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We use first-principles calculations to study structural, vibrational, and superconducting properties of
H,S at pressures P > 200 GPa. The inclusion of zero-point energy leads to two different possible
dissociations of H,S, namely 3H,S — 2H3S + S and 5H,S — 3H;S + HS,, where both H;S and HS, are
metallic. For H3S, we perform nonperturbative calculations of anharmonic effects within the self-consistent
harmonic approximation and show that the harmonic approximation strongly overestimates the electron-
phonon interaction (4 = 2.64 at 200 GPa) and 7'.. Anharmonicity hardens H—S bond-stretching modes and
softens H—S bond-bending modes. As a result, the electron-phonon coupling is suppressed by 30%
(A=~ 1.84 at 200 GPa). Moreover, while at the harmonic level 7, decreases with increasing pressure, the
inclusion of anharmonicity leads to a 7. that is almost independent of pressure. High-pressure hydrogen

sulfide is a strongly anharmonic superconductor.
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Cuprates [1] have for many years held the world record
for the highest superconducting critical temperature
(T. = 133 K) [2]. However, despite almost 30 years of
intensive research, the physical mechanism responsible for
such a high T. is still elusive, although the general
consensus is that it is highly nonconventional. The mea-
surements by Drozdov ef al. [3] which suggest a 190 K
superconducting phase in hydrogen sulfide under high
pressure (200 GPa), could break the cuprates record, if
confirmed.

The claim that hydrogen at high pressure could be
superconducting is not new [4] and it was recently
supported by first-principles calculations based on the
harmonic approximation applied to dense hydrogen [5—8]
and several hydrides [9—15]. More recently, two theoretical
papers predicted the occurrence of high-7',. superconduc-
tivity in high-pressure sulfur hydrides [16,17]. However, as
shown in Refs. [18,19], anharmonicity can be crucial in
these systems. For example, in PdH, the electron-phonon
coupling A parameter is found to be 1.55 at the harmonic
level, while a proper inclusion of anharmonic effects leads
to 4 =0.40 [18], in better agreement with experiments.
Thus, in hydrogen-based compounds, the phonon spectra
are strongly affected by anharmonic effects.

Given the sensitivity of superconductivity to the physical
and electronic structures, it is extremely important to
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identify the correct crystal structures (see, for example,
the early discussion of superconductivity in silane in
Ref. [15], and one of the first applications of first-principles
structure prediction in Ref. [20]). Several first-principles
calculations [16,17,21-23] suggested that decomposition
of the H,S sample occurs within the diamond-anvil cell at
high pressures. The high-7". superconducting material is
therefore very unlikely to be H,S, while H;S is the obvious
candidate for the H-rich decomposition product.

Here we study the structural, vibrational, and super-
conducting properties of H,S above 200 GPa, where the
highest 7', occurs. We show that the inclusion of zero-point
motion in the convex hull at 200 and 250 GPa stabilizes two
metallic structures, H;S and HS,. Finally, we show that,
contrary to suggestions in previous work [16,21], the
harmonic approximation does not explain the measured
T. in H3S, and the inclusion of anharmonic effects is
crucial.

As decomposition of H,S has been demonstrated in the
experiments of Ref. [3], it is crucial to develop an under-
standing of the different H-S compounds that might be
stable in the pressure range of interest. We therefore
perform a search over 44 H:S stoichiometries, determining
the stoichiometries at which stable structures exist, and the
associated crystal structures. These searches were per-
formed with the ab initio random structure searching

© 2015 American Physical Society
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FIG. 1 (color online). Results of structure searching at 200 and
250 GPa. Convex hulls are shown as continuous lines, with and
without the inclusion of zero-point energy (ZPE).

(AIRSS) method [20,24] and the CASTEP code [25], and the
CALYPSO particle-swarm optimization method [26,27] and
the VASP code [28,29]. More information about the searches
is provided in the Supplemental Material [30].

The results of the structure searching are shown in Fig. 1.
At 200 GPa, without zero-point energy (ZPE), the only
energetically allowed decomposition is 3H,S — 2H;S + S,
in agreement with previous calculations [16,21,22,34]. H3S
crystallizes in the space group Im3m, as shown in Ref. [16].
When ZPE is included, a second decomposition becomes
possible at 200 GPa, namely SH,S — 3H;S + HS,, where
HS, crystallizes in a structure of space group C2/c with
12 atoms/cell. At 250 GPa and above, the latter decom-
position is allowed even without ZPE, and the C2/c HS,
structure undergoes a phase transition to a more stable
C2/m structure with 6 atoms/cell. Each of the HS,
structures is metallic. Finally, at 300 GPa, a metallic HS
phase with C2/m space group becomes stable [30].
Detailed information on the crystal structures is provided
in the Supplemental Material [30].

Having determined the most stable crystal structures at
high pressure, we turn to the study of vibrational properties
[35,36]. As summarized in Table I, the superconducting 7.
values obtained within the harmonic approximation for the
C2/c HS,, C2/m HS,, and C2/m HS phases are in the
range of 15 to 35 K (see Supplemental Material [30] for
phonon spectra and details of the calculations), far from the
observed extraordinary values. The measured 7'.’s could
not have occurred in any of these phases. Thus, we focus on
the Im3m H;S structure. In this structure, each H atom is
twofold coordinated and has 6 neighbors, 2 of which are S
atoms while the other 4 are H atoms. The H vibrations can

TABLE 1. Calculated 4, @, and T values in the harmonic
approximation for C2/c¢ HS,, C2/m HS,, and C2/m HS. T, is
estimated using the McMillan equation.

Phase P (GPa) 1wy (meV) 7 =010 gy p1'=016 (g
C2/c HS, 200 0.86 56.7 35.3 234
C2/m HS, 250 0.75 53.8 25.1 14.9
C2/m HS 300 0.78 74.3 38.0 234

then be decomposed into H—S bond-stretching modes (Hy)),
in which an H atom moves toward one of the two S atoms,
and bond-bending modes (H,), in which one H atom
moves in the direction perpendicular to the H—S bond (see
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FIG. 2 (color online). Phonon dispersion, phonon density of
states projected onto selected atoms and directions, and the
Eliashberg function of H3S in the harmonic approximation (top)
and with the inclusion of anharmonic effects (bottom) for H3S at
200 GPa. H, and Hj label displacements of an H atom in the
directions perpendicular or parallel to a H—S bond. The magni-
tude of the phonon linewidth is indicated by the size of the red
error bars.
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Fig. 1 in the Supplemental Material [30]). The harmonic
phonon spectrum of H;S at 200 GPa [39] is shown in Fig. 2
and overall shows a clear separation into H modes at high
energy and S modes below 75 meV. To gain more insight,
we use Wannier interpolation [40,41] of the electron-
phonon matrix elements and evaluate the electron-phonon
contribution to the phonon linewidth as [42]

4rmg,
Yaw = N—kq Z |g$lm (k, k + q) |25<€kn>5<8k+qm)' (l)

k.nm

Here, wg, are the phonon frequencies, N; the number of
electron-momentum points in the grid, ¢, (k,k +q) =
(kn|6Vgs/dug, |k +qm) is the electron-phonon matrix
element, Vg is the Kohn-Sham potential, and ug, is a
phonon displacement. The Kohn-Sham energy and eigen-
functions are labeled ¢y, and |kn). The electron-phonon
coupling at a given phonon-momentum ¢ for a phonon
mode v can be obtained [42] from the phonon linewidth
as lqy = {yqv/pﬂw%uN(O)]}'

As shown in Fig. 2, at the harmonic level, the phonon
linewidths of the H vibrations are fairly uniform throughout
the spectrum. The contribution of each mode to the average
electron-phonon interaction, A=), 44, /N, can be
obtained from the isotropic Eliashberg function,

1
*F(w) = Z—Nq;lqywqyé(w —y,), (2)

where N is the number of phonon-momentum points in the
grid. A(w) =2 [#[0’F(@')/@'|de’ and then 1 = A(o0). We
find 4 =2.64 (see Table II), which is larger than that
obtained in Refs. [16,21] with a much coarser sampling of
the BZ, but consistent with the result in Ref. [22]. This huge
value of 1 comprises substantial contributions from many H
vibrational modes. The situation is therefore very different
from MgB, in which a single mode dominates A.

Given the low mass of H and the consequent large
phonon displacements, we investigate the occurrence of
anharmonic effects using the stochastic self-consistent
harmonic approximation (SSCHA) developed by some
of us [18,19,43]. As shown in Fig. 2 (bottom), the
anharmonic correction leads to nontrivial changes in the

TABLE 1L

harmonic spectrum. While it is very clear that all H
bond-stretching modes are hardened, the effect on H
bond-bending modes is less straightforward. By computing
the average phonon frequency as of H and of H, modes,
we find that cbﬂaf ~ 158.1 meV and c?)*ﬁ“h ~203.3 meV,

while for bond-bending modes @' =~ 157.0 meV and
@™ ~ 147.9 meV. Thus bond-stretching modes are hard-
ened, while bond-bending modes are softened.

It is important to remark that the large and most
dispersive mode along PI' is strongly hardened at the
anharmonic level and undergoes a nontrivial change in
polarization, as can be seen from the large effect of
anharmonicity on the phonon linewidth y4, in Fig. 2. It
is worthwhile recalling that the phonon linewidth depends
on the phonon eigenvector but not on the phonon energy.
This effect demonstrates the need to calculate not only the
phonon frequencies at the anharmonic level, but also the
phonon polarizations.

The anharmonic electron-phonon interaction is 1 = 1.84,
which is 30% smaller than the harmonic result. This
reduction is mostly explained by the hardening of the
H;; modes. In contrast to the harmonic case, which shows
uniform coupling over all modes, the anharmonic
Eliashberg function has two main peaks, a broad peak in
the 40-75 meV region, and a second one in the 175—
200 meV region. Their contributions to 4 are 0.59 and 0.77,
respectively, accounting for ~73% of the total 2. We note,
however, that the logarithmic average of the phonon
frequencies my,, is only weakly enhanced by anharmonicity
(see Table II).

The superconducting critical temperature can be
obtained either from the McMillan equation or the isotropic
Migdal-Eliashberg approach. However, it is well known
[44] that the use of the McMillan equation for such values
of 1 leads to a substantial underestimation of 7°.. We solved
the isotropic Eliashberg equations (see the Supplemental
Material [30]) and found, contrary to claims in previous
publications [16,21], that calculations based on the har-
monic phonon spectrum do not explain the measured 7', as,
even using large values of u* [45,46], T, is substantially
overestimated (i.e., 7. =250 K for u*=0.16 [30]).
When the anharmonic phonon spectrum and electron-
phonon coupling are used, the Migdal-Eliashberg equations
account for the experimental 7', when the value y* = 0.16

Electron-phonon interaction and logarithmic averages of phonon frequencies, with and without

anharmonic effects. The T',’s are calculated using the isotropic Migdal-Eliashberg equations (TME). A value of
u* = 0.16 is used. Data for T calculated with the McMillan equation are provided in the Supplemental Material

[30]. Frequencies are in meV and 7'_.’s are in K.

Compound Ahar w{’g‘é Aznh ﬁ?; TME har T ME.anh T, (expt.)
H3S (200 GPa) 2.64 90.4 1.84 92.86 250 194.0 190
H3S (250 GPa) 1.96 109.1 1.71 101.3 226 190

DS (200 GPa) 2.64 68.5 1.87 73.3 183 152.0 90
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is used, as shown in Table II. The superconducting gap at
zero temperature is A= 36.5 meV. By using the
smaller value of p*=0.1, we obtain 7,.=222K
and A ~ 43 meV.

Interestingly, the large anharmonic effects lead to very
different variations in 7', with pressure. By performing the
harmonic electron-phonon calculation for the Im3m struc-
ture at 250 GPa and using the Migdal-Eliashberg equations
with p* = 0.16 we found T, =226 K, decreasing with
increasing pressure. However, at the anharmonic level, we
find T, = 190 K, essentially independent of pressure in the
region 200-250 GPa.

Finally, we consider the extent to which the occurrence
of large anharmonic effects can explain the isotope shift in
D,S. At 164 GPa, T.(D,S) = 90 K, leading to an isotope
coefficient a =~ 1.07, which is substantially enhanced from
the canonical BCS value of a = 0.5. Assuming a similar
decomposition of D,S into D5S and S at high pressures, we
calculate the anharmonic phonon spectrum (see the
Supplemental Material [30]) and electron-phonon coupling
in D3S at 200 GPa. We find at the anharmonic level that the
electron-phonon coupling is essentially unaffected, while
@y, 18 softened from 92.9 meV to 73.3 meV, leading to an
isotope coefficient of & = 0.35, which is strongly reduced
from the BCS value. Thus, contrary to the claim made in
Ref. [47], anharmonicity reduces a. As long as the same
crystal structure for H3S and DsS is considered, as
predicted by our calculation, the theoretical isotope coef-
ficient remains inconsistent with the value of a= 1.07
found in experiments. This disagreement could be recon-
ciled if in experiment kinetics stabilize different structures
for hydrides and deuterides at a given pressure. More
experimental data are necessary to clarify this issue.

We have studied the structural, vibrational, and super-
conducting properties of high-pressure H3S. We have
included zero-point motion when comparing the stabilities
of different H-S phases, which has been neglected in other
publications so far. This is important because zero-point
motion stabilizes a new phase at P > 200 GPa. In particu-
lar, we found that decomposition of HS, into metallic
phases can occur following two main paths, namely
3HQS g 2H3S + S and SHQS g 3H3S + H52 We have
performed a detailed study of the vibrational properties
of high-pressure H3S and DS, finding that the phonon
spectra are strongly affected by anharmonic effects.
Anharmonicity hardens H—S bond-stretching modes and
softens H—S bond-bending modes. Moreover, anharmo-
nicity leads to a reduction in the electron-phonon coupling
by ~30% and to an approximately constant 7', in the range
200-250 GPa. Our work demonstrates that the super-
conducting properties of high-pressure H3S can only be
properly described by including both nuclear quantum
effects and anharmonicity.
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