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Abstract. Segmentation of the placenta from fetal MRI is critical for
planning of fetal surgical procedures. Unfortunately, it is made difficult
by poor image quality due to sparse acquisition, inter-slice motion, and
the widely varying position and orientation of the placenta between preg-
nant women. We propose a minimally interactive online learning-based
method named Slic-Seg to obtain accurate placenta segmentations from
MRI. An online random forest is first trained on data coming from scrib-
bles provided by the user in one single selected start slice. This then
forms the basis for a slice-by-slice framework that segments subsequent
slices before incorporating them into the training set on the fly. The pro-
posed method was compared with its offline counterpart that is with no
retraining, and with two other widely used interactive methods. Experi-
ments show that our method 1) has a high performance in the start slice
even in cases where sparse scribbles provided by the user lead to poor
results with the competitive approaches, 2) has a robust segmentation
in subsequent slices, and 3) results in less variability between users.

1 Introduction

The placenta plays a critical role in the health of the fetus during pregnancy.
Abnormalities in the placental vasculature such as occur in twin-to-twin trans-
fusion syndrome (TTTS) [4], can result in unequal blood distribution and a poor
outcome or death for one or both twins. Placenta accreta, which is caused by
an abnormally adherent placenta invading the myometrium, increases the risk of
heavy bleeding during delivery. Minimally-invasive fetoscopic surgery provides
an effective treatment for such placental abnormalities, and surgical planning is
critical to reduce treatment-related morbidity and mortality.

With advantages such as large field of view, lack of ionizing radiation and
good soft tissue contrast, Magnetic Resonance Imaging (MRI) is widely used
for general surgical planning, but high-quality MRI for a fetus is difficult to
achieve, since the free movement of the fetus in the uterus can cause severe
motion artifacts [7]. The Single Shot Fast Spin Echo (SSFSE) allows the motion
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(a) axial view (b) saggital view (c) coronal view (d) axial view

Fig. 1. Examples of fetal MRI. (a), (b) and (c) are from one patient while (d) is from
another. Note the motion artifacts and different appearance in odd and even slices in
(b) and (c). The position of the placenta is anterior in (a), but posterior in (d).

artifacts to be nearly absent in each slice, but inter-slice motions still corrupt
the volumetric data. The slices are acquired in an interleaved spatial order,
which leads to different appearance between odd and even slices as shown in
Fig. 1. In addition, fetal MRI is usually sparsely acquired with a large inter-slice
spacing for a good contrast-to-noise ratio. Although some novel reconstruction
techniques [5] can get super-resolution volume data of fetal brain from sparsely
acquired slices, they have yet to demonstrate their utility for placental imaging
and require a dedicated non-standard acquisition protocol. These factors bring
several challenges to the segmentation of the placenta from clinical MR data.

The low-quality volumetric data with high-quality slices motivates employ-
ing 2D segmentation methods with a slice-by-slice strategy. Automatic meth-
ods rarely work well with medical images due to ambiguous appearance cues.
Prior-knowledge brought from different patients in the form of shape/appearance
models or propagated atlases [6] may help make the segmentation more robust,
but the position and orientation of the placenta within the uterus varies greatly
between pregnancies (see Fig. 1(a) and Fig. 1(d)), making it hard to model
such statistical prior-knowledge. In contrast, interactive segmentation has been
widely used in practice, where scribbles given by user provide useful information
for accurate segmentation. A convenient interactive method should make full
use of scribbles to get accurate segmentation with only a few number of user
interactions. Traditional methods such as snakes or generalized gradient vector
flow (GGVF) [10] use only the spatial information of an initial contour provided
by the user, others such as Graph Cuts [2] and Geodesic Framework [1, 3] take
advantage of low level features to estimate the probability that a pixel belongs
to the foreground or background.

In this paper, we propose a learning-based semi-automatic approach named
Slic-Seg for segmentation of the placenta in fetal MRI. It is different from tra-
ditional interactive segmentation methods in the following ways: 1) It aims to
make full use of user inputs to improve the accuracy and reduce number of user
interactions. 2) Online Random Forest (RF) is employed for effective learning
based on mid-level features, allowing the training set to be expanded on the fly.
As a result, the method can achieve a high performance with a minimal number
of user inputs.
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Fig. 2. The workflow of our Slic-Seg framework. User interaction is only required in
the start slice. Other slices are segmented sequentially and automatically.

2 Methods

The workflow of our proposed Slic-Seg is shown in Fig. 2. A user selects a
start slice and draws a few scribbles in that slice to indicate foreground and
background. Online RF efficiently learns from these inputs and predicts the
probability that an unlabeled pixel belongs to foreground or background. That
probability is incorporated into a Conditional Random Field (CRF) to get the
segmentation result based on which new training data is automatically obtained
and added to the training set of RF predictor on the fly. To get the segmentation
result from a volumetric placenta data, other slices are segmented sequentially
and automatically without more user interactions.

Preprocess and Feature Extraction. Odd and even slices are rigidly aligned
together to correct the motion artifacts, and histogram matching is implemented
to address the different contrast between slices. For each pixel, features are ex-
tracted from a 9×9 pixel region of interest (ROI) centered on it. In each ROI,
we extract gray level features including mean and standard deviation of inten-
sity, texture features acquired by gray level co-occurrence matrix (GLCM) and
wavelet coefficient features based on Haar wavelet.

Online Random Forests Training. A Random Forest [9] is a collection of
binary decision trees composed of split nodes and leaf nodes. The training set
of each tree is randomly resampled from the entire labeled training set (label
1 for the placenta and label 0 for background). At a split node, a binary test
is executed to minimize the uncertainty of the class label in the subsets based
on Information Gain. The test functions are of the form f(x) > θ, where x is
the feature vector of one sample, f(·) is a linear function, and θ is a threshold.
At a leaf node, labels of all the training samples that have been propagated to
that node are averaged, and the average label is interpreted as the posterior
probability of a sample belonging to the placenta, given that the sample has
fallen into that leaf node.
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The training data in our application is obtained in one of two ways according
on segmentation stage. For the start slice, training data comes from the scrib-
bles provided by the user. During the propagation, after one slice is segmented,
skeletonization of the placenta was implemented by morphological operators,
and the background is eroded by a kernel with a certain radius (e.g., 10 pixels).
New training data is obtained from the morphological operation results in that
slice and added to existing training set of RF on the fly. To deal with online
training, we use the online bagging [8] method to model the sequential arrival
of training data as a Poisson distribution Pois(λ) where λ is set to a constant
number. Each tree is updated on each new training sample k times in a row
where k is a random number generated by Pois(λ).

Online Random Forests Testing. During the testing, each pixel sample x
is propagated through all trees. For the nth tree, a posterior probability pn(x)
is obtained from the leaf that the test sample falls into. The final posterior is
achieved as the average across all the N trees.

p(x) =
1

N

N∑
n=1

pn(x) (1)

Inference using Conditional Random Field. In the prediction of RF, the
posterior probability for each pixel is obtained independently and it is sensitive
to noise. To reduce the effect of noise and obtain the final label set for all the
pixels in a slice, a CRF is used for a global spatial regularization. The label set
of a slice is determined by minimizing the following energy function:

E(c) = −α
∑
i

Ψ(ci|xi, I)−
∑
i,j

Φ(ci, cj |I) (2)

where the unary potential Ψ(ci|xi, I) is computed as log p(ci|xi, I) for assigning
a class label ci to the ith pixel in a slice I, and p comes from the output of
RF. The pairwise potential Φ(ci, cj |I) is defined as a contrast sensitive Potts
model φ(ci, cj ,gij) [2] where gij measures the difference in intensity between
the neighboring pixels and can be computed very efficiently. α is a coefficient to
adjust the weight between unary potential and pairwise potential. The energy
minimization is solved by a max flow algorithm [2]. A CRF is used in every slice
of the volumetric image, and after the propagation, we stack the segmentation
of all slices to construct the final volumetric segmentation result.

3 Experiments and Results

Experiment Data and Setting. MRI scanning of 6 fetuses in the second
trimester were collected. For each fetus we had two volumetric data in differ-
ent views that were used independently: 1), axial view with slice dimension
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User-provided Foreground User-provided Background Segmentation Result Ground Truth 

Slic-Seg Scribbless Geodesic Framework Graph Cut Slic-Seg Scribbles Geodesic Framework Graph Cut 

Fig. 3. Visual comparison of segmentation in the start slice by different methods. Upper
left: user inputs are extensive, all methods result in a good segmentation. Lower left:
user inputs are reduced in the same slice, only Slic-Seg perserves the accuracy. Right:
two more examples show Slic-Seg has a better performance than Geodesic Framework
and Graph Cut with only a few user inputs.

512×448, voxel spacing 0.7422 mm×0.7422 mm, slice thickness 3mm. 2) sagit-
tal view with slice dimension 256×256, voxel spacing 1.484mm×1.484mm, slice
thickness 4mm. A start slice in the middle region of the placenta was selected
from each volumetric image, and 8 users provided scribbles in the start slice. A
manual ground truth for each slice was produced by an experienced radiologist.
The algorithm was implemented in C++ with a MATLAB interface. Parameter
setting was: λ=1, N=20, α=4.8. We found the segmentation was not sensitive
to α in the range of 2 to 15 (see supplementary). The depth of trees was 10.

Results and Evaluation. We compared Slic-Seg with two widely used inter-
active segmentation methods: Geodesic Framework1 of Bai and Sapiro [1] and
Graph Cut [2]. Fig. 3 shows four examples of interactive segmentation in the
start slice. In each subfigure, the same scribbles were used by different segmen-
tation methods. On the left side of Fig. 3, the same slice was used with different
scribbles. In the upper left case, scribbles provided by the user almost roughly
indicate the boundary of the placenta, and all of the three methods obtain good
segmentation results. In the lower left case, scribbles are reduced to a very small
annotation set, Geodesic Framework and Graph Cut fail to preserve their perfor-
mance, but Slic-Seg can still get a rather accurate segmentation. Two more cases
on the right of Fig. 3 also show Slic-Seg can successfully segment the placenta
using only a few number of scribbles.

In the propagation, the above three methods used the same morphological
operations as mentioned previously to automatically generate foreground and
background seeds for a new slice. In addition, we compared Slic-Seg with its
offline counterpart where only user inputs in the start slice were used for training
of an offline RF. Fig. 4 shows an example of propagation by different methods
with the same user inputs in the start slice. Si represents the ith slice following

1 Implementation from: http://www.robots.ox.ac.uk/∼vgg/software/iseg/
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Fig. 4. Propagation of different methods with the same start slice and scribbles. Si

represents the ith slice following the start slice. User provided scribbles in S0 are
extensive and all methods have a good segmentation in that slice. However, during the
propagation, only Slic-Seg keeps a high performance. (More slices are shown in the
supplementary video)

the start slice. In Fig. 4, though a good segmentation is obtained in the start
slice due to an extensive set of scribbles, the error of Geodesic Framework and
Graph Cut become increasingly large during the propagation. In a slice that is
close to the start slice (e.g. i ≤ 9), offline Slic-Seg can obtain a segmentation
comparable to that of Slic-Seg. When a new slice (e.g. i ≥ 12) is further away
from the start slice, offline Slic-Seg fails to track the placenta with high accuracy.
In contrast, online Slic-Seg has a stable performance during the propagation.

Quantitative evaluation was achieved by calculating the Dice coefficient and
symmetric surface distance (SSD) between segmentation results and the ground
truth. Fig. 5 shows the Dice coefficient and SSD for each slice in one volumetric
image (the same image as used in Fig. 4). For each slice, we use error bars to
show the first quartile, median and the third quartile of the Dice coefficient and
SSD. Fig. 5 shows that Slic-Seg has a better performance in the start slice and
during the propagation than offline Slic-Seg, Geodesic Framework and Graph
Cut. The less dispersion of Slic-Seg indicates its less variability between users.
Fig. 6 shows the evaluation results on data from all the patients. We present
Dice and SSD in both the start slice and the whole image volume.

Discussion. The experiments show that Slic-Seg using RF, CRF and segmen-
tation propagation has better performances in the start slice and during prop-
agation than Geodesic Framework and Graph Cut. This is due to the fact that
the last two methods use low level appearance features to model placenta and
background, which may not be accurate enough in fetal MRI images with poor
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Fig. 5. Evaluation on one image volume in terms of Dice (left) and SSD (right) in each
slice (evaluation on other image volumes can be found in the supplementary). Each
error bar shows the median, first quartile and third quartile across all the 8 users, each
of which segmented the image twice with different scribbles. Note that Slic-Seg has a
high accuracy in the start slice and during the propagation, with low variability among
different users.

Fig. 6. Evaluation on data from all the 6 patients (each having 2 orthogonal datasets)
in terms of Dice (left) and SSD (right) in the start slice and the whole image volume.
Each of 8 users segmented these images twice with different scribbles. Note Slic-Seg and
offline Slic-Seg get the same result in the start slice. Slic-Seg has a high performance
with less variability in both the start slice and the whole image volume. The p value
between Slic-Seg and offline Slice-Seg on the image volumes is 0.0043 for Dice, and
0.0149 for SSD.

quality. In contrast, the RF in our method uses mid-level features of multiple
aspects including intensity, texture and wavelet coefficients, which may provide
a better description of the differences between the placenta and background.
Because the appearance of the placenta in a remote slice could be different from
that in the start slice, the offline RF that only uses user-provided scribbles for
training may give a poor prediction after propagating along several slices. The
online RF that accepts sequentially obtained training data addresses this prob-
lem and is adaptive to the appearance change, which leads to a more robust
segmentation during the propagation. The short error bars of Slic-Seg in Fig. 5
and Fig. 6 indicate that the performance of this method has a low variability
among different users. Though our method requires user interactions only in the
start slice, it could allow user corrections with some additional scribbles when
the segmentation propagates to terminal slices. Since it needs fewer user interac-
tions and allows the training data to be expanded efficiently, the segmentation
can be conveniently improved with little additional user efforts.
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4 Conclusion

We present an interactive, learning-based method for the segmentation of the
placenta in fetal MRI. Online RF is used to efficiently learn from mid-level
features describing placenta and background, and it is combined with CRF for
labelling. The slice-by-slice segmentation only requires user inputs in a start
slice, and other slices are segmented sequentially and automatically to get a
volumetric segmentation. Experiments show that the proposed method achieves
high accuracy with minimal user interactions and less variability than traditional
methods. It has a potential to provide an accurate segmentation of the placenta
for fetal surgical planning. In the future, we intend to combine sparse volumetric
data in different views for a 3D segmentation.
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