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Abstract

This thesis concerns face recognition in uncontrolledremments in which the images used for train-
ing and test are collected from the real world instead of latmwies. Compared with controlled envi-

ronments, images from uncontrolled environments contairengariation in pose, lighting, expression,
occlusion, background, image quality, scale, and makelngréfore, face recognition in uncontrolled
environments is much more challenging than in controlleabitions. Moreover, many real world ap-

plications require good recognition performance in unaalgd environments. Example applications
include social networking, human-computer interactiod atectronic entertainment. Therefore, re-
searchers and companies have shifted their interest frotnadled environments to uncontrolled envi-
ronments over the past seven years.

In this thesis, we divide the history of face recognitioroifiur stages and list the main problems
and algorithms at each stage. We find that face recognitiam@onstrained environments is still an
unsolved problem although many face recognition algorihivave been proposed in the last decade.
Existing approaches have two major limitations. First, ynarethods do not perform well when tested
in uncontrolled databases even when all the faces are ddsental. Second, most current algorithms
cannot handle large pose variation, which has become a&hetk for improving performance.

In this thesis, we investigate Bayesian models for facegeition. Our contributions extend Prob-
abilistic Linear Discriminant Analysis (PLDA) [Prince aidder 2007]. In PLDA, images are described
as a sum of signal and noise components. Each component iglt@gcombination of basis functions.
We firstly investigate the effect of degree of the locali@atof these basis functions and find better per-
formance is obtained when the signal is treated more loeaitythe noise more globally. We call this
new algorithm multi-scale PLDA and our experiments shovait bandle lighting variation better than
PLDA but fails for pose variation.

We then analyze three existing Bayesian face recognitigorithms and combine the advantages
of PLDA and the Joint Bayesian Face algorithm [Chen et al22€d propose Joint PLDA. We find that
our new algorithm improves performance compared to exjsdayesian face recognition algorithms.
Finally, we propose Tied Joint Bayesian Face algorithm dad Joint PLDA to address large pose vari-
ations in the data, which drastically decreases performanmost existing face recognition algorithms.
To provide sufficient training images with large pose difece, we introduce a new database called the
UCL Multi-pose database. We demonstrate that our Bayes@iehs improve face recognition perfor-

mance when the pose of the face images varies.
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Chapter 1

Introduction

1.1 What is Face Recognition?

1.1.1 Definition of Face Recognition

The motivation of automatic face recognition is to give tbeputer the same capability as human beings
to recognize faces. The general definition to face recagnisi to estimate the identity of one or more
people from static images or video sequences using a statethase of gallery faces. There are two
types of face recognition: closed set and open set. In clesedecognition, we can definitely find a
gallery face matching the input image. In open-set recagmitve might not find any matched gallery

image to the input face image.

1.1.2 Typical Recognition Pipeline
Face recognition is a visual pattern recognition probleiguie 1.1 shows the basic pipeline of a face
recognition algorithm. Generally the process for a comptateecognize faces can be divided into the

following subtasks:

1. Face Detection. Detect the presence of faces and givedhgdn, size and orientation of the faces

in the image if faces exist. Normally the output is a boundiog around each face.

2. Face Alignment. Locate the facial landmarks, such asyks,eose, mouth, etc. and align the
input face image to a pre-defined template to eliminate thes fcation and orientation variation

of face.
3. Feature Extraction. Describe a face image by a reprdsamtaethod.

4. Face ldentification. Compare the similarity betweentipeit image and all the faces in the gallery

database and then estimate the identity of the input facgema

1.1.3 Advantages of Face Recognition

Face identification is a very common activity in everydag.liEveryone has to identify other people and
prove their own identity to others. Examples include shgnanpassport to open a bank account and
inputting a password to login on a computer. In most caseslyen traditional identification methods

which include identification cards, keys, passwords, etowéler, these methods are not necessarily



1.1 What is Face Recognition?

Name:
» III ce* II » David Cameron

a) Input Image b) Face Detection c) Face Alignment d) Feature Extraction ) Recognition

Figure 1.1:Face recognition pipeline.a) Given an input face image. b) We detect the presence oéa fac
and put a bounding box around it. ¢) We crop out the face regimhalign it to a pre-defined template
to compensate for size, location and orientation variat)nWe extract features. e) We recognize the

identity of the face.

safe or convenient: identification cards and keys might hatafeited; passwords might be forgotten
and stolen; cards and keys are not easy to carry. Therefanera secure and convenient method is
desirable. It is widely believed that biometrics are thald®lution.

The term ‘biometric’ means to use one or more intrinsic ptgisdr behavioral traits to recognize
people. Because these biometric traits are unique and fohwe smdividual, they are difficult to counter-
feit or steal. Biometrics are believed to be reliable, gcattaind convenient. There are different kinds of
biometric characteristics to identify people, for examipke fingerprint, DNA, palm print, voice, gait,
etc. Among these, the face is the most important charatiteiogrecognize people.

Compared with other biometrics, face recognition has tlieviing advantages:

» Natural. The face is the most natural way to identify a huineimg. Compared with fingerprint

and iris recognition, it is easier for normal users to gebined.

« Ideal for surveillance. Face recognition does not neecptiréicipant’s cooperation, so security
cameras can be installed secretly. This is especially Uafinvestigating criminals. It is the

biggest advantage of face recognition compared to othendtiacs.

» Easy to be accepted. There is no direct contact when anguhie face image, so normally it will

be unobtrusive.

» Cheap and widely-distributed image acquisition equipmedurrent CMOS cameras are very
cheap. The webcam has already become a standard extericd dad CCTV cameras are in-
stalled in many companies and cities. Many people own digéeeras, camcorders and photo-

scanners.

Because of the above advantages, face recognition has bexwary popular research topic in the past

twenty years.

1.1.4 Applications

Face recognition has great potential in numerous goverharehcommercial applications. Generally

these applications can be classified into the followinggates:

10



1.2 Uncontrolled Environments

» Access Control: computer login and building access. Facegnition can prevent misuse of
stolen or lost passwords and keys effectively. The rec@gnéccuracy in this type of application
is quite high because the number of people is relativelylsmalinput images are normally frontal
face under indoor illumination. For example, Omron [13Xd\pded a face recognition system to

the University of Missouri-Rolla to secure a nuclear reacto

» Security. Face recognition is often combined with a smed €0 confirm a user’s real identity. The
organizers of Beijing Olympics installed a face recogmitdyystem developed by Authenmetric to

make sure only the valid ticket holders can enter the sponigs in 2008 [1].

» Surveillance. Many airports have installed face recagnisystems to identify known terrorists.
However, false alarms are quite high for most current facegasition systems. For example,
a face recognition system developed by Viisage was deploy&tdesno Yosemite International
airport in California in 2001. However, they finally gave inetsystem because of frequent false

alarms [87].

 Human Computer Interaction and entertainment. The hunagly s a natural input device to
achieve user-friendly and efficient human computer intéwac The Xbox 360 Kinect developed

by Microsoft can make users’ avatars simulate their tallstyte during the game.

» Law enforcement. Face recognition could help investigatdtain the identity of a person from
a face database quickly. For example, a face recognitidersysalled Imigis helps California’s

police officers identify unknown bodies.

» Labeling face images. It has become more and more diffioulalbel images manually as the
number of images increases. Face recognition can be usadbe¢biimages automatically. Pi-
casa developed by Google uses face recognition technolelgyits users manage their photos

efficiently.

* Video Management. Human faces appear very frequentlyws ii@ms and home video. In order
to generate summaries from these videos for video browskigiming and summarization, face
recognition technology is often used. For example, a soéwiaveloped by Ma and Zhang can

collect a set of video segments from original video files bipgi$ace recognition technology [91].

1.2 Uncontrolled Environments

In the past decades people focused on developing fundahf@cgarecognition algorithms [132] [10]
based on controlled environments which have simple backgi®and limited variation in pose and light-
ing. To compare the performance of face recognition algors, a number of standard face databases
were published, for example FERET [106], XM2VTS [95] and MHHIE [56]. Images from controlled
databases are illustrated in Figure 1.2a. After years oéldgment many proposed face recognition

algorithms have produced very impressive results in thes&ralled databases.

11



1.3 Challenges of Uncontrolled Environments

{
\
' .

Figure 1.2:Images from controlled and uncontrolled environments.a) In the past, face recognition
algorithms were evaluated on controlled face database$ichvimages have simple backgrounds and
limited variation in pose and lighting. From left to rightxa@mple images are from XM2VTS [95],
Yale[52], Multi-PIE [56] and FERET [106] face databasegexgively. b) Recently research has shifted
to face recognition in uncontrolled environments in whiohages have complex backgrounds, partial
occlusions and large variations in pose, lighting and rd&&eample images are from the most famous

uncontrolled face database: Labeled Faces in the Wild [65].

Recently, research has shifted toward face recognitiomaontrolled environments to encourage
real-world applications. Images are collected from therim¢t and have complex backgrounds, partial
occlusion and large variations in pose, lighting, imageliguaace and expression. The most famous
uncontrolled face database is the Labeled Faces in the Vdilabdse with over 600 citations in the
face recognition literature [126]. Examples from this éatse are shown in Figure 1.2b. An ideal face
recognition algorithm should perform well in uncontrolledvironments to satisfy the requirements of
real-world applications. However, this still remains a blwallenge for most current face recognition

algorithms.

1.3 Challenges of Uncontrolled Environments

The three main challenges for face recognition in uncoletianvironments are large variation in pose,
lighting and partial occlusion.

The first challenge is pose variation. A person appears Viffigrently from different viewpoints
(see Figure 1.3a). Pose variations make the feature mgttleitiveen two face images under different
pose very difficult. In general, non-matching frontal faeee more similar to each other in terms of
pixel values than matching faces of different poses.

A second major obstacle is lighting variation (Figure 1.3Hh)is hard to recognize the face un-
der varying lighting. Even two images from the same persdrubder different lighting can appear

dramatically different.

12



1.4 Problem Statement

Figure 1.3:Main challenges for face recognition under uncontrolled Enironments. a) Pose vari-
ation: the appearance of a face varies significantly as tséi@o of the camera varies. b) Lighting
variation: the face looks very different when lighting chas. c) It is hard to recognize the face when

face expression varies. All example images are from the ledldéaces in the Wild database [65].

Finally, expression is also an impeding factor (Figure L.3@rying face expression can reduce
recognition performance dramatically.
In this thesis we mainly focus on overcoming these challerigeémprove the face recognition

performance in uncontrolled environments.

1.4 Problem Statement

Face recognition in uncontrolled environments is a chgilegtask and many existing algorithms do not
perform well. In this thesis we propose a series of robusergive probabilistic face algorithms which
can handle the challenges of uncontrolled environmentszefify the performance of our algorithms,

we test our algorithms in the well-known uncontrolled faetathase, Labeled Faces in the Wild [65].

1.5 Main Contributions

In this report we discuss how to overcome the main challefges reliable face recognition system

under uncontrolled environments. The main contributiars a

13



1.6 Report Structure

1. We review existing face recognition algorithms. We reskee history of face recognition research
by dividing it into four development categories. We list timain problems and representative
methods in each category. We also summarise the main pljpbczessible face databases and
describe the evaluation methods and conclusions of famaos Recognition Technology Test
(FERET) and Face Recognition Vendor Test (FRVT).

2. We investigate the role of the spatial support of signdlramise for face recognition. We develop a
model for face recognition that describes the image as a $wigrmal and noise components. We
describe each component as a weighted combination of hasitidns. We investigate the effect
of degree of localization of these basis functions: eacthtrdgscribe the whole image (describe
global pixel covariance) or only a small part of the face (diéx® only local pixel covariance). We
called this new algorithm Multi-Scale PLDA. Our experimg&show that we can extract a more
robust recognition signal from face images and producebp#rformance by treating the signal

more locally and the noise more globally.

3. We analyze three existing Bayesian face recognitionréifgns and propose a new algorithm:
Joint PLDA. Probabilistic linear discriminant analysid. (PA) [111] and the Joint Bayesian Face
algorithm [30] are two state of the art face recognition alpons. We compare the two algo-
rithms to identify their similarities and differences. The&e combine the advantages of PLDA and
the Joint Bayesian Face algorithm to propose Joint PLDA. Wepare the performance of four
Bayesian face recognition algorithms (The Bayesian Fagerithm, PLDA, the Joint Bayesian
Face algorithm and Joint PLDA) when different image desorpare used. Our experimental
results demonstrate that Joint PLDA performs better thabA?&nd the Joint Bayesian Face al-

gorithm in the LFW database.

4. We identify the challenge in the LFW database and propesaew algorithms to overcome the
challenge. We analyse the verification results of three Biayeface recognition algorithms in
the LFW database and find that large pose variability is tlediehge for improving performance.
Tied PLDA [82] is one possible solution to overcome this peol. However, there are insufficient
LFW training images for Tied PLDA, especially where thera large pose difference. To address
this issue, we introduce a new database called the UCL Noke database with more training
images for large pose changes. We also describe tied vartiba Joint Bayesian Face algorithm
and Joint PLDA. We compare performance of three Tied Bayefsiee recognition algorithms
(Tied PLDA, Tied Joint Bayesian Face algorithm and Tied t1&hbDA) when different image
descriptors are used. Our experiments show Tied Bayestanrécognition algorithms perform
better than Bayesian face recognition algorithms (PLDA, dbint Bayesian Face algorithm and

Joint PLDA) when large pose variation exists.

1.6 Report Structure

In chapter 2 we describe previous related work. In chaptda@ generation is divided into signal

and noise components and we investigate the optimal spatport for these two components. In

14



1.6 Report Structure

chapter 4, we compare the existing three Bayesian face métwgalgorithms and propose Joint PLDA
to combine the advantages of PLDA and the Joint Bayesian &lgoeithm. In chapter 5, we propose
Tied Joint Bayesian Face and Tied Joint PLDA to improve thiéopeance for large pose variation. In

the final chapter, we draw conclusions and describe futur&wo

15



Chapter 2

Literature Review

In this chapter we will analyse the generation process @& faages and discuss the general model for
face recognition. Then we divide the development of facegadion into four historical stages and
introduce the main targeted problems and face recognitgorithms at each stage. Finally, we discuss

publicly-accessible face databases and evaluation method

2.1 The General Model for Face Recognition

The generation of face images can be described as folloveslight interacts with the face through
physical processes such as reflection and then the chaugéedalevice (CCD) of the camera captures
the reflected light to form the pixel intensity for each pikedation [138]. Therefore, the process includes

three factors:

1. The intrinsic structure of the face. It includes the 3Dpghaf the face, the reflectance of the face

surface (texture) and variations caused by expression.
2. External factors. These include the luminance and dinedtf the light source.

3. The parameters of the camera. These include the loc&tious, shutter speed and aperture size

of the camera.

From the face image generation process we know the 3D stauofua face and its reflectance
characteristics are the intrinsic features of the face lwbén be used to identify people. Obviously, face
expressions cannot be used to distinguish different peadfileugh they belong to the intrinsic feature
of the face. Clearly, the external factors and the cameranpaters cannot be used to discriminate
between identities. Consequently, the intrinsic strietfithe face is called ‘the signal’ and can be used
to estimate the identity of people. The other factors arkeddthe noise’ and are not useful for face
recognition.

The ideal face recognition algorithm can divide the facegmimto two parts: signal (stable intrin-
sic structure of the face) and noise (expression, exteworalitions and camera parameters). Then we
identify faces based on the extracted signal. So the pradoddentify people from an input face image

Y is as follows
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1. Image decomposition. We decompose a face image intcesitatinsic structure of face, light

source and parameters of camera.

2. Feature extraction. We extract discriminant featwr&®m the stable intrinsic structure of the

face.

3. Identification. We compare the featukesf the input face imag& with the featuresf,(sj}j=1
of all the J gallery face images to identify the input face image by thikegaimage with the
maximum similarity

h= argrjxé%((Szm(s,sj)), (2.2)

where the ternh denotes the identity of the face, the functi®im calculates the similarity score,
andN is the number of images in gallery face database. Here werasse can definitely find a

gallery face matching the input image.

In fact the process to determine the 3D shape and the reftecti#rface is a very difficult vision
problem even when there is only a single point light sour&O[1 At the present time it is still an
unsolved problem although researchers made some processngydifferent kinds of constraints and
priors [152] [17] particularly in the case where there ardtiple images under different illuminations
[52] [147]. Therefore, most current face recognition aitjons do not decompose the face image to

obtain 3D shape and the reflectance of face but extract thardiaant features from the image directly.

For local feature-based face recognition algorithms scthe Elastic Bunch Graph Matching al-
gorithm [139], the feature comprises local statistics (geometric and appearancegatet from facial
landmarks, such as the eyebrows, eyes, nose, mouth, etchokstic subspace methods such as the
Eigenfaces algorithm [132], the Fisherfaces algorithnj Er@ Probabilistic Linear Discriminant Anal-

ysis (PLDA) [111], the feature is a point in a low dimensional subspace.

2.2 Overview of Existing Face Recognition Algorithms

Research in face recognition goes back to 1965 with the wbhan and Bledsoe [28]. Since then,
face recognition has become more and more popular, esiyefiar the Eigenfaces algorithm [132] was
published in 1990. It is likely that face recognition will dmme more widespread as potential applica-
tions have extended from traditional security applicaitmthe areas of human-computer interaction,

electronic entertainment and social networking.

After decades of development there is a huge literaturearointg face recognition. To describe the
development more clearly, we divide research history iato historical stages according to the targeted

problems. Table 2.1 summaries the four stages. We now teseaich stage in turn.
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Table 2.1:Summary of four development stages.

2.2.1 Stage | (1964 - 1990)

In this stage researchers focussed on extracting geonfiettiares of different people to distinguish
individuals. Most methods were purely geometric. For extienigelly [73] used the width of the head,
the distances between the eyes and from the eyes to the nadémntify people in 1971. Two years later,
Kanade [71] proposed a method which used distances andsabefi@een the eye corners, the mouth
extremal, the nostrils and the chin top (see Figure 2.1).aBse these distances have to be extracted

manually, automatic face recognition is not practical iis gtage.

2.2.2 Stage Il (1991 - 1997)

This stage is quite short but very important because a nuwibesry important algorithms were pro-
posed. Moreover, during this period, the Department of Befeof American government sponsored
George Mason University to collect face images for the FaaeBnition Technology (FERET) database
and organized three famous tests [106] [115] [110]. Thedmstmercial face recognition systems were
also set up during this period (e.g. Facelt).

In 1991 Turk and Pentland proposed the Eigenfaces algofitB@] which is the most well-known
algorithm in this stage. Many of the subsequent algorithmsewariations of the Eigenfaces algorithm.
Nowadays, the Eigenfaces algorithm has become the benklatgarithm for face recognition evalua-
tion.

The motivation behind the Eigenfaces algorithm is that retimages such as face images have

significant statistical redundancy. Principal Componenal§sis (PCA) can be applied to reduce the
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Figure 2.1: Geometric parameters of the Kanade’s face recognition alggéhm [71]. Kanade ex-

tracted 16 geometric parameters= {z1,--- , 216} manually from each face and used them to identify
people. (Adapted from Kanade [71])

dimensions to form a more compact representation to facgemausing this approach the signal-to-

noise ratio can be increased.

In the Eigenfaces algorithm a face imagés represented by the following equation:
x =~ p+ Pw, (2.2)

wherex is a pixel intensity vector obtained by concatenating thieiroos of pixels in the imag&”
(shown in Figure 2.2)u is the mean vector of all the training imagdscontains the basis functions of
the feature subspace in its columns, ani a coefficient vector.

In the training phase of the Eigenfaces algorithm, the goabilearn the basis functions of the
feature subspace. Firstly the mean image vegte subtracted from each of the training images. The
resulting vectors are concatenated to form a m matrix B, wheren denotes the vector dimensions
andm is the number of training data. Then Principal Componentlysia (PCA) is applied to the
covariance matriXBB”to obtainm eigenvectors. However, to have a compact representatilynpon
eigenvectors with the largest eigenvalues will be chosem i eigenvectors. The subspace spanned
by p eigenvectors is called feature space. The 4 eigenvecttinsting largest eigenvalue are reshaped
to form RGB images, which are shown in Figure 2.3. Each tnginmage can be represented by a
corresponding point in the feature space.

In the testing phase we assign identity to input images. lgult image is projected into feature
space and the Euclidean distance is measured to all théngaimages in the feature space. If the
distance is smaller than a certain threshold, the input @sgssigned to the same identity as the closest
training image in feature space.
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Figure 2.2: The face representation method of the Eigenfaces algorithrfi32]. In the Eigenfaces

algorithm the input face imadi is represented by an intensity vectgrwhich is obtained by concate-

nating the columns of image pixels.

Mean, u

Figure 2.3: Eigenfaces [132]. (a) Mean face. (b) Four eigenvectors with the largest eiglelevare

reshaped to form RGB images.

After the Eigenfaces algorithm was proposed, there wast gmézrest in comparing these new
appearance-based subspace algorithms with traditiooahggy-based algorithms, which were widely
used in Stage I. In 1993 Brunelli and Poggio [20] conductecbmparison experiment and drew
the conclusion that appearance-based subspace algoptiochsce better performance than geometry-
based algorithms. Their conclusion drove researchers &waygeometry-based algorithms and made
appearance-based algorithms dominant.

One drawback of the Eigenfaces algorithm is that it onlyasts global facial features but cannot
use local features to describe local facial structures. é¥ew representations to the local facial structure
can offer robustness against within-individual variatigktick et al. [103] proposed the local feature
analysis (LFA) algorithm to overcome this drawback in 198Be LFA algorithm represents face images
in terms of statistically derived local features. They destoated the LFA algorithm produced better
discriminant performance than the Eigenfaces algorithive IFA algorithm was commercialized and
became the well-known Facelt system.

Inspired by the Eigenfaces algorithm, Moghaddam et al. [@#8posed a Bayesian probability-
based algorithm which measures the similarity of two facages by Bayesian probability instead of Eu-
clidean distance. They define two subspaces to describe/pes bf image variation: within-individual
variation and between-individual variation. The pixelevdifference of two face images is projected into

within-individual subspace to obtain the within-indivyprobability density and the between-individual
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Figure 2.4:Two subspaces of the Bayesian Face algorithm [98The Bayesian Face algorithm defines
two subspaces to describe two types of image variation. daj &irections in the between-individual
subspace. Images look like different people. (b) Four dimas in the within-individual subspace.

Images appear to be from the same person.

subspace to obtain between-individual probability dgmneispectively. Figure 2.4 illustrates the two sub-
spaces. Then the maximum a posteriori (MAP) approach is tsesdtimate which type of variation is
the main reason for the image difference. If the differersceaused mainly by the within-individual
variation, then two images are assumed from the same pdfgba.between-individual variation is the
main reason, then two images do not match. In the FERET 2000 fhis new Bayesian probability

based algorithm produced better performance than the figesalgorithm.

The Fisherfaces algorithm proposed by Belhumeur et al.ifl&hother well-known algorithm that
exploits between- and within- individual statistics. Thigéhfaces algorithm maximizes the scatter of all
face images by projecting the high-dimensional image intawaedimension subspace. Thus the Eigen-
faces algorithm not only maximizes the between-individigaltter which is important for classification
but also to the within-individual scatter that should bengfiated. Unwanted within-individual variations
due to noise are retained. The Fisherfaces algorithm appigher’s linear discriminant analysis (LDA)
to project images into a low dimensional subspace, whichimiaes the between-individual scatter and
minimizes the within-individual scatter simultaneoudly.this way the Fisherfaces algorithm obtains a
more optimal subspace and performs much better than thefaigs algorithm when there is lighting

and expression variation in face images.

Linear discriminant analysis was a well-known classifmatnethod but it was difficult to use until
the Fisherfaces algorithm was proposed. The main reasbatishite within-individual scatter matrix of
LDA becomes singular when the number of images from a pes@ss than the number of pixels in
the image. In fact, this situation is present in nearly atefalatabases. To overcome this problem the
Fisherfaces algorithm first uses PCA to reduce data dimeakip and this makes the application of
LDA possible.
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Figure 2.5:Generation process of label graph of the EBGM algorithm [139 Firstly, the inputimage
is processed by the Gabor wavelets as shown in the middlesiniégen the corresponding label graph

as shown in the rightimage is generated. (Adapted from Wightal. [139])

Although the most mainstream face recognition algorithmstage 1l were subspace-based al-
gorithms, Wiskott et al. [139] proposed the elastic bunciphrmatching (EBGM) algorithm to use
information from some local facial landmarks instead oftlile face image to do face recognition. In
their algorithm a face image is described by a graph whicludes N nodes and” edges. The nodes
correspond to fiducial points, which are a set of salienalgmints and usually located on corners of the
eyebrows, the corners of the eyes, tip of the nose, and canerouter mid points of the lip. The pixels
around each node are processed by Gabor Wavelets. Eachegigsants the geometric relationship
between two nodes.

In training each gallery image is represented by a graphurEi@.5 demonstrates the process to
generate a labeled graph for a face image. In test an inpaensdirstly processed to generate a graph
to represent the new image and then we compare the graph ofpgheimage with the graph of each
gallery image. The input image is assigned the identity degaimage which has the most similar
graph. The advantage of this algorithm is that it consideesglobal structure and the local features
together. The main disadvantage is that this algorithmireggood alignment and accurate localization
of the fiducial points.

During Stage Il the Face Recognition Technology Test (FERfpbnsored by the Department of
Defense of the American government played a important lencourage the improvement of face
recognition algorithms. The target of the FERET project waslevelop a reliable face recognition
system for the American government. The project includedetparts: sponsoring research on face
recognition, constructing the FERET face database anchizigg performance evaluations. They ar-
ranged three evaluations in 1994, 1995, and 1996 resphctivee evaluations record the development
of face recognition but also indicate the drawback of Sthgigbrithms: the performance of face recog-
nition fails when large pose and lighting variation exist&(@]. The test report guided researchers into
the third stage to propose new algorithms to solve the twblpros.

To conclude, face recognition developed very quickly andmatic face recognition became prac-
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tical in Stage Il. The proposed algorithms produced goodop@ance when users cooperate, pose is
frontal, lighting is controlled, and the size of databaseglatively small. However, they fail when large

pose variation and lighting variation exists.

2.2.3 Stage Il (1998 - 2007)

According to the evaluation results of FERET 1996 pose afitilig variation were the main challenges
for face recognition systems [110]. Therefore, methodsatodie pose and lighting variation became
popular in this stage. Moreover, the development of reat tiate detection and face alignment made
commercial applications of face recognition systems maaetjical. Many commercial face recognition
systems were produced. Subsequently, the American goesrtnonganized three evaluations to the
commercial face recognition systems in 2000 [106], 2008]Hhd 2006 [105] respectively. In the
following text we will introduce the development of face ogaition in this stage by four sub-tasks: face
detection, face alignment, pose invariant face recogniiad illumination invariant face recognition.

Face Detection
In 2001 Viola and Jones [133] proposed an AdaBoost-basedfetection algorithm which was the first
algorithm to achieve real-time high-quality face detecti®@heir algorithm could detect frontal faces at
a speed of five frames in a second. Their main contributiodisiéte: using simple features which can
be computed very fast; weighting multiple weak classifierotm a final strong classifier by AdaBoost
method; applying a cascade method to improve detectiordspee

Face Alignment
The output of face detection algorithms is normally a rougtrming box around each face. We require
an automated alignment method to align the detected facganoea pre-defined template to compensate
for variation of size, rotation and location.

Flexible models [77] played a important role in automaticefaalignment. These include active
shape models (ASM) [33] and active appearance models (AAG) [B4]. The AAM algorithm is the
extension to the ASM algorithm. The ASM algorithm only maxile shapes of face images whereas
the AAM algorithm models the shapes and textures of face @naghe AAM algorithm firstly applies
PCA to model the shape and the 2D texture separately and trehices the two models to obtain a
set of unified appearance parameters which describe shap2Datexture synchronously. The AAM
algorithm can be used to align face images. It can also betossahthesize model faces, locate fiducial
points and recognize faces [94].

The AAM algorithm has a drawback in that a number of fiduciahpare required to be manually
labeled in the training phase. In 2004 Learned-Miller [783gosed an unsupervised face alignment
algorithm called ‘congealing’ to overcome this problem.eTgrinciple of congealing is to apply affine
transformations to a set of face images to make them lookaimiCongealing performs very well
in aligning binary images, such as binary handwritten digitd magnetic resonance image volumes.
However, it fails for complex real world images. Huang et f4] extended Learned-Miller’s work
to align real world images by using SIFT descriptors [88}éasl of pixel intensities. Their method

demonstrated good performance to align real-world imadieger Cox et al. [37] extended Huang's

23



2.2 Overview of Existing Face Recognition Algorithms

work to speed up alignment by using sum of squared erroradsté entropy to measure the image
similarity. However, the congealing algorithm has a dragkotat it only uses affine transformations

and cannot deal with pose variations.

Pose Invariant Face Recognition

Depending on the type of gallery and probe images, algosthddressing pose variation can be clas-
sified into two categories: multi-view face recognition dade recognition across pose. Multi-view
face recognition algorithms [14] [83] [104] compare prolng @allery images at the same pose using
the same methods as frontal face recognition. Therefoesethlgorithms are simple extensions of the
existing frontal face recognition algorithms. For faceagaition across pose, the viewpoint of the probe
images are different from the gallery images, so it is mofficdit. In this part, we focus on face recog-
nition across pose. Generally there are two types of algostto solve face recognition across pose: the
3D model based algorithms and the 2D statistically baseatigthgns.

Early three-dimensional algorithms [50] use several fawages at different poses but from the
same individual to generate a 3D model of each gallery iddial's head and then compare the input
image with a re-rendered gallery image at the same pose agiltgmage. Here, gallery images are the
images with known identities to a face recognition systech@mobe images are the images presented to
the system for recognition. The drawback of this type of athm is that it requires multiple images for
a individual and it is not practical for many face database2003 Blanz et al. [16] [17] [15] proposed
a morphable model based algorithm which only requires desifage image to construct a 3D model.
Their algorithm provides two distinct methods to do faceoggdtion. The first method is to re-render the
frontal view of the probe image. Recognition is performectbynparing the transformed frontal probe
image with each frontal gallery image. Figure 2.6 (a) shdwegipeline of the first method. In the second
method, 3D model coefficients are estimated for the probegalidry images respectively. Recognition
is performed directly by comparing the coefficients of thpunimage and each gallery image. The
second method is demonstrated in Figure 2.6 (b). Their @xpetal results show the performance of
the first method is better than the second method at somengeavigles but overall there is not much
difference. This 3D morphable model algorithm achieveth &0rrect in a database which includes 87
people with pose variation of up t845°. Unfortunately, it is very slow to estimate 3D coefficients o
an image in practical applications and any noise in the faxzge often makes the estimation to the 3D

coefficients inaccurate.

Two-dimensional statistical models treat the transforomebetween frontal and non-frontal images
as a learning problem. Vasilescu et al. [143] presentedgorighm in which an unseen view image of
the person can be generated. Later, Gross et al. [54] prdpgbseEigen Light Fields algorithm which
treats pose invariant face recognition as a missing datzlgmo They assume there is a large data vector
containing all the images of a subject under all the possildepoints. Their algorithm can achieve

75% correct in a database of 100 subjects with pose variatiomp &6 1-30°.

In contrast with the above statistical algorithms, whichdeldhe transformation of the entire facial

region between frontal and non frontal images, Yamada ef7&l] proposed a patch based approach
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Figure 2.6: Two recognition approaches of the 3D morphable model basedgorithm [15]. a) A
frontal view of an input probe image is firstly generated dmehtthe generated frontal probe image is
compared with each gallery face image. b) The model codffisief probe and gallery images are firstly
estimated and then face recognition is conducted by comgp#re model coefficients directly. (Adapted

from Blanz et al. [15])
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Figure 2.7:Maximizing within-individual correlations improves pose invariance [81]. (a) Pose vari-
ation confuses the correlation distribution of two imagés) Pose invariance can be achieved in the

correlation maximized subspace. (Adapted from Li et al])[81

to do face recognition across pose. They demonstrated #tethgs are more robust to pose variations
than the holistic appearance. They applied a Gaussian Ipitsia model and a Bayesian classifier to
recognize faces. Lucey et al. [90] extended Yamada'’s alyarby modeling the statistical relation-
ship between the frontal patches and holistic non-fromege. Ashraf et al. [7] made the further
improvement by applying a 2D affine transform to learn thelpabrrespondences. However, human
faces have a complex 3D geometric structure and misalighstiérexists. Thus Li et al. [81] applied

a generic mean 3D face model to reduce the patch misalignmAéhbugh their method obtains better
patch correspondences of different poses, they found lleagize of the corresponding patches might
be different. The reason is because some surface pointssiloeexand some points are not. To solve
this problem, Li et al. used Canonical Correlation Anal\6i¥] to construct a intermediate subspace
between the frontal and non-frontal subspaces. When thguatdength vectors of different poses are
projected into the intermediate subspace, the length optbgcted vectors will become equal. They
measure the similarity of patches from different poses hyetations in the intermediate subspace, in
which the within-individual correlations are maximizeddgmose invariance can be improved as shown
in Figure 2.7. They used two approaches to do recognitiothédrfirst way, they transform non-frontal
face images into frontal and then compare with the frontlegaimages. The second approach is to
transform both the frontal gallery images and non-frontabg images into the intermediate subspace

and then compare them directly in the intermediate subspace

Although the aforementioned 2D statistical methods arg tmsnplement and have low compu-

tation cost, their performance was worse than the 3D molphrabdel based algorithm until the tied
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model was proposed [112]. The ‘Tied’ model means images fhensame person but under two viewing

conditions have a common hidden variable but different ggtien processes. The tied generative model
produces better performance than the 3D morphable modékble 2.2 we compare the performance
of the important pose invariant face recognition algorihifhe table demonstrates that a version of the

tied generative model, Tied PLDA [82], produces the besioperance.

Light Fields [54] FERET (100)
3D Morphable Model [15] FRVT(87) 45 86
LLDA [75] XM2VTS(125) 30 53
Tied Factor Analysis [113] XM2VTS(100) 90 77
Tied PLDA [83] XM2VTS(100) 90 87

Table 2.2:Performance comparison among pose invariant face recogidn algorithms.

In Tied PLDA, face images are considered to be generated tinenunderlying identity variables
which denote the identity of images. The generation procestfferent for different poses. More

formally, the model can be described by the following edqurati
Xijk = My + Frhy + Gewij + €55k, (2.3)

wherex; ;. denotes thé:*" pose of thej* image of thei” individual, i1, represents the mean image at
posek, . is a matrix containing the between-individual basis fumasiin columns for pose k. The term
h; represents the hidden identity variable which is constanafl the images from thé'i individual.
The matrixGy, is a matrix containing the within-individual basis funeat®in columns for pose k. The
termw;; denotes the hidden noise variable which is different foheamage. The terna;;;, represents a
stochastic noise. We will introduce more details in seciidh2.

Although the 3D model based algorithms demonstrated a grgattial to solve face recognition
across pose, in practice most 3D model based algorithm®argdw to be applied in real time appli-
cations and noise within image reduces performance dreafigtilt is probably preferable to use a 2D
static method to solve face recognition across pose vani@iiecause it produces good performance, can
be easily implemented and requires low computation cost.

lllumination Invariant Face Recognition
It has been argued in [2] that the variation among images@ft#me person due to illumination and
viewing direction is almost always larger than image vasiradue to face identity. This observation
has been confirmed by [106] [109]: the performance of facegsition methods of Stage Il degrades
significantly when illumination changes. As shown in FigRr&, there are four illumination components
that affect the appearance of face images: diffuse reflectjpecular reflection, attached shadow and cast
shadow. The goal of research into lighting invariant fac®gnition is to handle the four components.

Shashua and Riklin-Raviv [122] proposed a quotient imagedalgorithm which models face ap-

pearance variation under the assumption of diffuse refieetaHowever, the assumption of only diffuse
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Figure 2.8:Four illumination components to affect appearance of facemages [100]. (a) Diffuse
reflection occurs when incident light is scattered by an abjgb) Specular reflection occurs when
incident light is reflected by an object. (c) Attached shasl@ecur when an object itself blocks the
incident light. (d) Cast shadows occur when an other objkxtis the incident light. (Adapted from
Nishiyama et al. [100])

reflection existing is too strict for images in real life. Ramoorthi [114] demonstrated that the appear-
ance of a convex Lambertian object under distant illumaratwithout cast and attached shadow can be
completely described by a 3D linear subspace. Their algoribnly requires three images per person
if images are taken under linear independent lighting. Hawethis requirement is still too difficult
to be satisfied because normally only a single training imageailable per individual in many face
databases. To solve the problem, Wang et al. [125] pres#meeSelf-Quotient image based algorithm
which can use a training image to synthesize images underetit lighting. However, their algorithm

fails when cast shadows and attached shadows exist.

To handle cast shadows and attached shadows, Georghiaalespgbposed an algorithm based
on illumination cones [52]. Their algorithm used seven iemper person to synthesize the face image
under different lighting. They demonstrated that theioailthm produced very good performance under
different illumination conditions. However, similar to42], it is unrealistic to have seven training
images for each individual in a practical face recognitipsteam. In Stage Il illumination invariant face

recognition is still an unsolved problem.

Overall, the performance of face recognition algorithnzé@ased dramatically in Stage Ill. How-
ever, the algorithms in this stage are still sensitive toepdighting variation and long image capture
intervals between probe and gallery images [105]. To okdaivider application of face recognition,

research was required to shift from controlled environmémuncontrolled environments.
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2.2.4 Stave IV (2008 - present)

In the past 7 years, researchers focused on face recoginitiorcontrolled environments. The Labeled
Faces in the Wild (LFW) database [65] is the evaluation beratk for face recognition under uncon-
trolled environments since its images are collected fromititernet and it also provided a rigorous
evaluation framework. Many new algorithms were proposedthfmrove the verification performance in
the LFW database. We will describe the development of facegwition algorithms in this stage by
introducing the progress in the four steps of a modern facegmtion pipeline: face alignment, facial
landmark detection, face representation methods and mé@mygalgorithms. In Table 2.3 we list the

important methods in each category.

Main Algorithms

Face Congealing [69], Fiducial Points Based Similarity Alignment [134],
Alignment Identity Preserving Alignment [13], 3D Alignment [135]

Landmarks Component Based Detector [91], Shape Regression Based Detector
Detection [27], Local Model and Global Exemplar Combined Detector [11]

LBP [109], TPLBP FPLBP [147], Multi-Region Histogram [126], LE
Face [28], LARK [128], LQP [71], Discriminant Face Descriptor [85], Large-
Representation Scale-Search-derived Feature [39], Spatial Face Region Descriptor
Methods [41], High Dimension LBP [33], Dense SIFT [131], Over-complete

LBP [9]
Similarity Nowak Similarity Learning [107], Joint Bayesian
Learning Face [32]

Attribute and Simile Classifier [81], Multishot

o Elefgrri?i?rie Based [134], Associate Predict Model [153], Tom-Vs-
Verification 9 Pete Classifier [13]

Algorithms
LDML [62], CSML [105], DML-EIG [154], CMD

Metric Learning [67], SUB-SML [26]

Discriminative

Subspace FEEAES

Table 2.3:Main papers in Stage IV.

Face alignment

Alignment is critical to recognize uncontrolled images][1B40] because alignment can reduce the
image variation effectively. The authors of the LFW data&bpsovided the aligned images using the
congealing alignment method [64]. However, misalignmdtitexists for some facial landmarks [127],
for example, the eyes, mouth, nose. Wolf at el. [127] dentatesd that their fiducial points based align-
ment method can remove these misalignments. They first usednanercial fiducial points detector
to locate seven fiducial points (the corners of the eyes, thetimand the nose tip) and then applied a
similarity transformation to register these fiducial psiimto a pre-defined template. They demonstrated
that their alignment method helped improve the recogniieriormance [124]. This similarity transfor-

mation based alignment method was adopted by other liter§&2] [30] [124]. However, the similarity
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2.2 Overview of Existing Face Recognition Algorithms

transformation fails for out-of-plane rotation caused lmg@ variation. To address the issue, Taigman
et al. [128] proposed a 3D alignment method. They firstly cet 67 facial landmarks in the input
face image and built up a correspondence of 67 detected Ekdrbetween the input image and a 3D
generic shape model. Then they obtained an affine 3D-to-2erzaby minimizing the loss between
2D points and their 3D references. Lastly they applied agigrse affine transformation to obtain the
frontalizated image of the input image. Figure 2.9 showgptheline of the 3D alignment method. They
demonstrated that their method can handle out-of-pla@giooss and this 3D frontalization alignment
method obtained a 3% improvement from 94.3% to 97.33% in & lverification test when the rest

of the pipeline (feature extraction and verification) wakllo®nstant.

Figure 2.9:3D alignment method pipeline [128].(a) A face is detected and 6 labeled landmarks are
located. (b) The detected image is aligned and face regiorojgped. (c) 67 landmarks are detected
from the aligned image and the corresponding Delaunaydukation is generated. (d) The reference
3D shape. (e) In the Delaunay triangulation, images are edadlrker when they are less visible. (f) A
piece-wise affine wrapping is conducted to generate framage based on 67 fiducial points. (g) The

generated frontal image. (h) The generated non-frontajén@dapted from Taigman et al. [128])

Facial Landmarks Detection

Facial landmarks detection is a very important step in the facognition pipeline. Face alignment and
facial feature extraction depend on accurate facial lamlslacalization. An early study [21] described
facial landmarks detection as a component of face detectan example Ding et al. [44] provided
bounding boxes around facial components when detectirgs fiom images. Recently many landmark
detectors are trained to respond to a specific landmark 4] (the eye corners or nose tip). These
landmark detectors search over a small image region anchr@&core at each location. One or multiple
locations with the highest score are selected to be caradidat the specific landmark. However, false
detection results are often obtained. A common mistake][[48 [135] is that the left corner of the left

eye detector often locates the left corner of the right eye.
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(@) (b) ()

Figure 2.10:Facial components and the corresponding patches used fordming of [85]. Facial
components are located by red points. Blue rectangles eémaige patches used to train component
detector. (a) Eyes, nose and mouth. (b) Brows, upper andrlipge (c) Left, right, lower profiles.
(Adapted from Liang et al. [85])

Eckhardt et al. [45] solved the problem by detecting a la@yea, for example increasing the
detection region from one eye to the whole area of two eyeseder, searching a larger area increased
the chances of false detections. Therefore, researchatsisksed constraints about the relative locations
of landmarks to each other rather than the locations of lamiigto the detected face bounding box [120].
The predicted location of a facial landmark can be expreasea conditional probability distribution
given the other landmark positions. In this way, local laadkdetectors are often combined with prior
global landmark configurations [57] [96].

The locations of some facial landmarks vary significantljhméxpression. Examples include the
eyebrows and lip. The solutions of [57] and [96] are to dettable points, for example eye corners.
However, these stable points might be difficult to detectiwpartial occlusion exists. To address this
issue, Belhumeur et al. [11] proposed a RANSAC-like mettmdample different types of landmark
exemplars. Their method can locate facial landmarks atelyraven for uncontrolled images from the
internet.

Instead of searching for a single landmark, Liang et al. [@8posed a component-based method
to search face landmarks in a large range at the facial coemtdevel. Figure 2.10 shows facial com-
ponents (e.g., eyes, nose, mouth and profiles) they definleely §howed their approach can discover
the configuration of facial components effectively and dépin a large searching range. A very good
fitted face shape can be refined within a few iterations. Chah demonstrated this alignment approach
helped improve their recognition performance in LFW vedifion test [30].

Due to large pose change, expression variation and pactalsion, current facial landmark detec-
tors still fail for some uncontrolled images. A more robusd &fficient method is still required.

Face representation methods
It has been shown in many studies [140] [121] that extradi@eipl features to represent a face image
instead of using raw pixels improves performance signiflgahocal binary patterns (LBP) [102], one
of the most successful features, are found to be very effettr the face verification task in the LFW
database [5] [140] [82]. Variants, such as Three-Patch L'BFLBP) [140], Four-Patch LBP (FPLBP)
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[140], and Local Quantized Patterns (LQP) [66], have beap@sed to improve the discriminative
performance. Other local image descriptors, such as thie 8sariant Feature Transform (SIFT) [88]
and the Histogram of Oriented Gradients (HOG) [38], have Aksen applied to verify face images in
[58]. The aforemetioned descriptors describe local gedmstructures of face images by quantising
gray level patterns or the image gradients. Seo et al. [1&I4gsed the Locally Adaptive Regression
Kernel (LARK) feature without using any quantization. These the geodesic distance between a center
pixel and surrounding neighbor pixels to encode the localgenstructure. They demonstrated that their
method can capture the local image structure more robustytlzeir feature has more discriminative

ability. Their experiments demonstrate that the LARK featoutperforms LBP feature.

Unlike for the above features [102] [88] [121], Cao et al. ][®&arn the local image structure
encoder from training images. Therefore, they called tiegiture a learning-based (LE) descriptor. They
indicated the above handcrafted features (LBP, SIFT and H&@ires) can be viewed as a quantized
code of the image gradient. The handcrafted features havérhitations: an optimal encoding method
is difficult to define manually and the code distribution odlranages is uneven. Some codes rarely
appear for real life images. This uneven distribution mehedinal code histograms are less informative
and will decrease the discriminant power. They demongirtdttat these issues can be addressed if an
unsupervised method is applied to learn the encoding metiibey demonstrated that their learned
encoder could achieve a good balance between invarianceegifidation power automatically. Their
experiments demonstrated that their LE feature productdrbgerformance than the LBP and HOG

features.

Generally the dimensions of the above features [140] [8@] yary from 1K to 5K. Cao et al. [31]
found high dimensional features can improve performargeifstantly. They built an image pyramid
with different resize scales for each image and extracted féatures from 27 fiducial points of each
sample scale. Using this approach, the dimensions of LBRresafrom an image can be 100K. Their
experiment results demonstrate 5% improvement by usingdiigensional features instead of the tra-
ditional way to extract features. This conclusion is conéichiby other studies [124] [9]. For example,
Simonyan et al. [124] extracted high dimensional dense $&fures from face image and also achieved
a significant performance improvement. By applying a singlénciple, Barkan et al. [9] proposed high

dimensional OCLBP features and confirmed that high dimeradity helps achieve high performance.

Instead of using high dimensional features, Taigman et 48] flemonstrated that an extremely
compact face representation can also produce very goodrpehce. They applied a nine-layer deep
neural network to derive a compact face representationadethhe advantage of this new deep neural
method is that it can be trained by using millions of face iemgfficiently and learnt nearly all the
possible variations from the huge training data. Their métbroduced good performance in the LFW
database [63].

Many researchers [140] [82] [26] [30] found performance barimproved by combining multiple
features. For example, Wolf et al. [140] obtained 3.1% imyproent by combining four features (LBP,
TPLBP, FPLBP, SIFT) instead of only using the LBP feature.
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Figure 2.11Calculation of similarity score in [101]. (a) Patch pairs are collected from two images. (b)
Some randomized trees are applied to these patch pairsaim@dbinary vectok. (c) A SVM classifier
is used to calculate the similarity score by aggregatingtitput of all decision trees. (Adapted from

Nowak and Jurie [101])

Verification algorithms
The verification algorithms in Stage IV can be divided intarfoategories: similarity learning, reference
based algorithms, metric learning and discriminative pabe algorithms. We will introduce each in
turn. We describe the performance of these algorithms irLi#\& database. The LFW verification
scheme defines two testing protocols: unrestricted andatest protocol. In the unrestricted protocol,
identity labels associated with images can be used to generare training pairs. In the restricted

protocol, identity labels cannot be used.

Similarity learning algorithms estimate the visual similarities between two images and thee
termine whether two images are from the same person. NowdkKuaie [101] proposed the first veri-
fication result in the LFW database in 2007. They used RanzkiiDecision Trees [53] and Support
Vector Machines (SVM) [36] to estimate the similarity of tiace images. For two face images they

firstly chose a patch of random size at a random position irffiteeimage and then searched for the
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most similar patch at a nearby location in the second imag@d.this approach many patch pairs can
be generated from the two images. Then several randomipaybiecision trees are trained to label
each patch pair. If the patch pair reaches the leafs of attredabel of leaf is set to 1; If a leaf is never
reached, it is set to 0. So each patch pair can be represengelibary vector and an image pair can be
represented by a concatenating vector from all patchessiftitarity score of two images is calculated
by applying a SVM classifier. Figure 2.11 illustrates how ¢onpute the similarity score between two
images. When the similarity score is bigger than a thresletu face images are considered to be from
the same person. Their algorithm achieves 84.2% corred@ruhd restricted test protocol in the LFW
database. However, their algorithm performs slowly beeauseeds to search all the similar patches
among two face images. Later Chen et al. [30] proposed th Balyesian Face algorithm. The Joint
Bayesian Face algorithm divided each face image into twopmorants: identity and within-individual
variation. In training, an EM-like algorithm is used to esite two components of each image and learn
the between-individual covariance matrix and the withidividual covariance matrix. In test, the match
and non-match covariance matrix are derived based on theebatindividual covariance matrix and
the within-individual covariance matrix, then a log likatiod ratio between two images is computed to
decide identity assignment. Their algorithm achieved 90.€orrect by combining four types of facial
features and 93.18 % correct by using high dimensional loicary patterns (LBP) feature in the LFW
database [31].

Reference based algorithmsepresent a face image by comparing to a set of referenceesnay
2009 Kumar et al. [76] proposed the first reference baseditiign They use the output of attribute
and simile classifiers to represent an image. Attributesdfiass are to use binary classifiers to estimate
the presence of 65 describable aspects of visual appeasarateas gender, race, age, hair color, etc.
These visual traits were called attributes. Each face isesgmted by a vector in which each element
represents the presence of attribute. Simile classifiecsdiesmpare the whole faces or facial component
with a pre-defined image set. For example a face can be ded@agbhaving eyes similar to George Bush
and a mouth similar to David Cameron. These traits are c&letles’. A face is represented by a
vector, in which each element represents whether a visalte of the input face is similar to one of the
reference people. Figure 2.12 shows the attribute clasaifig simile classifier. Their experiments show
attribute classifiers can achieve 83.62% correct and sictalesifiers can achieve 84.14% correct in the
LFW database. Their algorithm can achieve 85.29% correcbhbybining the two classifiers. However,

their algorithm has a drawback that it requires a large arnoumanual labeling.

Wolf et al. [75] proposed another reference based algoriththe same year. Their algorithm is
called One-Shot Similarity (OSS) measure. They assume #rer two face image vectoks, x; and
a face image seA which has different identities from images andx;. Firstly image sefA is used
as negative examples amgl as a positive example to train a model and then the learneen®dsed
to classify imagex; to get a classification scorg. This score represents the likelihood of image
having the same identity as;. Then switch the role ak; andx; to obtain another scong. The final

similarity score for two images is given by the averagejpfindr,. Their algorithm produced 82.5%
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Figure 2.12:Attribute and simile classifiers in [76]. (a) Attribute classifiers are trained to judge de-
scribable aspects of visual appearance are present ortalfseSimile classifiers are trained to judge
whether some parts of faces are similar to the predefineterefe people. (Adapted from Kumar et al.
[76])

correct under the unrestricted testing protocol in the LFMAHase. Later they extended their algorithm
to propose Multiple One-Shots to handle pose variation emptave the performance to achieve 89.5%
correct [127].

Yin et al. [146] demonstrated that large within-individwatiations are the bottleneck for improv-
ing performance in the LFW database. They proposed an assqmiedict model to address this issue.
Their model is built on a reference identity data set in whéelth of 200 identities have 28 images
with seven pose categories and four lighting conditionscdimpare two face images andx;, they
firstly estimate the pose category and lighting conditioradh image. If the input image pair has very
similar pose and lighting condition, they apply a direct @@@nce matching method [10] to compute a
similarity score; otherwise, they apply associate-preiodel to handle large within-individual varia-
tion. They demonstrated that their associate-predict iqudeluced better performance by using facial
components than the holistic face, so they divided eacht inpage into 12 facial components as shown
in Figure 2.13 (a). The associate-predict model containsmwdels: appearance-prediction model and
likelihood-prediction model. In the appearance-predittnodel they selected a reference identity from
the reference identity data set for each of 12 facial comptsaf imagex;. The selected reference iden-
tity has the most alike component as the component of inxag@ different component may associate
a different alike identity. Then they chose the image withdame pose and lighting condition as image
x; from 28 images of the selected reference identity and pitkedcorresponding facial component.
By this approach they selected 12 reference componentsoamedl a new face image;, which has
the same pose and lighting condition as imageThe new face image’; is shown in Figure 2.13 (b).
Lastly the 12 distances of the corresponding componens jbatween image’; andx,; were calcu-
lated and a linear SVM [29] was applied to fuse these dist@twebtain a final similarity score. In the

likelihood-prediction model they selected 3 most alikeerehce identities for each component of image
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Figure 2.13:The frontalization effect of the appearance-prediction malel in [146]. (a) Each input
image is divided into 12 facial components. (b) A frontal @geas formed by selecting facial components

from reference data set. (Adapted from Yin et al. [146])

x;. After that they constructed a component discriminatiessifier [10] by using all the components of
the 3 selected reference identities and the input compsiért. Then each of the corresponding com-
ponents ofk; was fed to this classifier to compute a component distancglyLa linear SVM [29] was
applied to fuse 12 component distances to compute the fimébsity score. Their algorithm achieved
90.57% correct under the unrestricted protocol in the LF\alase when they fused 24 distances of

appearance-prediction model and likelihood-predictiauei by a linear SVM.

Metric learning algorithms aim to find a metric to separate two classes. The main goalésto a
Mahalanobis distandex; —x2)? ¥ (x; —x2), whereW is a positive definite matrix. In 2009 Guillaumin
et al. [58] proposed two approaches to learn robust distarezsures for two images: a) the logistic
discriminant base metric learning method (LDML) used adtgidiscriminant to learn a metric from a
set of labeled image pairs; b) Marginalized k-nearesttmmdgr (MkNN) method computed the number
of positive neighbor pairs (having the same class) out ofpib&sible pairs within the neighborhoods
of imagesx; andx; to obtain a similarity score. Figure 2.14 describes LDML aMNN. Their
experiments demonstrated that applying LDML could achi#@7% correct under the restricted testing
protocol and combining LDML and MKNN can achieve 87.5% urttierunrestricted test protocol in the
LFW database. Later Nguyen and Bai [99] proposed a cosiniasity metric to replace the Euclidean
distance in the learning problem. Their experiment showadt they could achieve 88% correct under

the unrestricted test protocol in the LFW database.

Discriminative subspace algorithmsmodel the image difference by projecting the two images
into a low-dimensional subspace. The Eigenfaces algofilt#?] is the earliest subspace algorithm and
became the benchmark algorithm in the LFW evaluation. Hitisic LDA (PLDA) [111] divides the
image into three components: identity, within-individwakiation and unexplained noise. In training,

the basis functions for between-individual and within#ndual subspace are estimated. In test, the
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Figure 2.14Visualization of the logistic discriminant base metric leaning (LDML) algorithm and

the marginalized k-nearest-neighbour (MKNN) method [58]. (a) LDML aims to find an ellipsoid
to separate classes. (b) MKNN aims to find the number of theesponding positive pairs within the
neighborhoods of image; andx;, where a positive pair means two members belong to the sase. cl
Here each image; andx; has 10 neighborhoods and there are three classes A, B anchid tie
neighborhoods of the image pair. There are 24 positive maitf 100 possible pairs and thus the

similarity score is 0.24. (Adapted from Guillaumin et al8[p

match and non-match covariance matrix is obtained to gieertatch and non-match likelihood for two
inputimages. PLDA achieved 90.03% under the restrictethtgprotocol in the LFW database [82].

Overall, in recent years, significant performance improgetihas been achieved for face recog-
nition under uncontrolled environments. This improveneares from larger training database, better
alignment, more accurate landmarks detector, more sigdtisti face features and better verification
algorithms. More training images and more accurate lankmetectors are probably the most signifi-
cant to cause the improvement. Outside academic researomercial applications to face recognition
have extended from the traditional security domain to $amaworks, electronic entertainment, online
face search. Examples include automatically tagging itjeimt Facebook.com and searching the best

potential lover based on faces in Jiayuan.com.

2.3 Face Databases and Performance Evaluation

Performance evaluation schemes play an important rolecimévelopment of face recognition as they
determine the most promising algorithms and indicate &itasearch directions. Face databases play an
important role in algorithm development, model trainingl @erformance evaluation in face recognition

research. In this section we will introduce the main facelases and performance evaluation methods.

2.3.1 Face Databases

In a performance evaluation scheme, it is important to chagsoper face database. There are a number
of face databases available to researchers. We list thedatabases at each development stage in Table

2.4 and give a brief introduction to each database:
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I T e T [y e e ey

FERET [106] 1993 1,199 14,051

ORL [119] 1994 40 400 3 3 2 2
! Yale [10] 1997 16 160 1 3 6 1
AR [92] 1998 116 3,288 1 4 4 2
XM2VTS [95] 1997 295 1,526 1 1 1 4
PIE [123] 2000 68 41,368 13 43 3 1
YaleB[52] 2001 10 5,760 9 64 1 1
Il KFDB [18] 2002 1,000 52,000 7 16 5 1
CAS-PEAL[51] 2003 1,040 99,954 9 15 5 2
FRGC[107) 2004 4,003 50,000 2 2

Multi-PIE [56] 2008 337 750,000 15 19 6 4

LFW [65] 2007 5749 13,233

\Y; Pubfig [76] 2009 200 58,797

WDRef [30] 2012 2,995 99,773

Table 2.4:Main face databases at each development stageor each database we list its key features,
which include (where available) collection date, the nundfesubjects, images, poses, lighting condi-

tions, expressions and recording sessions. Blank entrigsate that image capture was not controlled.

The Facial Recognition Technology (FERET) DatabasfL06] was sponsored by the Department
of Defense of the American government and was collected lyrggeMason University. The famous
three FERET tests [106] [116] [110] and facial recogniti@ngor test (FRVT) 2002 [109] used this
database. Recognition performance from many academic@mdhercial algorithms [139] [118] [17]
are available and the direct comparison with other algoritiis possible. All the images are gray and
the image size 1856 x 384 pixels.

The Olivetti Research Ltd (ORL) Database[119] was collected by Cambridge University be-
tween 1992 and 1994. Each subject has ten images with vapgisg (left or right head movement),
facial expression (open/close eyes, smiling/neutrdl)mination, and facial attributes (glasses/without
glasses). All the images are grey and with the Szex 110 pixels. This database was often used in the
1990s [78] [59] [4], but now it is regarded as too easy sineevdriation is relatively limited.

The Yale Face Databasg10] was collected by Yale University. It contains 160 frahimages
from 16 people under 10 conditions: an image under ambigititig, one with or without glasses, three
images under different light sources, and five images wiflerdint expressions. All the images are grey
and the image size 20 x 243 pixels. The motivation of Belhumeur et al. to collect thisatsmse is to
test his well-known Fisherfaces algorithm [10]. Howevehds been regarded as an easy database now.

The AR Face Databasg92] was collected by the Universitat Authoma de Barcelon&998. It

includes 3,288 images from 63 men and 53 women. All the imagesolor and of the siZ&68 x 576
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pixels. Images were collected in two sessions. The datdizesgeen accessed by more than 200 research
groups [145] [142].

The Extended M2VTS Database (XM2VTSDB)[95] was collected by the University of Surrey.
Itis designed for the development of multi modal verificatid he database contains 295 subjects, each
of which was recorded at four sessions over a period of fourth® All the images are color and with
the size92 x 110 pixels. They also provide 3D head models for 293 subjectsa#t a popular database
[69] [35] [111] at Stage IIL.

The CMU Pose, lllumination, and Expression (PIE) Databasg123] was collected by the
Carnegie Mellon University. The database designers satriplages by varying the pose, illumina-
tion and expression. This database has an important infuiarface recognition across pose [117] [55]
[22]. All the images were color and with the si@¢0 x 480 pixels.

The Yale Face Database B52] was collected by Yale University. It is a extended vensof
the Yale Face database [10]. Its purpose was to verify thi@peance of the database designers’ new
algorithm under large variation of pose and illuminatioril the images are grey images with the size
640 x 480 pixels. It has been used by many researchers [142] [141] [25]

The Korean Face (KFDB) Databasd18] was collected only from Korean people. The collection
scheme is quite similar as the FERET database. The datalaas#esigned to evaluate face recognition
performance for Asian people.

The CAS-PEAL Face Databasd51] was collected by the Chinese Academy of Science. All the
subjects are Chinese. All the images are grey and with tles36iz x 480 pixels. It has been used by
many Chinese researchers [84] [149] [130].

The Face Recognition Grand Challenge (FRGC) Data Sdi.07] is the publicly accessible face
data set of Face Recognition Vendor Test (FRVT) 2006, whéchpionsored by the Federal Bureau
of Investigation (FBI), the Department of Homeland Seguot United States, the National Institute
of Standards and Technology of United States, etc. The FR&E skt was collected for the Face
Recognition Grand Challenge project, whose goal is to atlvéace recognition technology for the U.S.
Government. Itis a very important database for face recmgniesearch [19] [108].

The Multi-PIE Face Database [56]is the extended version of the PIE database. It is designed
to address the shortcomings of the PIE database: a limitethauof identities, few expressions and a
single recording session. The Multi-PIE database consist50,000 images from 337 identities under
15 view points and 19 lighting conditions. Many researcf@6$[153] [136] used it for face recognition
across pose and illumination.

The Labeled Faces in the Wild (LFW) Databasd65] includes 13233 images, which were col-
lected from the internet by the University of Massachusetthierst. The database was designed to study
unconstrained face recognition. It is the most importace @atabase at Stage 1V. Most important papers
[127] [76] [82] [48] regarding face recognition under untrmtied environments used this database.

The Public Figures (Pubfig) Databasg76] contains 58,797 images from 200 people, which were

collected from the internet by using the same method as tWe¢ tatabase. There are fewer identities
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but much more images per person than the LFW database. dth#distage is that the database designers
only provide image URLs instead of images because of copyisgues. As of 2014, 15% of the image
URLSs have been expired, so using this database to have afaparison among algorithms has became
impossible.

The Wide and Deep Reference (WDRef) Databag@0] consists of 99,773 images from 2995
identities. It is more wide (more images in total) and deepr@rimages per person) than the LFW
database. However, the disadvantage of the database isahét provides the extracted LBP [5] and
LE [26] image descriptors for each image rather than the @sélgemselves because of copyright issues.
Therefore, it restricts other researchers from using tafalubse.

The aforementioned databases can be divided into thregar@s based on image acquisition
method. The first type of database is built by a small groupeséarchers in the laboratory. Exam-
ples include the Yale database [52], the AT&T face databd®F [mages are obtained in a short time
and the database size is small. The variabilities of imagteise databases are well controlled. The sec-
ond type of database is still collected in the laboratoryitit much greater variation. Examples include
the XM2VTS database [95] and the Multi-PIE database [56} dsigners of these databases attempt
to capture the face distribution of various parameters tkentlae most useful database. However, there
is a drawback for this type of database that it is difficult &pttire the correct statistics. For example,
it is not clear how researchers should decide the ratio &f faages wearing glasses, the percentage
of images with smile expression, the proportion of images wifice or conference background. The
third type of database collects the existing images fromirttexnet rather than capturing images in the
laboratory. Examples include the LFW database [65], thdifdlatabase [76], and the WDRef database
[30]. Although this type of database has its own biases,Xan®le there are limited non-frontal images
because of using Viola-Jones [134] frontal face detectamwéVer, the third type of database contains
images with very large of diversity: it is more suitable fondying face recognition in uncontrolled
environments when comparing with the previous two typesatéidases.

Based on the above analysis, the LFW database has many agea@aind is most appropriate to be

used to evaluate face recognition in uncontrolled envirems

2.3.2 Performance Evaluation

Performance evaluation for face recognition algorithnvjates a framework to measure recognition
performance, determine the most promising algorithms aditate future development directions. We
will firstly introduce the precepts and methodology of periance evaluation [47] proposed by Phillips
et al., then we will describe the most popular evaluationhoés$ at each development stage of face
recognition. Lastly | will summarise the results of FERES$t# Face Recognition Vendor Tests (FRVT)
and LFW tests.

Evaluation Precepts
Phillips et al. [47] proposed evaluation precepts and aggliem to design three FERET tests at Stage
Il and three FRVT tests at Stage Ill. The details of the prexape as following:

1. Evaluation should be designed and administered by grihapare independent of the
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algorithm developers and vendors.
2. Testdata should be sequestered and not seen by thegaartgeprior to the evaluation.
3. The design, protocol and methodology of the evaluati@ukhbe published

4. Evaluation results should be spread in a manner that shaesingful differences

among the participants.

Evaluation Methodology
In a typical evaluation there are three sets of images. Thesit is called the gallery image €@t in
which we have already known the identity of each image. Therotwo sets are both probe set. The
first probe set, in which identities of images can be founddallery se(s, is denoted a®,. The
second probe set, in which identities of images cannot bedaun the gallery set, is denoted B,.
The similarity between a probe image and a gallery image iasored by the similarity scor8. If
the similarity score is higher than an pre-defined thresholthe probe image and gallery image are
considered as matching. If we want to obtain thenost similar gallery images for a probe image, we
refer to this as rank match. The rank 1 match is called first match or top match.

There are three fundamental face recognition tasks: opedentification, closed-set identification,
face verification. Each task has its relevant performancesome methods.

The goal ofOpen-Set Identificationis to find which gallery image matches the probe face image.
However, it is also possible that a probe image might not matty gallery image. There are two
performance statistics: the identification rdtg; and the false alarm ratér 4. The identification rate
is the fraction of probe images iR, identified correctly. The false alarm rate is the fractiorpodbe
images inP,, identified wrongly. The identification rate ; and the false alarm raté» 4 for top match

can be calculate by

[pi = mis > 7]

Prr (2.4)
|Pg|
Ipj : mjx > 7]
Ppy = 2= (2.5)
Py

where the ternp; denotes a probe image which belong®ig the termy;.. denotes the similarity score
between the probe image and its most matched gallery imagg the termp; denotes a probe image
which belongs td,,; the termy;,. denotes the similarity score between the probe imggnd its most
matched gallery image*.

The ideal system should have a identification rate of 1.0 gatsa alarm rate of 0.0. In real world
systems performance varies when the threshaldanges. The identification rate and false alarm cannot
increase simultaneously. The algorithm designers haveaicera trade-off between the identification
rate and the false alarm rate. The receiver operator cleaistat (ROC) is used to measure the trade-off.
In a ROC plot the horizontal axis depicts the false alarm wdtesh is normally scaled logarithmically,
and the vertical axis depicts the identification rate. Fégil5 shows an example of an ROC.

Closed-Set Identificationis a special case of open-set identification. Here, the piolge is

known to definitely match a gallery image in close-set iderdiion. Consequently, the performance is
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Figure 2.15:0pen-set identification performance reported on an ROC figue. This graph demon-
strates the trade-off between the identification rate alseé flarm rate. The horizontal axis depicts false
alarm rate on a logarithmic scale. The vertical axis depitatification rate. (Adapted from Phillips et
al. [109])

only measured by the identification rate. The cumulativectnaharacteristic (CMC) figure is generally
used to describe the performance. In a CMC figure the hodtamis depicts the rank and the vertical
axis depicts identification rate. When only rank 1 is con®deit is called the first match and is used
most frequently. Occasionally people might have intex@khbw the performance when rank= 5, 10.

An example of a CMC is shown in Figure 2.16.

The goal ofVerification is to verify whether two images match or not. There are twodsad
protocols to evaluate verification. The first protocol isl@élthe round-robin method. The probe sets
P, andP,, are combined together. The verification rate and false atatenare computed by matching
all the probe images to all the gallery images. The disadggnof the first protocol is that it cannot
model the case where false identities are caused by pedlethe gallery. The second protocol, called
the true imposter protocol, overcomes this drawback. Insteond protocol, the identification rate is
calculated by using gallery set G and probeRgf the false alarm rate is computed by using the gallery
set G and the probe s&,. Since the identities i®,, are not in the gallery, the nonmatching scores

between the gallery an,, are called true imposters.

At each development stage the main evaluation methods fiezedit. Table 2.5 lists the main

evaluation methods in each stage.
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Figure 2.16:A CMC figure plots identification rate as a function of rank n. The vertical axis depicts

identification rate, and the horizontal axis depicts rankdogarithmic scale. (Adapted from Phillips et

al. [109])
Main Evaluation Methodology

Il Closed-Set Recognition
1] Closed-Set Recognition

v Verification

Table 2.5:Main evaluation methodology for each stageClosed-Set recognition refers to the identi-
fication that the identities of the input images are in théeggl Verification refers to verifying whether

two images match or not.

Landmark Tests
Because face recognition methods at Stage | were far frontipahapplication, there is no well-known
evaluation. In Stage Il, the three FERET tests [106] [118]0Jlwere organized to evaluate academic
algorithms. In Stage Ill, the FRVT Tests were applied to eatd commercial face recognition systems.
In Stage IV, the comparison among algorithms have beeneppiainly in the LFW database.

The three FERET testswere carried out in 1994, 1995 and 1996. The three testseapfiie
aforementioned evaluation and methodology. The detail@FERET evaluations can be found in [106]
[116] [110]. The test results of the FERET evaluation in 18B6wed the elastic bunch graph matching
method (EBGM) algorithm [139], the Bayesian algorithm [@Fid the Fisherfaces algorithm [10] pro-
duced the best performance. The FERET tests recorded theealof face recognition technology but

also revealed three major challenges to face recognitgorithms: pose changes, illumination variation
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and large image capture interval.

The three FRVT evaluationswere the successor of the FERET evaluations. Since 199% waey
a quick development of commercial face recognition systehims development not only includes the
face recognition technology but also the relevant suppgitiystem and infrastructure. By 2000 many
commercial face recognition systems were available. Tesasthe state of the art of face recognition
systems, the FRVT evaluations were organized. Therefoeantin difference between the FERET tests
and FRVT evaluations is that the FRVT participants were cential systems while the participants of
the FERET evaluation were laboratory systems. Anotheeuifice is that image variation in the FRVT
test was larger than in the FERET test. The three FRVT tests ayplied in 2000, 2002, 2006 respec-
tively [106] [109] [105]. The test report of the FRVT 2006 atuded [105]: 1. Compared with the
results of the FRVT 2002, the performance improved by a ooflenagnitude. The best system can
achieve a False Reject Rate (FRR) of 0.02 at a False Accept(RAR) of 0.001 under controlled illu-
mination. 2. The first 3D face recognition benchmark wastbBil The performance of face recognition
algorithms is better than humans when lighting varies.

The verification test in the LFW databasefocusses on the problem of whether two images match.
The LFW designers established an evaluation protocol topesenthe performance of different algo-
rithms [65]. In the LFW test, 6000 images are divided into GiBsets which are mutually exclusive in
terms of identities and images. The experiments are redjtirée performed 10 times by applying a
leave-one-out validation scheme. In each experiment, obges is selected for testing and the remain-
der of the 9 subsets are used for training. The final perfocm@reported using a receiver operating
characteristic (ROC) curve or the mean of 10 experimentteand the standard error of the mean. Two
separate paradigms are provided to use the training dagaresitricted and unrestricted schemes. In
the restricted scheme identity labels associated with @nage not allowed to be used so only provided
pairs can be used in training. In the unrestricted schemega leumber of training image pairs can be
generated because identity labels are allowed to be usedcurhent best results in the LFW database is
97.35% correct by a commercial system [128] using the uricést protocol and training images from

outside the database. This performance is close to huméoripance 97.5% correct [76].

2.4 Conclusion

In this chapter we reviewed the development of face recmgmniechnology. After decades of devel-
opment, significant progress has been made. The researchiftad from controlled environments to
uncontrolled environments. The current face recognitigiesns can produce good performance with
uncontrolled images. However, it does not mean face retiogrin uncontrolled environments is a
solved problem. In fact there are many challenges stilltiexjs Therefore, we are motivated to propose
new algorithms in this report to overcome the challenges.

We have also described and assessed the main face databdg$eslahat the LFW dataset is the
most appropriate database for comparing the performarfae®fecognition algorithms in uncontrolled
environments. We will use the LFW database to evaluate garishms in the following chapters.

We also reviewed performance evaluation methods of faagretion and find that face verification
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has become the mainstream evaluation target for face rémogim uncontrolled environments. We will

focus on improving the performance of face verification iis tieport.
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Chapter 3

Investigating the Spatial Support of Signal and

Noise in Face Recognition

3.1 Introduction

Automated face recognition has many real world applicatiodnfortunately, many systems perform
well only in controlled conditions where the pose, illuntina and expression of the probe face are the
same as the gallery face. Recognition in uncontrolled d¢ard is the subject of much research and can
be divided into two categories?hysically-basedlgorithms have a forward model with knowledge of
3d geometry and light transfer. They attempt to explicitiytfe pose and lighting parameters (e.g. [17]).
Statistical algorithmsschew this knowledge in favour of attempting to directlydeldhe images them-
selves as abstract feature vectors (e.g. [132] [10] [13@This chapter we will restrict our discussion to
statistical algorithms, especially statistical subspgerithms.

Preprocessing for statistical face recognition can beldivinto global and local algorithms. In a
typical global approach, the pixel values from the wholegmare vectorized. A linear or non-linear
transformation is applied to this vector to move it to a spacehich signal:noise is improved before
making the decision. Examples of global algorithms incltiee=Eigenfaces algorithm [132], the Fish-
erfaces algorithm [10] and the Laplacianfaces algorith2].[@mplicit in this algorithm is that it is
sensible to model the joint covariance of all image pixelsisparticularly makes sense in the presence
of illumination and pose changes which affect the whole face

In local methods, facial keypoints (eyes, nose etc.) aradoA separate data vector is extracted
from each keypoint. These data vectors are modelled sepasaid treated as independent contributions
to the final recognition decision. Examples of this approactude [67] and [139]. The logic of the
local approach is that each part of the face contains infaomabout identity that is independent from
that in other regions. A disadvantage is that it is harderctant for global factors such as lighting
changes if we only look at a small part of the image at a time.

Many algorithms are suitable for both global and local featvectors. Of particular relevance to
this chapter is the Fisherfaces algorithm of Belhumeur.eftlél] which is based on linear discriminant
analysis (LDA). LDA methods separately model the withirdiindual and between- individual covari-

ance of the data. The original technique [1] projected tha dato a new basis that maximizes the ratio
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Figure 3.1:Face images are described as a sum of signal and noise compuatseand we investigate

the spatial support of each.Both signal and noise components are divided into reguidsgf inde-
pendent patches. The grid resolution is manipulated segharéa) The signal componentis divided into
8 x 8 patches, the noise component is divided idite 2 patches. (b) Signal asx 1 patches, noise as

4 x 4 patches.

of between- to within- individual variation in an attemptitoprove the signal to noise ratio. In recent

work, loffe [68] and Prince and Elder [111] have describeababilistic interpretations of this algorithm.

In this chapter we adapt the probabilistic LDA model of [1id jnvestigate the continuum between
local and global approaches. Probabilistic LDA descrilsa ds an additive mixture of signal (between-
individual changes) and noise (within-individual changétere, we manipulate the spatial extent of the
signal and noise components separately. In particular e@kdhe signal and noise into regular grids of
non-overlapping patches at various resolutions (see Eg). Several previous studies have considered
breaking the image into patches ([20], [90], [93], [98])} mone have independently manipulated the

scale of signhal and noise elements.

By investigating face images as shown in Figure 3.2, we adhat there is independent identity
information everywhere in the image. In other words idgnitiformation appears locally. However,
within-individual variation, such as face expressioryrfination and pose, cannot be understood at a
small region of a face image. Therefore, we hypothesizer#taignition performance will be best when

the signal is local. However, we predict that performandehei worse when the noise is treated locally.

The structure of this chapter is as follows. In Section 3.2ewéew statistical subspace algorithms
and patch-based face recognition algorithms. In SectiBnw& describe how to control the spatial
extent of signal and noise elements and propose a new faggni¢gion algorithm: Multi-scale PLDA.

In Section 3.4.1 we discuss four controlled datasets usedriexperiments. In Sections 3.4.2-3.4.4 we
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o)

Figure 3.2:Signal exists locally and noise should be understood globgl Each part of face includes
independent identity information, for example the eyesenanouth of person A and person B are all
different. However, illumination, face expression andgcan only be understood by considering a large

region.

present results on three controlled databases where owagbpperforms well and compare to other
methods. In section 3.4.5 we present results on a fourthraéed database where performance is less
good, and we discuss why this is the case. We also apply Idcdtie PLDA to a uncontrolled dataset to

do face verification in section 3.5. Finally we draw a conidasn section 3.6.

3.2 Related Works
3.2.1 Statistical Subspace Algorithms

Statistical subspace algorithms are important state o&thé&ce recognition algorithms. In subspace
algorithms face images are projected into a low dimensismaspace and then represented as a weighted
sum of basis functions. Compared to image intensities, #ve nepresentation is more compact and
increase the signal-to-noise ratio effectively. The Efgeas algorithm [132] was the first subspace
algorithm and applied Principal Component Analysis (PGAjaduce the dimensions. The projection
by PCA maximizes the scatter of all face images and condesttiae data’s energy. However, the scatter
maximized by PCA is due not only to the between-individualttr that is important for classification
but also to the within-individual scatter that is not wanted

To address this issue, the Fisherfaces algorithm [10] eglinear Discriminant Analysis (LDA)
to obtain a set of projections that maximizes the ratio oflibveen-individual scatter matrix to the
within-individual scatter matrix. In the subspace obtdibg LDA face images from different people are
more spread out than images from the same person. Ther#ferEjsherfaces algorithm can improve
performance when within-individual variation exists. Hagt al. [60] interpreted LDA in a probabilistic
context that LDA maximizing the ratio of the between-indival scatter matrix to the within-individual
scatter matrix is mathematically equivalent to maximizihg likelihood of a Gaussian mixture model.
This maximization process can be described as a linearsgigreof class label assignment. However,
this type of regression is only useful when the class to bestfiad already exists in the training data.

This assumption cannot satisfy the requirement of facegrition. In many face recognition evaluations
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identities in training and test set are mutually exclusive.

In Gaussian mixture model, which LDA is mathematically eqlent to a probabilistic view, the
class distribution is finite, which cannot handle unseessea. Prince et al. [111] proposed Probabilistic
Linear Discriminant Analysis (PLDA), which used hidden iades to represent classes and assumed
a continuous distribution of these hidden variables. Thaygimalized over unknown hidden variables
to obtain the capability to make inference about the unsésses. As demonstrated in [111], PLDA
produced better performance than the Fisherfaces alguritte will introduce the Eigenfaces algorithm,
the Fisherfaces algorithm and PLDA briefly in the followirgt.

In the Eigenfaces algorithm a face imagés represented by the following equation:
x = p+ Pw, (3.2)

wherex is a pixel intensity vector obtained by concatenating tHaroas of pixels in a face imagg, is
the mean vector of all the training imagas,contains the basis functions of the feature subspace in its
columns, andv is a coefficient vector.

In training we aim to learn the basis functiods We assume there ane training images

{x1 - xn}, the total scatter matri® is

S = (xx —p)(xk — )" (3.2)
k=1

In the Eigenfaces algorithm the basis functibris defined by maximizing the determinant of the total
scatter matrix:

S = argmax |®7S®|. (3.3)

Similar to the Eigenfaces algorithm, we learn the basistions of the feature subspace in the Fisher-
faces algorithm. However, we learn the basis functitvisising Linear Discriminant Analysis instead
of Principal Component Analysis. We assume thereraiaining imagegx; - - - x5 } and each image
belongs to one ofn identities. The between-individual and the within-indival scatter matrices are

computed by

m

Sp = Y Ne(peo—p)(pe — )" (3.4)
cT_HI N

Sy = Z Z(Xk — o) (xk — )" (3.5)
c=1 k=1

whereN, denotes the image number of identity,g;, denotes the mean image of identityycdenotes
the mean vector of all the training images, dddlenotes the image number of identity c.
In the Fisherfaces algorithm the basis functidVs are defined by maximizing the ratio of the

determinant of the between-individual scatter matrix drad of the within-individual scatter matrix:

3 (WTS5W|

W = arg max m (36)

Probabilistic Linear Discriminant Analysis (PLDA) is a jabilistic version of the Fisherfaces algo-

rithm. In PLDA a face image;; is represented as:
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Xij =M -+ th -+ GWij -+ Eij, (37)

wherex;; denotes thg'”" of J training images of each of thi€" of | individuals, i is the mean of the
data,F is a matrix with the basis vectors of the between-individitddspace in its columns, aid is
an identity variable that is constant for all J images. ;; of personi. The termG is a matrix with the
basis vectors of the within-individual subspace in its cohis. The ternw;; represents a position in this
subspace. The term; denotes stochastic noise with diagonal covaridic&he termu + Fh; consists
of the signal and accounts for between-individual variatigor a given individual, this term is constant.
The termGw;; + €;; consists of the noise or within-individual variation. It@ains why two images of
the same individual do not look identical.

We can alternately describe the generative process in tefroonditional probabilities:

P?”(Xij|hi, Wij) = gx [M + th + GWZ']', 2] (38)
Pr(h;) = Gn,[0,1] (3.9)
PT(Wij) = Qwu [0, I], (310)

wheregG,[o, s] denotes a Gaussian inwith meang and covariance; the termI denotes an identity
matrix.

In training, the Expectation Maximization (EM) algoritheapplied to learn the model parameters
6 = {u,F,G,X}. In test they compare the likelihood of two images when theyessumed to match
and not match.

In this chapter, we use PLDA as a platform to verify our hygsik.

3.2.2 Patch-based Face Representation Methods

Face representation methods play an important role in faaagnition. The goal of face representation
methods is to obtain a compact form to describe face imagesehain sufficient discriminant infor-
mation. A good face representation method can capture isuffiddentity information and is robust to
within-individual variation. Face representation methodn be divided into two categories: global and
local representation methods.

The global face representation methods model the stateiarding the whole face. Examples
include the Eigenfaces algorithm [132], the Fisherfacgsrithms [10], the Active Appearance Model
[34]. The global representation methods perform well faefanages with limited variation. However,
their performance depends on accurate image registratgbnannot deal with geometric transformation
and occlusion.

The local face representation methods model the locakgtategarding face parts. Examples in-
clude the Elastic Bunch Graph Matching algorithm [139], Higher Vector Faces algorithm [124]. A
face image is normally represented by a vector of local featuTo obtain the local features, a set of
fiducial points are normally firstly detected. Fiducial psiare a set of salient facial parts. They are
usually located on the corners of the eyebrows, the corri¢ghe@yes, the tip of the nose, the corners of

the lips, etc. After fiducial points are obtained, multipieaige descriptors are used to characterize the
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region around each point. Finally, an vector to represemtithole image is formed by concatenating
descriptors of each point. Examples of image descriptaisidte Local Binary Patterns (LBP) descrip-
tor [102], Scale Invariant Feature Transform (SIFT) dextori[88], Gabor Filter [41], etc. Compared
with global face representation methods, local face remtasion methods are more invariant to within-
individual variations, such as expression and pose chayggever, local face representation methods
normally treat image parts independently or conditionialtiependently and may not consider the global
connection among image parts. Moreover, local repregentatethods apply a sparse representation
and may lose potentially useful information.

Patch-based representation methods combine the advaraéggobal and local representation
methods. In a typical patch-based representation methadeaifnage is represented as a collection
of patches. The configurations of image patches can be dritsweoverlapping or overlapping patches.
Patch-based representation methods provide a densegefatisn to face images and retain the global
structure of face image. Moreover, patch-based repreg@mtaethods allow us to vary the patch con-
figuration and model the covariance at a pre-defined scaloid the expensive computation of the full
covariance matrix. Yamada et al. [72] proposed a patchebagresentation method to do face recogni-
tion across pose. Their experiments demonstrated thatatsh-based representations are more robust
to pose variation than the global representation methodsey et al. [90] inherited the principle of Ya-
mada’s algorithm and modelled the relation of correspogg@iiches from images with different poses.
Their experiments confirmed Yamada’s conclusion.

Despite the aforementioned successful applications ahplaased representation methods, there
has never been an experiment to manipulate the patch coatiigguof images to affect the spatial support
of between-individual and within-individual basis furaiis of a statistical subspace algorithm. In this
chapter we will explore this intrinsic combination of stdital subspace algorithms and patch-based face

representation methods.

3.3 Multi-scale PLDA

As shown in Figure 3.1 we vary the effect of localization oé thasis functions of the between- and
within- individual subspac®' and G respectively. The signal component is divided into a gridPof
regular square non-overlapping patches. In a similar vis@mnoise componentis divided infppatches.
We increasd” and(@ to make the spatial support of the basis function more I&®alvhen the value of
PorQis 1,4, 16,64, the grid resolution of the signal or nom®mponentid x 1,2 x 2,4 x 4 and8 x 8
accordingly.

The generative process of Multi-scale PLDA can be desctilyettie following equation:

P Q
xij = p+ > FhY + )" GIwl + ey, (3.11)

p=1 qg=1
Wherep is the mean of the dat&? denotes the basis vectors of between-individual varigtorthe
p'h patch. The ternh! represents the weighting of these basis vectors for‘thiadividual. Similarly,

G4 contains the basis vectors of within-individual variatfonthe ¢* patch. The ternwfj denotes the
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Figure 3.3:Graphical model for Multi-scale PLDA showing the image;;, hidden identity variables

hY, hidden within-individual variables{; and basis functions for between-individual subsgaicebasis
functions for within-individual subspad&?, mean of all training imageg, and diagonal covariance

matrix 3 for the stochastic noiss;; in images.

weighting of these basis vectors for theimage of thei” individual. In spite of the presence of patches,
the dimensions of basis vectbr " andG'? are still the size of the full data vectar However,
they become sparse and non-zero entries only exist forgpirghe patch in question. The relation of
variables is shown in Figure 3.3 and the model is illustratdeigure 3.4.

The generative formulation in Equation 3.11 can be rewrittethe form of the original PLDA

algorithm:

Xij = 1K + Ffll + (~£"v~vij + €ij, (312)

whereF = [F'.. . FF],G =[G'...G®?,h = [h'...h"|T andw” = [w'... w?|T.

Unfortunately, this relatively small change significantymplicates the learning and inference al-
gorithms: firstly, the system of equations may now be comalualg bigger (we may have a large number
of basis functions at each separate block of the image) asdnidikes straightforward inversion of ma-
trices in the learning and inference steps impossible. ®kcawe must now ensure that the sparsity

structure of the matriceB andG are retained. MatriceE andG are Block diagonal.

3.3.1 Learning

It would be easy to estimate the parametts {u, F, G, 3} if we knew the hidden variablds;, w;;.
Likewise, it would be easy to infer the hidden variables if lweew the parameters. This type of
“chicken and egg” problem is well suited to the expectatioaximization (EM) algorithm [43]. In the
expectation- or E-step we will calculate a joint posterimtribution over the hidden variables. In the

maximization- or M-step we update the paramegerg/e now consider each in turn:
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Figure 3.4:Structure of Multi-Scale PLDA model. (a) We describe images as the sum of a nygahe
between-individual variatioE;:1 F?h?, the within-individual variationZ;:1 G?w{;, and per pixel
noisee (image shows per-pixel variance). Here the signal is aeayrndependently in P=4 patches,
corresponding to the image quadrants. EachMas= 2 basis functions associated with them. In this
example, the noise is analyzed on a global scale using onlyg@tch which ha®), = 2 basis functions
associated with it. (b) We can write this same model in mdtirn. Now the localization is embodied

in the structure of sparsity of the matricBsandG.

E-Step: In the E-step we aim to take all of the data . . . x;; pertaining to one individual and calculate
the joint posterior distribution of all of the hidden varie.bﬁi,v*vﬂ ...w;y. To accomplish this, we

express this problem in a composite form:

Xi1 M F G 0 e 0 _ €1
- ~ Wil

Xi2 1 F 0 G ... 0 N €2
I e W |+ (3.13)

XiJ " F 0 0 G| | €N

_WiN_
or, giving names to these composite matrices:
x, =p' + Ay; + €. (3.14)
In probabilistic notation we can equivalently write:

Pr(xilyi) = Gx[p' +Ay, Y] (3.15)
Pr(yi) = gy-i [07 I]» (316)
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where
b))
b))
¥ = (3.17)
b))
Applying Bayes' rule to calculate the posterior, we get:
Pr(yi|x;,0) < Pr(x,|yi, 0)Pr(y;). (3.18)

Since both terms on the right are Gaussian, the term on theleft also be Gaussian. It can be shown

as in [111] that the first two moments are:

Ely:]=ATS A+ D) PATS (x, — o) (3.19)

(AT AT + 1)~ + B[y Elyi]". (3.20)

Elyiyl]

In practice, these quantities are hard to calculate. Fanpie consider P=64 blockB,' ¥ representing
the signal, and Q=64 block& ! representing the noise. If each block consists\pf= N, basis
functions and there arg images of person |, then the matrix” ©'~'A + I will be of dimension

(N, x Ny x (J + 1)) which can be very large. However, the matrix has considerstblicture:

—1

JFTS-FT4+1  FT'E1G . FTS1G
. G'E"'F  GTE!G+I
(AT A+ = _ _ _ .(3.21)
G'E-'F GTE"!G+I

Moreover, the blocks of this matrix themselves exhibitstuve. For example the top-left quadrant
JFTS-1FT 1Tis block diagonal, as is the bottom right. We use Schur’s lartorexploit this structure
in inversion. The concept of Shur’s lemmais to divide a nxatrio four components and the inversion of
the matrix can be described by polynomials of the four congpts Equation 3.22 shows the inversion

of matrix U using Shur’s lemma:

- —1

-l - |V Ve
Vs Vy
B (Vi — VoV, vyt — (V1 = VoV ive) vyt
VIV = Vo ViVt ViR VETV(VE = VoV V) Vo v

(3.22)

where(V; — V2V4‘1V3)*1 is called the Shur Complement.
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3.3 Multi-scale PLDA

Applying Shur’s lemma, we divide equation 3.21 to four parts

VvV, = JFTS'FT41 (3.23)

Ve = [FTS71G .. FTSIG) (3.24)
(GTs-1F

Vi = : (3.25)
|GTEZ'F
[GTs1G 41

vV, = : (3.26)
I G2 1G+I

The matrix in equation 3.26 is a diagonal block matrix, so meeit each matrix block to obtain its
inverse. Then we follow Shur’s lemma to compute the term 383/1using Schur’s lemma, the effective
dimension of the inverse is reduced frgMx Dy + P x Dy x J) x (P x Dy +Q x D, x J) to P times of
(Df xDy)andQtimesofDy x D), whereD is the number of basis functions for between-individual
subspace anB, is the number of basis functions for the within-individuabspace. Assuming = 64,

Q =16,D; =64, D, = 64, J = 10, we need to invert 89392 x 59392 matrix if we compute the term
3.21 directly. However, after applying Shur’s lemma, weydnlert 64 matrixes with the siz&4 x 64

and 16 matrixes with the sizil x 64.

M-Step: In the M-Step, we aim to update the values of the paraméters{u, F, G, X}. We must
do this in such a way that the sparsity structure of the megfitand G is maintained. We perform
a separate calculation for every pixel (row of the genegaéiquation) ensuring that the appropriate

elements remain zero. We first write a single equation foh ediserved data vector:

.. h;
Xij = p + [F G} + €5 (3.27)
VAVU
This has the form:
Xij = K + B Zij + €ij- (328)
We optimize:
Q(0¢,0:—1) = ZZ/PT‘(Z¢|X¢1,,,U,9#1)10g[P7"(Xij|Zi)P7’(Zz‘)]dZia (3.29)

i=1 j=1

wheret is the iteration index. The first log probability term in Edjoa 3.29 can be written as:
log[Pr(x;j|z:,0;)] = £ — 0.5 (log |Z7"| + (x4; — p — Bz;) "2 (x;; — p — Bz;)) (3.30)

wherex is an unimportant constant. Since the malix' is diagonal, this can be written as a sum of

terms over the N pixels in the image:

N
log[Pr(xi;|z:,0:)] =k — 0.5 Z (log |02] + (Xijn — ty — bnzin) 0,2 (Xijn — Bp — buZin))

n=1
(3.31)
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3.3 Multi-scale PLDA

wherex;,, refers to the f' pixel of the " image of the " individual, u,, denotes theft pixel of the
mean vector and? represents the'f entry in the diagonal matriX. The termb,, describes the fi
row of the matrixB, modified so only the non-zero entries remain. The tefmconsists of the entries
in the vectorz; that correspond to the non-zero entries of tHerow of B.

We substitute this term into Equation 3.29 and take devigativith respect t,,, b,, ando?. The
second log term in Equation 3.29 has no dependence on themagtars. We equate these derivatives

to zero and re-arrange to provide the following update rules

1
1229 :ﬁ Z Xijn (332)
i,j
1
bn — Z(Xijn - Nn)E[Zin]T Z E[Zinzz;l] (333)
] 65
1 .
o? =17 > diag [(xijn— ) (Xijn — )" = br Elzin] (Xijn — )" ] , (3.34)
]

wherediag represents retaining only the diagonal elements of a maktir expectation terms[z;] and
E[z;z!] can be extracted from Equations 3.19 and 3.20 using the @&quive between Equations 3.13
and 3.14. The updated valueslbindG are retrieved fronb; .

3.3.2 Inference
We perform recognition by comparing the likelihood of difat models of the data. For example,
consider a closed set face recognition task in which we vaismow whether the probe fasg matches
gallery facesx; or x,. We build two modelsM; and M, corresponding to these two situations and
compare them with Bayes’ rule:

Pr(x1,2,p|M1)Pr(Mj)
Sk P32, | M) Pr(My)
Model M hypothesizes that the probe faceshares an identitkt; with gallery imagex; although

PT(M1 |X1727p) =

(3.35)

the noise vectors still differ. Probe fagg has a different identith,. We write the generative equation

for this data as:

_hl -
x1 ,L F 0G 0 0| |hy €1
Xo pul+10 F 0 G Of |wi|+ |e]- (3.36)
Xp n F 0 0 0 G| |wy €p

Wp

To calculate the likelihood for model 2 we assume thahas to share an identity with gallery face

x5 to give a similar generative equation:

h;
X1 n F 0 G 0 O h, €1
xo| = (| +|0 F 0 G 0 [wi|+ |ea]- (3.37)
Xp n 0 F 0 0 G| |wy €

Wp
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3.4 Experiments in Constrained Databases

Each of these generative equations is of the form
X' =p +Ay+¢€. (3.38)
We can write this more precisely in probabilistic form:

PT‘(XI|y) = Gy [”’ + Aya 21] (339)

Pr(y) = G,[0.1], (3.40)

where we defin&’ similarly to in Equation 3.17. We note that Equations 3.3893escribe a factor
analyzer. It is possible to marginalize over the hiddenaldey and find a closed form expression for
the likelihood:

Pr(x') = /Pr(x|y)Pr(y)dy = Gy, AAT + 3] (3.41)

This can be calculated efficiently by (i) calculating theelikoods separately for all independent
terms (for example Equation 3.36 can be broken down into &vtspone of which contains onky; and
x, and the other contains onk) and (ii) exploiting the sparse structure of the matiA” + 3. One

way to do this is to use the matrix inversion lemma to converfdrecision matrix so that:
(AAT )t ="' S AATETA + ) ATS (3.42)

The inverse term on the right hand side can then be invertadimilar manner to the similar terms

of the E-Step of the learning algorithm presented in se@i8ri.

3.4 Experiments in Constrained Databases

3.4.1 Datasets and Preprocessing

We investigate closed set identification using four datasech of which has different properties (see

Figure 3.5). We discuss the preprocessing of each in turn.

XM2VTS Frontal: The training set consists of 4 images each of 195 individuEie test set consists
of 100 different individuals, where gallery images wereetalirom the first recording session and the
probes from the fourth session. The color images were affigeetd and resized to siZ& x 70. The
raw RGB pixel values were concatenated into a vector of lei@tx 70 x 3 = 14700.

XM2VTS Lighting: The training set consists of 7 images each of 195 individaal$ contained 2
lighting conditions. For each individual there were 5 imag@der frontal lighting and 2 under side-
lighting. The test set consists of 100 different individyjakhere the gallery images were taken from
the first recording session and were under frontal lightind he probe images were taken from the
fourth session and were lit from the side. As for the XM2VT8nfial dataset, the images were affine
aligned and resized to siz@ x 70. The raw RGB pixel values were concatenated into a vectarafth

70 x 70 x 3 = 14700.

Yale: The data were divided into 7 sets of training / test data a23h [The same 15 individuals are

present in training and test phases. We train with 2-8 imafjeach person depending on the condition.
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3.4 Experiments in Constrained Databases

(a) XM2VTS Frontal Database (b) XM2VTS Lighting Database

(d) ORL Database

b
£ i e

Figure 3.5:Datasets used in this chpater(a) The XM2VTS frontal database contains frontal faces un-

der diffuse lighting. (b) The XM2VTS lighting dataset comsfrontal faces viewed under two lighting
conditions. (c) The Yale dataset contains frontal facel watriations in expression and lighting. (d) The

ORL dataset contains variations in pose.

These images also form the gallery. The probe images carisiet remaining faces. Lighting and facial
expressions vary widely across training and test data. Eaabe was grayscale aid x 64 pixels in
size.

ORL: As for the Yale dataset, the data were divided into 7 setswofitrg / test data (see [23]). The same
40 individuals are present in training and test phases. &life\with 2-8 images of each person depending
on the condition. These images also form the gallery. Thbg@nmages consist of the remaining faces.
Each was grayscale a6d x 64 pixels.

All models were trained using 6 iterations of the EM algaritand the model parametetsare
initialized to random values. There are two sets of pararaéteour model: (i) the number of patches
for signal and noise and (ii) number of basis functions facheaignal and noise patch. The latter
two parameters were always varied together in our expetsremd will be referred to as “subspace

dimension”.

3.4.2 Experiments for Frontal Lighting Data Set (XM2VTS)

In Table 3.1 we presefit correct results for face identification using the XM2VTSrftal dataset and
a model with subspace dimension of 64. The results show ¢taignition generally gets better as the
number of signal patches P increases (signal basis fursdtiecome more local). However, performance

declines as the number of noise patches Q increases (naisefbactions become more local). Peak
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3.4 Experiments in Constrained Databases

performance is 9% when the noise has only 4 patches, but decreases when tla isignmoken into

either 16 or 64 patches.

Signal becomes more local =——)

[72]
(]
= 89% 91% 97% 97%
o
3 - 85% 93% 99% 99%
[7,]
3
] 16 78% 88% 96% 98%
(]
o
8 n 71% 77% 89% 97%

Table 3.1:% Correct results for the XM2VTS frontal data set as we vary patch resolution P and
Q of signal and noise respectivelyThe results show that the recognition performance inceease¢he
number of signal patches P increases (signal is treated locaily). However, performance drops as

the number of noise patches Q increases (noise is treatesllowaly).

In Figure 3.6 we investigate performance as a function ohtiraber of basis functions associated
with each signal and noise patch (subspace dimension). Tdmhghows that best performance is
reliably achieved when the signal is more local and the nigiseore global. The performance falls off
rapidly with large subspace sizes when both the signal aise: faoe local. This may be because the total
number of basis functions in the columns of matriE#sand G¢ becomes similar to the number of data
values in each patch.

In Figure 3.7 we compare performance to our own implemesratof a number of contempo-
rary algorithms that use completely global representatio®ur performance is superior to that for
PLDA[111], a second PLDA algorithm [68], the Fisherfacegomithm [10], Dual Space LDA [137], the
Bayesian face algorithm [97], and the Eigenfaces algor[tB2].
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XM2VTS Frontal
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Figure 3.6:% Correct face identification for the XM2VTS frontal dataset as a function of sig-

nal and noise subspace siz&hen signal/noise are local/local (P=64,Q=64), globaligl (P=1,Q=1),
global/local (P=1,Q=64), local/global (P=64,Q=4). Penfi@nce is best in the latter condition.
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Figure 3.7:% Correct face identification for the XM2VTS frontal dataset as a function of signal
and noise subspace siz&hen signal/noise are local/global (P=64,Q=4). Resultapare favorably
to PLDA [111], loffe’s PLDA algorithm [68], the Fisherfacedgorithm [10], the Dual Space LDA
algorithm [137], the Bayesian face algorithm [97], and tlgefaces algorithm [132].
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3.4 Experiments in Constrained Databases

3.4.3 Experiments for lllumination Variation Data Set (XM2VTS Lighting)

In Table 3.2 we preserft; correct results for face identification using the XM2VTShlilng dataset
and a model with subspace dimensions 64. Unsurprisingypénformance is worse than for the dataset
containing only frontal images. However, the pattern ofilssemains the same. Performance improves
as the signal basis functions become more localized, bigenas the noise basis functions become more
localized. Peak performance is®MWhen the noise has only 4 patches, but the signal is brokerbit
patches. Figure 3.8 confirms that good performance is tglathieved when the noise basis functions
span a large part of the image, but the signal is very locardgss of the subspace dimensions used.

Figure 3.9 shows that performance compares favorably tr atigorithms.

Signal becomes more local —)

: RN ENENEN
o,

(7]

(]

3 - 80% 82% 90% 83%
o

3 - 76% 89% 87% 91%
(7]

3

o 70% 75% 90% 85%
)

o

8 n 37% 56% 76% 84%

Table 3.2:% Correct results for the XM2VTS lighting dataset as we vary patch resolution P and

Q of signal and noise respectively.

We do not apply any illumination preprocessing in the experits illustrated in Figure 3.8 and 3.9
because illumination preprocessing cause a performanpemour experiments. For example, when the
subspace dimensions are set to 64, the patch number of thed smmponent P is 64, the patch number
of the noise component Q is 4, the performance i% @brrect without any preprocessing. When we
use histogram equalization to preprocess the images, therpance becomes 90 When we use the
preprocessing method proposed by Tan and Triggs [129],wiBiseries of steps including Gamma
correction, Difference of Gaussian filtering and contrapiadization, we only achieve 86 correct.
We hypothesize that the reason is that some useful disatiméninformation is discarded during the
preprocessing.

To fit the lighting condition in the XM2VTS Lighting databasee try different patch division meth-
ods to manipulate the degree of localization of signal aridgencomponent. In the above experiments,
we divided the signal and noise component into a regularafrfghtches. However, we can also divide
the signal component into a regular grid but divide the nemeponent into columns. In this case,
our experiments show that recognition performance imgowgure 3.10 shows two different patch
division methods and the second division method perfornieibthan the first method for XM2VTS

lighting database. We conjecture that the second divisietihod estimates left lit better.
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XM2VTS Lighting
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Figure 3.8:% Correct face identification for the XM2VTS lighting dataset as a function of signal
and noise subspace siaghen signal/noise are local/local (P=64,Q=64), globaligl (P=1,Q=1), glob-

al/local (P=1,Q=64), local/global (P=64,Q=4). A similatfern is revealed as on the XM2VTS frontal
dataset. Performance is best when P=64 and Q=4.
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Figure 3.9:% Correct face identification for XM2VTS lighting dataset as a function of signal and
noise subspace size when signal/noise are local/global G2-Q=4).Our results are better than PLDA
[111], loffe’s PLDA algorithm [68], the Fisherfaces algibwin [10], the Dual Space LDA algorithm
[137], the Bayesian face algorithm [97] and the Eigenfatgsrahm [132].
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Figure 3.10:Two patch division methods.(a) The first method divides the signal and noise components
into regular grids. (b) The second method still divides igaal componentinto a regular grid but divides
the noise component into columns. {¢)Correct face identification for two region division methads

the XM2VTS Lighting database as a function of signal and@seishspace size.

3.4.4 Experiments for Expression and lllumination Variation Data Set (Yale)

In the Yale dataset, there are multiple gallery images pdividual. There are two ways to proceed. We
could treat the gallery images as a single individual witingle identity vector. For traditional distance-
based algorithms this is equivalent to finding the centrdithe gallery images in feature space and
matching to the nearest centroid. Hence, for compatibiiti other work we refer to this as the nearest
centroid (NC) method. Alternatively, we could treat eacheyg image as a different individual with a
different identity vector and consider it a success if waecity match to any of these representations.
We refer to this as the nearest neighbors (NN) method.

Table 3.3 show&t correct results from the Yale dataset using 8 gallery imégesach individual
as a function of the localization of the signal and noisedfsictions using the nearest centroid method
with subspace dimensions 14. The pattern of results is verjas as for the two XM2VTS datasets.
Performance improves as the representation of the sigeahiies more local, but declines as the noise

becomes more local. The peak performance is again whenghaldias 64 patches, but the noise has
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only 4 patches and reaches a level of 93.8%.

Signal becomes more local ——)

=3
(7]
()
g 92.0% 91.2% 92.1% 93.1%
3]
3 - 91.7% 90.4% 91.7% 93.8%
w
3
o 89.5% 89.3% 92.1% 92.2%
(¢}
o
8 n 82.0% 84.0% 87.0% 86.2%

Table 3.3:9% Correct results for the Yale dataset as we vary patch resoltion P and Q of signal and

noise respectively when we use the nearest centroid method.

Figure 3.11 (a) and (b) shows the performance as a functisgheohumber of gallery items for
the nearest centroid and nearest neighbour metrics résggctVe also re-plot published results from
[23]. In each case, the error bars represent the standandoéthe results from the 7 training/test splits.
We can draw two conclusions from this: first, our algorithriiatdy outperforms the other methods.
The only exception is for the nearest-neighbour PLDA metlil a large number of gallery images
per person. Second, for our algorithm the nearest centreitiod consistently outperforms the nearest
neighbor method. This is unsurprising as by combining imfation from gallery images it becomes

possible to better distinguish signal and noise.

(a) Nearest Centroid Classifier (b) Nearest Neighbour Classifier
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Figure 3.11:Plot of % correct identification performance for the Yale database with P=64 sig-
nal patches and Q=4 noise patches for (a) nearest centroid rme and (b) and nearest neighbour
metrics. Results from PLDA [111], RLDA and SLDA [23], the Fisherfacafgorithm [10] and the

Eigenfaces algorithm [132] are shown for comparison.
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3.4.5 Experiments for Pose Variation Data Set (ORL)

Table 3.4 show$t correct results from the ORL dataset using 8 gallery imagesdch individual as a

function of the localization of the signal and noise using C method with subspace dimension 39.
Because there are 40 people in the ORL database, the maxiimensions of the subspace can only
be 39. As before, the performance decreases as the noismégcoore localized. However, making
the signal more local has no net benefit here. When it becoewslocal (64 patches) performance
becomes worse. In fact the best performance is found whenthetsignal and noise are completely
global (the original PLDA algorithm). An explanation of ghéffect can be found when we examine the

images themselves. The faces in the ORL set contain coabigguose variation (see Figure 3.5d).

Signal becomes more local =—)

S,
w
o
g 99.2% 99.1% 99.0% 98.6%
8
3 - 98.0% 98.3% 98.8% 98.0%
w
3
o 93.3% 95.0% 93.8% 88.4%
(]
o
8 n 81.3% 72.6% 74.0% 66.0%

Table 3.4:9% Correct results for the ORL dataset as we vary patch resoluion P and Q of the signal

and noise respectively.

(a) Nearest Centroid Classifier (b) Nearest Neighbour Classifier
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Figure 3.12:Plot of % correct identification performance for the ORL data base with P=64 signal
patches and Q=4 noise patches for nearest centroid metridResults from PLDA [111], RLDA and

SLDA [23], the Fisherfaces algorithm [10] and the Eigentaalgorithm [132] are shown for comparison.

Hence, modeling the signal with very local basis functioesdmes detrimental: the corresponding part

of the face will not necessarily remain within the same patch
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Figure 3.12 (a) and (b) show performance for the NC and NN itiond respectively as a function
of the number of gallery individuals. As for the Yale datadyahe NC metric outperforms the NN metric.
However, we now find that our algorithm with local signal anab@l noise performs worse than either
SLDA [23] or than fully global PLDA [111].

3.5 Experiments in the Unconstrained Database

3.5.1 Dataset

In this section we investigate the face verification perfanee of Multi-scale PLDA in the uncontrolled
face database: Labeled Faces in the Wild (LFW) database [6Bg goal of face verification is to
decide whether a pair of images are from the same person orAsotlescribed in section 2.3.1, the
LFW database is the most popular uncontrolled face dataliasensists of 13233 images from 5749
individuals. All the images are captured from the interfiéte number of images per person varies from
1 to 530. The images contain large variations in pose, ilhation, expression, gender, age, etc. Figure

3.13(a) shows several examples from the LFW database.

Figure 3.13:Several examples from the Labeled Faces in the Wild (LFW) datbase [65].(a) Color
images with the siz@50 x 250 pixels, which are collected from the internet and vary ingyaumi-
nation, expression, gender, age, race, resolution, doalusackground, and photo quality. (b) Aligned
black-and-white images provided by [127]. (c) Ti&#) x 80 face regions are obtained by cropping the

central part from the aligned images provided by [127].

In the LFW database, images are divided into 10 groups wittually exclusive identities. In each

group there are 300 matched pairs and 300 non-matched ph&serification protocol applies 10-fold
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cross validation. In each repetition one group is used fatirtg and the other nine groups are used for
training.

The LFW database designer defines two training configuratiém the ‘restricted configuration’
only same/not-same training labels can be used. The tgp@xiamples are restricted to the given match
and not match pairs. It is not allowed to use the names of peagdociated with images to generate
additional training examples. In the ‘unrestricted confggion’ the identity information can be used.
New training pairs may be created by leveraging the namesajblp.

As defined in [65], the verification results are reported iy élstimated mean accuragyand the

standard errof g of the mean :

10
. i=1Pi
o= 72 101 (3.43)
o
Sg = — ok (3.44)

wherep; is the percentage of correct assignment using gtdiop testing ands is the estimate of the

standard deviation given by

6 = ==l (3.45)

3.5.2 Experiments Using Image Intensities

The LFW images contains large variation. Face alignmentednce scale and rotation variation effec-
tively and increase verification performance. The authbtkeLFW database provided images aligned
by the congealing alignment method [64]. However, theress Imisalignment in the aligned images
provided by [127], which are obtained by applying a similatransformation to register four fiducial
points to a pre-defined template. Figure 3.13(b) shows akegamples of the aligned images. In this
section we adopt their aligned images to do experiments.

The size of the aligned LFW image250 x 250 pixels. We firstly crop the central0 x 80 pixels
from each image to obtain face region (Figure 3.13c). We ugerétions of the EM algorithm to train
the model parametefs which are initialized to random values. The subspace dawens set to 64 as
in section 3.4.

Table 3.5 shows the mean % correct and the standard errog af¢lan of ten cross validation tests
as a function of the localization of the signal and noise o&snctions. The performance decreases
when the signal becomes more local. There is also no perfarenamcrease when the noise becomes
more local. The reason is the same as experiments using thed@®base. There is significant pose
variation in the LFW database. The corresponding patch#sedivo images do not always include the
same facial features because of pose changes.

To show the test results in the LFW database, | used threeptEaecimal to report both the mean

and the standard error of the mean in Table 3.5. It was givehdjollowing Matlab script:

meanCorrect = mean(resultList); % resultList is a 1-by-10 array, each element of 1
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which represents the result of an experiment

stdCorrect = sqrt(sum((resultList - meanCorrect)."2)/9) /sqrt(10); 2

We used the default Matlab accuracy for reporting resulis céhsidered three decimal places may
be accurate enough to report the verification performammoaeswill use the same style to report the test

results in the LFW database in the following chapters.

Signal becomes more local =———)

I N

59.733% +1.006 59.317% * 0.993 58.417% * 0.872

58.000% + 0.797 56.967% + 0.924 55.817% * 0.782

|ed0] @J0W S2aW0J9(q 9SION

55.817% + 1.090 55.333% + 0.992 54.050% * 0.644

Table 3.5:The mean accuracy and the standard error of the mean of ten LF\eross validation tests
using image intensities as we vary patch resolution P and Q afignal and noise respectivelyThe
results show the performance decreases as the noise becoéogalized, but making the signal more
local does not increase performance: we lose the correspordf facial features in corresponding

patches when pose variation exists.

3.6 Conclusion

In this chapter we combined patch-based face represemtatthods and Probabilistic Linear Discrim-
inant Analysis (PLDA). We described a face image as a sumefignal component and the noise
component. We break both the signal and noise into reguids gf non-overlapping patches. We ma-
nipulate the patch configuration of the signal and noisefeecathe spatial support of signal and noise
basis functions. We investigated the effect of the degrémoaiization of these basis functions for frontal
face recognition. We conjectured that performance woulthds when the signal was treated locally
(reflecting the fact that each point in the face provides jpretelent information about identity) but that
the noise was treated globally. This pattern of performaveee confirmed for three controlled datasets,
although in each case, the best performance was when theewnaésat a large scale but not totally global.
It appears that there is sufficient information in one quatiodthe image to capture the noise.

For a fourth controlled dataset, performance did not irsgeses the signal became more local. We
attribute this difference to the pose changes that are préséhis dataset but not in the three others. A
local representation of identity fails if the images arewetl registered as the same part of the face will
not always appear in the same patch.

We also applied Multi-scale PLDA to an uncontrolled faceattaise: the LFW database, whose

images are collected from the internet instead of in therktiooy. The LFW images include large

68
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variations. We used image intensities to do face verificatile found the best performance is obtained
when we treat the signal globally. The reason is the samerdlddourth controlled database in which
large pose variation exists.

One interesting aspect of this work is that the dimensiotisehidden space actually increase as we
make the basis functions more local. Here, the hidden speesrto the between-individual subspace
or within-individual subspace. This is because we mainddired number of basis functions per patch.
Although we marginalize over the hidden dimensions, at stawvel we still compare faces in a higher
dimensional space than before. However, the number of eomgarameters in the matricBsand G
remains the same for a given subspace dimension, regaadl#ss scale of signal or noise. The model
is not more complex, but makes different assumptions almaigidendence of its parameters.

Independent manipulation of signal and noise subspacepartisularly easy to apply to the PLDA
algorithm [111]. However, it could be adapted for any altori that calculates within-individual and
between individual covariance matrices by assuming a bdesdonal structure in these matrices.

This algorithm has connections with the Mosaicface modglif8Bwhich each face image is ap-
proximated by a regular grid of patches and each patch isititken a patch library. Faces are finally
represented as a list of indices to the library. The commangd between their model and Multi-Scale
PLDA is that face images are represented as a set of nonappénly patches. However, the latent vari-
ables of the two models are different. Multi-Scale PLDA agpktontinuous hidden variables while the
Mosaicface model used discrete latent variables. The Mfza model improves performance when
lighting variation exists. Performance might be improviedé combine the Mosaicface model and our
Multi-Scale PLDA.

One of the drawbacks of Multi-Scale PLDA is that it is sensitto pose variation. To address
this problem we could estimate the corresponding patchasvibimages with different poses in future
work. One possible solution is to extend the shiftmap regortadion [113] for patches and use it to find
the corresponding patches containing the same facialrisaftom two images.

Some aspects of our model remain unexplored. Our Multie€Sraddel only used image intensities
to represent images. We can extract image descriptors femtn patch. Since image descriptors are
generally more robust to image variation, performance tighimproved if we use image descriptors
instead of intensities.

In the following chapter, we will propose a new algorithm walhiwill produce good performance

when the pose of the image varies.
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Chapter 4

Joint Probabilistic Linear Discriminant

Analysis for Face Recognition

In the previous chapter we explored the combination of pattded face representation methods and
Probabilistic Linear Discriminant Analysis (PLDA) [82]n this chapter we compare PLDA and another
Bayesian face recognition algorithm: the Joint BayesiaseRdgorithm [30], which also produces good
performance in the Labeled Faces in the Wild (LFW) datab&5¢ [We analyze the commonalities
and key differences between PLDA and the Joint Bayesian &aoeithm and propose Joint PLDA to

combine the advantages of the two algorithms.

4.1 Introduction

The current state of the art algorithms in face recognitienta some extent dominated by a family of
subspace algorithms. The Eigenfaces algorithm [132] wadittst subspace algorithm and has become
the most common performance benchmark. The principle ldehia Eigenfaces algorithm is to apply
principal components analysis (PCA) to project face imdoesarly to a low dimensional subspace.
The goal of this projection is to maximize the scatter of atd images in the low dimensional sub-
space. The disadvantage of the Eigenfaces algorithm ishteahaximized scatter is due not only to the
between-individual scatter that is important for clasatiien but also to the within-individual scatter that
is not wanted. Therefore, unwanted variations due to pag#jrig, and expression are retained and the
Eigenfaces algorithm is not an optimal algorithm from a dimtation viewpoint.

The Fisherfaces algorithm [10] overcame the drawback ottlgenfaces algorithm. The Fisher-
faces algorithm applies Linear discriminant analysis (DD@&\project face images to a low dimensional
subspace by a set of projection vectors that maximize tieobthe between-individual scatter matrix to
the within-individual scatter matrix. The Fisherfacesaithm improves the performance when lighting
and expression variation exists. However, LDA often contsdhe small sample problem, especially
when dealing with high dimensional face image data. Thelssaatple problem refers to the fact that
the within-individual scatter matrix may become singuldéen the image number per individual is much
smaller than the dimensions of the data.

To overcome the drawback of LDA, the Fisherfaces algorithstlyi uses PCA to reduce data
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dimensionality and then performs LDA. However, this methad a drawback that the Fisherfaces al-
gorithm is limited to the discriminant information in theipcipal subspace. Chen et al. [32] exploit
the discriminant information that also exists in the nubhep spanned by the eigenvectors of the within-
individual scatter matrix with zero eigenvalues. To usela discriminative information, Wang et al.
[137] proposed the Dual-Space LDA algorithm, which perferomear Discriminant Analysis in both
the principal and null subspace of within-individual seattnatrix. They demonstrated that the Dual-

Space LDA algorithm produces better performance than tleefiaces algorithm.

All the aforementioned face recognition algorithms andrtliariations are distance-based algo-
rithms. Face images are projected into a low dimensionaEade and the match assignment between

two images is based on whether the distance of two imageg isubspace is bigger than a threshold.

The Bayesian Face algorithm [97] uses a different methoetdywwhether two images match. It
makes a match assignment by verifying whether the differ@fi@ face image pair is caused mainly by
between-individual variation or within-individual vatian. The Bayesian Face algorithm uses a prob-
abilistic framework to model between-individual and withihdividual variation in training. In test, if
the difference of two face images is mainly caused by betvireginidual variation, the two images have
different identities. Conversely, if the image differerisemainly because of within-individual varia-
tion, two images are from the same person. The Bayesian fgmetlam demonstrated a performance
advantage over the Fisherfaces algorithm in the FERET 188tpetition [97].

The aforementioned Bayesian Face algorithm and its vanatjenerally model the image differ-
ence of a face image pair. Compared with modeling two imagjedly, modeling the image difference
can be understood as projecting a 2D space describing #orebf two images into a 1D space de-
scribing image difference. Such a projection can captugenthjor discriminative information but may
reduce separability. Probabilistic Linear Discriminamiadysis (PLDA) [111] models two images jointly
instead of the image difference and can capture more dis@tive information. PLDA models the joint
distribution of two images and makes verification assignrbgrromparing the match likelihood and the
non-matching likelihood. In PLDA, each face image is coasidl to be generated from a hidden iden-
tity variable in the between-individual subspace and a éiddoise variable in the within-individual
subspace pulsing some stochastic noise. In training, anlgitam is applied to estimate the model
parameters: the basis functions for the between-indivisluaspace, the basis functions for the within-
individual subspace and a diagonal matrix defining noise¢est face verification is treated as a model
selection problem. When two images are assumed to matchica tikelihood is computed by using the
match covariance matrix derived from the learned modelrpatars. When two images are assumed to
be in non-match model, a non-match likelihood is calculé@gdsing the non-match covariance matrix
derived from the trained model parameters. Two images ansidered to match if the match likeli-
hood is bigger than the non-match likelihood. Prince ancE]#i11] demonstrated that their algorithm

produces better performance than the Bayesian Face algorit

Chen etal. [30] claimed PLDA may discard some discrimirgitiformation because PLDA applies

a subspace method to project high dimensional face dataittew dimensional subspace. To address
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this issue, they proposed the Joint Bayesian Face algosithith does not make the low dimension
assumption and can estimate the match/non-match covarraatrix from high dimensional face data
directly. They claimed their algorithm can capture moredisinative information and produced better
performance than PLDA. In the Joint Bayesian Face algorithih face is described to be the sum of
two parts: identity and within-individual variation. Iraining, an EM-like algorithm is applied to learn

the between-individual covariance matrix and the withidividual covariance matrix. In test, the match
and non-match covariance matrix derived from the betwadividual and within-individual covariance

matrices are used to compute the match and non-match likeel§for a given image pair. The match

assignment is decided by comparing the two likelihoods.

The key difference between PLDA and the Joint Bayesian Flyitom is that PLDA applies
factor analysis to project face data into a low dimensioreivMeen-individual and within-individual
subspaces to estimate the match and non-match covariartide wizile the Joint Bayesian Face algo-
rithm uses an EM-like algorithm to partition each face image an identity component and a within-
individual component with the same dimensions as the aaldg@ite data and then estimate the match and
non-match covariance matrix directly from the identity gmments and within-individual components.
Another difference is that PLDA uses a strict EM algorithnd guarantees the training log likelihood
increases after each iteration while the Joint Bayesiam Bégorithm uses an EM-like algorithm and

cannot guarantee that the log likelihood converges.

Although Chen et al. [30] claimed their algorithm can captonore discriminative information and
produce better performance than PLDA by using high dimeradiface data instead of low dimensional
vectors, the subspace method used by PLDA can improve sigmadise ratio and reduce the number
of estimated entries when estimating the covariance maiiterefore, there is no obvious theoretical
advantage for the Joint Bayesian Face algorithm. AlthoulgenCet al. [30] demonstrated that the Joint
Bayesian Face algorithm produced better performance thBA fh the LFW database, the performance
difference is marginal, only 0.8%. Moreover, the experitgattings in [30] may not be fair for PLDA.
They chose the optimal parameters for the Joint Bayesianitig but did not use the optimal param-
eters for PLDA. Therefore, it is interesting to compare thimtlBayesian Face algorithm and PLDA to
find whether direct modeling or subspace method is bettestimate the match/non-match covariance

matrix.

The structure of this chapter is as follows: we first introgltiee detail of the Bayesian Face algo-
rithm, PLDA, and the Joint Bayesian Face algorithm and aestlyge commonalities and key differences
of the three Bayesian face recognition algorithms in secti@. To show the difference between PLDA
and the Joint Bayesian Face algorithm more clearly, we makegdrical comparison between the two al-
gorithms in section 4.3. Then we propose Joint PLDA to comlfire advantages of PLDA and the Joint
Bayesian Face algorithm in section 4.4. After that we complae performance of the three Bayesian
face recognition algorithms using different image degoripin section 4.5.2. We also use different
approaches to combine multiple image descriptors in seeib.3. Finally, we draw a conclusion in

section 4.6.
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4.2 Bayesian Face Recognition Algorithms

In this section we will first give a brief introduction to tle@ayesian face recognition algorithms: the
Bayesian Face algorithm, PLDA and the Joint Bayesian Faueitim. Then we will compare the three

algorithms.

4.2.1 The Bayesian Face Algorithm

The Bayesian Face algorithm [97] models the image diffexeh®f two images and makes the match
assignment based on whether the image difference is maaniyec! by between-individual or within-

individual variation. The image difference is modeled byrahabilistic framework:

A = x1-X 4.1)
P(A|M;) = Gal0,s] (4.2)
P(A[Mg) = Gal0,d], (4.3)

where imagex; andxs have been subtracted with the mean of all images; mddgldenotes two
images are from the same person and modgl denotes two images are from different people; the
functionG, [, <] denotes a Gaussian éinwith meang and covariance; the term3; is the covariance
matrix for within-individual variation an&,; is the covariance matrix for between-individual variation
Learning

In training, model parametets = {A;, V4, X, Ay, Vg, X4} are learned from training images. Two
sets of image pairs, which comprise intra-personal imagdes [@and extra-personal image pairs, are
firstly collected from training images. Then the eigenvalig and the eigenvectoi¥, of the within-
individual covariance matriXx2, are learnt from intra-personal image pairs. The eigengadgand
eigenvectordV ; of the between-individual covariance matd; are learnt from extra-personal image
pairs.

Verification

The Bayesian Face algorithm makes match decision for twg@®ndy comparing the likelihood for
within-individual variationP(A|M) and the likelihood for between-individual variatidt( A| M ).

To compute two likelihoods more efficiently, each test images firstly preprocessed with whitening
transformation and then is stored as two vectors: the betwebvidual subspace coefficients, and

the within-individual subspace coefficients, and :

h, = A,Vux, (4.4)
d

wr = A;7Y?V.x. (4.5)

Whitening transformation is a decortication transformiatwhich can transfer a set of random variables
having a known covariance matrix into a set of new randonatées having a identity covariance matrix.
A typical whitening process to a random veclrwith a not singular covariance matr® meansX
multiplying by =~1/2, Then the match likelihoo®(A | M) and the non-match likelihooB (A| M )
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are computed by:

A = X1 — X2 (46)
6—1/2\\W1—W2||2

P(AMg) = W 4.7
e—1/2lh1—hz|?

—— 4.8
(2m)D/2| % y[1/2 (4.8)

P(AIMa)

where D is subspace dimension.

4.2.2 PLDA
PLDA models two images jointly instead of the image differenin PLDA, a face image is represented

by:
Xij = FhZ + GW,L'j + €5 (49)

wherex;; denotes thg!" image of thei’” individual which has subtracted the mean of all face images,
the matrixF consists of the basis functions for the between-individuddspace in columns arg
denotes the hidden identity variable that is constant ol Bhagesx;; .. ;s of the person. The matrix

G contains the basis functions for the within-individual space in columns. The term;; denotes the
hidden noise variable that is different for each image. Emm,;; represents a stochastic noise. The
identity information is represented Bh;, which accounts for between-individual variation. Foreegi
individual, the termFh; is constant. Within-individual variation is representgd®w;; + €;;, which
explains why two images of the same individual do not looktdzal.

We can alternately describe the image generation in terrasrafitional probabilities:

PT‘(X,L'j|hi,Wij) = gx[FhL + GW,L'j, E] (410)
Pr(h;) = Gyn[0,1] (4.11)
Pr(wij) = Gwl[0,1]. (4.12)

where the ternk is a covariance matrix aridis a identity matrix.
Learning
In training, an EM algorithm is applied to learn the paranete = {F, G,X}. In the Expectation-
or E-Step, we fix the parametefisand compute a full posterior distribution over the hidderialzes
h; andw;;. In the Maximization- or M-Step, we optimize the estimatéthe parameter. The EM
algorithm guarantees the likelihood increases at eaahiigaiteration.
Verification
In PLDA the match assignment for two images is decided by @ing the non-match likelihood
Pr(x1,x2|Mg4) and the match likelihoodr(x, x2| M), where modeJM; denotes that two images
do not match and model1; denotes that two images match.

When two images are assumed to be from different people (eldg and two images are assumed

to be generated independently, the non-match likelihoddiofimages is as
Pr(x1,x2)lMg4) = Pr(xi|Mga)Pr(x2|Ma). (4.13)
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Here we need to compute the tedr(x;|Mg) and Pr(x2|Mg). According to the equation 4.9, the

generation of image; can be written as

xi=|F G| Pl (4.14)
W

or

x; = Ay + €. (4.15)

According to the equations 4.10, 4.11, and 4.12, the geinaratimagex; can be described in terms of

conditional probabilities:

Pr(xi1) = Pr(xily)Pr(y)
= gxl [Ay, 2/]gy [Oa I]
= Gy, [0,AAT + 3]

= G4, [0,FFT + GG + 3], (4.16)
where
= _ > 0
0 X

The generation of image, can be described in the similar format as imageso the equation 4.13 can

be written as

Pr(xy,x2|Mg) = Pr(x;|Mg)Pr(xz|Myg)
= gx[ov Ed]
AAT + 3% 0
- gx 07
0 AAT + 3%
[ FET +GGT +3% 0
= Gx |0, , (4.17)
0 FFT +GGT + X%

where the ternx is the concatenation of image andxs, the termX,; is the non-match covariance
matrix.
When two images are assumed to be from the same person (Mégelccording to the equation

4.9, the generation of imagg andx; can be described as:

h
X1 F G 0 €1
= w1 + (418)
X2 F 0 G €2
W2
or
x=Bz+¢€. (4.19)

According to the equation 4.10, 4.11, and 4.12, the mataHilikod of two images; andx, can be
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written as:

Pr(x1,x2|lMs) = Pr(x|z)Pr(z)
= Gx[Bz,¥'|G,[0,1]
= G«[0,X]
= Gx[0,BB” + %]
_ oo FF" + GG + = FFT 7 (4.20)
FFT FF” + GGT + %
where the tern¥, is the match covariance matrix.

With the two above likelihoods, we make match decision byldlgdikelihood ratior(x1, x2):

Pr(xy,x2|Msy)
Pr(x1,x2|Mg)
= log Pr(x1,x2|My) — log Pr(x1,x2|Maj)
2log(27) — log |Zs| — xT B 'x + 2log(27) + log |Z4| + xS, 'x
2
o K+ XTEJIX —x's %, (4.22)

r(x1,x2) = log

wherex is a constant.

4.2.3 The Joint Bayesian Face Algorithm
The Joint Bayesian Face algorithm modes two images jointtydbes not make low dimensional as-
sumption as PLDA. In the Joint Bayesian Face algorithm a iimegex;; is represented as the sum of

the identity component; and the within-individual variation componeft;:
Xij = a; + By, (4.22)

where the ternx;; is the j*" image of thei'” person. Both the identity componemt and the within-

individual variation componer,; follow Gaussian distributions:

a;, = Gu[0,3,] (4.23)

ﬁij = 0Gpl0,Xg], (4.24)

where the tern®,, is the covariance matrix for the identity component; thent&l 5 is the covariance
matrix for the within-individual variation component.
Learning

In training, an EM-like algorithm is applied to learn the eokance matricex, andXg from a
set of training images. In the E-Step of the EM-like algaritlihe covariance matricés,, andXz are
fixed to estimate the identity component and the within-individual variation componefif; for each
imagex;;. In the M-Step, the covariance matricEs, andX g are updated. This training method is
not a strict EM algorithm and this training method cannotrgngee that the likelihood increases at each
iteration.
Verification

Similar to PLDA, the Joint Bayesian Face algorithm makesimassignment for two images based
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on the log likelihood ratio(x1, x2) between the match likelihooBlr(x1,x2| M) and the non-match
likelihood Pr(x1, x2|Mj):

Pr(xy,x2|Msy)

Pr(xy,x2|Mag)

x XTE(;IX —x'e 1, (4.25)

r(x1,x2) = log

where the match likelihood is obtained by

Pr(xi,x2|Ms) = Gx[0,X]
Yo+ X Yo
= G« |0, g (4.26)
DI Yo+
and the non-match likelihood is obtained by
Pr(x1,x2|Mq) = Gx[0,%4]
Yo+ X 0
- G, |o, b : (4.27)
0 Yo +3a

4.2.4 Discussion

The Bayesian Face algorithm, the Joint Bayesian Face #igorand PLDA all belong to a family of

Bayesian face recognition algorithms and have the follgvigatures in common:
* All the three algorithms use a probabilistic framework.

« All the three algorithms consider two types of image vaoiat between-individual and within-

individual variation.

« All the three algorithms are based on a comparison of twosGians for recognition, although the

mean and variance of these Gaussians varies from algortlatgorithm.

The difference among the three Bayesian face recognitgorithms is summarized in Table 4.1.

Category| . o o
) Modelling Target | Training Method | Verification Method
Algorithm

i

Comparing between-
Probability of PCA subspace individual variation
image difference method and within-individual
variation

Bayesian Face

Joint probability Comparing the

PLDA of two images EM algorithm match and non-
g match log likelihood
Joint Joint probability EM-like LIRETT
. . . match and non-
Bayesian Face  of two images algorithm

match log likelihood

Table 4.1:Comparison of the three Bayesian face recognition algoritims.
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From Table 4.1 we see that the difference between the BayEsiee algorithm and the two other
algorithms is that the Bayesian Face algorithm models tregardifference while the Joint Bayesian
Face algorithm and PLDA model the joint probability of twodges. Compared with modeling two
images jointly, modeling image difference might reduceesapility.

The key difference between the Joint Bayesian Face algortind PLDA is that the Joint Bayesian
Face algorithm uses an EM-like algorithm to estimate thedance matrices directly from high dimen-
sional data while PLDA applies an EM algorithm to approxiexavariance matrices by a factor analysis
subspace method. The advantage of the EM-like training aaedii the Joint Bayesian Face algorithm
is that it can estimate the covariance matrix without prijecdata into a low dimensional subspace
and the disadvantage is that likelihood convergence camngtiaranteed in theory. Conversely, PLDA
applies a strict EM training algorithm and guarantees thelihood increases at each iteration. How-
ever, PLDA uses factor analysis subspace method and mak&sitldimension assumption, so it might
discard some discriminatory information.

Although the training method of the Joint Bayesian Face ritlym and PLDA is different, the
verification equations of the two algorithms are very simiiethe test phase. To show this more clearly,
we rewrite the verification equations of two algorithms floe imatched modeM ; and the unmatched
modelM,.

When imagex; andx, are assumed from the same person (Motit)), the match likelihood for

both the two algorithms can be derived as
Pr(x1,x2|Ms) = G«[0, 3],

where the covariance matr®/ for the Joint Bayesian Face algorithm is defined in equati@g,4he

covariance matrixZ" for PLDA is defined in equation 4.29:

Yo+ 3 »

»/ = o ap “ (4.28)
Yo  Za+3g

sF FF" + GG" +3 FF” (4.29)

FFT FF” 1 GGT + % | '

When two images are assumed to be from different people (Mbtlg and are generated indepen-

dently, the non-match likelihood for both the two algorithoan be written as
Pr(x1,x2|Mg) = G«[0, 4],

where the covariance matri;] of the Joint Bayesian Face algorithm is defined in equatigf,4he

covariance matrix?’ of PLDA is defined in equation 4.31:

Yo+ X 0
s = p (4.30)
0 Yo +3s
» FF' + GGT + % 0
s = : (4.31)
0 FFT + GGT + =
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4.3 Empirical Comparison of the Joint Bayesian Face algortim

and PLDA

In the previous section we argued that the Joint Bayesiae Bayorithm used an EM-like training
method and could not guarantee the likelihood increaseddt eration in training. We also claimed
that PLDA used an EM training method and the likelihood iasiag at each iteration was guaranteed.
In this section, to validate our argument, we will show theslihood using the model parameters of
the Joint Bayesian Face algorithm and PLDA obtained at eadhirig iteration. We also investigate
the verification performance using the model parameterseofo algorithms obtained at each training
iteration.

To perform the aforementioned experiments, we use theedidF\W images provided by [127].
We preprocess each image as follows. We crop the cetifek 80 pixels from each LFW image to
obtain the face region. Then we extract Local Binary Past€¢BP) descriptors [102] from each image
by the following settings: we divide each face image intaesall 2 x 12 non-overlapping patches, we set
the radius to form neighborhood over each pixel location twe3set the number of neighbor points to 8,
and we use uniform binary patterns. We compute LBP histogmafeachl2 x 12 patch and normalize
the histograms in each patch to unit length, then truncadistograms at 0.2 and normalize again to
unit length. In the end each image is described by a LBP vedgthr7552 dimensions.

We adopt the ‘unrestricted configuration’ of the LFW traipidata, which means identity labels
associated with images are allowed to be used. We apply P@&dtce the dimensions of the data to
100, 200, and 400 for both the Joint Bayesian Face algoritinRi.DA. We always set the subspace
dimensions of PLDA to 128.

Joint Bayesian Face PLDA

x107 x107

—
O
N

—~
2

= PCA 100
6 me== PCA 200
== PCA 400

= PCA 100
6 m== PCA 200
= PCA 400

Training Log Likelihood
&
3
Training Log Likelihood
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0 20 40 60 80 100 ; 0 20 40 60 80 100
Iteration number Iteration number

Figure 4.1:We compare the training likelihood of the Joint Bayesian Fae algorithm and PLDA

at each iteration when the PCA dimensions are set to 100, 20800. (a) The total Log likelihood of
the Joint Bayesian Face algorithm over ten LFW cross-vadidaxperiments as a function of iteration
number when the PCA dimensions are set to 100, 200, 400. @jothl Log likelihood of PLDA as a

function of iteration number for the three PCA dimensions.
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In the LFW database images are divided into ten non-oveitapgets and the verification perfor-
mance is reported by 10 cross-validation experiments. &h @xperiment, one image set is used for
testing and the nine other sets are used for training. In e&pkriment, for the Joint Bayesian Face
algorithm, we initialize the model parameters to randonu&aland calculate the log likelihood of all
training images using the estimated model parameters htiteation. We add up the 10 likelihoods of
the 10 experiments at each iteration and show the sum of thiklelihoods as a function of iteration
number in Figure 4.1 (a). We perform the experiments wherP®A dimensions are set to 100, 200,
400.

Similarly for PLDA, we initialize the model parameters tmdmm values and compute the log like-
lihood of all training images using the model parametersioled at each iteration in each experiment.
We show the sum of the log likelihood of 10 experiments as atfan of iteration number in Figure 4.1
(b). We perform the experiments when we set the PCA dimerss®h00, 200, 400.

From Figure 4.1 (a) we find that the total log likelihood of tha@int Bayesian Face algorithm
first decreases and then gradually saturates for all the tR@A dimensions. However, the total log
likelihood of PLDA as shown in Figure 4.1 (b) maintains a emsing trend as the iteration number
increases and this pattern is revealed for all the three A@Arkions. Therefore, it is clear that the EM-
like training method of the Joint Bayesian Face algorithmnea guarantee that the likelihood increases
at each iteration while the EM training method of PLDA can.

We also investigate the verification performance of two atgms using the model parameters ob-
tained at each training iteration. For the two algorithmsach experiment of 10 LFW cross-validation
experiments, we use the obtained model parameters at ea&tiah to compute the % correct for the test
set. We compute the mean % correct of 10 experiments at eaalidgin and show the mean % correct
of the Joint Bayesian Face algorithm as a function of iteratiumber in Figure 4.2(a). We perform the
experiments when the PCA dimensions are set to 100, 200 Si80larly, we show the mean % correct
of PLDA as a function of iteration number for the three PCA dimsions in Figure 4.2(b).

From Figure 4.2 (a) we find that the mean % correct of the JayeBian Face increases in the first
3 iterations and then decreases till closing to a stablesvi@uthe three PCA dimensions. Conversely,
as shown in Figure 4.2 (b), the verification performance dDRLmaintains a increasing trend as the

iteration number increases for the three PCA dimensions.

4.4 Joint PLDA

In this section we propose Joint PLDA to combine the advadad the Joint Bayesian Face algorithm
and PLDA.

4.4.1 Motivation

The Joint Bayesian Face algorithm and PLDA have their owraathges and disadvantages. The dis-
advantage of the Joint Bayesian Face algorithm is thatatsitrg method is only an EM-like method
and cannot guarantee that the likelihood increases at &aeltion. However, the Joint Bayesian Face

algorithm does not make the low dimension assumption andaapiure more discriminatory informa-
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Figure 4.2:We compare the verification performance of the Joint Bayesia Face algorithm and
PLDA at each iteration when the PCA dimensions are set to 10®00, 400. (a) Mean % correct
of the Joint Bayesian Face algorithm over the 10 LFW crodislation experiments as a function of
iteration number when the PCA dimensions are set to 100,40Drespectively. (b) Mean % correct of

PLDA as a function of iteration number for the three PCA digiens.

tion by estimating the covariance matrix from high dimensicdata directly. The advantage of PLDA
is that its training algorithm is an EM method and and thentrgj likelihood keeps increasing as the
training iteration number increases. To combine the acwp# of the two algorithms, we propose a new
algorithm: Joint PLDA. We apply the EM algorithm of PLDA tacalen the model parameters of PLDA.
Then we use the E-Step of the EM algorithm of PLDA to divideleiatage into the identity component
and the within-individual variation component. We compateovariance matrix for the identity com-
ponent and another covariance matrix for the within-irgdlil variation component. Lastly we derive
the match and non-match covariance matrix to do verifica®imn the Joint Bayesian Face algorithm.
By this approach we can guarantee that the likelihood irser®én training and can also estimate the

within-individual covariance matrix from high dimensidmuiata.

4.4.2 Face Image Representation

In the Joint PLDA algorithm, a face imagg; is represented as the sum of the identity compongnt

and the within-individual variation componest;:

Xij = o+ (4.32)
IBij = GWZJ + €5, (4.34)

where imagex;; has subtracted the mean of all images. The identity compgameis equivalent to
the termFh; of PLDA and the within-individual variation componeg; is equivalent to the term
GWij + €5 of PLDA.
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Both the two components; andﬁij follow Gaussian distribution:

a; = Gal0,3] (4.35)

/Bij = gg[O,Eg], (4.36)

where the tern®,, is the covariance matrix for the identity component; thent&l 5 is the covariance

matrix for the within-individual variation component.

4.4.3 Learning

In training we aim to learn the covariance matky, andXg. We firstly use the EM algorithm of PLDA
to estimate the model parametérs- {F, G, X} from training images. Generally the iteration number
of the EM training algorithm is set to 25. Then we use the mpdeameter$ estimated at the end of
the EM iterations and apply the E-Step of the EM algorithmIobR (defined in [111]) to compute the

expectation of hidden identity variadle and hidden noise variabie;; for each training image;;:

Elyy] = (ATS 'A + 1) TATE x5, (4.37)
where
h;
Vi = (4.38)
Wij
A = |[F G] (4.39)
> 0
Y = . (4.40)
0 X

After we obtain the estimated hidden variablesandw;;, we can compute the identity component

and the within-individual variation compone@j; for each imagex;; by
/Bij = Xijj — FhZ (442)

Lastly, we calculate the covariance matkl, for the identity component and the covariance matrix

3.3 for the within-individual variation component by

Yo cov(a)

pI cov(3), (4.43)

where the termo denotes the estimated identity components of all trainmgges and the terr

denotes the within-individual variation components otiining images.

4.4.4 Inference

Similar to the Joint Bayesian Face algorithm, the matchgi@cifor two images is made based on the
log likelihood ratio:

Pr(xy,x2|Ms)

Pr(xy,x2|Myg)

x x'E'x - xS x,

r(x1,x2) = log
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where
X1
x = (4.44)
X2
Yo+ X 0
v, = P (4.45)
0 Yo+

> >N
s, = p . (4.46)
S St g

4.5 Experiments in the Unconstrained Database

In this section, we compare the verification performanceaf Bayesian face recognition algorithms:
the Bayesian Face algorithm, PLDA, the Joint Bayesian Faparithm and Joint PLDA in the LFW
database [65]. We will first introduce the preprocessinghoetor the LFW images in section 4.5.1.
Then we will show the performance of four Bayesian face raedam algorithms using differentimage
descriptors in section 4.5.2. Finally we will compare theeebination approaches to combine multiple

image descriptors in section 4.5.3.

4.5.1 Preprocessing

As introduced in section 3.5, the Labeled Faces in the WikW/{l) dataset [65] has become a benchmark
database to evaluate face recognition in uncontrolledrenmients. In this section we still adopt the

‘unrestricted configuration’, which means identity infation can be used in training. We report face
verification results by the mean % correct of 10 cross vabdagxperiments and the standard error of
the mean.

As in section 3.5 we used the aligned images provided by [1¥V& crop the central60 x 80
pixels from each aligne#0 x 250 black-and-white image to obtain face regions. The purpbsaly
preserving the face region is to reduce image variation froage background. The images used in the
following experiments are black-and-white face regionthlie sizel60 x 80 pixels. Example images
are shown in Figure 3.13(c).

In this chapter we always use 25 iterations of an EM algoriisr{82] to train the model parameters
of PLDA and Joint PLDA, which are initialized to random vasués shown in section 4.3 that the best
performance of Joint Bayesian Face algorithm is achieveshvehsmall iteration number between 3 and
6 is chosen, so we always apply 5 iterations of an EM-like @tlgo to train the model parameters of

the Joint Bayesian Face algorithm.

4.5.2 Experiments Using Image Descriptors
In this section we apply Local Binary Pattern (LBP) desanipt{102], Three-Patch LBP (TPLBP) de-
scriptors [140], Four-Patch LBP (FPLBP) descriptors [143ale Invariant Feature Transform (SIFT)
descriptors [88], Histogram of oriented gradients (HOG3aliptors [38] to do face verification in the
LFW database.

We firstly apply LBP descriptors to compare performance of #8ayesian face recognition algo-

rithms: the Bayesian Face algorithm, PLDA, the Joint Bagres$tace algorithm and Joint PLDA. The
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LBP descriptors are calculated at each pixel location. Tielest local binary pattern threshold8 & 3
neighborhood over a pixel location by comparing with themsity of the central pixel. Then the sub-
sequent pattern of 8 bits, which is the comparison resultseated as a binary number. The histogram
of these binary numbers in a predefined region is then usedlaracter to describe the region. Nor-
mally, uniform binary patterns are used. Uniform binarytg@ats mean there are maximum 2 transitions
from 0 to 1. For example, 11100011 is a uniform binary patserd 01101101 is not. The non-uniform
LBPs are considered to be equivalent and assigned into etegham bin when the histogram of all
uniform LBPs is computed. The LBP representation for thele/fece image is to divide the image into
a grid of regions and then compute the LBP histograms in eagibm. The concatenation of all the LBP

histograms forms the LBP face image descriptor.

80.150 81.367 69.700 59.900 63.067

100 +0.719 +0.659 +£0.597 +£1.054 +£0.811

200 80.467 81.617 81.450 83.350 82.000

PLDA +0.754 +0.728 +0.640 +0.800 +0.788
400 80.183 81.350 81.583  82.217 82.650

+0.747 +0.603 *+0.612 +0.812 +0.618

600 79.833 80.650 81.000 80.950 80.417

+0.740 +0.540 +£0.704 +0.637 +£0.802

100 81.800 81.917 75.950 67.500 68.850

+0.652 +0.633 £0.578 +0.692 +£1.103

200 83.467 83.883 84.317 83.917 83.433

Joint +0.885 +0.843 +0.836 *0.739 +0.722
PLDA 400 83.633 83.783 83.600 83.417 83.500
+0.643 +0.588 +0.769 +0.637 *0.716

600 82.717  82.150 81.900 81.683 81.117

+0.595 +0.629 +0.684 +0.663 +0.792

Table 4.2:The verification performance of PLDA and Joint PLDA in the LFW database using the
LBP image descriptors provided by [30] as we vary the PCA dimasions and subspace dimen-
sions. The performance is shown by the mean % correct and the sthedar of the mean based on
10 cross-validation experiments. Numbers with the redrcinidicate the best performance for fixed
PCA dimension. We find the optimal PCA dimension and subspanension for PLDA are 200 and
128 respectively; the optimal PCA dimension and subspatemion for Joint PLDA is 200 and 96

respectively.

We adopt the LBP descriptors provided by [30] to do the follmyvexperiments. The dimen-
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sion of their LBP descriptors for a image is 5900. We apply RGAeduce the dimensions. We need
to find the optimal PCA dimensions for the Bayesian Face #lyorand the Joint Bayesian Face algo-
rithm. There are two sets of parameters for PLDA and JointRL({) the reduced PCA dimensions and
(i) the number of basis functions for signal and noise congr. The latter two parameters are always
varied together in our experiments and are referred to dssfrace dimensions”.

We apply an empirical approach to obtain the optimal valwesPICA dimension and subspace
dimensions. Table 4.2 shows performance of PLDA and JoimAunder different combinations of
PCA dimensions and subspace dimensions. The results avgee by the mean % accuracy and the
standard error of the mean based on 10 cross-validationmiexgas. From the table we find the optimal
PCA dimension and subspace dimensions for PLDA are 200 a8desbectively; the optimal PCA
dimension and subspace dimensions for Joint PLDA are 20@@mespectively.

We list performance of four Bayesian face recognition atpars in Table 4.3 as we vary PCA
dimensions. From the table we find that the optimal PCA dinwgrssfor the Bayesian Face algorithm
and the Joint Bayesian Face algorithm are 100 and 400 résggciVhen all the algorithms apply the
optimal parameters, Joint PLDA performs best among fowrétlyms, the Joint Bayesian Face algorithm

produces slightly better performance than PLDA, and theeBen Face algorithm performs worst.

. 100
Algorithms

76.950 72.250 72.483  65.467
+0486 +0.431 +0.654 +0.911
Joint Bayesian 81.967 84.017 84.067  80.017
Face +0.583 +0.725 +0.637 +0.672
81.367 83.350 82.650 81.000

+0.659 +0.800 +0.618 *0.704
81917 84.317  83.783 82.717

+0.633 +0.836 +0.588 +0.595

Bayesian Face

PLDA

Joint PLDA

Table 4.3:The performance of four Bayesian face recognition algoritms in the LFW database
using the LBP image descriptors provided by [30] as we vary P& dimensions. The performance is
shown by the mean % correct and the standard error of the naszulon 10 cross-validation
experiments. For PLDA and Joint PLDA, the optimal subspacedsions have been applied.
Numbers with red colors indicate the best performance oélfperithm. Joint PLDA produces the best

performance.

We also extracted our own LBP image descriptors and appiw tioeedo face verification in the LFW
database. To extract LBP descriptors, we divide a face irrdgeseveral non-overlapping regions. We
vary the size of regions to extract different LBP descripto¥Ve term the LBP descriptors with the

extraction regions of the size x 8 pixels, 10 x 10 pixels, 12 x 12 pixels, 14 x 14 pixels as LBP8,
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LBP10, LBP12, LBP14. Other parameters to extract LBP dpgms are as follows: the radius to form
neighborhood over a pixel location is set to 3, the numbeleajmbor points is set to 8. Uniform binary
patterns are applied. We normalize the histograms in eggbrréo unit length, then truncate their value
at 0.2, then normalize again to unit length.

The verification results of four Bayesian face algorithmsg4.BP8, LBP10, LBP12, LBP14 are
shown in Table 4.4. We set the PCA dimensions to 400 for theeBiap Face algorithm and the Joint
Bayesian Face algorithm. We set the PCA dimensions and aoésfimensions to 200 and 128 respec-
tively for PLDA and Joint PLDA. From the table we find that JORLDA always performs best among
four Bayesian face recognition algorithms for all differ&BP descriptors. The best performance of
Joint PLDA is obtained using the LBP12 descriptors. Comgavih the LBP descriptors provided

by [30], our LBP descriptors produce significantly betterfpenance. The reason might be that we

normalized the LBP histograms.

Algorithms | Bayesian PLDA Joint Joint
Descriptors Face Bayesian PLDA

LBP 76.950 83.350 84.067 84.317
Provided by [30] +0.486 +0.800 +0.637 +0.836
78.050 85.117 85.950 86.183
+0.617 +0.502 +0.488 +0.434
82.283 87.333 88.217 88.267
+0.608 +0.394 +0.343 +0.402
82.067 87.600 87.617 88.000
£0.526 +0451 +0.512 +0.442
81.150 86.600 87.550 87.733
+0.432 +0.468 +£0.428 +0.393

SIFT 80.717 86.317 86.600 87.333
Provided by [58] +0.554 +0.416 +0.590 +0.453
78.717 84.283 84.217 85.067
+0.661 +0.491 +£0.467 +£0.472
76.550 82.933 83.850 83.933
+0.520 +0.339 +0423 +0.447
75.500 81.317 82.033 82.333
+0.626 +0.637 +0.567 +0.619

LBPS [102]
LBP10 [102]
LBP12 [102]

LBP14 [102]

HOG [38]
TPLBP [140]

FPLBP [140]

Table 4.4:The verification performance of four Bayesian face recognibn algorithms using

different image descriptors. Numbers with red colors indicate the best performancet RiiDA
performs best for all the descriptors. The best performénaehieved by using LBP descriptors. The
LBPS8, LBP10, LBP12, and LBP14 descriptors mean that we digiface image into several regions
with the size8 x 8 pixels,10 x 10 pixels,12 x 12 pixels andl4 x 14 pixels respectively to extract LBP

descriptors.
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We also used the SIFT descriptors provided by [58] to repritdfaee images to compare the perfor-
mance of four Bayesian face recognition algorithms. Thagated 9 fiducial points of each image and
extracted SIFT descriptors from each fiducial point. A fanage is represented by a concatenated vec-
tor of the SIFT descriptors from the 9 points. We set the PGAettisions to 400 for the Bayesian Face
algorithm and the Joint Bayesian Face algorithm. We set @ éimensions and subspace dimensions
to 200 and 128 respectively for PLDA and Joint PLDA. The vesifion results of four Bayesian face
recognition algorithms using the SIFT descriptor are afswa in Table 4.4. From the table we find that
the Joint PLDA algorithm performs best among four Bayes&uefrecognition algorithms when SIFT
descriptors are used to represent images. Compared withetfiermance using the LBP descriptors

extracted by us, the performance using the SIFT descripslightly worse.

We also used HOG descriptors [39] to represent images to ammime performance of four
Bayesian face recognition algorithms. We use the followsatlings to extract the HOG descriptors
from images: the cell size is set16 x 10 pixels, there aré x 2 cells in a block, the overlap rate among
blocks is set to 0.5, the angle range is sefto~ 180°, and the bin number is set to 9. We set the
PCA dimensions to 400 for the Bayesian Face algorithm anddhe Bayesian Face algorithm. We set
the PCA dimensions and subspace dimensions to 200 and J#&tiegely for PLDA and Joint PLDA.
The verification results of four Bayesian face algorithmag$lOG descriptors are also shown in Table
4.4. From the table we find that when HOG descriptors are useepresent images the Joint PLDA
algorithm performs best. We also find that the performanaegudOG descriptors is worse than the

performance using the SIFT and our LBP descriptors.

The TPLBP and FPLBP descriptors are also used to repressnirfeages to compare the perfor-
mance of four algorithms. We follow the settings in [140] tdract TPLBP and FPLBP descriptors.
For both the two descriptors, we set the PCA dimensions tofdOthe Bayesian Face algorithm and
the Joint Bayesian Face algorithm; we set the PCA dimensindsubspace dimensions to 200 and 128
respectively for PLDA and Joint PLDA. The verification resubf four algorithms using TPLBP and
FPLBP descriptors are also shown in Table 4.4 . From the tablnd that Joint PLDA algorithm still
performs best when images are represented by TPLBP and Fé¢®ifiptors. We also find that the per-
formance using TPLBP descriptors is worse than the perfocmasing FPLBP descriptors. Moreover,

the performance using the two descriptors is much worsettieperformance using other descriptors.

Among the four Bayesian face recognition algorithms, thgd3&an Face algorithm always per-
forms worst for all the image descriptors. The results sagtet modeling the probability of image
difference captures less discriminatory information thawdeling the joint probability of two images.
From Table 4.4, we find that the performance of the Joint Bayd3sace algorithm is slightly better than
PLDA for all the image descriptors although the differerequite marginal. It might demonstrate that
estimating covariance matrices directly from high dimenal data has a weaker advantage than using
subspace method. Joint PLDA always performs best, whichatgpour argument that Joint PLDA can
improve the verification performance by combining the adages of PLDA and the Joint Bayesian Face

algorithm.
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Among all the image descriptors in Table 4.4, the best perémice is obtained using LBP de-
scriptors. It shows LBP descriptors might capture morerdisoatory information than other image
descriptors. The performance varies when we extract LBErip¢srs from regions with different size,

which indicates the size of region affects the verificatienfprmance and we need to find a optimal

value.
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Figure 4.3:Comparison of three combination approaches.(a) The SVM combination approach is
worse than the ‘learn-a-threshold’ combination methodlierBayesian Face algorithm. However, the
SVM combination approach performs best for the Joint BayeBace algorithm in (b), PLDA in (c) and
Joint PLDA in (d).

4.5.3 Experiments Combining Multiple Image Descriptors

As Wolf et al. [140] and Li et al. [82] demonstrated, combmimultiple image descriptors produces
better performance than using single descriptor. In thiice, we firstly compare three approaches to
combine multiple descriptors and then show the performafideur Bayesian face recognition algo-
rithms combining multiple descriptors.

Our methods to combine multiple descriptors are to combiateinscores of LFW testimages pairs.
We use the match scores obtained in section 4.5.2. The metch sf the Bayesian Face Recognition

algorithm for a pair of images is the difference between ttegcim log likelihood and the non-match
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likelihood. For the Bayesian Face algorithm, the matchlilikeed is computed by the equation 4.7
and the non-match likelihood is calculated by the equati@ 4or PLDA, the match likelihood is
computed by the equation 4.20 and the non-match likelihsazhiculated by the equation 4.17. For
the Joint Bayesian Face algorithm, the match likelihooisguted by the equation 4.26 and the non-
match likelihood is calculated by the equation 4.27. FontJ®LDA, the match likelihood and the
non-match likelihood are computed by the same functions@gddint Bayesian Face algorithm. We use
the match scores of different image descriptors obtainesédtion 4.5.2 to compare the performance of

the following three combination approaches:

» We treat each image descriptor independently and the fiadmscore for a image pair is the sum
of the match scores using each descriptor. Two images asedsrad to match if the final match

score is bigger than zero.

» We treat each image descriptor independently and the fiatthrscore is the sum of the match
scores using each descriptor. Two images are considereatthfithe final match score is bigger

than a threshold, which we learn from training images.

* We create a» x d match score matrix from training image pairs and image descriptors. We
train a Linear SVM classifier [36] based on the score matrig.UAk the trained SVM classifier to

predict two images matching or not matching.

The first combination approach is adopted by PLDA in [82] butat suitable for the Bayesian Face
algorithm, the Joint Bayesian Face algorithm, and Joint®RbBcause a match threshold has to be learnt

for the three algorithms. The second and third approachebeapplied to all the four algorithms.

In Figure 4.3 we compare the performance of different cosatgm approaches for the Bayesian
Face algorithm in (a), the Joint Bayesian Face algorithnb)n PLDA in (c) and Joint PLDA in (d).
From Figure 4.3 we find that the performance of the three coatlzin approaches increases when more
descriptors are combined. The results confirm the conalusig140] and [82]. We also find that the
SVM combination approach performs best except for the Bagydsace algorithm.

We use the SVM combination approach to combine multiple rijgscs and compare the perfor-
mance of four algorithms in Figure 4.4. We find that the perfance of Joint Bayesian Face algorithm

and Joint PLDA is very close to each other. The Bayesian Hgceithm performs worst.

Chen at el. [30] claimed that the Joint Bayesian Face algorfierformed better than PLDA in the
LFW database when combining LBP, SIFT, TPLBP, and FPLBPrg®scs. We use the LBP descriptors
provided by [30], the SIFT descriptors provided by [58], and own implementation of TPLBP, and
FPLBP descriptors to duplicate their experiments. We useS¥M approach to combine the four
descriptors. Our experimentresults in Table 4.5 agreetiéin conclusion that PLDA performs slightly
worse than the Joint Bayesian Face algorithm when the foserigtors are combined. Joint PLDA

performs better than PLDA but worse than the Joint Bayeséae Rlgorithm.
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Figure 4.4:We compare the performance of four Bayesian face recognitimalgorithms when the
SVM combination approach is used to combine multiple descptors. The performance of Joint
PLDA is slightly better than the Joint Bayesian Face algonit

Algorithms Joint

EEVESET

Face PLDA EEWENE]

Face

Results provided by

[30] 90.07 90.90
Our experiment 83.267 90.080 90.783 90.583
results +0.413 +0.365 +0.360 +0.335

Table 4.5:We duplicate the experiments in [30] using the SVM approachd combine LBP, SIFT,
TPLBP and FPLBP. Our results agree with the conclusion in [30] that PLDA paris slightly worse

than the Joint Bayesian Face algorithm.

We notice that our LBP descriptors perform better than th& ld@scriptors provided by [30] in
section 4.5.2. Therefore, we are motivated to compare tHenpeance of four Bayesian face recogni-
tion algorithms using our own LBP descriptors. As shown ibl&at.6, when we combine LBP(LBPS,
LBP10, LBP12, LBP14), SIFT, TPLBP and FPLBP descriptoritIBLDA produces the best perfor-
mance9d1.367 4+ 0.448, which is nearly the same as the performaft80 + 0.003 of the commercial

face recognition application face.com [63] at that time.
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i . Joint .
Algorithms | g esian Joint

PLDA Bayesian

PLDA
Face

Face

LBP (LBPS, LBP10,
LBP12, LBP14), SIFT,
TPLBP, FPLBP

84.455 90.717 91.217 91.367
+0.575 +0.522 +0.466 +0.448

Table 4.6:We duplicate the experiments in [30] using our own LBP image dscriptors. Joint PLDA

performs best.

4.6 Conclusion

In this chapter we compared the Bayesian Face algorithmAPBBd the Joint Bayesian Face algorithm

by analyzing their commonalities and differences. We firad thodeling two images jointly can capture

more discriminatory information than modeling the imag#edence. PLDA and the Joint Bayesian

Face algorithm model the joint distribution of two imagesl ganoduce good performance in the LFW

database. PLDA and the Bayesian Face algorithm have theiraolwantages but they also have some
disadvantages. We are motivated to propose Joint PLDA tdawerthe advantages of PLDA and the

Bayesian Face algorithm. Joint PLDA applies a strict EM athm to guarantee likelihood increases

and can also estimate the covariance matrix from the higleonal data directly.

We compared the performance of the Bayesian Face algoritiendpint Bayesian Face algorithm,
PLDA and Joint PLDA in the LFW database. Our experiments destrate that Joint PLDA performs
best when a single descriptor is used. We also compare tlierpance of the four Bayesian face
recognition algorithms when we combine multiple image desars. When we combine LBP, SIFT,
TPLBP and FPLBP descriptors, Joint PLDA can achi@v867% + 0.448 correct in the LFW database,
which is comparable t91.300% + 0.003 correct of the commercial face recognition system face.com
[126].

Joint PLDA has connections to metric learning algorithn® [82], which aim to learn a metric
to make two classes separable. Metric learning algorithemeially learn a Mahalanobis distance to
separate two classes:

(x1 —x2)" ¥ (x1 — xa), (4.47)

whereW is a positive definite matrix.

If we compare equation 4.44 and equation 4.47, we find botimiégeic learning algorithms and
Joint PLDA learn metrics. However, metric learning aldamis model the image difference and hence
have the same drawback as the Bayesian Face algorithm. Mgdelage differences might reduce the
separability and capture less discriminatory informatltan modeling two images jointly.

In this chapter we only explore the performance of the fouyd3&an face recognition algorithms
using global image descriptors, which means that we extiagtl features from the whole image. In
future work we hope to investigate the performance of the &gorithms using local descriptors, which

means we extract visual features from fiducial points (faregle, the corners of the eyebrows, the
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corners of the eyes). As demonstrated in [31], local desmspare generally more robust to image
variation if fiducial points can be detected precisely. Bfi@re, using local descriptors to represent face
images might improve performance.

In the following chapter, we will argue large pose variatisithe challenge for the Bayesian face

recognition algorithms of this chapter and propose newrélyas to overcome the challenge.
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Chapter 5

Tied Bayesian Face Recognition Algorithms

for Pose Variation

5.1 Introduction

After decades of research to automatic face recognitiomyrfeece recognition algorithms and bench-
marks have been generated. However, face recognition iontirtled environments is still an unsolved
problem. In the previous chapter we have shown that Baydés@recognition algorithms can produce
good performance in the evaluation benchmark for face m@tiog under uncontrolled environments:
the LFW database. In this chapter we will argue that large pbsinges are the challenge for improv-
ing the verification performance in the LFW database and ggemew algorithms to overcome this
challenge.

How to deal with large pose changes has been a popular resegic for many years. Among
existing face recognition algorithms across pose, Tied R[&?] produces good performance and is
computationally fast. Tied PLDA is a version of PLDA [111]n this context, a ‘Tied’ means that
images from the same person but with two different poses aawmmon hidden variable but different
generation processes. Tied PLDA estimates the mappingeketiwo poses and performs well in the
controlled XM2VTS [95] and FERET database [106] when largsepvariation exists. We hypothesize
that Tied PLDA can also deal with large pose variation in umicaled databases such as the LFW
database [65].

It is also interesting to investigate a tied version of thenlBayesian Face algorithm [30] and
Joint PLDA. We propose the Tied Joint Bayesian Face algoriéimd Tied Joint PLDA. Throughout
this chapter we refer to PLDA, the Joint Bayesian Face dlgori and Joint PLDA as Bayesian face
recognition algorithms. We refer to tied PLDA, the Tied dddayesian Face algorithm, and Tied Joint
PLDA as Tied Bayesian face recognition algorithms. We wéhtbnstrate that Tied Bayesian face
recognition algorithms have an advantage in dealing witlpel@ose variation.

Tied Bayesian face recognition algorithms assign imagegire-defined horizontal pose categories
and model the relationship of images under different potegeaies. Therefore, to use tied models, suf-
ficient training images are required in each pose categooyveder, the images in the LFW database

were collected using the Viola-Jones frontal face detefd84], so there are few images in the non-



5.2 Performance of three Bayesian Face Recognition Algostunder pose variation

frontal pose categories. To address this issue, our firstisalis to use the Multi-PIE database to train
Tied Bayesian face recognition algorithms. This databasgains 755,370 images from 345 individ-
uals with 6 expressions and 19 lighting conditions and 1%epamder four sessions. Therefore, the
Multi-PIE database can provide sufficient training imagesrain tied models. However, one possible
disadvantage of this approach is that images in the MuEi-d&ltabase were collected in the laboratory.
These controlled Multi-PIE images might not include an eglgint amount of image variation as for the
testimages from the uncontrolled LFW database. Therefaresecond solution to address the problem
of insufficient training images is to collect a new databasenfthe internet but make sure there are
sufficient training images in each pose category. We callechew database the UCL Multi-Pose.

The structure of this chapter is as follows: In section 52 analyse the verification results of three
Bayesian face recognition algorithms in the LFW databadintbthe challenge of improving perfor-
mance. We then review existing face recognition algoritlaer®ss pose in section 5.3. In section 5.4
we propose two new Tied algorithms: the Tied Joint BayesiareFalgorithm and Tied Joint PLDA.
In section 5.5, we introduce the UCL Multi-Pose databasecdropare the performance of three Tied
Bayesian face recognition algorithms to deal with poseatiam in a controlled face database, we train
and test the three algorithms in the Multi-PIE database ¢ti@e5.6.2. To investigate the performance
difference of three algorithms to handle pose variation imeontrolled database, a similar compari-
son will also applied using the UCL Multi-Pose database ttisa 5.6.3. To compare the verification
performance of three Tied algorithms in the LFW databaseraie the three Tied models in the Multi-
PIE database and test in the LFW database in section 5.6.4erifg whether a uncontrolled training
database improves the performance of three tied modelgibhRkV database, we apply cross-database
experiments by training in the UCL Multi-Pose database astirtg in the LFW database in section
5.6.5. To obtain the best recognition performance in the Lld&tabase, we add a switching mechanism
to switch recognition algorithms based on the poses of twagies in section 5.6.6. Finally, we draw a

conclusion in section 5.7.

5.2 Performance of three Bayesian Face Recognition Algohtns

under pose variation

In this section we will analyse the ability of three Bayediace recognition algorithms to deal with pose
variation in the LFW database. Since there are few LFW imag#svertical pose variation, we restrict
our consideration to pose variation to horizontal poseatianm in this chapter.

We manually assign each image of the LFW database to a pmedefpose category
{=60°,—45°,—30°, —15°,0°, 15°,30°,45°,60° }, where the negative poses denote images that are left
facing and the positive poses denote images are right fadimgeduce the number of pose categories,
we swap all left facing images to right facing images and geahe pose value from a negative number
to a positive number. After that each LFW image is with a posenfthe sef{0°, 15°,30°,45°,60°}.
Although flipping all the left facing images might decrease &ccuracy, the image variation caused by

flipping is relatively minor if we consider all the images a@ptured under completely uncontrolled
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environments and images include large variation.

Instead of using image intensities, we use the same methsdibed in section 4.5.2 to extract
LBP descriptors to represent images. We use the aligned ltr&gés provided by [127]. We first crop
the centrall60 x 80 pixels from each LFW image to obtain the face region; then wteaet LBP12
image descriptors (see the detail of this descriptor in@eet.5.2), which are obtained by dividing each
image into a grid ofi2 x 12 non-overlapping regions and concatenating all the LBRogistms from
each region. The histograms in each region are normaliseditéength, then are truncated at 0.2, and
then are normalised again to unit length. In the end eachensadescribed by a LBP vector with 7552
dimensions.

All three Bayesian face recognition algorithm apply PCAdduce the dimensionality of the data
vector. As in section 4.5.2 the PCA dimensions for the Jomyd3ian Face algorithm are set to 400.
The PCA dimensions and subspace dimensions for both PLDAJaimd PLDA are set to 200 and
128 respectively. We adopt the ‘unrestricted configuratomise the LFW training data, which means
identity labels associated with images are allowed to bd.user the Joint Bayesian Face algorithm we
apply 6 iterations of an EM-like algorithm to train its mogbalrameters, which are initialized to random
values. For PLDA and Joint PLDA, we apply 25 iterations of avl Elgorithm to train their model

parameters, which are initialized to random values.

Matched pairs Non-matched pairs

|

0°-15°

0°-30°

0°-45°

0°-60°

Figure 5.1:We assign each LFW test pair into one of a pre-defined pair grops based on the poses
of the two images. We show several examples of matched pairs and non-matclisdmpaair group
{0°-15°}, {0°- 30°}, {0°- 45°}, {0°- 60°}.

To compare different algorithms properly, the LFW databdesgigners established an evaluation
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protocol. Images are divided into 10 subsets which are nliyteaclusive in terms of identities and
images. The experiments are performed 10 times by applyieaya-one-out validation scheme. In each
experiment, one subset is selected for testing and the neleaof the 9 subsets are used for training.
In each test set there are 300 matched pairs and 300 nonedgiairs. Based on the poses of the two
images in a pair, we assign each pair into one of the pair groupich compris€0°- 0°}, {15°- 15°},
{30°- 30°}, {45°- 45°}, {0°- 15°}, {15°- 30°}, {30°- 45°}, {0°- 30°}, {15°- 45°}, {30°- 60°}, {0°-
45°1}, {15°- 60°}, {0°- 60°}. Since there are not pairs belonging{tth°- 60°} and{60°- 60°}, we do
not list these two groups. Figure 5.1 shows examples of redtplairs and non-matched pairs in pair
group{0°- 15°}, {0°- 30°}, {0°- 45°}, {0°- 60°}. For each pair group we collect the relevant image
pairs in each test set and compute #heorrect verification decisions. We repeat the experiments i
the ten test sets and report the final verification perforradoycthe mean of 10 experiment results and
the standard error of the mean. Table 5.1 shows the perfaenainthree Bayesian face recognition

algorithms for each pair group.

Pose Pair PLDA Joint Bayesian Joint PLDA
Difference | Groups Face

0-0 88.676+0.866  88.732+0.791 89.242+0.639

15-15 88.471+1.116 88.486+1.158 88.724+1.457
0 30-30 85.819+1.689 88.002+1.335 87.472+1.418
45-45  30.000+£15.275 30.000+15.275 30.000+15.275
0-15 90.029+0.873  89.231+0.782  89.492+0.664
15 15-30 87.048+1.223 87.362+1.202 87.656+1.084
30-45 70.433+5.233  73.167+6.093  76.944+4.672
0-30 84.256+1.103  86.487+0.887 86.629+0.793
30 15-45 82.662+2.985 77.765+3.000 81.523+3.614
30-60 51.667+15.000 56.167+£15.176 66.667+14.907
0-45 76.916+6.943  75.566+5.804  75.197+5.552
= 15-60  38.333114.490 38.333+14.498 38.333+14.498
60 0-60 51.071+12.644 61.071+£12.099 61.071+12.099

Table 5.1:Performance of PLDA, the Joint Bayesian Face algorithm and dint PLDA for differ-

ent pair groups in the LFW database. All three Bayesian face recognition algorithms producedyoo
performance for near frontal pair groups, in which both twages are with pos#®, 15°,30°. How-
ever, they all perform badly when either image of a pair ifwpiose415°, 60°. Note there are no pairs

belonging to{45°- 60°} and{60°- 60°} group, so we do not show them in the table.

From Table 5.1 we find that the three Bayesian face recognéligorithms perform well when

the two images are near frontal, which means images are wgh(y, 15°,30°. For example, Joint
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PLDA achieved 89.242%, 89.492%, 86.629% correct for pasupg{0°- 0°}, {0°- 15°}, {0°- 30°}
respectively. However, the performance drops signifigahéither of two images is with pos&°, 60°.
For example, Joint PLDA only achieved 75.197%, 61.071%emtrfor pair group{0°- 45°}, {0°-
60°} respectively. Therefore, we can draw a conclusion thakel@ase variation is the challenge for
improving performance in the LFW database. For pair groufis large pose difference, we notice that
the performance of three Bayesian face recognition alyostfor pair groug0°- 60°} are better that
for pair group{15°- 60°}. The reason is because that there are less training imagesifgroup{15°-
60°} than for pair groug 0°- 60°} as shown in table 5.2.

5.3 Existing Face Recognition Algorithms Across Pose

5.3.1 Previous Work

Existing face recognition algorithms across pose can Issifiad into two categories: 3D algorithms and
2D algorithms. Since human heads are 3D objects and posdigaris essentially caused by the motion
of head in a 3D space, many 3D algorithms are motivated to dyggged to handle pose variation. The
key of the 3D algorithms is 3D models, which might be a singtedei [50] or a deformable model in

the format of parameters [17]. Existing 3D algorithms camivéled into three categories according to

the way that the 3D model is used:

* Frontalization. Probe images, which are normally nomfad are transformed into frontal view.
Gallery images are normally frontal. Then a match is declikstveen a frontalized probe image

and a frontal gallery image. A example is [8].

» Synthesis. A 3D model is applied to generate several \limoages at several poses based on the
frontal gallery image. Then the generated gallery imagethagrobe image with the same pose

is compared to make a match decision. A example is [151].

» 3D model parameters. All the gallery and probe images dgglfihto a 3D model to obtain a set
of model parameters as a unique signature for each image rmbdel parameters of the gallery

and the probe image are compared to decide whether two imaafes. A example is [17].

As demonstrated in [8] [151] [17], 3D algorithms typicallgquire several minutes to recognize
an image and the recognition performance depends heavillgeoprecision of the 3D models and the
optimization algorithms.

Compared with the 3D algorithms, the 2D algorithms lack oegrde of freedom. However, the
2D algorithms can apply statistical learning method tonesté the relationship of images at different
poses. The 3D transformation caused by pose differencescapgyoximated by some statistical learning
strategies. The learning process to pose transformatimbeaonducted in image space or feature space.
Examples in image space include Active appearance modgldfiBear Shape model [70], Eigen Light
Fields [54], etc. Examples in feature space include Ker@h P86], Kernel FDA [144], Correlation

Filters [80], Local Linear Regression [27], etc.
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Compared with the 3D algorithms, the 2D algorithms have athges in speed and simplicity of
implementation. However, the recognition performancehese algorithms has historically not been
as good as 3D algorithms. Recently Arashloo et al. [6] pred@ MRF-based classification method,
which used the energy of the established match between affiaiages to decide the match assignment.
They measured textural and structural similarities beiwea images. The main advantages of their
algorithm is that it does not need to know the poses of prolagés and does not need use non-frontal
images in training. Their algorithm produced good perfanoeawhen pose variation exists. However,
the computation cost to recognize an image is expensivenc®mat el. [111] proposed a variant of
PLDA called Tied PLDA, which demonstrated better perforoceathan the 3D algorithms on several
constrained databases. Their experiments showed thaPTiBd can handle large pose variation well.

| will describe the detail of the Tied PLDA in the next section

5.3.2 Tied PLDA

In Tied PLDA face images are considered as generated fronuhderlying variables: the hidden iden-
tity variable and the hidden noise variable. The hiddentitievariable describes identity and is constant
for a given identity. The hidden noise variable explaingwmitindividual variation of images at the same
pose. Images from the same person at different poses arelemtsto be generated from the same hid-
den identity variable but using different pose-dependeetlr transformations. The image generation

process is described by the following equation:
Xijk = My, + Frhy + Gewijin + €55k, (5.1)

wherex; ;. denotes thé*" pose of thej!" image of thei*" individual, i, represents the mean image
at posek, F, is a matrix containing the between-individual basis fumtsiin columns for pose k. The
termh; represents the hidden identity variable which is constanall the images of thé't individual.
The matrixGy, is a matrix containing the within-individual basis funci®in columns for pose k. The
termw;;, denotes the hidden noise variable which is different foheamge. The terna;;;, represents
a stochastic noise.

More formally, the generative process can be describedrnmstef conditional probabilities:

Pr(xijkhi, wijr) = Gx[py +Frh + Grwijk, X (5.2)
Pr(h;) = Gnl[0,1] (5.3)
Pr(wijk) = gW[O7I]7 (54)

whereg,[o, ¢] denotes a Gaussian énwith meang and covariance.

Learning

Given training imagex with different poses, an EM algorithm is applied to learn plagameter® —=
{Fi, Gi, X\ } for each pose. In the Expectation Step, we fix the paramétersd compute the full
posterior distribution over the latent variablesandw,;;.. In the Maximization Step, we use the images
at posek to optimize the corresponding model parame{@s, G, X1 } of posek.

Verification

In Tied PLDA face verification is treated as a model seleghimblem. We make the verification decision
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by comparing the likelihood of two generative model3: (x;,x2|Mg) and Pr(x;,x2|M;). Model
M indicates that two images are from different people and haddg indicates that two images are
from the same person.

If we have two images; andx,, from which have been subtracted the relevant mean image
andms; of the corresponding pose, and we assume they are indepetidgelikelihood of two images

from different peoplePr(x;, x| M) is

Pr(x1,x2|Mgq) = Pr(xi|Mqg)Pr(xz2|Mg)
= gx[07 Ed]
F.F{ +G,G{ +% 0
= gx 0; o s ' ) (55)
0 FoFl + GoGT + 3,

where the ternx is the concatenation of; andx,; the termX; is non-match covariance matrix; the
term{F,, G1, X, } is the model parameters at the pose of imageahe term{F5, G2, X5} is the model
parameters at the pose of image

If two images match (ModeM ), the likelihood of two images is

P?“(Xl,X2|MS) = P""(XlMs)
- gx[oa Es]
FFT + GG +3,; F,FT

Gx |0, . (5.6)
F,F7 FoF? + G,GY + 3,

where the tern¥, is the match covariance matrix.
With the above two likelihoods, we make the match decisiothieylog likelihood ratior(x1,x2) be-
tween the two modelad1, and M.

T(Xl,Xg) =

Pr(xy,x2|M;)
Pr(xy,x2|M,)
= log Pr(x1,x2|M;) — log Pr(x1,x2|Ma)

= IiJrXTEJlX*XTE;lX, (5.7

wherex is a constant.

5.4 Tied Bayesian Face Recognition Algorithms

In this section, we apply the same idea as Tied PLDA to thet Bayesian Face algorithm and Joint
PLDA. We propose two new algorithms: the Tied Joint Baye$iane algorithm in section 5.4.1 and
Joint PLDA in section 5.4.2.

5.4.1 The Tied Joint Bayesian Face Algorithm
Face Image Representation
We assumex; is an image at pose 1 and represents an image at pose 2. The imagdas

been subtracted with the mean of all training images at po3dé& imagexs has been subtracted with

the mean of all training images at pose 2. In the Tied JoineBmn Face algorithm, imaga can be
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described as the sum of the identity componentand the within-individual variation componeft,
imagex, can be described as the sum of the identity compoagrand the within-individual variation

componenf3,, so we have

Xl _ e | | A (5.8)
X2 (&%) ﬁz
or
xX=a+03. (5.9)

The termsx, a2, 3,, andg, follow Gaussian distributions as

Pr(oy) = Ga,[0,2a1] (5.10)
Pr(az) = Ga,[0,Xas (5.11)
Pr(B,) = Gp,[0,%a] (5.12)
Pr(By) = Gp,[0,3a], (5.13)

whereX,; andXg; is the covariance matrix of the identity component and thewdance matrix of the

within-individual variation component respectively fonages at pose B2 andXg; is the covariance

matrix of the identity component and the covariance matithe within-individual variation component
respectively for images at pose 2.

The joint distribution of an image pak’ consisting of images from two poses can be written as

X1
Pr(x') = Pr
X2
= Gy [0, 3]
Yol X2 Yo
— Go|o, Tt 2 : (5.14)
2512 2a2+262

whereX 15 is the covariance matrix of the identity component acrosefdoand pose 2.
Learning

Following [30], we develop an EM-like algorithm to learn @oiance matrices¢ =
{Za1, Za2, Za12, 2p1, Xg2}. Inthe E-Step of our EM-like algorithm we estimate the iden-
tity component and the within-individual variation commr of each training image. In the M-Step of
the EM-like algorithm we update covariance matri€ées

For a given identity withm images at pose Iy images at pose 2, the relationship between the
imagesx’ = [x11 -+ - X1m, X21 - - - X2,,] @nd the latent variables = (a1, 811 - Bim, @2, 81 -+ - By

can be written as

x' =Py’ (5.15)
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or
o ]
(x| [T o1 0 - 0 11 a2
X12 I 00TI --- 0 O B
. e . By
X1m I 000 --- I : (5.16)
X921 0 I 1 0 0 lal'm . .
X929 0 I 0 I 0 ,621
O ﬁ22
| %2, | | O I 00 - TI|
L €2n |
The distribution of the latent variablgs is
Pr(y') = Gy[0,2,/], (5.17)
[ Eal 20112 |
20421 2a2
DT
whereX,, =

Yp2 |

Lemma 1. When there is a linear transformatian= Ay + b andy is distributed asPr(y) =
Gy |p, X, the distribution ofk is asPr(x) = Gx[Ap + b, AZAT].

According to Lemma 1, we obtain the distributionxdffrom equations 5.15 and 5.17:

Pr(x') = Gx[0, P, P7] (5.18)

Gur[ 0, ], (5.19)
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where
s, = P2, P’
[ S + Y81 Yal B a1 Yal12 Ya12 E Sar2 |
Yal Ya1+Xg1 - Yal Yal2 Yal2 e Yal2
o Eal Eal e Eal + Eﬁl EalQ Ea12 .. EalQ
Ya21 Ya21 s Yoot a2+ EBQ a2 . Yoo
Y21 a2l s Yool a2 a2 + 252 S DI
L a2 Ya21 U Y21 a2 a2 oo XBaz+ 2,32 d
by DI
= = ' = s (5.20)
| a2 X

In this part we describthe E-Step of the EM-like algorithm. For each individual, we estimate
the distribution of latent variableg’ given all the images’ associated with that individual and the

parameterg’ ' at the previous iteration:

Priy'|x',&7") < Pr(x|y’, & ")Pr(y’)
= gx’[PylaEl"]gy’[OvEy’]

x Gy=,PT(PE, P X 2, (5.21)

According to the equation 5.18 and 5.19, we know that = PX,,P7, so the equation 5.21 can be

written as

Priy'|x, &™) o« G,[Z,PTE X, %, (5.22)

The expectation of the hidden varialyieis

Ey'|xX) = %,PTE ¥
[ S o Dt Sarz o Saro |
20421 20121 2042 2042 [ X11 |
DI
_ - st L (5.23)
Ye1 X21
Y32

Xon

g2

It is expensive to compute the term;,l of the equation 5.23. Fortunately the computation com-

plexity can be reduced by taking the advantage of the bloice-structure of the matrix. We can follow
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Shur’s lemma as described in section 3.3.1 to compute tleedion term :

- —1

51 _ 21 a2
’ L i¢)¢21 i2
B (21— Ba1225'E8,) ! (31 - Ba1255'E815) 1 Ba12Es!
[P ER PO IIED ST >oup SEPY R SP D M PO D ST Ja) VR PY I FS T e

After we obtain the the expectation of the hidden varidb(g¢’|x’) defined in the equation 5.23, we
can extract the identity component and the within-indigdvariation component of each image. The
identity componen{ a1, - - , a1, } and the within-individual variation componef8,,,-- -, B1,,}

forimages at pose 1 can be obtained by:

[a,{l e a,{m]T = |: Ya1 0 Bar a2z 0 Bai2 i| Egl[x?l T X,{m Xgl e XgrL]T
(5.24)

diag[Eg1 - Zp1][(Z1 — Ta1255 8L ,5) 71

EHECa

—(B1 — 80128580 15) 1 B0 85 x] - xT,, x5, - x5,]7(5.25)

The identity componerass, - - - , a2y, } @and the within-individual variation componefi,, , - - - , 35,,

forimages at pose 2 can be obtained by:

T _

[agl e agjn} = |: Ean T Ean EaQ tet EaQ i| E.L l[x?l e X,{m Xgl e XgrL]T (526)
T _ _ _ _

[/@2T1 - '/32Tn] = diag[¥gs - Xp2] [*22_12212(21 - 2(11222_12212)71

S 4+ 21812 (B1 — 012852 0) T 802 B Xy - xT, X o xa,] T

(5.27)

In theM-Step of the EM-like algorithm , we update the paramet&rs= {X41, a2, Ta12, Xg1, g2}
by

Yo1 Xa a
' 2 = cov @ (5.28)
Ya21 Baz ay,
g1 = cov(fa) (5.29)
g2 = cov(By), (5.30)

wherea, anda;, are the identity components of training images at pose 1 asd @ respectively; the
term 3, and3, are the within-individual variation component of trainimyages at pose 1 and pose 2
respectively.
Verification

Similarly to the Joint Bayesian Face algorithm describeskiction 4.2.3, we make the match deci-
sion based on the likelihood ratio between two generativéatsoPr(x1 , x2|M4) andPr(xy, x| Ms).
Model M, denotes two images are from different people and m@dglmeans two images are from

the same person. If we assume imageat pose 1 and image, at pose 2 are from the same identity
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and are independent, then the joint probability of two insacgn be derived as

PT‘(X17X2|MS) = gx [0,25]
Yol +23a1 Ya12

= Gy |0, , (5.31)
2212 Yaz + 2[32

whereX, is the match covariance matrix.
When two images are from different people and are assumed teberated independently, we

have

P?“(Xl,X2|Md) = gx [O,Ed]
Yol + 21 0

= gx 0; ) (532)
0 Ya2 + X2

whereX,; is the non-match covariance matrix.
The final matching decision is based on the log likelihooobratx; , x2) between two modeM
and M, :

r(x1,x2) = lo Prixa, x| Ms)
LXz2) = 08 Pr(xy,x2|Myg)
x x'Eix - xS x. (5.33)

S

5.4.2 Tied Joint PLDA

In this section we will describe the tied version of Joint A.D
Face Representation
In the Tied Joint PLDA a face imags;;, can be represented as the sum of the identity component

o, and the within-individual variation componey;,.:

Xijk = Ok + Bk (5.34)
Bij = GrWijk + €ijik, (5.36)

where the ternx,;, denotes thgi’" image of thei*" individual at posek with the mean of all face
images subtracted; the identity component is equivalent to the terri';h; of Tied PLDA and the

within-individual variation componen8, ;. is equivalent to the ternG,w;;. + €;;, of Tied PLDA.

ijk
Therefore, it can also be described in terms of conditionathabilities:

P?“(Xijk) = gxijk [Fkhi + kaijk7 Ek] (537)
Pr(hy) = G [0.T] (5.38)
Pr(w,) = Owisn [0,1], (5.39)

where the tern¥;, contains the basis functions of the between-individuaspabe in columns for pose
k; the termh; denotes the hidden identity variable which is constant foingages at different poses

from a identity; G, contains the basis functions of the within-individual uéxse in columns for pose
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k; w;;.. denotes the hidden noise variable which is different foheamage;3, is a diagonal covariance
matrix for stochastic noise of images at pose k.
We assume we have imageg;; at pose 1 and;;, at pose 2. According to the equation 5.34, images

x;;1 andx; ;o can be described as:

Xij1 = Q41+ /Bijl (5.40)
Xij2 = Oyz + /Bijg- (5.41)
The termsw1, B2, ciz, andg;;, follow Gaussian distribution:
Pr(atl) - gail [07 Eal] (542)
PT‘(C(Z'Q) = gaﬂ [0, Eag] (544)
PT.(ﬁzJQ) = gﬁijz [07 EﬁQ], (545)

where the term&,, andXg; are the covariance matrix of the identity component and tvagance
matrix of the within-individual variation component restigely for images at pose 1; the termx,,
andXg, are the covariance matrix of the identity component and twvaigance matrix of the within-
individual variation component respectively for imagepage 2.

The joint distribution of an image pak’ follows the Gaussian distribution:

, Xij1
Pr(x'y = Pr (5.46)
Xij2

= Gx [0,33] (5.47)

S+ 3 .,
— G |o, TerT A 12 , (5.48)

2512 Y2 + 262

whereX, 12 is the covariance matrix of the identity component acrosgttse 1 and pose 2.
Learning

We attempt to estimate the covariance matritEs,;, Xg1, Xa2, Xg2, Xa12) from training
images. We first apply the EM algorithm of Tied PLDA to estim#éite optimal model parameters
6 = {F\, G, X}, then we apply the E-Step of Tied PLDA training method defiimd82] to estimate

the expectation of the hidden varialylg,, for each training image;;:

Elyijr] = (AL, Ag + D) ATS xig, (5.49)
where
h;
Yijk = (5.50)
Wijk
Ak = [Fk Gk] (5.51)
> 0
s = i . (5.52)
0 X




5.5 New Database

Then we can obtain the identity component; and the within-individual variation component

Bi; for each imagex;;; at pose 1 by
a1 = Fihg (5.53)
Biji = i1 —Fihy, (5.54)
where the ternt'; contains the basis functions of the between-individuaspabe in columns at pose 1;
the termh; is the hidden identity variables for identity i.

Using a similar method we obtain the identity componefnt and the within-individual variation

componenp3, ;, for each imagex;;» at pose 2:

ij2
aije = Fah; (5.55)
Bij2 = Xij2 —Fahy, (5.56)

whereF; contains the basis functions of the between-individuaspabe in columns at pose 2.

Lastly, we update parametefE a1, Xa2, Xai2, Xg1, Xg2} by

Sy = .
ol Sedz — covl| | ® (5.57)
Ya21 Ba2 oy,
Eﬁl = COV(IB(],) (558)
Yp2 = cov(B,), (5.59)

where the termsy, anda, are the identity components of training images at pose 1 asd p respec-
tively; the terms3, and3, are the within-individual variation components of traigimages at pose 1
and pose 2 respectively.
Verification

Similar to the Tied Joint Bayesian Face algorithm, the \atfon decision is made based on the

likelihood ratio:

r(x1,x2) o< x'¥;'x—x'E]x,

where
X1
X =

X2

s, - Yol +2a1 0
0 Y2+ 230
s Yol +2a1 Ya12
i Y7 Ya2+ X |

5.5 New Database

In this section will first analyze the pose distribution oéttraining images of the LFW database to
explain the motivation to collect a new database. Then wede#cribe the collection scheme for the

new database.
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5.5 New Database

5.5.1 Motivation

In the LFW database, images are divided into 10 subsets utithwerlapping in identities and images.
A leave-one-out validation scheme is applied to evaluaedhognition performance. When one subset
is selected for testing and the remainder of the 9 subsetsecared for training. The final performance

is evaluated by repeating the verification experiments @l ed 10 test subsets.

A o e

People 730 217 158 1
Pairs 3494 1928 1099 74 682 294 24 64 5 1
) People 735 221 40 3 153 29 4 22 2 0
Pairs 3553 1790 1105 17 612 289 8 71 2 0
3 People 739 218 42 7 155 31 6 21 3 1
Pairs 3671 1968 1197 74 684 310 23 71 5 1
4 People 748 224 37 7 159 29 7 22 3 1
Pairs 3660 1869 1014 74 659 273 24 70 5 1
c People 763 222 39 7 157 31 7 21 3 1
Pairs 361 1903 1199 74 695 320 24 70 5 1
6 People 735 217 38 7 159 30 7 21 3 1
Pairs 3610 1903 1101 74 683 298 24 68 5 1
. People 721 209 37 7 148 28 7 20 3 1
Pairs 3294 1717 1159 74 609 293 24 67 5 1
3 People 751 211 41 6 150 31 6 22 2 1
Pairs 3671 1906 1201 73 657 322 22 74 4 1
9 People 748 211 41 6 157 32 6 21 3 1
Pairs 3637 1904 1216 64 668 325 20 72 5 1
10 People 744 219 37 6 161 29 6 19 2 1
Pairs 3640 1929 707 68 639 210 23 48 4 1

Table 5.2:1dentity number and possible training pairs for each pair group in each of 10 cross-
validation experiments. In the LFW database images are divided into 10 folds. Oneifolgsed for
testing and the rest 9 folds are used for training. The finbpmance is reported based on 10 cross-
validation experiments. We label each LFW image by a posesé fist{0°, 15°,30°,45°,60°}. When
one fold is chosen as the test fold, we list the number ofimmgirdentities and possible training pairs for

each pair category, to which each training pair is assigresedththe poses of the two images.

As we described in section 5.2, we assign each LFW image toealgfined pose category
{0°,15°,30°,45°,60°}. By analyzing the image pairs of the LFW test sets, we find treneed to
train Tied Bayesian models for the following pair groupsjatihcomprise{0°- 0°}, {15°- 15°}, {30°-
30°}, {45°- 45°}, {0°- 15°}, {15°- 30°}, {30°- 45°}, {0°- 30°}, {15°- 45°}, {30°- 60°}, {0°- 45°},
{15°- 60°}, {0°- 60°}. We follow the ‘unrestricted configuration’ to use the LFWitting images.

We list the available identities and image pairs that candsglun training for each pair group in 10
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5.5 New Database

cross-validation experiments in Table 5.2.

From the table 5.2 we find that there are insufficient traimingges for pair groups with large pose
changes, especially those with 036f difference. For example, there is 0 or only 1 training painfair
group{15° —60°} in 10 experiments, it is impossible to train a Tied Bayesiaei for this pair group.
Therefore, to train Tied Bayesian face recognition alg¢pons, it is necessary to have more training image
pairs with large pose differences.

The Multi-PIE database [56] contains 755,370 images frof iBdlividuals with 6 expressions
and 19 lighting conditions and 15 poses under four sessibmatefore, it can provide enough training
images for any pair groups. However, images of the Multi-8&Eabase are collected in the controlled
environments. We hypothesize that the Multi-PIE imageshiigpt provide an equivalent amount of
image variation to the uncontrolled test images of the LF\Wdbase. Therefore, we deemed it necessary

to collect a new database.

5.5.2 The UCL Multi-Pose Face Database

To obtain sufficient training images with large pose vaoiative use the same approach as for the LFW
database and collect images from the internet. The new asdab called the UCL Multi-Pose. The
collection protocol was as follows: we first collect a listagflebrities’ names without overlapping with
the LFW database, then we use the Google image search eagib&in images of each celebrity. Since
these images are captured in completely uncontrolled emvients, they contain large variation as the
LFW images include. We swap all left facing images to rigleirig. Then we check the pose of images
manually and make sure there are at least three images apeselof a list{0°, 15°,30°,45°,60°} for
each celebrity. Last we label four fiducial points (the Isfé €orner of the left eye, the nose bridge, the
right eye corner of the right eye, the mouth top) and applyalarity transformation to register each
image into a pre-defined template. Similar to the LFW dateb&tentity information is provided for
each image. Figure 5.2 shows several examples from the UQti-Pase database.

Although the collection spirit is the same for both the LFWtadease and the UCL Multi-Pose

database, there are some significant differences:

» The LFW database applies Viola-Jones face detector [1B8dpliect images so most of images
are near frontal. The UCL Multi-Pose database is designedltect more non-frontal images to
train Tied Bayesian face recognition algorithms: therenaoee non-frontal images than the LFW

database.

» The LFW database contains 13,233 images from 5,749 pedple the UCL Multi-Pose database
includes 7,485 images from 153 people. Therefore, the LFWbdse is much broader (more
people) than the UCL Multi-Pose database. The image numéerdpntity varies from 1 to
530 in the LFW database while the image number varies frono5%tin the UCL Multi-Pose
database, so the LFW database is much shallower (less impagegrson) than the UCL Multi-

Pose database.
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Figure 5.2: Several sample images from the UCL Multi-Pose databaseThe database consists of
7,450 images from 153 people. To provide sufficient traiimgges with large pose difference, we
collected at least 3 images at each pose of §(i%t15°, 30°,45°, 60°} for each person. In this database

all the left facing images have been swapped into right facin

5.6 Experiments

In this section we compare the performance of the three TagBan face recognition algorithms. To

verify their performance in dealing with pose variation icantrolled face database, we first compare
the performance in the Multi-PIE database [56], in whichtiplé images at different poses are collected
for each identity in the laboratory. We describe the expentmetail in section 5.6.2. To compare the
performance of the three algorithms in uncontrolled dagapae also conduct experiments in the UCL
Multi-Pose database, in which at least three images at eash @f a pre-defined pose category are
captured for each identity from the internet. The experindemtail is described in section 5.6.3.

We also do two cross-data experiments. To solve the protilabtiie LFW database cannot provide
sufficient training images with large pose difference, ve@tiTied Bayesian face recognition algorithms
in the Multi-PIE database and test in the LFW database inseé&.6.4. Images of the Multi-PIE
database are collected in the laboratory and might not captifficient within-individual variation as the
uncontrolled LFW images contains, we also train Tied Bayre&ice recognition algorithms in the UCL
Multi-Pose database and test in the LFW database in sectoh. F-igure 5.3 illustrates the structure of

experiments in this section.

5.6.1 Data Preprocessing

In this chapter we use three databases: the Multi-PIE ds¢atae UCL Multi-Pose database, and the
LFW database. Figure 5.4 shows several samples from the tfatabases. Instead of using image

intensities, we extract Local Binary Patterns (LBP) dgxoris [102] from the three databases to conduct
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- Controlled database —— - -
| LBP Descriptors I | Train and test in the Multi-PIE database |

Uncontrolled database |
| Train and test in the UCL Multi-Poses database |

Cross database I
| Train in the Multi-PIE database and test in the LFW database |

Cross database | Train in the UCL Multi-Poses database and test in the LFW
database

Figure 5.3:Structure of experiments in this chapter. We conduct four experiments using LBP image
descriptors. To compare three Tied Bayesian face recogrétigorithms in a controlled database, we
do experiments in the Multi-PIE database. To compare thiopeance in an uncontrolled database,
we also conduct experiments in the UCL Multi-Pose databdseprovide sufficient training images

for the three Tied Bayesian face recognition algorithmsfi@ controlled database, we train the three
algorithms in the Multi-PIE database and test them in the Lddtabase. To provide sufficient training

images for the three Tied algorithms from an uncontrollehiase, we train three Tied algorithms in

the UCL Multi-Pose database and test in the LFW database.

our experiments. We will describe the extraction proceskarthree databases in turn.

For the Multi-PIE database we use frontal lit images witthtigard horizontal posé°®, 15°, 30°,
45°, 60°, 75°, 90°. Under this constraint each of 337 people has several imetgEsch pose of a finite
pose category0°,15°,30°,45°,60°,75°,90°}. We label four fiducial points (the left corner of the left
eye, the nose bridge, the right corner of the right eye, thatmtop) of each image by hand and then
apply a similarity transformation to register each imaga fire-defined template based on four fiducial
points; Next we crop the centrab0 x 80 pixels of each image to obtain the face region; Finally, we
extract LBP descriptors from face regions by the followiettings: we divide each60 x 80 cropped
image into several non-overlappif@ x 12 patches, the radius to form neighborhood over each pixel
location is set to 3, the number of neighbor points is set tm&prm binary patterns are applied. After
we obtain the LBP histograms for all the patches, we norradhe histograms in each patch to unit
length and truncate their values at 0.2, then normalizendgainit length. The face image is represented

by the concatenation of all the LBP histograms from all pasch

In the UCL Multi-Pose database, all the images are rightfpeind have been registered. We crop
the centrall60 x 80 pixels of each image to obtain the face region and extractd&seriptors using the

same method as in the Multi-PIE database.

For the LFW database, we use the origifadl x 250 images without any alignment and swap
all the left facing images as right facing. Then we assigrhéamage to a pre-defined pose category
{0°,15°,30°,45°,60°} by hand. Next we use the same method to extract LBP des@iptm the
Multi-PIE database: we label four fiducial points of eachgmay hand, apply a similarity transforma-
tion to register images based the four fiducial points, ch@pdentrall 60 x 80 pixels of each image,

extract LBP descriptors.
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Figure 5.4: Several image examples from (a) the Multi-PIE database, (b)he UCL Multi-Pose
database, (c) the LFW databaseAll the images in the three databases have been registesegre
defined template by applying a similarity transformatiosdzhon four manually labeled fiducial points

(the left eye corner of the left eye, the nose bridge, thetiggl corner of the right eye, the mouth top).

In all the following experiments, for Tied PLDA and Tied JORLDA, we always use 25 iterations
of the EM algorithm to train the model parametér,, G, X1 }, which are initialized to random values.
For Tied Joint Bayesian Face algorithm we always use 5 itearabf the EM-like algorithm to train the

model parameterf¥ia i, a2, Lai2, Xg1, Lg2}, Which are initialized to random values.

5.6.2 Train and Test in the Multi-PIE Database

In this section we compare the performance of three Tied 8lageace recognition algorithms in the

controlled Multi-PIE database. We train and test threerélgms only using the Multi-PIE images.

We compare face verification performance of three Tied Bayesace recognition algorithms for
the following pair groups{0° — 15°}, {0° — 30°}, {0° — 45°}, {0° — 60°}, {0° — 75°}, and{0° — 90°}.
For each pair group we use images of the first 237 people miighand images of the remaining 100
identities in test. There is no overlap in identities andgembetween the training set and the test set.
In test, for each pair group, we collect 1458 matched pairsgusnages of each test identity. We also
collect 6021 non-matched pairs by combining images of eashidentity with images from 5 other

random test identities. In total we verify 7479 pairs forlkepair group.

For all the three Tied Bayesian Face algorithms we first aB@ to reduce the dimensions. For
Tied PLDA and Tied Joint PLDA we set the PCA dimensions to 2d®space dimensions to 128. For
the Tied Joint Bayesian Face algorithm we set the PCA dimesdb 400. These experiment settings

are obtained using an empirical approach.
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Figure 5.5:The performance of three Tied Bayesian face recognition atgrithms for 6 pair groups
is shown by ROC curves when trained and tested in the Multi-PE database.The performance of
three algorithms for pair groug®)° — 15°} is illustrated in (a){0° — 30°} in (b), {0° — 45°} in (c),
{0° —60°} in (d), {0° — 75°} in (e) and{0° — 90°} in (f).

) Results 0-75
Algorithm

Tied PLDA 0.9993 0.9989 0.9988 0.9984 0.9969 0.9952

U S 09994 09991 09985 09971 09855  0.9910
Bayesian Face
T'ﬁé‘:\'"t 0.9994 09990  0.9985 09971 09958  0.9912

Table 5.3:Area under the ROC curve of Figure 5.5.Larger area means better verification performance.

The performance of three Tied Bayesian face recognitiooréfgns are reported by the Receiver
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Operator Characteristic (ROC) curves in Figure 5.5. Moraitteregarding ROC curve are described
in section 2.3.2. To show the performance difference ambagtree algorithms more clearly, we also
list area under the ROC curve in Table 5.3. From Figure 5.5Tade 5.3 we find that the performance
of Tied Joint PLDA and the Tied Joint Bayesian Face algorithiwery similar for all six pair groups.
We also find that Tied Joint PLDA and the Tied Joint Bayesiaceragorithm performs slightly better
than Tied PLDA when pose difference is less than 45 degreesvektr, Tied PLDA produces better
performance when large pose variation exists. For exarfgslpair group{0° — 90°}, the performance
of Tied PLDA is much better than the performance of Tied JBIODA and the Tied Joint Bayesian Face

algorithm.

5.6.3 Train and Test in the UCL Multi-Pose Database

In this part we compare the performance of three Tied BageSace algorithms in the uncontrolled
UCL Multi-Pose database. We train and test our models orilygute UCL Multi-Pose images. We
verify the performance of the three algorithms for the failog pair groups:{0° — 15°}, {0° — 30°},

{0° —45°}, and{0° — 60°}. For each pair group we use images from the first 152 peoptaiimrg and
images of the remaining 101 individuals in test. There is werlap in identities and images between
the training set and the test set. In test, for each pair gagollect 1990 matched pairs using images
of each test identity. We also collect 7560 non-matchedsgaircombining images of each test identity

with images from 10 random other test identities. In totaMegfy 9469 pairs for each pair group.

For all the three Tied Bayesian face recognition algorithmesapply PCA to reduce the dimensions.
For Tied PLDA and Tied Joint PLDA, we set the PCA dimensionE30, subspace dimensionsto 32. For
the Tied Joint Bayesian Face algorithm we set the PCA dimaesdb 100. These settings are obtained

by an empirical approach.

We report the performance of the three algorithms by ROCexsiim Figure 5.6. To show the
performance difference of the three algorithms more cfearé also list area under the ROC curve in
Table 5.4. From Figure 5.6 and Table 5.4 we find that the Tiéat Bayesian Face algorithm and Tied
Joint PLDA produce better performance than Tied PLDA forpalir groups. The reason might be as
our conclusion in chapter 4 that more discriminatory infatimn might be captured when estimating
covariance matrix without making low dimension assumptiéinom Table 5.4 we also find that the

performance of Tied Joint PLDA and the Tied Joint BayesiateRdgorithm are very similar.

We compare Figure 5.6 and Figure 5.5 and find that the perfoceaf all the three algorithms in
the UCL Multi-Pose database is much worse than the resulteiMulti-PIE database: face verification
in the uncontrolled UCL Multi-Pose database is probablyenfficult than in the controlled Multi-PIE

database.
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Figure 5.6: The face verification performance of the three Tied Bayesiarface recognition algo-
rithms for 4 pair groups is reported by ROC curves when trained and tested in the UCL Multi-
Pose database.The performance of three algorithms for pair groyps — 15°} is illustrated in (a),
{0° —30°} in (b), {0° — 45°} in (c), {0° — 60°} in (d).

Algorithm H

Tied PLDA 0.8306 0.8142 0.7395 0.6749

Tied Joint

. 0.8528 0.8333 0.7643 0.6867
Bayesian Face

Tied Joint LDA  0.8488 0.8324 0.7619 0.6816

Table 5.4:Area under the ROC curve of Figure 5.6.Larger area means better verification performance.

5.6.4 Train in the Multi-PIE Database and Test in the LFW Database

In this part we compare the performance of three Tied Bayeséce algorithms when trained in the
Multi-PIE database but tested in the LFW database. We coenipar performance of the three Tied
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algorithms for the following pair groupg0° — 15°}, {0° — 30°}, {0° —45°}, {0° — 60°}, {15° — 30°},
{15° — 45°}, {15° — 60°}, {30° — 45°}, and{30° — 60°}. There are no LFW test pairs belong to pair
group{45° — 60°}, so we do not list it.

For each pair group, we train and test Tied models as followessuse all the relevant Multi-PIE
images at the two poses to train Tied models. In test, the L¥&llation protocol applies a leave-one-
out cross validation scheme. Images are divided into 10etsbEach subset is selected as the test fold
in turn and the final performance is based on the test resitencexperiments, each of them uses a
different test fold. To obtain the result for each of 10 tedtl§, we collect the image pairs belonging to
the target pair group and compute the % correct. We repeaXheriments in 10 test folds and report

the final performance for the specified pair group by the meaofect in 10 test folds and the standard

error of the mean.

. o . Tied Bayesian face recognition
Bayesian face recognition algorithms ) . ) )
trained and tested in the LFW database UL
database and tested in the LFW database

Pose Pair Joint ULl Tied Joint
Difference GrotnS PLDA Bayesian  Joint PLDA Tied PLDA  Bayesian PLDA
Face Face

0-15 90.029 89.231 89.492 78.593 78.913 79.251

+0.873 +0.782 +0.664 +0.860 +0.931 +0.903

15 15-30 87.048 87.362 87.656 77.950 78.151 79.434
+1.223 +1.202 +1.084 +1.268 +1.225 +1.168

30-45 70.433 73.167 76.944 74.433 74.571 76.433

+5.233 +6.093 +4.672 +5.648 +4.918 +5.630

0-30 84.256 86.487 86.629 73.429 74.525 74.617

+1.103 +0.887 +0.793 +1.238 +1.229 +1.425

30 15-45 82.662 77.765 81.523 66.228 69.451 70.570
+2.985 +3.000 +3.614 +5.070 +7.091 +7.219

30-60 51.667 56.167 66.667 50.000 50.000 50.000

+15.000 +15.176 +14.907 +18.898 +18.898 +18.898

0-45 76.916 75.566 75.197 71.692 73.800 72.670

. +6.943 +5.804 +5.552 +4.934 +4.709 +7.159
15-60 38.333 38.333 38.333 61.111 52.778 52.778

+14.498 +14.498 +14.498 +15.316 +13.205 +13.205

60 0-60 51.071 61.071 61.071 69.643 69.643 69.643

+12.644 +12.099 +12.099 +11.655 +10.395 +10.395

Table 5.5:Verification results when trained in the Multi-PIE database and tested in the LFW
database.We compare the performance of Bayesian face recognitiarittigns (PLDA, the Joint
Bayesian Face algorithm, and Joint PLDA) trained in the LFMAbase with the performance of Tied
Bayesian face recognition algorithms (Tied PLDA, the TiethIBayesian Face algorithm, and Tied
Joint PLDA) trained in the Multi-PIE database. The testsadlreonducted in the LFW database. We
find that the performance of Bayesian face recognition délgwos is better than the performance of Tied
Bayesian face recognition algorithm. Note:there is noltésupair group{45°- 60°} because no LFW

test image pairs exist in that pair group.
For all the three Tied Bayesian face recognition algoritimaspply PCA to reduce the dimensions.
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For Tied PLDA and Tied Joint PLDA we set the PCA dimensions@0,Zubspace dimensions to 128.
For the Tied Joint Bayesian Face algorithm we set the PCAminas to 200. These optimal settings
are obtained by an empirical approach.

In Table 5.5 we compare the performance of Bayesian facegnéimon algorithms trained in the
LFW database with the performance of Tied Bayesian facegrdtion algorithms trained in the Multi-
PIE database for different pair groups. The approach ta &ad test Bayesian face recognition algo-
rithms for each pair group in the LFW database is describs@dtion 5.2. From Table 5.5 we find that
Tied Bayesian face recognition algorithms perform worsmtBayesian face recognition algorithms.
The reason might be that images of the Multi-PIE databasedtected in well controlled environ-
ments while images of the LFW database are collected froatflyaincontrolled environments. These
controlled Multi-PIE training images do not include an e@leént amount of image variation as the
uncontrolled LFW test images.

From Table 5.5 we also find that Tied Joint PLDA performs basbag three Tied algorithms. The
reason might be that Tied Joint PLDA can estimate better@mvee matrix by combining the advantages
of Tied PLDA and the Tied Joint Bayesian Face algorithm. lhlg@&.5 we also find that the results of
the three Tied Bayesian face recognition algorithms arexalttly50.000% + 18.898. It is because there
are only2 ~ 5 image pairs in each test fold for pair gro{i0° — 60°} as shown in table 5.2. The three

Tied Bayesian face recognition algorithms all failed fastbair group.

5.6.5 Train in the UCL Multi-Pose Database and Test in the LFWDatabase

In this section we compare the performance of three Tied 8lagpeface recognition algorithms when
trained in the UCL Multi-Pose database and tested in the LiBY&lshse. The UCL Multi-Pose database
was collected using the same method as for the LFW databalserefore, compared to the Multi-
PIE database, images of the UCL Multi-Pose database inchate variation. The UCL Multi-Pose
database is potentially better than the Multi-PIE datalaasa training database for face recognition in
uncontrolled environments. As in section 5.6.4 we comgag@erformance of the three Tied algorithms
for the following pair groups{0° —15°}, {0°—30°}, {0°—45°}, {0°—60°}, {15°—30°}, {15°—45°},
{15° — 60°}, {30° — 45°}, and{30° — 60°}.

As in section 5.6.4, for each pair group, we use all the rele\CL Multi-Pose images at the two
poses to train Tied models; In test, for each of 10 test foldscompute % correct of the image pairs
belonging to the test pair group, then we report the finalggarnce by the mean of % correctin 10 test
folds and the standard error of the mean.

For all the three Tied Bayesian Face algorithms we apply RC#&duce the dimensions. For Tied
PLDA and Tied Joint PLDA we set the PCA dimensions to 200, pabs dimensions to 128. For the
Tied Joint Bayesian Face algorithm we set the PCA dimens$®280. The optimal settings are obtained
by an empirical approach.

In Table 5.6 we compare the performance of three Bayesiar&mognition algorithms trained in
the LFW database with the performance of three Tied Baydaizenrecognition algorithms trained in

the UCL Multi-Pose database for each pair group. The waydio gind test Bayesian face recognition
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algorithms for each pair group in the LFW database is desdrib section 5.2. From Table 5.6 we find
that Tied Bayesian face recognition algorithms perforndsehan Bayesian face recognition algorithms
for non-frontal pair groups with large pose differencesaf@ples includg 15° — 45°}, {30° — 60°},
{0° — 45°}, {15° — 60°}, and{0° — 60°}. The experiment results confirm our assumption that Tied
Bayesian face recognition algorithms can increase pedonomwhen large pose variation exists. We also
noticed that Bayesian face recognition algorithms perfbatier than Tied Bayesian face recognition
algorithms for near frontal pair groups, in which both twoaiges are near frontal. Examples include
{0° — 15°}, {15° — 30°}, and{0° — 30°}. The reason might be that our UCL Multi-Pose database
provides less frontal training images than the LFW database

From Table 5.6 we also find that the Tied Joint Bayesian Fagerigthm and Tied Joint PLDA pro-
duce better performance than Tied PLDA. The reason mighbaeedstimating the covariance matrix
without making low dimension assumption can capture moseritinatory information as we con-

cluded in chapter 4.

Bavesian face recognition algorithms Tied Bayesian face recognition algorithms
trai:ed and tested iﬁ the LFngatabase trained in the UCL Multi-Poses database
and tested in the LFW database

Pose Pair Joint UGl Tied Joint
. PLDA Bayesian  Joint PLDA  Tied PLDA Bayesian
difference groups PLDA
Face Face
0-15 90.029 89.231 89.492 81.810 83.163 83.646
+0.873 +0.782 +0.664 +0.755 +1.508 +0.907
15 15-30 87.048 87.362 87.656 82.961 85.815 85.481
+1.223 +1.202 +1.084 +1.610 +0.908 +1.008
3045 70.433 73.167 76.944 79.448 87.028 86.671
15.233 +6.093 14.672 +5.651 13.715 +3.858
0-30 84.256 86.487 86.629 81.428 84.318 84.468
+1.103 +0.887 +0.793 +1.369 +1.309 +1.791
30 15-45 82.662 77.765 81.523 79.848 85.126 83.645
+2.985 +3.000 13.614 +4.452 13.260 1+4.295
30-60 51.667 56.167 66.667 77.381 76.190 88.095
+15.000 +15.176 +14.907 +13.934 +11.419 +7.897
0-45 76.916 75.566 75.197 79.204 79.812 76.669
45 16.943 +5.804 +5.552 1+4.493 +2.437 12.641
15-60 38.333 38.333 38.333 77.381 75.000 80.556
+14.498 +14.498 +14.498 +13.934 +11.180 19.044
60 0-60 51.071 61.071 61.071 67.143 63.571 72.143

+12.644 +12.099 +12.099 +12.919 +12.664 +10.830

Table 5.6:Verification results when trained in the UCL Multi-Pose database and tested in the

LFW database.We compare the performance of Bayesian face recognitiarittigns trained in the
LFW database with the performance of Tied Bayesian facegration algorithm trained in the UCL
Multi-Pose database. The tests are all conducted in the L&bdse. We find that Tied Bayesian face
recognition algorithms perform better when large poseediifices exist. Note:there is no result for pair

group{45°- 60°} because no image pairs exist in that pair group.

We compare Table 5.6 with Table 5.5 and find that the perfooman Tied Bayesian face recogni-

tion algorithms trained in the UCL Multi-Pose database itdvehan the results trained in the Multi-PIE
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5.6 Experiments

database. These results support our hypothesis that ittes b@ use images from uncontrolled database

in training for a uncontrolled test database.

5.6.6 Switching Mechanism

From Table 5.6 we find that Bayesian face recognition algor# perform better than Tied Bayesian face
recognition algorithms for near-frontal pairs. HowevagedrBayesian face recognition algorithms per-
form better when large pose differences exist. Therefoeemake a conjecture: the best performance is
achieved if we switch between Bayesian face recognitioordtyns and Tied Bayesian face recognition
algorithms based on pose difference of a image pair.

We apply a simple switching model as follows. We apply Tieg&saan face recognition algorithms
to make match decision for the following pair grougg® —45°}, {0°—60°}, {15°—45°}, {15°—60°},
{30° — 45°}, and{30° — 60°}. We apply Bayesian face recognition algorithms for othér geups.

The matching decision is assigned by a switching model:

b Drica {0° —45°},{0° — 60°}, {15° — 45°}, {15° — 60°}, {30° — 45°}, {30° — 60°}

DBayeisan Otherwise
(5.60)

In Table 5.7 we compare the performance of Bayesian facegnidon algorithms in the LFW
database with the performance of applying a switching mashato combine the advantages of
Bayesian face recognition algorithms and Tied Bayesiae f@cognition algorithms. Here three
Bayesian face recognition algorithms are trained using dBBcriptors extracted from the LFW im-
ages as in section 5.2; three Tied Bayesian face recogaaitmnithms are trained using LBP descriptors
extracted from the UCL Multi-Pose database as in sectio5.6

From Table 5.7 we find that the switching mechanism can imptbe verification performance
in the LFW database although the improvement is slight. Baswon might be that there are not many
test pairs with large pose differences in the LFW databdfeowsgh Tied Bayesian face recognition

algorithms improve the performance for pair groups witlyéapose variation.

% % %
Algorithm Algorithm Algorithm

87.350 . . 87.617 . 88.000
PLDA +0.433 Joint Bayesian Face +0.512 Joint PLDA +0.442
S Switching between Switching
Switching . . .
between PLDA 87.583  Joint Bayesian Face  87.821 between Joint 88.167
and Tied PLDA +0.383 and Tied Joint +0.457 PLDA and Tied +0.453
Bayesian Face Joint PLDA

Table 5.7:The effect of the switching mechanismWe compare the performance of Bayesian face
recognition algorithms in the LFW database with the perfamge of using a switching Mechanism to
combine advantages of Bayesian face recognition algosithrmd Tied Bayesian face recognition

algorithms. The switching Mechanism improves the perforcea
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5.7 Conclusion

5.7 Conclusion

In this chapter we demonstrated that large pose variatitreishallenge for Bayesian face recognition
algorithms (PLDA, the Bayesian Face algorithm, and JoirlDR). To address this issue, we proposed
two new algorithms: the Tied Joint Bayesian Face algorithchHed Joint PLDA. To train tied models,
sufficient training images are required for each pose. Hewedhe LFW database cannot satisfy this
requirement. We introduced the UCL Multi-Pose databaselieghis problem.

We first compare Tied PLDA, the Tied Joint Bayesian Face #lyor and Tied Joint PLDA in
the controlled Multi-PIE database and the uncontrolled UNDWti-Pose database respectively. Then
we conduct two cross-database experiments: trained in thl8-MIE database and tested in the LFW
database; trained in the UCL Multi-Pose database and testibe LFW database. Our experimental
results show that the performance of the three Tied Bayda@nrecognition algorithms trained in the
uncontrolled UCL Multi-Pose database is better than théopmiance trained in the controlled Multi-
PIE database. Our experiment results also demonstrate@i#itBayesian face recognition algorithms
improve the performance for pair groups with large posesdiffice. Among the three Tied algorithms,
we find that Tied Joint PLDA performs best. However, for nfgantal pairs, Bayesian face recognition
algorithms perform better than Tied Bayesian face recagnélgorithms.

To combine the advantages of Bayesian face recognitiomitiigts and Tied Bayesian face recog-
nition algorithms, we introduced a switching mechanism:apply Tied Bayesian face recognition al-
gorithms for pair groups with large pose differences andyaBpyesian face recognition algorithms for
other pair groups. Our experimental results show that thking mechanism improves performance
in the LFW database.

Our algorithm has connections to the learned Bayesian Fgogtam [89], which applies Manifold
Relevance Determination [40] to learn the identity subspathe commonality between their model
and our tied models is that these algorithms are all Bayasiadels and the match assignment for
two images is decided by comparing the match likelihood amttmatch likelihood. The difference is
that we apply Gaussian latent variable models while theyGesgssian Process latent variable models.
They demonstrated that their Gaussian Process based radlsiible to fit complex data and improve
the verification performance in uncontrolled environmeftise performance might be improved if we
combine the learned Bayesian Face algorithm and our tiecelmod

Currently we only use our tied model to deal with horizonta$@ variation. The tied models can

be also used to handle vertical pose variation and lightargation.
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Chapter 6

Conclusion

In this report, we proposed a series of probabilistic facegaition algorithms to improve recognition
performance in uncontrolled environments. The motivat@rthese algorithms is based on two limita-
tions of the existing algorithms: (i) many algorithms do petform well in uncontrolled environments;
(i) most existing algorithms cannot handle large poseatam in uncontrolled environments. To over-
come the first limitation, we proposed Multi-Scale PLDA awihd PLDA and show that they improve
performance in the benchmark database of face recognitiderwncontrolled environments: the La-
beled Faces in the Wild database [65]. To resolve the sedwitdtion, we collected a new database and
proposed the Tied Joint Bayesian Face algorithm and Tied®?LD

In this chapter, we will firstly summarize our findings in eattrapter in section 6.1. Then we

discuss limitations and future work in section 6.2.

6.1 Summary and Contributions

In chapter 3, we proposed Multi-Scale PLDA to combine pdiaked face representation methods and
Probabilistic Linear Discriminant Analysis (PLDA) [111]n Multi-Scale PLDA, face images are de-
scribed as a sum of the signal component and the noise comipohiee signal component describes
the between-individual variation and is a weighted comtiameof the basis functions of the between-
individual subspace. The noise component explains themwitidividual variation and is a weighted
combination of the basis functions of the within-indivilsabspace. We break both the signal and noise
into regular grids of non-overlapping patches. We changetich configuration of the signal compo-
nent to vary the spatial support of the basis functions ofatstsveen-individual subspace. We change
the grid resolution of the noise component to vary the degfélee localization of the basis functions of
the within-individual subspace.

We applied Multi-scale PLDA in four controlled databased ane uncontrolled database. We find
that we can obtain the best performance in three constralattbases when the signal component of
Multi-scale PLDA is treated locally and the noise comporisriteated globally. We achieved 100%
correct performance for face identification in the XM2VT 8rital database [95] using an optimal com-
bination of local signal and global noise models, which iggaiicant improvement compared to 91%

correct of PLDA and 84% correct of Dual Space LDA [137]. Hoee\performance did not increase in



6.1 Summary and Contributions

the fourth constrained database when we treat the signa locally. We attributed this difference to the
pose changes that are not present in the three controlledakss but are present in the fourth database.
If there are pose changes between two images, the corrasgdadial features will not appear in corre-
sponding patches. We also applied Multi-Scale PLDA in theomtrolled database: the LFW database.
Since the unconstrained face database contains large @oagon, Multi-scale PLDA does not perform

well when intensities are used to represent images.

The main disadvantage of Multi-Scale PLDA is that it is sBwsito pose variation. We hope
to address this problem by extending the shiftmap reprasent[113] to estimate the corresponding
patches for two images with different poses in future workother disadvantage of Multi-Scale PLDA
is that the training process is slower than PLDA since it egpinore basis functions and requires more

calculation.

In chapter 4 we proposed Joint PLDA to combine the advantafgekDA and the Joint Bayesian
Face algorithm [30]. PLDA and the Joint Bayesian Face allgarare two state of the art algorithms and
produce a good performance in the LFW database. The adesoft&@d DA is that it uses an EM training
method to estimate model parameters and guarantees thikeliteood increases at each iteration. The
disadvantage of PLDA is that it uses a subspace method teqirbjgh dimensional face data into
a low dimensional subspace and may discard some discringniatormation. The advantage of the
Joint Bayesian Face algorithm is that it does not make thediovension assumption and can estimate
the match and non-match covariance matrix from high dinmeradidata directly. Its disadvantage is
that it uses an EM-like algorithm and cannot guarantee tiatikelihood increases at each iteration.
We proposed Joint PLDA to combine the two algorithms. JollDR uses a strict EM algorithm to
guarantee likelihood increases and can also estimate tlagiance matrix from the high dimensional

data directly.

Our experiments show that Joint PLDA always produces bpteiormance than PLDA and the
Joint Bayesian Face algorithm in the LFW database when desttegscriptor is used. When we com-
bine four image descriptors, Joint PLDA can achiéve367% =+ 0.448 in the LFW database, which is

comparable t®1.300% =+ 0.003 of the commercial face recognition system face.com [126].

One drawback of Joint PLDA is that it requires more compatatiost to do face verification than
PLDA because it does not make low dimensional assumptiomeMer, Joint PLDA cannot pre-process

images offline as PLDA, so the speed of Joint PLDA to do facetifieation is slower than PLDA.

In chapter 5 we proposed the Tied Joint Bayesian Face digodind Tied Joint PLDA to handle
large pose variation in uncontrolled environments. Wegassiach LFW image to one of a set of pre-
defined horizontal pose categories and allocate each LFVifage pair to one of a set of pair groups
based on the poses of the two images. We analyse the vedfigatiformance of PLDA and the Joint
Bayesian Face algorithm for each pair group and find that alggbrithms perform very badly for pair
groups with large pose variation. To handle the pose changée LFW database, we attempt to use
Tied PLDA [82], which has been demonstrated to be able tolegube variation in controlled databases

well. We also proposed Tied Joint Bayesian Face algorithdnTaed Joint PLDA to address the issue.
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6.2 Limitations and Future Work

We refer to Tied PLDA, Tied Joint Bayesian Face algorithm aret Joint PLDA as Tied Bayesian
face recognition algorithms. We refer to PLDA, the Joint Bsign Face algorithm and Joint PLDA as
Bayesian face recognition algorithms.

To train Tied Bayesian face recognition algorithms, suffititraining images are required for each
pair group but the LFW database cannot provide that. To haffieignt training images, we used the
Multi-PIE database and also introduced our own UCL Mults®database as training datasets. When we
train the three Tied Bayesian face recognition algorithmteié Multi-PIE database and test in the LFW
database, we find that the performance of the Tied Bayesiamitdms is worse than the performance
of the Bayesian face recognition algorithms, which arenedionly using the LFW images. The reason
might be that the images of the controlled Multi-PIE dat&bds not include an equivalent amount of
image variation as the uncontrolled LFW test images. Whetrane the Tied Bayesian face recognition
algorithms in the UCL Multi-Pose database and test in the Ldddbase, our experiments show that
the performance of the Tied Bayesian face recognition #lyuos is better than the performance of
the Bayesian face recognition algorithms for pair groupth warge pose variation. Among the three
Tied Bayesian face recognition algorithms, Tied Joint PLiforms best. However, the Bayesian face
recognition algorithms perform better than the Tied Bage$ace recognition algorithms for near frontal
pair groups. To combine the advantages of Tied Bayesianrémognition algorithms and Bayesian face
recognition algorithms, we proposed a switching mechangsapply different algorithms based on the
poses of the two images. Our experiments show that the sngtchechanism can improve performance
in the LFW database.

Currently we have only applied tied models to handle hotialbpose variation. In the future we

can extend the application of tied model to deal with velficese variation and lighting variation.

6.2 Limitations and Future Work

Gaussian Model

In this report we assumed that the marginal density of tha tah multivariate Gaussian. The
drawback of this assumption is that our models might be sSeadb outliers in the training images.
To address this limitation, we will propose a more robustbpimlity model in the future, in which
we assume the marginal density of the data is distributed raslavariate t-distribution. Compared
with a Gaussian, a t-distribution has heavier tails, whielps improving the robustness to outliers as
demonstrated in [74]. The t-distributed models will be mgemeral than the Gaussian models. In
fact, a t-distribution is equivalent to a Gaussian when thgrele of freedom approaches infinity. The
Gaussian models can be treated as the special case of dfigtaliuted models. We have great interest
to transfer the models of this thesis to the version usinigttidution and investigate whether the new
models improve the robustness to image variations in unalied environments. One drawback of the
t-distributed models is that the training will be slowerrtihe Gaussian models since more computation
will be required to find an optimal value for the degree of tre.
Large Training Data

Along with the development of image search engines and lsoef@orks, it has become easier and
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6.2 Limitations and Future Work

easier to collect a large number of training images. We degasted to investigate the performance if we
use more training images. Recently, Taigman et al. [128¢ lieamonstrated that the neural network is a
good model to leverage the huge volume of training data. Ee dnd large networks can be learned ef-
fectively from big training data and can be applied to fornreancompact representation to face images.
The process to learn deep and large networks is termed daeyrlg. Taigman et al. used deep learning
to extract features from images and applied a simple classifimake the verification assignment. In
the future we will use the deep learning method to extradufea from images and use the proposed
algorithms in this report to do face verification in the LFWalzase. We hypothesize this combination
will improve performance compared to [128]. However, desgrhing has its disadvantages: it requires
a very large amount of memory to store the networks and theatation cost to recognize an image is
very expensive. It might take several seconds to identificea fmage. Therefore, it might not be suitable
for some mobile devices which have limited memory and low gotation capability.
Image Descriptors

In this report we used global image descriptors to do facéieation in the LFW database. Global
image descriptors denote that we extract visual featuoas fne whole image. In future work we hope to
investigate the performance of all our algorithms usin@lalescriptors, which means we extract visual
features from fiducial points (they are a set of salient fgmats and usually locate on the corners of the
eyebrows, the corners of the eyes, the tip of the nose, themof the lips, etc). It has been demon-
strated in [31] [112] that local image descriptors are motmist to pose variation and help improve the
recognition performance. Another advantage of local inag&geriptors is that it is easy to form a dense
representation of the face image by increasing the numbiéduwdial points and collecting descriptors
from a pyramid of patches with different size over a fiduciaihp. This type of dense representation has
been demonstrated in [31] [124] and shown to capture moceidimative information and improve the
performance. Currently, we do not have a good fiducial paletsctor, so we did not use a dense repre-
sentation to encode the LFW images. In the future we will uga Himensional data vectors obtained

from dense representation methods to conduct verificaiparéments in the LFW database.
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Glossary

Notations

T A face image represented by a pixel intensity array

X A face image represented by a pixel intensity vector obthineconcatenating the columns of pixels
in the imageY

7 The mean vector of all the training images

P A matrix containing the basis functions of the Eigenfacdsspace in its columns

w A coefficient vector in the Eigenfaces subspace

xi;  Thek' pose of thej*" image of thei*” individual

©,  The mean vector at pose k

F A matrix containing the basis functions of the betweenaiidiial subspace in its columns

F; A matrix containing the basis functions of the betweenaiidilial subspace for pose k in its columns

FP A matrix containing the basis functions of the betweenaiiutial subspace for the” patch of images
in its columns

G A matrix containing the basis functions of the within-inidival subspace in its columns

G A matrix containing the basis functions of the within-inidival subspace for pose k in its column

GY A matrix containing the basis functions of the within-inidival subspace for thg” patch of images in
its column

h; A hidden identity variable for all the images of tfé& individual

h?” A hidden identity variable for thg?" patch of all the images of th&iindividual

w;;  Ahidden noise variable for thg" image of thei*" individual

w{;  Ahidden noise variable for th¢" patch of thej'" image of the/"” individual

e;; A stochastic noise of th¢" image of thei’” individual

eijx A stochastic noise of th¢" image of thei’” individual at pose k

b The diagonal covariance matrix for the stochastic noisenaiges

3 The diagonal covariance matrix for the stochastic noisenafiges at pose k

0 The model paramters

1 The identity matrix

P The patch number for the signal component

Q The patch number for the noise component



Prr

Pra

3

By
Golo; <]

T‘(Xl, X2)

The identification rate

The false alarm rate

The threshold

The similarity score of two images

The scatter matrix

The scatter matrix for the between-individual variation

The scatter matrix for the within-individual variation

A matrix containing the basis functions of the Fisherfaadsspace in its columns
The percentage of correct assignment for the test grafiphe LFW database
The mean accuracy

The standard error of the mean

The estimate of the standard deviation

A constant

The difference of two images

The model two images match

The model two images do not match

The non-match covariance matrix

The match covariance matrix

The eigenvalues of the within-individual covariance matri

The eigenvectors of the within-individual covariance rixatr

The eigenvalues of the between-individual covarianceimatr

The eigenvectors of the between-individual covarianceimat

The identity component of a face image

The within-individual variation component of a face image

The covariance matrix for the between-individual variatio

The covariance matrix for the within-individual variation

The covariance matrix for the between-individual variata pose 1
The covariance matrix for the within-individual variatiahpose 1

The covariance matrix for the between-individual variata pose 2
The covariance matrix for the within-individual variatiahpose 2

The covariance matrix for the between-individual variatzross pose 1 and pose 2
The identity component of training images at pose 1

The identity component of training images at pose 2

The within-individual variation component of training igres at pose 1
The within-individual variation component of training igies at pose 2
A Gaussian iro with meang and covariance

The log likelihood ratio of two images; andx;
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Acronyms

CCD Charge-coupled Device

MAP Maximum a Posteriori

EM Expectation maximization

NC Nearest Centroid

NN Nearest Neighbors

PCA Principal Component Analysis

LFA Local Feature Analysis

EBGM Elastic Bunch Graph Matching

LDA Linear Discriminant Analysis

ASM Active Shape Model

AAM Active Appearance Model

SVM Support Vector Machine

PLDA Probabilistic Linear Discriminant Analysis
SLDA Smooth Linear Discriminant Analysis
0SS One-Shot Similarity

LDML Logistic Discriminant Base Metric Learning
MKNN Marginalized k-nearest-neighbour

LLDA Locally Linear Discriminant Analysis
CSML Cosine Similarity Metric Learning

DML-EIG  Distance Metric Learning with Eigenvalue Optimization
CMD Covariance Matrix Descriptors

SUB-SML  Similarity Metric Learning over the Intra-personal Subspa
LBP Local Binary Patterns

TPLBP Three-Patch LBP

FPLBP Four-Patch LBP

LE Learning-based

LARK Locally Adaptive Regression Kernel
LQP Local Quantized Patterns

SIFT Scale Invariant Feature Transform
HOG Histogram of Oriented Gradients

OCLBP Over-Complete Local Binary Patterns
FERET Face Recognition Technology Test

FRVT Face Recognition Vendor Test

ORL Olivetti Research Ltd

AR Aleix Martghnez and Robert Benavente
PIE Pose, lllumination, and Expression

XM2VTS  Extended Multi Modal Verification for Teleservices and Seétyuapplications
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KFDB
FRGC
WDRef
PUBFIG
LFW
ROC
CMC

Korean Face Database

Face Recognition Grand Challenge

Wide and Deep Reference
Public Figure

Labeled Faces in the Wild
Receiver Operator Characteristic

Cumulative Match Characteristic
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