-set identification, closed-set identification,

face verification. Each task has its relevant performance measure methods.

The goal ofOpen-Set Identification is to find which gallery image matches the probe face image.

However, it is also possible that a probe image might not match any gallery image. There are two

performance statistics: the identification ratePIR and the false alarm ratePFA. The identification rate

is the fraction of probe images inPg identified correctly. The false alarm rate is the fraction ofprobe

images inPn identified wrongly. The identification ratePIR and the false alarm ratePFA for top match

can be calculate by

PIR =
|pi : ηi∗ ≥ τ |

|Pg|
(2.4)

PFA =
|pj : ηj∗ ≥ τ |

|Pn|
, (2.5)

where the termpi denotes a probe image which belongs toPg; the termηi∗ denotes the similarity score

between the probe imagepi and its most matched gallery imageg∗; the termpj denotes a probe image

which belongs toPn; the termηj∗ denotes the similarity score between the probe imagepj and its most

matched gallery imageg∗.

The ideal system should have a identification rate of 1.0 and afalse alarm rate of 0.0. In real world

systems performance varies when the thresholdτ changes. The identification rate and false alarm cannot

increase simultaneously. The algorithm designers have to make a trade-off between the identification

rate and the false alarm rate. The receiver operator characteristic (ROC) is used to measure the trade-off.

In a ROC plot the horizontal axis depicts the false alarm ratewhich is normally scaled logarithmically,

and the vertical axis depicts the identification rate. Figure 2.15 shows an example of an ROC.

Closed-Set Identification is a special case of open-set identification. Here, the probeimage is

known to definitely match a gallery image in close-set identification. Consequently, the performance is
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Figure 2.15:Open-set identification performance reported on an ROC figure. This graph demon-

strates the trade-off between the identification rate and false alarm rate. The horizontal axis depicts false

alarm rate on a logarithmic scale. The vertical axis depictsidentification rate. (Adapted from Phillips et

al. [109])

only measured by the identification rate. The cumulative match characteristic (CMC) figure is generally

used to describe the performance. In a CMC figure the horizontal axis depicts the rank and the vertical

axis depicts identification rate. When only rank 1 is considered, it is called the first match and is used

most frequently. Occasionally people might have interest to know the performance when rankn = 5, 10.

An example of a CMC is shown in Figure 2.16.

The goal ofVerification is to verify whether two images match or not. There are two standard

protocols to evaluate verification. The first protocol is called the round-robin method. The probe sets

Pg andPn are combined together. The verification rate and false alarmrate are computed by matching

all the probe images to all the gallery images. The disadvantage of the first protocol is that it cannot

model the case where false identities are caused by people not in the gallery. The second protocol, called

the true imposter protocol, overcomes this drawback. In thesecond protocol, the identification rate is

calculated by using gallery set G and probe setPg, the false alarm rate is computed by using the gallery

set G and the probe setPn. Since the identities inPn are not in the gallery, the nonmatching scores

between the gallery andPn are called true imposters.

At each development stage the main evaluation methods are different. Table 2.5 lists the main

evaluation methods in each stage.
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Figure 2.16:A CMC figure plots identification rate as a function of rank n. The vertical axis depicts

identification rate, and the horizontal axis depicts rank ona logarithmic scale. (Adapted from Phillips et

al. [109])

Stage Main Evaluation Methodology 

II Closed-Set Recognition 

III Closed-Set Recognition 

IV Verification 

Table 2.5:Main evaluation methodology for each stage.Closed-Set recognition refers to the identi-

fication that the identities of the input images are in the gallery. Verification refers to verifying whether

two images match or not.

Landmark Tests

Because face recognition methods at Stage I were far from practical application, there is no well-known

evaluation. In Stage II, the three FERET tests [106] [116] [110] were organized to evaluate academic

algorithms. In Stage III, the FRVT Tests were applied to evaluate commercial face recognition systems.

In Stage IV, the comparison among algorithms have been applied mainly in the LFW database.

The three FERET testswere carried out in 1994, 1995 and 1996. The three tests applied the

aforementioned evaluation and methodology. The detail of the FERET evaluations can be found in [106]

[116] [110]. The test results of the FERET evaluation in 1996showed the elastic bunch graph matching

method (EBGM) algorithm [139], the Bayesian algorithm [97]and the Fisherfaces algorithm [10] pro-

duced the best performance. The FERET tests recorded the advance of face recognition technology but

also revealed three major challenges to face recognition algorithms: pose changes, illumination variation
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and large image capture interval.

The three FRVT evaluationswere the successor of the FERET evaluations. Since 1997 there was

a quick development of commercial face recognition systems. This development not only includes the

face recognition technology but also the relevant supporting system and infrastructure. By 2000 many

commercial face recognition systems were available. To assess the state of the art of face recognition

systems, the FRVT evaluations were organized. Therefore, the main difference between the FERET tests

and FRVT evaluations is that the FRVT participants were commercial systems while the participants of

the FERET evaluation were laboratory systems. Another difference is that image variation in the FRVT

test was larger than in the FERET test. The three FRVT tests were applied in 2000, 2002, 2006 respec-

tively [106] [109] [105]. The test report of the FRVT 2006 concluded [105]: 1. Compared with the

results of the FRVT 2002, the performance improved by a orderof magnitude. The best system can

achieve a False Reject Rate (FRR) of 0.02 at a False Accept Rate (FAR) of 0.001 under controlled illu-

mination. 2. The first 3D face recognition benchmark was built. 3. The performance of face recognition

algorithms is better than humans when lighting varies.

The verification test in the LFW databasefocusses on the problem of whether two images match.

The LFW designers established an evaluation protocol to compare the performance of different algo-

rithms [65]. In the LFW test, 6000 images are divided into 10 subsets which are mutually exclusive in

terms of identities and images. The experiments are required to be performed 10 times by applying a

leave-one-out validation scheme. In each experiment, one subset is selected for testing and the remain-

der of the 9 subsets are used for training. The final performance is reported using a receiver operating

characteristic (ROC) curve or the mean of 10 experiment results and the standard error of the mean. Two

separate paradigms are provided to use the training data: the restricted and unrestricted schemes. In

the restricted scheme identity labels associated with images are not allowed to be used so only provided

pairs can be used in training. In the unrestricted scheme a large number of training image pairs can be

generated because identity labels are allowed to be used. The current best results in the LFW database is

97.35% correct by a commercial system [128] using the unrestricted protocol and training images from

outside the database. This performance is close to human performance 97.5% correct [76].

2.4 Conclusion
In this chapter we reviewed the development of face recognition technology. After decades of devel-

opment, significant progress has been made. The research hasshifted from controlled environments to

uncontrolled environments. The current face recognition systems can produce good performance with

uncontrolled images. However, it does not mean face recognition in uncontrolled environments is a

solved problem. In fact there are many challenges still existing. Therefore, we are motivated to propose

new algorithms in this report to overcome the challenges.

We have also described and assessed the main face databases and find that the LFW dataset is the

most appropriate database for comparing the performance offace recognition algorithms in uncontrolled

environments. We will use the LFW database to evaluate our algorithms in the following chapters.

We also reviewed performance evaluation methods of face recognition and find that face verification
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has become the mainstream evaluation target for face recognition in uncontrolled environments. We will

focus on improving the performance of face verification in this report.
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Chapter 3

Investigating the Spatial Support of Signal and

Noise in Face Recognition

3.1 Introduction

Automated face recognition has many real world applications. Unfortunately, many systems perform

well only in controlled conditions where the pose, illumination and expression of the probe face are the

same as the gallery face. Recognition in uncontrolled conditions is the subject of much research and can

be divided into two categories.Physically-basedalgorithms have a forward model with knowledge of

3d geometry and light transfer. They attempt to explicitly fit the pose and lighting parameters (e.g. [17]).

Statistical algorithmseschew this knowledge in favour of attempting to directly model the images them-

selves as abstract feature vectors (e.g. [132] [10] [137]).In this chapter we will restrict our discussion to

statistical algorithms, especially statistical subspacealgorithms.

Preprocessing for statistical face recognition can be divided into global and local algorithms. In a

typical global approach, the pixel values from the whole image are vectorized. A linear or non-linear

transformation is applied to this vector to move it to a spacein which signal:noise is improved before

making the decision. Examples of global algorithms includethe Eigenfaces algorithm [132], the Fish-

erfaces algorithm [10] and the Laplacianfaces algorithm [62]. Implicit in this algorithm is that it is

sensible to model the joint covariance of all image pixels. This particularly makes sense in the presence

of illumination and pose changes which affect the whole face.

In local methods, facial keypoints (eyes, nose etc.) are found. A separate data vector is extracted

from each keypoint. These data vectors are modelled separately and treated as independent contributions

to the final recognition decision. Examples of this approachinclude [67] and [139]. The logic of the

local approach is that each part of the face contains information about identity that is independent from

that in other regions. A disadvantage is that it is harder to account for global factors such as lighting

changes if we only look at a small part of the image at a time.

Many algorithms are suitable for both global and local feature vectors. Of particular relevance to

this chapter is the Fisherfaces algorithm of Belhumeur et al. [10] which is based on linear discriminant

analysis (LDA). LDA methods separately model the within- individual and between- individual covari-

ance of the data. The original technique [1] projected the data onto a new basis that maximizes the ratio



3.1 Introduction

Figure 3.1:Face images are described as a sum of signal and noise components and we investigate

the spatial support of each.Both signal and noise components are divided into regular grids of inde-

pendent patches. The grid resolution is manipulated separately. (a) The signal component is divided into

8 × 8 patches, the noise component is divided into2 × 2 patches. (b) Signal as1 × 1 patches, noise as

4× 4 patches.

of between- to within- individual variation in an attempt toimprove the signal to noise ratio. In recent

work, Ioffe [68] and Prince and Elder [111] have described probabilistic interpretations of this algorithm.

In this chapter we adapt the probabilistic LDA model of [111]to investigate the continuum between

local and global approaches. Probabilistic LDA describes data as an additive mixture of signal (between-

individual changes) and noise (within-individual changes). Here, we manipulate the spatial extent of the

signal and noise components separately. In particular we break the signal and noise into regular grids of

non-overlappingpatches at various resolutions (see Figure 3.1). Several previous studies have considered

breaking the image into patches ([20], [90], [93], [98]), but none have independently manipulated the

scale of signal and noise elements.

By investigating face images as shown in Figure 3.2, we notice that there is independent identity

information everywhere in the image. In other words identity information appears locally. However,

within-individual variation, such as face expression, illumination and pose, cannot be understood at a

small region of a face image. Therefore, we hypothesize thatrecognition performance will be best when

the signal is local. However, we predict that performance will be worse when the noise is treated locally.

The structure of this chapter is as follows. In Section 3.2 wereview statistical subspace algorithms

and patch-based face recognition algorithms. In Section 3.3 we describe how to control the spatial

extent of signal and noise elements and propose a new face recognition algorithm: Multi-scale PLDA.

In Section 3.4.1 we discuss four controlled datasets used inour experiments. In Sections 3.4.2-3.4.4 we
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A B

Figure 3.2:Signal exists locally and noise should be understood globally. Each part of face includes

independent identity information, for example the eyes, nose, mouth of person A and person B are all

different. However, illumination, face expression and pose can only be understood by considering a large

region.

present results on three controlled databases where our approach performs well and compare to other

methods. In section 3.4.5 we present results on a fourth controlled database where performance is less

good, and we discuss why this is the case. We also apply Multi-scale PLDA to a uncontrolled dataset to

do face verification in section 3.5. Finally we draw a conclusion in section 3.6.

3.2 Related Works

3.2.1 Statistical Subspace Algorithms

Statistical subspace algorithms are important state of theart face recognition algorithms. In subspace

algorithms face images are projected into a low dimensionalsubspace and then represented as a weighted

sum of basis functions. Compared to image intensities, the new representation is more compact and

increase the signal-to-noise ratio effectively. The Eigenfaces algorithm [132] was the first subspace

algorithm and applied Principal Component Analysis (PCA) to reduce the dimensions. The projection

by PCA maximizes the scatter of all face images and concentrates the data’s energy. However, the scatter

maximized by PCA is due not only to the between-individual scatter that is important for classification

but also to the within-individual scatter that is not wanted.

To address this issue, the Fisherfaces algorithm [10] applied Linear Discriminant Analysis (LDA)

to obtain a set of projections that maximizes the ratio of thebetween-individual scatter matrix to the

within-individual scatter matrix. In the subspace obtained by LDA face images from different people are

more spread out than images from the same person. Therefore,the Fisherfaces algorithm can improve

performance when within-individual variation exists. Hastie et al. [60] interpreted LDA in a probabilistic

context that LDA maximizing the ratio of the between-individual scatter matrix to the within-individual

scatter matrix is mathematically equivalent to maximizingthe likelihood of a Gaussian mixture model.

This maximization process can be described as a linear regression of class label assignment. However,

this type of regression is only useful when the class to be classified already exists in the training data.

This assumption cannot satisfy the requirement of face recognition. In many face recognition evaluations
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identities in training and test set are mutually exclusive.

In Gaussian mixture model, which LDA is mathematically equivalent to a probabilistic view, the

class distribution is finite, which cannot handle unseen classes. Prince et al. [111] proposed Probabilistic

Linear Discriminant Analysis (PLDA), which used hidden variables to represent classes and assumed

a continuous distribution of these hidden variables. They marginalized over unknown hidden variables

to obtain the capability to make inference about the unseen classes. As demonstrated in [111], PLDA

produced better performance than the Fisherfaces algorithm. We will introduce the Eigenfaces algorithm,

the Fisherfaces algorithm and PLDA briefly in the following text.

In the Eigenfaces algorithm a face imagex is represented by the following equation:

x ≈ µ+ Φ̂ω, (3.1)

wherex is a pixel intensity vector obtained by concatenating the columns of pixels in a face image,µ is

the mean vector of all the training images,Φ̂ contains the basis functions of the feature subspace in its

columns, andω is a coefficient vector.

In training we aim to learn the basis functionŝΦ. We assume there aren training images

{x1 · · ·xn}, the total scatter matrixS is

S =

n
∑

k=1

(xk − µ)(xk − µ)T . (3.2)

In the Eigenfaces algorithm the basis functionΦ̂ is defined by maximizing the determinant of the total

scatter matrix:

Φ̂ = argmax |ΦTSΦ|. (3.3)

Similar to the Eigenfaces algorithm, we learn the basis functions of the feature subspace in the Fisher-

faces algorithm. However, we learn the basis functionsŴ using Linear Discriminant Analysis instead

of Principal Component Analysis. We assume there aren training images{x1 · · ·xn} and each image

belongs to one ofm identities. The between-individual and the within-individual scatter matrices are

computed by

SB =

m
∑

c=1

Nc(µc − µ)(µc − µ)T (3.4)

SW =

m
∑

c=1

K
∑

k=1

(xk − µc)(xk − µc)
T , (3.5)

whereNc denotes the image number of identity c,µc denotes the mean image of identity c,µ denotes

the mean vector of all the training images, andK denotes the image number of identity c.

In the Fisherfaces algorithm the basis functionsŴ are defined by maximizing the ratio of the

determinant of the between-individual scatter matrix and that of the within-individual scatter matrix:

Ŵ = argmax
|WTSBW|
|WTSWW| . (3.6)

Probabilistic Linear Discriminant Analysis (PLDA) is a probabilistic version of the Fisherfaces algo-

rithm. In PLDA a face imagexij is represented as:
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xij = µ+ Fhi +Gwij + ǫij , (3.7)

wherexij denotes thejth of J training images of each of theith of I individuals,µ is the mean of the

data,F is a matrix with the basis vectors of the between-individualsubspace in its columns, andhi is

an identity variable that is constant for all J imagesxi1...iJ of personi. The termG is a matrix with the

basis vectors of the within-individual subspace in its columns. The termwij represents a position in this

subspace. The termǫij denotes stochastic noise with diagonal covarianceΣ. The termµ+Fhi consists

of the signal and accounts for between-individual variation. For a given individual, this term is constant.

The termGwij + ǫij consists of the noise or within-individual variation. It explains why two images of

the same individual do not look identical.

We can alternately describe the generative process in termsof conditional probabilities:

Pr(xij |hi,wij) = Gx[µ+ Fhi +Gwij ,Σ] (3.8)

Pr(hi) = Ghi
[0, I] (3.9)

Pr(wij) = Gwij
[0, I], (3.10)

whereGo[̺, ς] denotes a Gaussian ino with mean̺ and covarianceς; the termI denotes an identity

matrix.

In training, the Expectation Maximization (EM) algorithm is applied to learn the model parameters

θ = {µ,F,G,Σ}. In test they compare the likelihood of two images when they are assumed to match

and not match.

In this chapter, we use PLDA as a platform to verify our hypothesis.

3.2.2 Patch-based Face Representation Methods

Face representation methods play an important role in face recognition. The goal of face representation

methods is to obtain a compact form to describe face images but retain sufficient discriminant infor-

mation. A good face representation method can capture sufficient identity information and is robust to

within-individual variation. Face representation methods can be divided into two categories: global and

local representation methods.

The global face representation methods model the statisticregarding the whole face. Examples

include the Eigenfaces algorithm [132], the Fisherfaces algorithms [10], the Active Appearance Model

[34]. The global representation methods perform well for face images with limited variation. However,

their performance depends on accurate image registration and cannot deal with geometric transformation

and occlusion.

The local face representation methods model the local statistic regarding face parts. Examples in-

clude the Elastic Bunch Graph Matching algorithm [139], theFisher Vector Faces algorithm [124]. A

face image is normally represented by a vector of local features. To obtain the local features, a set of

fiducial points are normally firstly detected. Fiducial points are a set of salient facial parts. They are

usually located on the corners of the eyebrows, the corners of the eyes, the tip of the nose, the corners of

the lips, etc. After fiducial points are obtained, multiple image descriptors are used to characterize the
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region around each point. Finally, an vector to represent the whole image is formed by concatenating

descriptors of each point. Examples of image descriptors include Local Binary Patterns (LBP) descrip-

tor [102], Scale Invariant Feature Transform (SIFT) descriptor [88], Gabor Filter [41], etc. Compared

with global face representation methods, local face representation methods are more invariant to within-

individual variations, such as expression and pose changes. However, local face representation methods

normally treat image parts independently or conditionallyindependently and may not consider the global

connection among image parts. Moreover, local representation methods apply a sparse representation

and may lose potentially useful information.

Patch-based representation methods combine the advantages of global and local representation

methods. In a typical patch-based representation method a face image is represented as a collection

of patches. The configurations of image patches can be grids of non-overlapping or overlapping patches.

Patch-based representation methods provide a dense representation to face images and retain the global

structure of face image. Moreover, patch-based representation methods allow us to vary the patch con-

figuration and model the covariance at a pre-defined scale to avoid the expensive computation of the full

covariance matrix. Yamada et al. [72] proposed a patch-based representation method to do face recogni-

tion across pose. Their experiments demonstrated that their patch-based representations are more robust

to pose variation than the global representation methods. Lucey et al. [90] inherited the principle of Ya-

mada’s algorithm and modelled the relation of corresponding patches from images with different poses.

Their experiments confirmed Yamada’s conclusion.

Despite the aforementioned successful applications of patch-based representation methods, there

has never been an experiment to manipulate the patch configuration of images to affect the spatial support

of between-individual and within-individual basis functions of a statistical subspace algorithm. In this

chapter we will explore this intrinsic combination of statistical subspace algorithms and patch-based face

representation methods.

3.3 Multi-scale PLDA

As shown in Figure 3.1 we vary the effect of localization of the basis functions of the between- and

within- individual subspaceF andG respectively. The signal component is divided into a grid ofP

regular square non-overlapping patches. In a similar way, the noise component is divided intoQ patches.

We increaseP andQ to make the spatial support of the basis function more local.So when the value of

P or Q is 1, 4, 16, 64, the grid resolution of the signal or noisecomponent is1× 1, 2× 2, 4× 4 and8× 8

accordingly.

The generative process of Multi-scale PLDA can be describedby the following equation:

xij = µ+
P
∑

p=1

Fph
p
i +

Q
∑

q=1

Gqw
q
ij + ǫij , (3.11)

Whereµ is the mean of the data,Fp denotes the basis vectors of between-individual variationfor the

pth patch. The termhp
i represents the weighting of these basis vectors for the ith individual. Similarly,

Gq contains the basis vectors of within-individual variationfor the qth patch. The termwq
ij denotes the
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I
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xij

wij
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Figure 3.3:Graphical model for Multi-scale PLDA showing the imagexij , hidden identity variables

h
p
i , hidden within-individual variableswq

ij and basis functions for between-individual subspaceFp, basis

functions for within-individual subspaceGq, mean of all training imagesµ, and diagonal covariance

matrixΣ for the stochastic noiseǫij in images.

weighting of these basis vectors for the jth image of the ith individual. In spite of the presence of patches,

the dimensions of basis vectorF1...P andG1...Q are still the size of the full data vectorx. However,

they become sparse and non-zero entries only exist for pixels in the patch in question. The relation of

variables is shown in Figure 3.3 and the model is illustratedin Figure 3.4.

The generative formulation in Equation 3.11 can be rewritten in the form of the original PLDA

algorithm:

xij = µ+ F̃h̃i + G̃w̃ij + ǫij , (3.12)

whereF̃ = [F1 . . .FP ], G̃ = [G1 . . .GQ], h̃ = [h1 . . .hP ]T andw̃T = [w1 . . .wQ]T .

Unfortunately, this relatively small change significantlycomplicates the learning and inference al-

gorithms: firstly, the system of equations may now be considerably bigger (we may have a large number

of basis functions at each separate block of the image) and this makes straightforward inversion of ma-

trices in the learning and inference steps impossible. Second, we must now ensure that the sparsity

structure of the matrices̃F andG̃ are retained. Matrices̃F andG̃ are Block diagonal.

3.3.1 Learning

It would be easy to estimate the parametersθ = {µ, F̃, G̃,Σ} if we knew the hidden variables̃hi, w̃ij .

Likewise, it would be easy to infer the hidden variables if weknew the parameters. This type of

“chicken and egg” problem is well suited to the expectation-maximization (EM) algorithm [43]. In the

expectation- or E-step we will calculate a joint posterior distribution over the hidden variables. In the

maximization- or M-step we update the parametersθ. We now consider each in turn:
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= + + + + + + 

+ + + + + 

(a) 

(b) 

= + + + 

Figure 3.4:Structure of Multi-Scale PLDA model. (a) We describe images as the sum of a meanµ, the

between-individual variation
∑

4

p=1
Fph

p
i , the within-individual variation

∑

1

q=1
Gqw

q
ij , and per pixel

noiseǫ (image shows per-pixel variance). Here the signal is analyzed independently in P=4 patches,

corresponding to the image quadrants. Each hasDf = 2 basis functions associated with them. In this

example, the noise is analyzed on a global scale using only Q=1 patch which hasDg = 2 basis functions

associated with it. (b) We can write this same model in matrixform. Now the localization is embodied

in the structure of sparsity of the matricesF̃ andG̃.

E-Step: In the E-step we aim to take all of the dataxi1 . . .xiJ pertaining to one individual and calculate

the joint posterior distribution of all of the hidden variables h̃i, w̃i1 . . . w̃iJ . To accomplish this, we

express this problem in a composite form:

















xi1

xi2

...

xiJ

















=

















µ

µ

...

µ

















+

















F̃ G̃ 0 . . . 0

F̃ 0 G̃ . . . 0

...
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(3.13)

or, giving names to these composite matrices:

x′
i = µ′ +Ayi + ǫ′i. (3.14)

In probabilistic notation we can equivalently write:

Pr(x′
i|yi) = Gx′

i
[µ′ +Ay,Σ′] (3.15)

Pr(yi) = Gyi
[0, I], (3.16)
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where

Σ′ =

















Σ

Σ

. . .

Σ

















. (3.17)

Applying Bayes’ rule to calculate the posterior, we get:

Pr(yi|x′
i, θ) ∝ Pr(x′

i|yi, θ)Pr(yi). (3.18)

Since both terms on the right are Gaussian, the term on the left must also be Gaussian. It can be shown

as in [111] that the first two moments are:

E[yi]= (ATΣ′−1A+ I)−1ATΣ′−1(x′
i − µ′) (3.19)

E[yiy
T
i ]= (ATΣ′−1AT + I)−1 + E[yi]E[yi]

T . (3.20)

In practice, these quantities are hard to calculate. For example, consider P=64 blocks,F1...P representing

the signal, and Q=64 blocks,G1...Q representing the noise. If each block consists ofNp = Nq basis

functions and there areJ images of person I, then the matrixATΣ′−1A + I will be of dimension

(Np ×Nq × (J + 1))2 which can be very large. However, the matrix has considerable structure:

(ATΣ′−1
A+I)−1 =

















JF̃TΣ−1F̃T +I F̃TΣ−1G̃ . . . F̃TΣ−1G̃

G̃TΣ−1F̃ G̃TΣ−1G̃+ I

...
. . .

...

G̃TΣ−1F̃ . . . G̃TΣ−1G̃+I

















−1

. (3.21)

Moreover, the blocks of this matrix themselves exhibit structure. For example the top-left quadrant

JF̃TΣ−1F̃T+I is block diagonal, as is the bottom right. We use Schur’s lemma to exploit this structure

in inversion. The concept of Shur’s lemma is to divide a matrix into four components and the inversion of

the matrix can be described by polynomials of the four components. Equation 3.22 shows the inversion

of matrixU using Shur’s lemma:

U−1 =





V1 V2

V3 V4





−1

=





(V1 −V2V
−1

4
V3)

−1 −(V1 −V2V
−1

4
V3)

−1V2V
−1

4

−V−1

4
V3(V1 −V2V

−1

4
V3)

−1 V−1

4
+V−1

4
V3(V1 −V2V

−1

4
V3)

−1V2V
−1

4



 ,

(3.22)

where(V1 −V2V
−1

4
V3)

−1 is called the Shur Complement.
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Applying Shur’s lemma, we divide equation 3.21 to four parts:

V1 = JF̃TΣ−1F̃T +I (3.23)

V2 =
[

F̃TΣ−1G̃ . . . F̃TΣ−1G̃

]

(3.24)

V3 =






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

G̃TΣ−1F̃

...

G̃TΣ−1F̃


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





(3.25)

V4 =











G̃TΣ−1G̃+ I

. . .

G̃TΣ−1G̃+I











. (3.26)

The matrix in equation 3.26 is a diagonal block matrix, so we invert each matrix block to obtain its

inverse. Then we follow Shur’s lemma to compute the term 3.21. By using Schur’s lemma, the effective

dimension of the inverse is reduced from(P ×Df+P×Df×J)×(P×Df+Q×Dg×J) to P times of

(Df×Df) and Q times of(Dg×Dg), whereDf is the number of basis functions for between-individual

subspace andDg is the number of basis functions for the within-individual subspace. AssumingP = 64,

Q = 16, Df = 64, Dg = 64, J = 10, we need to invert a59392× 59392matrix if we compute the term

3.21 directly. However, after applying Shur’s lemma, we only invert 64 matrixes with the size64 × 64

and 16 matrixes with the size64× 64.

M-Step: In the M-Step, we aim to update the values of the parametersθ = {µ, F̃, G̃,Σ}. We must

do this in such a way that the sparsity structure of the matricesF̃ andG̃ is maintained. We perform

a separate calculation for every pixel (row of the generative equation) ensuring that the appropriate

elements remain zero. We first write a single equation for each observed data vector:

xij = µ+
[

F̃ G̃

]





h̃i

w̃ij



+ ǫij . (3.27)

This has the form:

xij = µ+ B zij + ǫij . (3.28)

We optimize:

Q(θt, θt−1) =
I

∑

i=1

J
∑

j=1

∫

Pr(zi|xi1...iJ , θt−1) log[Pr(xij |zi)Pr(zi)]dzi, (3.29)

wheret is the iteration index. The first log probability term in Equation 3.29 can be written as:

log[Pr(xij |zi, θt)] = κ− 0.5
(

log |Σ−1|+ (xij − µ−Bzi)
TΣ−1(xij − µ−Bzi)

)

, (3.30)

whereκ is an unimportant constant. Since the matrixΣ−1 is diagonal, this can be written as a sum of

terms over the N pixels in the image:

log[Pr(xij |zi, θt)] = κ− 0.5

N
∑

n=1

(

log |σ2

n|+ (xijn − µn − bnzin)
Tσ−2

n (xijn − µn − bnzin)
)

,

(3.31)
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wherexijn refers to the nth pixel of the jth image of the ith individual,µn denotes the nth pixel of the

mean vector andσ2
n represents the nth entry in the diagonal matrixΣ. The termbn describes the nth

row of the matrixB, modified so only the non-zero entries remain. The termzin consists of the entries

in the vectorzi that correspond to the non-zero entries of the nth row ofB.

We substitute this term into Equation 3.29 and take derivatives with respect toµn, bn andσ2

n. The

second log term in Equation 3.29 has no dependence on these parameters. We equate these derivatives

to zero and re-arrange to provide the following update rules:

µn=
1

IJ

∑

i,j

xijn (3.32)

bn=





∑

i,j

(xijn−µn)E[zin]
T









∑

i,j

E[zinz
T
in]





−1

(3.33)

σ2=
1

IJ

∑

i,j

diag
[

(xijn−µn)(xijn−µn)
T − bnE[zin](xijn−µn)

T
]

, (3.34)

wherediag represents retaining only the diagonal elements of a matrix. The expectation termsE[zi] and

E[ziz
T
i ] can be extracted from Equations 3.19 and 3.20 using the equivalence between Equations 3.13

and 3.14. The updated values ofF andG are retrieved fromb1...N .

3.3.2 Inference

We perform recognition by comparing the likelihood of different models of the data. For example,

consider a closed set face recognition task in which we wish to know whether the probe facexp matches

gallery facesx1 or x2. We build two modelsM1 andM2 corresponding to these two situations and

compare them with Bayes’ rule:

Pr(M1|x1,2,p) =
Pr(x1,2,p|M1)Pr(M1)

∑

2

k=1
Pr(x1,2,p|Mk)Pr(Mk)

. (3.35)

ModelM1 hypothesizes that the probe facexp shares an identityh1 with gallery imagex1 although

the noise vectors still differ. Probe facex2 has a different identityh2. We write the generative equation

for this data as:











x1

x2

xp











=











µ

µ

µ











+











F 0 G 0 0

0 F 0 G 0

F 0 0 0 G

































h1

h2

w1

w2

wp























+











ǫ1

ǫ2

ǫp











. (3.36)

To calculate the likelihood for model 2 we assume thatxp has to share an identity with gallery face

x2 to give a similar generative equation:
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Each of these generative equations is of the form

x′ = µ′ +Ay + ǫ′. (3.38)

We can write this more precisely in probabilistic form:

Pr(x′|y) = Gx′ [µ+Ay,Σ′] (3.39)

Pr(y) = Gy[0, I], (3.40)

where we defineΣ′ similarly to in Equation 3.17. We note that Equations 3.39-3.40 describe a factor

analyzer. It is possible to marginalize over the hidden variabley and find a closed form expression for

the likelihood:

Pr(x′) =

∫

Pr(x|y)Pr(y)dy = Gx′ [µ,AAT +Σ]. (3.41)

This can be calculated efficiently by (i) calculating the likelihoods separately for all independent

terms (for example Equation 3.36 can be broken down into two parts, one of which contains onlyx1 and

xp and the other contains onlyx2) and (ii) exploiting the sparse structure of the matrixAAT +Σ. One

way to do this is to use the matrix inversion lemma to convert the precision matrix so that:

(AAT +Σ)−1 = Σ−1 −Σ−1A(ATΣ−1A+ I)−1ATΣ−1. (3.42)

The inverse term on the right hand side can then be inverted ina similar manner to the similar terms

of the E-Step of the learning algorithm presented in section3.3.1.

3.4 Experiments in Constrained Databases

3.4.1 Datasets and Preprocessing

We investigate closed set identification using four datasets, each of which has different properties (see

Figure 3.5). We discuss the preprocessing of each in turn.

XM2VTS Frontal: The training set consists of 4 images each of 195 individuals. The test set consists

of 100 different individuals, where gallery images were taken from the first recording session and the

probes from the fourth session. The color images were affine aligned and resized to size70 × 70. The

raw RGB pixel values were concatenated into a vector of length 70× 70× 3 = 14700.

XM2VTS Lighting: The training set consists of 7 images each of 195 individualsand contained 2

lighting conditions. For each individual there were 5 images under frontal lighting and 2 under side-

lighting. The test set consists of 100 different individuals, where the gallery images were taken from

the first recording session and were under frontal lighting and the probe images were taken from the

fourth session and were lit from the side. As for the XM2VTS frontal dataset, the images were affine

aligned and resized to size70× 70. The raw RGB pixel values were concatenated into a vector of length

70× 70× 3 = 14700.

Yale: The data were divided into 7 sets of training / test data as in [23]. The same 15 individuals are

present in training and test phases. We train with 2-8 imagesof each person depending on the condition.
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(a) XM2VTS Frontal Database (b) XM2VTS Lighting Database

(c) Yale Database (d) ORL Database

Figure 3.5:Datasets used in this chpater.(a) The XM2VTS frontal database contains frontal faces un-

der diffuse lighting. (b) The XM2VTS lighting dataset contains frontal faces viewed under two lighting

conditions. (c) The Yale dataset contains frontal faces with variations in expression and lighting. (d) The

ORL dataset contains variations in pose.

These images also form the gallery. The probe images consistof the remaining faces. Lighting and facial

expressions vary widely across training and test data. Eachimage was grayscale and64 × 64 pixels in

size.

ORL: As for the Yale dataset, the data were divided into 7 sets of training / test data (see [23]). The same

40 individuals are present in training and test phases. We train with 2-8 images of each person depending

on the condition. These images also form the gallery. The probe images consist of the remaining faces.

Each was grayscale and64× 64 pixels.

All models were trained using 6 iterations of the EM algorithm and the model parametersθ are

initialized to random values. There are two sets of parameters in our model: (i) the number of patches

for signal and noise and (ii) number of basis functions for each signal and noise patch. The latter

two parameters were always varied together in our experiments and will be referred to as “subspace

dimension”.

3.4.2 Experiments for Frontal Lighting Data Set (XM2VTS)

In Table 3.1 we present% correct results for face identification using the XM2VTS frontal dataset and

a model with subspace dimension of 64. The results show that recognition generally gets better as the

number of signal patches P increases (signal basis functions become more local). However, performance

declines as the number of noise patches Q increases (noise basis functions become more local). Peak
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performance is 99% when the noise has only 4 patches, but decreases when the signal is broken into

either 16 or 64 patches.

1 4 16 64 

1 89% 91% 97% 97% 

4 85% 93% 99% 99% 

16 78% 88% 96% 98% 

64 71% 77% 89% 97% 

P 
Q 

N
o

ise
 b

e
co

m
e

s m
o

re
 lo

ca
l 

Signal becomes more local 

Table 3.1:% Correct results for the XM2VTS frontal data set as we vary patch resolution P and

Q of signal and noise respectively.The results show that the recognition performance increases as the

number of signal patches P increases (signal is treated morelocally). However, performance drops as

the number of noise patches Q increases (noise is treated more locally).

In Figure 3.6 we investigate performance as a function of thenumber of basis functions associated

with each signal and noise patch (subspace dimension). The graph shows that best performance is

reliably achieved when the signal is more local and the noiseis more global. The performance falls off

rapidly with large subspace sizes when both the signal and noise are local. This may be because the total

number of basis functions in the columns of matricesFp andGq becomes similar to the number of data

values in each patch.

In Figure 3.7 we compare performance to our own implementations of a number of contempo-

rary algorithms that use completely global representations. Our performance is superior to that for

PLDA [111], a second PLDA algorithm [68], the Fisherfaces algorithm [10], Dual Space LDA [137], the

Bayesian face algorithm [97], and the Eigenfaces algorithm[132].
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Subspace Dimension 

%
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Local Signal & Global Noise 
Global Signal & Global Noise 
Local Signal & Local Noise 
Global Signal & Local Noise  

XM2VTS Frontal  

Figure 3.6: % Correct face identification for the XM2VTS frontal dataset as a function of sig-

nal and noise subspace sizewhen signal/noise are local/local (P=64,Q=64), global/global (P=1,Q=1),

global/local (P=1,Q=64), local/global (P=64,Q=4). Performance is best in the latter condition.
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XM2VTS Frontal  

Our approach 
PLDA 
IOFFE 
Bayes 

PCA 

DS-LDA 
LDA 

Figure 3.7:% Correct face identification for the XM2VTS frontal dataset as a function of signal

and noise subspace sizewhen signal/noise are local/global (P=64,Q=4). Results compare favorably

to PLDA [111], Ioffe’s PLDA algorithm [68], the Fisherfacesalgorithm [10], the Dual Space LDA

algorithm [137], the Bayesian face algorithm [97], and the Eigenfaces algorithm [132].
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3.4.3 Experiments for Illumination Variation Data Set (XM2VTS Lighting)

In Table 3.2 we present% correct results for face identification using the XM2VTS lighting dataset

and a model with subspace dimensions 64. Unsurprisingly, the performance is worse than for the dataset

containing only frontal images. However, the pattern of results remains the same. Performance improves

as the signal basis functions become more localized, but worse as the noise basis functions become more

localized. Peak performance is 91% when the noise has only 4 patches, but the signal is broken into 64

patches. Figure 3.8 confirms that good performance is reliably achieved when the noise basis functions

span a large part of the image, but the signal is very local regardless of the subspace dimensions used.

Figure 3.9 shows that performance compares favorably to other algorithms.

1 4 16 64 

1 80% 82% 90% 83% 

4 76% 89% 87% 91% 

16 70% 75% 90% 85% 

64 37% 56% 76% 84% 

P 
Q 

N
o

ise
 b

e
co

m
e

s m
o

re
 lo

ca
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Signal becomes more local 

Table 3.2:% Correct results for the XM2VTS lighting dataset as we vary patch resolution P and

Q of signal and noise respectively.

We do not apply any illumination preprocessing in the experiments illustrated in Figure 3.8 and 3.9

because illumination preprocessing cause a performance drop in our experiments. For example, when the

subspace dimensions are set to 64, the patch number of the signal component P is 64, the patch number

of the noise component Q is 4, the performance is 91% correct without any preprocessing. When we

use histogram equalization to preprocess the images, the performance becomes 90%. When we use the

preprocessing method proposed by Tan and Triggs [129], which is series of steps including Gamma

correction, Difference of Gaussian filtering and contrast equalization, we only achieve 85% correct.

We hypothesize that the reason is that some useful discriminative information is discarded during the

preprocessing.

To fit the lighting condition in the XM2VTS Lighting database, we try different patch division meth-

ods to manipulate the degree of localization of signal and noise component. In the above experiments,

we divided the signal and noise component into a regular gridof patches. However, we can also divide

the signal component into a regular grid but divide the noisecomponent into columns. In this case,

our experiments show that recognition performance improves. Figure 3.10 shows two different patch

division methods and the second division method performs better than the first method for XM2VTS

lighting database. We conjecture that the second division method estimates left lit better.
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XM2VTS Lighting  

Figure 3.8:% Correct face identification for the XM2VTS lighting dataset as a function of signal

and noise subspace sizewhen signal/noise are local/local (P=64,Q=64), global/global (P=1,Q=1), glob-

al/local (P=1,Q=64), local/global (P=64,Q=4). A similar pattern is revealed as on the XM2VTS frontal

dataset. Performance is best when P=64 and Q=4.
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Figure 3.9:% Correct face identification for XM2VTS lighting dataset as a function of signal and

noise subspace size when signal/noise are local/global (P=64,Q=4).Our results are better than PLDA

[111], Ioffe’s PLDA algorithm [68], the Fisherfaces algorithm [10], the Dual Space LDA algorithm

[137], the Bayesian face algorithm [97] and the Eigenfaces algorithm [132].
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Figure 3.10:Two patch division methods.(a) The first method divides the signal and noise components

into regular grids. (b) The second method still divides the signal component into a regular grid but divides

the noise component into columns. (c)% Correct face identification for two region division methodsin

the XM2VTS Lighting database as a function of signal and noise subspace size.

3.4.4 Experiments for Expression and Illumination Variation Data Set (Yale)

In the Yale dataset, there are multiple gallery images per individual. There are two ways to proceed. We

could treat the gallery images as a single individual with a single identity vector. For traditional distance-

based algorithms this is equivalent to finding the centroid of the gallery images in feature space and

matching to the nearest centroid. Hence, for compatibilitywith other work we refer to this as the nearest

centroid (NC) method. Alternatively, we could treat each gallery image as a different individual with a

different identity vector and consider it a success if we correctly match to any of these representations.

We refer to this as the nearest neighbors (NN) method.

Table 3.3 shows% correct results from the Yale dataset using 8 gallery imagesfor each individual

as a function of the localization of the signal and noise basis functions using the nearest centroid method

with subspace dimensions 14. The pattern of results is very similar as for the two XM2VTS datasets.

Performance improves as the representation of the signal becomes more local, but declines as the noise

becomes more local. The peak performance is again when the signal has 64 patches, but the noise has
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only 4 patches and reaches a level of 93.8%.

1 4 16 64 

1 92.0% 91.2% 92.1% 93.1% 

4 91.7% 90.4% 91.7% 93.8% 

16 89.5% 89.3% 92.1% 92.2% 

64 82.0% 84.0% 87.0% 86.2% 
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Signal becomes more local 

Table 3.3:% Correct results for the Yale dataset as we vary patch resolution P and Q of signal and

noise respectively when we use the nearest centroid method.

Figure 3.11 (a) and (b) shows the performance as a function ofthe number of gallery items for

the nearest centroid and nearest neighbour metrics respectively. We also re-plot published results from

[23]. In each case, the error bars represent the standard error of the results from the 7 training/test splits.

We can draw two conclusions from this: first, our algorithm reliably outperforms the other methods.

The only exception is for the nearest-neighbour PLDA methodwith a large number of gallery images

per person. Second, for our algorithm the nearest centroid method consistently outperforms the nearest

neighbor method. This is unsurprising as by combining information from gallery images it becomes

possible to better distinguish signal and noise.
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Figure 3.11:Plot of % correct identification performance for the Yale database with P=64 sig-

nal patches and Q=4 noise patches for (a) nearest centroid metric and (b) and nearest neighbour

metrics. Results from PLDA [111], RLDA and SLDA [23], the Fisherfacesalgorithm [10] and the

Eigenfaces algorithm [132] are shown for comparison.
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3.4.5 Experiments for Pose Variation Data Set (ORL)

Table 3.4 shows% correct results from the ORL dataset using 8 gallery images for each individual as a

function of the localization of the signal and noise using the NC method with subspace dimension 39.

Because there are 40 people in the ORL database, the maximum dimensions of the subspace can only

be 39. As before, the performance decreases as the noise becomes more localized. However, making

the signal more local has no net benefit here. When it becomes very local (64 patches) performance

becomes worse. In fact the best performance is found when both the signal and noise are completely

global (the original PLDA algorithm). An explanation of this effect can be found when we examine the

images themselves. The faces in the ORL set contain considerable pose variation (see Figure 3.5d).

1 4 16 64 

1 99.2% 99.1% 99.0% 98.6% 

4 98.0% 98.3% 98.8% 98.0% 

16 93.3% 95.0% 93.8% 88.4% 

64 81.3% 72.6% 74.0% 66.0% 
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Table 3.4:% Correct results for the ORL dataset as we vary patch resolution P and Q of the signal

and noise respectively.
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Figure 3.12:Plot of % correct identification performance for the ORL data base with P=64 signal

patches and Q=4 noise patches for nearest centroid metric.Results from PLDA [111], RLDA and

SLDA [23], the Fisherfaces algorithm [10] and the Eigenfaces algorithm [132] are shown for comparison.

Hence, modeling the signal with very local basis functions becomes detrimental: the corresponding part

of the face will not necessarily remain within the same patch.

65



3.5 Experiments in the Unconstrained Database

Figure 3.12 (a) and (b) show performance for the NC and NN conditions respectively as a function

of the number of gallery individuals. As for the Yale database, the NC metric outperforms the NN metric.

However, we now find that our algorithm with local signal and global noise performs worse than either

SLDA [23] or than fully global PLDA [111].

3.5 Experiments in the Unconstrained Database

3.5.1 Dataset

In this section we investigate the face verification performance of Multi-scale PLDA in the uncontrolled

face database: Labeled Faces in the Wild (LFW) database [65]. The goal of face verification is to

decide whether a pair of images are from the same person or not. As described in section 2.3.1, the

LFW database is the most popular uncontrolled face database. It consists of 13233 images from 5749

individuals. All the images are captured from the internet.The number of images per person varies from

1 to 530. The images contain large variations in pose, illumination, expression, gender, age, etc. Figure

3.13(a) shows several examples from the LFW database.

(c) 

(a) 

(b) 

Figure 3.13:Several examples from the Labeled Faces in the Wild (LFW) database [65].(a) Color

images with the size250 × 250 pixels, which are collected from the internet and vary in pose, illumi-

nation, expression, gender, age, race, resolution, occlusion, background, and photo quality. (b) Aligned

black-and-white images provided by [127]. (c) The160× 80 face regions are obtained by cropping the

central part from the aligned images provided by [127].

In the LFW database, images are divided into 10 groups with mutually exclusive identities. In each

group there are 300 matched pairs and 300 non-matched pairs.The verification protocol applies 10-fold
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cross validation. In each repetition one group is used for testing and the other nine groups are used for

training.

The LFW database designer defines two training configurations. In the ‘restricted configuration’

only same/not-same training labels can be used. The training examples are restricted to the given match

and not match pairs. It is not allowed to use the names of people associated with images to generate

additional training examples. In the ‘unrestricted configuration’ the identity information can be used.

New training pairs may be created by leveraging the names of people.

As defined in [65], the verification results are reported by the estimated mean accuracyµ̂ and the

standard errorSE of the mean :

µ̂ =

∑10

i=1
pi

10
(3.43)

SE =
σ̂√
10

, (3.44)

wherepi is the percentage of correct assignment using groupi for testing and̂σ is the estimate of the

standard deviation given by

σ̂ =

√

∑

10

i=1
(pi − µ̂)2

9
. (3.45)

3.5.2 Experiments Using Image Intensities

The LFW images contains large variation. Face alignment canreduce scale and rotation variation effec-

tively and increase verification performance. The authors of the LFW database provided images aligned

by the congealing alignment method [64]. However, there is less misalignment in the aligned images

provided by [127], which are obtained by applying a similarity transformation to register four fiducial

points to a pre-defined template. Figure 3.13(b) shows several examples of the aligned images. In this

section we adopt their aligned images to do experiments.

The size of the aligned LFW image is250× 250 pixels. We firstly crop the central160× 80 pixels

from each image to obtain face region (Figure 3.13c). We use 6iterations of the EM algorithm to train

the model parametersθ, which are initialized to random values. The subspace dimension is set to 64 as

in section 3.4.

Table 3.5 shows the mean % correct and the standard error of the mean of ten cross validation tests

as a function of the localization of the signal and noise basis functions. The performance decreases

when the signal becomes more local. There is also no performance increase when the noise becomes

more local. The reason is the same as experiments using the ORL database. There is significant pose

variation in the LFW database. The corresponding patches ofthe two images do not always include the

same facial features because of pose changes.

To show the test results in the LFW database, I used three places of decimal to report both the mean

and the standard error of the mean in Table 3.5. It was given bythe following Matlab script:

1meanCorrect = mean(resultList); % resultList is a 1-by-10 array, each element of
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which represents the result of an experiment

2stdCorrect = sqrt(sum((resultList - meanCorrect).ˆ2)/9) /sqrt(10);

We used the default Matlab accuracy for reporting results. We considered three decimal places may

be accurate enough to report the verification performance, so we will use the same style to report the test

results in the LFW database in the following chapters.

1 2 4 

1 59.733% ± 1.006 59.317% ± 0.993 58.417% ± 0.872 

2 58.000% ± 0.797 56.967% ± 0.924 55.817% ± 0.782 

4 55.817% ± 1.090 55.333% ± 0.992 54.050% ± 0.644 
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Table 3.5:The mean accuracy and the standard error of the mean of ten LFWcross validation tests

using image intensities as we vary patch resolution P and Q ofsignal and noise respectively.The

results show the performance decreases as the noise become more localized, but making the signal more

local does not increase performance: we lose the correspondence of facial features in corresponding

patches when pose variation exists.

3.6 Conclusion
In this chapter we combined patch-based face representation methods and Probabilistic Linear Discrim-

inant Analysis (PLDA). We described a face image as a sum of the signal component and the noise

component. We break both the signal and noise into regular grids of non-overlapping patches. We ma-

nipulate the patch configuration of the signal and noise to affect the spatial support of signal and noise

basis functions. We investigated the effect of the degree oflocalization of these basis functions for frontal

face recognition. We conjectured that performance would bebest when the signal was treated locally

(reflecting the fact that each point in the face provides independent information about identity) but that

the noise was treated globally. This pattern of performancewas confirmed for three controlled datasets,

although in each case, the best performance was when the noise was at a large scale but not totally global.

It appears that there is sufficient information in one quadrant of the image to capture the noise.

For a fourth controlled dataset, performance did not increase as the signal became more local. We

attribute this difference to the pose changes that are present in this dataset but not in the three others. A

local representation of identity fails if the images are notwell registered as the same part of the face will

not always appear in the same patch.

We also applied Multi-scale PLDA to an uncontrolled face database: the LFW database, whose

images are collected from the internet instead of in the laboratory. The LFW images include large
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variations. We used image intensities to do face verification. We found the best performance is obtained

when we treat the signal globally. The reason is the same as for the fourth controlled database in which

large pose variation exists.

One interesting aspect of this work is that the dimensions ofthe hidden space actually increase as we

make the basis functions more local. Here, the hidden space refers to the between-individual subspace

or within-individual subspace. This is because we maintaina fixed number of basis functions per patch.

Although we marginalize over the hidden dimensions, at somelevel we still compare faces in a higher

dimensional space than before. However, the number of non-zero parameters in the matricesF̃ andG̃

remains the same for a given subspace dimension, regardlessof the scale of signal or noise. The model

is not more complex, but makes different assumptions about independence of its parameters.

Independent manipulation of signal and noise subspaces wasparticularly easy to apply to the PLDA

algorithm [111]. However, it could be adapted for any algorithm that calculates within-individual and

between individual covariance matrices by assuming a blockdiagonal structure in these matrices.

This algorithm has connections with the Mosaicface model [3], in which each face image is ap-

proximated by a regular grid of patches and each patch is taken from a patch library. Faces are finally

represented as a list of indices to the library. The common places between their model and Multi-Scale

PLDA is that face images are represented as a set of non-overlapping patches. However, the latent vari-

ables of the two models are different. Multi-Scale PLDA applies continuous hidden variables while the

Mosaicface model used discrete latent variables. The Mosaicface model improves performance when

lighting variation exists. Performance might be improved if we combine the Mosaicface model and our

Multi-Scale PLDA.

One of the drawbacks of Multi-Scale PLDA is that it is sensitive to pose variation. To address

this problem we could estimate the corresponding patches for two images with different poses in future

work. One possible solution is to extend the shiftmap representation [113] for patches and use it to find

the corresponding patches containing the same facial features from two images.

Some aspects of our model remain unexplored. Our Multi-Scale model only used image intensities

to represent images. We can extract image descriptors from each patch. Since image descriptors are

generally more robust to image variation, performance might be improved if we use image descriptors

instead of intensities.

In the following chapter, we will propose a new algorithm which will produce good performance

when the pose of the image varies.
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Chapter 4

Joint Probabilistic Linear Discriminant

Analysis for Face Recognition

In the previous chapter we explored the combination of patchbased face representation methods and

Probabilistic Linear Discriminant Analysis (PLDA) [82]. In this chapter we compare PLDA and another

Bayesian face recognition algorithm: the Joint Bayesian Face algorithm [30], which also produces good

performance in the Labeled Faces in the Wild (LFW) database [65]. We analyze the commonalities

and key differences between PLDA and the Joint Bayesian Facealgorithm and propose Joint PLDA to

combine the advantages of the two algorithms.

4.1 Introduction

The current state of the art algorithms in face recognition are to some extent dominated by a family of

subspace algorithms. The Eigenfaces algorithm [132] was the first subspace algorithm and has become

the most common performance benchmark. The principle behind the Eigenfaces algorithm is to apply

principal components analysis (PCA) to project face imageslinearly to a low dimensional subspace.

The goal of this projection is to maximize the scatter of all face images in the low dimensional sub-

space. The disadvantage of the Eigenfaces algorithm is thatthe maximized scatter is due not only to the

between-individual scatter that is important for classification but also to the within-individual scatter that

is not wanted. Therefore, unwanted variations due to pose, lighting, and expression are retained and the

Eigenfaces algorithm is not an optimal algorithm from a discrimination viewpoint.

The Fisherfaces algorithm [10] overcame the drawback of theEigenfaces algorithm. The Fisher-

faces algorithm applies Linear discriminant analysis (LDA) to project face images to a low dimensional

subspace by a set of projection vectors that maximize the ratio of the between-individual scatter matrix to

the within-individual scatter matrix. The Fisherfaces algorithm improves the performance when lighting

and expression variation exists. However, LDA often confronts the small sample problem, especially

when dealing with high dimensional face image data. The small sample problem refers to the fact that

the within-individual scatter matrix may become singular when the image number per individual is much

smaller than the dimensions of the data.

To overcome the drawback of LDA, the Fisherfaces algorithm firstly uses PCA to reduce data
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dimensionality and then performs LDA. However, this methodhas a drawback that the Fisherfaces al-

gorithm is limited to the discriminant information in the principal subspace. Chen et al. [32] exploit

the discriminant information that also exists in the null space spanned by the eigenvectors of the within-

individual scatter matrix with zero eigenvalues. To use allthe discriminative information, Wang et al.

[137] proposed the Dual-Space LDA algorithm, which performs Linear Discriminant Analysis in both

the principal and null subspace of within-individual scatter matrix. They demonstrated that the Dual-

Space LDA algorithm produces better performance than the Fisherfaces algorithm.

All the aforementioned face recognition algorithms and their variations are distance-based algo-

rithms. Face images are projected into a low dimensional subspace and the match assignment between

two images is based on whether the distance of two images in the subspace is bigger than a threshold.

The Bayesian Face algorithm [97] uses a different method to verify whether two images match. It

makes a match assignment by verifying whether the difference of a face image pair is caused mainly by

between-individual variation or within-individual variation. The Bayesian Face algorithm uses a prob-

abilistic framework to model between-individual and within-individual variation in training. In test, if

the difference of two face images is mainly caused by between-individual variation, the two images have

different identities. Conversely, if the image differenceis mainly because of within-individual varia-

tion, two images are from the same person. The Bayesian Face algorithm demonstrated a performance

advantage over the Fisherfaces algorithm in the FERET 1996 competition [97].

The aforementioned Bayesian Face algorithm and its variations generally model the image differ-

ence of a face image pair. Compared with modeling two images jointly, modeling the image difference

can be understood as projecting a 2D space describing the relation of two images into a 1D space de-

scribing image difference. Such a projection can capture the major discriminative information but may

reduce separability. Probabilistic Linear Discriminant Analysis (PLDA) [111] models two images jointly

instead of the image difference and can capture more discriminative information. PLDA models the joint

distribution of two images and makes verification assignment by comparing the match likelihood and the

non-matching likelihood. In PLDA, each face image is considered to be generated from a hidden iden-

tity variable in the between-individual subspace and a hidden noise variable in the within-individual

subspace pulsing some stochastic noise. In training, an EM algorithm is applied to estimate the model

parameters: the basis functions for the between-individual subspace, the basis functions for the within-

individual subspace and a diagonal matrix defining noise. Intest, face verification is treated as a model

selection problem. When two images are assumed to match, a match likelihood is computed by using the

match covariance matrix derived from the learned model parameters. When two images are assumed to

be in non-match model, a non-match likelihood is calculatedby using the non-match covariance matrix

derived from the trained model parameters. Two images are considered to match if the match likeli-

hood is bigger than the non-match likelihood. Prince and Elder [111] demonstrated that their algorithm

produces better performance than the Bayesian Face algorithm.

Chen et al. [30] claimed PLDA may discard some discriminative information because PLDA applies

a subspace method to project high dimensional face data intoa low dimensional subspace. To address
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this issue, they proposed the Joint Bayesian Face algorithmwhich does not make the low dimension

assumption and can estimate the match/non-match covariance matrix from high dimensional face data

directly. They claimed their algorithm can capture more discriminative information and produced better

performance than PLDA. In the Joint Bayesian Face algorithmeach face is described to be the sum of

two parts: identity and within-individual variation. In training, an EM-like algorithm is applied to learn

the between-individual covariance matrix and the within-individual covariance matrix. In test, the match

and non-match covariance matrix derived from the between-individual and within-individual covariance

matrices are used to compute the match and non-match likelihoods for a given image pair. The match

assignment is decided by comparing the two likelihoods.

The key difference between PLDA and the Joint Bayesian Face algorithm is that PLDA applies

factor analysis to project face data into a low dimensional between-individual and within-individual

subspaces to estimate the match and non-match covariance matrix while the Joint Bayesian Face algo-

rithm uses an EM-like algorithm to partition each face imageinto an identity component and a within-

individual component with the same dimensions as the original face data and then estimate the match and

non-match covariance matrix directly from the identity components and within-individual components.

Another difference is that PLDA uses a strict EM algorithm and guarantees the training log likelihood

increases after each iteration while the Joint Bayesian Face algorithm uses an EM-like algorithm and

cannot guarantee that the log likelihood converges.

Although Chen et al. [30] claimed their algorithm can capture more discriminative information and

produce better performance than PLDA by using high dimensional face data instead of low dimensional

vectors, the subspace method used by PLDA can improve signal-to-noise ratio and reduce the number

of estimated entries when estimating the covariance matrix. Therefore, there is no obvious theoretical

advantage for the Joint Bayesian Face algorithm. Although Chen et al. [30] demonstrated that the Joint

Bayesian Face algorithm produced better performance than PLDA in the LFW database, the performance

difference is marginal, only 0.8%. Moreover, the experiment settings in [30] may not be fair for PLDA.

They chose the optimal parameters for the Joint Bayesian algorithm but did not use the optimal param-

eters for PLDA. Therefore, it is interesting to compare the Joint Bayesian Face algorithm and PLDA to

find whether direct modeling or subspace method is better to estimate the match/non-match covariance

matrix.

The structure of this chapter is as follows: we first introduce the detail of the Bayesian Face algo-

rithm, PLDA, and the Joint Bayesian Face algorithm and analyze the commonalities and key differences

of the three Bayesian face recognition algorithms in section 4.2. To show the difference between PLDA

and the Joint Bayesian Face algorithm more clearly, we make aempirical comparison between the two al-

gorithms in section 4.3. Then we propose Joint PLDA to combine the advantages of PLDA and the Joint

Bayesian Face algorithm in section 4.4. After that we compare the performance of the three Bayesian

face recognition algorithms using different image descriptors in section 4.5.2. We also use different

approaches to combine multiple image descriptors in section 4.5.3. Finally, we draw a conclusion in

section 4.6.
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4.2 Bayesian Face Recognition Algorithms

In this section we will first give a brief introduction to three Bayesian face recognition algorithms: the

Bayesian Face algorithm, PLDA and the Joint Bayesian Face algorithm. Then we will compare the three

algorithms.

4.2.1 The Bayesian Face Algorithm

The Bayesian Face algorithm [97] models the image difference∆ of two images and makes the match

assignment based on whether the image difference is mainly caused by between-individual or within-

individual variation. The image difference is modeled by a probabilistic framework:

∆ = x1 − x2 (4.1)

P (∆|Ms) = G∆[0, s] (4.2)

P (∆|Md) = G∆[0,d], (4.3)

where imagex1 andx2 have been subtracted with the mean of all images; modelMs denotes two

images are from the same person and modelMd denotes two images are from different people; the

functionGo[̺, ς] denotes a Gaussian ino with mean̺ and covarianceς; the termΣs is the covariance

matrix for within-individual variation andΣd is the covariance matrix for between-individual variation.

Learning

In training, model parametersθ = {Λs,Vs,Σs,Λd,Vd,Σd} are learned from training images. Two

sets of image pairs, which comprise intra-personal image pairs and extra-personal image pairs, are

firstly collected from training images. Then the eigenvaluesΛs and the eigenvectorsVs of the within-

individual covariance matrixΣs are learnt from intra-personal image pairs. The eigenvalues Λd and

eigenvectorsVd of the between-individual covariance matrixΣd are learnt from extra-personal image

pairs.

Verification

The Bayesian Face algorithm makes match decision for two images by comparing the likelihood for

within-individual variationP (∆|Ms) and the likelihood for between-individual variationP (∆|Md).

To compute two likelihoods more efficiently, each test imagexk is firstly preprocessed with whitening

transformation and then is stored as two vectors: the between-individual subspace coefficientshk and

the within-individual subspace coefficientswk and :

hk = Λ
−1/2
d Vdxk (4.4)

wk = Λ−1/2
s Vsxk. (4.5)

Whitening transformation is a decortication transformation, which can transfer a set of random variables

having a known covariance matrix into a set of new random variables having a identity covariance matrix.

A typical whitening process to a random vectorX with a not singular covariance matrixΣ meansX

multiplying byΣ−1/2. Then the match likelihoodP (∆|Ms) and the non-match likelihoodP (∆|Md)
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are computed by:

∆ = x1 − x2 (4.6)

P (∆|Ms) =
e−1/2‖w1−w2‖

2

(2π)D/2|Σs|1/2
(4.7)

P (∆|Md) =
e−1/2‖h1−h2‖

2

(2π)D/2|Σd|1/2
, (4.8)

where D is subspace dimension.

4.2.2 PLDA

PLDA models two images jointly instead of the image difference. In PLDA, a face image is represented

by:

xij = Fhi +Gwij + ǫij (4.9)

wherexij denotes thejth image of theith individual which has subtracted the mean of all face images,

the matrixF consists of the basis functions for the between-individualsubspace in columns andhi

denotes the hidden identity variable that is constant for all J imagesxi1...iJ of the personi. The matrix

G contains the basis functions for the within-individual subspace in columns. The termwij denotes the

hidden noise variable that is different for each image. The termǫij represents a stochastic noise. The

identity information is represented byFhi, which accounts for between-individual variation. For a given

individual, the termFhi is constant. Within-individual variation is represented by Gwij + ǫij , which

explains why two images of the same individual do not look identical.

We can alternately describe the image generation in terms ofconditional probabilities:

Pr(xij |hi,wij) = Gx[Fhi +Gwij ,Σ] (4.10)

Pr(hi) = Gh[0, I] (4.11)

Pr(wij) = Gw[0, I]. (4.12)

where the termΣ is a covariance matrix andI is a identity matrix.

Learning

In training, an EM algorithm is applied to learn the parameters θ = {F,G,Σ}. In the Expectation-

or E-Step, we fix the parametersθ and compute a full posterior distribution over the hidden variables

hi andwij . In the Maximization- or M-Step, we optimize the estimates of the parametersθ. The EM

algorithm guarantees the likelihood increases at each training iteration.

Verification

In PLDA the match assignment for two images is decided by comparing the non-match likelihood

Pr(x1,x2|Md) and the match likelihoodPr(x1,x2|Ms), where modelMd denotes that two images

do not match and modelMs denotes that two images match.

When two images are assumed to be from different people (model Md) and two images are assumed

to be generated independently, the non-match likelihood oftwo images is as

Pr(x1,x2|Md) = Pr(x1|Md)Pr(x2|Md). (4.13)
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Here we need to compute the termPr(x1|Md) andPr(x2|Md). According to the equation 4.9, the

generation of imagex1 can be written as

x1 =
[

F G

]





h

w



+ ǫ (4.14)

or

x1 = Ay + ǫ. (4.15)

According to the equations 4.10, 4.11, and 4.12, the generation of imagex1 can be described in terms of

conditional probabilities:

Pr(x1) = Pr(x1|y)Pr(y)

= Gx1
[Ay,Σ′]Gy[0, I]

= Gx1
[0,AAT +Σ]

= Gx1
[0,FFT +GGT +Σ], (4.16)

where

Σ′ =





Σ 0

0 Σ



 .

The generation of imagex2 can be described in the similar format as imagex1, so the equation 4.13 can

be written as

Pr(x1,x2|Md) = Pr(x1|Md)Pr(x2|Md)

= Gx[0,Σd]

= Gx



0,
AAT +Σ 0

0 AAT +Σ





= Gx



0,
FFT +GGT +Σ 0

0 FFT +GGT +Σ



 , (4.17)

where the termx is the concatenation of imagex1 andx2, the termΣd is the non-match covariance

matrix.

When two images are assumed to be from the same person (ModelMs), according to the equation

4.9, the generation of imagex1 andx2 can be described as:





x1

x2



 =





F G 0

F 0 G















h

w1

w2











+





ǫ1

ǫ2



 (4.18)

or

x = Bz+ ǫ′. (4.19)

According to the equation 4.10, 4.11, and 4.12, the match likelihood of two imagesx1 andx2 can be
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written as:

Pr(x1,x2|Ms) = Pr(x|z)Pr(z)

= Gx[Bz,Σ′]Gz[0, I]

= Gx[0,Σs]

= Gx[0,BBT +Σ′]

= Gx



0,
FFT +GGT +Σ FFT

FFT FFT +GGT +Σ



 , (4.20)

where the termΣs is the match covariance matrix.

With the two above likelihoods, we make match decision by thelog likelihood ratior(x1,x2):

r(x1,x2) = log
Pr(x1,x2|Ms)

Pr(x1,x2|Md)

= logPr(x1,x2|Ms)− logPr(x1,x2|Md)

=
2 log(2π)− log |Σs| − xTΣ−1

s x+ 2 log(2π) + log |Σd|+ xTΣ−1

d x

2

∝ κ+ xTΣ−1

d x− xTΣ−1

s x, (4.21)

whereκ is a constant.

4.2.3 The Joint Bayesian Face Algorithm

The Joint Bayesian Face algorithm modes two images jointly but does not make low dimensional as-

sumption as PLDA. In the Joint Bayesian Face algorithm a faceimagexij is represented as the sum of

the identity componentαi and the within-individual variation componentβij :

xij = αi + βij , (4.22)

where the termxij is thejth image of theith person. Both the identity componentαi and the within-

individual variation componentβij follow Gaussian distributions:

αi = Gα[0,Σα] (4.23)

βij = Gβ[0,Σβ], (4.24)

where the termΣα is the covariance matrix for the identity component; the term Σβ is the covariance

matrix for the within-individual variation component.

Learning

In training, an EM-like algorithm is applied to learn the covariance matricesΣα andΣβ from a

set of training images. In the E-Step of the EM-like algorithm, the covariance matricesΣα andΣβ are

fixed to estimate the identity componentαi and the within-individual variation componentβij for each

imagexij . In the M-Step, the covariance matricesΣα andΣβ are updated. This training method is

not a strict EM algorithm and this training method cannot guarantee that the likelihood increases at each

iteration.

Verification

Similar to PLDA, the Joint Bayesian Face algorithm makes match assignment for two images based
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on the log likelihood ratior(x1,x2) between the match likelihoodPr(x1,x2|Ms) and the non-match

likelihoodPr(x1,x2|Md):

r(x1,x2) = log
Pr(x1,x2|Ms)

Pr(x1,x2|Md)

∝ xTΣ−1

d x− xTΣ−1

s x, (4.25)

where the match likelihood is obtained by

Pr(x1,x2|Ms) = Gx[0,Σs]

= Gx



0,
Σα +Σβ Σα

Σα Σα +Σβ



 , (4.26)

and the non-match likelihood is obtained by

Pr(x1,x2|Md) = Gx[0,Σd]

= Gx



0,
Σα +Σβ 0

0 Σα +Σβ



 . (4.27)

4.2.4 Discussion

The Bayesian Face algorithm, the Joint Bayesian Face algorithm, and PLDA all belong to a family of

Bayesian face recognition algorithms and have the following features in common:

• All the three algorithms use a probabilistic framework.

• All the three algorithms consider two types of image variation: between-individual and within-

individual variation.

• All the three algorithms are based on a comparison of two Gaussians for recognition, although the

mean and variance of these Gaussians varies from algorithm to algorithm.

The difference among the three Bayesian face recognition algorithms is summarized in Table 4.1.

Modelling Target Training Method Verification Method 

Bayesian Face 
Probability of 

image difference 

PCA subspace 

method 

Comparing between-

individual variation 

and within-individual 

variation 

PLDA 
Joint probability 

of two images 
EM algorithm 

Comparing the 

match and non-

match log likelihood 

Joint 

Bayesian Face 

Joint probability 

of two images 

EM-like 

algorithm 

Comparing the 

match and non-

match log likelihood 

Category 

Algorithm 

Table 4.1:Comparison of the three Bayesian face recognition algorithms.

77



4.2 Bayesian Face Recognition Algorithms

From Table 4.1 we see that the difference between the Bayesian Face algorithm and the two other

algorithms is that the Bayesian Face algorithm models the image difference while the Joint Bayesian

Face algorithm and PLDA model the joint probability of two images. Compared with modeling two

images jointly, modeling image difference might reduce separability.

The key difference between the Joint Bayesian Face algorithm and PLDA is that the Joint Bayesian

Face algorithm uses an EM-like algorithm to estimate the covariance matrices directly from high dimen-

sional data while PLDA applies an EM algorithm to approximate covariance matrices by a factor analysis

subspace method. The advantage of the EM-like training method of the Joint Bayesian Face algorithm

is that it can estimate the covariance matrix without projecting data into a low dimensional subspace

and the disadvantage is that likelihood convergence cannotbe guaranteed in theory. Conversely, PLDA

applies a strict EM training algorithm and guarantees the likelihood increases at each iteration. How-

ever, PLDA uses factor analysis subspace method and makes the low dimension assumption, so it might

discard some discriminatory information.

Although the training method of the Joint Bayesian Face algorithm and PLDA is different, the

verification equations of the two algorithms are very similar in the test phase. To show this more clearly,

we rewrite the verification equations of two algorithms for the matched modelMs and the unmatched

modelMd.

When imagex1 andx2 are assumed from the same person (ModelMs), the match likelihood for

both the two algorithms can be derived as

Pr(x1,x2|Ms) = Gx[0,Σs],

where the covariance matrixΣJ
s for the Joint Bayesian Face algorithm is defined in equation 4.28, the

covariance matrixΣP
s for PLDA is defined in equation 4.29:

ΣJ
s =





Σα +Σβ Σα

Σα Σα +Σβ



 (4.28)

ΣP
s =





FFT +GGT +Σ FFT

FFT FFT +GGT +Σ



 . (4.29)

When two images are assumed to be from different people (Model Md) and are generated indepen-

dently, the non-match likelihood for both the two algorithms can be written as

Pr(x1,x2|Md) = Gx[0,Σd],

where the covariance matrixΣJ
d of the Joint Bayesian Face algorithm is defined in equation 4.30, the

covariance matrixΣP
d of PLDA is defined in equation 4.31:

ΣJ
d =





Σα +Σβ 0

0 Σα +Σβ



 (4.30)

ΣP
d =





FFT +GGT +Σ 0

0 FFT +GGT +Σ



 . (4.31)
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4.3 Empirical Comparison of the Joint Bayesian Face algorithm

and PLDA

In the previous section we argued that the Joint Bayesian Face algorithm used an EM-like training

method and could not guarantee the likelihood increased at each iteration in training. We also claimed

that PLDA used an EM training method and the likelihood increasing at each iteration was guaranteed.

In this section, to validate our argument, we will show the likelihood using the model parameters of

the Joint Bayesian Face algorithm and PLDA obtained at each training iteration. We also investigate

the verification performance using the model parameters of the two algorithms obtained at each training

iteration.

To perform the aforementioned experiments, we use the aligned LFW images provided by [127].

We preprocess each image as follows. We crop the central160 × 80 pixels from each LFW image to

obtain the face region. Then we extract Local Binary Patterns (LBP) descriptors [102] from each image

by the following settings: we divide each face image into several12×12non-overlapping patches, we set

the radius to form neighborhood over each pixel location to 3, we set the number of neighbor points to 8,

and we use uniform binary patterns. We compute LBP histograms of each12× 12 patch and normalize

the histograms in each patch to unit length, then truncate the histograms at 0.2 and normalize again to

unit length. In the end each image is described by a LBP vectorwith 7552 dimensions.

We adopt the ‘unrestricted configuration’ of the LFW training data, which means identity labels

associated with images are allowed to be used. We apply PCA toreduce the dimensions of the data to

100, 200, and 400 for both the Joint Bayesian Face algorithm and PLDA. We always set the subspace

dimensions of PLDA to 128.

Figure 4.1:We compare the training likelihood of the Joint Bayesian Face algorithm and PLDA

at each iteration when the PCA dimensions are set to 100, 200,400. (a) The total Log likelihood of

the Joint Bayesian Face algorithm over ten LFW cross-validation experiments as a function of iteration

number when the PCA dimensions are set to 100, 200, 400. (b) The total Log likelihood of PLDA as a

function of iteration number for the three PCA dimensions.
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In the LFW database images are divided into ten non-overlapping sets and the verification perfor-

mance is reported by 10 cross-validation experiments. In each experiment, one image set is used for

testing and the nine other sets are used for training. In eachexperiment, for the Joint Bayesian Face

algorithm, we initialize the model parameters to random values and calculate the log likelihood of all

training images using the estimated model parameters at each iteration. We add up the 10 likelihoods of

the 10 experiments at each iteration and show the sum of the log likelihoods as a function of iteration

number in Figure 4.1 (a). We perform the experiments when thePCA dimensions are set to 100, 200,

400.

Similarly for PLDA, we initialize the model parameters to random values and compute the log like-

lihood of all training images using the model parameters obtained at each iteration in each experiment.

We show the sum of the log likelihood of 10 experiments as a function of iteration number in Figure 4.1

(b). We perform the experiments when we set the PCA dimensions to 100, 200, 400.

From Figure 4.1 (a) we find that the total log likelihood of theJoint Bayesian Face algorithm

first decreases and then gradually saturates for all the three PCA dimensions. However, the total log

likelihood of PLDA as shown in Figure 4.1 (b) maintains a increasing trend as the iteration number

increases and this pattern is revealed for all the three PCA dimensions. Therefore, it is clear that the EM-

like training method of the Joint Bayesian Face algorithm cannot guarantee that the likelihood increases

at each iteration while the EM training method of PLDA can.

We also investigate the verification performance of two algorithms using the model parameters ob-

tained at each training iteration. For the two algorithms, in each experiment of 10 LFW cross-validation

experiments, we use the obtained model parameters at each iteration to compute the % correct for the test

set. We compute the mean % correct of 10 experiments at each iteration and show the mean % correct

of the Joint Bayesian Face algorithm as a function of iteration number in Figure 4.2(a). We perform the

experiments when the PCA dimensions are set to 100, 200, 400.Similarly, we show the mean % correct

of PLDA as a function of iteration number for the three PCA dimensions in Figure 4.2(b).

From Figure 4.2 (a) we find that the mean % correct of the Joint Bayesian Face increases in the first

3 iterations and then decreases till closing to a stable value for the three PCA dimensions. Conversely,

as shown in Figure 4.2 (b), the verification performance of PLDA maintains a increasing trend as the

iteration number increases for the three PCA dimensions.

4.4 Joint PLDA

In this section we propose Joint PLDA to combine the advantages of the Joint Bayesian Face algorithm

and PLDA.

4.4.1 Motivation

The Joint Bayesian Face algorithm and PLDA have their own advantages and disadvantages. The dis-

advantage of the Joint Bayesian Face algorithm is that its training method is only an EM-like method

and cannot guarantee that the likelihood increases at each iteration. However, the Joint Bayesian Face

algorithm does not make the low dimension assumption and maycapture more discriminatory informa-
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Figure 4.2:We compare the verification performance of the Joint Bayesian Face algorithm and

PLDA at each iteration when the PCA dimensions are set to 100,200, 400. (a) Mean % correct

of the Joint Bayesian Face algorithm over the 10 LFW cross-validation experiments as a function of

iteration number when the PCA dimensions are set to 100, 200,400 respectively. (b) Mean % correct of

PLDA as a function of iteration number for the three PCA dimensions.

tion by estimating the covariance matrix from high dimensional data directly. The advantage of PLDA

is that its training algorithm is an EM method and and the training likelihood keeps increasing as the

training iteration number increases. To combine the advantages of the two algorithms, we propose a new

algorithm: Joint PLDA. We apply the EM algorithm of PLDA to learn the model parameters of PLDA.

Then we use the E-Step of the EM algorithm of PLDA to divide each image into the identity component

and the within-individual variation component. We computea covariance matrix for the identity com-

ponent and another covariance matrix for the within-individual variation component. Lastly we derive

the match and non-match covariance matrix to do verificationas in the Joint Bayesian Face algorithm.

By this approach we can guarantee that the likelihood increases in training and can also estimate the

within-individual covariance matrix from high dimensional data.

4.4.2 Face Image Representation

In the Joint PLDA algorithm, a face imagexij is represented as the sum of the identity componentαi

and the within-individual variation componentβij :

xij = αi + βij (4.32)

αi = Fhi (4.33)

βij = Gwij + ǫij , (4.34)

where imagexij has subtracted the mean of all images. The identity component αi is equivalent to

the termFhi of PLDA and the within-individual variation componentβij is equivalent to the term

Gwij + ǫij of PLDA.
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Both the two componentsαi andβij follow Gaussian distribution:

αi = Gα[0,Σα] (4.35)

βij = Gβ[0,Σβ], (4.36)

where the termΣα is the covariance matrix for the identity component; the term Σβ is the covariance

matrix for the within-individual variation component.

4.4.3 Learning

In training we aim to learn the covariance matrixΣα andΣβ. We firstly use the EM algorithm of PLDA

to estimate the model parametersθ = {F,G,Σ} from training images. Generally the iteration number

of the EM training algorithm is set to 25. Then we use the modelparameterŝθ estimated at the end of

the EM iterations and apply the E-Step of the EM algorithm of PLDA (defined in [111]) to compute the

expectation of hidden identity variablehi and hidden noise variablewij for each training imagexij :

E[yij ] = (ATΣ
′−1A+ I)−1ATΣ

′−1xij , (4.37)

where

yij =





hi

wij



 (4.38)

A = [ F G ] (4.39)

Σ′ =





Σ 0

0 Σ



 . (4.40)

After we obtain the estimated hidden variableshi andwij , we can compute the identity componentαi

and the within-individual variation componentβij for each imagexij by

αi = Fhi (4.41)

βij = xij − Fhi. (4.42)

Lastly, we calculate the covariance matrixΣα for the identity component and the covariance matrix

Σβ for the within-individual variation component by

Σα = cov(α)

Σβ = cov(β), (4.43)

where the termα denotes the estimated identity components of all training images and the termβ

denotes the within-individual variation components of alltraining images.

4.4.4 Inference

Similar to the Joint Bayesian Face algorithm, the match decision for two images is made based on the

log likelihood ratio:

r(x1,x2) = log
Pr(x1,x2|Ms)

Pr(x1,x2|Md)

∝ xTΣ−1

d x− xTΣ−1

s x,
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where

x =





x1

x2



 (4.44)

Σd =





Σα +Σβ 0

0 Σα +Σβ



 (4.45)

Σs =





Σα +Σβ Σα

Σα Σα +Σβ



 . (4.46)

4.5 Experiments in the Unconstrained Database
In this section, we compare the verification performance of four Bayesian face recognition algorithms:

the Bayesian Face algorithm, PLDA, the Joint Bayesian Face algorithm and Joint PLDA in the LFW

database [65]. We will first introduce the preprocessing method for the LFW images in section 4.5.1.

Then we will show the performance of four Bayesian face recognition algorithms using different image

descriptors in section 4.5.2. Finally we will compare threecombination approaches to combine multiple

image descriptors in section 4.5.3.

4.5.1 Preprocessing

As introduced in section 3.5, the Labeled Faces in the Wild (LFW) dataset [65] has become a benchmark

database to evaluate face recognition in uncontrolled environments. In this section we still adopt the

‘unrestricted configuration’, which means identity information can be used in training. We report face

verification results by the mean % correct of 10 cross validation experiments and the standard error of

the mean.

As in section 3.5 we used the aligned images provided by [127]. We crop the central160 × 80

pixels from each aligned250× 250 black-and-white image to obtain face regions. The purpose of only

preserving the face region is to reduce image variation fromimage background. The images used in the

following experiments are black-and-white face regions with the size160× 80 pixels. Example images

are shown in Figure 3.13(c).

In this chapter we always use 25 iterations of an EM algorithmas [82] to train the model parameters

of PLDA and Joint PLDA, which are initialized to random values. As shown in section 4.3 that the best

performance of Joint Bayesian Face algorithm is achieved when a small iteration number between 3 and

6 is chosen, so we always apply 5 iterations of an EM-like algorithm to train the model parameters of

the Joint Bayesian Face algorithm.

4.5.2 Experiments Using Image Descriptors

In this section we apply Local Binary Pattern (LBP) descriptors [102], Three-Patch LBP (TPLBP) de-

scriptors [140], Four-Patch LBP (FPLBP) descriptors [140], Scale Invariant Feature Transform (SIFT)

descriptors [88], Histogram of oriented gradients (HOG) descriptors [38] to do face verification in the

LFW database.

We firstly apply LBP descriptors to compare performance of four Bayesian face recognition algo-

rithms: the Bayesian Face algorithm, PLDA, the Joint Bayesian Face algorithm and Joint PLDA. The
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LBP descriptors are calculated at each pixel location. The simplest local binary pattern thresholds a3×3

neighborhood over a pixel location by comparing with the intensity of the central pixel. Then the sub-

sequent pattern of 8 bits, which is the comparison results, is treated as a binary number. The histogram

of these binary numbers in a predefined region is then used as acharacter to describe the region. Nor-

mally, uniform binary patterns are used. Uniform binary patterns mean there are maximum 2 transitions

from 0 to 1. For example, 11100011 is a uniform binary patternand 01101101 is not. The non-uniform

LBPs are considered to be equivalent and assigned into one histogram bin when the histogram of all

uniform LBPs is computed. The LBP representation for the whole face image is to divide the image into

a grid of regions and then compute the LBP histograms in each region. The concatenation of all the LBP

histograms forms the LBP face image descriptor.

32 64 96 128 160 

PLDA 

100 
80.150 

 ± 0.719 

81.367  

 ± 0.659 

69.700 

 ± 0.597 

59.900  

± 1.054 

63.067 

± 0.811 

200 
80.467  

± 0.754 

81.617       

± 0.728 

81.450 

± 0.640 

83.350 

± 0.800 

82.000 

± 0.788 

400 
80.183 

± 0.747 

81.350 

± 0.603 

81.583 

 ± 0.612 

82.217 

± 0.812 

82.650 

± 0.618 

600 
79.833  

± 0.740 

80.650 

 ± 0.540 

81.000  

 ± 0.704 

80.950 

 ± 0.637 

80.417 

 ± 0.802 

Joint 

PLDA 

100 
81.800 

 ± 0.652 

81.917 

 ± 0.633 

75.950 

 ± 0.578 

67.500  

± 0.692 

68.850 

± 1.103 

200 
83.467  

± 0.885 

83.883       

± 0.843 

84.317 

± 0.836 

83.917 

± 0.739 

83.433 

± 0.722 

400 
83.633 

± 0.643 

83.783 

± 0.588 

83.600 

 ± 0.769 

83.417 

± 0.637 

83.500 

± 0.716 

600 
82.717  

± 0.595 

82.150 

 ± 0.629 

81.900 

 ± 0.684 

81.683 

 ± 0.663 

81.117 

 ± 0.792 

Subspace Dims 

PCA Dims Algorithms 

Table 4.2:The verification performance of PLDA and Joint PLDA in the LFW database using the

LBP image descriptors provided by [30] as we vary the PCA dimensions and subspace dimen-

sions. The performance is shown by the mean % correct and the standard error of the mean based on

10 cross-validation experiments. Numbers with the red color indicate the best performance for fixed

PCA dimension. We find the optimal PCA dimension and subspacedimension for PLDA are 200 and

128 respectively; the optimal PCA dimension and subspace dimension for Joint PLDA is 200 and 96

respectively.

We adopt the LBP descriptors provided by [30] to do the following experiments. The dimen-
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sion of their LBP descriptors for a image is 5900. We apply PCAto reduce the dimensions. We need

to find the optimal PCA dimensions for the Bayesian Face algorithm and the Joint Bayesian Face algo-

rithm. There are two sets of parameters for PLDA and Joint PLDA: (i) the reduced PCA dimensions and

(ii) the number of basis functions for signal and noise component. The latter two parameters are always

varied together in our experiments and are referred to as “subspace dimensions”.

We apply an empirical approach to obtain the optimal values for PCA dimension and subspace

dimensions. Table 4.2 shows performance of PLDA and Joint PLDA under different combinations of

PCA dimensions and subspace dimensions. The results are reported by the mean % accuracy and the

standard error of the mean based on 10 cross-validation experiments. From the table we find the optimal

PCA dimension and subspace dimensions for PLDA are 200 and 128 respectively; the optimal PCA

dimension and subspace dimensions for Joint PLDA are 200 and96 respectively.

We list performance of four Bayesian face recognition algorithms in Table 4.3 as we vary PCA

dimensions. From the table we find that the optimal PCA dimensions for the Bayesian Face algorithm

and the Joint Bayesian Face algorithm are 100 and 400 respectively. When all the algorithms apply the

optimal parameters, Joint PLDA performs best among four algorithms, the Joint Bayesian Face algorithm

produces slightly better performance than PLDA, and the Bayesian Face algorithm performs worst.

100 200 400 600 

Bayesian Face 
76.950 

± 0.486 

72.250 

± 0.431 

72.483 

± 0.654 

65.467 

± 0.911 

Joint Bayesian 

Face 

81.967 

± 0.583 

84.017  

± 0.725 

84.067 

± 0.637 

80.017  

± 0.672 

PLDA 
81.367 

± 0.659 

83.350  

± 0.800 

82.650  

± 0.618 

   81.000 

± 0.704 

Joint PLDA 
81.917 

± 0.633 

84.317  

± 0.836 

83.783  

± 0.588 

   82.717 

± 0.595 

PCA Dims 

Algorithms 

Table 4.3:The performance of four Bayesian face recognition algorithms in the LFW database

using the LBP image descriptors provided by [30] as we vary PCA dimensions.The performance is

shown by the mean % correct and the standard error of the mean based on 10 cross-validation

experiments. For PLDA and Joint PLDA, the optimal subspace dimensions have been applied.

Numbers with red colors indicate the best performance of thealgorithm. Joint PLDA produces the best

performance.

We also extracted our own LBP image descriptors and apply them to do face verification in the LFW

database. To extract LBP descriptors, we divide a face imageinto several non-overlapping regions. We

vary the size of regions to extract different LBP descriptors. We term the LBP descriptors with the

extraction regions of the size8 × 8 pixels, 10 × 10 pixels, 12 × 12 pixels, 14 × 14 pixels as LBP8,
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LBP10, LBP12, LBP14. Other parameters to extract LBP descriptors are as follows: the radius to form

neighborhood over a pixel location is set to 3, the number of neighbor points is set to 8. Uniform binary

patterns are applied. We normalize the histograms in each region to unit length, then truncate their value

at 0.2, then normalize again to unit length.

The verification results of four Bayesian face algorithms using LBP8, LBP10, LBP12, LBP14 are

shown in Table 4.4. We set the PCA dimensions to 400 for the Bayesian Face algorithm and the Joint

Bayesian Face algorithm. We set the PCA dimensions and subspace dimensions to 200 and 128 respec-

tively for PLDA and Joint PLDA. From the table we find that Joint PLDA always performs best among

four Bayesian face recognition algorithms for all different LBP descriptors. The best performance of

Joint PLDA is obtained using the LBP12 descriptors. Compared with the LBP descriptors provided

by [30], our LBP descriptors produce significantly better performance. The reason might be that we

normalized the LBP histograms.

Bayesian 

Face 
PLDA 

Joint 

Bayesian 

Joint 

PLDA 

LBP 

Provided by [30] 

76.950 

± 0.486 

83.350 

 ± 0.800 

84.067 

 ± 0.637 

84.317 

 ± 0.836 

LBP8  [102] 
78.050 

± 0.617 

85.117 

 ± 0.502 

85.950 

 ± 0.488 

86.183 

± 0.434 

LBP10 [102] 
82.283 

± 0.608 

87.333 

 ± 0.394 

88.217 

 ± 0.343 

88.267 

± 0.402 

LBP12 [102] 
82.067 

± 0.526 

87.600 

 ± 0.451 

87.617 

 ± 0.512 

88.000 

± 0.442 

LBP14 [102] 
81.150 

± 0.432 

86.600 

 ± 0.468 

87.550 

 ± 0.428 

87.733 

± 0.393 

SIFT 

Provided by [58] 

80.717 

± 0.554 

86.317 

± 0.416 

86.600 

± 0.590 

87.333 

± 0.453 

HOG [38] 
78.717 

± 0.661 

84.283 

 ± 0.491 

84.217 

 ± 0.467 

85.067 

± 0.472 

TPLBP [140] 
76.550 

± 0.520 

82.933 

 ± 0.339 

83.850 

 ± 0.423 

83.933  

± 0.447 

FPLBP [140] 
75.500 

± 0.626 

81.317 

 ± 0.637 

82.033 

 ± 0.567 

82.333 

± 0.619 

Algorithms 

Descriptors 

Table 4.4:The verification performance of four Bayesian face recognition algorithms using

different image descriptors.Numbers with red colors indicate the best performance. Joint PLDA

performs best for all the descriptors. The best performanceis achieved by using LBP descriptors. The

LBP8, LBP10, LBP12, and LBP14 descriptors mean that we divide a face image into several regions

with the size8× 8 pixels,10× 10 pixels,12× 12 pixels and14× 14 pixels respectively to extract LBP

descriptors.
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We also used the SIFT descriptors provided by [58] to represent face images to compare the perfor-

mance of four Bayesian face recognition algorithms. They detected 9 fiducial points of each image and

extracted SIFT descriptors from each fiducial point. A face image is represented by a concatenated vec-

tor of the SIFT descriptors from the 9 points. We set the PCA dimensions to 400 for the Bayesian Face

algorithm and the Joint Bayesian Face algorithm. We set the PCA dimensions and subspace dimensions

to 200 and 128 respectively for PLDA and Joint PLDA. The verification results of four Bayesian face

recognition algorithms using the SIFT descriptor are also shown in Table 4.4. From the table we find that

the Joint PLDA algorithm performs best among four Bayesian face recognition algorithms when SIFT

descriptors are used to represent images. Compared with theperformance using the LBP descriptors

extracted by us, the performance using the SIFT descriptor is slightly worse.

We also used HOG descriptors [39] to represent images to compare the performance of four

Bayesian face recognition algorithms. We use the followingsettings to extract the HOG descriptors

from images: the cell size is set to10× 10 pixels, there are2× 2 cells in a block, the overlap rate among

blocks is set to 0.5, the angle range is set to0◦ ∼ 180◦, and the bin number is set to 9. We set the

PCA dimensions to 400 for the Bayesian Face algorithm and theJoint Bayesian Face algorithm. We set

the PCA dimensions and subspace dimensions to 200 and 128 respectively for PLDA and Joint PLDA.

The verification results of four Bayesian face algorithms using HOG descriptors are also shown in Table

4.4. From the table we find that when HOG descriptors are used to represent images the Joint PLDA

algorithm performs best. We also find that the performance using HOG descriptors is worse than the

performance using the SIFT and our LBP descriptors.

The TPLBP and FPLBP descriptors are also used to represent face images to compare the perfor-

mance of four algorithms. We follow the settings in [140] to extract TPLBP and FPLBP descriptors.

For both the two descriptors, we set the PCA dimensions to 400for the Bayesian Face algorithm and

the Joint Bayesian Face algorithm; we set the PCA dimensionsand subspace dimensions to 200 and 128

respectively for PLDA and Joint PLDA. The verification results of four algorithms using TPLBP and

FPLBP descriptors are also shown in Table 4.4 . From the tablewe find that Joint PLDA algorithm still

performs best when images are represented by TPLBP and FPLBPdescriptors. We also find that the per-

formance using TPLBP descriptors is worse than the performance using FPLBP descriptors. Moreover,

the performance using the two descriptors is much worse thanthe performance using other descriptors.

Among the four Bayesian face recognition algorithms, the Bayesian Face algorithm always per-

forms worst for all the image descriptors. The results suggest that modeling the probability of image

difference captures less discriminatory information thanmodeling the joint probability of two images.

From Table 4.4, we find that the performance of the Joint Bayesian Face algorithm is slightly better than

PLDA for all the image descriptors although the difference is quite marginal. It might demonstrate that

estimating covariance matrices directly from high dimensional data has a weaker advantage than using

subspace method. Joint PLDA always performs best, which supports our argument that Joint PLDA can

improve the verification performance by combining the advantages of PLDA and the Joint Bayesian Face

algorithm.
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Among all the image descriptors in Table 4.4, the best performance is obtained using LBP de-

scriptors. It shows LBP descriptors might capture more discriminatory information than other image

descriptors. The performance varies when we extract LBP descriptors from regions with different size,

which indicates the size of region affects the verification performance and we need to find a optimal

value.

SVM

Learn a threshold

Zero threshold

Figure 4.3:Comparison of three combination approaches.(a) The SVM combination approach is

worse than the ‘learn-a-threshold’ combination method forthe Bayesian Face algorithm. However, the

SVM combination approach performs best for the Joint Bayesian Face algorithm in (b), PLDA in (c) and

Joint PLDA in (d).

4.5.3 Experiments Combining Multiple Image Descriptors

As Wolf et al. [140] and Li et al. [82] demonstrated, combining multiple image descriptors produces

better performance than using single descriptor. In this section, we firstly compare three approaches to

combine multiple descriptors and then show the performanceof four Bayesian face recognition algo-

rithms combining multiple descriptors.

Our methods to combine multiple descriptors are to combine match scores of LFW test images pairs.

We use the match scores obtained in section 4.5.2. The match score of the Bayesian Face Recognition

algorithm for a pair of images is the difference between the match log likelihood and the non-match
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likelihood. For the Bayesian Face algorithm, the match likelihood is computed by the equation 4.7

and the non-match likelihood is calculated by the equation 4.8. For PLDA, the match likelihood is

computed by the equation 4.20 and the non-match likelihood is calculated by the equation 4.17. For

the Joint Bayesian Face algorithm, the match likelihood is computed by the equation 4.26 and the non-

match likelihood is calculated by the equation 4.27. For Joint PLDA, the match likelihood and the

non-match likelihood are computed by the same functions as the Joint Bayesian Face algorithm. We use

the match scores of different image descriptors obtained insection 4.5.2 to compare the performance of

the following three combination approaches:

• We treat each image descriptor independently and the final match score for a image pair is the sum

of the match scores using each descriptor. Two images are considered to match if the final match

score is bigger than zero.

• We treat each image descriptor independently and the final match score is the sum of the match

scores using each descriptor. Two images are considered to match if the final match score is bigger

than a threshold, which we learn from training images.

• We create an × d match score matrix fromn training image pairs andd image descriptors. We

train a Linear SVM classifier [36] based on the score matrix. We use the trained SVM classifier to

predict two images matching or not matching.

The first combination approach is adopted by PLDA in [82] but is not suitable for the Bayesian Face

algorithm, the Joint Bayesian Face algorithm, and Joint PLDA because a match threshold has to be learnt

for the three algorithms. The second and third approaches can be applied to all the four algorithms.

In Figure 4.3 we compare the performance of different combination approaches for the Bayesian

Face algorithm in (a), the Joint Bayesian Face algorithm in (b), PLDA in (c) and Joint PLDA in (d).

From Figure 4.3 we find that the performance of the three combination approaches increases when more

descriptors are combined. The results confirm the conclusion of [140] and [82]. We also find that the

SVM combination approach performs best except for the Bayesian Face algorithm.

We use the SVM combination approach to combine multiple descriptors and compare the perfor-

mance of four algorithms in Figure 4.4. We find that the performance of Joint Bayesian Face algorithm

and Joint PLDA is very close to each other. The Bayesian Face algorithm performs worst.

Chen at el. [30] claimed that the Joint Bayesian Face algorithm performed better than PLDA in the

LFW database when combining LBP, SIFT, TPLBP, and FPLBP descriptors. We use the LBP descriptors

provided by [30], the SIFT descriptors provided by [58], andour own implementation of TPLBP, and

FPLBP descriptors to duplicate their experiments. We use the SVM approach to combine the four

descriptors. Our experiment results in Table 4.5 agree withtheir conclusion that PLDA performs slightly

worse than the Joint Bayesian Face algorithm when the four descriptors are combined. Joint PLDA

performs better than PLDA but worse than the Joint Bayesian Face algorithm.
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+ TPLBP 
Chen LBP 

+ SIFT 
+ HOG + FPLBP + LBP8 + LBP10 + LBP12 + LBP14 
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Descriptors 

Joint PLDA 
Joint Bayesian Face 
PLDA
Bayesian Face 

Figure 4.4:We compare the performance of four Bayesian face recognition algorithms when the

SVM combination approach is used to combine multiple descriptors. The performance of Joint

PLDA is slightly better than the Joint Bayesian Face algorithm.

Bayesian 

Face 
PLDA 

Joint 

Bayesian 

Face 

Joint 

PLDA 

Results provided by 

[30] 
90.07 90.90 

Our experiment 

results 

83.267 

± 0.413 

90.080 

± 0.365 

90.783 

± 0.360 

90.583 

± 0.335 

Results 

Algorithms 

Table 4.5:We duplicate the experiments in [30] using the SVM approach to combine LBP, SIFT,

TPLBP and FPLBP. Our results agree with the conclusion in [30] that PLDA performs slightly worse

than the Joint Bayesian Face algorithm.

We notice that our LBP descriptors perform better than the LBP descriptors provided by [30] in

section 4.5.2. Therefore, we are motivated to compare the performance of four Bayesian face recogni-

tion algorithms using our own LBP descriptors. As shown in Table 4.6, when we combine LBP(LBP8,

LBP10, LBP12, LBP14), SIFT, TPLBP and FPLBP descriptors, Joint PLDA produces the best perfor-

mance91.367± 0.448, which is nearly the same as the performance91.30 ± 0.003 of the commercial

face recognition application face.com [63] at that time.
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Bayesian 

Face 
PLDA 

Joint 

Bayesian 

Face 

Joint 

PLDA 

LBP (LBP8, LBP10, 

LBP12, LBP14), SIFT, 

TPLBP, FPLBP 

84.455 

± 0.575 

90.717 

± 0.522 

91.217 

± 0.466 

91.367 

± 0.448 

Results 

Algorithms 

Table 4.6:We duplicate the experiments in [30] using our own LBP image descriptors. Joint PLDA

performs best.

4.6 Conclusion
In this chapter we compared the Bayesian Face algorithm, PLDA, and the Joint Bayesian Face algorithm

by analyzing their commonalities and differences. We find that modeling two images jointly can capture

more discriminatory information than modeling the image difference. PLDA and the Joint Bayesian

Face algorithm model the joint distribution of two images and produce good performance in the LFW

database. PLDA and the Bayesian Face algorithm have their own advantages but they also have some

disadvantages. We are motivated to propose Joint PLDA to combine the advantages of PLDA and the

Bayesian Face algorithm. Joint PLDA applies a strict EM algorithm to guarantee likelihood increases

and can also estimate the covariance matrix from the high dimensional data directly.

We compared the performance of the Bayesian Face algorithm,the Joint Bayesian Face algorithm,

PLDA and Joint PLDA in the LFW database. Our experiments demonstrate that Joint PLDA performs

best when a single descriptor is used. We also compare the performance of the four Bayesian face

recognition algorithms when we combine multiple image descriptors. When we combine LBP, SIFT,

TPLBP and FPLBP descriptors, Joint PLDA can achieve91.367%± 0.448 correct in the LFW database,

which is comparable to91.300%± 0.003 correct of the commercial face recognition system face.com

[126].

Joint PLDA has connections to metric learning algorithms [58] [42], which aim to learn a metric

to make two classes separable. Metric learning algorithms generally learn a Mahalanobis distance to

separate two classes:

(x1 − x2)
TΨ(x1 − x2), (4.47)

whereΨ is a positive definite matrix.

If we compare equation 4.44 and equation 4.47, we find both themetric learning algorithms and

Joint PLDA learn metrics. However, metric learning algorithms model the image difference and hence

have the same drawback as the Bayesian Face algorithm. Modeling image differences might reduce the

separability and capture less discriminatory informationthan modeling two images jointly.

In this chapter we only explore the performance of the four Bayesian face recognition algorithms

using global image descriptors, which means that we extractvisual features from the whole image. In

future work we hope to investigate the performance of the four algorithms using local descriptors, which

means we extract visual features from fiducial points (for example, the corners of the eyebrows, the
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corners of the eyes). As demonstrated in [31], local descriptors are generally more robust to image

variation if fiducial points can be detected precisely. Therefore, using local descriptors to represent face

images might improve performance.

In the following chapter, we will argue large pose variationis the challenge for the Bayesian face

recognition algorithms of this chapter and propose new algorithms to overcome the challenge.
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Chapter 5

Tied Bayesian Face Recognition Algorithms

for Pose Variation

5.1 Introduction

After decades of research to automatic face recognition, many face recognition algorithms and bench-

marks have been generated. However, face recognition in uncontrolled environments is still an unsolved

problem. In the previous chapter we have shown that Bayesianface recognition algorithms can produce

good performance in the evaluation benchmark for face recognition under uncontrolled environments:

the LFW database. In this chapter we will argue that large pose changes are the challenge for improv-

ing the verification performance in the LFW database and propose new algorithms to overcome this

challenge.

How to deal with large pose changes has been a popular research topic for many years. Among

existing face recognition algorithms across pose, Tied PLDA [82] produces good performance and is

computationally fast. Tied PLDA is a version of PLDA [111]. In this context, a ‘Tied’ means that

images from the same person but with two different poses havea common hidden variable but different

generation processes. Tied PLDA estimates the mapping between two poses and performs well in the

controlled XM2VTS [95] and FERET database [106] when large pose variation exists. We hypothesize

that Tied PLDA can also deal with large pose variation in uncontrolled databases such as the LFW

database [65].

It is also interesting to investigate a tied version of the Joint Bayesian Face algorithm [30] and

Joint PLDA. We propose the Tied Joint Bayesian Face algorithm and Tied Joint PLDA. Throughout

this chapter we refer to PLDA, the Joint Bayesian Face algorithm, and Joint PLDA as Bayesian face

recognition algorithms. We refer to tied PLDA, the Tied Joint Bayesian Face algorithm, and Tied Joint

PLDA as Tied Bayesian face recognition algorithms. We will demonstrate that Tied Bayesian face

recognition algorithms have an advantage in dealing with large pose variation.

Tied Bayesian face recognition algorithms assign images into pre-defined horizontal pose categories

and model the relationship of images under different pose categories. Therefore, to use tied models, suf-

ficient training images are required in each pose category. However, the images in the LFW database

were collected using the Viola-Jones frontal face detector[134], so there are few images in the non-
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frontal pose categories. To address this issue, our first solution is to use the Multi-PIE database to train

Tied Bayesian face recognition algorithms. This database contains 755,370 images from 345 individ-

uals with 6 expressions and 19 lighting conditions and 15 poses under four sessions. Therefore, the

Multi-PIE database can provide sufficient training images to train tied models. However, one possible

disadvantage of this approach is that images in the Multi-PIE database were collected in the laboratory.

These controlled Multi-PIE images might not include an equivalent amount of image variation as for the

test images from the uncontrolled LFW database. Therefore,our second solution to address the problem

of insufficient training images is to collect a new database from the internet but make sure there are

sufficient training images in each pose category. We called the new database the UCL Multi-Pose.

The structure of this chapter is as follows: In section 5.2, we analyse the verification results of three

Bayesian face recognition algorithms in the LFW database tofind the challenge of improving perfor-

mance. We then review existing face recognition algorithmsacross pose in section 5.3. In section 5.4

we propose two new Tied algorithms: the Tied Joint Bayesian Face algorithm and Tied Joint PLDA.

In section 5.5, we introduce the UCL Multi-Pose database. Tocompare the performance of three Tied

Bayesian face recognition algorithms to deal with pose variation in a controlled face database, we train

and test the three algorithms in the Multi-PIE database in section 5.6.2. To investigate the performance

difference of three algorithms to handle pose variation in auncontrolled database, a similar compari-

son will also applied using the UCL Multi-Pose database in section 5.6.3. To compare the verification

performance of three Tied algorithms in the LFW database, wetrain the three Tied models in the Multi-

PIE database and test in the LFW database in section 5.6.4. Toverify whether a uncontrolled training

database improves the performance of three tied models in the LFW database, we apply cross-database

experiments by training in the UCL Multi-Pose database and testing in the LFW database in section

5.6.5. To obtain the best recognition performance in the LFWdatabase, we add a switching mechanism

to switch recognition algorithms based on the poses of two images in section 5.6.6. Finally, we draw a

conclusion in section 5.7.

5.2 Performance of three Bayesian Face Recognition Algorithms

under pose variation

In this section we will analyse the ability of three Bayesianface recognition algorithms to deal with pose

variation in the LFW database. Since there are few LFW imageswith vertical pose variation, we restrict

our consideration to pose variation to horizontal pose variation in this chapter.

We manually assign each image of the LFW database to a pre-defined pose category

{−60◦,−45◦,−30◦,−15◦, 0◦, 15◦, 30◦, 45◦, 60◦}, where the negative poses denote images that are left

facing and the positive poses denote images are right facing. To reduce the number of pose categories,

we swap all left facing images to right facing images and change the pose value from a negative number

to a positive number. After that each LFW image is with a pose from the set{0◦, 15◦, 30◦, 45◦, 60◦}.

Although flipping all the left facing images might decrease the accuracy, the image variation caused by

flipping is relatively minor if we consider all the images arecaptured under completely uncontrolled
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environments and images include large variation.

Instead of using image intensities, we use the same method described in section 4.5.2 to extract

LBP descriptors to represent images. We use the aligned LFW images provided by [127]. We first crop

the central160 × 80 pixels from each LFW image to obtain the face region; then we extract LBP12

image descriptors (see the detail of this descriptor in section 4.5.2), which are obtained by dividing each

image into a grid of12 × 12 non-overlapping regions and concatenating all the LBP histograms from

each region. The histograms in each region are normalised tounit length, then are truncated at 0.2, and

then are normalised again to unit length. In the end each image is described by a LBP vector with 7552

dimensions.

All three Bayesian face recognition algorithm apply PCA to reduce the dimensionality of the data

vector. As in section 4.5.2 the PCA dimensions for the Joint Bayesian Face algorithm are set to 400.

The PCA dimensions and subspace dimensions for both PLDA andJoint PLDA are set to 200 and

128 respectively. We adopt the ‘unrestricted configuration’ to use the LFW training data, which means

identity labels associated with images are allowed to be used. For the Joint Bayesian Face algorithm we

apply 6 iterations of an EM-like algorithm to train its modelparameters, which are initialized to random

values. For PLDA and Joint PLDA, we apply 25 iterations of an EM algorithm to train their model

parameters, which are initialized to random values.

0° - 15° 

0° - 30° 

0° - 45° 

0° - 60° 

Matched pairs Non-matched pairs 

Figure 5.1:We assign each LFW test pair into one of a pre-defined pair groups based on the poses

of the two images.We show several examples of matched pairs and non-matched pairs in pair group

{0◦- 15◦}, {0◦- 30◦}, {0◦- 45◦}, {0◦- 60◦}.

To compare different algorithms properly, the LFW databasedesigners established an evaluation
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protocol. Images are divided into 10 subsets which are mutually exclusive in terms of identities and

images. The experiments are performed 10 times by applying aleave-one-out validation scheme. In each

experiment, one subset is selected for testing and the remainder of the 9 subsets are used for training.

In each test set there are 300 matched pairs and 300 non-matched pairs. Based on the poses of the two

images in a pair, we assign each pair into one of the pair groups, which comprise{0◦- 0◦}, {15◦- 15◦},

{30◦- 30◦}, {45◦- 45◦}, {0◦- 15◦}, {15◦- 30◦}, {30◦- 45◦}, {0◦- 30◦}, {15◦- 45◦}, {30◦- 60◦}, {0◦-

45◦}, {15◦- 60◦}, {0◦- 60◦}. Since there are not pairs belonging to{45◦- 60◦} and{60◦- 60◦}, we do

not list these two groups. Figure 5.1 shows examples of matched pairs and non-matched pairs in pair

group{0◦- 15◦}, {0◦- 30◦}, {0◦- 45◦}, {0◦- 60◦}. For each pair group we collect the relevant image

pairs in each test set and compute the% correct verification decisions. We repeat the experiments in

the ten test sets and report the final verification performance by the mean of 10 experiment results and

the standard error of the mean. Table 5.1 shows the performance of three Bayesian face recognition

algorithms for each pair group.

Pose  

Difference 

Pair 

Groups 
PLDA 

Joint Bayesian 

Face 
Joint PLDA 

0 

0-0 88.676±0.866 88.732±0.791 89.242±0.639 

15-15 88.471±1.116 88.486±1.158 88.724±1.457 

30-30 85.819±1.689 88.002±1.335 87.472±1.418 

45-45 30.000±15.275 30.000±15.275 30.000±15.275 

15 

0-15 90.029±0.873 89.231±0.782 89.492±0.664 

15-30 87.048±1.223 87.362±1.202 87.656±1.084 

30-45 70.433±5.233 73.167±6.093 76.944±4.672 

30 

0-30 84.256±1.103 86.487±0.887 86.629±0.793 

15-45 82.662±2.985 77.765±3.000 81.523±3.614 

30-60 51.667±15.000 56.167±15.176 66.667±14.907 

45 
0-45 76.916±6.943 75.566±5.804 75.197±5.552 

15-60 38.333±14.490 38.333±14.498 38.333±14.498 

60 0-60 51.071±12.644 61.071±12.099 61.071±12.099 

Table 5.1:Performance of PLDA, the Joint Bayesian Face algorithm and Joint PLDA for differ-

ent pair groups in the LFW database. All three Bayesian face recognition algorithms produce good

performance for near frontal pair groups, in which both two images are with pose0◦, 15◦, 30◦. How-

ever, they all perform badly when either image of a pair is with pose45◦, 60◦. Note there are no pairs

belonging to{45◦- 60◦} and{60◦- 60◦} group, so we do not show them in the table.

From Table 5.1 we find that the three Bayesian face recognition algorithms perform well when

the two images are near frontal, which means images are with pose0◦, 15◦, 30◦. For example, Joint
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PLDA achieved 89.242%, 89.492%, 86.629% correct for pair group {0◦- 0◦}, {0◦- 15◦}, {0◦- 30◦}
respectively. However, the performance drops significantly if either of two images is with pose45◦, 60◦.

For example, Joint PLDA only achieved 75.197%, 61.071% correct for pair group{0◦- 45◦}, {0◦-

60◦} respectively. Therefore, we can draw a conclusion that large pose variation is the challenge for

improving performance in the LFW database. For pair groups with large pose difference, we notice that

the performance of three Bayesian face recognition algorithms for pair group{0◦- 60◦} are better that

for pair group{15◦- 60◦}. The reason is because that there are less training images for pair group{15◦-

60◦} than for pair group{0◦- 60◦} as shown in table 5.2.

5.3 Existing Face Recognition Algorithms Across Pose

5.3.1 Previous Work

Existing face recognition algorithms across pose can be classified into two categories: 3D algorithms and

2D algorithms. Since human heads are 3D objects and pose variation is essentially caused by the motion

of head in a 3D space, many 3D algorithms are motivated to be proposed to handle pose variation. The

key of the 3D algorithms is 3D models, which might be a single model [50] or a deformable model in

the format of parameters [17]. Existing 3D algorithms can bedivided into three categories according to

the way that the 3D model is used:

• Frontalization. Probe images, which are normally non-frontal, are transformed into frontal view.

Gallery images are normally frontal. Then a match is decidedbetween a frontalized probe image

and a frontal gallery image. A example is [8].

• Synthesis. A 3D model is applied to generate several virtual images at several poses based on the

frontal gallery image. Then the generated gallery image andthe probe image with the same pose

is compared to make a match decision. A example is [151].

• 3D model parameters. All the gallery and probe images are fitted into a 3D model to obtain a set

of model parameters as a unique signature for each image. Then model parameters of the gallery

and the probe image are compared to decide whether two imagesmatch. A example is [17].

As demonstrated in [8] [151] [17], 3D algorithms typically require several minutes to recognize

an image and the recognition performance depends heavily onthe precision of the 3D models and the

optimization algorithms.

Compared with the 3D algorithms, the 2D algorithms lack one degree of freedom. However, the

2D algorithms can apply statistical learning method to estimate the relationship of images at different

poses. The 3D transformation caused by pose difference can be approximated by some statistical learning

strategies. The learning process to pose transformation can be conducted in image space or feature space.

Examples in image space include Active appearance models [34], Linear Shape model [70], Eigen Light

Fields [54], etc. Examples in feature space include Kernal PCA [86], Kernel FDA [144], Correlation

Filters [80], Local Linear Regression [27], etc.
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Compared with the 3D algorithms, the 2D algorithms have advantages in speed and simplicity of

implementation. However, the recognition performance of these algorithms has historically not been

as good as 3D algorithms. Recently Arashloo et al. [6] proposed an MRF-based classification method,

which used the energy of the established match between a pairof images to decide the match assignment.

They measured textural and structural similarities between two images. The main advantages of their

algorithm is that it does not need to know the poses of probe images and does not need use non-frontal

images in training. Their algorithm produced good performance when pose variation exists. However,

the computation cost to recognize an image is expensive. Prince at el. [111] proposed a variant of

PLDA called Tied PLDA, which demonstrated better performance than the 3D algorithms on several

constrained databases. Their experiments showed that TiedPLDA can handle large pose variation well.

I will describe the detail of the Tied PLDA in the next section.

5.3.2 Tied PLDA

In Tied PLDA face images are considered as generated from twounderlying variables: the hidden iden-

tity variable and the hidden noise variable. The hidden identity variable describes identity and is constant

for a given identity. The hidden noise variable explains within-individual variation of images at the same

pose. Images from the same person at different poses are considered to be generated from the same hid-

den identity variable but using different pose-dependent linear transformations. The image generation

process is described by the following equation:

xijk = µk + Fkhi +Gkwijk + ǫijk , (5.1)

wherexijk denotes thekth pose of thejth image of theith individual,µk represents the mean image

at posek, Fk is a matrix containing the between-individual basis functions in columns for pose k. The

termhi represents the hidden identity variable which is constant for all the images of the ith individual.

The matrixGk is a matrix containing the within-individual basis functions in columns for pose k. The

termwijk denotes the hidden noise variable which is different for each image. The termǫijk represents

a stochastic noise.

More formally, the generative process can be described in terms of conditional probabilities:

Pr(xijk |hi,wijk) = Gx[µk + Fkhi +Gkwijk,Σk] (5.2)

Pr(hi) = Gh[0, I] (5.3)

Pr(wijk) = Gw[0, I], (5.4)

whereGo[̺, ς] denotes a Gaussian ino with mean̺ and covarianceς.

Learning

Given training imagesx with different poses, an EM algorithm is applied to learn theparametersθ =

{Fk,Gk,Σk} for each pose. In the Expectation Step, we fix the parametersθ and compute the full

posterior distribution over the latent variableshi andwijk. In the Maximization Step, we use the images

at posek to optimize the corresponding model parameters{Fk,Gk,Σk} of posek.

Verification

In Tied PLDA face verification is treated as a model selectionproblem. We make the verification decision
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by comparing the likelihood of two generative models:Pr(x1,x2|Md) andPr(x1,x2|Ms). Model

Md indicates that two images are from different people and model Ms indicates that two images are

from the same person.

If we have two imagesx1 andx2, from which have been subtracted the relevant mean imagem1

andm2 of the corresponding pose, and we assume they are independent, the likelihood of two images

from different peoplePr(x1,x2|Md) is

Pr(x1,x2|Md) = Pr(x1|Md)Pr(x2|Md)

= Gx[0,Σd]

= Gx



0,
F1F

T
1 +G1G

T
1 +Σ1 0

0 F2F
T
2
+G2G

T
2
+Σ2



 , (5.5)

where the termx is the concatenation ofx1 andx2; the termΣd is non-match covariance matrix; the

term{F1,G1,Σ1} is the model parameters at the pose of imagex1; the term{F2,G2,Σ2} is the model

parameters at the pose of imagex2.

If two images match (ModelMs), the likelihood of two images is

Pr(x1,x2|Ms) = Pr(x|Ms)

= Gx[0,Σs]

= Gx



0,
F1F

T
1 +G1G

T
1 +Σ1 F1F

T
2

F1F
T
2

F2F
T
2
+G2G

T
2
+Σ2



 , (5.6)

where the termΣs is the match covariance matrix.

With the above two likelihoods, we make the match decision bythe log likelihood ratior(x1,x2) be-

tween the two modelsMs andMd.

r(x1,x2) = log
Pr(x1,x2|Ms)

Pr(x1,x2|Md)

= logPr(x1,x2|Ms)− logPr(x1,x2|Md)

= κ+ xTΣ−1

d x− xTΣ−1

s x, (5.7)

whereκ is a constant.

5.4 Tied Bayesian Face Recognition Algorithms
In this section, we apply the same idea as Tied PLDA to the Joint Bayesian Face algorithm and Joint

PLDA. We propose two new algorithms: the Tied Joint BayesianFace algorithm in section 5.4.1 and

Joint PLDA in section 5.4.2.

5.4.1 The Tied Joint Bayesian Face Algorithm

Face Image Representation

We assumex1 is an image at pose 1 andx2 represents an image at pose 2. The imagex1 has

been subtracted with the mean of all training images at pose 1. The imagex2 has been subtracted with

the mean of all training images at pose 2. In the Tied Joint Bayesian Face algorithm, imagex1 can be
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described as the sum of the identity componentα1 and the within-individual variation componentβ
1
,

imagex2 can be described as the sum of the identity componentα2 and the within-individual variation

componentβ2, so we have





x1

x2



 =





α1

α2



+





β1

β
2



 , (5.8)

or

x′ = α′ + β′. (5.9)

The termsα1, α2, β1, andβ2 follow Gaussian distributions as

Pr(α1) = Gα1
[0,Σα1] (5.10)

Pr(α2) = Gα2
[0,Σα2] (5.11)

Pr(β
1
) = Gβ

1
[0,Σβ1] (5.12)

Pr(β2) = Gβ
2
[0,Σβ2], (5.13)

whereΣα1 andΣβ1 is the covariance matrix of the identity component and the covariance matrix of the

within-individual variation component respectively for images at pose 1;Σα2 andΣβ2 is the covariance

matrix of the identity component and the covariance matrix of the within-individual variation component

respectively for images at pose 2.

The joint distribution of an image pairx′ consisting of images from two poses can be written as

Pr(x′) = Pr









x1

x2









= Gx′ [ 0 , Σ12]

= Gx′



 0 ,
Σα1 +Σβ1 Σα12

ΣT
α12 Σα2 +Σβ2



 , (5.14)

whereΣα12 is the covariance matrix of the identity component across pose 1 and pose 2.

Learning

Following [30], we develop an EM-like algorithm to learn covariance matricesξ =

{Σα1, Σα2, Σα12, Σβ1, Σβ2}. In the E-Step of our EM-like algorithm we estimate the iden-

tity component and the within-individual variation component of each training image. In the M-Step of

the EM-like algorithm we update covariance matricesξ.

For a given identity withm images at pose 1,n images at pose 2, the relationship between the

imagesx′ = [x11 · · ·x1m,x21 · · ·x2n] and the latent variablesy′ = [α1,β11 · · ·β1m,α2,β21 · · ·β2n]

can be written as

x′ = Py′ (5.15)
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or
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
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










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

























































α1
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β11

β
12

...

β1m

β21

β22

...

ǫ2n





















































. (5.16)

The distribution of the latent variablesy′ is

Pr(y′) = Gy′ [0,Σy′ ], (5.17)

whereΣy′ =









































Σα1 Σα12

Σα21 Σα2

Σβ1

. . .

Σβ1

Σβ2

. . .

Σβ2









































.

Lemma 1. When there is a linear transformationx = Ay + b andy is distributed asPr(y) =

Gy[µ,Σ], the distribution ofx is asPr(x) = Gx[Aµ+ b,AΣAT ].

According to Lemma 1, we obtain the distribution ofx′ from equations 5.15 and 5.17:

Pr(x′) = Gx′ [ 0, PΣy′PT ] (5.18)

= Gx′ [ 0,Σx′ ], (5.19)
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where

Σx′ = PΣy′PT

=










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





































=





Σ̄1 Σ̄α12

Σ̄α21 Σ̄2



 . (5.20)

In this part we describethe E-Step of the EM-like algorithm. For each individual, we estimate

the distribution of latent variablesy′ given all the imagesx′ associated with that individual and the

parametersξt−1 at the previous iteration:

Pr(y′|x′, ξt−1) ∝ Pr(x′|y′, ξt−1)Pr(y′)

= Gx′ [Py′,Σx′ ]Gy′ [0,Σy′ ]

∝ Gy′ [Σy′PT (PΣy′PT )−1x′,Σy′ ]. (5.21)

According to the equation 5.18 and 5.19, we know thatΣx′ = PΣy′PT , so the equation 5.21 can be

written as

Pr(y′|x′, ξt−1) ∝ Gy′ [Σy′PTΣ−1

x′ x
′,Σy′ ]. (5.22)

The expectation of the hidden variabley′ is

E(y′|x′) = Σy′PTΣ−1

x′ x
′

=
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


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



























Σ−1

x





























x11

...

x1m

x21

...

x2n





























. (5.23)

It is expensive to compute the termΣ−1

x′ of the equation 5.23. Fortunately the computation com-

plexity can be reduced by taking the advantage of the block-wise structure of the matrix. We can follow
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Shur’s lemma as described in section 3.3.1 to compute the inversion term :

Σ−1

x′ =





Σ̄1 Σ̄α12

Σ̄α21 Σ̄2





−1

=





(Σ̄1 − Σ̄α12Σ̄
−1

2 Σ̄T
α12)

−1 −(Σ̄1 − Σ̄α12Σ̄
−1

2 Σ̄T
α12)

−1Σ̄α12Σ̄
−1

2

−Σ̄−1

2 Σ̄T
α12(Σ̄1 − Σ̄α12Σ̄

−1

2 Σ̄T
α12)

−1 Σ̄−1

2 + Σ̄−1

2 Σ̄T
α12(Σ̄1 − Σ̄α12Σ̄

−1

2 Σ̄T
α12)

−1Σ̄α12Σ̄
−1

2



 .

After we obtain the the expectation of the hidden variableE(y′|x′) defined in the equation 5.23, we

can extract the identity component and the within-individual variation component of each image. The

identity component{α11, · · · ,α1m} and the within-individual variation component{β11, · · · ,β1m}
for images at pose 1 can be obtained by:

[αT
11 · · ·αT

1m]T =
[

Σα1 · · · Σα1 Σα12 · · · Σα12

]

Σ−1

x [xT
11 · · ·xT

1m xT
21 · · ·xT

2n]
T

(5.24)
[

βT
11

· · ·βT
1m

]T

= diag[Σβ1 · · ·Σβ1][(Σ̄1 − Σ̄α12Σ̄
−1

2 Σ̄T
α12)

−1

−(Σ̄1 − Σ̄α12Σ̄
−1

2 Σ̄T
α12)

−1Σ̄α12Σ̄
−1

2 ][xT
11 · · ·xT

1m xT
21 · · ·xT

2n]
T .(5.25)

The identity component{α21, · · · ,α2n} and the within-individual variation component{β
21
, · · · ,β

2n}
for images at pose 2 can be obtained by:

[

αT
21

· · ·αT
2n

]T
=

[

Σα21 · · · Σα21 Σα2 · · · Σα2

]

Σ−1

x [xT
11

· · ·xT
1m xT

21
· · ·xT

2n]
T (5.26)

[

βT
21

· · ·βT
2n

]T

= diag[Σβ2 · · ·Σβ2][−Σ̄−1

2 Σ̄T
α12(Σ̄1 − Σ̄α12Σ̄

−1

2 Σ̄T
α12)

−1

Σ̄−1

2 + Σ̄−1

2 Σ̄T
α12(Σ̄1 − Σ̄α12Σ̄

−1

2 Σ̄T
α12)

−1Σ̄α12Σ̄
−1

2 ][xT
11 · · ·xT

1m xT
21 · · ·xT

2n]
T .

(5.27)

In theM-Step of the EM-like algorithm , we update the parametersξ = {Σα1, Σα2, Σα12, Σβ1, Σβ2}
by





Σα1 Σα12

Σα21 Σα2



 = cov









αa

αb







 (5.28)

Σβ1 = cov(βa) (5.29)

Σβ2 = cov(βb), (5.30)

whereαa andαb are the identity components of training images at pose 1 and pose 2 respectively; the

termβa andβb are the within-individual variation component of trainingimages at pose 1 and pose 2

respectively.

Verification

Similarly to the Joint Bayesian Face algorithm described insection 4.2.3, we make the match deci-

sion based on the likelihood ratio between two generative models:Pr(x1,x2|Md) andPr(x1,x2|Ms).

ModelMd denotes two images are from different people and modelMs means two images are from

the same person. If we assume imagex1 at pose 1 and imagex2 at pose 2 are from the same identity
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and are independent, then the joint probability of two images can be derived as

Pr(x1,x2|Ms) = Gx [ 0,Σs ]

= Gx



0,
Σα1 +Σβ1 Σα12

ΣT
α12

Σα2 +Σβ2



 , (5.31)

whereΣs is the match covariance matrix.

When two images are from different people and are assumed to be generated independently, we

have

Pr(x1,x2|Md) = Gx [ 0,Σd ]

= Gx



0,
Σα1 +Σβ1 0

0 Σα2 +Σβ2



 , (5.32)

whereΣd is the non-match covariance matrix.

The final matching decision is based on the log likelihood ratio r(x1,x2) between two modelMs

andMd :

r(x1,x2) = log

[

Pr(x1,x2|Ms)

Pr(x1,x2|Md)

]

∝ xTΣ−1

d x− xTΣ−1

s x. (5.33)

5.4.2 Tied Joint PLDA

In this section we will describe the tied version of Joint PLDA.

Face Representation

In the Tied Joint PLDA a face imagexijk can be represented as the sum of the identity component

αik and the within-individual variation componentβijk :

xijk = αik + βijk (5.34)

αik = Fkhi (5.35)

βijk = Gkwijk + ǫijk, (5.36)

where the termxijk denotes thejth image of theith individual at posek with the mean of all face

images subtracted; the identity componentαik is equivalent to the termFkhi of Tied PLDA and the

within-individual variation componentβijk is equivalent to the termGkwijk + ǫijk of Tied PLDA.

Therefore, it can also be described in terms of conditional probabilities:

Pr(xijk) = Gxijk
[Fkhi +Gkwijk,Σk] (5.37)

Pr(hi) = Ghi
[0, I] (5.38)

Pr(wijk) = Gwijk
[0, I], (5.39)

where the termFk contains the basis functions of the between-individual subspace in columns for pose

k; the termhi denotes the hidden identity variable which is constant for all images at different poses

from a identity;Gk contains the basis functions of the within-individual subspace in columns for pose
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k; wijk denotes the hidden noise variable which is different for each image;Σk is a diagonal covariance

matrix for stochastic noise of images at pose k.

We assume we have imagexij1 at pose 1 andxij2 at pose 2. According to the equation 5.34, images

xij1 andxij2 can be described as:

xij1 = αi1 + βij1 (5.40)

xij2 = αi2 + βij2. (5.41)

The termsαi1, βij2, αi2, andβij2 follow Gaussian distribution:

Pr(αi1) = Gαi1
[0,Σα1] (5.42)

Pr(βij1) = Gβij1
[0,Σβ1] (5.43)

Pr(αi2) = Gαi2
[0,Σα2] (5.44)

Pr(βij2) = Gβij2
[0,Σβ2], (5.45)

where the termsΣα1 andΣβ1 are the covariance matrix of the identity component and the covariance

matrix of the within-individual variation component respectively for images at pose 1; the termsΣα2

andΣβ2 are the covariance matrix of the identity component and the covariance matrix of the within-

individual variation component respectively for images atpose 2.

The joint distribution of an image pairx′ follows the Gaussian distribution:

Pr(x′) = Pr









xij1

xij2







 (5.46)

= Gx′ [ 0,Σ12] (5.47)

= Gx′



 0,
Σα1 +Σβ1 Σα12

ΣT
α12 Σα2 +Σβ2



 , (5.48)

whereΣα12 is the covariance matrix of the identity component across the pose 1 and pose 2.

Learning

We attempt to estimate the covariance matrices{Σα1, Σβ1, Σα2, Σβ2, Σα12} from training

images. We first apply the EM algorithm of Tied PLDA to estimate the optimal model parameters

θ = {Fk,Gk,Σk}, then we apply the E-Step of Tied PLDA training method definedin [82] to estimate

the expectation of the hidden variableyijk for each training imagexijk:

E[yijk ] = (AT
k Σ

′−1

k Ak + I)−1AT
kΣ

′−1

k xijk, (5.49)

where

yijk =





hi

wijk



 (5.50)

Ak = [ Fk Gk ] (5.51)

Σ′
k =





Σk 0

0 Σk



 . (5.52)
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Then we can obtain the identity componentαij1 and the within-individual variation component

βij1 for each imagexij1 at pose 1 by

αij1 = F1hi (5.53)

βij1 = xij1 − F1hi, (5.54)

where the termF1 contains the basis functions of the between-individual subspace in columns at pose 1;

the termhi is the hidden identity variables for identity i.

Using a similar method we obtain the identity componentαij2 and the within-individual variation

componentβij2 for each imagexij2 at pose 2:

αij2 = F2hi (5.55)

βij2 = xij2 − F2hi, (5.56)

whereF2 contains the basis functions of the between-individual subspace in columns at pose 2.

Lastly, we update parameters{Σα1, Σα2, Σα12, Σβ1, Σβ2} by




Σα1 Σα12

Σα21 Σα2



 = cov









αa

αb







 (5.57)

Σβ1 = cov(βa) (5.58)

Σβ2 = cov(βb), (5.59)

where the termsαa andαb are the identity components of training images at pose 1 and pose 2 respec-

tively; the termsβa andβb are the within-individual variation components of training images at pose 1

and pose 2 respectively.

Verification

Similar to the Tied Joint Bayesian Face algorithm, the verification decision is made based on the

likelihood ratio:

r(x1,x2) ∝ xTΣ−1

d x− xTΣ−1

s x,

where

x =





x1

x2





Σd =





Σα1 +Σβ1 0

0 Σα2 +Σβ2





Σs =





Σα1 +Σβ1 Σα12

ΣT
α12

Σα2 +Σβ2



 .

5.5 New Database
In this section will first analyze the pose distribution of the training images of the LFW database to

explain the motivation to collect a new database. Then we will describe the collection scheme for the

new database.
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5.5.1 Motivation

In the LFW database, images are divided into 10 subsets without overlapping in identities and images.

A leave-one-out validation scheme is applied to evaluate the recognition performance. When one subset

is selected for testing and the remainder of the 9 subsets canbe used for training. The final performance

is evaluated by repeating the verification experiments in each of 10 test subsets.

Test 

folds 
Category 0-15 0-30 0-45 0-60 15-30 15-45 15-60 30-45 30-60 45-60 

1 
People 730 217 35 7  158 27 7 18 3 1 

Pairs 3494 1928 1099 74 682 294 24 64 5 1 

2 
People 735 221 40 3 153 29 4 22 2 0 

Pairs 3553 1790 1105 17 612 289 8 71 2 0 

3 
People 739 218 42 7  155 31 6 21 3 1 

Pairs 3671 1968 1197 74 684 310 23 71 5 1 

4 
People 748 224 37 7 159 29 7 22 3 1 

Pairs 3660 1869 1014 74 659 273 24  70 5 1 

5 
People 763 222 39 7 157 31 7 21 3 1 

Pairs 361 1903 1199 74 695 320 24 70 5 1 

6 
People 735 217 38 7 159 30 7 21 3 1 

Pairs 3610 1903 1101 74 683 298 24 68 5 1 

7 
People 721 209 37 7 148 28 7 20 3 1 

Pairs 3294 1717 1159 74 609 293 24 67 5 1 

8 
People 751 211 41 6 150 31 6 22 2 1 

Pairs 3671 1906 1201 73 657 322 22 74 4 1 

9 
People 748 211 41 6 157 32 6 21 3 1 

Pairs 3637 1904 1216 64 668 325 20 72 5 1 

10 
People 744 219 37 6 161 29 6 19 2 1 

Pairs 3640 1929 707 68 639 210 23 48 4 1 

Table 5.2: Identity number and possible training pairs for each pair group in each of 10 cross-

validation experiments. In the LFW database images are divided into 10 folds. One foldis used for

testing and the rest 9 folds are used for training. The final performance is reported based on 10 cross-

validation experiments. We label each LFW image by a pose of pose list{0◦, 15◦, 30◦, 45◦, 60◦}. When

one fold is chosen as the test fold, we list the number of training identities and possible training pairs for

each pair category, to which each training pair is assigned based the poses of the two images.

As we described in section 5.2, we assign each LFW image to a pre-defined pose category

{0◦, 15◦, 30◦, 45◦, 60◦}. By analyzing the image pairs of the LFW test sets, we find thatwe need to

train Tied Bayesian models for the following pair groups, which comprise{0◦- 0◦}, {15◦- 15◦}, {30◦-

30◦}, {45◦- 45◦}, {0◦- 15◦}, {15◦- 30◦}, {30◦- 45◦}, {0◦- 30◦}, {15◦- 45◦}, {30◦- 60◦}, {0◦- 45◦},

{15◦- 60◦}, {0◦- 60◦}. We follow the ‘unrestricted configuration’ to use the LFW training images.

We list the available identities and image pairs that can be used in training for each pair group in 10
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cross-validation experiments in Table 5.2.

From the table 5.2 we find that there are insufficient trainingimages for pair groups with large pose

changes, especially those with over30◦ difference. For example, there is 0 or only 1 training pair for pair

group{15◦− 60◦} in 10 experiments, it is impossible to train a Tied Bayesian model for this pair group.

Therefore, to train Tied Bayesian face recognition algorithms, it is necessary to have more training image

pairs with large pose differences.

The Multi-PIE database [56] contains 755,370 images from 345 individuals with 6 expressions

and 19 lighting conditions and 15 poses under four sessions.Therefore, it can provide enough training

images for any pair groups. However, images of the Multi-PIEdatabase are collected in the controlled

environments. We hypothesize that the Multi-PIE images might not provide an equivalent amount of

image variation to the uncontrolled test images of the LFW database. Therefore, we deemed it necessary

to collect a new database.

5.5.2 The UCL Multi-Pose Face Database

To obtain sufficient training images with large pose variation, we use the same approach as for the LFW

database and collect images from the internet. The new database is called the UCL Multi-Pose. The

collection protocol was as follows: we first collect a list ofcelebrities’ names without overlapping with

the LFW database, then we use the Google image search engine to obtain images of each celebrity. Since

these images are captured in completely uncontrolled environments, they contain large variation as the

LFW images include. We swap all left facing images to right facing. Then we check the pose of images

manually and make sure there are at least three images at eachpose of a list{0◦, 15◦, 30◦, 45◦, 60◦} for

each celebrity. Last we label four fiducial points (the left eye corner of the left eye, the nose bridge, the

right eye corner of the right eye, the mouth top) and apply a similarity transformation to register each

image into a pre-defined template. Similar to the LFW database, identity information is provided for

each image. Figure 5.2 shows several examples from the UCL Multi-Pose database.

Although the collection spirit is the same for both the LFW database and the UCL Multi-Pose

database, there are some significant differences:

• The LFW database applies Viola-Jones face detector [134] to collect images so most of images

are near frontal. The UCL Multi-Pose database is designed tocollect more non-frontal images to

train Tied Bayesian face recognition algorithms: there aremore non-frontal images than the LFW

database.

• The LFW database contains 13,233 images from 5,749 people while the UCL Multi-Pose database

includes 7,485 images from 153 people. Therefore, the LFW database is much broader (more

people) than the UCL Multi-Pose database. The image number per identity varies from 1 to

530 in the LFW database while the image number varies from 53 to 76 in the UCL Multi-Pose

database, so the LFW database is much shallower (less imagesper person) than the UCL Multi-

Pose database.
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Figure 5.2: Several sample images from the UCL Multi-Pose database.The database consists of

7,450 images from 153 people. To provide sufficient trainingimages with large pose difference, we

collected at least 3 images at each pose of a list{0◦, 15◦, 30◦, 45◦, 60◦} for each person. In this database

all the left facing images have been swapped into right facing.

5.6 Experiments

In this section we compare the performance of the three Tied Bayesian face recognition algorithms. To

verify their performance in dealing with pose variation in acontrolled face database, we first compare

the performance in the Multi-PIE database [56], in which multiple images at different poses are collected

for each identity in the laboratory. We describe the experiment detail in section 5.6.2. To compare the

performance of the three algorithms in uncontrolled database, we also conduct experiments in the UCL

Multi-Pose database, in which at least three images at each pose of a pre-defined pose category are

captured for each identity from the internet. The experiment detail is described in section 5.6.3.

We also do two cross-data experiments. To solve the problem that the LFW database cannot provide

sufficient training images with large pose difference, we train Tied Bayesian face recognition algorithms

in the Multi-PIE database and test in the LFW database in section 5.6.4. Images of the Multi-PIE

database are collected in the laboratory and might not capture sufficient within-individual variation as the

uncontrolled LFW images contains, we also train Tied Bayesian face recognition algorithms in the UCL

Multi-Pose database and test in the LFW database in section 5.6.5. Figure 5.3 illustrates the structure of

experiments in this section.

5.6.1 Data Preprocessing

In this chapter we use three databases: the Multi-PIE database, the UCL Multi-Pose database, and the

LFW database. Figure 5.4 shows several samples from the three databases. Instead of using image

intensities, we extract Local Binary Patterns (LBP) descriptors [102] from the three databases to conduct
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Cross database 

Uncontrolled database 

Controlled database 

Cross database 

LBP Descriptors Train and test in the Multi-PIE database  

Train and test in the UCL Multi-Poses database  

Train in the Multi-PIE database  and test in the LFW database  

Train in the UCL Multi-Poses database  and test in the LFW 

database  

Figure 5.3:Structure of experiments in this chapter. We conduct four experiments using LBP image

descriptors. To compare three Tied Bayesian face recognition algorithms in a controlled database, we

do experiments in the Multi-PIE database. To compare the performance in an uncontrolled database,

we also conduct experiments in the UCL Multi-Pose database.To provide sufficient training images

for the three Tied Bayesian face recognition algorithms from a controlled database, we train the three

algorithms in the Multi-PIE database and test them in the LFWdatabase. To provide sufficient training

images for the three Tied algorithms from an uncontrolled database, we train three Tied algorithms in

the UCL Multi-Pose database and test in the LFW database.

our experiments. We will describe the extraction process inthe three databases in turn.

For the Multi-PIE database we use frontal lit images with rightward horizontal pose0◦, 15◦, 30◦,

45◦, 60◦, 75◦, 90◦. Under this constraint each of 337 people has several imagesat each pose of a finite

pose category{0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦}. We label four fiducial points (the left corner of the left

eye, the nose bridge, the right corner of the right eye, the mouth top) of each image by hand and then

apply a similarity transformation to register each image toa pre-defined template based on four fiducial

points; Next we crop the central160 × 80 pixels of each image to obtain the face region; Finally, we

extract LBP descriptors from face regions by the following settings: we divide each160 × 80 cropped

image into several non-overlapping12 × 12 patches, the radius to form neighborhood over each pixel

location is set to 3, the number of neighbor points is set to 8,uniform binary patterns are applied. After

we obtain the LBP histograms for all the patches, we normalize the histograms in each patch to unit

length and truncate their values at 0.2, then normalize again to unit length. The face image is represented

by the concatenation of all the LBP histograms from all patches.

In the UCL Multi-Pose database, all the images are right facing and have been registered. We crop

the central160× 80 pixels of each image to obtain the face region and extract LBPdescriptors using the

same method as in the Multi-PIE database.

For the LFW database, we use the original250 × 250 images without any alignment and swap

all the left facing images as right facing. Then we assign each image to a pre-defined pose category

{0◦, 15◦, 30◦, 45◦, 60◦} by hand. Next we use the same method to extract LBP descriptors as in the

Multi-PIE database: we label four fiducial points of each image by hand, apply a similarity transforma-

tion to register images based the four fiducial points, crop the central160 × 80 pixels of each image,

extract LBP descriptors.
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(c) 

(b) 

(a) 

Figure 5.4: Several image examples from (a) the Multi-PIE database, (b)the UCL Multi-Pose

database, (c) the LFW database.All the images in the three databases have been registered toa pre-

defined template by applying a similarity transformation based on four manually labeled fiducial points

(the left eye corner of the left eye, the nose bridge, the right eye corner of the right eye, the mouth top).

In all the following experiments, for Tied PLDA and Tied Joint PLDA, we always use 25 iterations

of the EM algorithm to train the model parameters{Fk,Gk,Σk}, which are initialized to random values.

For Tied Joint Bayesian Face algorithm we always use 5 iterations of the EM-like algorithm to train the

model parameters{Σα1, Σα2, Σα12, Σβ1, Σβ2}, which are initialized to random values.

5.6.2 Train and Test in the Multi-PIE Database

In this section we compare the performance of three Tied Bayesian face recognition algorithms in the

controlled Multi-PIE database. We train and test three algorithms only using the Multi-PIE images.

We compare face verification performance of three Tied Bayesian face recognition algorithms for

the following pair groups:{0◦−15◦}, {0◦−30◦}, {0◦−45◦}, {0◦−60◦}, {0◦−75◦}, and{0◦−90◦}.

For each pair group we use images of the first 237 people in training and images of the remaining 100

identities in test. There is no overlap in identities and images between the training set and the test set.

In test, for each pair group, we collect 1458 matched pairs using images of each test identity. We also

collect 6021 non-matched pairs by combining images of each test identity with images from 5 other

random test identities. In total we verify 7479 pairs for each pair group.

For all the three Tied Bayesian Face algorithms we first applyPCA to reduce the dimensions. For

Tied PLDA and Tied Joint PLDA we set the PCA dimensions to 200,subspace dimensions to 128. For

the Tied Joint Bayesian Face algorithm we set the PCA dimensions to 400. These experiment settings

are obtained using an empirical approach.
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Figure 5.5:The performance of three Tied Bayesian face recognition algorithms for 6 pair groups

is shown by ROC curves when trained and tested in the Multi-PIE database.The performance of

three algorithms for pair groups{0◦ − 15◦} is illustrated in (a),{0◦ − 30◦} in (b), {0◦ − 45◦} in (c),

{0◦ − 60◦} in (d), {0◦ − 75◦} in (e) and{0◦ − 90◦} in (f).

0-15 0-30 0-45 0-60 0-75 0-90 

Tied PLDA 0.9993 0.9989 0.9988 0.9984 0.9969 0.9952 

Tied Joint 

Bayesian Face 
0.9994 0.9991 0.9985 0.9971 0.9855 0.9910 

Tied Joint 

PLDA 
0.9994 0.9990 0.9985 0.9971 0.9958 0.9912 

Results 

Algorithm 

Table 5.3:Area under the ROC curve of Figure 5.5.Larger area means better verification performance.

The performance of three Tied Bayesian face recognition algorithms are reported by the Receiver
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Operator Characteristic (ROC) curves in Figure 5.5. More details regarding ROC curve are described

in section 2.3.2. To show the performance difference among the three algorithms more clearly, we also

list area under the ROC curve in Table 5.3. From Figure 5.5 andTable 5.3 we find that the performance

of Tied Joint PLDA and the Tied Joint Bayesian Face algorithmis very similar for all six pair groups.

We also find that Tied Joint PLDA and the Tied Joint Bayesian Face algorithm performs slightly better

than Tied PLDA when pose difference is less than 45 degrees. However, Tied PLDA produces better

performance when large pose variation exists. For example,for pair group{0◦ − 90◦}, the performance

of Tied PLDA is much better than the performance of Tied JointPLDA and the Tied Joint Bayesian Face

algorithm.

5.6.3 Train and Test in the UCL Multi-Pose Database

In this part we compare the performance of three Tied Bayesian Face algorithms in the uncontrolled

UCL Multi-Pose database. We train and test our models only using the UCL Multi-Pose images. We

verify the performance of the three algorithms for the following pair groups:{0◦ − 15◦}, {0◦ − 30◦},

{0◦− 45◦}, and{0◦− 60◦}. For each pair group we use images from the first 152 people in training and

images of the remaining 101 individuals in test. There is no overlap in identities and images between

the training set and the test set. In test, for each pair group, we collect 1990 matched pairs using images

of each test identity. We also collect 7560 non-matched pairs by combining images of each test identity

with images from 10 random other test identities. In total weverify 9469 pairs for each pair group.

For all the three Tied Bayesian face recognition algorithms, we apply PCA to reduce the dimensions.

For Tied PLDA and Tied Joint PLDA, we set the PCA dimensions to100, subspace dimensions to 32. For

the Tied Joint Bayesian Face algorithm we set the PCA dimensions to 100. These settings are obtained

by an empirical approach.

We report the performance of the three algorithms by ROC curves in Figure 5.6. To show the

performance difference of the three algorithms more clearly, we also list area under the ROC curve in

Table 5.4. From Figure 5.6 and Table 5.4 we find that the Tied Joint Bayesian Face algorithm and Tied

Joint PLDA produce better performance than Tied PLDA for allpair groups. The reason might be as

our conclusion in chapter 4 that more discriminatory information might be captured when estimating

covariance matrix without making low dimension assumption. From Table 5.4 we also find that the

performance of Tied Joint PLDA and the Tied Joint Bayesian Face algorithm are very similar.

We compare Figure 5.6 and Figure 5.5 and find that the performance of all the three algorithms in

the UCL Multi-Pose database is much worse than the results inthe Multi-PIE database: face verification

in the uncontrolled UCL Multi-Pose database is probably more difficult than in the controlled Multi-PIE

database.
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Figure 5.6: The face verification performance of the three Tied Bayesianface recognition algo-

rithms for 4 pair groups is reported by ROC curves when trained and tested in the UCL Multi-

Pose database.The performance of three algorithms for pair groups{0◦ − 15◦} is illustrated in (a),

{0◦ − 30◦} in (b), {0◦ − 45◦} in (c), {0◦ − 60◦} in (d).

0-15 0-30 0-45 0-60 

Tied PLDA 0.8306 0.8142 0.7395 0.6749 

Tied Joint 

Bayesian Face 
0.8528 0.8333 0.7643 0.6867 

Tied Joint LDA 0.8488 0.8324 0.7619 0.6816 

Results 

Algorithm 

Table 5.4:Area under the ROC curve of Figure 5.6.Larger area means better verification performance.

5.6.4 Train in the Multi-PIE Database and Test in the LFW Database

In this part we compare the performance of three Tied Bayesian Face algorithms when trained in the

Multi-PIE database but tested in the LFW database. We compare the performance of the three Tied
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algorithms for the following pair groups:{0◦−15◦}, {0◦−30◦}, {0◦−45◦}, {0◦−60◦}, {15◦−30◦},

{15◦ − 45◦}, {15◦ − 60◦}, {30◦ − 45◦}, and{30◦ − 60◦}. There are no LFW test pairs belong to pair

group{45◦ − 60◦}, so we do not list it.

For each pair group, we train and test Tied models as follows:we use all the relevant Multi-PIE

images at the two poses to train Tied models. In test, the LFW evaluation protocol applies a leave-one-

out cross validation scheme. Images are divided into 10 subsets. Each subset is selected as the test fold

in turn and the final performance is based on the test results of ten experiments, each of them uses a

different test fold. To obtain the result for each of 10 test folds, we collect the image pairs belonging to

the target pair group and compute the % correct. We repeat theexperiments in 10 test folds and report

the final performance for the specified pair group by the mean %correct in 10 test folds and the standard

error of the mean.

Bayesian face recognition algorithms 

trained and tested in the LFW database 

Tied Bayesian face recognition 

algorithms trained in the Multi-PIE 

database and tested in the LFW database 

Pose 

Difference 

Pair 

Groups 
PLDA 

Joint 

Bayesian 

Face 

Joint PLDA Tied PLDA 

Tied Joint 

Bayesian 

Face 

Tied Joint 

PLDA 

15 

0-15 
90.029 

±0.873 

89.231 

±0.782 

89.492 

±0.664 

78.593 

±0.860 

78.913 

±0.931 

79.251 

±0.903 

15-30 
87.048 

±1.223 

87.362 

±1.202 

87.656 

±1.084 

77.950 

±1.268 

78.151 

±1.225 

79.434 

±1.168 

30-45 
70.433 

±5.233 

73.167 

±6.093 

76.944 

±4.672 

74.433 

±5.648 

74.571 

±4.918 

76.433 

±5.630 

30 

0-30 
84.256 

±1.103 

86.487 

±0.887 

86.629 

±0.793 

73.429 

±1.238 

74.525 

±1.229 

74.617 

±1.425 

15-45 
82.662 

±2.985 

77.765 

±3.000 

81.523 

±3.614 

66.228 

±5.070 

69.451 

±7.091 

70.570 

±7.219 

30-60 
51.667 

±15.000 

56.167 

±15.176 

66.667 

±14.907 

50.000 

±18.898 

50.000 

±18.898 

50.000 

±18.898 

45 

0-45 
76.916 

±6.943 

75.566 

±5.804 

75.197 

±5.552 

71.692 

±4.934 

73.800 

±4.709 

72.670 

±7.159 

15-60 
38.333 

±14.498 

38.333 

±14.498 

38.333 

±14.498 

61.111 

±15.316 

52.778 

±13.205 

52.778 

±13.205 

60 0-60 
51.071 

±12.644 

61.071 

±12.099 

61.071 

±12.099 

69.643 

±11.655 

69.643 

±10.395 

69.643 

±10.395 

Table 5.5:Verification results when trained in the Multi-PIE database and tested in the LFW

database.We compare the performance of Bayesian face recognition algorithms (PLDA, the Joint

Bayesian Face algorithm, and Joint PLDA) trained in the LFW database with the performance of Tied

Bayesian face recognition algorithms (Tied PLDA, the Tied Joint Bayesian Face algorithm, and Tied

Joint PLDA) trained in the Multi-PIE database. The tests areall conducted in the LFW database. We

find that the performance of Bayesian face recognition algorithms is better than the performance of Tied

Bayesian face recognition algorithm. Note:there is no result for pair group{45◦- 60◦} because no LFW

test image pairs exist in that pair group.

For all the three Tied Bayesian face recognition algorithmswe apply PCA to reduce the dimensions.
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For Tied PLDA and Tied Joint PLDA we set the PCA dimensions to 200, subspace dimensions to 128.

For the Tied Joint Bayesian Face algorithm we set the PCA dimensions to 200. These optimal settings

are obtained by an empirical approach.

In Table 5.5 we compare the performance of Bayesian face recognition algorithms trained in the

LFW database with the performance of Tied Bayesian face recognition algorithms trained in the Multi-

PIE database for different pair groups. The approach to train and test Bayesian face recognition algo-

rithms for each pair group in the LFW database is described insection 5.2. From Table 5.5 we find that

Tied Bayesian face recognition algorithms perform worse than Bayesian face recognition algorithms.

The reason might be that images of the Multi-PIE database arecollected in well controlled environ-

ments while images of the LFW database are collected from totally uncontrolled environments. These

controlled Multi-PIE training images do not include an equivalent amount of image variation as the

uncontrolled LFW test images.

From Table 5.5 we also find that Tied Joint PLDA performs best among three Tied algorithms. The

reason might be that Tied Joint PLDA can estimate better covariance matrix by combining the advantages

of Tied PLDA and the Tied Joint Bayesian Face algorithm. In Table 5.5 we also find that the results of

the three Tied Bayesian face recognition algorithms are allexactly50.000%±18.898. It is because there

are only2 ∼ 5 image pairs in each test fold for pair group{30◦ − 60◦} as shown in table 5.2. The three

Tied Bayesian face recognition algorithms all failed for this pair group.

5.6.5 Train in the UCL Multi-Pose Database and Test in the LFWDatabase

In this section we compare the performance of three Tied Bayesian face recognition algorithms when

trained in the UCL Multi-Pose database and tested in the LFW database. The UCL Multi-Pose database

was collected using the same method as for the LFW database. Therefore, compared to the Multi-

PIE database, images of the UCL Multi-Pose database includemore variation. The UCL Multi-Pose

database is potentially better than the Multi-PIE databaseas a training database for face recognition in

uncontrolled environments. As in section 5.6.4 we compare the performance of the three Tied algorithms

for the following pair groups:{0◦−15◦}, {0◦−30◦}, {0◦−45◦}, {0◦−60◦}, {15◦−30◦}, {15◦−45◦},

{15◦ − 60◦}, {30◦ − 45◦}, and{30◦ − 60◦}.

As in section 5.6.4, for each pair group, we use all the relevant UCL Multi-Pose images at the two

poses to train Tied models; In test, for each of 10 test folds,we compute % correct of the image pairs

belonging to the test pair group, then we report the final performance by the mean of % correct in 10 test

folds and the standard error of the mean.

For all the three Tied Bayesian Face algorithms we apply PCA to reduce the dimensions. For Tied

PLDA and Tied Joint PLDA we set the PCA dimensions to 200, subspace dimensions to 128. For the

Tied Joint Bayesian Face algorithm we set the PCA dimensionsto 200. The optimal settings are obtained

by an empirical approach.

In Table 5.6 we compare the performance of three Bayesian face recognition algorithms trained in

the LFW database with the performance of three Tied Bayesianface recognition algorithms trained in

the UCL Multi-Pose database for each pair group. The way to train and test Bayesian face recognition
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algorithms for each pair group in the LFW database is described in section 5.2. From Table 5.6 we find

that Tied Bayesian face recognition algorithms perform better than Bayesian face recognition algorithms

for non-frontal pair groups with large pose differences. Examples include{15◦ − 45◦}, {30◦ − 60◦},

{0◦ − 45◦}, {15◦ − 60◦}, and{0◦ − 60◦}. The experiment results confirm our assumption that Tied

Bayesian face recognition algorithms can increase performance when large pose variation exists. We also

noticed that Bayesian face recognition algorithms performbetter than Tied Bayesian face recognition

algorithms for near frontal pair groups, in which both two images are near frontal. Examples include

{0◦ − 15◦}, {15◦ − 30◦}, and{0◦ − 30◦}. The reason might be that our UCL Multi-Pose database

provides less frontal training images than the LFW database.

From Table 5.6 we also find that the Tied Joint Bayesian Face algorithm and Tied Joint PLDA pro-

duce better performance than Tied PLDA. The reason might be that estimating the covariance matrix

without making low dimension assumption can capture more discriminatory information as we con-

cluded in chapter 4.

Bayesian face recognition algorithms 

trained and tested in the LFW database 

Tied Bayesian face recognition algorithms 

trained in the UCL Multi-Poses database 

and tested in the LFW database 

Pose 

difference 

Pair 

groups 
PLDA 

Joint 

Bayesian 

Face 

Joint PLDA Tied PLDA 

Tied Joint 

Bayesian 

Face 

Tied Joint 

PLDA 

15 

0-15 
90.029 

±0.873 

89.231 

±0.782 

89.492 

±0.664 

81.810 

±0.755 

83.163 

±1.508 

83.646 

±0.907 

15-30 
87.048 

±1.223 

87.362 

±1.202 

87.656 

±1.084 

82.961 

±1.610 

85.815 

±0.908 

85.481 

±1.008 

30-45 
70.433 

±5.233 

73.167 

±6.093 

76.944 

±4.672 

79.448 

±5.651 

87.028 

±3.715 

86.671 

±3.858 

30 

0-30 
84.256 

±1.103 

86.487 

±0.887 

86.629 

±0.793 

81.428 

±1.369 

84.318 

±1.309 

84.468 

±1.791 

15-45 
82.662 

±2.985 

77.765 

±3.000 

81.523 

±3.614 

79.848 

±4.452 

85.126 

±3.260 

83.645 

±4.295 

30-60 
51.667 

±15.000 

56.167 

±15.176 

66.667 

±14.907 

77.381 

±13.934 

76.190 

±11.419 

88.095 

±7.897 

45 

0-45 
76.916 

±6.943 

75.566 

±5.804 

75.197 

±5.552 

79.204 

±4.493 

79.812 

±2.437 

76.669 

±2.641 

15-60 
38.333 

±14.498 

38.333 

±14.498 

38.333 

±14.498 

77.381 

±13.934 

75.000 

±11.180 

80.556 

±9.044 

60 0-60 
51.071 

±12.644 

61.071 

±12.099 

61.071 

±12.099 

67.143 

±12.919 

63.571 

±12.664 

72.143 

±10.830 

Table 5.6:Verification results when trained in the UCL Multi-Pose database and tested in the

LFW database.We compare the performance of Bayesian face recognition algorithms trained in the

LFW database with the performance of Tied Bayesian face recognition algorithm trained in the UCL

Multi-Pose database. The tests are all conducted in the LFW database. We find that Tied Bayesian face

recognition algorithms perform better when large pose differences exist. Note:there is no result for pair

group{45◦- 60◦} because no image pairs exist in that pair group.

We compare Table 5.6 with Table 5.5 and find that the performance of Tied Bayesian face recogni-

tion algorithms trained in the UCL Multi-Pose database is better than the results trained in the Multi-PIE
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5.6 Experiments

database. These results support our hypothesis that it is better to use images from uncontrolled database

in training for a uncontrolled test database.

5.6.6 Switching Mechanism

From Table 5.6 we find that Bayesian face recognition algorithms perform better than Tied Bayesian face

recognition algorithms for near-frontal pairs. However, Tied Bayesian face recognition algorithms per-

form better when large pose differences exist. Therefore, we make a conjecture: the best performance is

achieved if we switch between Bayesian face recognition algorithms and Tied Bayesian face recognition

algorithms based on pose difference of a image pair.

We apply a simple switching model as follows. We apply Tied Bayesian face recognition algorithms

to make match decision for the following pair groups:{0◦−45◦}, {0◦−60◦}, {15◦−45◦}, {15◦−60◦},

{30◦ − 45◦}, and{30◦ − 60◦}. We apply Bayesian face recognition algorithms for other pair groups.

The matching decision is assigned by a switching model:

D =







DTied {0◦ − 45◦}, {0◦ − 60◦}, {15◦ − 45◦}, {15◦ − 60◦}, {30◦ − 45◦}, {30◦ − 60◦}
DBayeisan Otherwise

(5.60)

In Table 5.7 we compare the performance of Bayesian face recognition algorithms in the LFW

database with the performance of applying a switching mechanism to combine the advantages of

Bayesian face recognition algorithms and Tied Bayesian face recognition algorithms. Here three

Bayesian face recognition algorithms are trained using LBPdescriptors extracted from the LFW im-

ages as in section 5.2; three Tied Bayesian face recognitionalgorithms are trained using LBP descriptors

extracted from the UCL Multi-Pose database as in section 5.6.5.

From Table 5.7 we find that the switching mechanism can improve the verification performance

in the LFW database although the improvement is slight. The reason might be that there are not many

test pairs with large pose differences in the LFW database, although Tied Bayesian face recognition

algorithms improve the performance for pair groups with large pose variation.

Algorithm 
% 

correct 
Algorithm 

% 

correct 
Algorithm 

% 

correct 

PLDA 
87.350  

± 0.433 
Joint Bayesian Face 

87.617  

± 0.512 
Joint PLDA 

88.000  

± 0.442 

Switching 

between PLDA 

and Tied PLDA 

87.583 

± 0.383 

Switching between 

Joint Bayesian Face 

and Tied Joint 

Bayesian Face 

87.821 

± 0.457 

Switching 

between Joint 

PLDA and Tied 

Joint PLDA 

88.167 

± 0.453 

Table 5.7:The effect of the switching mechanism.We compare the performance of Bayesian face

recognition algorithms in the LFW database with the performance of using a switching Mechanism to

combine advantages of Bayesian face recognition algorithms and Tied Bayesian face recognition

algorithms. The switching Mechanism improves the performance.
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5.7 Conclusion

5.7 Conclusion
In this chapter we demonstrated that large pose variation isthe challenge for Bayesian face recognition

algorithms (PLDA, the Bayesian Face algorithm, and Joint PLDA). To address this issue, we proposed

two new algorithms: the Tied Joint Bayesian Face algorithm and Tied Joint PLDA. To train tied models,

sufficient training images are required for each pose. However, the LFW database cannot satisfy this

requirement. We introduced the UCL Multi-Pose database to solve this problem.

We first compare Tied PLDA, the Tied Joint Bayesian Face algorithm, and Tied Joint PLDA in

the controlled Multi-PIE database and the uncontrolled UCLMulti-Pose database respectively. Then

we conduct two cross-database experiments: trained in the Multi-PIE database and tested in the LFW

database; trained in the UCL Multi-Pose database and testedin the LFW database. Our experimental

results show that the performance of the three Tied Bayesianface recognition algorithms trained in the

uncontrolled UCL Multi-Pose database is better than the performance trained in the controlled Multi-

PIE database. Our experiment results also demonstrated that Tied Bayesian face recognition algorithms

improve the performance for pair groups with large pose difference. Among the three Tied algorithms,

we find that Tied Joint PLDA performs best. However, for near-frontal pairs, Bayesian face recognition

algorithms perform better than Tied Bayesian face recognition algorithms.

To combine the advantages of Bayesian face recognition algorithms and Tied Bayesian face recog-

nition algorithms, we introduced a switching mechanism: weapply Tied Bayesian face recognition al-

gorithms for pair groups with large pose differences and apply Bayesian face recognition algorithms for

other pair groups. Our experimental results show that the switching mechanism improves performance

in the LFW database.

Our algorithm has connections to the learned Bayesian Face algorithm [89], which applies Manifold

Relevance Determination [40] to learn the identity subspace. The commonality between their model

and our tied models is that these algorithms are all Bayesianmodels and the match assignment for

two images is decided by comparing the match likelihood and non-match likelihood. The difference is

that we apply Gaussian latent variable models while they useGaussian Process latent variable models.

They demonstrated that their Gaussian Process based model is flexible to fit complex data and improve

the verification performance in uncontrolled environments. The performance might be improved if we

combine the learned Bayesian Face algorithm and our tied models.

Currently we only use our tied model to deal with horizontal pose variation. The tied models can

be also used to handle vertical pose variation and lighting variation.
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Chapter 6

Conclusion

In this report, we proposed a series of probabilistic face recognition algorithms to improve recognition

performance in uncontrolled environments. The motivationfor these algorithms is based on two limita-

tions of the existing algorithms: (i) many algorithms do notperform well in uncontrolled environments;

(ii) most existing algorithms cannot handle large pose variation in uncontrolled environments. To over-

come the first limitation, we proposed Multi-Scale PLDA and Joint PLDA and show that they improve

performance in the benchmark database of face recognition under uncontrolled environments: the La-

beled Faces in the Wild database [65]. To resolve the second limitation, we collected a new database and

proposed the Tied Joint Bayesian Face algorithm and Tied PLDA.

In this chapter, we will firstly summarize our findings in eachchapter in section 6.1. Then we

discuss limitations and future work in section 6.2.

6.1 Summary and Contributions

In chapter 3, we proposed Multi-Scale PLDA to combine patch-based face representation methods and

Probabilistic Linear Discriminant Analysis (PLDA) [111].In Multi-Scale PLDA, face images are de-

scribed as a sum of the signal component and the noise component. The signal component describes

the between-individual variation and is a weighted combination of the basis functions of the between-

individual subspace. The noise component explains the within-individual variation and is a weighted

combination of the basis functions of the within-individual subspace. We break both the signal and noise

into regular grids of non-overlapping patches. We change the patch configuration of the signal compo-

nent to vary the spatial support of the basis functions of thebetween-individual subspace. We change

the grid resolution of the noise component to vary the degreeof the localization of the basis functions of

the within-individual subspace.

We applied Multi-scale PLDA in four controlled databases and one uncontrolled database. We find

that we can obtain the best performance in three constraineddatabases when the signal component of

Multi-scale PLDA is treated locally and the noise componentis treated globally. We achieved 100%

correct performance for face identification in the XM2VTS frontal database [95] using an optimal com-

bination of local signal and global noise models, which is a significant improvement compared to 91%

correct of PLDA and 84% correct of Dual Space LDA [137]. However, performance did not increase in



6.1 Summary and Contributions

the fourth constrained database when we treat the signal more locally. We attributed this difference to the

pose changes that are not present in the three controlled databases but are present in the fourth database.

If there are pose changes between two images, the corresponding facial features will not appear in corre-

sponding patches. We also applied Multi-Scale PLDA in the uncontrolled database: the LFW database.

Since the unconstrained face database contains large pose variation, Multi-scale PLDA does not perform

well when intensities are used to represent images.

The main disadvantage of Multi-Scale PLDA is that it is sensitive to pose variation. We hope

to address this problem by extending the shiftmap representation [113] to estimate the corresponding

patches for two images with different poses in future work. Another disadvantage of Multi-Scale PLDA

is that the training process is slower than PLDA since it applies more basis functions and requires more

calculation.

In chapter 4 we proposed Joint PLDA to combine the advantagesof PLDA and the Joint Bayesian

Face algorithm [30]. PLDA and the Joint Bayesian Face algorithm are two state of the art algorithms and

produce a good performance in the LFW database. The advantage of PLDA is that it uses an EM training

method to estimate model parameters and guarantees that thelikelihood increases at each iteration. The

disadvantage of PLDA is that it uses a subspace method to project high dimensional face data into

a low dimensional subspace and may discard some discriminative information. The advantage of the

Joint Bayesian Face algorithm is that it does not make the lowdimension assumption and can estimate

the match and non-match covariance matrix from high dimensional data directly. Its disadvantage is

that it uses an EM-like algorithm and cannot guarantee that the likelihood increases at each iteration.

We proposed Joint PLDA to combine the two algorithms. Joint PLDA uses a strict EM algorithm to

guarantee likelihood increases and can also estimate the covariance matrix from the high dimensional

data directly.

Our experiments show that Joint PLDA always produces betterperformance than PLDA and the

Joint Bayesian Face algorithm in the LFW database when a single descriptor is used. When we com-

bine four image descriptors, Joint PLDA can achieve91.367%± 0.448 in the LFW database, which is

comparable to91.300%± 0.003 of the commercial face recognition system face.com [126].

One drawback of Joint PLDA is that it requires more computation cost to do face verification than

PLDA because it does not make low dimensional assumption. Moreover, Joint PLDA cannot pre-process

images offline as PLDA, so the speed of Joint PLDA to do face identification is slower than PLDA.

In chapter 5 we proposed the Tied Joint Bayesian Face algorithm and Tied Joint PLDA to handle

large pose variation in uncontrolled environments. We assign each LFW image to one of a set of pre-

defined horizontal pose categories and allocate each LFW test image pair to one of a set of pair groups

based on the poses of the two images. We analyse the verification performance of PLDA and the Joint

Bayesian Face algorithm for each pair group and find that bothalgorithms perform very badly for pair

groups with large pose variation. To handle the pose changesin the LFW database, we attempt to use

Tied PLDA [82], which has been demonstrated to be able to handle pose variation in controlled databases

well. We also proposed Tied Joint Bayesian Face algorithm and Tied Joint PLDA to address the issue.
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6.2 Limitations and Future Work

We refer to Tied PLDA, Tied Joint Bayesian Face algorithm andTied Joint PLDA as Tied Bayesian

face recognition algorithms. We refer to PLDA, the Joint Bayesian Face algorithm and Joint PLDA as

Bayesian face recognition algorithms.

To train Tied Bayesian face recognition algorithms, sufficient training images are required for each

pair group but the LFW database cannot provide that. To have sufficient training images, we used the

Multi-PIE database and also introduced our own UCL Multi-Pose database as training datasets. When we

train the three Tied Bayesian face recognition algorithms in the Multi-PIE database and test in the LFW

database, we find that the performance of the Tied Bayesian algorithms is worse than the performance

of the Bayesian face recognition algorithms, which are trained only using the LFW images. The reason

might be that the images of the controlled Multi-PIE database do not include an equivalent amount of

image variation as the uncontrolled LFW test images. When wetrain the Tied Bayesian face recognition

algorithms in the UCL Multi-Pose database and test in the LFWdatabase, our experiments show that

the performance of the Tied Bayesian face recognition algorithms is better than the performance of

the Bayesian face recognition algorithms for pair groups with large pose variation. Among the three

Tied Bayesian face recognition algorithms, Tied Joint PLDAperforms best. However, the Bayesian face

recognition algorithms perform better than the Tied Bayesian face recognition algorithms for near frontal

pair groups. To combine the advantages of Tied Bayesian facerecognition algorithms and Bayesian face

recognition algorithms, we proposed a switching mechanismto apply different algorithms based on the

poses of the two images. Our experiments show that the switching mechanism can improve performance

in the LFW database.

Currently we have only applied tied models to handle horizontal pose variation. In the future we

can extend the application of tied model to deal with vertical pose variation and lighting variation.

6.2 Limitations and Future Work
Gaussian Model

In this report we assumed that the marginal density of the data is a multivariate Gaussian. The

drawback of this assumption is that our models might be sensitive to outliers in the training images.

To address this limitation, we will propose a more robust probability model in the future, in which

we assume the marginal density of the data is distributed as amultivariate t-distribution. Compared

with a Gaussian, a t-distribution has heavier tails, which helps improving the robustness to outliers as

demonstrated in [74]. The t-distributed models will be moregeneral than the Gaussian models. In

fact, a t-distribution is equivalent to a Gaussian when the degree of freedom approaches infinity. The

Gaussian models can be treated as the special case of of the t-distributed models. We have great interest

to transfer the models of this thesis to the version using t-distribution and investigate whether the new

models improve the robustness to image variations in uncontrolled environments. One drawback of the

t-distributed models is that the training will be slower than the Gaussian models since more computation

will be required to find an optimal value for the degree of freedom.

Large Training Data

Along with the development of image search engines and social networks, it has become easier and
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easier to collect a large number of training images. We are interested to investigate the performance if we

use more training images. Recently, Taigman et al. [128] have demonstrated that the neural network is a

good model to leverage the huge volume of training data. The deep and large networks can be learned ef-

fectively from big training data and can be applied to form a very compact representation to face images.

The process to learn deep and large networks is termed deep learning. Taigman et al. used deep learning

to extract features from images and applied a simple classifier to make the verification assignment. In

the future we will use the deep learning method to extract features from images and use the proposed

algorithms in this report to do face verification in the LFW database. We hypothesize this combination

will improve performance compared to [128]. However, deep learning has its disadvantages: it requires

a very large amount of memory to store the networks and the computation cost to recognize an image is

very expensive. It might take several seconds to identify a face image. Therefore, it might not be suitable

for some mobile devices which have limited memory and low computation capability.

Image Descriptors

In this report we used global image descriptors to do face verification in the LFW database. Global

image descriptors denote that we extract visual features from the whole image. In future work we hope to

investigate the performance of all our algorithms using local descriptors, which means we extract visual

features from fiducial points (they are a set of salient facial parts and usually locate on the corners of the

eyebrows, the corners of the eyes, the tip of the nose, the corners of the lips, etc). It has been demon-

strated in [31] [112] that local image descriptors are more robust to pose variation and help improve the

recognition performance. Another advantage of local imagedescriptors is that it is easy to form a dense

representation of the face image by increasing the number offiducial points and collecting descriptors

from a pyramid of patches with different size over a fiducial point. This type of dense representation has

been demonstrated in [31] [124] and shown to capture more discriminative information and improve the

performance. Currently, we do not have a good fiducial pointsdetector, so we did not use a dense repre-

sentation to encode the LFW images. In the future we will use high dimensional data vectors obtained

from dense representation methods to conduct verification experiments in the LFW database.
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Glossary

Notations

Υ A face image represented by a pixel intensity array

x A face image represented by a pixel intensity vector obtained by concatenating the columns of pixels

in the imageΥ

µ The mean vector of all the training images

Φ A matrix containing the basis functions of the Eigenfaces subspace in its columns

ω A coefficient vector in the Eigenfaces subspace

xijk Thekth pose of thejth image of theith individual

µk The mean vector at pose k

F A matrix containing the basis functions of the between-individual subspace in its columns

Fk A matrix containing the basis functions of the between-individual subspace for pose k in its columns

Fp A matrix containing the basis functions of the between-individual subspace for thepth patch of images

in its columns

G A matrix containing the basis functions of the within-individual subspace in its columns

Gk A matrix containing the basis functions of the within-individual subspace for pose k in its column

Gq A matrix containing the basis functions of the within-individual subspace for theqth patch of images in

its column

hi A hidden identity variable for all the images of the ith individual

h
p
i A hidden identity variable for thepth patch of all the images of the ith individual

wij A hidden noise variable for thejth image of theith individual

w
q
ij A hidden noise variable for theqth patch of thejth image of theith individual

ǫij A stochastic noise of thejth image of theith individual

ǫijk A stochastic noise of thejth image of theith individual at pose k

Σ The diagonal covariance matrix for the stochastic noise of images

Σk The diagonal covariance matrix for the stochastic noise of images at pose k

θ The model paramters

I The identity matrix

P The patch number for the signal component

Q The patch number for the noise component



PIR The identification rate

PFA The false alarm rate

τ The threshold

η The similarity score of two images

S The scatter matrix

SB The scatter matrix for the between-individual variation

SW The scatter matrix for the within-individual variation

Ŵ A matrix containing the basis functions of the Fisherfaces subspace in its columns

pi The percentage of correct assignment for the test groupi of the LFW database

µ̂ The mean accuracy

SE The standard error of the mean

σ̂ The estimate of the standard deviation

κ A constant

∆ The difference of two images

Ms The model two images match

Md The model two images do not match

Σd The non-match covariance matrix

Σs The match covariance matrix

Λs The eigenvalues of the within-individual covariance matrix

Vs The eigenvectors of the within-individual covariance matrix

Λd The eigenvalues of the between-individual covariance matrix

Vd The eigenvectors of the between-individual covariance matrix

α The identity component of a face image

β The within-individual variation component of a face image

Σα The covariance matrix for the between-individual variation

Σβ The covariance matrix for the within-individual variation

Σα1 The covariance matrix for the between-individual variation at pose 1

Σβ1 The covariance matrix for the within-individual variationat pose 1

Σα2 The covariance matrix for the between-individual variation at pose 2

Σβ2 The covariance matrix for the within-individual variationat pose 2

Σα12 The covariance matrix for the between-individual variation across pose 1 and pose 2

αa The identity component of training images at pose 1

αb The identity component of training images at pose 2

βa The within-individual variation component of training images at pose 1

βb The within-individual variation component of training images at pose 2

Go[̺, ς] A Gaussian ino with mean̺ and covarianceς

r(x1,x2) The log likelihood ratio of two imagesx1 andx1
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Acronyms

CCD Charge-coupled Device

MAP Maximum a Posteriori

EM Expectation maximization

NC Nearest Centroid

NN Nearest Neighbors

PCA Principal Component Analysis

LFA Local Feature Analysis

EBGM Elastic Bunch Graph Matching

LDA Linear Discriminant Analysis

ASM Active Shape Model

AAM Active Appearance Model

SVM Support Vector Machine

PLDA Probabilistic Linear Discriminant Analysis

SLDA Smooth Linear Discriminant Analysis

OSS One-Shot Similarity

LDML Logistic Discriminant Base Metric Learning

MKNN Marginalized k-nearest-neighbour

LLDA Locally Linear Discriminant Analysis

CSML Cosine Similarity Metric Learning

DML-EIG Distance Metric Learning with Eigenvalue Optimization

CMD Covariance Matrix Descriptors

SUB-SML Similarity Metric Learning over the Intra-personal Subspace

LBP Local Binary Patterns

TPLBP Three-Patch LBP

FPLBP Four-Patch LBP

LE Learning-based

LARK Locally Adaptive Regression Kernel

LQP Local Quantized Patterns

SIFT Scale Invariant Feature Transform

HOG Histogram of Oriented Gradients

OCLBP Over-Complete Local Binary Patterns

FERET Face Recognition Technology Test

FRVT Face Recognition Vendor Test

ORL Olivetti Research Ltd

AR Aleix Martghnez and Robert Benavente

PIE Pose, Illumination, and Expression

XM2VTS Extended Multi Modal Verification for Teleservices and Security applications
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KFDB Korean Face Database

FRGC Face Recognition Grand Challenge

WDRef Wide and Deep Reference

PUBFIG Public Figure

LFW Labeled Faces in the Wild

ROC Receiver Operator Characteristic

CMC Cumulative Match Characteristic
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