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Abstract 58 

The Convention on Biological Diversity’s strategic plan lays out five goals: “(A) 59 

address the underlying causes of biodiversity loss by mainstreaming biodiversity 60 

across government and society; (B) reduce the direct pressures on biodiversity 61 

and promote sustainable use; (C) improve the status of biodiversity by 62 

safeguarding ecosystems, species and genetic diversity; (D) enhance the benefits 63 

to all from biodiversity and ecosystem services; (E) enhance implementation 64 

through participatory planning, knowledge management and capacity building.” 65 

To meet and inform on the progress towards these goals, a globally coordinated 66 

approach is needed for biodiversity monitoring that is linked to environmental data 67 

and covers all biogeographic regions. During a series of workshops and expert 68 

discussions, we identified nine requirements that we believe are necessary for 69 

developing and implementing such a global terrestrial species monitoring 70 

program. The program needs to design and implement an integrated information 71 

chain from monitoring to policy reporting, to create and implement minimal data 72 

standards and common monitoring protocols to be able to inform Essential 73 

Biodiversity Variables (EBVs), and to develop and optimize semantics and 74 

ontologies for data interoperability and modelling. In order to achieve this, the 75 

program needs to coordinate diverse but complementary local nodes and 76 

partnerships. In addition, capacities need to be built for technical tasks, and new 77 

monitoring technologies need to be integrated. Finally, a global monitoring 78 

program needs to facilitate and secure funding for the collection of long-term data 79 

and to detect and fill gaps in under-observed regions and taxa. The 80 

accomplishment of these nine requirements is essential in order to ensure data is 81 

comprehensive, to develop robust models, and to monitor biodiversity trends over 82 

large scales. A global terrestrial species monitoring program will enable 83 

researchers and policymakers to better understand the status and trends of 84 

biodiversity. 85 

 86 

Keywords: Convention on Biological Diversity; Essential Biodiversity Variable; Group 87 

of Earth Observation Biodiversity Observation Network; GEO System of Systems; 88 

modelling framework; policy support 89 
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 90 

Abbreviations1 91 

  92 

                                                 
1 BON = Biodiversity Observation Network, LTER = Long-term Ecological Research 
(http://www.lternet.edu/), GBIF = Global Biodiversity Information Facility, CBMP = 
Circumpolar Biodiversity Monitoring Program, BISE = Biodiversity Information 
System for Europe (http://biodiversity.europa.eu/), PPBIO = Programa de Pesquisa 
em Biodiversidade (http://ppbio.inpa.gov.br/en/home), TEAM = Tropical Ecology & 
Assessment Monitoring network (http://www.teamnetwork.org/), NEON = National 
Ecological Observatory Network (http://www.neoninc.org/), IPBES = the 
Intergovernmental Panel for Biodiversity and Ecosystem Services, EPBRS = the 
European Platform for Biodiversity Research Strategy, IUCN = International Union for 
Conservation of Nature, GEOSS = Group of Earth Observation System of Systems, 
GEO BON = Group of Earth Observation Biodiversity Observation Network, EBV = 
Essential Biodiversity Variables, GEO = Group of Earth Observation; IPBES = 
Intergovernmental Panel for Biodiversity and Ecosystem Services, CBD = 
Convention on Biological Diversity, CMS = Convention on the Conservation of 
Migratory Species of wild animals, UNEP = United Nations Environment Programme 
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Introduction 93 

 The Convention on Biological Diversity’s (CBD’s) Strategic Plan for 94 

Biodiversity 2011–2020 envisages that “by 2050, biodiversity is valued, conserved, 95 

restored and wisely used, maintaining ecosystem services, sustaining a healthy 96 

planet and delivering benefits essential for all people”. Although 193 parties have 97 

adopted these goals, there is little infrastructure in place to collect the biodiversity 98 

information necessary to monitor progress towards the objectives of the Strategic 99 

Plan for Biodiversity (http://www.cbd.int/sp/targets/). Current international 100 

conservation policy requires biodiversity data to be current, reliable, comparable 101 

among sites, relevant, and understandable, as is becoming obvious from the work 102 

plan adopted by the Intergovernmental Panel for Biodiversity and Ecosystem 103 

Services (IPBES: www.ipbes.net/; http://tinyurl.com/ohdnknq) and from recent 104 

assessments of the international biodiversity targets (Butchart et al. 2010; Tittensor et 105 

al. 2014). Coordinated large-scale biodiversity monitoring linked to environmental 106 

data is needed for a comprehensive Global Observation Network that can meet the 107 

five strategic goals of the Strategic Plan for Biodiversity and its 20 accompanying 108 

Aichi Targets for 2020. This is the main motivation of the biodiversity axes of the 109 

Global Earth Observation System of Systems (GEOSS) (Christian 2005), which 110 

includes the Group of Earth Observation’s Biodiversity Observation Network of the 111 

(GEO BON; Scholes et al. 2012). 112 

 The ultimate goal of a global biodiversity monitoring network is the timely 113 

delivery of adequate and defensible biodiversity data to inform conservation policy, 114 

using robust indicators to demonstrate the state of biodiversity, pressures on it, and 115 

responses to those pressures (Chiarucci et al. 2011). Biodiversity can be quantified 116 

at different levels of biological organization (i.e. from the molecular to the ecosystem 117 

level), but species diversity and abundance still represent the most intuitive and 118 

widely used measures of biodiversity (Butchart et al. 2010; Colwell & Coddington 119 

1994; Tittensor et al. 2014). That is because these two measures are both ecological 120 

and evolutionary measures and strongly positively correlated with other levels of 121 

biodiversity organization, such as genetic diversity and ecosystem functioning 122 

(Pereira & Cooper 2006). 123 
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 Any local monitoring program should acknowledge that monitoring data need 124 

to be collated at different scales, including the global scale, to be able to inform about 125 

trends, status and changes of biodiversity and to have a representative overview of 126 

environmental gradients in different areas of the world and for all taxonomic groups 127 

(Collen et al. 2011). For these purposes, monitoring standards would need to be 128 

followed and data harmonization is needed to allow easy data collation from different 129 

data sources. Aggregation is important because changes in individual species or 130 

sites are often only symptoms of regional or global changes, while a global 131 

monitoring scheme needs to consider the larger context (Collen et al. 2011). GEO 132 

BON has adopted these goals (Scholes et al. 2012) and has established an 133 

international group of experts to develop a global monitoring network. Within this 134 

initiative, one of the working groups of GEO BON aims to develop a global terrestrial 135 

species monitoring program (Pereira et al. 2010a).  136 

 Monitoring programs should be aware that data need to be condensed into 137 

summaries and indicators that are understandable by multiple user groups and useful 138 

for policy development (e.g. the Intergovernmental Panel for Biodiversity and 139 

Ecosystem Services (IPBES), the European Platform for Biodiversity Research 140 

Strategy (EPBRS), the Convention on Biological Diversity (CBD), the United Nations 141 

Environment Programme (UNEP), etc.), but also made available to research to 142 

address conservation questions across geographic and temporal scales (Magnusson 143 

et al. 2013; Henle et al. 2014).   144 

 GEO BON is closely cooperating with regional biodiversity observation 145 

networks (i.e. Arctic BON, EU BON, Asia-Pacific BON) to develop a framework to 146 

form a basis for global biodiversity monitoring focused on a set of ecologically 147 

relevant variables known as Essential Biodiversity Variables (EBVs) (Pereira et al. 148 

2013). These EBVs act as an intermediate, integrative layer between indicators and 149 

raw biodiversity data. They allow for the averaging of trends of multiple species 150 

across multiple locations, and their measurement captures ongoing changes in the 151 

status of biodiversity. The EBVs can serve as a framework for biodiversity data 152 

integration by identifying how variables should be sampled and measured, by helping 153 

observation communities harmonize monitoring efforts, and by providing useful 154 

summary statistics of changes in biodiversity (Pereira et al. 2013). 155 
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 One motivation for pursuing the EBV framework is to align disparate 156 

monitoring efforts with a community-derived set of priority measures. By identifying 157 

which variables should be monitored and providing the necessary guidelines for 158 

sampling and data recording, the EBVs are the first step in setting a framework for 159 

biodiversity data integration and modelling. This is of particular importance, as we 160 

currently lack a comprehensive understanding of biodiversity responses to change, 161 

especially at global scales (Lenoir et al. 2010; Pereira et al. 2012). Although it is 162 

possible to detect the response of some taxa to drivers of change at regional scales 163 

(e.g. birds and butterflies in Europe: Devictor et al. 2012; Thomas et al. 2004), most 164 

of the knowledge of response mechanisms or processes that is used to construct and 165 

parameterize more mechanistic process-based predictive models is from studies 166 

conducted at very local scales. Local measures of biodiversity responses are usually 167 

extrapolated to larger scales with the assumption that species will respond equally 168 

across their range (Henle et al. 2014). However, species response mechanisms can 169 

differ locally due to complex biotic and abiotic interactions (Gilman et al. 2010; 170 

Tylianakis et al. 2011) and therefore produce spatially heterogeneous patterns of a 171 

response to changes (e.g. along an elevation or latitudinal gradient: Chen et al. 2011; 172 

Devictor et al. 2012) as well as in community composition and turn-over (e.g. decline 173 

of ‘cold’ specialist species versus increase in ‘warm’ generalist species: Devictor et 174 

al. 2012; Juillard et al. 2006). 175 

 One goal of a global terrestrial species monitoring scheme under GEO BON is 176 

to foster effective coordination among existing monitoring programs. This is because 177 

biodiversity monitoring has historically lacked coordination and integration (Marsh & 178 

Trenham 2008; Schmeller 2008a). There are many different initiatives that 179 

collectively could make a greater contribution to global biodiversity monitoring than 180 

can the sum of their individual parts, but currently do not. Each of the following types 181 

of programs could potentially contribute to this goal: (i) short-term monitoring 182 

programs targeted at impact assessment and mitigation (e.g. GLOBE: 183 

http://ecotope.org/projects/globe/), (ii) long-term study sites and networks that 184 

monitor a suite of organisms (e.g. Long-term Ecological Research (LTER), the 185 

National Ecological Observatory Network (NEON), the Tropical Ecology Assessment 186 

& Monitoring network (TEAM)), (iii) programs organized by taxa (e.g. North American 187 
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and European breeding bird surveys, butterfly monitoring programs, species-specific 188 

monitoring programs), (iv) regional, state and national systematic inventory and 189 

monitoring programs (e.g. inventories of trees and vascular plants by national forest 190 

and park services, and the New Zealand Department of Conservation’s Biodiversity 191 

Monitoring and Reporting System, http://tinyurl.com/k5en8ws), and (v) citizen science 192 

monitoring initiatives (e.g. Global Amphibian Bio-Blitz: 193 

http://www.inaturalist.org/projects/global-amphibian-bioblitz; a Ver Aves: 194 

http://averaves.org/; Great Backyard Bird Count: http://gbbc.birdcount.org/; see also 195 

Donnelly et al. 2013; Schmeller et al. 2009; Fig. 1). 196 

 Since 2009, the GEO BON working group on terrestrial species monitoring has 197 

conducted a range of workshops, teleconferences, and expert discussions to 198 

elaborate on the best ways to develop a global terrestrial species monitoring scheme. 199 

Here we present the outcome of these efforts and identify nine requirements that are 200 

important for the successful implementation of a global terrestrial species monitoring 201 

program:  202 

1. Designing and implementing an integrated information chain from 203 

monitoring to policy reporting 204 

 A global terrestrial species monitoring program should coordinate and 205 

integrate global data and metadata collection, survey design (both sampling 206 

strategies and field protocols), data storage and access, computation and modelling 207 

of biodiversity indicators, and dissemination of policy-relevant reports in a 208 

comprehensive framework (Fig. 1). This integrated approach is required precisely 209 

because many previous attempts to coordinate biodiversity monitoring schemes have 210 

failed (for the European monitoring landscape, see Schmeller 2008a). Moreover, 211 

many previous biodiversity monitoring schemes have been limited by poor survey 212 

design, lack of data interoperability, inadequate plans for data storage and quality 213 

assessment, and lack of alignment between data and policy information needs (e.g. 214 

Yoccoz et al. 2001). 215 

2. Capacity-building to create a comprehensive spatial monitoring program 216 

 GEO BON Terrestrial Species will need to involve citizens, supported by 217 

professionals, to collect data, compute indicators, interpret trends, and implement 218 
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policy. However, current monitoring efforts are very unevenly distributed 219 

geographically (Amano & Sutherland 2013; Martin et al. 2012) and are biased 220 

towards particular taxa (Schmeller et al. 2009). Capacity building and standardized 221 

infrastructure are most critical in regions that have difficult access (Magnusson et al. 222 

2013:20). These information gaps in regard to geographic, temporal and especially 223 

taxonomic coverage, are well illustrated by the data used to report on the Wild Bird 224 

Index (e.g. Butchart et al. 2010), the Living Planet Index (Collen et al. 2008), the 225 

distribution of range-expanding species such as invasives (McGeoch et al. 2010), 226 

and the distribution of ecological field studies, including the network of LTER sites 227 

Metzger et al. 2010; Martin et al. 2012). The mismatch between where biodiversity is 228 

most abundant and diverse (the tropical regions) and where expertise and capacity is 229 

concentrated (the temperate zones) leaves research and policy largely uninformed 230 

about the status and trends of a large proportion of biodiversity. This includes 231 

targeting particular priority attributes or taxa, such as sites or species experiencing 232 

rapid species range contractions and expansions. There are tools that can aggregate 233 

and add value to local-scale monitoring programs by demonstrating broader-scale 234 

patterns (Arnquist & Wooster 1995; Karl et al. 2013). Monitoring efforts should 235 

encompass both range-expanding and range-contracting species (Gaston 2011). 236 

Capacity building in tropical regions is a major challenge, and GEO BON will facilitate 237 

this process by transferring expertise via training with lessons taken from existing 238 

research projects (e.g. BIOTA: Jürgens et al. 2012; PPBio: Magnusson et al. 2013) 239 

and fellowship programs (e.g. the Zoological Society of London’s EDGE, or the 240 

Conservation Leadership Program).  241 

A further challenge for capacity building in large-scale and long-term biodiversity 242 

monitoring is the management of Big Data (Hampton et al. 2013; Lacher et al. 2012). 243 

Although the collection, storage, and curation of monitoring data might remain 244 

decentralized, data processing, indicator development and policy-relevant reports are 245 

scale-dependent with regard to administrative, geographic, taxonomic and temporal 246 

scales (Henle et al. 2010, 2014). A global terrestrial monitoring program has to 247 

provide part of the infrastructure, guidelines and technical standards needed for 248 

successful implementation of biodiversity observation networks and monitoring 249 

programs. 250 
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3. Implementing minimal data standards to capture EBVs 251 

 Primary (raw) occurrence records, such as those stored in the Global 252 

Biodiversity Information Facility (GBIF), are currently insufficient for the development 253 

of EBVs, as only two EBVs (Species distributions and Community composition) can 254 

be informed by GBIF data. Observation or locality data on its own is not informative 255 

enough, as it does not give a timeframe over which a species has been sighted (e.g. 256 

five individuals of a species during one monitoring event). By adding an observation 257 

time (e.g. the maximum number seen simultaneously at one location), the information 258 

becomes much more valuable, as it can now be compared across sites and years (if 259 

the monitoring protocol is consistent and spatially explicit). Additional information is 260 

needed to link biodiversity data to habitat management practices, such as a measure 261 

of species assemblage, a standardized habitat description, a geo-referenced 262 

location, and other data on processes associated with biodiversity decline. In 263 

addition, occurrence or abundance records need to be used in the context of the 264 

relevant sampling framework and sampling design or else there is a risk that they are 265 

misused. 266 

 A biodiversity observation network (BON) needs to develop data collection and 267 

metadata standards for the different EBVs in order to promote the collection of data 268 

beyond the triplet species, location and date (Lindenmayer et al. 2012; Pereira et al. 269 

2013). Such data and databases must then be maintained as both functional and 270 

accessible, which is currently not always the case (Magnusson et al. 2013). Critical to 271 

creating value-added indicators from species-presence data is the addition of 272 

complementary information on species absences and places where a species was 273 

searched for, but not found. Checklist data aggregators, such as eBird are beginning 274 

to fill this gap for selected taxa. This is less of a problem for remote-sensing 275 

surrogates, but validation of the relationship between these surrogates and species 276 

and habitats they are meant to represent has only recently been started (Bunce et al. 277 

2013; Nagendra et al. 2013, see also Caro 2010). Without information on the amount 278 

of search effort that is required for registering a species’ presence, it is usually 279 

impossible to robustly evaluate trends in abundance or geographical occupation (but 280 

see Syfert et al. 2013; van Strien et al. 2013). 281 

4. Implementing common monitoring protocols 282 



11 

 

11 
 

 The adoption of common observation and monitoring protocols for new 283 

programs, together with assimilating existing ones (Allen et al. 2003; Henry et al. 284 

2008; Lengyel et al. 2008; Schmeller et al., 2009, 2012b), would foster data 285 

integration, data interoperability and indicator extraction. A shortlist of protocols 286 

needs to be developed by examining the feasibility and complementarity of what is 287 

currently implemented (Magnusson et al. 2013). From the outset, plans should be 288 

made for systems that will enable the estimation of frequencies of false absences 289 

and the probability of detection so that data can be integrated across observers and 290 

technologies (e.g. Buckland et al. 2010; MacKenzie et al. 2002). A minimum 291 

requirement would be the delivery of certain data types, such as the relative numbers 292 

of a species in a certain site at a particular date that can inform different EBVs and is 293 

compliant with data standards. Further, at least part of the sampling should cover the 294 

area of interest in a way that is as close to random sampling, including also stratified 295 

random sampling, to account for regional differences, and targeted sampling to 296 

consider rare species (Ortega et al. 2013). The sampling strategy employed must be 297 

feasible and not concentrated only where the species is expected to be (Gitzen & 298 

Millspaugh 2012; Gregory et al. 2004; Magnusson et al. 2013). 299 

5. Developing and optimizing semantics and ontologies for data 300 

interoperability 301 

 While adoption of common protocols would greatly increase the usability of 302 

biodiversity data, it is not practical for existing long-term monitoring programs to 303 

change methodologies, as long time-series using common methodologies are 304 

invaluable for detecting accurate trends in biodiversity status. Techniques for 305 

harmonizing data collected with disparate methodologies exist (e.g. Henry et al. 306 

2008), but sufficiently structured, machine-readable metadata are critical to this 307 

integration (Lin et al. 2015). For example, bird densities over much of boreal Canada 308 

have been estimated from multiple disparate data sources by explicitly modelling 309 

detection probabilities as functions of distance, duration, vegetation, and singing-310 

rates (Sólymos et al. 2013). Critical to this type of integration is the capacity to 311 

discover and filter data and metadata from primary sources (Walls et al. 2014). While 312 

there are methodological advances (e.g. Aizpurua et al. in press; Bird et al. 2014; 313 

Pagel et al. 2014;), biodiversity scientists capture and assemble data as well as the 314 
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semantics of the data in so many ways that it is still necessary to either improve 315 

existing approaches or develop new ones (Walls et al. 2014). Newer techniques, 316 

such as Natural Language Processing to extract names of species and places from 317 

text messages in a citizen science project, might make opportunistically collected 318 

data accessible to scientific analyses in the future (Lin et al. 2015). 319 

6. Integrating emerging technologies (monitoring, data management and 320 

analysis) 321 

 Technologies, such as remote sensing, camera trap networks (Rowcliffe et al. 322 

2008, 2011), soundscaping (Pijanowski & Farina 2011), drones (Anderson & Gaston 323 

2013, Koh & Wich 2012), copter-based transects, phenocams, and radio tracking can 324 

help automate standard observations, decrease long-term monitoring costs, increase 325 

the frequency of assessments, and extend coverage to remote places, although each 326 

comes at a cost and has its own strengths and weaknesses. Especially remote 327 

sensing is developing rapidly (Nagendra et al. 2013) and has the potential to rapidly 328 

increase the coverage of biodiversity monitoring in all realms and difficult to access 329 

ecosystems, e.g. using the L-band in mangrove monitoring (Ortega et al. 2013, Lucas 330 

et al. 2007; 2014). Metagenomics offers the possibility of non-invasive monitoring of 331 

whole assemblages, and data repositories are available for data collected that may 332 

be of use in the future. Adoption of new technologies is imperative to fill the huge 333 

monitoring gaps and to overcome current biases in monitoring coverage (Balmford et 334 

al. 2005; Collen et al. 2008). However, if not properly integrated into a 335 

comprehensive biodiversity observation network, the increasing amount of 336 

biodiversity data collected with high-tech tools may not benefit local and regional 337 

BONs. Developments in this sector are rapid (Ortega et al. 2013), and it is important 338 

to consider data comparability as many of the new techniques may soon be 339 

outdated, while the data collected with them is of high value. Employed effectively, 340 

high-tech biodiversity monitoring tools could boost biodiversity monitoring, both by 341 

complementing field-based surveys with desk-based analyses and by targeting 342 

different users and audiences. However, high-tech tools also generate large datasets 343 

that present challenges for storage and analysis (see above, capacity building 344 

needs).  345 

7. Coordinating diverse but complementary local nodes 346 
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 A global species monitoring network needs to offer a platform for dialogue 347 

between existing monitoring programs through fostering the coordination of efforts by 348 

regional and national biodiversity observation networks (e.g. Arctic BON, Asia–Pacific 349 

BON, BIOTA; national BONs: ECOSCOPE (France), Countryside survey (Great 350 

Britain), NEM (Netherlands), NILS (Sweden), PPBio (Brazil) ). It is important that 351 

these networks explore interoperability and identify opportunities for integration that 352 

will allow a global analysis of the state and trends of biodiversity and to detect 353 

globally relevant patterns. Such integration is challenging because monitoring 354 

programs and networks differ in spatial coverage (number of sites monitored), 355 

intensity of information (quantity of data collected per site), and frequency of 356 

coverage (number of times a site is visited in a survey period or per year, or between 357 

years). The various programs contribute differently to the description of patterns and 358 

processes of biodiversity, and are thus highly complementary, but harmonization 359 

might be achieved by global stratification to account for regional differences (Metzger 360 

et al. 2013). To track biodiversity trends at the global scale, it will be important to 361 

identify all under-studied regions and taxa. It would be further important to prioritize 362 

future capacity building efforts in those places using e.g. an approach of national 363 

responsibilities and global stratification (Schmeller et al. 2008b,c, 2012a, 2014; 364 

Metzger et al. 2013) or topical priorities (Henle et al. 2013). Protocols used for 365 

intensive studies usually differ from those used in wide-scale surveys. If a minimum 366 

set of common methods were used in both situations, it would greatly increase the 367 

possibilities for integrated analyses (Costa & Magnusson 2010, Magnusson et al. 368 

2013). A global monitoring program will need to facilitate this process via workshops 369 

and coordination on a global scale. 370 

8. Providing a common predictive modelling framework 371 

 To develop global-scale models with greater predictive power, GEO BON 372 

Terrestrial Species advocates a common modelling framework. Traditional modelling 373 

approaches are insufficient for modelling changes in ecological systems reliably 374 

(Sutherland 2006). Non-linear, ‘tipping point’, or complex feedback loops are 375 

currently the biggest limitations for most modelling approaches for extrapolating 376 

conditions in time and space beyond the boundaries of current knowledge (Evans et 377 

al. 2012, 2013; Pereira et al. 2010b; Polasky et al. 2011). A variety of methods have 378 
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been developed for optimizing biodiversity monitoring practices in terms of survey 379 

design (e.g. of sampling methods and frequency) by identifying the most strategic 380 

alternatives that allow for accurately detecting and tracking changes while minimizing 381 

efforts and resources (e.g. Lindenmayer & Possingham 1996). Also, the more 382 

recently developed predictive mechanistic process-based models, relating different 383 

variables and/or different spatial and temporal scales (e.g. Harfoot et al. 2014), rely 384 

on comprehensive biodiversity information. Extending the use of such predictive 385 

modelling approaches to larger spatial, temporal and taxonomic scales would be an 386 

essential element in defining the best practices for integrative biodiversity monitoring 387 

at the regional or global scale. However, we currently lack regional-to-global-scale 388 

datasets to calibrate and validate predictive models of change for each of the EBVs. 389 

An improved modelling framework, adoption of a suitable monitoring design, and 390 

optimized spatial coverage based on the parameter and data needs, would lead to 391 

reliable predictions and would help to prioritize conservation planning strategies 392 

(Gillson et al. 2013, Henle et al. 2013; Wilson et al. 2006). 393 

9. Facilitating and securing funding 394 

 A solid and long-term financial base is critical for maintaining the structures 395 

and institutions that generate, curate and interpret biodiversity data so that they are 396 

functional and effective over time. Policymakers and stakeholders must recognize 397 

that biodiversity data collection, storage and processing require funding. With 398 

strategic organization and coordination, global biodiversity monitoring can be cost-399 

effective (Targetti et al. 2014). Establishment of national, regional and global offices 400 

to coordinate biodiversity on the respective scales often necessitates startup funds 401 

for building informatics infrastructures and capacity where needed. Therefore, one of 402 

the goals of GEO BON Terrestrial Species is to engage policymakers in finding ways 403 

to fund biodiversity monitoring that can serve decision-making in the long-term. 404 

Discussion 405 

 Here, we have outlined nine requirements for the successful development of a 406 

global terrestrial species monitoring program. A global program is urgently needed, 407 

as currently most biodiversity data allow the measurement of a few aspects of 408 

biodiversity change only and we only partially understand the relation of biodiversity 409 
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change to environmental change, especially at global scales. While there are a 410 

number of programs monitoring biodiversity, for very disparate purposes and using a 411 

large variety of methods and approaches, integrating data from monitoring programs 412 

operating on local, regional, national and continental scales has generally not been 413 

achieved. A notable exception is the work on birds and butterflies in North America 414 

and in Europe (Butchart et al. 2010; Gregory & van Strien 2010; van Swaay et al. 415 

2008; Tittensor et al. 2014). More integrative biodiversity monitoring targets at global 416 

scales addressing multiple variables across e.g. the EBV framework, by prioritizing 417 

efforts using e.g. stratifications and matching complementary monitoring schemes 418 

are urgently needed. Critical thought needs to be given to design future biodiversity 419 

monitoring strategies in order to make sure that data collection can fill existing gaps 420 

in the comprehensiveness of biodiversity measurements (e.g. individual traits and 421 

functional interactions). For that, we also need systematic monitoring of biophysical 422 

parameters at biodiversity monitoring sites, which rarely occurs (but see e.g. NEON, 423 

PPBio). This disconnection undermines our ability to determine the causes and 424 

consequences of biodiversity loss, as models cannot be correctly parameterized 425 

(Magnusson et al. 2013). Hence, the nine requirements outlined here aim to lead to 426 

the integration of monitoring programs and would help to fill existing data gaps, to 427 

develop robust predictive models of future change scenarios, and to monitor 428 

biodiversity trends on large spatial scales. Such a comprehensive network might 429 

enable scientists and policymakers to better understand the status and trends of 430 

biodiversity and act accordingly with the interests of both nature and people in mind. 431 

Such a global effort is also important for assessing international progress in 432 

biodiversity conservation and progress towards agreed conservation targets, such as 433 

the Aichi targets of the CBD. While national, regional, and thematic BONs might 434 

serve their respective geographic scales best, GEO BON Terrestrial Species will 435 

need to focus on global and supraregional patterns and policies. The nine 436 

requirements identified here represent a pathway for achieving effective species 437 

monitoring on the global scale: our past experience has contributed to identify the 438 

main pitfalls targeted by each of these requirements. We believe that international 439 

organization and political willingness will be necessary to make the best of the 440 

already large but un-coordinated monitoring effort. Rather than simply a call for more 441 

funding, GEO BON Terrestrial Species calls for the improved coordination and policy 442 
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support at all scales necessary to improve efficiency of current spending on 443 

biodiversity monitoring. 444 
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Figure legends 775 

Figure 1: The steps from ‘local and national’ to ‘regional’ to ‘global’ scale biodiversity 776 

monitoring. Data from the different scales need to be integrated and curated across 777 

scales. These global datasets will be processed by GEO BON Terrestrial Species, 778 

modelled, and used to inform EBVs and key indicators. The resulting reports will then 779 

be disseminated to important stakeholders on a global scale. 780 
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