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ABSTRACT 

This PhD thesis is part of ongoing project to identify plant natural products and 

selected synthetic compounds that possess antimicrobial properties; and are able to 

promote plasmid loss or interfere with bacterial conjugation.   

The conjugative broad host plasmids investigated include PKM101 (Inc N), TP114 

(Inc I2), PUB307 (Inc P), and low- copy number plasmids: R6K (Inc X), R7K (Inc 

W) and R1-drd-19 (Inc F11). They represented the incompatibility plasmid groups 

that are currently associated with gross dissemination of antibiotic resistance in 

bacteria. A series of plant extracts evaluated at sub-inhibitory concentration of 100 

mg/L, were shown to inhibit bacterial plasmid conjugation and their active 

constituents were isolated and characterised. Mallotus philippinensis yielded rottlerin 

and red compound, with good to moderate antibacterial activity against multidrug 

resistant Staphylococcus aureus strains, and had a broad range inhibition against the 

resistant plasmids. Investigation of extracts from the resin of Cannabis sativa L. 

identified tetrahydrocannabinolic acid (THCA) and cannabinolic acid (CBNA) which 

in addition to two synthetic cannabinoids: cannabigerol and olivetol inhibited the 

conjugal transfer of TP114 between E. coli strains. The antiplasmid activities of ∆9-

THC, CBN, CBD, significantly reduced the transfer of amoxicillin–resistance 

conferring PKM 101. Methanolic extract from the dried fruits of Evodia rutaecarpa 

yielded evodiamine, rutaecarpine and naturally-isolated sucrose. Rutaecarpine was 

the most active alkaloid against NorA-expressing SA1199B and XU212 strain 

expressing TetK efflux mechanism. Evodiamine and sucrose had lesser antibacterial 

effect as well as low level of inhibition against the plasmids. Rutaecarpine and 

evocarpine remarkably reduced the transfer frequency of PKM 101, showing a high 
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level effect of inhibition by the compound. The bioassay-guided analysis of 

Capsicum annuum L. yielded capsaicin and dihydrocapsaicin (DHC) which 

demonstrated moderate antibacterial activities but inhibited conjugal transfer of R-

plasmids actively. Capsaicin exhibited a broad range antiplasmid activity while DHC 

showed selective inhibition. The effect of synthetic compounds that were assessed: 

ferulenol, 6-gingerol and 6-shogoal were twice as effective against the transfer of 

PKM 101, TP114 and PUB307 compared to capsaicin, while nonivamide had no 

remarkable activity. 

With the exception of promethazine, capsaicin and dihydrocapsaicin that showed 

some interaction with DNA due to decreased fluorescence which suggests binding, 

the rest of the compounds: rottlerin, red compound, ferulenol, evocarpine, 

rutaecarpine, 6-gingerol, 6-shogaol and nonivamide did not bind to DNA.  This may 

indicate other probable mechanism of antiplasmid action of the compounds.  

Together, some of these compounds were notable for their dual properties: robust 

antistaphylococcal activity and a broad host range antiplasmid effect, and are reported 

for the very first time. Such potentials are valuable in the discovery of next 

generation antimicrobial drugs.  

 



3 

 

CHAPTER ONE 

INTRODUCTION 

1.0 Antibiotic era 

The discovery and development of antibiotics took a leap over 60 years ago, with 

credit to Alexander Fleming in 1928 for the discovery of the β-lactam penicillin, a 

natural product which came into clinical use in 1944 (Saga and Yamaguchi 2009). 

The initial use of penicillin (Benzylpenicillinic acid, 1) led to the successful treatment 

and control of many infectious diseases; lethal wound infections, pneumonia, syphilis 

and with a positive impact on surgery and clinical practices that could not have been 

possible under the constant threat of infection (Bentley 2009). There was a significant 

decrease in morbidity and mortality rates with an overall increase in life expectancy. 

  

 

Later on, streptomycin (2), an aminoglycoside antibiotic was discovered, and since 

then, various classes of antibiotics both from synthetic and natural sources, have been 

developed, which are now widely used for the treatment of microbial diseases (Saga 

and Yamaguchi 2009). Soon after antibiotic introduction, many bacteria became 

1 2 
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resistant to the antibiotic treatment owing to either mutation or their acquisition of 

genes that conferred resistance to the antimicrobials (Sayyah et al., 2004; Ye et al., 

2011). Up until recent times, the problem of bacterial resistance to antibiotics has 

reached huge proportions, followed by the appearance of resistant organisms up to a 

point at which the value of the antibiotics as a therapeutic agent have often been 

severely undermined. 

1.1 Overview of current rise in bacterial resistance to antibiotics 

Soon after the introduction of penicillin into widespread use, the resistance of 

Staphylococcus aureus to penicillin was observed, and nowadays, the value is about 

80%. A similar pattern of resistance has been found with methicillin-resistant S. 

aureus (MRSA) and most antibiotics (Saga and Yamaguchi 2009). Resistance to 

classes of β-lactams were observed as well, examples included by S. pneumoniae to 

penicillin and Haemophilus influenzae to ampicillin. Ever since then, resistance to 

antibiotics continues to be a significant and growing medical problem across the 

globe,  accompanied with the compromised option of treating infections effectively, 

prolonged hospital stay, a high risk of complications and death, and overall increased 

costs of healthcare (Woodford and Livermore 2009).  

 

Current statistics of community outbreaks and hospital-acquired infections are 

underscored by multiresistant-MRSA and extremely- drug- resistant strains of 

Mycobacterium tuberculosis (XDR) or total-drug-resistant (TDR) strains of 

Mycobacterium tuberculosis (WHO 2013). Cases of Neisseria gonorrhoea resistance 

to ceftriaxone, as well as the rise of resistance of cefixime from 0% to 20% within the 

period 2005-2010 in the United Kingdom (Amabile-Cuevas 2013), have become 
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threatening while in the US, both cefixime or ceftriaxone at any single dose is no 

longer recommended as a first-line regimen treatment of gonococcal infections 

(Report 2012). Carbapenem-resistant Enterobacteriaceae (CRE), multidrug-resistant 

Pseudomonas aeruginosa and Acinetobacter, Clostridium difficile, and Klebsiella 

pneumoniae continue to undermine available treatments due to either resistant or 

nearly resistant strains in many hospitals (Davies and Davies 2010). Cases were 

reported by the US Center for Disease Control that mortality rates rose from 1.2% to 

4.2% over the decade from 2001 to 2011 associated with carbapenem-resistant 

infections, as well as Klebsiella compromised-treatments, which rose over the same 

time period from 1.6% to 10.4% (Prevention 2013)  Unfortunately, carbapenems 

remain the only potent broad-spectrum β-lactam antibiotics traditionally reserved for 

the treatment of the most serious infections. The occurrences of such problematic 

types of resistance to carbapenems therefore require urgent attention. Other serious 

emerging threats include drug-resistant Campylobacter, vancomycin-resistant 

Enterococcus (VRE), drug-resistant Salmonella typhi and non-typhoidal Salmonella, 

and vancomycin-resistant S.  aureus (VRSA) (Prevention 2013). 

 

Given the above examples, antibiotic resistance is featured as a foremost public 

health concern and ranked as a big risk as an agent of bioterrorism by Dame Dr Sally 

Davies, the UK Chief Medical Officer. Numerous actions have been set out to slow 

the development and spread of antibiotic resistance, for example the UK 

antimicrobial resistance 5 year (2013-2018) strategy (Department of Health 2013), 

the US CDC document on antibiotic resistance threats, and the recent concluded two-

day World Health Organisation (WHO) ministerial conference on a global call to take 

action on antimicrobial resistance, June 2014 (Organization 2014). These are 
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indicative of the magnitude of the situation, and advocate for a radical involvement of 

all levels of government and the community in the fight against bacterial drug 

resistance. 

1.2 Mechanisms of antibiotic resistance 

Resistance to all classes of antibiotics occurred after their use in the clinic or on the 

farm, by mutation or acquisition of resistance elements laterally from other 

microorganisms. Much evidence now supports that the source of resistance genes is 

the natural microbes which harbour the bacterial resistome; the collection of all 

resistance genes and their precursors in the both pathogenic and commensal bacterial 

populations (Wright 2012).  The increased body of knowledge on the mechanisms of 

resistance to all classes of antibiotics (Table 1), has provided awareness and insights 

into the basis of antibiotic resistance both at the molecular and biochemical/cellular 

levels of the bacterial cell (Gale E F 1972; Alekshun and Levy 2007). This is a vital 

tool in the attempt to salvage compromised antibiotic treatments in the healthcare 

system. Basically, bacteria possess the ability to evolve these mechanisms that thwart 

antibiotic action via multiple or single elements of the following:  

1. Alteration of drug target site. 

2. Enzymatic detoxification of antibiotics. 

3. Decreased drug accumulation. 

4. Antibiotic efflux systems.  

 They can possess one, more or all of these mechanisms simultaneously which is 

evident in most cases of intrinsic- and acquired-multidrug resistance in bacterial 

communities (Ferber 2003 ; Abraham and Chain 1988; Martinez 2012).  
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Table 1: Modes of action and resistance mechanisms of commonly used antibiotics (Davies and Davies 2010; Morar and Wright 2010) 

 

 

 

Antibiotic class Example(s) Target Mode(s) of resistance mechanism 

β-lactams  Penicillins (ampicillin), cephalosporins 

(cephamycin), penems (meropenem), 

monobactams (aztreonam) 

Peptidoglycan synthesis Hydrolysis, efflux, altered target 

Aminoglycosides Gentamicin, streptomycin, spectinomycin Translation Phosporylation, acetylation, 

nucleotidylation, efflux, altered target 

Glycopeptides Vancomycin, teicoplanin Peptidoglycan synthesis Reprogramming Peptidoglycan 

biosynthesis 

Tetracyclines Minocycline, tigecycline Translation Monoxygenation, efflux, altered target 

Macrolides Erythromycin, azithromicin Translation Hydrolysis, glycosylation, 

phosphorylation, efflux, altered target 

Lincosamides Clindamycin Translation Nucleotidylation, efflux, altered target 

Streptogramins Synercid Translation C-O lyase,(type B streptogramins, efflux, 

altered target 

Oxazolidinones Linezolid Translation Efflux, altered target 

Phenicols Chloramphenicol Translation Acetylation, efflux, altered target 

Quinolones Ciprofloxacin DNA replication Acetylation, efflux, altered target 

Pyrimidines Trimethoprim C1 metabolism Efflux, altered target 

Sulfonamides Sulfamethoxazole C1 metabolism Efflux, altered target 

Rifamycin Rifampin Transcription ADP-ribosylation, efflux, altered target 

Lipopepetides Daptomycin Cell membrane Altered target 

Cationic peptides Colistin Cell membrane Altered target 
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1.2.1 Intrinsic resistance 

Bacteria possess the inherent ability to become resistant to different classes of 

antibiotics, regardless of antibiotic selective pressure or the influence of horizontal gene 

transfer (Cox and Wright 2013a). A conventional example of intrinsic antibiotic 

resistance is the multi-drug resistant (MDR) phenotype exhibited by Gram-negative 

bacteria, which are insensitive to many classes of clinically effective antibiotics usually 

used in the treatment of Gram-positive bacteria. The molecular basis of this 

phenomenon is the presence of the Gram-negative outer membrane (OM), which is 

impermeable to many molecules, and the expression of numerous MDR efflux pumps 

that effectively reduce the intracellular concentration of the given drug (Nikaido 1994; 

Cox and Wright 2013b). Chromosomal mutation has triggered a number of resistant 

cases of organisms to antibiotics as seen in the rpoS mutation in E. coli  to β-lactams 

(LeClerc et al., 1996), ROS species and RecA mutations in E. coli and S. aureus to  β-

lactams, quinolone  and aminoglycosides (Gutierrez et al., 2013). However, this is a 

relatively rare event at a very low rate 10
-5

 to 10
-10

 per organism (Williams and 

Hergenrother 2008). The role of intrinsic resistance in Gram-negative bacteria is 

significantly becoming important to consider in the whole-targeted approach to 

overcoming antibiotic resistance in bacteria.  

   

1.2.2 Horizontal Gene Transfer (HGT) 

Horizontal gene transfer (HGT), also known as lateral gene transfer, refers to the 

movement of genetic information across normal mating barriers, between more or less 

distantly related organisms, thus differ from normal vertical transmission of genes from 

parent to offspring (Keeling and Palmer 2008). HGT, is the most frequent and 

responsible method for global and rapid dissemination of antibiotic resistance genes 
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among different bacterial species and genera, within the hospital and the community. 

The transfer can occur passively by transduction and transformation and actively by 

conjugation. Details of transfer of DNA to bacterial cells are represented in Figure 1, 

showing transduction (1), conjugation (2), and transposition (3) of mobile genetic 

cassettes. 

 

    Figure 1: Transfer of DNA to bacterial cells. (Frost, Leplae et al., 2005) 

Conjugation is generally considered to be an important mode of transfer of mobile 

genetic elements (plasmid, transposons and associated intergrons) compared to the 

other methods, and has heightened awareness of the great importance of horizontal gene 

transfer in genome evolution (Davies and Davies 2010).  
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1.3 Bacterial conjugation  

Conjugation, involves the transfer of DNA between bacterial cells by a mechanism 

requiring cell to cell contact. This was first observed in E. coli (Ledeberg and Tatum 

1946) and the first resistance genes spread from Shigella to E. coli via a conjugative 

plasmid (Hogan and Kolter 2002). Diverse scientific and experimental evidence has 

confirmed that the conjugation system is a highly successful method of transferring 

drug-resistance genetic determinants amongst bacterial populations. The significance of 

this promiscuous gene transfer is such that it provides a mechanism for the availability 

of a huge pool of genes for bacterial evolution. A dramatic example is the widespread 

development of resistance to antibiotics used in clinical medicine and agriculture. 

1.3.1 Molecular Mechanism of bacterial conjugation 

For the purpose of this thesis, discussion will be limited to conjugation systems of 

Gram-negative bacteria. In Gram-negative bacteria, plasmids widely employ type-IV 

secretion system (T4SS) (Figure 2), which is one of the three essential components of 

the conjugation, including the relaxosome and coupling proteins. Type-1V secretion 

system, T4SS, which is the transferome spans the cell envelope and is responsible for 

the synthesis of the conjugative pilus. The relaxasome is a complex of proteins that 

process the DNA at the origin of transfer (oriT), while the coupling protein, connects 

the two entities together. These relaxase proteins, which include nickases, 

transesterases, primases and RecA are involved with, and are in charge of, the binding 

and cleaving of DNA during plasmid transfer or replication processes (Christie and 

Vogel 2000; Data et al., 2003).  T4SS, therefore direct DNA and/or protein 

translocation into the recipient cell through the extracellular pili which are formed 

during mating pair formation.  
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Figure 2: Signature proteins of conjugative systems in Gram-negative bacteria (Frost, 

Leplae et al., 2005).  The F-type (F) conjugative system is shown located in the inner 

and outer membranes and extending through the periplasm. Tra proteins are labelled 

with capital letters and Trb proteins with lower-case letters. Shared proteins found in 

the T1 plasmid are yellow. For more details see the review by Frost et al., 2005 

 

During conjugation, a unique single strand of DNA (ssDNA) called the transfer (T) 

strand undergoes 5’ to 3’ directional transfer from a donor bacterium to a recipient cell. 

This T-strand is cleaved in the donor by a specific nuclease at the nic site within the 

oriT (Origin of transfer). Cleavage is mediated by a plasmid-encoded relaxase enzyme, 

which establishes a covalent linkage with the 5’ terminus of the T-strand, thereby 

producing a covalently bound protein-DNA transfer intermediate (Lanka and Wilkins 
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1995; Lang and Zechner 2012). For productive conjugation, a mating pair formation 

system facilitates cell-to-cell contact. Once contact is established, T-strand DNA is 

transferred from the donor to the recipient in a process that utilizes a type-IV secretion 

system (Fronzes et al., 2009; De La Cruz et al., 2010; Bhatty et al., 2013; Christie et 

al., 2014). The conjugative transposons and plasmids of Gram-positive bacteria do not 

use pili, but their transfer (tra) regions demonstrate some similarities with the Gram-

negative  bacteria (Christie et al., 2014). 

 



13 

 

 

1.4. The role of plasmids in the origin and development of antibiotic resistance 

 

1.4.1 Bacterial plasmids and the origin of plasmid-mediated antibiotic resistance 

Resistant bacteria commonly harbour mobile genetic elements, for instance, 

conjugative plasmids that contain resistance genes to several classes of antibiotics. 

Simply defined, plasmids are small, extrachromosomal pieces of DNA in bacterial 

cells. They are classified as mobile genetic elements (MGE’s), together with 

transposons and integrons and gene cassettes, all of which possess the ability to acquire 

and distribute an array of resistance genes in a single conjugation episode, among 

bacterial communities.  

In particular, plasmids encode an enormous variety of functions which may not be 

essential for the host or plasmid survival. Such functions could include antibiotic 

resistance, heavy metal and toxin resistance, biofilm, and virulence factors (Bennett 

2008). As noted earlier, many plasmids can capture, accumulate and disseminate 

resistance conferring genes among bacteria, not only from cell-to-cell of the same 

bacterial type, but also across genus and species, making them a primary  passageway  

of antibiotic resistance and virulence genes spread. Thus, a plasmid is said to be 

resistant if it carries one or more antibiotic resistance genes. For example, it may be a 

metabolic plasmid, because it encodes a metabolic function, or a virulence plasmid, 

because it possesses one or more virulence genes. Carriage of one type of gene does not 

preclude carriage of other types that do not contribute towards maintenance and spread 

of the host plasmid (Bennett 2008).  

Even though plasmids naturally occur in the environment, the occurrence of plasmids in 

pathogenic bacteria was very minimal before the introduction of antibiotic era in the 

1940’s (Hughes and Datta 1983). This goes to confirm that the prevalence of plasmid-
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coded resistance is as a consequence of widespread use of antibiotics which exerts 

strong selective pressure on the original resistomes (Martinez 2012). Plasmid- encoded 

resistance genes originate during point mutations in the target genes of susceptible 

bacteria and also from genes that provide antibiotic-producing bacteria with protective 

mechanisms (Hughes and Datta 1983; Frost et al., 2005). Once such a gene is 

introduced into a new host in which it lacks its original biochemical and genetic 

context, its function is limited to antibiotic resistance (Baquero et al., 2009). Several 

reviews have established that the natural microbial pool contains a much larger number 

of resistance genes than those seen to be acquired by bacterial pathogens (Levy and 

Marshall 2004; Wright 2007; Davies and Davies 2010); and different ecosystems 

contain different resistance genes. By means of horizontal gene transfer especially by 

conjugation, plasmids therefore allow for a highly efficient spread of resistance 

independently or by means of bacteriophages upon its expression in a new host (Ojala 

et al., 2013).  

 

1.5 Plasmids are crucial to multidrug antibiotic resistance and pathogen virulence 

Plasmid–mediated antibiotic resistance continue to impact on the overall burden of 

antibiotic resistance. Evident cases  are present in Gram-positive and Gram-negative 

bacteria that boost the difficulties in maintaining effective antibiotic activity against 

what might now be referred to as “the superbugs”’⃰ like E. coli, M tuberculosis, K. 

pneumoniae and Salmonella enterica serovar Typhimurium.  Plasmid resistance genes  

are present for many classes of antimicrobials and pathogens, namely, plasmid-

mediated quinolone resistance (PMQR), aminoglycoside resistance methylases (ARM), 

plasmid-mediated 16S rRNA methylase (RMT) and sulphonamide resistance (Carattoli 

2009; García-Fernández et al., 2011), varying phenotypes of qacA/B in methicillin-
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resistant Staphylococcus aureus (MRSA) (Zheng et al., 2009; Cheng-Mao Ho et al., 

2012), MDR IncX1-plasmid in E. coli (Norman et al., 2008) and blaCMY-2-like allele 

in an IncI plasmid expressing β-lactams  resistance in Salmonella enterica serovar 

Typhimurium (Cordeiro et al., 2013). In particular, plasmid-coded resistance genes have 

been associated with the five major groups of extended-spectrum β-lactamases 

(ESBLs), which dominate world widely, namely KPC’s-carbapenamase, OXA-48 non-

metallo-enzymes and IMP, blaNDM-1, and VIM metallo-carbapenemases extended-

spectrum β-lactamases (ESBLs) (Nordmann et al., 2012; Gopi and Robert 2013). 

Unlike KPCs and NDM-1 which have been associated with a variety of plasmids, the 

overall rise of single 62kb self-conjugative IncL/M-type plasmids has supported greatly 

the distribution of blaOXA−48 in Europe (Poirel et al., 2012).  

 

The prevalent virulence of Bacillus anthracis is attributed to the presence of pXO1 

plasmids, the loss of which leads to a loss of pathogenicity. A plethora of plasmid- 

encoded  pathogenic islands PAI IV536, PAI ICFT073, and PAI IICFT073, in addition  

to IncF plasmid (blaCTX-M-15, and aac(6’)-lb-cr ) resistance genes were found in  E. 

coli ST131 strains, a combination of factors that renders β-lactam antibiotics inactive 

(Calhau et al., 2013).  Likewise, plasmid-encoded and multiple chromosomal genes in 

Chlamydia trachomatis, a causative organism of chronic inflammatory diseases of the 

eye and genital tract,  was associated  with chlamydial virulence, as plasmid-deficient 

organisms are highly susceptible to antibiotic treatment (Song et al., 2013). 

Not surprisingly, plasmid-mediated transfer of resistance has been a major focus of 

recent research and in particular, how it can be reversed in order to enhance bacteria 

sensitivity to antibiotics. 
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⃰The term “superbugs” refers to microbes with enhanced morbidity and mortality due 

to multiple mutations endowing high levels of resistance to the antibiotic classes 

specifically recommended for their treatment (Davies and Davies 2010).  

1.6 Various approaches to curb plasmid-mediated antibiotic resistance 

The act of displacement of a resident plasmid, through changes in environmental 

conditions or by genetic or chemical means, from its natural host to establish a plasmid-

free cell, is commonly referred to as “plasmid curing”.  Naturally, plasmids seem to be 

unstable and may be easily lost from the host, but many are extremely stable and would 

require exposure to conditions or agents in order to induce elimination.  Therefore 

during the curing process, a plasmid is lost from a cell due to an inability of the plasmid 

to replicate, unsuccessful partitioning of the plasmid into daughter cells upon cell 

division, or induced death of plasmid-containing cells through activation of plasmid-kill 

mechanisms ultimately resulting in the loss of specific phenotypes such as drug-

resistance.  

 

One of the earliest attempts of plasmid curing was the addition of nickel and cobalt to 

the growth medium to promote the loss of the F plasmid from E. coli (Adepoju and 

Adebanjo 2011). Since then, various procedures have been used including growth of 

plasmids at elevated temperature (Sonstein and Baldwin 1972b; (Jain et al., 2011), 

thymine starvation (Sat, Reches et al., 2003; Williams and Hergenrother 2008) and 

protoplast regeneration (Abdalla-Galal et al., 2000). The use of intercalating drugs such 

as ethidium bromide (3) (Koffi-Nevry et al., 2011; Santos et al., 2012), acriflavine (4), 

acridine (5), and quinacrine (6), have been studied on different plasmid types and their 

responses respectively (Sonstein and Baldwin 1972a; Guiney 1993; Novick et al., 
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2008), (Molnar et al., 1979; Chopra 2000), (Koffi-Nevry et al., 2011; Santos et al., 

2012). The curing potential of sodium dodecyl sulphate (7) and other surface active 

alkyl sulphates (SDS) has been  applied to plasmid found in S. aureus (Sonstein and 

Baldwin 1972b) and E. coli K12 (Grindley et al., 1972; Noumedem et al., 2013). Under  

the various conditions, different plasmids responded quite differently to the same agents 

or applied conditions, and could not achieve 100% plasmid loss  from the host bacterial 

population (Guiney 1993). These intercalating agents are also associated with high 

toxicity that makes them unsuitable for human treatment.  

                            

            

Tricyclic neuroleptics and the anti-depressant phenothiazines like chlorpromazine (8), 

thioridazine (9), promazine (10), promethazine (11), imiprazine (12) and desipramine 

(13),  which possessed strong in vitro antibacterial activity triggered by their plasmid 

elimination properties attributable to inhibition of plasmid replication, partition and 

conjugal transfer processes (Kawase et al., 2001; Spengler et al., 2003; Molnar et al., 

2004; Takacs et al., 2011).  
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In the last decades, various coumarins and quinolones have shown a variety of plasmid 

curing efficiencies (Michel-Briand et al., 1986; Weisser and Wiedemann 1986). 

Novobiocin (25 mg/L) showed significant antibacterial activity  as well as loss of the 

IncF plasmids R446b and R386 from multidrug-resistant E. coli (Michel-Briand et al., 

1986), in addition to pBR322, which conferred tetracycline-resistance in both E. coli 

W3110 and E. coli C600 strains.  

Though novobiocin (14) has a track record of remarkable anti-plasmid and 

antimicrobial properties compared to other quinolone agents, its use has been seriously 

hampered by toxicity issues and as a result withdrawn from human use (Federal 

Register 2011). 
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Due to failed antibiotic activity and resistance limitations, several studies have focused 

on naturally derived compounds as an alternative source of active compounds for total 

elimination of plasmids from their resistant bacteria host. Such works are valuable and 

continue to lend credence to nature as reservoirs of biologically active agents as well as 

extend our understanding of the outcome of natural compound as anti-plasmid agents. 

Examples include α-santonin (15), a sesquiterpene lactone isolated from Artemisia 

maritima flowers which induced the loss of the ColE1 group plasmids, pBR322 and 

pBR329, from E. coli (Hamisy et al., 2000). Coptis chinensis, a traditional Chinese 

medicinal plant known for a high concentration of berberine and used as an immune 

booster, as in gastrointestinal and respiratory health, recorded a 23%  plasmid loss from 

E. coli  under elevated temperature (Perdue et al., 1986). The crude extract from 

Chinese pulsatilla (Sims 1981) induced the loss of a 20kbp plasmid band which 

encoded streptomycin-resistance after treatment with 0.125 mg/L  of the extract.  

 

Plumbagin (16) is a naphthoquinone (5-hydroxy-2-methyl-1, 4-naphthaquinone), and is 

a characteristic yellow pigment common to the plants of the Plumbaginaceae family. It   

is also found in the Droseraceae, Ancestrocladaceae and Dioncophyllaceae plant 

families (Sandur et al., 2006). Plumbagin has been in use traditionally since ancient 

times and was first isolated from the root of Plumbago zeylanica with a wide variety of 

biological activities including anti-carcinogenic, anti-atherosclerotic effects. It is an 



20 

 

inhibitor of superoxide production in nox-4 cells (Ding et al., 2005). The antimicrobial 

and antiplasmid properties of plumbagin (16) have been reported on various plasmids 

such as R6K, TP154, TP181 and R162 (Lakshmi et al., 1987).  Loss of pUK651 from 

E. coli X
+
 was observed in plumbagin extract-treated cells which gave rise to a 14% 

loss at a sub-inhibitory concentration of 7 mg/L of the crude drug.  

     

Lawsone (17), a structurally-related naturally occurring naphthoquinone and plumbagin 

exhibited antibacterial activity against vancomycin-resistant Staphylococcus aureus 

(VRSA) and was correlated to loss of encoding plasmids (Jahagirdar et al., 2008). The 

mode of anti-plasmid action of plumbagin is said to be based on the intercalation of 

DNA and induction of topoisomerase-II-mediated DNA cleavage in-vitro, but this has 

not been completely elucidated (Fuji et al., 1992). The effect of phenolic compounds 

namely bharangin (18) isolated from Pygmacopremna herbacea (Roxb), together with 

gossypetin (19) and gossypin (20)  have been implicated in the loss of a penicillinase-

conferring plasmid in E. coli 46R41 (Marie-Magdeleine et al., 2010). Results showed 

that bharangin and gossypetin eliminated 30% and 21% of the TP181 plasmid 

respectively but remained inactive to ColE1 plasmid, pBR322 and pBR329 plasmids. 

Bharangin at a higher SIC value of 400 mg/L demonstrated 70% elimination of the 

plasmids P181, R162, and TP154 (Marie-Magdeleine et al., 2010). 
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The anti-plasmid activities of 10 essential oils (with promethazine as a control) were 

assayed against E. coli harbouring F⃰lac. Peppermint, Eucalyptus and Rosemary oils 

eliminated F⃰lac determinant with various levels of responses (Schelz et al., 2006). 

Menthol (21), the main constituent of peppermint oil promoted near total plasmid 

elimination from the host independently, and in combination with promethazine. A nor-

diterpene compound, 8-epidiosbulbin-E-acetate (EEA) (22), was isolated from the bulbs 

of Dioscorea bulbifera with plasmid-curing activities against pUB110, RP1; RM163, 

RIP164, from E. coli and P. aeruginosa, respectively (Shriram et al., 2008).  

 

The compound, 1-acetoxychavicol acetate, (23) isolated from Alpinia galanga was 

identified as the responsible agent for the loss of the broad host pUB110 occurring in S. 

typhi, P. aeruginosa, E. coli and Enterococcus as well as RP4 in B. cereus and E. coli. 

Comparatively, the crude extract of Alpinia galanga, demonstrated higher plasmid 

curing activity than the isolated single entity, 1’-acetoxychavicol acetate. However, this 
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is not unusual as crude drug extracts often exhibit synergistic activities (Latha et al., 

2009).  

Within the last decade, marine organisms are increasingly gaining attention as sources 

of new antimicrobial drugs, and the search for anti plasmid agents are not excluded 

from this source. Crude drugs of two sea weeds from the genera Halimeda and 

Sarconema were investigated for their anti-plasmid activity against a penicillinase-

bearing plasmid in E. coli and both active fractions cured plasmids from E. coli. This 

was validated by an agarose gel profile which showed the physical loss of the plasmids 

within the cured cells (Samy 2012). Further research is needed in this area to uncover 

possible marine metabolites that could have clinical potential as anti-plasmid agents.  

 

1.6.1 Cannabinoids as antiplasmid agents 

The antibacterial activities and plasmid curing efficiency of active constituents of 

Cannabis and its phenanthryl derivatives have been reported (Spengler et al., 2006). 

Cannabinol (24), ∆8-tetrahydrocannabinol and ∆9-tetrahydrocannabinol (25) recorded 

MIC values of 3, 3 and 10 mg/L respectively against E. coli; whereas poor elimination 

of the F⃰lac plasmid in E. coli was observed (<0.5% plasmid loss).  

   

 F'lac plasmid in E. coli K12 was sensitive to tetrahydrocannabidiolic acid which 

caused 30% loss of the plasmid, whilst acetylcannabispirol, cannabispirone (26) and 

cannabispirenone (27) at a sub-inhibitory concentration of 0.15
 
mg/L were less active 
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(Molnár et al., 1986; Spengler et al., 2006).  Each compound, except for 

acetylcannabispirol, inhibited R144 plasmid conjugal transfer between E. coli isolates.  

                    

                

 

Other compounds with similar activity reported by the same authors included 

cannabidiolic acid (28), morphine (29) and 1-dimethylamino-3-(9-phenanthryl)-3-

propanol. The mechanism by which cannabinoids interfere with the bacterial plasmid 

system is yet to be elucidated, but could be associated with binding to the transconjugal 

DNA, intercellular inhibition of the mating pair formation, replication or plasmid 

partition processes (Weisser and Wiedemann 1985). The beneficial antimicrobial 

activities of cannabinoids against multidrug-resistant S. aureus have been highlighted 

by several authors (Katz and Weaver 2003; Appendino. et al., 2008). Further 

investigation into their chemistry to harness possible anti-plasmid potentials is an 

interesting niche of research. Major cannabinoids like tetrahydrocannabinol and 

cannabidiol are already existing medicinal agents used to ameliorate the symptoms 

associated with multiple sclerosis, and are undergoing clinical development for cancer 

pain (Barnes 2006). 
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The above evidence shows that the development of naturally sourced anti-conjugation 

or anti plasmid agents is possible. While, these studies indicated the activity of the 

compounds studied to cure plasmids in bacteria, many potential natural agents remain 

unexploited in antimicrobial discovery. It cannot be overemphasized that plants remain 

a natural reservoir of biologically active metabolites with unique chemistry; heavily 

utilized in traditional medicines for primary healthcare by 75-90% of the world 

population (WHO 2014)
 

1.7 Inhibition of the conjugal DNA transfer system 

Whereas most studies have highlighted several techniques to induce plasmid 

elimination,  only a few have focused on the process of interfering with bacterial 

conjugation. The inhibition of plasmid conjugation has been proposed as a potential 

way of combating the spread of plasmid-mediated antibiotic resistance (Fernandez-

Lopez et al., 2005; Williams and Hergenrother 2008).  Some conjugative plasmids from 

various incompatibility groups have been studied and the effect of inhibitors on their 

transferability of resistance genes into a number of species. For example, the effect of 

pipemidic acid (30) and related compounds, nalidixic acid (31) and nitrofurans were 

studied on the transfer of F plasmids harboured by enterobacterial strains (Nakamura et 

al., 1976; Barrero et al., 1998; Yang et al., 2008). Nitrofurans are known to act on DNA 

and to disrupt cell metabolism, so they may not necessarily be considered specific anti-

conjugal agents, even though the anti-plasmidic activity observed was attributed to the 

reduction of the -NO2 group of nifurzide (32)  (Rajwar et al., 2011). Sulbactamox, a 

current ESBL antibiotic, reportedly acted as an inhibitor of plasmid transfer in E. coli. 

However, the recorded antiplasmid activity of the antibiotic was achieved at the MIC 
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value of 0.25 mg/L (Chaudhary and Arygu 2012) as opposed to the sub-inhibitory 

concentration. The purported antiplasmid activity by Chaudhary’s group is the effect of 

the bacterial growth inhibition while the antiplasmid activity of sulbactamox merits 

further investigation. 

      

      

  

  

 

One of the few attempts made to identify naturally-derived inhibitors of conjugal DNA 

transfer was a high-throughput conjugation screen of the NatChem library of 12,000 

compounds against R388 and other plasmid transfers between E. coli isolates 

(Fernandez-Lopez et al., 2005). The results identified two unsaturated fatty acids; 

dehydrocrepenynic acid (DHCA) (33) from Sistotrema semanderi-FX21 and linoleic 

acid (34) from Mollisia ventosa-FX14 which showed transfer inhibitory activity against 

plasmids R388 and R1, but not against RP4, RK6 and PKM101. The features of these 

acids, their carboxylic group, chain length and the double bond positions were 
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suggested to have an impact on their selective inhibitory action on the plasmid DNA 

transfer replication (Dtr) system (Fernandez-Lopez et al., 2005).  

1.8 Description of some Broad Host Range (BHR) conjugative plasmids used in 

our study 

As earlier mentioned, resistance genes are horizontally transferred by conjugative 

plasmids which requires type IV secretion systems (T4SS).  Genes encoding T4SSs 

occur in plasmids or occasionally within transposons and enable these mobile genetic 

elements (MGE’s) to not only determine their own transfer but also to mobilise the 

transfer of a non-conjugative plasmid that is present in the bacterial cell (Frost et al., 

2005; Jain and Srivastava 2013). Conjugative plasmids can either be broad or narrow 

host range. Narrow host plasmids are limited in transfer and move within closely related 

species of the bacterial population while BHR, indeed, are very promiscuous and can 

transfer between bacteria from different species and are maintained stably within them. 

The transfer often exceeds the range of species in which they can be stably maintained 

(Guiney 1993; Jain and Srivastava 2013).  

The initial classification of plasmids into these two ranges was done by (Datta and 

Hedges 1972) based on the ability of a plasmid to transfer among Enterobacteriaceae 

and Pseudomonas spp.  This is a phenomenon known as ‘incompatibility’ (Inc) in 

plasmids, such that plasmids with the same replication mechanism cannot co-habit the 

same bacterial cell.  Incompatibility groups have been defined for plasmids of the 

Enterobacteriaceae (26 groups), the Pseudomonads (14 groups), and for the Gram-

positive staphylococci (~18 groups) (Frost et al., 2005).   

Plasmids of the IncP group (RP1, RP4, RK2, R18, R68), IncW (R388, pSa, R7K, 

pIE321, and pIE522, IncQ and IncN are classic examples of BHR and are stably 
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maintained in almost all Gram-negative bacteria (Revilla, Garcillán-Barcia et al., 2008). 

The efficient transfer of these large BHR plasmids is due to their antirestriction 

functions which enable them to overcome host restriction and maintain themselves in 

the host (Belogurov et al., 1992).  

1.9 Selected examples of plasmids belonging to different Incompactibility groups 

Selected plasmids that were used in the study include: PKM 101 (IncN), TP114 (IncI2), 

pUB 307(IncP), R7K (IncW), R6K (IncX), and R1-drd-19 (IncF11). These plasmids 

exemplify plasmid groups that are currently associated with gross spread of antibiotic 

resistance, especially in Enterobacteriaceae.  

1.9.1 PKM 101 (IncN) 

The PKM 101 plasmid belongs to IncN, and is a 35.4kb derivative from the parent R46 

(Langer and Walker 1981). It possesses an interesting property that make E. coli and S. 

typhimurium resistant to the lethal effects of UV radiation and mutagenesis. An in vivo 

deletion of a single DNA region of R46 removed the gene coding for resistance to 

sulphonoamides, streptomycin, and spectinomycin but earmarked  the  ability of PKM 

101 to enhance UV–resistance as well as the presence of ampicillin resistance and the F 

factor to E. coli (Langer and Walker 1981). Generally, IncN plasmids are classically 

implicated in the resistance types among Enterobacteriaceae of human and animal 

origin (Carattoli 2009). They are broad host range and self-conjugative plasmids. These 

plasmids have been associated with genes conferring resistance to many antimicrobial 

classes, in particular genes encoding extended-spectrum β-lactamases (ESBLs). IncN 

plasmids are linked with the spread of several bla CTX-M variants, which are currently 

a major cause of infectious outbreaks worldwide, carbapenemases of the Ambler class 

A and class B, such as Klebsiella pneumoniae carbapenemase (KPC) and Verona 

integron-encoded metallo-β-lactamase (VIM) respectively (Nordmann et al., 2012; 
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Poirel et al., 2012; Gopi and Robert 2013), and the IncN–VIM-1 plasmids detected in 

E. coli, Klebsiella pneumoniae, K. oxytoca, Citrobacter freundii, Enterobacter 

cloacae, Morganella morganii, Providencia stuartii and Proteus mirabilis (Nordmann 

et al., 2012).   

1.9.2 TP114 (Inc I2) 

The TP114, 62.1kb of molecular size, is a self-transmissible plasmid belonging to IncI2, 

originally isolated from E. coli (Carattoli et al., 2005). It encodes genes for 

aminoglycoside resistance such as the kanamycin determinant. TP114 is compatible 

with the plasmids of the I1 group, and all support multiplication of the I-specific phage 

Ifl (Grindley et al., 1972). Both Inc I1 and I2 groups possess thick conjugative pili 

which are morphological distinct from other incompatibility groups of I5, B, K and Z 

(Bradley 1984). Using the PCR-based replicon typing (PBRT) approach that revealed 

the major plasmid families involved in the current spread of resistance in 

Enterobacteriaceae, the IncI1 group was associated with a high prevalence of AmpC, 

ESBLs, 16S rRNA methylases, Qnr, and MBL drug resistance in E. coli, K. 

pneumoniae, Samonella enterica and S. sonnei that were isolated from both human and 

animal sources (Carattoli 2009).  

1.9.3 PUB 307 (IncP)  

The PUB 307 plasmid belongs to IncP group, a conjugative broad host range derivative 

of RP1 that carries tetracycline and kanamycin resistance markers.  PUB 307 is known 

for its ability to mobilise gonococcal resistance plasmids from E. coli to Neisseria 

gonorrhoea (Piffaretti et al., 1988).  

From a phylogenetic and amino acid sequence analyses, IncP plasmids are grouped into 

six known sub-groups namely -α, -β, -γ, -ε, -δ and –ζ, encoding various levels of  drug 
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resistance and widely dispersed in Gram-negative bacteria for eaxample, in 

Pseudomonas sp, Klebsiella aerogenes, E. coli and Sphingomonas (Thomas 2000; 

Shintani et al., 2010; Popowska and Krawczyk-Balska 2013). These genes often code 

for resistances to a broad spectrum of antibiotics, heavy metals, and quaternary 

ammonium compounds used as disinfectants (Popowska and Krawczyk-Balska 2013). 

Due to their highly stable backbone which utilizes horizontal gene transfer, their 

transfer system (tra) is increasingly used in the genetic analysis and manipulation of 

most Gram-negative bacteria (Yakobson and Guiney 1983).  To illustrate their BHR 

and stable nature, RP4, R68.45, RP1::TnSOl, and pUB307 were transferred to 

acidophilic, obligately chemolithotrophic Thiobacillus ferrooxidans from E. coli 

successfully via conjugation (Fürste et al., 1989; Peng et al., 1994).  

1.9.4 R7K (IncW) 

The R7K plasmid is atypical of the IncW group which took its name from T. Watanabe, 

including classical members: the pSa and R388 plasmids. R7K was originally isolated 

from Providencia rettgeri and could transfer the factor to E. coli K12 (Coetzee et al., 

1972). It encodes ampicillin, spectinomycin and streptomycin antibiotic resistance 

determinants and the genetic backbone is comprised of 42 genes of 39.7kb in molecular 

weight (Revilla et al., 2008).  

The IncW plasmid has gained much interest from researchers because of its small size, 

a wide spectrum of antibiotic resistance and broad host range nature, which are 

transferred by conjugation to species in the genera Escherichia, Salmonella, Shigella, 

Pseudomonas and Proteobacteria.  IncW plasmids transfer efficiently in solid but not in 

liquid media, and possess thick w-pili, usually 10-12nm width and 450nm length found 

in pSa, R388 and R7K (Bradley and Cohen 1976). 
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1.9.5 R6K (IncX) 

The plasmid R6K belongs to the Inc group X, a recombinant transmissible plasmid of 

39.9kb molecular weight. It is distributed in E. coli K12 J53 and carries ampicillin and 

spectinomycin resistance determinants. R6K was thought to be a narrow host range 

plasmid (Espinosa et al., 2000), until it was shown that R6K and its variants possess 

robust replicons in a variety of enteric and non-enteric bacterial populations (Wild et 

al., 2004). The result is a broader host range and the implications of R6K and its 

multiple origins of replication has been documented (Rakowski and Filutowicz 2013). 

1.9.6 R1-drd-19 (IncF11) 

The conjugative R plasmid, R1-drd-19 belongs to the IncF11 group and a derepressed 

mutant of R1 (Meynell and Datta 1967).  Plasmid R1 represses conjugal pilus synthesis   

by the FinO and FinP of TraJ protein, a repressor of the tra operon. On the other hand, 

R1-drd-19 synthesizes these pili constitutively, and has a molecular size of ca 33μm and 

weight of 62.5 Md. It carries the gene for  β-lactamases (bla+), adenylytransferase 

(aadA+), acetyltransferase (cat+), phosphotransferase (aphA+) and Su+ gene  specified  

for dihydropteroate synthetase, that determines the resistance to ampicillin, 

streptomycin, chloramphenicol, kanamycin and  sulphonamides respectively (Blohm 

and Goebel 1978). All these five resistance genes are located in 2 different transposon, 

Tn3 and Tn4 shuttles.  The restriction map of R1-drd-19 has been studied by the same 

authors using four different restriction enzymes namely, BamH1, Hind111, EcoR1 and 

Sal1. 
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1.10 Natural products as potential source of antimicrobial agents 

Plants remain a natural reservoir of biologically active metabolites with unique 

chemistry that may hold a solution to plasmid elimination. The focus of recent 

antimicrobial drug discovery has centred on synthetic and combinatorial chemistry of 

existing drugs, though with a good level of success but not without bacteria evolving 

resistance upon resistance against the drug outcomes. Thus, research into natural 

products cannot be overlooked even though it has its own challenges of high cost of 

research and development from crude to the market shelf and an average of 12 years to 

achieve the goal. Despite that, natural products contain more potential drug sources than 

compounds synthesized by combinatorial chemistry given that 50% of new drugs 

derived directly or indirectly from natural sources (Zhang et al., 2010). Evolutionary 

evidence suggests that a certain number of human genes should have orthologs in plants 

and even microbes, and therefore, some secondary metabolites produced by plants and 

microbes to modulate their own metabolism could hit the targets implicated in 

microbial diseases (Zhang et al., 2010). Furthermore, the strong potential of drug 

development of natural products can be explained in terms of the co-interaction of the 

microbes with their biological environment, which may create various natural agents 

that are therefore of medicinal interest to humans. For example, these natural 

compounds produced by plants to combat microbial pathogens could act as 

antimicrobial drugs, while some of the compounds involved in defense against 

herbivores could possess pharmacological activities as laxatives, emetics, cardio-tonics 

and muscle relaxants.  The medicinal properties exhibited by the compounds are often 

due to similar physiological functions either in competing microorganisms, plants, and 

animals or mimic the action of vital body metabolites, ligands and hormones (Briskin 

2000). In addition, structures of secondary products which have evolved to interact with 
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molecular targets affecting the cells, tissues in human thereby making them medicinally 

effective on humans or bacteria due to similarities in their potential target sites 

(Kaufman PB et al., 1999; Briskin 2000). 

 It is necessary that new drug leads with newer mechanisms be harnessed from natural 

products to combat antibiotic resistance, in particular, the problematic dissemination of 

plasmid-mediated resistance in bacteria. Not much attention has been given to the 

search of naturally derived plasmid-inhibitor compounds as equally revealed from the 

paucity of literature available from databases such as PubMed, SciFinder and Scidirect.  

 

1.11 Selected medicinal plants for screening for conjugal plasmid DNA transfer 

inhibition 

Based on the ethnomedicinal evidence and literature search, the following plant species 

have been shown to be of long traditional usage and possess biologically active 

principles. To the best of our knowledge, none of the selected plants has been studied 

on their ability to effect inhibition of plasmid DNA conjugal transfer in E. coli strains. 

Hence, they are chosen for further investigation to verify their antibacterial activity and 

potential anti-plasmid effects. 
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1.11.1 Mallotus philippinensis (Lam.) Mull. Arg 

Mallotus philippinensis (Lam.) Mull. Arg. (Figure 3) is a well-known medicinal plant 

from Asia and Australia. It is known as Monkey-face tree (English), Kamala (Hindu), 

Kampillaka, while other minor names are Raini, Sindur, Sinduri, kumala, Kamal, 

Kumila. It is an evergreen shrub or small tree, belonging to the plant family 

Euphorbiaceae, with different parts used in folk medicine.  

 

Figure 3: Mallotus philippinensis (Lam.) Mull. Arg. Picture taken by Kakalou, 2010. 

 

The characteristic red powder, kamala, from the glandular hairs of the plant capsule is 

used as a dye for silk and possesses anthelmintic and cathartic properties (Satyavati et 
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al., 1987). Distinct groups of compounds have been isolated from different parts of the 

plant.  Flavonoids such as kamalachalcones A  and B, 4′-hydroxy isorottlerin (35) , and 

two new chalcone derivatives, kamalachalcones C (36) and D, isorottlerin , rottlerin and 

5, 7-dihydroxy-8-methyl-6-prenylflavanone have been isolated from the plant    

(Tanaka et al., 1998; Furusawa et al., 2005).  

     

 

 

A new kamalachalcone E (37)  along with known rottlerin (5,7-dihydroxy-2,2-

dimethyl-6-(2,4,6-trihydroxy-3-methyl-5-acetylbenzyl)-8-cinnamoyl-1,2-chromene) 

also called mallotoxin,1-(5,7-dihydroxy-2,2,6-trimethyl-2H-1-benzopyran-8-yl)-3-

phenyl-2-propen-1-one, and 4'-hydroxyrottlerin was recently characterised and showed 

to possessed anti-inflammatory activity (Kulkarni et al., 2014b).  

35 36 



35 

 

 

Other compounds that have been derived from M. philippinensis include the red 

compound, β-sitosterol, stigmasterol, bergenin (38), alpha–amyrin, 3′-prenylrubranine, 

atypical phloroglucinol derivatives like mallotophilippen A (39) and B, 

mallotophilippen C, D and E, (Daikonya, 2002).  

   

 

A novel, 8-cinnamoyl-5,7-dihydroxy-2,2-dimethyl-6-geranylchromene, named 

mallotophilippen F and 8-cinnamoyl-2,2-dimethyl-7-hydroxy-5-methoxychromene was 

isolated including rottlerin, isoallorottlerin (isorottlerin) and the red compound (8-

cinnamoyl-5,7-dihydroxy-2,2,6-trimethylchromene) (Hong et al., 2010). The various 

compounds from different aerial parts of the plant, including kamala and rottlerin have 

exhibited anti-tumor and cytotoxic effects (Arisawa et al., 1990; Tanaka et al., 2008), 

anti-allergic (Daikonya et al., 2002), antiviral (Kumar et al., 2006; Kulkarni et al., 

2014a), antibacterial activity against resistant Helicobacter pylori strains (Zaidi et al., 

37 

38 39 
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2009), anti-leukemic (Khan et al., 2013) and anti-tubercular activities (Hong et al., 

2010b; Gangwar et al., 2014).  The ethanol extract from Mallotus philippinensis stem 

bark  improved on mesenchymal stem cell proliferation, their migration, and wound 

healing in vitro and in vivo (Furumoto et al., 2014). A present study showed that M. 

philippinensis crude drug was active against leukaemic cells and it is proposed that 

some potent anti-carcinogenic compounds exist in M. philippinensis that call for their 

identification (Khan et al., 2013).  Despite the several studies on the biological and 

pharmacological potentials of M. philippinensis, no report shows that its plasmid 

inhibition activities have been investigated. 

1.11.2 Cannabis sativa L. 

Cannabis sativa L. (Figure 4) belongs to the family of Cannabinaceae, and is one of the 

oldest known medicinal plants likely originating from Asia (Hazekamp et al., 2005). C. 

sativa is known by various names worldwide, but most popularly marijuana and 
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hashish.  

 

Figure 4: Cannabis sativa L. Picture taken by me (20/08/2011) in UCL School of 

Pharmacy green house. 

The folk medicine is  used traditionally for the treatment of rabies, cholera, rheumatism, 

epilepsy, tetanus, allergies, burns, cuts, wounds, inflammation, scabies, smallpox, and 

sexually transmitted diseases (Ali et al., 2012). Cannabis has an ancient tradition of 

usage as in obstetrics and gynaecology. Cannabis extracts have been shown to be safe 

in the treatment of conditions in women including dysmenorrhea, dysuria, and 

Hyperemesis gravidarum and menopausal symptoms. Traditionally, the plant was used 

in ancient China as an anaesthetic during surgery.  Furthermore, in Europe and 

America, it is traditionally used for the treatment of severe headaches and migraine 

attacks. Cannabis is currently undergoing development for pain management 

(Hazekamp et al., 2005) 

 

Numerous phytochemicals are present in Cannabis and generally grouped into classical 

and non-classical cannabinoids. The term cannabinoids refers to a unique group of 

secondary metabolites found in the Cannabis plant, responsible for its pharmacological 

effects (Ali et al., 2012). The naturally occurring cannabinoids are grouped as 

phytocannabinoids and synthetic cannabinoids (those synthesized in the laboratory). 

Endocannabinoids are those produced in the body of humans and animals. In 

confirmation of age-long standing antimicrobial abilities of  the Cannabis plant and the 

cannabinoids, Appendino’s team reported the antibacterial effect of five major 

cannabinoids; cannabidiol, cannabichromene, cannabigerol, ∆9-tetrahydrocannabinol 

and cannabinol with MIC values ranged between 0.5-2 µg/mL against methicillin-

resistant Staphylococcus aureus (MRSA) strains (Appendino et al., 2008). 
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Antibacterial, anti-leishmanial, and antifungal effects of Cannabis on a variety of 

resistant pathogenic organisms were also reported (Novak et al., 2001;  Lone et al., 

2012 ). In addition to their antibacterial potentials, several classical and non-classical 

cannabinoids have been studied for their effect on F’ lac plasmid elimination from E. 

coli, with tetrahydrocannabidiolic acid (THCA) causing 30% loss (Spengler et al., 

2006). Although, this is the only report regarding the effect of cannabinoids on R-

plasmid transfer inhibition, it indicates that compounds from Cannabis plant may have 

effect on bacterial plasmid elimination. The various compounds tested for antiplasmid 

effects were in structural and chemical analogy, which made it possible to study their 

structure-activity–relationship (SAR) and to correlate their antiplasmid effect and 

supermolecular complexes of these plasmid-curing compounds. The heterocyclic and 

potent nature of cannabinoids, both natural and synthetic, opens up useful opportunities 

for the development or modification of antibacterial and antiplasmid agents from 

natural sources. 

 

1.11.3 Capsicum annuum L. 

The species Capsicum annuum L. (Figure 5) belongs to the large genus Capsicum in the 
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family Solanaceae, native to South America, and represents one of the leading 

vegetables grown globally with a worldwide production of approximately 26 million 

tonnes per year (Krajewska and Powers 1987).  

 

Figure 5: Capsicum annuum L. Source: http://www.virginiatobaccoseeds.com  

C. annuum contains capsaicinoids, a group of compounds that give them the 

characteristic pungent taste, and the following five naturally occurring capsaicinoids 

noted are capsaicin, dihydrocapsaicin, nordihydrocapsaicin, homocapsaicin, and 

homodihydrocapsaicin. These capsaicinoids are the major components of most 

Capsicum species, constituting approximately 95% or more of the total capsaicinoid 

content (Krajewska and Powers 1987), while capsaicin and dihydrocapsaicin are 

responsible for up to 90% of the total pungency of the pepper (Garces-Claver, A. et al., 

2007). Capsaicinoid compounds have been widely studied for their medicinal purposes, 

as pharmaceuticals, and as food additives and industrial sprays (Garces-Claverr et al., 

2006). Capsicum species and capsaicin have been shown  by several studies to possess 

antimicrobial activity against metronidazole-resistant Helicobacter pylori (Zeyrek 

Yildiz and Oguz 2005) and various multidrug-resistant Gram-positive and Gram-

negative bacteria such as E. coli, P. solanacearum, and B. subtilis cultures (Wei et al., 

2006); (Koffi-Nevry et al., 2011; Santos et al., 2012), (Noumedem et al., 2013). 

Recently, capsaicin demonstrated efflux pump inhibition against NorA-conferring 

resistance on notorious S. aureus to norfloxacin (Kalia et al., 2012). Further study into 

potential antiplasmid action of capsaicinoids could be useful for developing new drug 

leads; modifying or enhancing the potency of valuable antimicrobial therapeutic agents 

present in this plant. 
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1.11.4 Evodia rutaecarpa (Juss) Benth 

Evodia rutaecarpa (Juss.) Benth, (Figure 6) commonly known as Wuzhuyu, is an 

ancient traditional medicinal plant used in Chinese medicine. It is been used as a 

stimulant, and a remedy for illnesses such as headache, leg edema, dysmenorrhea, 

vomiting, diarrhoea, abdominal pain and colic, weakness, postpartum haemorrhage, 

migraines, nausea (Pharmacopoeia, 2005).  

Figure 6: Evodia rutaecarpa (Juss.) Benth.  Source:  http://kampo.ca/herbs-

formulas/herbs/goshuyu 

 

Several phytochemical studies have revealed a rich variety of indole and quinolone-type 

alkaloids, including indoloquinazoline-type dehydroevodiamine, evodiamine,  

rutaecarpine, and evocarpines, which are the major active compounds (Liu et al., 2005; 

Ko et al., 2007; Huang et al., 2012; Zhang et al., 2014). The quinolone alkaloids from 

the fruits of E. rutaecarpa have shown some pharmacological activity on human 
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granulocytes (Adams et al., 2005; Pei-ting Zhang et al., 2013) and display highly 

selective antibacterial activity against Helicobacter pylori (Hamasaki et al., 2000). The 

major quinolone alkaloids had exhibited anti-mycobaterial activities against 

Mycobacterium fortuitum, M. smegmatis, and M. phlei at MIC value range of 32-2 

mg/L (Adams et al., 2005). Extracts from different parts of the plant, the leaves, stem 

wood, root and fruit of Evodia have continued to demonstrate antibacterial activity 

among 300 herbal remedies, screened for anti-hepatitis B surface antigen capability 

(Zheng and Zhang 1990), antibacterial activity with MIC ranges between 0.25 mg/L 

and 1 mg/L against some Gram–positive bacteria, P. aeruginosa, and Candida yeast at 

0.5 mg/L (Thuille et al., 2003). Several researches have also highlighted the anti-

inflammatory activity of the quinolone alkaloids; dehydroevodiamine, evodiamine, 

rutaecarpine and synephrine against influenza A virus (H1N1)-induced chemokines 

production and on differentiated neutrophils and microglial cell in vitro (Ko et al., 

2007; Chiou, W.-F. et al., 2011; Liao, J.-F. et al., 2011).  
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1.12 Problem statement 

The possibility of treating infections caused by either mono- or multidrug-resistant 

bacteria is becoming increasingly difficult to manage with the existing antibiotics. 

Several reviews have proposed different approaches to curb antibiotic resistance over 

these past years: such as the need to control the fitness cost of resistant bacteria by 

reducing prescription of antibiotic drugs (Andersson and Hughes 2011), the 

development of new antibiotics with superior mechanisms over the existing ones and to 

develop resistance-modifying efflux inhibitors (Stavri et al., 2007) or plasmid-curing 

compounds (Spengler et al., 2006). Reported examples include the process of phage-

killing of conjugative plasmids that bear antibiotic resistance (Ojala et al., 2013), and 

conjugational delivery of antimicrobial agents via bacterial plasmid (Filutowicz et al., 

2008). The fact remains that only a few new antibiotics are coming onto the market or 

in clinical trials, and none is based on anti-plasmid mechanism; certainly not enough to 

address the resistance issue over the long term. For major pharmaceutical companies, 

their level of interest and involvement in  antimicrobial drug discovery and market is 

presently low with negligible interest, owing to the low financial rewards compared to 

new medicines for other more lucrative areas such as hyperlipidaemia, cancer, arthritis 

and depression, greatly outweigh the returns associated with new anti-infectives 

(Gibbons 2008).  

 

However, the challenge remains that the research into new compounds with alternative 

mechanisms to outsmart resistance mechanisms in bacteria is much needed at a time 

like this. Given that plasmids are an integral part of antibiotic resistance development 

and spread, one obvious strategy would be to identify therapeutic compounds that are 
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present in medicinal plants that can either promote plasmid loss or interfere with 

bacterial conjugation. In combination with existing antibiotics, compounds that inhibit 

plasmids by either directly binding to render them inert, or inhibiting their transport 

systems and coupling proteins involved in the T4SS mechanism, hold the potential to 

reverse an organism that was originally resistant to become sensitive  (Spengler, Molnar 

et al., 2006). Compounds that could interfere with the T4SS bio-target and in turn 

inhibit plasmid transfer are promising as T4SS inhibitors and are applicable against 

other organisms such as Helicobacter pylori that utilise such systems to transport 

effector molecules into host cells.  

 

1.13 Aims and Objectives of the study  

 The overall aim of this project is to explore potential inhibitors of plasmid DNA 

conjugal transfer in E. coli using both natural and synthetic compounds. In line with the 

aim, the objectives set to be achieved during this study are broadly grouped in to four: 

1. Bacterial  conjugation inhibition  screening 

i. This involves the screening of crude extracts of Mallotus 

philippinensis, Cannabis sativa, Evodia rutaecarpa, Capsicum annuum 

and subsequent step-wise screening for active fractions and or pure 

compounds for their ability to inhibit bacterial plasmid conjugal 

transfer among E. coli.  

ii. Successfully isolated compounds including selected synthetic 

analogues that were commercially purchased will be assayed against a 
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panel of clinically relevant plasmids PKM 101, TP114, PUB307, R6K 

and R7K to determine their anti-plasmid activity. 

iii. The effect of time on the rate of inhibition of conjugal transfer of PKM 

101, TP114, and PUB307 by the compounds.  

2.  Bioassay-guided isolation/phytochemical analysis of the active principles 

iv. This involved the bioassay-guided isolation of the active fractions from 

(1) above, identification, characterisation and structure elucidation of 

the active chemical principles responsible for their bioactivity, using 

chromatographic and spectrophotometric methods. 

3. Determination of the antimicrobial activities (MIC) of the isolated/synthetic compounds 

against a variety of multidrug resistant Gram–positive and Gram–negative strains. 

v. The MIC of the compounds or semi-pure fractions were determined  on 

model E. coli NCTC 10418 to determine their sub-inhibitory 

concentrations (SIC) required for (1) above 

4. The DNA binding studies of the compounds using electrophoretic DNA mobility 

shift assay (EMSA), to determine if the compounds act by interfering with the plasmid 

DNA  
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CHAPTER TWO 

2.0 MATERIAL AND METHODS 

2.1 Phytochemical methods 

All plants materials were pre-screened for biological activity by carrying out small-

scale extractions (hot and cold) prior to testing the resulting extract. 

2.1.1 Extraction 

Dried and powdered parts (fruit, resin or fruit powder) depending on the individual 

plant were exhaustively extracted by cold agitation with solvents in order of 

increasing polarity (hexane, chloroform and methanol). The solutions were placed 

over an ultra-sonication bath for 48h In the case of E. rutaecarpa; the methanol 

extract was further subjected to acid-base partitioning in order to obtain the basified 

extract rich in alkaloids (section 3.0.3). The resulting extracts were dried under 

vacuum in a rotary evaporator, weighed (Appendix 14) and stored in a refrigerator for 

further analysis.  

2.1.2 Vacuum Liquid chromatography 

In natural product chemistry, there is a constant need to separate small and large 

quantities of complex mixtures efficiently and rapidly using the most cost–effective 

method. Unfortunately, classical chromatographic techniques cannot meet these 

requirements and efforts to improve on these techniques include the use of multi-bore 

columns, flash chromatography, automated systems and dry column chromatography. 

Thus, Vacuum Liquid Chromatography (VLC) allows for the effective fractionation 

of a large quantity of material by gradient elution and the flow of which is switched 

on by a vacuum (Pelletier et al., 1986) The technique employs the use of sintered 

glass column (60 mm x 120 mm) with a fritted disk and a quick-fit joint which fits 
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into a 24/29 or 24/40 T-piece adapter with a side arm connected to a vacuum line. 

The column was packed up to two-third of the total volume with adsorbent 

(preparative layer chromatography silica kiesegel 60 PF254 + 366) and allowed to settle 

by gentle tapping. The whole experimental setup was under the influence of gravity. 

The column was conditioned with the first eluent (n-hexane), and next, a weighed 

amount of the plant sample which was mixed with the silica (TLC standard grade, 

Merck 7749), was transferred onto the surface of the column before further elution 

with solvents: from 100% hexane to 100% ethyl acetate and methanol solvent in 

order of increasing polarity. Round bottomed flasks were fitted at the end of the 

column to collect the fractions; and each of these was dried under vacuum on a rotary 

evaporator. VLC differs from flash chromatography in that the column is allowed to 

run dry after each fraction is collected. 

 

Figure 7: Vacuum liquid chromatography setup
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Table 2: Plant materials and sources 

 

 

 

 

 

 

 

 

 

 

 

 

Plant material Family Area of collection/Source 

Mallotus philippinensis (Lam.) Mull. 

Arg 

Euphorbiaceae Collected by Vaibhav Shinde and 

Kamlesh Shinde from the premises of 

Poona College of Pharmacy, Pune, 

India. The voucher specimen 

SOPMa001 is deposited at the SOP 

UCL herbarium. 

 

Cannabis sativa L Cannabinaceae Collected from the SOP UCL 

herbarium storage of Cannabis 

collections (SOPCaS002) 

Capsicum annuum L Solanaceae Supplied by Herbs in a bottle Ltd, UK 

Evodia rutaecarpa (Juss) Benth Rutaceae Supplied by Herbs in a bottle Ltd, UK 
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Table 3: Antibacterial agents/chemicals 

Antibacterial agents/chemicals Source 

Tetracycline Sigma chemicals, UK 

Erythromycin Sigma chemicals, UK 

Norfloxacin Sigma chemicals, UK 

Oxacillin Sigma chemicals, UK 

Kanamycin Sigma chemicals, UK 

Streptomycin Sigma chemicals, UK 

Amoxicillin Sigma chemicals, UK 

Nalidixic acid Sigma chemicals, UK 

Actinomycin-D Sigma chemicals, UK 

Ciprofloxacin Sigma chemicals, UK 

DMSO Sigma chemicals, UK 

MTT (Thiazolyl blue tetrazolium) Sigma chemicals, UK 
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Antibacterial agents/chemicals continued  Source 

Silica (pore size 60 Å, 5-25 μm particle size) Merck Chemicals, UK 

Reverse phase C18 plates Merck Chemicals, UK 

Solid phase extraction cartridges ( silica, C18) Strata Phenomenex products 

Solvents (HPLC grade) Fisher Scientific UK Ltd / BDH Chemicals, UK 

Sodium Chloride Sigma Chemicals, UK 

bijou containers (6 mL, 20 mL) SLS Ltd 

96-well plate (flat bottom) Fisher Scientific UK Ltd 

Micropipettes (1mL, 100uL and multipipette) Gilson Ltd. 

Nutrient agar Oxoid UK Ltd 

MacConkey agar Oxoid UK Ltd 

Luria-Bertani Broth (LB) Oxoid UK Ltd 

Muller Hinton Broth (MHB) Oxoid UK Ltd 
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2.1.3 Thin Layer chromatography 

Thin Layer Chromatography is a technique that can be used to analyse and separate 

plant extracts qualitatively and quantitatively. It reveals the characteristic constituents 

of a crude mixture and also the purity of an isolated compound. It operates on the 

principle of different migration properties of compounds in different solvent systems. 

The stationary phase is a thin layer of adsorbent material (e.g. silica gel) and is 

immobilised on an aluminium plate. The mobile phase is a mixture of solvents into 

which one end of the plate is immersed. Because of capillary action the solvent 

mixture migrates to the top of the plate. The composition of the solvent mixture and 

the affinity of compounds for the solvents determine which kind of compounds will 

travel onto the top of the plate and their rate of ascent. For polar compounds, the 

solvent mixture needs to have polar properties and vice versa. The fluorescent coating 

on the plates allows visualisation of UV active compounds once viewed under long (λ 

= 365 nm) and short (λ = 254 nm) wave UV light while colourless compounds are 

visualized by application of staining reagents. To quantify the migration of the 

compounds on a particular plate and the solvent system, the Rf value was used and 

defined as  compounds distance from the origin   =     <   1 

solvent front distance from the origin 

The Rf values are always ratios and are never greater than 1, the greater affinity the 

compound has for the adsorbent the smaller the Rf value and vice versa. 

 

TLC was performed on all of the extracts. A small amount of sample was dissolved in 

50 μl of an appropriate solvent and the sample applied 2 cm from the bottom of a 

silica gel 60-F254 pre-coated TLC plate. The plate was then placed in a tank saturated 
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with an appropriate mobile phase (v/v). After the separation was complete, the plate 

was air dried and viewed under UV 254 nm and 365 nm to determine the absorbance 

and fluorescence properties of the extracts. Substances that quench fluorescence 

appear dark short wavelength (λ = 254 nm) and those that fluoresce under long 

wavelength (λ = 356 nm) appear as either bright blue or yellow bands. The plates 

were sprayed with different detection reagents to visualize the characteristic 

compounds. The reagent-sprays used in the study were 1% vanillin-sulphuric acid 

reagent (VS), on M philippinensis, C. sativa and C. annuum to visualise flavonoids, 

phenolics and Dragendorff’s reagent (DRG) on E. rutaecarpa, to visualize alkaloids 

and quaternary amine compounds.  

2.1.4 Solid phase extraction 

Solid phase extraction (SPE) is a separation technique by which compounds can be 

separated according to their physical and chemical properties. SPE is an alternative to 

liquid/liquid extraction, since it is more efficient, rapid and easy to perform. It 

employs the principle of liquid-solid extraction (de Fátima Alpendurada 2000) and 

utilises adsorbents that are available commercially in the form of pre-packed 

cartridges, which are disposable. Separation efficiency is largely a function of sample 

application flow rate and sample/adsorbent volume ratio. Lower flow rates improve 

separation but increase run time and if the flow rate is too high, the sample may not 

have sufficient contact time with the adsorbent. When used for sample clean up, the 

cartridge either retains the components of interest while the undesired components 

pass through depending on the mobile and stationary phases. In cases of fractionation, 

the extract or mixture is adsorbed onto the adsorbent matrix and fractionated. 

Therefore, it has become the method of choice for the separation of a wide range of 

compounds.  
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50 mL cartridges were used in the case of normal phase SPE, while 75 mL C18 

cartridges were used during the reverse phase SPE. 

 

Figure 8: A solid-phase extraction setup 

 

2.1.5 Silica column chromatography 

Various sizes of chromatography columns are used for this simple absorption 

chromatography technique for routine purification of organic compounds. It is very 

convenient for large scale separation as well as small scale separation depending on 

the size of column used. Traditionally, large scale preparative separations are carried 

out in long column chromatography, although the results are satisfactory, it is time 

consuming. In recent years, various preparative systems have evolved such as flash 

column chromatography which reduce separation times to 1-3 h and allow for good 

resolution of the components on the TLC plate.  
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The apparatus required consists of a chromatography column and a flow controller 

valve. The column is a flattened, bottom packed silica mixed in the appropriate 

solvent to form slurry. A tap is opened so that the solvent can flow through the 

column and is collected in a beaker or flask at the bottom. The column is never 

allowed to dry out and fresh solvent is added in such a way to minimise disturbance 

to the packing material and the sample adsorbed onto the silica. 

1g of sample was adsorbed onto silica and packed into the column after packing 

slurry had settled. The column was equilibrated by washing with 100% of the 

appropriate solvent (hexane, toluene or chloroform). Separation was achieved by 

eluting solvents in order of increasing polarity (100% hexane-chloroform- methanol 

in 1% to 5% increments) under gravitational flow. Eluents were collected in test tubes 

for further analysis.  

2.1.6 High Performance Liquid chromatography (HPLC) 

HPLC is a versatile, robust and widely used form of chromatography. Although 

mainly used quantitatively, it can also yield qualitative information and is commonly 

used in the isolation of natural products. The sample is applied through an injection 

port to the top of a tightly packed column (diameter usually around 3-10 μm) through 

which a predetermined mobile phase is flowing continuously. Separation of sample 

on a reverse phase is achieved due to differences in the relative affinity for the 

stationary and mobile phases. Eluting substances were monitored with a suitable 

detector and the output plotted as a graph with a series of peaks, which correspond to 

the separated components.  
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HPLC equipment and conditions used  

HPLC system Waters 996 photodiode array detector (DAD) 

 

Column Waters 5 μm Novapak C 18 RP x10 cm 

Mobile phase 100% water- 100% methanol (gradient mode) 

 

Flow rate 1 mL/min 

Run time 20 min 

Injection volume 20 μL 

Detection wavelength 280 nm 

 

In this project, HPLC was used only on some fractions of Evodia and Capsicum. 2 

mg/mL solution of the SPE/VLC fractions were analysed by HPLC after filtering 

through Nalgene 4 mm syringe filters, 0.45 μm, nylon. The same system was used on 

preparative HPLC at a concentration of 50 mg/mL (injection volume of 1mL) to 

isolate individual compounds. 

2.2 Spectroscopic methods 

The full identification of all pure compounds was carried out using various forms of 

spectroscopy such as: one (
1
H, 

13
C, C-DEPT-135) and two dimensional (HSQC, 

HMQC, HMBC, COSY, NOESY) Nuclear Magnetic Resonance (NMR), and  Mass 

Spectrometry (MS)-fast bombardment (FAB), -electron ionisation (EI), and -electron-

spray ionisation (ESI). NMR spectra were recorded on Bruker AVANCE 500 MHz 

NMR spectrometers. Chemical shifts (δ) were reported in parts per million (ppm) 

relative to appropriate internal standard and coupling constant (J values) are given in 

Hertz.  
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2.2.1 Nuclear Magnetic Resonance (NMR) 

Nuclear magnetic resonance is a powerful and versatile tool which is employed 

routinely by chemists in the structure elucidation of organic molecules or to give 

information on the type of compounds present in an extract (Soininen 2008).  The 

importance in chemistry is attributed largely to the detailed information that can be 

obtained from it; spectroscopic features correlate with individual atoms rather than as 

with other techniques such as UV and IR spectroscopy. It is now routinely possible to 

determine the structures of organic compounds with a molecular mass of less than 

1000 Daltons and above.  

The phenomenon of nuclear magnetic resonance occurs because the nuclei of certain 

atoms possess spin and this spin is characterised by the nuclear spin quantum number 

I which may take integer or half-integer values. The most commonly used nuclei are 

that of 
1
H and 

13
C. 

1
H nucleus has almost 100% natural abundance and is one of most 

sensitive nuclei in NMR. 

 NMR spectra were recorded on Bruker AVANCE 400 and 500 MHz spectrometers, 

and samples dissolved in deuterated chloroform, methanol or water. The spectra were 

calibrated accordingly to the solvent peaks and the spectra processed using TopSpin 

Bruker software.  

  

 

Solvent 
1
H peak(s) ppm 

13
C peak ppm 

Chloroform 7.26  77.2 

Methanol 4.87, 3.31 49.1 

Water 4.8  
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2.2.1.1 Proton NMR (
1
H)  

The 
1
H NMR spectrum gives information on the number of protons present in a 

compound and their chemical environment. It will also give an indication of the 

purity of a sample. Integration of the spectrum using the area under the peaks reveals 

the relative number of protons associated with each peak. The resonance of each 

proton is given a chemical shift value δ which is reported in parts per million (ppm). 

When the nucleus is in a shielded (electron donating) environment, a higher field 

strength is required to cause resonances resulting in low δ values. Therefore, the ppm 

indicates whether the protons are in a deshielded (high ppm) or shielded (low ppm) 

environment. The proton spectrum reveals the types of functional groups likely to be 

present, for example, the proton of an aldehyde group gives a characteristic signal at 

9.5-10.5 ppm and aromatic protons resonate between 6-8ppm. Methyl groups in a 

shielded environment give signals around 0.17- 1.5 ppm. Coupling constants known 

as J values can reveal the position of protons in respect to each other, for example 

whether they are in ortho or meta position in an aromatic ring or in the case of a 

double bond, whether they are cis or trans to each other.  

The proton spectrum can reveal considerable information about a sample and can be 

used as a dereplication tool, for example, to identify samples containing undesired 

chemicals groups or types of compounds, i.e impure compounds. Where the proton 

spectrum indicated a pure compound, full NMR spectra, both one- and the two-

dimensional were acquired to determine the structure.  

2.2.1.2 Carbon-13 NMR (
13

C) 

Carbon NMR uses the comparatively rare 
13

C isotope as 
12

C is not magnetic. Two 

types of carbon spectra were acquired. The broadband decoupled carbon spectrum 

gives a peak for each carbon atom present in a compound. The peak is a singlet, since 



57 

 

the protons are decoupled during the experiment. The 
13

C DEPT-135 (Distortionless 

Enhancement by Polarisation Transfer) spectrum only shows a signal for carbons 

with a proton attached which makes for easy identification of methane, methylene 

and methyl groups attached to the carbons. Comparison of the two spectra will reveal 

quaternary carbons, which do not show in up in the DEPT experiment.  

2.2.1.3  Two-dimensional spectra 

The 
1
H and 

13
C experiments are referred to as one-dimensional techniques displaying 

the data along the x and y axes. A two-dimensional spectrum shows experimental 

data additionally on the z axis, which is the intensity of the signal. The data may be 

from the same experiment, or from the separate experiments, for example proton data 

along the x axis and carbon data on the y axis. 

 

2.2.1.4  Correlation Spectroscopy (COSY) 

The COSY technique provides information on proton coupling. It is described as 

homonuclear as it acquires only data from hydrogen nuclei. However, the data is 

displayed along three axes on the spectrum, and it is therefore a two-dimensional 

technique. The chemical shift data is plotted on the diagonal and proton coupling is 

shown by cross peaks which lie off the diagonal axis, indicating protons which are 

only two-to four bonds from each other. 

2.2.1.5  Heteronuclear Single Quantum Coherence (HSQC) spectroscopy 

This technique is heteronuclear as it uses data acquired from both proton and carbon 

nuclei. An HSQC spectrum reveals which protons are attached to which carbons. 
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Quaternary carbons will not give a signal since they do not have any protons 

attached. 

2.2.1.6 Heteronuclear Multibond Quantum Coherence (HMQC) spectroscopy 

 The HMQC technique provides long-range correlation information on protons and 

carbons which are separated by two or three bonds. From the information given in the 

HMBC spectrum, the structure of the compound can begin to be assembled. This is 

done by assembly of partial fragments of the compounds. 

2.2.1.7 Nuclear Overhauser Effect Spectroscopy (NOESY) 

The NOESY spectrum is another homonuclear technique involving proton data only. 

It gives information on the spatial proximity of protons; therefore, protons which are 

not close together in terms of bond distance, but are close together in space may give 

a signal. The NOESY technique can therefore facilitate in assigning the relative 

stereochemistry of a compound.  

 

2.3 Biological Methods 

All bacterial strains (Table 4) were obtained from Dr Paul Stapleton; cultured on 

nutrient agar slopes and incubated for 24 hours at 37
o
C prior to MIC determination. 

An inoculum turbidity equivalent to tube a 0.5 McFarland standard (1 x10
8
 cfu/mL) 

was prepared in normal saline for each test organism, and then diluted 1:100 in 

Mueller-Hinton broth just before inoculation of the plates. 

2.3.1 Minimum inhibitory concentration (MIC) 

100µL of sterile Mueller-Hinton broth (MHB; Oxoid) containing 20 mg/L and 

10mg/L of Ca
2+

 and Mg
2+

 respectively, was dispensed into 11 of the wells of a 96-
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well microtitre plate (Nunc, 0.3 mL volume per well). All antibacterial agents apart 

from norfloxacin were dissolved in dimethylsulphoxide (DMSO) and diluted in MHB 

to give a stock solution of 2048 mg/L. 100µL of stock was serially diluted into each 

well and then 100µL of the bacterial inoculum was added to each well to give a final 

concentration range of 512 - 1 mg/L in the wells. All procedures were performed in 

duplicate and the plates incubated for 18 hours at 37
o
C. 20µL of a 5 mg/L methanolic 

solution of 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT; 

Sigma) was added to each well and incubated for 30 minutes. A dark purple 

colouration indicated bacterial growth. The MIC was recorded as the lowest 

concentration at which no colouration was observed. 
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Bacterial strain  Resistance determinants 

 

SA1199B  

 

Over-expresses the NorA multidrug resistance efflux pump 

RN4220  Over-expresses MsrA protein pump 

XU212  Possess the TetK tetracycline pump 

EMRSA-15, EMRSA-16, Possess mec genes 

ATCC 259232 

 

Standard strain  

MRSA 346724 Multidrug resistant S. aureus 

MRSA 774812 Multidrug resistant S. aureus 

MRSA 274829 Multidrug resistant S. aureus 

MRSA 12981 Multidrug resistant S. aureus 

SA13373 Multidrug resistant S. aureus 

Enterococcus faecalis 13379 Gram-positive 

Enterococcus faecalis 12697 Gram-positive 

Bacillus  subtilis BsSOP01  Gram-positive 

 

Table 4: Bacterial strains/materials 
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Bacterial strain continued 

 

E. coli NCTC 10418 Gram-negative, 

Pseudomonas aeruginosa 

10662 

Gram-negative 

Klebsiella pneumoniae 342 Gram-negative 

Proteus sp. P10830 Gram-negative 
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2.3.2 Plasmid Conjugation Inhibition Assay 

The plasmid conjugation inhibition assay was performed by the broth mating method 

described by (Rice and Bonomo 2005) with some modifications. The plasmids used 

for the study, their resistance markers, and respective hosts are listed in Table 5. 

Mating between the plasmid-containing donor strain E. coli K12 J53 and the 

recipients E. coli ER1793 and E. coli JM109 was performed in LB broth.  The 

independent overnight cultures of the plasmids were inoculated into 5 mL fresh Luria 

broth and incubated overnight with shaking at 37
o
C.  Donor and recipient cultures 

were mixed 1:1 in 100 μL LB with 100 μg/mL of each of the compounds to a final 

volume of 200 μL and incubated overnight at 37
o
C.  For time course experiments, 

overnight cultures were mixed and mated in the presence of the drug and incubated 

for the time periods stated. Only the bacteria that have successfully taken up the 

resistance gene become resistant and will grow despite the effect of compounds. 

The overnight mating cultures were serially diluted  from well 10
-1

 to10
-7

 and 

transconjugants were identified by plating wells 10
-4

, 10
-5

, 10
-6

 and 10
-7

 bacterial 

mixtures onto selective media containing the appropriate antibiotics; wells 4 and 5 

mixtures onto streptomycin (to select for the recipient) plus either amoxicillin (to 

detect transfer of PKM101 or PUB307) or kanamycin (to detect transfer of TP114); 

and plate  wells 6 and 7 serial diluted mixtures onto single antibiotic plates of either 

kanamycin or amoxicillin. Concentrations of the antibiotics used were 30 mg/L 

(amoxicillin) and 10 mg/L (kanamycin). Transfer frequency is calculated as number 

of transconjugants (cfu/mL)/ total number of donor (cfu/mL) equals to a transposition 

frequency as a fraction of 1. Inoculum counts for each strain were plated from wells 6 

and 7 to determine the cfu/mL(colony forming unit/mL) of starting cultures. 
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Statistical analysis  

In order to determine the overall significance level and measure of variability that 

may exist within the sample populations. The MIC determination was repeated twice 

with replicates on different days, while the plasmid broth mating assay was repeated 

three times with replicates. Each replicate was used as a data point n=6 and an 

average mean of the results were determined. The data were expressed as mean + 

standard deviation (SD). Differences between two mean values were calculated by 

the Student’s t-test. The chosen level of significance for all statistical tests was 

P>0.05. Overall data were represented in tables, bar and line graphs. 

The summary of plasmids that were assayed, the resistance markers and their 

respective hosts are listed in Table 5. 
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Table 5: Plasmid strains used, host and resistance markers 

Plasmid Molecular weight Incompatibility 

group 

Host Resistance marker(
r
) 

TP114 62.1Kb IncI2 E. coli K12 J53 Km
r
 

PKM 101 35.4kb IncN E.  coli  WP2 uvrA Ap
r
 

PUB 307:RP1 56.4Kb IncP E. coli K12 J53 Ap
r
, Km

r
, Tet

r
 

R6K 39.4Kb IncX E. coli K12 J53 Ap
r
, Sm

r
 

R7K 30.3 Kb IncW E. coli K12 J53-2 Ap
r
, Sm

r
, Sp

r
 

R1-drd-19 93.9 Kb IncF11 E. coli K12 J53 Ap
r
, Cm

r
, Km

r
, Sm

r
, Sp

r
, Su

r
 

E. coli ER1793  

 

Recipient   Sm
r
 

JM 109 Recipient   Nal
r
 

 

Km
r 
= kanamycin, Ap

r
 =ampicillin, Tet

r 
= tetracycline, Sm

r 
= streptomycin, Sp

r 
= spectinomycin, Cm

r 
= chloramphenicol,  

Su
r
 =

 
sulphonamide, Nal

r 
= nalidixic acid 
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Table 6: Materials needed for DNA electrophoresis 

pAKlux3, PKM 101 Collected from Dr Paul Stapleton 

HpaI Sigma, UK 

SphI Sigma, UK 

Lamba DNA 111 New England Biolabs,UK 

Agarose gel  Sigma UK 

TAE (Tris-acetate-EDTA) Sigma, UK 

TBE (Tris-borate-EDTA) Sigma, UK 

Electrophoresis gel box with power pac Bio-Rad 

Ethidium bromide VWR International 

Phenol blue dye Sigma UK 

Loading/elution buffer Qiagen, UK 

G:BOX transilluminator with syngene software Syngene LTD 

QIAprep Spin Mini and midi prep Kit Qiagen, UK 
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2.3.3 DNA mechanistic studies 

2.3.4 Electrophoretic Gel Mobility Shift Assay (EMSA) 

In free solution, DNA moves under the influence of an electric field in a way that is 

independent of its shape and molecular mass but dependent on charge. When this 

movement takes place in a gel, the speed of migration becomes dependent on size and 

shape as well as charge of DNA. The pH of the gel is important and is maintained at a 

relatively constant value of 7.5 - 8.0 by the presence of buffers. The role of buffers is 

to conduct electricity and ensure that the DNA molecules at the pH become ionized 

and negatively charged and will migrate as desired. This permits a high resolution 

and good separation of the DNA sample. When a power supply is connected, the 

negatively charged DNA fragments that are loaded into the sample well at the 

cathode end of a gel move through the gel towards the anode. The location of the 

DNA within the gel can be determined by staining with low concentration of the 

fluorescent intercalating dye ethidium bromide; bands containing as little as 1-10 ng 

of DNA can be detected by direct examination of the gel under ultraviolet light. 

Electrophoresis is simple, rapid to perform, and capable of resolving fragments of 

DNA that cannot be separated adequately by other procedures, such as density 

gradient centrifugation (Sidorova et al., 2005) 

 

The materials that were used for the agarose gel electrophoresis assay are found in 

Table 6. Agarose gel electrophoresis for plasmid DNA was performed by mixing 1g 

of dry agarose powder in 110 mL of Tris-acetate-EDTA (TAE) aqueous buffer and 

heating in a microwave oven for about 2 mins at P-80 until a clear solution is 

obtained.  After cooling to about 50
o
C, the gel was poured into a casting tray; the 

sample comb inserted and allowed to solidify at a room temperature. The staining of 
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the gel is done after the gel is run in order to avoid ethidium bromide binding to the 

DNA, i.e. the ethidium might block binding of the compounds to DNA. Prior to the 

running of the gel, 2-4 μL of plasmid DNA was first incubated with 8 μL of the test 

compounds in their various concentrations (10  or 100 μg/mL), 1 μL of elution 

loading buffer and 1uL of bromo-phenol blue. A mixture of a total volume of 10 -12 

μL was usually loaded slowly into the wells, while the reference ladder DNA was 

loaded at both extreme well of the gel submerged in 1% TBE buffer. The ladder is a 

set of DNA fragments of known size that is used to estimate the sizes of the unknown 

fragments of the plasmid DNA that were separated. The electrophoresis gel box 

(Pharmacia Biotech GNA-200 submarine unit with Power Pac 300 power supply, 

Bio-Rad), was then switched on and allowed to run at a constant voltage of 40 - 65V 

for 2 hours or more until the dye was approximately 75-80% of the way down  the 

gel. The gel was subsequently stained in a container of ethidium bromide for 30 min 

to visualise the location of the DNA fragments. Notably, ethidium bromide is a 

fluorescent dye that intercalates between bases of nucleic acids and allows very 

convenient detection of DNA fragments in gels. The visualisation was done with G: 

BOX gel documentation system (Syngene), and images were inverted (black to 

white) with GeneSnap software (Syngene). Illumination with ultraviolet light causes 

the intercalated dye to fluoresce with a pale pink colour.   

2.3.5 Isolation and purification of the plasmid DNA  

E. coli J53 harbouring plasmid PKM101 was grown with shaking (New Brunswick 

incubator; 165 rpm) for 16h at 37°C in Luria-Bertani broth containing amoxicillin (50 

µg/mL). Plasmid PKM 101 was extracted using an alkaline lysis procedure and the 

resulting DNA purified by adsorption chromatography (QIAprep Spin Miniprep Kit, 



68 

 

Qiagen). The stepwise protocol of plasmid purification using Qiagen mini kit is as 

follows: 

A.) Bacteria culture, harvest and lysis 

Four vials of each 25 mL of PKM 101 overnight cultures were pelleted using Biotech 

centrifuge 6000 x g for 15 mins at 4
o
C, after which they were combined into two 

vials. The harvested bacterial pellet was resuspended in buffers, PI, P2 and P3 

accordingly as stated in the kit manual. 

B). The bacterial lysate mixture was centrifuged at >20,000 x g for 30 mins at 4
o
C, 

and the supernatant re-centrifuged at >20,000 x g for additional 15 mins at 4
o
C. 

C). The supernatant was carefully pipetted on onto an already equilibrated the 

QIAGEN tip- column by applying 4 mL of QIAGEN buffer QBT (equilibration 

buffer) and allowed to empty by gravity flow. After the supernatant is applied unto 

the column, it was allowed to enter the silica resin by gravity flow, and the column 

washed twice with 2 x 10 mL of buffer QIAGEN QC (wash buffer). The buffer is 

allowed equally to elute by gravity flow. This was followed by elution of the DNA by 

applying 5 mL of buffer QIAGEN QF (elution buffer) into a clean 15 mL vial. The 

DNA was precipitated by adding 3.5 mL of isopropanol to the eluted DNA and mixed 

carefully. The resultant mixture was centrifuged at >15,000 x g for 30 mins at 4
o
C 

and carefully decanted. The DNA pellet was washed with 2 mL of 70% ethanol and 

centrifuged at >15,000 x g for 10 mins and decanted carefully. The final DNA pellet 

was allowed to stand and air-dried for 5 - 10 mins, then dissolved in 1 mL of elution 

buffer and stored at 4
o
C, for future use. 
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2.3.6 Restriction Endonuclease Fragmentation Assay 

Restriction endonucleases bind specifically to and cleave double-stranded DNA at 

specific sites within or adjacent to a particular sequence known as the recognition 

site. For example, the restriction enzyme ApaI recognizes the sequence 

5´...GTGCAC...3´. The recognition site of the restriction enzyme HpaI: C C G G and 

SphI: 5`…G C A T G C…3` can therefore cut the plasmid DNA into smaller DNA 

fragments of known sizes. A DNA ladder or size meter run on the same gel and can 

be used to determine by comparison of the fragments of known sizes to estimate the 

sizes of the unknown DNA fragments. The restriction enzymatic activities are 

strongly dependent on the local DNA conformation at the different restriction sites.  

10 µg of PKM101 was digested with Hpa1-DNA restriction endonuclease (Fischer 

Scientific; 10U for 2h at 37°C) before purification using QIAquick PCR Purification 

Kit, Qiagen. The expected fragment sizes of HpaI-digested PKM101 are: 7.8, 6.7, 

5.3, 4.6, 3.7, 2.7, 2.6 and 2.0 kb (Langer et al, 1981). The restriction digestion of 

plasmid pAKlux3 was also conducted with SphI. The expected fragment sizes 

of SphI-digested pAKlux3 are: 8.03, 2.86 and 1.07 Kb. 

2.3.7 Binding of the digested DNA with the compounds 

Binding of each of the test compounds (final concentration of 10x MIC) to 0.5 µg 

of HpaI-digested PKM 101 DNA was performed at 37°C for 1h in a total volume of 

20 µL. Samples were electrophoresed in 1 x TAE buffer in an 0.8% agarose gel at a 

constant voltage of 65V for 1.5h. The binding of the test compounds to the DNAs in 

the absence of the restriction enzymes were also prepared. All the solutions were 

incubated at 37 °C for 1 h; and the samples were analysed by agarose gel 

electrophoresis.  
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The gel was subsequently stained with ethidium bromide (VWR International) for 30 

minutes to visualise the location of the DNA. Images of the DNA profiles were 

captured with a G: BOX gel documentation system (Syngene). Images were inverted 

(black to white) with GeneSnap software (Syngene).  
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CHAPTER THREE  

RESULTS  

3.0 Bioassay-guided Isolation and Purification  

3.0. 1 Mallotus philippinensis  

Preliminary screening of the initial three plant extracts: hexane (A), chloroform (B) 

and methanol (C), indicated that only the chloroform extract had appreciable 

biological activity. The three fractions were subjected to both antibacterial and anti-

plasmid assays after fractionation as a guide to aid isolation of active compounds. 

3g of the chloroform extract was fractionated using VLC with an increasingly polar 

gradient of 100% hexane to 100% ethyl acetate and 100% methanol, which yielded 

21 fractions. These fractions were monitored by TLC using the solvent system 

containing hexane-ethyl acetate-formic acid (4:6:1) solution. The spots were 

visualised by long (365 nm) and short (254 nm) wavelengths (Figure 9) as well as 

spayed with 1% vanillin-sulphuric acid and heated until a colouration was observed.  
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Figure 9: TLC of VLC fractions using the solvent system containing hexane-ethyl 

acetate-formic acid (4:6:1) solution  

The TLC profile of the extracts was dominated by purple and yellow bands which 

appeared at the different Rf values. Less prominent violet/purple spots also appeared 

at the top of the plate indicating the presence of nonpolar components which were 

fluorescent under long UV light. This implied that the extracts constituted flavonoids 

and phenolic compounds. Similar fractions were pooled together into 10 fractions F, 

G, H, I, I2, J, K, M, O, P and were tested for antibacterial activity against SA1199B 

and XU 212 and anti-plasmid activity against PKM101. Fractions F and H were 

inactive against the bacteria while fraction G was active only at 512 mg/L. The other 

fractions I-P were all active, Fr-K was most potent fraction at 8 mg/L against 

SA1199B and 2 mg/L against XU212 (Table 7). Fractions J and K were the only 

fractions with anti-plasmid activity, so both were pooled to gain enough material   

(10.9mg) to subject to column chromatography using 100% toluene and 100% 

acetone. 
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All fractions obtained were monitored by TLC (Figure 10), and those that showed 

single spots were submitted to NMR analysis which yielded a pure compound, BM-1.  

 

Figure 10: TLC profile showing the Rf value of rottlerin at 0.35 (hexane-ethyl 

acetate-formic acid (4:6:1) solution 

The other samples did not show anti-plasmid activity, because of that, they were not 

further fractionated. The hexane extract did not show any significant antiplasmid 

activity but antibacterial activity was observed. Compound BM-2 was isolated 

purified for phytochemical and antibacterial studies. Notwithstanding, all isolated 

compounds were re-tested for antibacterial and antiplasmid activities.  

Table 7:  MICs (mg/L) of norfloxacin and VLC fractions of M. phillipinensis against 

MRSA 

 

 
 SA1199B XU212 

Norfloxacin 32 16 

Mat Fr-F >512 >512 

Mat Fr-G 512 >512 

Mat Fr-H >512 >512 

Mat Fr-I 512 512 

Mat Fr-I-3 64 32 

Mat Fr-J 64 16 

Mat Fr-K 32 8 

Mat Fr-M 32 32 

Mat Fr-O 128 64 

Mat Fr-P 128 64 

Rottlerin, RF=0. 35 
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3.0.2 Cannabis sativa L. 

Only the chloroform extract of this plant showed anti-plasmid activity. 5g of the 

chloroform extract was fractionated by VLC using a gradient solvent system from 

100% chloroform to 100% ethyl acetate in 5% increments, then up to 50% methanol 

in ethyl acetate in 10% increments, (50% methanol in ethyl acetate) and a final wash 

of 100% methanol. This yielded 17 fractions that were pooled to give 9 fractions for 

TLC analysis. 

 

 

Figure 11: TLC of C. sativa fractions developed in a solvent mixture of hexane and 

ethyl acetate (6:4). 

The TLC profile (Figure 11) was developed in a solvent mixture of hexane and ethyl 

acetate (6:4), which showed a variety of purple, blue and light yellow spots on the 

TLC plate after spray with 1% vanillin-sulphuric acid and heating until a colouration 

was observed indicative of phenolic compounds. Only fraction 9 showed anti-plasmid 

activity against TP114.  Fraction 8 and 9 were pooled because they had similar TLC 

profiles and an SPE separation was carried out eluting with toluene, chloroform and 
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finally 100% methanol. This yielded 10 fractions monitored on silica TLC plate with 

a solvent system of chloroform/toluene (6:4) (Figure 12). 

 

Figure 12: TLC using solvent mix of chloroform and toluene (6:4) of SPE fractions of 

pooled 8&9 fractions. 

 

The combined fractions 1-3 were further isolated in appreciable quantity, with the aid 

of column chromatography eluting with 100% chloroform to 100% methanol. The 

resulting fractions were monitored by TLC using solvent mix of chloroform and 

methanol (95:5) (Figure 13) as to note which of the fractions showed minimal 

number of spots and as such fractions 4-8 were submitted for NMR analysis, to yield  

BM-3 (fr 4), BM-4  (fr 5) (Figure 13). Fraction 6 was a complex mixture and the 

NMR profile is presented in Appendix 1. Fractions 7 and 8 were produced in very 

small amounts that were not detected by the NMR. 

 

  

          1       2       3           4           5         5i      THC     6       7        8         9       10 
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Figure 13: TLC of fractions 4, 5 and 6 developed in solvent mixture of chloroform 

and methanol (95:5)  

 

3.0.3 Evodia rutaecarpa  

10g of the methanolic extract of E. rutaecarpa was dissolved in methanol (10mL) and 

poured into a separating funnel. 200mL of 0.05N sulphuric acid was added, followed 

by 200mL of 30% ammonia and stir vigorously. After shaking and allowing for phase 

separation, the lower phase containing the compound of interest is collected into a 

500mL beaker. Using a different separating funnel, the collected solution was washed 

successively four times with chloroform (50mL), and with each wash, the organic 

bottom was collected and combined together. The bulk solution was poured into a 

round bottom flask and evaporated using the rotary evaporator. The extract obtained 

weighed 1.2g and was assayed for antiplasmid activity (Appendix 11). The basified 

(EvB) extract exhibited antiplasmid activity against plasmid TP114 as seen in 

appendix 11, and was taken for further separation and isolation of the active 

compound using VLC, which yielded 11 fractions and monitored by TLC in the 

  4    5    6    7    8  
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solvent system hexane: ethyl acetate (6:4) in figure 14. The spots were visualised 

under long and short wave UV light as well as spraying with Dragendorff’s reagent 

and heating until a colouration was observed. Dominant yellow colours were 

observed (Figure 14). VLC fractions 5, 6 and 7 were active against TP114 plasmid 

however; they were in very small amounts and were not processed further except for 

fraction 6.  Fraction Ev-6 (56 mg) was fractionated by silica column chromatography 

(toluene: ethyl acetate) to obtain 2 compounds BM-5 (toluene: ethyl acetate 9:1) and 

BM-6 (toluene: ethyl acetate 8:2). Fractions 7 and 8 were pooled to afford Ev-8 and 

subjected to HPLC analysis (reverse phase adsorbent, gradient elution of water-

methanol (90:10/0-10 min) and (95:5/10-20 min, flow rate of 1 mL/min) to give 

compound BM-7. 

1   2    3    4    5           6      7      8    9   10    11 
 

Figure 14: TLC of VLC 

fraction of alkaloids in 

basified extract of 

Evodia in hexane: ethyl 

acetate (6:4) 
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Figure 15: Isolation and purification scheme for alkaloid extract of Evodia 

 

Acid- base partitioning of the extract 

 Methanolic extract (10g) of 

Evodia fruit  

Testing of basified extract (EvB) for anti plasmid transfer activities against TP114 

VLC separation of EVB yielded 11 fractions 

(EVB1-EVB11), with EVB-5, -6 and -7 showed 

antiplasmid activity. 

           EVB 6 

Further column chromatography of EVB-6 using toluene: ethyl acetate  

EVB-45(BM-6) EVB-C (BM-5) HPLC analysis 

Frs.44, 45, and 46 (Tol: 

EtOAc 9:1) 

Frs 81-84 (Tol: EtOAc 

8:2) 

 Frs Tol: EtOAc 7:3 &6:4 were 

pooled     
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3.0.4 Capsicum annuum L. 

700mg of  C. annuum methanol extract were fractionated using solid phase extraction 

as described above. A step gradient from 100% distilled water to 100% methanol was 

applied as eluent system, followed by a step gradient up to 100% ethyl acetate in 

order to wash off all the material from the column. The fractions Ca-SPE 1 to Ca-SPE 

6 were analysed using reverse phase TLC and the solvent mixture of methanol and 

water in the ratio 8:2 with a few drops of acetic acid to facilitate the separation. After 

the separation was completed, the plate was viewed under UV 254 nm and 365 nm. 

 

Figure 16: Reverse phase TLC profile of Ca-SPE 1 to Ca-SPE 6 fractions from C. 

annum methanol extract in methanol and water (8:2) viewed under  (a) long wave  

365 nm and (b) short wave 254 nm. 

 

The TLC (Figure 16) revealed that fractions Ca-SPE 1 and Ca-SPE 2 had similar 

chemical profile and thus they were combined to generate fraction Ca-SPE A. 

Likewise, Ca-SPE 3, Ca-SPE 4, Ca-SPE 5 and Ca-SPE 6 appeared to contain similar 

compounds and they were combined into one fraction named Ca-SPE B. A second 

TLC was applied to fractions Ca-SPE 1 to Ca-SPE 10 using reverse phase TLC in 

methanol and water (9:1) as the solvent system with a few drops of acetic acid, which 

b a 
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showed that fractions Ca-SPE 8 and Ca-SPE 9 had similar chemical constitution and 

therefore they were combined to form Ca-SPE C.  

All the SPE fractions of the methanol extract of C. annuum were evaluated for their 

ability to inhibit the conjugal transfer of TP114, using the broth mating assay (section 

2.3.2). Subsequently, the active fractions were additionally tested for their effect on 

the transfer frequency of PKM 101 and PUB 307. A reference sample of pure 

capsaicin, obtained from Sigma-Aldrich UK was also tested along with the fractions, 

since this compound is considered the major active constituent of the plant. Among 

the fractions, Ca-SPE 11 exhibited the highest activity against the transfer of TP114 

(Appendix 12a, 12b and 12c), followed by fractions Ca-SPE 12, Ca-SPE 10, Ca-SPE 

B and Ca-SPE A. All these fractions were submitted for proton NMR, which 

indicated that Ca-SPE 10  as  a pure compound, BM-8. The 
1
H NMR spectrum of Ca-

SPE 11 (Appendix 9) revealed the presence of major signals of capsaicin in a mixture 

of other compounds.  In order to determine if capsaicin was present in Ca-SPE 11, 

TLC was employed using the solvent system petroleum ether/chloroform/acetonitrile 

(4:4, 5:1, 0.5) and sprayed with vanillin-sulphuric acid spray. 

   

Ca-SPE 11 had Rf 

value of 0.39, which 

is lower than 

capsaicin combined 

with Ca-SPE 11 and 

Ca-SPE 10 with Rf 

values of 0.45 

Figure 17:  TLC analysis of Ca-SPE 10, -11, capsaicin + Ca-SPE 11 combined in 

petroleum ether/chloroform/acetonitrile (4:4, 5:1, 0.5) 
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From the TLC profile (Figure 17), it was possible to visualise the various spots and 

all samples recorded identical Rf values of 0.45, confirming the presence of capsaicin  

in combined fraction Ca-SPE 11 + Capsaicin,  except for pure capsaicin with Rf  

value of 0.39. This indicated that the mixed fraction contained capsaicin and possibly 

the presence of another capsaicinoids. Thus, CA-SPE 11 was further subjected to 

analytical HPLC for separation of the capsaicinoids. 

The high performance liquid chromatography of Ca-SPE 11 was conducted with 

mobile phase solvent mixture of methanol-water from A-B 30% - 70% to A-B 70% - 

30% for 20 minutes.  The flow rate was 1 mL/min.  With gradient elution, the 

standard solution contained capsaicin and dihydrocapsaicin while samples 2 and 3 

were two different fractions of Ca-SPE 10. Sample 4 was Ca-SPE 11 for evaluation.  
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3.1 Phytochemical analysis of selected medicinal plants 

3.1.1 Mallotus philippinensis 

Compound BM-1, (1.3mg) was isolated from the chloroform extract of M. 

phillipinensis. The 
1
H, 

13
C, 

13
CDEPT135, 

1
H-

1
H COSY, NOESY, HMQC and 

HMBC experiments were used as the basis for structure elucidation. The isolated 

compound was a known compound named rottlerin and its structure was confirmed 

by careful analysis of its NMR and mass spectra. The molecular formula was 

determined as C30H28O8 and calculated as an ion of m/z 516.18 which corresponded 

to the ESI-MS m/z 515.17 [M-H]
+
 (Appendix 2).  

Figure 18: Silica TLC profile showing the Rf  value of rottlerin at 0.35 (hexane-ethyl 

acetate-formic acid 4:6:1) 

The TLC of rottlerin in solvent mixture of hexane and ethyl acetate-formic acid in the 

ratio of 4:6:1, showed an Rf value of 0.35 (Figure 18). 

The structure of rottlerin is represented in Figure 19.  

Rottlerin, Rf= 0.35 
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Figure 19: Structure of rottlerin. 

The 
1
H spectrum of rottlerin as depicted in Figure 20 recorded 28protons with the 

signals δ1.54, 2.08 and deshielded δ2.71 at the lower ppm correspond to the three 

methyl groups present in the compound. The 
1
H-NMR spectrum showed the 

deshielded signals of five aromatic protons at δ 7.41-7.61 ppm indicative of a phenyl 

ring. The protons H-2’, H-4’ and H-6’ appeared as one peak in the environment, as 

well as H-5’ and H-3’ and thus appear as a multiplet peak in the spectrum. The 

characteristic methylene (-CH2) bridge connecting the acetophenone unit to an 

aromatic ring was a singlet proton resonance at δ 3.80, and 15.8 ppm in the 
13

C 

spectrum. The 
13

C spectrum (Figure 21) showed 21 carbon signals in total from 

which 9 were quaternary carbons. Details of the 1D and 2D NMR experiments can be 

found in Appendix 3a-d. 
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Figure 20: 
1
H NMR spectrum of rottlerin in CDCl3 (500MHz) 

 

 

Figure 21: 
13

Carbon spectrum of rottlerin in CDCl3 (500MHz)

CDCl3  
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The values of the 
1
H and 

13
C signals of rottlerin as determined from 1D experiments 

corresponded to the chemical shifts recorded for the structure of rottlerin by (Hong et 

al., 2010), as seen in Table 8.  

Table 8: 
1
H NMR (500 MHz) and 

13
C (125 MHz) rottlerin  

Position 
13

C 

NMR 

1
H NMR 

13
C NMR and 

1
H NMR (Hong et al., 

2010 ) 

C-2 78.2  78.1  

C-3,  125.1 5.49(d) 1H J=9.5 125.1 5.49(d)1H J=9.9 

C-4 117.2 6.66(d) 1H J=10 117.2 6.66(d)1H J=9.9 

C-5 158.8  158.6  

C-6, C-8 105.3  105.3,C-

8=104.9 

 

C-7 159.6  159.0  

C-9 155.4  155.4  

C-10 103.8  103.7  

C-7’ 126.8 8.19(d) J=15.5 126.8 8.17(d)1H J=15.7 

C-8’ 143.4 7.83(d) J=15.5 143.3 7.82(d)1H J=15.7 

C-9’ 192.8  192.9  

C-1’ 135.5  135.4  

C-2’ C-4’ C-6’ 128.4 7.61(d) 3H  128.4,C-

4=130.4 

7.58-7.61(m)2H 

C-3’C-5’ 129.0 7.41(d) 2H  129.0 7.40-7.42(m) 3H 

C-1’’ 106.5  106.7  

C-2’’ 162.8  162.8  

C-3’’ 105.3  105.6  

C-4’’ 158.8  158.2  

C-5’’ 103.8  103.0  

C-6’’ 161.0  160.4  

Bridge CH2 15.8 3.80(s) 2H 16.0 3.79(s) 2H 

COCH3 204.1  204.3  

COCH3 32.6 2.71(s) 3H 32.7 2.71(s) 3H 

C-2CH3 28.0 1.54(s) 6H 27.8 1.53(s) 6H 

C-5’’CH3 7.5 2.08(s) 3H 7.9 2.08(s)3H 

2’’, 4’’-OH  9.60(s) 1H  9.4-9.6 2H 
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Compound BM-2 was known as the red compound (Figure 22) from the paper of 

(Hong et al., 2010) gives the Kamala plant its characteristic red colour. It was 

isolated from the hexane extract of M. philippinensis in our laboratory. It had a 

characteristic red colour and a molecular formula C21H20O4. The 
1
H, 

13
C, COSY, 

HMQC, HMBC experiments were the basis for its structure elucidation.  

 

Figure 22 : Structure of the red compound, BM-2 

 

The examination of the proton NMR spectrum (Figure 23) showed that there were 20 

protons present in this compound. The first two peaks which appear at lower ppm in 

the spectrum corresponded to the three methyl groups that were present in the 

compound. One hydroxyl group was deshielded and corresponded to the H-2΄ 

position whereas the other hydroxyl group present corresponded to the H-4΄ position.  



87 

 

 

Figure 23:  
1
H NMR spectrum of the red compound in CDCl3 (500MHz) 

 

The 
1
H NMR spectrum showed the deshielded signals of five aromatic protons at 

7.38-7.61 ppm indicating the presence of 1 phenyl ring. The protons H-2, H-4 and H-

6 appeared as one peak in the 
1
H spectrum as they were in the same environment. 

Protons H-5 and H-3 were also in the same environment and thus, they appeared as 

one peak in the spectrum. The H-6΄΄ and Η-7΄΄ hydrogens displayed trans isomerism 

with coupling constant value, J=15.5 respectively.  

In the 
13

C NMR spectrum (Figure 24), there exhibited 18 signals, which by 
1
H NMR, 

and 
13

C DEPT-135 corresponded to 9 quaternary carbons, 3 methyls and 9 methine 

carbons. The two carbons of the methyl groups at the 7 and 8 positions of the 

compound were shown as one peak at 27.9 ppm. There were 3 carbons that appeared 

as one peak at 128.8 ppm. 
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Figure 24: 
13

Carbon spectrum of the red compound in CDCl3 (125MHz)
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The 
1
H and 

13
C resonances (Table 8) of the red compound were assigned by 

correlations of the HMQC data (Table 9): δ 7.40 (Η-2,4,6) with δ 128.2 (C-2,4,6), δ 

7.61 (H-3) with δ 130.0 (C-3), δ 7.61 (H-5) with δ128.9 (C-5), δ 5.51 (H-3΄΄) with δ 

125.2 (C-3΄΄), δ 6.60 (H-4΄΄) with δ 116.6 (C- 4΄΄), δ 8.12 (Η-6΄΄) with δ 127.8 (C-

6΄΄) and δ 7.77 (Η-7΄΄) with δ 142.0 (C-7΄΄), while the COSY data (Table 9) showed 

the correlations between protons H-3΄΄ and H- 4΄΄, H-2, and 4, 6 with the H-3, 5 and 

between H- 6΄΄ and H- 7΄΄.  

On the basis of the above data which were in agreement with published literature 

(Hong et al., 2010) represented in Table 8, BM-2 was assigned as the red compound. 
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Table 8:  
1
H NMR (500 MHz) and 

13
C (125 MHz) of the red compound BM-2 in 

CDCl3 

Position 
δ
H 

δ
C 

13
C      and        

1
H  

(Hong et al., 2010 )
 

1 _ 135.7 NL  

2,4,6 7.41 (m) 128.2 128.2 7.56-7.61, m 

3 7.61 (m) 130.0 128.9 7.36-7.41, m 

5 7.61 (m) 128.9 128.9 7.36-7.41, m 

Me 2΄΄ (x2) 2.08 (s) 27.8 27.8 2.07, s 

Me 3΄ 1.58 (s) 7.0 7.1 1.53, s 

1΄ - 77.7 77.6  

C-2΄-OH 14.36 (OH) 164.3 164.2  

3΄ - 101.7 101.9  

4΄ 5.34 (OH) 106.4 106.3  

5΄ - 155.8 156.2  

6΄ - 102.3 102.6  

2΄΄ - 154.4 154.3  

3΄΄ 5.51 (d) 125.2 125.1 5.48, d, J=9.9 

4΄΄ 6.60 (d) 116.6 116.6 6.60, d, J=9.9 

5΄΄ _ 193.1 193.1  

6΄΄ 8.12 (d) 127.8 127.7 8.12, d, J=15.7 

7΄΄ 7.78 (d) 142.0 142.0 7.75, d, J=15.7 

NL= Not listed 
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Table 9: NMR data (COSY, HMQC, and HMBC) of the red compound 

 

Protons Cosy HMQC HMBC 

   2J 3J 

Η-2,4,6 

H-3 

 

 

H-5 

H-1΄ 

H-2΄ 

H-3΄ 

H-4΄ 

H-5΄ 

H-6΄ 

H-2΄΄ 

H-3΄΄ 

H-4΄΄ 

H-5΄΄ 

H-6΄΄ 

H-7΄΄ 

(Me)2 2΄΄  

Me 3΄ 

 

 

 

 

 Η-3, 5 

Η-2,4,6 

Η-2,4,6 

 

 

 

 

 

 

 

H-4΄΄ 

H-3΄΄ 

 

 

 

128.2 (CH) 

130.0 (CH) 

 

 

128.9 (CH) 

 

 

 

- 

- 

- 

125.2 (C) 

116.6 (C) 

127.8 (C) 

142.0 (C) 

27.9 (C)  

7.0 (C) 

142.0 (CH) 

- 

- 

- 

- 

154.4 (C) 

- 

135.7 (C) 

128.2 (CH) 

125.2 (CH) 

164.3(C), 

106.4 (C) 

128.9(CH) 

130.0 (CH) 

 

 

128.2 (CH) 

- 

- 

- 

- 

- 

- 

- 

77.7(C), 

102.3(CO) 

77.7 (C) 

- 

- 

155.8 (C) 

77.7 (C) 
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3.1.2 Cannabis sativa L. 

Compounds BM-3 and BM-4 were obtained from the chloroform extract of Cannabis 

sativa, following bioguided isolation, to determine active fractions. The 
1
H, 

13
C, 

13
C 

DEPT135, COSY, NOESY and HMBC experiments were the basis for their structure 

elucidation. BM-3 (Figure 25) was identified as tetrahydrocannabinolic acid (THCA) 

on the basis of the NMR data from literature and ESI-MS value of m/z 357.4 [M-H]
+
 

(Appendix 4) which corresponded to the molecular formula of C22H30O4 and 

molecular mass of  m/z 358.54  (Hazekamp et al., 2005).  

 

Figure 25: Structure of tetrahydrocannabinolic acid 

 

Figure 26: 
1
H NMR of tetrahydrocannabinolic acid in CDCl3 (500MHz) 
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The 
1
H NMR of THCA has been previously published by several authors, and they 

are in agreement with our proton spectral data (Table 10). The spectral data (Figure 

26) showed major signals of a typical cannabinoid at H-4, δ6.26; H-10, δ6.43, two 

angular methyl groups (3H each, s at δ 1.63) located at  position 11 indicate on 

structure a methyl (α) and position 12-methyl (β), one tertiary methyl group (3H, t, J= 

7.5Hz,  at δ 0.9, H-5’), and the aromatic olefinic protons at δ 6.26, δ 6.43, and δ 7.04 

- 7.11 ppm.  

In the 
13

C NMR spectrum (Figure 27), a downfield shift of 148.4 ppm was found for 

C-2, and the other aromatic carbons, C-3, C-4, C-5, C-6, and C-7, showed shifts 

at103.8, 159.4, 113.0, 163.6 and 78.6 ppm, respectively. The chemical shifts of the 

aliphatic side chain were found upfield; C-1, C-2’, C-3’, C-4’ and C-5 at 14.1- 36.9 

ppm. The 
1
H and 

13
C NMR assignments are represented in Table 11.                                                  

 

Figure 27: 
13

C NMR of tetrahydrocannabinolic acid in CDCl3 (125MHz)



94 

 

Table 10: 
1
H (500MHz) and 

13
C (125 MHz) of tetrahydrocannabinolic acid in CDCl3  

 

 

 

 

 

Position  
1
H  

13
C 

        1
H  (400MHz)            

13
C (100MHz)           

           in CDCl3 (Choi et al., 2004) 

1  163.6  164.7 

2   103.9  102.3 

3  147.3  146.9 

4 6.26  (s) 1H 113.0 6.24 H (s) 112.3 

5  159.4  159.8 

6  78.6  78.8 

6a 1.67 46.7 1.67 (m) 45.6 

7 1.79 (m) 25.9 1.92, 1.35(t), 2H, 25.0 

8 1.80 31.3 2.17 2H (m) 31.2 

9  135.8  133.8 

9a 2.39 21.6 2.38 21.5 

10 6.43 H 122.8 6.39 1H  123.6 

10a 2.95 (s) H 31.9 3.21 1H  31.2 

11 1.63 (m) 3H 27.5 1.44 3H (s) 27.4 

12 1.63 (m) 3H 27.5 1.41 3H (s) 27.4 

1’ 2.93 (m)  36.9 2.94, 2.78, 3H (t) 36.5 

2’ 1.36 (m)  22.6 1.35 (m) 22.5 

3’&4’ 1.36 (m) 31.2 1.35 (m) 32.0 

5’ 0.91 (t) 3H  14.1 0.90 3H (t ,6.9 Hz) 14.1 

C1-OH 12.79 (s) 1H  12.19 (1H, s)  

COOH 11.91 (s) 1H 175.4  176.2 
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Compound BM-4 (Figure 28) was obtained as dark brown solid. The proton NMR 

(Figure 28) corresponded with those earlier reported by (Choi et al., 2004; Bastola et 

al., 2007) and identified BM-4 as cannabinolic acid (CBNA), a major cannabinoid 

present in C. sativa.  

 

 

Figure 28: 
 
 Structure of cannabinolic acid (CBNA) 

 

 

Figure 29: 
1
H NMR of cannabinolic acid in CDCl3 (500MHz) 
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The molecular formula was determined as C22H26O4 and ESI-MS analysis showed an 

ion peak at m/z 353.0 [M-H]
+ 

(Appendix 4b) which corresponded to the expected 

molecular mass of m/z 354.45. 

Figure 30: 
13

C spectrum of cannabinolic acid in CDCl3 (125 MHz) 

 

Based on the 
1
H (Table 11) and ESI-MS spectral data (Appendix 4b)

 
of the isolated 

BM-4 which corresponded to available literature, the compound was assigned as 

cannabinolic acid. Given that there is no available 
13

C data on cannabinolic acid, the 

13
C NMR Peak assignment was done by comparison to the NMR spectrum of CBN 

[Choi, 2004] (Table 11). 
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Table 11 : 
1
H (500MHz) and 

13
C (125MHz) NMR of  Cannabinolic acid in CDCl3  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NL= Not listed 

The summary of 
13

C DEPT135, COSY and HMBC NMR analysis of 

tetrahydrocannabinolic acid and cannabinolic acid are presented in Appendix 5 and 6.  

 

 

  
1
H  

13
C 

1
H 

(300MHz CDCl3) 

(Bastola et al., 2007)   

  

1  108.9  

2  103.8  

3  148.8  

4  6.43  (s) 1H  113.0 6.40 H (s) 

5  159.4  

6  78.6  

6a  135.8  

7 7.16(m) 

8Hz,7.5Hz 

122.4 7.11 2H, (d) 

 

8 7.11(m) 128.12 7.11 2H, (d) 

9  126.7  

9a 2.40 (s) 3H 21.5 2.38 3H (t) 

10  8.45 (s) H 127.1 8.40 H (s) 

11  1.61 (s) 3H 27.3 1.60 3H (s) 

12  1.61 (s) 3H 27.5 1.60 3H (s) 

1’  2.93 (m)  36.9 2.96 2H (t) 

2’ 1.35 (m)  22.6 1.32 4H (m) 

3’ and 4’ 1.35 (m) 31.2 1.32 4H (m) 

5’ 0.90 (t) 3H  14.1 0.83, 3H, t 

C1-OH 5.49 (s) 1H  5.13 1H (s) 

COOH 12.79 (s) 1H 174.9 NL 
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3.1.3 Evodia rutaecarpa (Juss) Benth 

The crude methanol extract of E. rutaecarpa fruit was subjected to acid–base 

partitioning and the resultant acidic, basic, methanolic and aqueous partitions were 

tested for plasmid transfer inhibition. By using the plasmid transfer inhibition assay 

to guide separations, the bioactive basic fraction was separated by vacuum liquid 

chromatography, in combination with column chromatography on silica gel F254. 

From the VLC analysis, fractions 6, 7 and 8 were active against the plasmid TP114. 

Fr-6 was re-chromatographed on silica gel to obtain two major constituents from 

Evodia rutaecarpa namely BM-5; evodiamine, BM-6; rutaecarpine, while fractions 7 

and 8 were pooled using TLC and subjected to HPLC analysis to obtain BM-7 named 

evosugar. The physical properties of the isolated compounds (BM 5-7) are listed in 

Table 12. 

Table 12: Compound names, molecular formula and physical properties of agents 

isolated from Evodia rutaecarpa 

Compound 

 

Name Molecular 

formula 

/mass 

Yield 

(mg) 

Colour Solubility 

BM-5  Evodia-

mine 

C19H17N3 O 

/  m/z 303  

1.4 mg Light yellow 

powder 

CHCl3 

BM-6  Rutae-

carpine 

C18H13N3O 

/ m/z 287  

3.18 mg Light yellow  

powder 

CHCl3 

BM-7  sucrose C12H22O11 9.6 mg Brown solid H2O 

 

A number of NMR experiments named 
1
H, 

13
C, 

13
CDEPT 135, 

1
H-

1
H COSY, 

NOESY, HMQC and HMBC analysis were employed to elucidate the chemical 

structures of the compounds. 
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BM-5 (Figure 31) was obtained as light yellow crystalline powder and in the very 

small quantity (1.4 mg). The NMR of BM-5 were in line with the proton spectrum 

(Figure 32) and 
13

C NMR profile as reported by (Liu et al., 2005) for evodiamine.  

 

Figure 31: Structure of evodiamine  

 

 

Figure 32: 
1
H spectrum of evodiamine in CDCl3 (500MHz) 

 

The ESI-MS spectrum of evodiamine (Figure 33) showed an ion peak at m/z 302.2 

[M-H]
+ 

which corresponded with the molecular mass of m/z 303.36 and molecular 

formula of C19H17N30. 
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Figure 33: ESI-MS spectrum of evodiamine showing peak ion at m/z 302  

The 
1
H and 

13
C NMR data (Table 13) confirmed  the characteristic protons 

assignments of a quinolone alkaloid: H-16, H-18, δ 7.13-7.23,  m,H-17,  δ 7.47-7.51, 

H-19, δ  8.12, (s, 1H), and N-Me δ2.50, (s, 3H),  H-3, δ 5.92 ( s, 1H); H-5, δ3.27-3.32 

(m, 2H); H-6, δ 2.95-3.03 (m, 2H) and N-H, 8.24 (s, 1H). The full details of 
13

C 

DEPT 135, COSY, NOESY and HMBC spectra of evodiamine are given in the 

Appendix 7a-d 

 

Figure 34: Structure of evodiamine 
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Table 13: 
1
H (500MHz) and 

13
C (125MHz) NMR of evodiamine in CDCl3  

 

 

Position 
13

C  
1
H 

13
C (100MHZ)    

1
H 

(400MHZ) in CDCl3  by 

Liu et al., 2005 

2 126.3  125.3  

3 68.8 5.92, s, 1H 68.4 5.95 (1H,s) 

5 39.5 3.27-3.32, m, 1H 39.1 3.01(2H, 

m) 

6 19.7 2.95-3.03, m, 2H 19.3  

7 118.9  117.8  

8 123.8  121.9  

9 118.9 

  

7.42, d, J= 8, 1H 117.8 7.16-8.17  

(8H, Ar-H, 

m) 

10 123.8  121.7  

11 113.7  113.7  

12 111.3 7.13-7.23, m, 4H 110.8 7.16-8.17  

( Ar-H, m) 

13 136.7  136.4  

15 150.7  150.1  

16  122.5 7.15, d,  J= 8, 1H 122.3 7.16-8.17  

(Ar-H, m) 

17 133.0 7.47-7.51, t, 1H, J= 7.5  132.4  

18 129.0 7.13-7.23, m 128.4  

19  128.2 8.12, d,  J= 7.5, 1H 128.2 7.16-8.17  

(Ar-H, m) 

20 120.1  120.3  

21 164.8  164.5  

N-CH3 37.3 2.50, s, 3H 36.4 2.54 (3H, s) 

N-H  8.24, s, 1H  8.24(1H, 

br) 
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Compound BM-6, was isolated as light yellow powder from two bioactive fractions 

in small amounts of 1.46 and 1.72 mg respectively and a total of 3.18 mg. The 

molecular formula of BM-6 was determined to be C18H13N3O and experimental ESI-

MS ion  of m/z 288.2 [M+H]
+
 which corresponded with molecular weight of m/z 

287.32  indicative that BM-6 could be rutaecarpine (Figure 35).  

 

 

The 
13

C DEPT 135, COSY, NOESY, HMQC and HMBC spectra of rutaecarpine, are 

shown in Appendix 8a-d. The ESI-MS spectrum peak at m/z 288.2 [M+H]
+
 is 

represented in Figure 36.  

 

Figure 36: ESI-MS spectrum peak of rutaecarpine at m/z 288.2  

Figure 35: The structure of rutaecarpine. 
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The 
1
H NMR spectrum (Figure 37) showed signals of due to a quinolone skeleton and 

conjugated protons; H-9, δ 7.18-7.21, t, J=7, 1H;  H-11, δ 7.33-7.36, t, 1H; H-16, δ 

7.42-7.46, m, 2H; H-17, δ 7.64-7.74, 3H; H-18, δ 8.31, dd, 1H; H-19, δ 8.33, dd, 1H;  

which resembled those of evodiamine. 

 

Figure 37: 
1
H NMR spectrum of rutaecarpine in CDCl3 (500 MHz)  

 

  

Figure 38: Structures of rutaecarpine (a) and evodiamine (b) 

 

Other prominent signals included an olefinic proton at H-3 (δ 5.92, s, 1H), and 

protons H-5 (δ 4.58-4.61, t, J=7, 2H), H-6 (δ 3.22-3.26, t, J=7, 2H) and N-H at δ9.13 

(s, 1H). Both rutaecarpine and evodiamine (Figure 38) are highly similar in their 

(a) (b) 
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chemical structure, except for the absence of N-Me in rutaecarpine. All of the spectral 

data of rutaecarpine including the 
13

C NMR data given in Figure 39 and Table 14 are  

in agreement with those of Liu et al., 2005.  

 

Figure 39: 
13

C NMR of rutaecarpine in CDCl3 (125MHz) 

Table 14: 
1
H (500MHz) and 

13
C (125MHz) NMR of rutaecarpine in CDCl3 

Position 
13

 C 
1
H  

13
C (100MHZ)  

1
H (400MHZ) 

in CDCl3  by Liu et al., 2005
 

2 127.3  127.3  

3 144.9  145.5  

5 41.1 4.58-4.61, t,  J=7,  2H 41.7 4.63 (2H, t) 

6 19.6 3.22-3.26, t, J=7, 2H 20.1 3.35 (2H, t) 

7 112.0  112.6.  

8 125.5  125.7  

9 118.3  112.6  

10 120.0  121.0  

11 120.5 7.33-7.36, t, J=7 1H 120.4  

12 118.3 7.18-7.21, t, J=7 118.7 7.12-7.18  

(7H, m Ar-H) 

13 138.2  138.8  

15 147.6  147.7  

16 126. 7.42-7.46, m 126.0  

17 134.3 7.64-7.74,H 134.9.  

18 127.3 8.31, dd, J=8 1H 127.1 8.33–8.36  

(1H, m Ar-H) 19 126.3 8.33, dd, 1H 126.8 

20 121.0  121.0  

21 161.6  162.0  

N-H  9.13, s, 1H  9.64 (1H, s, br) 
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Compound BM-7, was obtained from the HPLC analysis of bioactive fractions 7 and 

8. The mobile phase that gave good separation results was a gradient elution of water-

methanol/90:10 for 0-10min and a 95:5 mix for 10-20 min. The chromatogram is 

shown in Figure 40.  

 

Figure 40: Chromatogram showing a major peak at 13.33min at 280 nm  

Identification of the major peak signal at 13.33 min was performed by proton NMR 

(Figure 41), 
13

C NMR (Figure 43) and low resolution ESI-MS (Figure 44). The 

molecular mass of sucrose was m/z 342.21 which corresponded with the measured 

ion peak of m/z 364.0 [M-Na]
+
, confirming the compound as sucrose. 
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Figure 41: 
1
H NMR of isolated sucrose (a) and expanded section 3.0-5.5ppm (b) from 

E. rutaecarpa in D20 (500MHz)    

Taken together the results of the analysis suggested that the compound could be 

sucrose, naturally isolated from Evodia fruit. To confirm the identified substance as 

sucrose, some table sugar was submitted also for NMR analysis (Figure 42), and both 

spectra established that the compound was indeed sucrose.  

A 

B 
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Figure 42: Comparison of 
1
H NMR (D20 500MHz) of sucrose (a) and table sugar (b)  

showing similar signals at ppm range 6 - 3.4 ppm but distinct between 3.37 and 

3.40ppm in (a) with the presence of very low level of impurities downfield in the 

aliphatic region. 

 

 

 

  

3.40   &    3.37 ppm 

A 

B 
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Figure 43: 
13

C (125 MHz) spectrum of sucrose isolated from   Evodia fruit 

 

 

Figure 44: ESI-MS of the sucrose isolated from Evodia fruit 
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3.1.4 Capsicum annuum L.  

A total of 18 sub-fractions were obtained from reverse phase solid-phase extraction 

starting from 100% distilled water in 5% increments until 100% ethyl acetate elution 

of the C. annuum methanol extract. By using TLC analysis, combined fractions gave 

Ca-SPE A, B and C, were tested, alongside fractions Ca-SPE 7 and 10-18 for their 

antiplasmid activity against TP114 in order to determine the active fractions, which 

yielded Ca-SPE 10, 11 and 12. The 3 resultant bioactive fractions were submitted for 

1
H NMR profiling. From the analysis, Ca-SPE-10 indicated a pure compound which 

was identified using literature data as capsaicin, BM-8 (Figure 45). 

 

Figure 45: Structure of capsaicin. 

 

The 
1
H NMR spectrum of BM-8 (Figure 46) was compared to 

1
H NMR of pure 

capsaicin (Figure 47) to confirm that the compound was capsaicin.  The 
1
H NMR 

spectrum of capsaicin showed the presence of three aromatic protons (δ 6.78, s, 1H, 

H-2’; δ 6.65, 2H, d, J=8.5, H-5’) indicative of a phenyl ring. The 
1
H NMR spectrum 

showed a triplet at δ2.14, t, 2H, J=7.5 as expected of capsaicin arising from the H-2 

methylene. The multiplet at δ5.26-5.28 corresponded with the signal for olefinic 

protons, H-6 and H-7, and OMe group (δ3.76), OH (δ5.16) and the NH amide moiety 

(δ5.20) corresponded with data earlier reported in literature. In the downfield region, 

the methyls of the isopropyl group at δ0.70- 0.88 (6H dd, H-9 and H-10 J=6.5 with 

fine splitting), δ1.69 (1H, s, H-3),  δ1.31 (3H, d, J=8, H-4) and δ1.94 (2H, dd, J= 8, 

H-5) were equally observable and strong indication of capsaicin (Table 15). 
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Figure 46: 
1
H NMR of BM-8 in CD3OD (500MHz) 

 

 

Figure 47: 
1
H NMR of standard capsaicin in CD3OD (500 MHz) 
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The molecular formula of capsaicin (BM-8) was determined as C18H27NO3 and the 

measured mass of the molecular ion at m/z 303 [M+2H]
+ 

which corresponded to an 

expected mass of m/z 305. 
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Table 15: NMR of capsaicin BM-8 and dihydrocapsaicin BM-9 in CD3OD (
1
H 500MHz, 

13
C 125MHz) 

Capsaicin
 

 
Dihydrocapsaicin

 

 

 
13

C                    
1
H 

13
C (100MHZ)    

1
H (400MHZ) 

  in CDCl3  Kobata et al., 1998     

1
H 

 

1
H (100MHZ)     

13
C (400MHZ)  

in CDCl3   Kobata et al., 2009 

1 173.1  172.9    173.1 

2 37.0 2.14, t, J=7.5, 2H 36.7 2.19 2.33 2.19 36.9 

3 27.1 1.69, s, 1H 25.3 1.65 1.54 1.64 25.9 

4 28.4 1.31, J=8, 2H 29.3 1.38 1.29 1.31 29.6 

5 33.3 1.94, 2H, 32.5 1.98 1.29 1.29 27.2 

6 127.9 5.26-5.28, m, 2H 126.5 5.30 1.29 38.9 126.0 

7 139.1 5.26-5.28, m 138.1 5.37 1.25   

8 30.1 2.15, t, J=7.5 2H 31.0 2.20 1.62 1.50 28.0 

9, 10 23.1 0.70-0.88,dd,  J=7.5 

6H 

22.7 0.95 0.91 0.86 22.7 

1’ 131.6  130.3    130.3 

2’ 112.5 6.78, s, 1H 110.7 6.79 6.85 6.84 114.5 

3’ 149.0  146.8    145.2 

4’ 146.8  145.2    146.8 

5’ 116.1 6.65, d, J=8.5, 2H 114.4 6.74 6.71 6.79 110.8 

6’ 121.4 6.65, d, J=8.5, 2H 120.7 6.80   120.8 

7’ 43.9 4.20 43.5 4.33 4.14 4.33 43.6 

OCH3 56.4 3.76, s, 3H 55.9 3.85 3.84 55.9 3.85 

OH  5.16  5.87 5.35  5.89 

NH  5.20  5.84 4.59   
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The 
1
H NMR spectrum of Ca-SPE 11 (Appendix 9) revealed the presence of major 

signals of capsaicin in a mixture of other compounds. Using TLC with solvent system 

of petroleum ether/chloroform/acetonitrile 4:4, 5:1, 0.5 v/v, after spraying with 1% 

vanillin–sulphuric acid spray, it was possible to visualise the various spots of 

reference capsaicin, Ca-SPE 11, combined capsaicin + Ca-SPE 11 and Ca-SPE 10 

(Figure 48).  

 

Figure 48: TLC analysis of capsaicin, Ca-SPE 11, capsaicin+ Ca-SPE 11 combined 

and Ca-SPE 10 under UV 254nm. 

 

All of the samples recorded identical Rf value of 0.45 which confirmed the presence 

of capsaicin except Ca-SPE-11, which recorded an Rf value of 0.39. This suggested 

that the fraction Ca-SPE 11 contained a mixture of capsaicin and the presence of 

another capsaicinoid.  
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High performance liquid chromatography of Ca-SPE 11 was conducted with mobile 

phase solvent mixture of methanol-water from A-B 30%- 70% v/v to A-B 70%-30% 

for 20 min.  Flow rate was 1 mL/min. The chromatogram is shown in Figure 49.  
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Figure 49: HPLC chromatogram of capsaicin and dihydrocapsaicin 

Using gradient elution, the chromatogram showed baseline separation and retention 

times of minor solvent peak (1a at 1.57 min), pure capsaicin (1b at 2.05 min) and 

dihydrocapsaicin (1c at 2.25 min).   

a 

b c 

d 

e 

f 

1 

2 

mins 

4 

3 

g 
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Samples 2 and 3, different samples were derived from Ca-SPE 10 and showed peaks 

(2d at 2.05 min) and (3e at 2.05 min) which corresponded to the retention times of the 

pure capsaicin. Sample 4, which is Ca-SPE 11, showed a major peak (4f at 2.25 min) 

which corresponded with dihydrocapsaicin (1c at 2.25 min) and a minor peak (4g at 

2.04 min) showing capsaicin. Thus, the HPLC analysis of Ca-SPE-11 indicated 

presence of compound BM-9 (Figure 50), suggested to be dihydrocapsaicin (DHC) 

 

 

Figure 50: Structure of dihydrocapsaicin  

 

The 
1
H NMR of dihydrocapsaicin (Table 15) corresponded with the available data 

when compared with the literature  (Li et al., 2009). The spectral data were similar to 

those of capsaicin, confirming that dihydrocapsaicin is a dihydro derivative of 

capsaicin, and possessing a structural resemblance with capsaicin, except for the 

absence of olefinic protons (-CH=), δ 5.28, at positions H-6, H-7. The molecular 

formula of DHC was determined as C18H29NO3, and the measured mass showed ion 

peak at m/z 308 [M-H]
+
 which was in line with the calculated molecular mass of 

dihydrocapsaicin, m/z 307. 
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3.1.5 Physical properties of the compounds 

Rottlerin: dark orange red solid, Rf = 0.35 in hexane-ethyl acetate-formic acid (4:6:1). 

Molecular mass:  m/z 516. Molecular formula: C30H28O8. 
1
H NMR: H-3 (5.49, d), H-

4(6.66, d), H-7
1
 (8.19, d), H-8

1
 (7.83, d), H-2’,4’,6’ (7.61, m), H-3’,5’ (7.41, m), H-

CH2 (3.80, s), H-COCH3(2.71, s), H-2CH3 (1.54, s), C-5’’CH3 (2.08, s), H-2’’,4’’-OH 

(9.60, s). 
13

C: C-2 (78.2), C-3 (125.1, C-4 (117.2), C-5 (158.8), C-6, 8 (105.3), C-7 

(159.6), C-9 (155.4), C-10 (103.8), C-7
1
 (126.9), C-8

1
 (143.4), C-1’ (135.5), C-

2’,4’,6’ (128.4), C-3,5’ (129.0), C-9
1
(193.1), C-1’’(106.5), C-2’’(162.8), C-3’’ 

(103.8),C-4’’ (158.8), C-5’’ (103.8), C-6’’ (161.0), C-CH2 (15.8), C-5’’CH3 (7.5), C-

2CH3 (28.0), COCH3 (32.6), COCH3 (204.1).  

Red compound: red solid. Molecular formula: C21H20O4.  Molecular mass:  m/z 336.  

1
H NMR:  H-3, 5 (7.61, m), H-2,4,6 ( 7.41, m), H-2’ (14.36), H-4’ (5.34), H-3’’ 

(5.51, d ), H-4’’ (6.60, d),    H-6’’ (8.12, d ), H-7’’ (7.77, d), (H-Me2’’ x2 (2.08, s), 

H-Me3’ (1.58, s). 
13

C: C-1 (135.72), C-3  (129.99), C-5 (128.93), C-2, 4, 6 (128.23), 

C-1’ (77.74), C-2’ (164.31), C-3’ (101.70), C-4’ (106.42), C-5’ (155.82), C-6’ 

(102.31), C-2’’ (154.38), C-3’’ (125.21), C-4’’ ( 116.60), C-5’’ (193.14), C-

6’’(127.81), C-7’’(142.02), C-Me2’’ x2 (27.25), C-Me3’ (7.01).  

Tetrahydrocannabinolic acid: Dark brown solid. Molecular formula: C22H30O4. 

Molecular mass:  m/z 358.5. 
 1

H NMR:  H-4 (6.27, s), H-6 (1.17), H-7 (1.79), H-8 

(1.80), H-10 (6.43, m), H-10a (2.99, s), H-11 (1.63, s), H-12 (1.63, s), H-1’ (2.93, 

dd), H-2’ (1.36, dd), H-3’ & 4’ (1.36, dd), H-5’ (0.90 , dd), C1-OH (12.70,  s), COOH 

(11.90, s). 
13

C: C-1 (163.6), C-2 (103.9), C-3 (147.3), C-4 (113.0), C-5 (159.4), C-6 

(78.6), C6a (46.7), C-7 (25.9), C-8 (31.3), C-9 (135.8), C-10 (122.8),  
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C-10a (31.9), C-11 (27.3), C-12 (27.5), C-1’ (36.9), C-2’ (22.6), C-3’& 4’ (31.2), C-

5’ (14.1), COOH (175.4).  

 

Cannabinolic acid: Dark brown solid. Molecular formula: C22 H26 O4. Molecular 

mass:  m/z 354. 1H NMR:  H-4 (6.43, s), H-8 (7.11,m), H-9 (7.16, m), H-9-Me (2.40, 

s), H-10 (8.43, s), H-11 (1.63, s), H-12 (1.63, s), H-1’ (0.9, dd), H-2’ (1.35, dd), H-3’ 

& 4’ (1.35, dd), H-5’ (2.93, dd), C1-OH (5.50, s), COOH (12.79, s). 
13

C: C-1 (159.4), 

C-2 (103.8), C-3 (148.8), C-4 (113.0), C-5 (108.9), C-6 (78.6), C-7 (163.6), C-8 

(122.6), C-9 (126.7), C9-Me (21.5), C-10 (127.1), C-11 (27.3), C-12 (27.5), C-1’ 

(36.9), C-2’ (22.6), C-3’& 4’ (31.2), C-5’ (14.1), COOH (174.9).  

Evodiamine: Light yellow powder. Molecular formula: C19H17N3O. Molecular mass:  

m/z 303. Soluble in chloroform. 
1
H NMR:  H-3 (5.92, s), H-5 (3.27 -3.23, m), H-6 

(2.95 – 3.03, m), H-9 (7.42, d, J= 8), H-16 & 18 ( 7.13-7.23, m), H-17 (7.47-7.51, t, 

J= 7.5 ), H-19 (8.12, d,  J= 7.5 ), N-CH3 (2.50, s), N-H (8.24, s).
 13

C: C-2 (133.1), C-3 

(68.8), C-5( 39.5), C-6 ( 19.7), C-7(113.7), C-8 ( 129.0), C-9 (118.9), C-10 (120.1), 

C-11 (122.5), C-12 (111.3), C-13 (136.7), C-15 (150.7), C-16 & 18 (122.5), C-17 

(126.2), C-19 (128.2), C-20 ( 120.1), C-21 ( 164.8), N-CH3 (37.3). 

 

Rutaecarpine: Light yellow powder. Molecular formula: C18H13N3O. Molecular mass:  

m/z 287.3. 
1
H NMR:  H-3 (5.92, s), H-5 (4.58- 4.61, t),  H-6 (3.22 – 3.26, t),  H-9 

(7.18 -7.21, m), H-11 (7.33 -7.36, t), H-16  ( 7.42 -7.46, m), H-17 (7.64 -7.74, m), H-

18 ( 8.31, dd), H-17 (8.13, s), H-18 (8.33, dd), N-H (9.13, s).
 13

C: C-2 (127.3), C-3 

(144.9), C-5 (41.1), C-6 ( 19.6), C-7(112.0), C-8 ( 125.5), C-8 (125.5), C-9 (118.3), 
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C-10 (120.0), C-11 (120.5), C-12 (111.8), C-13 (138.2), C-15 (147.6), C-16 (126.3), 

C-18 (127.3), C-17 (134.3), C-19 (126.8), C-20 ( 121.0), C-21 ( 161.6). 

 

Capsaicin: white solid. Molecular formula: C18H27NO3. Molecular mass: m/z 305.  
1
H 

NMR:  H-2 (2.24), H-3 (1.69), H-4 (1.31), H-5 (1.94), H-6 (5.36-5.28)), H-8 (2.15), 

H-9 & 10 (0.70-0.88), H-2’ (6.78), H-5’ (6.65), H-7’ (4.20), OCH3 (3.76), OH (5.16), 

NH (5.20). 
13

C: C-1 (173.1), C-2 (37.0), C-3 (27.1), C-4 (28.4), C-5 (33.3), C-6 

(127.9), C-7 (139.1), C-8( 30.1), C-9 & 10 ( 23.1), C-1’ (131.6), C-2’ (112.5), C-3’ 

(149.0), C-4 ( 146.8), C-5 ( 116.1), C-6’ (121.4) C-7’ (43.9), OCH3 (56.4). 

Dihydrocapsaicin: white solid. Molecular formula: C18H29NO3. Molecular mass:  m/z 

307. 
1
H NMR: H-2 (2.33), H-3 (1.54), H-4 (1.29), H-5 (1.29), H-6 (1.29), H-7 (1.25), 

H-8 (1.62), H-9 & 10 (0.91), H-2’ (6.85), H-5’ (6.71), H-7’(4.14), OCH3 (3.84), OH 

(5.35), NH (4.59). 
13

C: C-1 (173.1), C-2 (36.9), C-3 (25.9), C-4 (29.6), C-5 (27.2), C-

6 (126.0), C-8 (28.1), C-9 & 10 ( 22.7), C-1’ (130.3), C-2’ (114.5), C-3’ (145.2), C-4 

( 146.8), C-5 ( 110.8), C-6’ (120.8) C-7’ (43.6), OCH3 (55.9). 
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3.2 Antibacterial activities of the compounds 

3.2.1 Minimum inhibitory concentration (MIC) of standard antibiotics against 

multidrug-resistant S. aureus and Gram-negative bacteria 

The results found in Table 16 and 17, show the MICs of all the antibiotics used for 

antibacterial assay, for a wide range of multidrug-resistant S. aureus, Gram-positive 

and Gram-negative bacterial strains.  

Table 16: Antibacterial activities of standard antibiotics against some Gram-positive 

bacteria and multidrug-resistant S. aureus  

Nor= Norfloxacin, Tet= Tetracycline, Ery= Erythromycin, Oxa= Oxacillin, 

Cip=Ciprofloxacin. Results are outcome of three independent experiments, n=3 

 

                                            Minimum inhibitory concentration (mg/L) 

Gram-positive bacteria Nor Tet Ery Oxa Cip 

SA 1199B 32     

ATCC 29523 0.25     

Bacillus  subtilis 

BsSOP01  

0.25
 
     

XU212 
 16    

EMRSA 15  0.25    

EMRSA 16  0.25    

RN 4220   32   

MRSA 346724    <0.25
 
  

MRSA 774812    <0.25
 
  

MRSA 274829    128
 
  

MRSA 12981    8
 
  

Enterococcus faecalis 

13379 

    <0.06
 
 

Enterococcus faecalis 

12697 

    <0.06 
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Table 17: MIC of ciprofloxacin against selected Gram-negative bacteria 

 

Whilst the above panel of bacteria tested showed their various MIC to the antibiotics, 

the antibiotics have broad-spectrum bacterial activity and are available for use in the 

treatment of infections. However, some of bacterial strains have become resistant to 

the antibiotics, for example SA1199B to norfloxacin.  

3.2.2 Minimum inhibitory concentration (MIC) of rottlerin (BM-1) and the red 

compound (BM-2) against multidrug-resistant S. aureus and Gram-negative 

bacteria 

The two polyphenolic compounds, rottlerin and the red compound extracted from M. 

philippinensis showed antibacterial activities against multidrug-resistant S. aureus 

and Gram-negative bacteria with MIC ranged from 1 to 512 mg/L (Table 18). The 

most potent activity of rottlerin with an MIC value of 1 mg/L was observed against E. 

faecalis 12697, followed by E. feacalis 13379, SA1199B, MRSA 274829 and MRSA 

12981 with MICs of 2 mg/L respectively. E. faecalis strains are known for their high 

level of resistance to the antibiotic vancomycin. The activity of rottlerin towards 

SA1199B (2 mg/L) was remarkably 16-fold lower than the MIC of antibiotic 

norfloxacin.  

 

 

Gram-negative bacteria Ciprofloxacin (mg/L) 

E. coli NCTC 10418 <0.06 

Pseudomonas aeruginosa10662 <0.03 

Klebsiella pneumoniae 342 <0.03 

Proteus sp P10830   32
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Table 18: Antibacterial activities of rottlerin and the red compound against 

multidrug-resistant S. aureus and Gram-negative bacteria 
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 NT= Not tested 

 

Furthermore, rottlerin showed antibacterial activity against erythromycin–resistant S. 

aureus RN4220 and this compares favourably with erythromycin (8 mg/L). MRSA 

346724 and MRSA 774812 strains had equally MIC value of 8 mg/L, while XU212 

and EMRSA-15 recorded MIC value of 16 mg/L. Only EMRSA-16 showed an MIC 

of 32 mg/L towards rottlerin. The MICs of the red compound for all of the multidrug 

resistant strains that were tested (SA1199B, ATCC 29523, XU212, EMRSA-15, 

EMRSA-16 and RN4220) were 32 mg/L. The antibacterial activity appeared broad 

 

 

Strains 

Minimum inhibitory 

concentration (mg/L) 

Rottlerin Red 

compound 

SA1199B 2 32 

ATCC 29523 4 32 

Bacillus  subtilis BsSOP01  4 NT 

XU212 16 32 

EMRSA 15 16 32 

EMRSA 16 32 32 

RN 4220 8 32 

MRSA 346724 8 NT 

MRSA 774812 8 NT 

MRSA 274829 2 NT 

MRSA 12981 2 NT 

Enterococcus faecalis 13379 2 NT 

Enterococcus faecalis 12697 1 NT 

E. coli NCTC 10418 512 256 

Pseudomonas aeruginosa 10662 512 256 

Klebsiella pneumoniae 342 512 256 

Proteus sp P10830 512 NT 
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with similar MIC values but with lesser range of activity against the same strains of 

bacteria compared to rottlerin. Rottlerin and the red compound had slight activity 

against all the Gram-negative strains including E. coli NCTC 10418, P. aeruginosa 

10662, K. pneumoniae 342, and Proteus sp P10830 in the range of 256 - 512 mg/L 

and no inhibition was recorded or seen at lesser concentrations. Ciprofloxacin was 

used as control and showed an MIC range of 32 - 0.06 mg/L against Gram-negative 

bacteria.  

3.2.3 MIC determination of evodiamine BM-5, rutaecarpine BM-6 and sucrose 

BM-7 against multidrug-resistant S. aureus and Gram-negative bacteria 

 

The antibacterial activities of the quinolone alkaloids, evodiamine (BM-5) and 

rutaecarpine (BM-6), and the sucrose (BM-7) isolated from Evodia fruit against 

multidrug-resistant S. aureus and Gram-negative bacteria are listed in Table 19. 

Table 19: Antibacterial activities of quinolone alkaloids and isolated sugar against 

multidrug-resistant S. aureus and Gram-negative bacteria 
 

 

 

 

 

 

 

 

 

 

 

Rut= rutaecarpine, Evo= evodiamine 

 

Strains 

Minimum inhibitory concentration (mg/L) 

Rut Evo Sucrose 

SA 1199B 8 128 128 

ATCC 29523 128 128 128 

XU212 64 128 128 

EMRSA 15 128 128 128 

EMRSA 16 128 128 128 

RN 4220 NT NT NT 

E. coli NCTC 10418 >128 >128 >128 

P. aeruginosa 10662 64 128 128 

K. pneumoniae 342 128 128 128 
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The MIC values of the alkaloids against S. aureus ATCC 29523, EMRSA-15, 

EMRSA-16, Gram-negative E. coli, and K. pneumoniae  were 128 mg/L, except for 

rutaecarpine which showed varied activity with MIC of 8 mg/L towards SA1199B, 

four-fold better than the MIC of norfloxacin; and MIC of 64 mg/L  towards S. aureus 

XU212 and P. aeruginosa strains respectively.  

3.2.4 MIC determination of ferulenol (BM-10) against multidrug-resistant S. 

aureus and Gram-negative strains 

Ferulenol BM-10 (Figure 51) was obtained as a gift from Professor Giovanni 

Appendino, Italy. It is a major constituent, a coumarino-sesquiterpene compound 

from Ferula communis.   

 

Figure 51: Structure of ferulenol 

The antibacterial importance of the member compounds from Ferula spp, especially 

the anti-mycobacterial properties have been documented by other researchers (Galal 

et al., 2001; Appendino et al., 2004). However, little investigation has been done to 

access the antibacterial activity of ferulenol against multidrug-resistant strains of S. 

aureus. As a result, ferulenol was tested (128 mg/L) for its antibacterial potential 

against a wide range of multi-resistant S. aureus strains; SA1199B, SA 13373, ATCC 

29523, XU212, RN4220, EMRSA-15, and -16, MRSA 346724, MRSA 774812, 

MRSA 274829, and MRSA 12981. The study extended to E. faecalis 12697, E. 

faecalis 13379, B. subtilis BsSOP01, E. coli, P aeruginosa and K. pneumoniae (Table 

20). Ferulenol displayed good antibacterial against the above wide range of multi-

drug resistant Gram-positive bacteria with MIC values raged from of 0.25 - 32 mg/L, 
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having comparably higher activity than norfloxacin (32 mg/L), tetracycline(16 mg/L), 

and oxacillin (8 mg/L), which are commonly used to treat infections caused by Gram-

positive bacteria. However, the MIC of ferulenol against the Gram-negative bacteria 

was 256 mg/L which indicate that the Gram-negative bacteria were insensitive to 

ferulenol unlike the Gram-positive strains. 

Table 20: Antibacterial activities of ferulenol against multidrug-resistant S. aureus 

and Gram-negative bacteria 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Strains MIC of Ferulenol (mg/L) 

SA1199B 0.5 

ATCC 29523 4 

B. subtilis BsSOP01  1 

XU212 32 

EMRSA-15 16 

EMRSA-16 16 

RN 4220 8 

MRSA 346724 1 

MRSA 774812 1 

MRSA 274829 1 

MRSA 12981 0.5 

SA13373 1 

Enterococcus faecalis 13379 0.25 

Enterococcus faecalis 12697 0.25 

E.coli NCTC 10418 256 

P. aeruginosa 10662 256 

K. pneumoniae 342 256 

Proteus sp P10830 256 
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3.2.5 MIC determination of capsaicin and capsaicin-like compounds against 

multidrug-resistant S. aureus and Gram-negative bacteria 

The antibacterial activities of capsaicin and capsaicin-like compounds were assessed 

against the panel of multi-drug resistant Gram-positive and Gram-negative bacteria 

(Table 21).  

Table 21: Antibacterial activities of capsaicin and capsaicin-like compounds against 

multidrug resistant S. aureus and Gram-negative bacteria. 

 

 Cap= capsaicin, DHC= dihydrocapsaicin, Noni= nonivamide, 6-gin= gingerol,  

    6- sho= shogaol, NT= Not Tested 

 

 

Strains 

Minimum inhibitory concentration (mg/L) 

Cap 

 

DHC Noni 6-gin 

 

6-sho 

 

 

SA1199B 256 512 256 16 16 

ATCC 29523 256 128 256 128 128 

B. subtilis BsSOP01  128 256 128 64 NT 

XU212 256 256 64 16 16 

EMRSA-15 256 512 128 64 32 

EMRSA-16 256 512 512 512 512 

RN4220 256 512 128 128 8 

MRSA 346724 256 512 256 128 16 

MRSA 774812 256 512 512 512 512 

MRSA 274829 256 256 512 64 64 

MRSA 12981 256 512 128 512   128 

E. faecalis  13327 256 128 128 8 NT 

E.coli NCTC 10418 512 512 512 512 128 

P. aeruginosa 10662 512 512 512 512 128 

K. pneumoniae 342 512 512 512 512 128 

Proteus sp P10830 512 512 512 512 512 
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6-gingerol    6- shogaol 

 

 
    Nonivamide (pseudocapsaicin) 

 

Capsaicin had constant MIC value of 256 mg/L, which was poorly active to all of the 

bacteria tested, including B. subtilis with an MIC of 128 mg/L (Table 21). DHC and 

nonivamide, both derivatives of capsaicin, had similar poor activity with MIC values 

of 512 - 64 mg/L, against the MRSA and the Gram-negative bacteria. Only 6-

gingerol and 6-shogaol were active against SA1199B and XU212 at 16 mg/L and 

MRSA 274829 at 64 mg/L. The most potent activity was shown by 6-shogoal against 

RN4220 with MIC of 8 mg/L, four-fold lesser than the MIC of erythromycin (32 

mg/L). All the compounds tested were not active against the Gram-negative bacteria 

(128 - 512 mg/L) compared to the antibiotic ciprofloxacin. 
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3.3 The antiplasmid activities of selected compounds on the bacterial plasmid 

conjugal system in E. coli.  

3.3.1. MIC determination of the compounds against E. coli NCTC 10418 

In order to carry out the plasmid transfer inhibition assay, the MIC of all of the test 

samples were determined against E. coli NCTC 10418 and sub-inhibitory 

concentration (SIC) of the respective agents were determined. The MIC results 

showed that the test samples had no inhibition against E. coli at 512 mg/L (Appendix 

11).   

 

The use of sub-inhibitory concentrations (SIC), which is ¼ of MIC, allowed the 

growth of the bacterium sub-optimally as one of the required conditions for the 

demonstration of plasmid transfer inhibition because transfer can obviously only 

occur within a living bacterial host. Given that most of the compounds had MIC of 

512 mg/L and therefore SIC values of 128mg/L, the test concentrations were adjusted 

to optimal concentration of 100 mg/L and 10 mg/L. This enabled for ease of testing 

of the compounds at the same SIC value or lower dilutions, when applicable.  

3.3.1.1 Determination of conjugation efficiency of the plasmids 

To determine the maximum conjugation efficiency of the mating system between the 

plasmid-donor harboring and recipient E. coli, the transfer frequency was measured 

in colony forming unit per mL (cfu/mL) of the bacterial population. The transfer 

frequency, also known as conjugation frequency or efficiency, transfer or conjugation 

rate is calculated: 

Transfer frequency cfu/mL = Number of transconjugants 

Total number of donor carrying cells 
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The transfer frequency equals conjugation frequency as a fraction of 1. So a value of 

0.1 indicates a transfer frequency of 1 in 10, a value of 0.01 indicates 1 in 100, and a 

value of 0.001 indicates 1 in 1000. For clarity of expression in the course of this 

project, the transfer frequency was further expressed as a percentage value relative to 

the control 100% (Transfer frequency (%) = sample/control x 100). Transposition of 

the degree of transfer therefore implies that the transfer frequency of the plasmid is 

inversely proportional to the rate of inhibition of the drug, which means that the 

lower the transfer frequency of the plasmid, the higher the extent of inhibition by the 

drug, and vice versa.  

The transfer frequency values (%) were categorized into three levels of inhibition in 

order to determine the degree of inhibition demonstrated by the test compounds 

relative to the plasmid free control. The three levels of inhibition were: active, if 

transfer frequency value falls between the range 0-10%, moderate, when the values 

are within 15 - 50%; and poor or no activity when the values are 50% and above. In 

some cases, no inhibition may be observed and the transfer frequency value may 

become higher than the control, thus enhancement of the plasmid transfer.   

3.3.2 The inhibitory activities of promethazine, novobiocin and plumbagin 

against the conjugal transfer of five plasmid strains.  

The anti-plasmid activities of promethazine, plumbagin and novobiocin were 

conducted based on their previous reports on anti-plasmid and direct antibacterial 

activities of the compounds against some bacteria (Molnar and Nakamura 1988; 

Amaral et al., 1992; Monlar et al., 1992; Monlar et al., 2003). The ability of these 

compounds to inhibit plasmid transfer was attributed to probable ability to inhibit 

plasmid replication and partition systems.   
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Promethazine (MIC=128 mg/L) 

          

 

 

The MICs of these compounds were determined against model E. coli NCTC 10418 

and the results were promethazine (128 mg/L), novobiocin (64 mg/L) and plumbagin 

(32 mg/L). Plumbagin had the lowest MIC value of 32 mg/L, followed by novobiocin 

(64 mg/L) and promethazine (128 mg/L) against E. coli 10418, but all were less 

potent compared to the MIC of ciprofloxacin antibiotic at 0.03mg/L.  

Promethazine was tested at SIC value of 32 mg/L, while for ease of handling, 

novobiocin and plumbagin were tested at an optimal value of 10 mg/L respectively, 

for their abilities to inhibit the transfer of resistant plasmids between the plasmid-

containing donors PKM 101, TP114, PUB 307, R6K and R7K; and recipients E. coli 

ER 1973 and JM101 (Figure 52). 

 

   

Novobiocin (MIC=64 mg/L) 
Plumbagin (MIC=32 mg/L) 
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Figure 52: The antiplasmid activities of promethazine (PMZ), novobiocin (Nov) and 

plumbagin (Plum). Each replicate was used as a data point, N=6.   ⃰   indicates 

(p<0.05).   

 

The results (Figure 52) showed a moderate degree of inhibition by promethazine 

(18.03%), and novobiocin (18.33%), while plumbagin was active with a lower 

PMZ PLUM NOV

Control 100

PKM 18.03 5.70 18.33

TP114 5.78 31.76 13.55

PUB 307 100.87 26.96 34.62

R6K 77.20 59.82 33.41

R7K 11.32 106.92 0.64
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transfer frequency (5.70%) towards amoxicillin-resistant PKM 101. The  levels of 

inhibition by the three compounds against PKM 101 were statistically significant 

compared to the control. Promethazine and novobiocin recorded significant reduction 

with low transfer frequencies of 5.7% and 13.6% respectively, than plumbagin  with 

31.76% against the kanamycin-resistant TP114. Plasmids PUB307 and R6K bearing 

amoxicillin resistance, appeared to be unsusceptible to promethazine but susceptible 

to the treatment of plumbagin and novobiocin with moderate inhibition. 

Promethazine and novobiocin with transfer rates of 0.64% and 11.31%, demonstrated  

anti-plasmid activity against amoxicillin-conferring R7K strain, whereas no inhibition 

was in R7K when it was treated with plumbagin.  

3.3.3 The inhibitory activities of rottlerin (BM-1) against the conjugal transfer of 

resistant (R) - plasmids. 

The ability of rottlerin to inhibit the transfer of bacterial plasmids; PKM 101, TP114, 

PUB307, R6K, and R7K was evaluated at SIC values of 100 and 50 mg/L (Figure 

53). The results as shown in Figure 53A showed that rottlerin had a remarkable 

transfer frequency of less than 1% at 100 mg/L towards PKM 101, but a higher 

transfer frequency of 37.40%  at 50 mg/L, indicating a concentration–related activity. 

 

 

Rottlerin (SIC 100 mg/L) 
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Figure 53A-C: The anti-plasmid activities of rottlerin. A=PKM 101, B=TP114, 

C=PUB 307. N=6 

     

 

Rottlerin was equally active at 100 mg/L against TP114 as seen in a low transfer 

frequency of 3.7% (Figure 53B) but a slightly higher transfer frequency value of 

12.67% towards PUB 307 (Figure 53C).  

 

 

 

 
    100 mg/L  50 mg/L  Control      

   

⃰ 

⃰ 
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Figure 53D-E: The antiplasmid activities of rottlerin against plasmids R7K (D) and 

R6K (E). Each replicate was used as a data point, N =6.   

 

Rottlerin recorded transfer frequency values of 24.41 and 36.32% towards R7K and 

R6K (Figure 53D-E). On the contrary, at a lesser concentration of 50 mg/L, the 

transfer frequency of plasmids TP114 (Figure 53C) and R6K (Figure 53E) were 

enhanced by rottlerin, while, the transfer frequencies of all the other plasmids PKM 

101, PUB307, R7K ranged between 27.22% - 39.40%. 

3.3.4 The inhibitory activities of the red compound (BM-2) against the conjugal 

transfer of R-plasmid. 

The inhibition of conjugal transfer of plasmids PKM 101, TP114 and PUB 307 by the 

red compound (BM-2) was investigated in E. coli at sub-inhibitory concentration of 

100 mg/L (Figure 54). 
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Figure 54: The antiplasmid activities of BM-2, red compound against plasmids PUB 

307, PKM 101 and TP114. N =6.   ⃰   indicates (p<0.05).   

  

The red powder had significant inhibition (p<0.05) on the transfer of PKM 101, with 

a transfer frequency value of 6.23%, and a moderate inhibitory activity against 

TP114, with a transfer frequency of 17.03%. The transfer frequency of 29.16% was 

observed towards PUB 307. 

3.3.5 The anti-plasmid activities of cannabinoids (BM-3 & 4) on the inhibition of 

plasmid conjugal transfer  

The VLC fractions (VSc1-9) of the chloroform extract of C. sativa were tested for 

plasmid conjugation inhibition using the plasmid TP114 at a SIC value of 100 mg/L 

(Figure 55). Promethazine and cannabidiol were used as positive controls to the test 

samples. Fraction 9 (VSc-9) showed an active reduction of TP114 with a transfer 

frequency value less than 10%. As a result, the bioactive semi pure fraction VSc-9 

was further subjected to phytochemical analysis, which yielded two major 

cannabinoids namely; tetrahydrocannabinolic acid, BM-3 (THCA) and cannabinolic 

acid, BM-4 (CBNA).  

⃰ 

⃰ 

Tetrahydrocannabinolic acid (THCA) Cannabinolic acid (CBNA) 
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Figure 55: The antiplasmid activities of VLC fractions (VSc1-9) from C. sativa 

against TP114 at 100 mg/L. N=6 

 

To establish the antiplasmid activities of the individual cannabinoids, pure samples of  

9-tetrahydrocannbinol (THC), cannabinol (CBN), and cannabidiol (CBD) were 

purchased and tested against plasmids PKM 101, TP114 and PUB 307 at 100 mg/L 

were determined (Figure 56A-C).  
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Figure 56: The anti-plasmid activities of ∆9-THC, CBN and CBD against three 

different R-plasmids at 100 mg/L. THC = Tetrahydrocannabinol, CBN = Cannabinol, 

CBD = Cannabidiol. A = PKM101, B = TP114 and C = PUB307. N =6.   ⃰   

indicates (p<0.05).   

 

 

As shown in Figure 56, the plasmid transfer inhibition ability of THC, CBN, and 

CBD were evaluated independently on PKM 101, TP114 and PUB 307 at 100 mg/L. 

The effect of THC, CBN and CBD on PKM 101 resulted into very low transfer 

frequencies, 0.29% - 0.47% than 1%, an indication that these compounds are active 

inhibitors of PKM 101 transfer activities in E. coli. Significant inhibition was noted 

0.29%  
0.47% 

0.36% 

0.1

1

10

100

ctrl THC CBN CBD

T
ra

n
a

fe
r 

fr
e

q
u

e
n

c
y
 (

%
) A 

14.52 

1.13 
1.91 

1

10

100

Control THC CBN CBD

T
ra

n
s
fe

r 
fr

e
q

u
e

n
c
y
 (

%
) 

B 

27.58 

18.48 

1

10

100

Control THC CBN CBD

T
ra

n
s
fe

r 
fr

e
q

u
e

n
c
y
 (

%
) 

C 

⃰ 
⃰ 

⃰ 
⃰ ⃰ 



138 

 

against TP114 with 1.13% and 1.91% transfer frequencies in the presence of CBN 

and CBD; followed by THC with transfer frequency of 14.53%. These cannabinoids 

displayed promising potential against PKM 101 and TP114 transfer frequencies, 

which may perhaps suggest plasmid-specific activity. 

Some cannabinoid derivatives synthesized by Dr Proma Khondhar, University 

College London were also tested for plasmid conjugal transfer inhibition activity 

against TP114 at SIC value of 100 mg/L. The compounds designated Sc1- 6 showed 

various transfer frequencies compared to the control (Figure 57).  

Figure 57: The anti-plasmid activities of synthetic cannabinoids against the conjugal 

transfer of TP114. N=6 

    

Figure 58: Structures of cannabigerol-type cannabinoid (CBG-1) and olivetol 

Both compounds, designated as CBG-1 (Fr 5) and olivetol (Fr 6) in Figure 58 
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frequencies of the compounds Sc1-Sc4 demonstrated little or no inhibition against the 

plasmid TP114. 

 

3.3.6 The inhibitory activities of quinolone alkaloids (BM-5, 6 & 7) from Evodia 

on the inhibition of plasmid conjugal transfer 

The acidic, basic and methanol extracts of E. rutaecarpa were assessed for their 

possible antiplasmid activities using TP114. The results of the antiplasmid activities 

of the VLC sub-fractions from bioactive EVB extract is summarised in Appendix 11. 

The fraction Ev6 recorded 21.06 % inhibition against the plasmid transfer compared 

to the other fractions tested and the control. This suggested the presence of active 

principles in the fractions. 

Further bioassay-guided separations resulted in the isolation of quinolone compounds 

namely; evodiamine, BM-5 and rutaecarpine, BM-6. The anti-plasmid effect of pure 

evodiamine and rutaecarpine were re-investigated on only three plasmid strains 

namely PKM 101, PUB 307 and TP114 due to limited amount of compounds (Figure 

59). 
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Figure 59: Anti-plasmid activities of quinolone alkaloids against TP114 and PUB 

307. N =6.   ⃰   indicates (p<0.05).  Rut= Rutaecarpine. Evo= evodiamine 

 

The pooled fraction, Ev 7/8 (EV8) reduced the transfer of TP114 to 27.61% 

(Appendix 11) and was further analysed using HPLC separation, which yielded the 

major compound BM-7, sucrose. A further assay was conducted to validate the anti-

plasmid activity of the semi-purified fraction Ev-8, the isolated sucrose (BM-7), 

standard sucrose purchased from Sigma, UK, and table sugar, all were assayed 

against TP114, PKM 101 and PUB 307 at 100 mg/L. The results are represented in 

Figure 60. 
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Figure 60: Anti-plasmid activities of the isolated sucrose, table sugar, standard 

sucrose (SS) and Ev-8. N =6.   ⃰  

 

3.3.7 The anti-plasmid activities of various disaccharides against PKM 101, 

TP114 and PUB 307 

The results obtained from Figure 60 showed that plasmid transfer frequencies were 

lowered by the sucrose from Evodia fruit, Ev-8, table sugar and the standard sucrose, 

especially the plasmid PKM 101. Therefore further evaluation of a wide range of 

disaccharides (Table 22) were purchased from Sigma, UK, and assayed for potential 

antiplasmid activity against PUB 307, TP114 and PKM 101 at 100 mg/L. 
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Table 22:  Anti-plasmid activities of various disaccharides against PKM 101, 

TP114 and PUB 307 at 100 mg/L 

 

Results shown as average of two independent experiments + SD 

Overall, the results (Table 22) showed that conjugation took place in the presence of 

these disaccharides without significant reduction in the transfer rates of the trans-

conjugants of PKM 101, TP114 and PUB 307. Cellulobiose was the only 

disaccharide that demonstrated a mild reduction of 2.6 x 10
-6 

cfu/mL on TP114 

compared to the control (4.8 x 10
-4

).
 
Premating counts of the plasmids indicated the 

initial start number of the donor and recipient plasmids without drug treatment, used 

in the experiment 

 Disaccharides Transfer frequencies (cfu/mL) 

PKM 101 TP114 PUB 307 

Control 5.2 x 10
-4

  + 7.38 4.8 x 10
-4 

+  22.72 2.9 x 10
-4  

+ 14.67 

Sucrose 1.6 x 10
-6  

+ 19.50 1.1 x 10
-4  

+ 29.89 1.5 x 10
-5  

+ 4.34 

Lactose 2.1 x 10
-6  

+ 19.52 3.9 x 10
-4  

+ 26.49 9.4 x 10
-5  

+ 13.22 

Maltose 5.3 x 10
-6  

+ 36.85 9.6 x 10
-5  

+ 38.60 2.9 x 10
-5  

+ 19.26 

Cellobiose 7.4 x 10
-6  

+ 8.49 2.6 x 10
-6  

+ 28.49 3.6 x 10
-4  

+ 5.07 

Meliobiose 4.8 x 10
-6  

+ 39.96 1.7 x 10
-4  

+ 22.34 3.0 x 10
-5  

+ 7.80 

Maltulose 1.2 x 10
-5  

+ 15.50 4.9 x 10
-4  

+ 29.00 2.9 x 10
-4  

+ 32.18 

Rutinose 6.9 x 10
-6

 + 21.72 8.4 x 10
-4  

+ 30.39 2.6 x 10
-4  

+ 26.04 

Turanose 1.4 x 10
-4  

+12.64 4.2 x 10
-4  

+ 45.79 2.4 x 10
-5  

+ 27.50 

Mennobiose 6.6 x 10
-6  

+ 11.18 5.0 x 10
-4  

+ 23.39 1.9 x 10
-4  

+ 10.10  

Xylobiose  2.1 x 10
-5  

+ 6.55 1.4 x 10
-4  

+ 32.76 1.2 x 10
-4  

+ 11.76 

Premating experiment showing total number of cells (cfu/mL) 

PKM 101 TP114 PUB 307 ER 1473 

1.80 x 10
-6

 5.50 x10
-8

 3.00 x10
-7

 5.20 x 10
-8
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3.3.7.1 The anti-plasmid activity of evocarpine (BM-11) on the inhibition of 

plasmid conjugal transfer 

Evocarpine (BM-11) (Figure 61) is one of the major quinolone alkaloids from Evodia 

fruit, and obtained as a gift from Professor Franz Bucar of Austria. Evocarpine, like 

related quinolones, have been shown as an effective antibacterial and anti-

mycobacterial agent. As a result, the antiplasmid potential of evocarpine was tested at 

100 mg/L on our panel on R-plasmids: PKM 101, TP114, PUB307, R7K and R6K 

(Figure 60). R1-drd-19 was selected for both amoxicillin and kanamycin resistance, 

in order to assess any specificity inhibition of the compound. 

 

 

Figure 61: Evocarpine (SIC 100 mg/L) 

 

 

Figure 62: Selective anti-plasmid activity of evocarpine (R1-drd-19-A selecting for 

amoxicillin and R1-drd-19–K for Kanamycin). N =6.   ⃰   indicates (p<0.05).    
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In Figure 62, evocarpine showed robust activity against the transfers of PUB307 and 

R7K with transfer low frequencies of 4.85% and 9.45% respectively. The level of 

inhibition against R6K and TP114 was moderate (P < 0.05 = 0.04) while evocarpine 

showed poor anti-plasmid activity against PKM 101, R1-drd-19-A and R1-drd-19-K 

relative to the control.  

 

3.3.8 The anti-plasmid activity of ferulenol (BM-10) on the inhibition of R-

plasmid conjugal transfer. 

The inhibitory activity of ferulenol (BM-10) was assayed against plasmids PKM 101, 

TP114, PUB 307, R7K and R6K at a sub-inhibitory concentration of 100 mg/L 

(Figure 63).  

 

Figure 63: Selective anti-plasmid activity of ferulenol against various plasmids at a 

sub-inhibitory concentration of 100mg/L. N =6.   ⃰   indicates (p<0.05).    
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Ferulenol showed selective inhibition against the plasmids, with the most significant 

activities against TP114, PKM 101 and PUB307 at transfer frequencies of 2.29%, 

7.0% and 10.62% respectively. The transfer of R6K was antagonised in the presence 

of evocarpine; while the transfer frequency of R7K (23.49%) did not represent any 

significant inhibition of the plasmid transfer by evocarpine. 

3.3.9 The antiplasmid activity of capsaicin, dihydrocapsaicin (BM-8 & -9) and 

capsaicin-like compounds on the inhibition of R-plasmid conjugal transfer 

The anti-plasmid activities of the crude methanol extract of, and bioactive SPE sub- 

fractions of C. annum, Ca-SPE 10, 11 and 12 against PKM 101, PUB307 and TP114 

are shown in (Appendix 12a-12c). A reference sample of pure capsaicin (a major 

active constituent of the plant) purchased from Sigma-Aldrich was tested along with 

the fractions. Ca-SPE 11 exhibited moderate activity against the transfer of TP114, 

followed by fractions Ca-SPE 12, and then Ca-SPE 10. A similar trend of anti-

plasmid activity was exhibited by the reference capsaicin and methanol crude extract 

from C. annum and Ca-SPE-10. Again, Ca-SPE 11 was the most fraction candidate 

against transfer of PKM 101 and PUB 307 corresponding to that of methanol crude 

extract from C. annuum, Ca-SPE 10 and the pure capsaicin. Other tested fractions 

showed poor inhibitory activity towards transfer frequency of the plasmids.  

Bioassay-guided isolation and identification of the capsaicinoids that could be 

responsible for the anti-plasmid activity obtained in semi-pure fraction CAP-SPE-11 

yielded capsaicin, BM-8 and dihydrocapsacin, BM-9.  

Other synthetic capsaicin-like compounds: nonivamide, 6-gingerol and 6-shogaol, 

together with capsaicin and dihydrocapsacin were assayed to assess their anti-plasmid 

activities at SIC value of 100 mg/L.  
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Figure 64: Anti-plasmid activity of capsaicin against R-plasmids. N =6.   ⃰   

indicates (p<0.05).    

 

From the results in Figure 64, capsaicin showed selective but active inhibition of 

resistant plasmids R7K, PUB307 and PKM 101 at low transfer frequencies of 5.03%, 

9.78% and 13.05% respectively. On the contrary, the transfer of TP114 and R6K 
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were enhanced suggesting that the plasmid may contain substrate for capsaicin, hence 

the antagonism of plasmid inhibition.   

Furthermore, the anti-plasmid activity of dihydrocapsaicin (DHC), nonivamide, 6-

gingerol and 6-shogaol were tested equally against PKM 101, TP114  and PUB307.  

 

Figure 65: Antiplasmid activities of DHC, nonivamide, 6-gingerol and 6-shogaol as 

evaluated by unpaired student’s t-test. N =6.   ⃰   indicates (p<0.05).     

 

DHC actively reduced the level of transfer of PUB 307 to 3.33% but had a moderate 

inhibitory effect against PKM 101 at 36.81%. There was no inhibition against TP114, 

rather an increased rate of transfer frequency above the control was noted (Figure 63). 

Nonivamide, an analogue of capsaicn, recorded the highest inhibitory activity agaisnt 

TP114 at 7.19%, followed by a moderate activity against PKM 101 and PUB 307 at 

22.16% and 45.63% transfer frequencies. The inhibitory effects of 6-gingerol and 6-

shogaol on the tested plasmids were noteworthy. For example, 100% inhibition of 
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transfer frequency of TP114 was recorded for the compounds. PUB307 was the most 

sensitive plasmid to the treatment of DHC (3.34%), 6-gingerol (1.22%), and 6-

shogaol (2.90%). A similar pattern of inhibition was exhibited by the four compounds 

against TP114, within the range of 0.14%-7.20%. In the case of PKM 101, the  effect 

of 6-gingerol and 6-shogoal reduced the rate of  transfer of the plasmid, but inhibition 

was moderate by  DHC and nonivamide. All the tested plasmids (PKM 101, TP114 

and PUB307) showed significant reductions of their  transfer frequencies in the 

presence of 6-shogaol and 6-gingerol.   

 

3.3.10 The influence of time on the inhibitory effect of selected compounds 

against the conjugal transfer of  PKM 101.  

The effect of time on the inhibitory potentials of rottlerin, ferulenol, and evocarpine 

was investigated on the PKM 101 mating system (Figure 66). 

 

Figure 66: The influence of time on the inhibitory effect of compounds on plasmid 

transfer of PKM101. T1=0.5h, T2=4H.  
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The transfer frequencies was observed after 30min (T1 = 0.5 h) and 4 hours (T2 = 4 

h) intervals relative to the control experiment. The result after 30 min of incubation of 

the donor-recipient mixture with the compounds recorded various transfer 

frequencies for the three compounds, ferulenol, evocarpine and rottlerin against 

plasmids PKM 101 at 25.77%, 28.01%, and 56.72% respectively. After 4h of 

incubation, there was no significant reduction in the transfer frequencies of PKM in 

the presence of ferulenol (37.64%) or rottlerin (30.48%), rather a slight increase in 

the transfer frequencies was observed. However, evocarpine showed a marked 

reduction of PKM 101 from 28.01% to 14.77% after 4 h. This suggested that PKM 

101 could be sensitive to evocarpine when exposed for a longer period. The control 

experiment showed that maximum conjugation was experienced over the time period, 

while changes seen in the levels of transfer were due to the effect of the compounds.  
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3.3.11 The influence of time on the inhibitory effect of selected compounds 

against the conjugal transfer of  TP114 

The effect of ferulenol, evocarpine, and rottlerin on the inhibition of TP114 over time 

is shown in Figure 67.  

 

Figure 67: The influence of time on the inhibitory effect of compounds on plasmid 

transfer of TP114. T1=0.5h, T2=4H.  

Figure 67 showed that plasmid TP114 was affected in the presence of rottlerin and 

ferulenol at different transfer frequencies 34.36% and 47.38%, after 30 mins. The 

transfer rate of ferulenol was slightly decreased to 33.61%, whereas the inhibition 

effect of rottlerin was diminished after 4h. A level of inhibition against TP114 was 

seen in the presence of evocarpine after the first 30 mins, with a transfer frequency of 

60.45% but decreased to 24.71% after 4h exposure. The effect of rottlerin on both 

PKM 101 (Figure 66) and TP114 (Figure 67) could suggest that the inhibition activity 

of the compound was initiated probably at a later period after the first 30 mins of 

incubation.  
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3.4. Gel Mobility Shift Studies 

3.4.1 Purification of PKM 101, PBCSK and pAKlux3 DNA 

 

The result of gel electrophoresis of the 100-bp DNA ladder, isolated PKM 101 and 

PBCSK DNA, and their binding effect with actinomycin-D are shown in Figure 68.  

  

Figure 68: DNA binding assay of DNA from PKM 101 and PBCSK with 

actinomycin-D electrophoresed on 0.8% agar-rose gel, final concentration of 100 

mg/L 

Lanes: (L) ladder (A) DMSO + PKM 101, (B) PKM 101, (C) PKM 101 treated with 

actinomycin-D at 10mg/L, (D) PKM 101 treated with actinomycin-D at 100mg/L, (E) 

Pbcsk treated with actinomycin-D at 10mg/L, (F) Pbcsk treated with actinomycin-D 

at 100mg/L, (G) DMSO+ PBCSK.  

PKM 101 was chosen for the DNA binding assay considering the molecular weight 

for ease of purification, and its susceptibility to most of the compounds that were 

tested for anti-plasmid activity. Actinomycin-D, an anticancer drug notably for its 

intercalative mode of action, was used as a positive control at 100 and 10 mg/L 

concentrations. From the result (Figure 68), single bands of PKM 101 were observed 

        L            A           B           C           D         E          F         G             L 
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Promethazine (128 mg/L) 

in lanes A-B of purified PKM 101 while lanes C-D showed a decrease in mobility of 

PKM 101-actinomycin bound complexes at both 100 and 10 mg/L. Similar decrease 

in mobility was observed with PBCSK when treated with actinomycin–D (Lanes E-

F), compared to Lane G showing the parent PBCSk in DMSO.  

 

3.4.2 Gel mobility shift assay of digested and undigested pAklux  

This experiment was done to investigate the nature of binding of the tested 

compounds either to the whole undigested DNA or to any specific fragment of the 

DNA upon its digestion. Also, digestion of pAKlux3 was to enhance the DNA-

compound interactions with the smaller DNA fragments and for easy visualisation of 

any shift any particular fragment. Therefore, the purification and digestion of 

pAklux3 with SphI-restriction endonuclease was completed, and both the digested 

and whole DNA were incubated with novobiocin (64 mg/L), plumbagin (32 mg/L) 

and promethazine (128 mg/L). Actinomycin-D (100 mg/L) served as a control 

experiment (Figure 69). 

          

 

 

Novobiocin (64 mg/L) Plumbagin (32 mg/L) 
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Figure 69: DNA binding assay of, SphI-digested and undigested pAKlux3  

Lanes: (L) ladder, SphI-digested (A-F) and undigested (Ai-Fi) products of pAKlux3 

A = novobiocin, B = plumbagin, C = promethazine, D = actinomycin-D, E = plasmid 

+ elution buffer (EB), F = plasmid + DMSO 

Three bands corresponding to DNA fragments 8.03, 2.86 and 1.07 kb of the ladder 

(L) were obtained and resolved by the gel electrophoretic analysis (Figure 69, Lanes 

A-C, E-F).  In Lane D, there was a slight decrease in the DNA mobility of fragment 

1.07 kb when interacted with actinomycin-D, showing the binding of actinomycin-D 

to that particular region of pAKlux3. In Lane C, the binding of promethazine to the 

undigested products of pAKlux3 in the presence of actinomycin-D (Lane Di) are 

shown in Figure 69, Lanes Ai-Fi. The results indicated coiled, super coiled and 

nicked portions of the whole DNA resolved across the gel. The binding of 

actinomycin-D to pAKlux (Lane Di) showed a marked decrease in the migration of 

the band through the gel. The intensity of the fluorescence in bands C and Ci, were 

less compared to other bands that showed more intense brightness in the gel. This 

  L     A     B     C      D     E     F    Ai    Bi    Ci     Di    Ei    Fi 
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could be as a result of the binding of promethazine to the DNA and therefore, less 

adherence of ethidium bromide to the DNA strands and fluorescence under UV light.  

3.4.3 Gel mobility shift assay of digested pAklux3 with selected synthetic and 

natural products 

These selected compounds had a broad-range of inhibition against R-plasmids as 

described earlier, and therefore were assessed for binding to pAKlux3 DNA:  

rottlerin, red compound, ferulenol, evocarpine, rutaecarpine, capsaicin, 

dihydrocapsaicin, 6-gingerol, 6-shogaol, and nonivamide (Appendix 13).  

 

Figure 70: DNA binding assay of digested pAKlux3 with samples A-J. Lanes: (La) 

ladder, A= rottlerin, B = red compound, C = ferulenol, D = evocarpine, E = 

rutaecarpine F= capsaicin, G= dihydrocapsaicin, H= 6-gingerol, I= 6-shogaol, J= 

nonivamide, K= DNA + Elution buffer (EB), L= DNA + DMSO 

In Figure 70 Lanes A-J, the gel showed three bands of DNA fragments similar to 

Figure 69. However, no mobility shift was observed among the bands in the presence 

of the compounds, when compared to the parent pAKlux3 (Figure 70, Lane K). But 

in the first and second bands of dihydrocapsacin-DNA bound complex, there was 

La   A    B     C    D    E    F     G    H    I     J    K     L 

a 
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decreased fluorescence of the bands, and this may suggest that binding occurred. 

Hence, the ethidium bromide dye could not be absorbed intercalated more into the 

DNA. The activity of the compounds that did not bind to pAKlux3 DNA as expected, 

might be due to a different mechanism of action.  

3.4.4 Gel mobility shift assay of digested PKM 101 with selected synthetic and 

natural products 

 An HpaI-digested PKM 101 was assayed in the presence of the 10 compounds: 

rottlerin, red compound, ferulenol, evocarpine, rutaecarpine, capsaicin, 

dihydrocapsaicin, 6-gingerol, 6-shogaol, and nonivamide (Appendix 13). 

 

Figure 71: DNA binding assay of HpaI-digested PKM 101 with samples A-J. Lanes: 

(L) ladder, A=rottlerin, B=red compound, C=ferulenol, D=evocarpine, E= 

rutaecarpine F=capsaicin, G=dihydrocapsaicin, H=6-gingerol, I=6-shogaol, J= 

nonivamide, K= DNA + Elution buffer (EB), l= DNA + DMSO 

 

The expected sizes of Hpal-PKM 101 (Figure 71, Lane K); corresponded to 7.8, 6.7, 

5.3, 4.6, 3.7, 2.7, and 2.6 Kb fragments of the DNA ladder (L). The seven fragments 

L    A    B    C     D   E     F    G     H    I     J     K    L 
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showed similar pattern of migration as shown in Lanes A-J, which were binding 

interactions between PKM 101 and the compounds compared to the control (Lane K, 

PKM 101).  This may suggest that the compounds did not bind to any of the DNA 

fragments with the exception of capsaicin-DNA complex in Lane F observed in the 

first two bands.  
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CHAPTER FOUR                 

4.0 DISCUSSION 

4.1 Antibacterial and antiplasmid properties of rottlerin and the red compound 

isolated from Mallotus philippinensis   

Rottlerin, also called mallotoxin or kamalin, is chemically known as 5, 7-dihydroxy-

2,2-dimethyl-6-(2,4,6-trihydroxy-3-methyl-5-acetylbenzyl)-8-cinnamoyl-1,2-

chromene.  

  

It is a natural occurring polyphenolic compound found in the genus Mallotus. The 

Mallotus genus is a valuable source of phytochemicals such as coumarins and 

isocoumarins, terpenes, steroids, flavonoids, ligans, chalcone and dimeric chalcones 

derivatives. This array of phytochemicals has demonstrated diverse therapeutic 

potentials, including antibacterial (Zaidi et al., 2009), antimycobacterial (Hong et al., 

2010), antifungal (Kulkarni et al., 2014b), anti-leukaemic (Khan et al., 2013), 

antitumor, anticancer and anti-allergic properties (Daikonya et al., 2002; Tanaka et 

al., 2008; Sharma 2011; Chan et al., 2013; Gangwar et al., 2014). These data, 

therefore justify the ethnomedicinal uses of Mallotus for the treatment of various 

ailments.  

 

Rottlerin 
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Rottlerin is structurally similar to that of the red compound, except for the presence 

of the acetophenone moiety. The acetophenone unit is composed of a phloroglucinol 

backbone, and connected to an aromatic ring via a deshielded CH2 group, a 

cinnamoyl group Ar-CH=CH-CO, and geminal methyl pair, together with olefinic 

resonances forming a dimethyl-pyran unit. These moieties are very similar to the 

structural features seen in the red compound, although this has an aromatic–bearing 

methyl group, instead of a benzylic methylene in the case of rottlerin. 

     

Rottlerin    The red compound 

The red compound is chemically known as 8-cinnamoyl-5, 7-dihydroxy-2, 2, 6-

trimethylchromene, and gives the Kamala plant its characteristic red colour. The red 

compound, isorottlerin and rottlerin are naturally occurring compounds, while the red 

compound primarily serves as a precursor to various chalcone and phloroglucinol 

derivates from Mallotus species (Daikonya et al., 2002, 2004, Furusawa et al., 2005).  

Rottlerin and the red compound have been previously isolated from M. philippinensis 

and tested for their anti-mycobacterial activities (Hong et al., 2010) and antibacterial 

properties against Helicobacter pylori (Zaidi et al., 2009; Hong et al., 2010). The 

present study therefore, reports the antibacterial activities of rottlerin and the red 

compound, against a panel of methicillin-resistant S. aureus strains, and some 
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multidrug-resistant Gram-negative bacteria, for the first time. Rottlerin showed a 

good potency of 2 mg/L against RN 42290 (MsrA), MRSA 274829, MRSA 12981 

and NorA over-expressing SA1199B, which compared favourably with norfloxacin, 

erythromycin and oxacillin. The observed antibacterial activity of rottlerin against 

these clinically-relevant strains is noteworthy and highlights the potential of rottlerin 

as a good candidate for antibacterial drug development, against the MRSA.  

Methicillin-resistant S. aureus has become a great health concern because of causing 

many hospital-acquired infections and S. aureus ‘exceptional’ wide-range resistance 

to tetracycline’s, macrolides, aminoglycosides, fluoroquinolones, especially 

glycopeptides such as vancomycin, which is used in its treatment (Stapleton and 

Taylor 2002; Gibbons 2008).  In addition, high level resistance in strains such as 

SA1199B, XU212 and RN4220 strains are promoted by the expression of efflux 

pumps, NorA, TetK and MsrA; and these mechanisms have become increasingly 

important in the current threat of multidrug resistance. The XU212 overexpresses 

TetK (tetracycline) efflux pump, which reduces the transport and recognition of 

tetracycline (Gibbons 2008). Multidrug-resistant SA1199B, overexpresses the NorA 

efflux transporter, in addition to a gyrase mutation, thereby confers a high level of 

resistance to certain fluoroquinolones (Poole 2000); RN4220 possesses the MsrA 

macrolide efflux pump, which binds to macrolides, expelling them from their drug-

binding sites (Ross et al., 1995),  while epidemic strains of EMRSA are notable for 

cases of bacteraemia in the UK hospitals (Gould et al., 2009). 

Rottlerin was active against ATCC 29523, B. subtilis BsSOP01, XU212, EMRSA-15, 

and EMRSA-16, MRSA 346724 and E. faecalis 13379 and 12697 at MIC values 

ranging between 1-8 mg/L, which is not as potent compared to the antibiotics. The 

activity of rottlerin towards these strains may have been reduced by the presence of 
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resistance genes harboured by the organisms, for example EMRSA -15 and -16 

strains which harbour mecA genes responsible for their resistance phenotypes (Cox et 

al., 1995).  

The antibacterial activity of the red compound had constant MIC value of 32 mg/L 

against XU212, EMRSA-15, and -16, SA119B, ATCC 29523 and erythromycin-

resistant RN4220, though the reason for this is not understood but it is likely that its 

chemical uniqueness gave rise to similar range of inhibition against the various 

organisms. In comparison, rottlerin showed improved antibacterial activity compared 

to the red compound (rottlerin > red compound) especially against the MRSA, and 

this could be attributed the presence of the acetophenone moiety. The sensitivity of 

SA1199B, RN4220 and XU212 to both compounds is interesting, indicative of 

similar mode of antibacterial action of rottlerin and the red compound against these 

bacteria. However, this is out of scope of this study. The high MIC of rottlerin and 

the red compound towards the Gram-negatives: E. coli, K. pneumoniae, P. 

aeruginosa and Proteus sp P10830 is almost certainly be due to poor penetration of 

the compounds through the bacterial outer membrane (Cox and Wright 2013b), as 

these compounds are large polyphenolic structures, with hydroxyl groups and 

phloroglucinol moieties, which contribute to their lipophilic and hydrophilic 

functions.  

Rottlerin was reported recently with IC50 values of 9 and 8 µM when screened against 

HL-60 and MIAPCa-2 cells, respectively (Jain et al., 2013). Based on the IC50 values, 

it can be estimated that ≥ 5 mg/L of rottlerin may perhaps show a strong effect to the 

cells. Further in vivo studies conducted by (Shaikh et al., 2012) reported a weak toxic 

effect at the dose of 1000 mg/kg in mouse animal model. Given the potential 

antibacterial activity displayed by the red compound and rottlerin, further research is 
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needed from preclinical and clinical studies on human to justify the toxic nature of 

these compounds as drug leads. Their structures can equally be modified to improve 

both their antibacterial and cytotoxic activities.  

The antiplasmid studies of rottlerin and the red compound revealed that the 

compounds affected the conjugal transfer of R-plasmids, namely PKM 101, TP114, 

PUB307, R6K. These plasmids belong to incompatibility (Inc) groups that are broad 

host and they serve as vehicles of conferring resistance genes to many antimicrobial 

classes especially genes encoding extended-spectrum β-lactamases (ESBLs) and 16S 

rRNA methylation resistance to aminoglycosides, in Enterobacteriaceae (Carattoli 

2009). Apart from TP114 that expresses kanamycin (aminoglycoside) resistance 

(Kmr), all the other plasmids harbour amoxicillin (β-lactam) resistance (Amr), which 

illustrates the very promiscuous nature of plasmids due to their ‘talented’ ability of 

self-transmissibility to transfer between bacteria from different groups with genes 

conferring resistance to one or more classes of antibiotics. 

                                                                                                                                                                                                                                                                                  

Interestingly, the antiplasmid activity of rottlerin was pronounced and widespread 

against PKM101, PUB307 and TP114, of different incompatibility groups. The red 

compound equally inhibited the conjugal transfers of TP114 and PUB307, in a 

moderate manner. The transfer frequencies of the transconjugants of the plasmids 

showed that maximum conjugation was achieved during the mating. This is important 

because researchers have noted that the rate of transfer is essential for the stable 

maintenance of conjugative plasmids in a bacterial population (Haft et al., 2009). 

Plasmids may be lost during bacterial reproduction by failing to segregate into one of 

the daughter cells during binary fission, but especially for the purpose of this study, 
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the conjugative plasmids carry antibiotic resistance genes or virulence genes that are 

able to spread via a successful transfer between the bacteria population.  

 

The polyphenolic compounds were applied in sub-inhibitory concentrations that did 

not kill the bacteria but targeted the plasmids. This could be by a way of interfering 

with the conjugative machinery or proteins, or destabilising the plasmid replication 

process. Earlier reports showed that plasmid curing agents such as ethidium bromide 

and SDS can intercalate the DNA (Hahn and Ciak 1976), indirectly damage the 

DNA, such as quinolones (Michel-Briand et al., 1986), or affect the architecture of 

the cell membranes, as seen with phenothiazine, thereby disrupting plasmid partition 

(Monlar et al., 2003). The full mode of antiplasmid action of the compounds is yet to 

be elucidated. To the best of our knowledge, this is the first report on the inhibitory 

effect of natural compounds from M. phillipinensis on the conjugal transfer of R-

plasmids.  

Many researches therefore support that natural agents interfering with the process of 

bacterial conjugation remains a potential way of combating the spread of plasmid-

mediated antibiotic resistances (Fernandez-Lopez et al., 2005; Williams and 

Hergenrother 2008), given that currently available antiplasmid agents are toxic 

(Amábile-Cuevas and Heinemann 2004). Some non-toxic antiplasmid natural 

products have been isolated, such as the nor-diterpene compound, 8-epidiosbulbin-E-

acetate (EEA) isolated from the bulbs of Dioscorea bulbifera (Shriram et al., 2008) 

and the phenolic compound bharangin isolated from Pygmacopremna herbacea 

(Roxb) (Marie-Magdeleine et al., 2010). 
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The planar nature of rottlerin and the red compound, rich in olefinic and hydroxyl 

groups may promote ease of penetration into the plasmid DNA, and largely affect the 

process of conjugation. This is in line with a number of antiplasmid compounds, that 

are either natural or synthetic, in that their antiplasmid action depended upon the 

chemical structures of the compounds, their aromaticity, and their ability to interact 

with the DNA gyrase (Spengler et al., 2006) Spengler, Miczak et al.,  2003; Molnar, 

Molnar et al., 2004; Takacs, Cerca et al., 2011).  

 

4.2 Antibacterial and antiplasmid properties of natural and synthetic 

cannabinoids  

The bioassay-guided analysis of the chloroform extract of Cannabis resin yielded two 

acidic cannabinoids, tetrahydrocannabinolic acid, (THCA) and cannabinolic acid 

(CBNA).  

 

 

 

Detailed characterisation of the five most common cannabinoids from  C. sativa; Δ9-

tetrahydrocannabinol (THC), cannabidiol (CBD), cannabigerol (CBG), 

cannabichromene (CBC), and cannabinol (CBN) and their carboxylated counterparts 

including THCA and CBNA have been documented by many researchers (Choi et al., 

2004; Hazekamp et al., 2005; Lone et al., 2012 ).  

 

Tetrahydrocannabinolic acid (THCA) Cannabinolic acid (CBNA) 
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∆9-tetrahydrocannabinol (THC)    Cannabinol (CBN) 

 

Some of the biological activities exhibited by C. sativa, such as anti-inflammatory, 

antitumor, and neuroprotective effects, have been attributed mainly to the presence of 

psychoactive Δ9-THC, and less related to other non-psychoactive cannabinoids such 

as CBD and CBN. A recent study revealed the potential of cannabidiol and 

cannabidiolic acid, as anti-cancer agents (Takeda et al., 2012; Takeda 2013).  

This study did not investigate the antibacterial activities of the cannabinoids against 

MRSA, because it has been investigated in our research team in collaboration with 

Professor Appendino’s group. The antibacterial activities of the five major 

cannabinoids, (CBD, CBC, CBG, ∆9-THC and CBN) were evaluated against the  

multidrug methicillin S. aureus (MRSA)  and standard strains;  SA1199B, ATCC 

25923, XU212, RN4220, EMRSA-15 and -16 (Appendino et al., 2008). According to 

Appendino et al., 2008, the antibacterial activities of the five main cannabinoids had 

MIC values in the 0.5-2 mg/L range, with exceptional activity against SA-1199B, 

EMRSA-15 and EMRSA-16. The mechanism of the antibacterial activity of the 

cannabinoids is not known. However, the activity is proposed to be dependent on the 

presence of the prenyl moiety and its relative position, which is not the case with the 

Cannabidiol (CBD) 
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carboxylated resorcinyl moieties of the acidic counterparts (Appendino et al., 2008) 

or the n-pentyl moiety of the abnormal cannabinoids with lesser antibacterial activity 

(Razdan et al., 1974).  

The antiplasmid activities of these cannabinoids; ∆9-THC, CBN, CBD, including a 

semi-purified extract of Cannabis, showed various transfer frequencies (0.29-

27.58%) of three broad host plasmids, PKM 101, TP114 and PUB 307, with varying 

transfer frequency values. The three cannabinoids significantly reduced PKM 101 

transfer to a near-zero transfer rate. Similarly, TP114, which determines kanamycin 

resistance, was affected by CBN and CBD, but was marginally inhibited by ∆9-THC. 

Numerous evidence abounds on cannabinoid-mediated effects in various biological 

systems, especially with the discovery of CB1 and CB2, the endocannabinoid 

receptors (Izzo et al., 2009). It is not strange that plant cannabinoids were able to 

target plasmid DNA, influence the inhibition of bacterial conjugation or related 

activities, since they are known to have the ability to modulate several physiological 

and pathophysiological activities (Izzo et al., 2009) . 

 

Neither CBD nor CBN showed a marked effect on the transfer of PUB307, while that 

of THC was completely opposite to the expected inhibition. This indicated that the 

activity of these compounds is plasmid-specific, which is clearly seen in the selective 

inhibition effect of the individual cannabinoids on PKM 101 and TP114, over PUB 

307. It is possible that PUB 307 may undergo modification in the presence of the 

cannabinoids or contain a substrate which likely is antagonised by the effects of these 

compounds. However, the scope of available data is insufficient to provide an 
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explanation as to what is modified in the presence of the compounds such that 

plasmid transfer efficiency is either enhanced or reduced.  

 

A key feature of these cannabinoids, the tricyclic aromatized structure, has been 

related to the tricyclic skeleton of phenothiazine derivatives, which exert antiplasmid 

action (Spengler et al., 2006b). The electronic configuration of the phenothiazine 

skeleton, in addition to the presence of the heteroatoms, is considered primarily 

responsible for the plasmid curing activities of the phenothiazine compounds. Despite 

the similarity in their structural backbone of cannabinoids to phenothiazine-type 

compounds, the cannabinoids under investigation are rich in functional groups: 

phenolic oxygen of the monoterpene unit, the alkyl side chain, and the prenyl unit; 

which may contribute to their antiplasmid effect.  

 

The Monlar group have demonstrated the plasmid curing of F’lac from model E. coli 

K12LE140 by some ring substituted phenothiazines and cannabinoid derivatives 

(CBNA, CBN, CBD, CBDA, 8-THC, 9-THC, THCA) (Molnar et al., 1992). In 

general, all of the cannabinoids profiled produced a weak effect except for THCA, 

which showed 30% elimination of the F’lac plasmid. Despite there being no further 

explanation by the authors for the decreased activity of the cannabinoids; it is 

possible that the very low sub-MIC concentrations applied could induce plasmid loss 

as expected. Conversely, the inhibition of conjugal transfer of resistance bearing 

plasmids occurred at low concentrations of these cannabinoids, and even in strains 

that confer broad range antibiotic resistance. The weak curing effect shown by the 

rest of the cannabinoids against E. coli K12LE140 may be due to the inefficient 
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penetration of the compounds, since the bacterial cell wall/cell membrane has been 

implicated as a barrier resulting in weak plasmid elimination (Molnar et al., 1992). In 

essence, the successful permeation of these cannabinoids through the E. coli 

membrane was crucial to their antiplasmid effect, and could be attributed to the 

structural and electronic features which are typical of cannabinoids. Regardless of the 

difference in the method and plasmid strains used in Monlar’s work, the potent 

activity shown by THCA corresponded with our results, which showed the presence 

of THCA as the major responsible antiplasmid agent, isolated from the bioactive 

semi-pure Cannabis extract against TP114.  

 

The cannabigerol (CBG) and CBG-derivatives constitute an important class of the 

major cannabinoids, either obtained synthetically or from C. sativa (Appendinoet al., 

2008; Radwan et al., 2009; Appendino et al., 2011).    

 

Cannabigerol has demonstrated anti-proliferative and antibacterial activity, and is a 

potent cannabinoid agonist (Izzo et al., 2009). Two synthetic compounds, 

cannabigerol CBG-1 and olivetol also inhibited the conjugal transfer of plasmid 

TP114 between E. coli strains. 

   CBG-1 olivetol 

Cannabigerol 
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CBG-1 was strongly inhibitory, compared to olivetol. CBG-1 consisted of the basic 

olivetol moiety that is often found in the cannabinoids, and which may have 

contributed, alongside with other functional groups to the antiplasmid activity of the 

cannabinoids. The olivetol core in itself has been proposed as a poorly active 

pharmacophore, with respect to its antibacterial activity (Appendino. et al., 2008). 

These findings highlight the untapped potential of phytocannabinoids and their 

analogues as antiplasmid drug leads, and templates for combinatory chemistry, 

besides their richly investigated pharmacological and psychotropic activities. 

 

 

4.3 The antibacterial and antiplasmid properties of quinolone alkaloids from 

Evodia rutaecarpa 

Evodiamine and rutaecarpine, two indolequinazoline alkaloids were isolated from the 

dried fruits of E. rutaecarpa, including naturally occurring sugar. This is the first time 

sucrose is reported from the fruit of Evodia rutaecarpa.   

              

 

Numerous papers have reported the isolation of evodiamine and rutaecarpine from 

the unripe, fresh and dried fruit of the E. rutaecarpa, E. fructus and sub-species 

officinalis (Dode) Huang (Yuan-Qing Tang et al., 1996; Adams et al., 2005; Liu et 

al., 2005; Yang et al., 2006b; Shin et al., 2007; Pei-ting Zhang et al., 2013; Wang et 

 Evodiamine  Rutaecarpine  Sucrose 
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al., 2013; Zhang et al., 2013; Zhang et al., 2014). These reports suggest that the 

Evodia fruit may be a richer source of alkaloids including evocarpine, compared to 

other parts of the plant. Rutaecarpine has also been isolated from two new plant 

families apart from the Rutaceae and they include Taxus chinensis (Taxaceae) and 

Winchia calophylla from family Apocynaceae (Guan et al., 2000; Zhu et al., 2005)   

From available literature, quinolone alkaloids possessed potent antibacterial activity 

against Helicobacter pylori (Hamasaki et al., 2000; Tominaga et al., 2002; Tominaga 

et al., 2005) and some extremely drug-resistant Mycobacterium tuberculosis strains 

(Adams et al., 2005). However, none of the studies on the antimicrobial activities of 

quinolone alkaloids has explored the activity of evodiamine and rutaecarpine against 

multidrug-resistant S. aureus strains. 

From the present study, the antibacterial activity of evodiamine, rutaecarpine and the 

isolated sugar showed a wide range of MIC values ranged 8-128 mg/L. Rutaecarpine 

was the most active alkaloid with an MIC value of 8 mg/L against NorA-expressing 

SA1199B and the XU212 strain expressing the TetK efflux mechanism. Evodiamine 

and the isolated sugar showed slight inhibitory activity against the panel of bacteria, 

both Gram-positive and Gram-negative. In a study by Pan’s group, some quinolone 

alkaloids showed similar range of antibacterial activity (8-128 mg/L) (Pan et al., 

2014) against a methicillin-resistant S. aureus ATCC 33591 and other standard 

strains and their MIC values compared well with our results on the antibacterial 

activities of evodiamine and rutaecarpine. Evocarpine was potent with an MIC of 8 

mg/L, which was 16-fold more active compare to the activity of oxacillin against the 

MRSA strain.  
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Evocarpine 

It is suggested that the chemical nature of evocarpine: 1-Methyl-2-(8-tridecenyl)-

4(1H)-quinolinone, with a characteristic 13-carbon monounsaturated aliphatic side 

chain at the position-2, conferred an antibacterial advantage on the compound, 

compared to others with shorter or longer side chains. A major structural difference 

that is common with quinolone compounds lies with the alkenyl chain substitution at 

C-2, which somewhat influences their level of activity. In another study, an array of 

isolated N-methyl-4(1H)-quinolone alkaloids, demonstrated good activity (4-28 

mg/L) against a standard S. aureus ATCC 25923, S. epidermidis and B. subtilis , and 

within these quinolones, the compound with the thirteen carbon aliphatic chain had a 

remarkable antibacterial activity (Wang et al., 2013). Previous studies on the 

antibacterial and antimycobacterial effects of 1-methyl-2-alkenyl-4(1H)-quinolones, 

and their potential structural–activity-relationships were evaluated by Bucar, Gibbons 

and Bhakta’s collaborative groups (Guzman et al., 2011; Wube et al., 2011; Wube et 

al., 2012).  

The antibacterial activity of rutaecarpine is not strange as it has been documented for 

its various biological activities such as its cardioprotective (Jia and Hu 2010), 

antithrombotic (Sheu et al., 2000), anti-inflammatory (Chiou, W. F. et al., 2011; 

Liao, J. F. et al., 2011), including antibacterial activities (Wang et al., 2013). The 

major structural difference between rutaecarpine and evodiamine is the presence of 

an additional double bond at position C3-N (rutaecarpine) which may have enhanced 

the anti-staphylococcal activity of rutaecarpine.  
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          Rutaecarpine 

 Evodiamine  

 

Results for the inhibition of R-plasmid transfer of the quinolones from E. rutaecarpa, 

showed various levels of reduction towards conjugative transfer frequencies. The 

semi-purified fractions EV6, EV-8 and EVB respectively, recorded 21.06%, 27.61% 

and 26.61% inhibition towards the transfer of TP114 between the donor and recipient 

E. coli, compared to isolated evodiamine (55.55%). Similar result was reported of the 

crude extract of Alpinia galanga, which demonstrated higher plasmid curing activity 

than the isolated single entity, 1’-acetoxychavicol acetate (Latha et al., 2009). The 

enhanced antiplasmid activities of the bioactive extracts may be due to synergistic 

effects of the chemical constituents present in the extracts. Synergy in whole plant 

medicines or crude extract treatments has been very common by means of adjuvant 

substances in the plant, which usually enhance the activity of the components 

responsible for the effect (Gilbert and Alves 2003).  In this case, the combinatorial 

effect of the crude extracts may possibly facilitate transport across the bacterial cell 

wall which aided maximum absorption of the drug, interference with the conjugation 

process, or provide other signals to the hosts or recipient cells that result in higher 

efficacy of the crude drug compared with their isolated components. However, the 

exact mechanism of action of the crude extract is not known. 

Evodiamine and rutaecarpine are both widely known for various pharmacological 

activities, but did not vigorously affect the transfer frequencies of plasmids TP114 
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and PUB307. Only the plasmid transfer of PKM 101 was actively reduced by 

rutaecarpine with a transfer frequency of 2.31%. With the exception of rutaecarpine 

that demonstrated a specific inhibition of PKM 101, the overall results suggest that 

the independent effects of the evodiamine and rutaecarpine could not diminish the 

plasmid-coded conjugative machinery of PUB307 and TP114. Due to their large size, 

it is possible that the compounds were weakly absorbed into the bacterial cell or 

degraded, which reduced their efficiency on the targeted plasmid. The ability of 

bacteria to degrade, transform or even mineralise diverse organic compounds and 

their derivatives, including indole and quinolone derivatives has been extensively 

reviewed (Fetzner 1998). 

The antiplasmid effect shown by sucrose from Evodia fruit on plasmid PKM 101, 

TP114 and PUB307 could be largely attributed, in addition to sucrose, to the presence 

of possibly saturated and unsaturated fats and other residues. This is because fatty 

acids dehydrocrepenynic acid (DHCA) from Sistotrema semanderi-FX21 and linoleic 

acid from Mollisia ventosa-FX14 have been shown to have antiplasmid effect on 

plasmid  R388 and other plasmid transfers between E. coli isolates (Fernandez-Lopez 

et al., 2005). Though, the saturated  fatty acids as seen in the NMR spectrum (Figure 

42) were minor but showed activity against the transfer of these R-plasmids resulting 

in low transfer frequencies of PKM 101 (2.74%), TP114 (6.75%) and PUB307 

(0.5%). Equally, the parent bioactive extract EV7/8 demonstrated moderate inhibition 

against these plasmids, contrary to both table sugar and standard sucrose, which 

showed varying transfer frequencies against PKM 101 and TP114, but did not 

achieve the anticipated antiplasmid effect.  
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Marshall and Bullerman (1994) showed that low concentration of sucrose usually are 

not inhibitory to microorganisms, but provide readily available carbohydrate energy 

and stimulate growth.  Thus, the antiplasmid activity of the isolated sugar and the 

semi-pure extract could be connected with the inhibitory effect of the saturated fatty 

acid residues, since sucrose esters of fatty acids are shown to possess some 

antimicrobial effect (Marshall and Bullerman 1994). Studies conducted on conjugal 

inhibitory activities of a collection of fatty acids also revealed that some bioactive 

fractions with antiplasmid activity during screening of NatChem library contained 

unsaturated fatty acid, mainly linoleic acid (Fernandez-Lopez et al., 2005).   

Evocarpine showed a robust antiplasmid activity which was evident by the low 

transfer frequencies of broad host R-plasmids, PUB 307 and R7K at 4.85% and 

9.45% respectively. The level of inhibition against R6K, TP114 and R1-drd-19-K 

was moderate but insignificant except towards R6K. Evocarpine exhibited poor anti-

plasmid activity against PKM 101 and R1-drd-19-A in comparison to the control. 

These results suggested that evocarpine is a selective plasmid inhibitor, even though 

the mechanism by which evocarpine leads to selective decreased efficiency of 

plasmid transfer is not yet clear. Generally, bacterial conjugation involves the cell to 

cell fusion via the pili between the donor and the recipient, which is by the type IV 

secretion system (T4SS), also known as the mating pair formation (Mpf) apparatus, 

encoded on Gram-negative conjugative elements. (Lawley et al., 2003). It is likely 

that evocarpine itself might affect some general function or specific component of the 

cell surface, such as electrochemical potential, by influencing the intracellular or 

periplasmic space pH, which could lead to unstable mating pair formation.   

Overall, the antibacterial and antiplasmid activities of these metabolites (evodiamine, 

rutaecarpine and evocarpine) from the quinolone family are noteworthy and should 
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be further investigated, particularly given their characteristic 4-quinolone structural 

component, which shows a good relation with the fluoroquinolones class of 

antibiotics. The quinolones, possess remarkable ability to inhibit both DNA gyrase 

and topoisomerase IV (Drlica and Zhao 1997), a feature accounting for their wide use 

in drug development and clinical practice, as antibacterials from 4(1H)-quinolone-3-

carboxylic acid agents (Guzman et al., 2011; Ahmed and Daneshtalab 2012), 

anticancer from 2-phenyl-4-quinolones (Sissi and Palumbo 2003), antitumor (Xia et 

al., 1999) and antiviral (Kumar et al., 2012) activities derived from quinolone-related 

compounds. However, the safety of evodiamine and rutaecarpine has not been fully 

studied on either animals or humans. Few studies conducted  showed high toxicity of 

rutaecarpine and evodiamine against CCRF-CEM and multidrug-resistant 

CEM/ADR5000 cells with IC50 values ranging from 0.76 to 1.37 mg/L (Adams et al., 

2007). This thus implies that MIC generated in this study could be toxic to bacteria. 

Evaluation of acute toxicity of evodiamine in mice and Drosophila melanogaster 

[LD50 values of 77.79 mg/kg and 3.58mg/L, respectively (Yang et al., 2006a) 

indicated that the MIC obtained equally may be toxic. Notwithstanding, these 

findings are necessary in addition to the antibacterial potential of these quinolones to 

provide rationale for their drug development. These quinolones are potential 

templates for modifications of their structures essential for effective antibacterial and 

antiplasmid drug design.  

  

4.4 The antibacterial and anti-plasmid properties of Ferulenol 

Ferulenol, a prenylated 4-hydroxyl-coumarin, is naturally isolated from Ferula 

communis L.; in the Apiaceae family, commonly known as giant Fennel.  
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There are two distinguishable chemotypes of F. communis: i) prenylated coumarins, 

which contain daucane esters; and ii) a poisoinous chemotype, containing prenylated 

coumarins, thus an excellent source of ferulenol (Appendino et al., 2004; Mamoci et 

al., 2011). Earlier reports have been obtained on various biological activities of 

ferulenol including antimicrobial activity. Three antibacterial sesquiterpenes namely 

14-(o-hydroxycinnamoyloxy)-dauc-4,8-diene, ferulenol and ferchromone from 

rhizomes of F. communis were evaluated  by (Al-Yahya et al., 1998) while 

(Appendino et al., 2004) showed the antimycobacterial activities of ferulenol towards 

fast-growing stains of Mycobacterium.  

     

 

In this study, ferulenol exhibited excellent antibacterial activity with an MIC of 0.5 

mg/L, 16-fold better than the standard norfloxacin towards SA1199, and this activity 

was similar to the earlier reported MIC of 0.63 mg/L exhibited against standard S. 

aureus, B. subtilis, Streptococcus durans and Enterococcus faecalis by Al-Yahya’s 

group. Ferulenol, also demonstrated good to moderate activity (0.5 – 32mg/L) against 

Ferulenol 

14-(o-hydroxycinnamoyloxy)-dauc-4,8-diene  Ferulenol 

Ferchromone 
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other problematic MRSA strains such as XU212, S. aureus 13373, SA12981 and 

erythromycin-resistant RN4220 strain, which are currently associated with healthcare 

and MRSA infections (Gould et al., 2012).  However, it was inactive against E. coli 

and P. aeruginosa, which was presumably due to poor penetration through the cell 

walls of the Gram-negative bacteria.  

Previously from F. hermonis (Galal et al., 2001) and F. kuhistanica, (Tamemoto et 

al., 2001), some daucane sesquiterpenes with various aromatic ester moieties were 

characterised which demonstrated good MIC values of 6.25 mg/L and 8–16 mg/L 

against the MRSA strains. Taken together these results, they therefore highlight the 

potential of coumarins from the genus Ferula, as an interesting source of antibacterial 

leads, again with the outstanding antistaphylococcal activity of ferulenol against 

clinically relevant MRSAs. 

Ferulenol has been associated with hepatocyte cytotoxicity in livestock due to its 

binding to tubulin (Bocca et al.,2002 ) and anticoagulant properties linked to 

inhibition of vitamin K epoxide reductase enzyme (Silverman 1981).  It exerts taxol-

like and dose-dependent cytotoxicity against various human tumor cell lines but none 

of these mechanisms support its antibacterial activities. Appendino’s group correlated 

its mode of action to the presence of two structural elements, the enolized β-carbonyl 

and farnesyl moieties (Appendino et al., 2008), separately found in two classes of 

antibacterial agents.  

 

 

enolised β-carbonyl 

farnesyl moieties 
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It is also possible that ferulenol could act on DNA gyrase, which is a typical mode of 

action for aminocoumarins used clinically, for example novobiocin (Peterson 2001).    

The antiplasmid activity of ferulenol was studied to evaluate its ability to inhibit 

conjugal transfer of five R-plasmids bearing resistance markers, mainly amoxicillin 

and kanamycin. Ferulenol, when compared to novobiocin, exhibited an excellent 

broad host activity (2.29 – 10.62%) against the plasmids, especially TP114, PKM 101 

and PUB307. The lipophilic phenolic moieties of the molecule probably enhanced the 

membrane permeability of ferulenol, leading to dislocation of conjugation steps or the 

correct assembly of the plasmid DNA thereby inhibiting plasmid transfer. The 

antiplasmid action of ferulenol can be quickly related to the inhibition of plasmid 

DNA, given that coumarins are known to have extensive biological activity due to 

their effect by inhibition of the bacterial DNA gyrase (Chatterji et al., 2001). 

Inhibition of DNA gyrase and complex interaction with the supercoiled form of the 

plasmid DNA has been shown to lead to the cessation of plasmid replication in the 

bacterial cells (Wolfson et al., 1982; Hooper et al., 1984; Monlar et al., 1992). 

Unfortunately, plasmids R6K and R7K were not refractory to ferulenol, contrary to 

the effect of novobiocin on them.  

 Novobiocin 

It is possible that novobiocin, possessing a hydroxyl at C-4 and a subsistent at C-3, 

effectively affected R6K and R7K, rather than ferulenol, indicating the importance of 

Ferulenol 
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both molecules to specific plasmid activity. Probably, it can be assumed that ferulenol 

and novobiocin exerted similar mode of antiplasmid action, by targeting the 

inhibition of plasmid DNA in vitro, but the failure to achieve plasmid conjugal 

inhibition in some of the conjugation systems, for example R6K; may perhaps reflect   

to a bio-target different from the plasmid DNA gyrase. 

 

4.5 The anti-plasmid properties of promethazine 

The antiplasmid activity of heterocyclic drugs has been extensively studied, and two 

drugs with outstanding effects on plasmid replication have been discovered. 

Promethazine and chlorpromazine eliminated the tetracycline, chloramphenicol, 

streptomycin and sulfonamide resistance of an E. coli strain (Mandi et al., 1975b; 

Molnar et al., 1977). This finding resulted in systematically synthetized 

phenothiazine and acridine derivatives that have extensively been studied for their 

biological activity and positive antiplasmid effects (Mandi et al., 1975a; Molnar et 

al., 1976; Molnar et al., 1977; Barabas and Molnar 1980; Molnar and Nakamura 

1988; Ford et al., 1989; Molnar et al., 1992; Kristiansen et al., 2003; Spengler et al., 

2003; Takacs et al., 2011).  

Our results showed promethazine as an effective broad host anti-conjugative agent 

against the resistance plasmids, PKM 101 (18.03%), TP114 (5.7%) and R7K 

(0.64%). R6K and PUB307 were poorly affected by this molecule, however,  the 

activity exerted by promethazine on these plasmids below the MIC concentration, 

showcases promethazine, not only as plasmid curing agent (Spengler et al., 2006) but 

also as a conjugative inhibitor. The antiplasmid action of promethazine has been 
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linked to the ╥-electrons of the phenothiazine skeleton, which could target molecules 

essential for plasmid replication.  

    

Phenothiazine   Promethazine 

A cationic amide group may promote the permeability of promethazine into the 

plasmid cell (Spengler et al., 2006). Therefore, the marginal effect of promethazine 

on R6K and PUB307 might be as a result of possible modification of the 

phenothiazine such that there was inefficient penetration and thus, inhibition could 

not be achieved.  

 Promethazine has eliminated antibiotic resistance plasmids of different E. coli at 

varying frequencies, cured lactose fermentation of E. coli, has tumour inducing 

ability of Agrobacterium tumefaciens and nodule formation of Rhizobium meliloti 

(Monlar et al., 2003). In addition, promethazine has demonstrated various in vivo 

effects, either as a stand-alone drug or in combination with gentamycin (Molnár et 

al., 1990), and other drugs namely imipramine and ciprofloxacin  (Hooper et al., 

1984; Spengler et al., 2006). These findings do appear to indicate a lack of toxicity on 

the part of promethazine, which can serve as an adjuvant for drug design in the 

future, to develop related substances which are potent in eliminating drug resistance-

carrying plasmids of bacteria, but with no cytotoxic effects. 
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4.6 The antibacterial and anti-plasmid properties of capsaicin and capsaicin–like 

compounds. 

Capsaicin and dihydrocapsaicin are found primarily in the fruit of the Capsicum 

genus and account for up to 90% of the total pungency of the pepper (Garces-Claver  

et al., 2007). They are the main capsaicinoids generally isolated from the fruit of 

Capsicum annuum or related species, followed by 12-20 minor capsaicinoids and 

their analogues; a few examples include nordihydrocapsaicin, homodihydrocapsaicin 

and homocapsaicin (De Marino et al., 2006; Reyes-Escogido, Maria et al., 2011).  

 

1R=capsaicin, 2R=dihydrocapsaicin, 3R=nordihydrocapsaicin, 

4R=homodihydrocapsaicin, 5R= homocapsaicin 

Growing interest in capsaicin has led to its characterization with various 

spectrophotometric and chromatographic methods such as silica gel column 

chromatography, normal-phase thin-layer chromatography (TLC), HPLC, LC-MS, 

UV-Vis and GC. High-performance liquid chromatography (HPLC) has been widely 



181 

 

used for the characterization of capsaicin and its analogues (Kobata et al., 1998; 

Materska and Perucka 2005; Garces-Claver, A. et al., 2007; Peng et al., 2009). In this 

study, capsaicin was isolated via solid phase extraction chromatography, while 

Reverse-phase HPLC was applied to identify dihydrocapsaicin, in addition to mass 

spectrometric determination, proton nuclear magnetic resonance (
1
H NMR) and 

carbon nuclear magnetic resonance (
13

C NMR), which were applied for the 

comparative analysis of the capsaicinoids purity and structure. Due to their similarity 

in structures, the detection of dihydrocapsaicin from the capsaicinoid mixture was 

only successful by the use of HPLC, a situation that has been often encountered by 

researchers (Peng et al., 2009; Butnariu et al., 2012).   

Capsaicin is a phenolic alkaloid and contains a vanillyl moiety. It is chemically 

designated as trans-8-methyl-N-vanillyl-6-nonenamide. It is a decylenic acid amide of 

vanillyl-amine and known with various synonyms, such as N-[(4-hydroxy-3-

methoxybenzyl]-8-methyl-trans-6-nonenamide, N-[(4-hydroxy-3-methoxyphenyl) 

methyl]-8-methyl-trans-6-nonenamide, N-(3-methoxy-4-hydroxybenzyl)-8-methyl 

non-trans-6-enamide, trans-8-methyl-N-vanillyl-6-nonenamide, isodecenoic acid 

vanillylamide and 8-methylnon-6-enoyl-4-hydroxy-3-methoxybenzylamide (Arora et 

al., 2011). 

 The molecular structure of capsaicin was resolved by Nelson and Dawson, in 1919, 

and exhibits typical cis/trans isomeric forms, though mostly found in its trans 

isomeric form (Reyes-Escogido, Maria et al., 2011). The capsaicin molecule is 

basically divided in to three regions:  (A) an aromatic ring, (B) an amide bond, and 

(C) the aliphatic (hydrophobic) side chain (Figure 72).  

     



182 

 

A        B     C 

  

 

Figure 72: Regions of the molecule of capsaicin: A-aromatic ring, B-amide bond, C-

hydrophobic side chain 

Each of these features such as: substituents in the aromatic ring, the phenolic 4-OH 

group, and the H-bond donor/acceptor properties are important to the bioactivity of 

capsaicin, as a potent agonist (Arora et al., 2011). It is been shown that lateral chain 

lengths higher or between 8 and 9 carbons atoms are equally important for the 

bioactivity of capsaicinoids (Barbero et al., 2010). The forms of different natural 

capsaicinoids depend on the number of lateral chain carbons (R), which ranges from 

9-11 in length, with the absence or presence of double bonds located at different 

positions along the chain (Reyes-Escogido et al., 2011). In general, capsaicinoids are 

all amides formed from the condensation of vanillylamine and fatty acids of different 

chain lengths.  

Dihydrocapsaicin (8-methyl-N-vanillynonenamide/-N-(4-hydroxy–3-methoxybenzyl) 

–8-methylnonanamide), is a reduced 6, 7 dihydro-derivative of capsaicin, with a 

molecular formula of C18H29NO3 and molecular weight of 307.43.   

 

During hydrogenation, capsaicin turns into dihydrocapsaicin, without the carbon-

carbon double bond, resulting in a difference in the degree of unsaturation of the 9-

Dihydrocapsaicin 
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carbon fatty acid side chain (Garces-Claver et al., 2007). This is the major structural 

difference between dihydrocapsaicin and capsaicin.  

 

Figure 73: Structure of capsaicin (1R), and dihydrocapsaicin (2R) 

 

Nonivamide is a naturally occurring analogue of capsaicin and has a molecular mass 

of nonivamide m/z 294 (Reilly et al., 2001). Before, it was identified as naturally 

present in Capsicum species after many years, it was first synthesized and used as an 

adulterant of capsaicin, thereby regarded as synthetic capsaicin, a term that remains in 

current parlance (Constant et al., 1996).  

 

Nonivamide was isolated from Capsicum oleoresin, which was exact when compared 

with an authentic sample of synthetic nonivamide (Constant et al., 1996).  

From this study, capsaicin, dihydrocapsacin and synthetic nonivamide demonstrated 

moderate anti-staphylococcal activities, with the MIC range of 64 - 512 mg/L. These 

multidrug-resistant Gram-positive bacteria, especially the MRSA’s, possess various 

efflux pumps that contribute greatly to their high level of resistance to a given drug or 

class of drugs, like tetracycline, fluoroquinolones and macrolides. Capsaicin appears 

Nonivamide 
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only to be active slightly against the norfloxacin–resistant SA1199B but remained 

inactive towards other Gram-positive and Gram-negative species, indicating that 

these resistant strains may confer various resistance mechanisms present in the 

bacteria which contributed to the poor uptake of the capsaicinoids. However, 

capsaicin (25 mg/L), when combined with ciprofloxacin, potentiated the activity of 

ciprofloxacin from 8 mg/L to 2 mg/L after 8 hours exposure, in the presence of 

SA1199B. This suggests that capsaicin possess ability as an inhibitor of NorA efflux 

pump (Kalia et al., 2012).    

 Antimicrobial data on Capsicum species and pure capsaicin have been previously 

obtained by several researches against showing the scope of antimicrobial effect of 

capsaicinoids against Helicobacter pylori (Zeyrek Yildiz and Oguz 2005; Koffi-

Nevry et al., 2011), Salmonella typhimurium, Pseudomonas aeruginosa (Careaga et 

al., 2003), fungi (Soumya and Bindu 2012; Fieira et al., 2013),  E. coli,  

Psuedomonas solanacearum, and Bacillus subtilis (Wei et al., 2006; Voukeng et al., 

2012; Noumedem et al., 2013).   

 

The primary pungent agents of ginger are gingerol, with other gingerol analogues, 

shogaol, zingerone and paradol (Singh et al., 2010). Both 6-gingerol and 6-shogaol 

consist of phenylakylketones or vanillyl ketone moieties, which show some 

resemblance with the vanillylamide (aromatic) moieties of capsaicinoids (Figure 74). 

  

6-gingerol 6-shogaol 
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 Figure 74: Structures showing resemblances of gingerol and shogaol with capsaicin 

 

Interestingly, 6-gingerol and 6-shogaol showed better anti-staphylococcal activity 

against the multidrug MRSA 274829 and XU212 with an MIC range of 16 - 64 mg/L, 

compared with oxacillin and erythromycin respectively. They were marginally active 

against SA1199B with an MIC of 16 mg/L. Only 6-shogaol demonstrated good 

activity with an MIC of 8 mg/L, against RN4220 MsrA macrolide efflux while 6-

gingerol did not show any activity against this organism. It is possible that the 

presence of MrsA pump undermined the effect of 6-gingerol by expelling them from 

their drug-binding sites (Ross et al., 1995).  

Gingerol and shogaol are considered to be the active constituents of ginger and 

ginger-based preparations used in folklore medicines (Singh et al., 2010; Mishra et 

al., 2012), but they unexpectedly had slight activity against the Gram-positive and 

Gram-negative bacteria relative to the antibiotics. This suggests that gingerol and 

shogaol could not overcome the resistance mechanisms present in these bacteria, 

which either chemically modified the compounds and render them inactive, or made 

the target sites unrecognisable by the compounds.  

Capsaicin 
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To the best of our knowledge, the inhibition effect of capsaicinoids, gingerol and 

shogaol on the conjugal transfer of R-plasmids has not been studied before, but 

various reports have shown a wide range of biological activities of these compounds, 

as analgesic, antiemetic, antipyretic, anti-arthritic, anti-inflammatory, anti-microbial, 

anticancer, and antioxidant activities (Park et al., 2008; Singh et al., 2009; Singh et 

al., 2010; Arora et al., 2011; Mishra et al., 2012).  

 

 

 

 

From the anti-plasmid results, capsaicin was able to actively inhibit the conjugal 

transfer of amoxicillin-resistant PKM 101, PUB307 and R7K, while kanamycin-

resistant TP114 and amoxilicin-resistant R6K remained unaffected. Dihydrocapsaicin 

was the most active against the conjugal transfer of PUB307, with a transfer 

frequency of 3.33%. PKM 101 was moderately inhibited by DHC, while TP114 was 

totally unaffected. The effect of capsaicin on these plasmids is remarkable such that it 

exhibited a broad range of activity over unrelated plasmid incompatibility groups; Inc 

N, W and P, while DHC seems plasmid specific. Nonivamide only had a minor 

inhibition effect on plasmid PUB307 transfer. The prevalent inhibitory activity of 

capsaicin over DHC might be presumably related to the difference in saturation of the 

6-gingerol 6-shogaol 

Capsaicin 
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alkyl side chain. The strong inhibition effect of nonivamide on TP114 was rather 

surprising being that capsaicin and DHC only showed a minimal effect.  Interestingly,  

both capsaicin and dihydrocapsaicin had an inhibitory effect on PKM 101 was 

consistent, which shows that PKM 101 was particularly sensitive to the capsaicinoids 

and highlights the potential of the capsaicinoids as new class of drug leads.  

 

The effect of gingerol and shogaol was very active against the transfer of the 

plasmids, PKM 101, TP114 and PUB307. These results suggest the ability of the 

compounds and the responsible constituents to block the plasmid conjugation 

processes. Not only are these broad host plasmid conduits of various antibiotic 

resistance determinants in E. coli, but each of these plasmids codes similar pattern for 

conjugal replication and transfer, which employs the type IV secretion system 

(Grindley et al., 1972; Wiletts 1977; Schroder and Lanka 2005)  Consequently, it is 

possible that gingerol, and its dehydrated derivative, shogaol, had interfered with the 

plasmid DNA transfer and replication (Dtr) establishment in the cells, or secretion 

proteins coupled to DNA, which are actively transported substrates involved in 

bacterial conjugation (Schroder and Lanka 2005).  

To further illustrate the effect of gingerol on conjugation type IV secretion systems 

(T4SS),  gingerols  inhibited of the growth of Helicobacter pylori CagA+ strains in 

vitro leading to its chemopreventative effects (Mahady et al., 2003). H. pylori, is a 

human pathogen associated with the cancer-associated genes (cag) that localize on 

the pathogenicity island (PAI) genes,  six of which show homologies to genes 

encoding T4SS components. Therefore, H. pylori uses the T4SS encoded CagA and 

associated CagA secretion proteins to target the gastric epithelial cells, leading to 
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various gastric diseases and cancer (Mahady et al., 2003; Haniadka et al., 2013). This 

explanation therefore sheds light on the potential effect of gingerols on the plasmid 

property, which is the T4SS-coded conjugal plasmid transfer; and more importantly 

the ability of gingerols to reverse horizontal antibiotic resistance spread in bacteria. 

The ability of the unsaturated fatty acids, linoleic acid and dehydrocrepenynic acid 

(DHCA) is also a C18, cis-unsaturated (9,12,14) fatty acid, with the peculiarity of 

having a triple bond between C-12 and C-13), to inhibit conjugal plasmid transfer by 

targeting Dtr plasmid systems was studied in Inc W plasmid group (Fernandez-Lopez 

et al., 2005). The study suggested that the presence of the carboxylic group, chain 

length and presence of the double bond may be essential for the inhibitory activity, 

with polyunsaturated fatty acids being more potent than monounsaturated acids. 

Thus, the conclusion that unsaturated fatty acids of capsaicinoids, gingerol and 

analogues may be responsible for the observed antiplasmid activity is in agreement 

with these findings. The activities of capsaicinoids, gingerol analogues and 

relationship to plasmid conjugation inhibition require further investigation, which 

was beyond the scope of this study.  
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4.7.1 Kinetic studies of selected antiplasmid compounds 

The presence of the compounds rottlerin, evocarpine and ferulenol, in the R-plasmid 

mating systems, showed inhibitory effects on their transfer rates over time. The 

sensitivity of the plasmids PKM 101 and TP114 towards the compounds after 30 

mins incubation or an extended period of exposure was reflected in the various 

transfer frequencies. The effect of the compounds was observed not long after 

introduction into the mating mixture but achieved different degrees of inhibition, 

which either increased or fluctuated over time. Earlier data on the kinetics of plasmid 

conjugation in E. coli have reported that an exponential increase in the number of 

transconjugants is normally achieved after the initial 20 – 30 mins of the lag phase, 

while a lag time of 50 mins occurs in P. aeruginosa (Nakamura et al., 1976; Cullum 

et al., 1978) The most newly formed transconjugants are only able to mate after 

approximately 90 mins (Cullum et al., 1978). These observations might be 

responsible for a moderate level of inhibitory effect of the compounds seen within the 

initial 30 mins. Furthermore, an active level of inhibition showed, especially by 

evocarpine after 4h, suggesting that longer than 30 mins exposure of the mating 

system in the presence of the compounds is essential and that equally such an effect 

can be sustained for up to 4 hours. The effect of ferulenol and rottlerin was relatively 

moderate towards the conjugation activities of PKM 101 and TP114 with no 

considerable changes over the time duration investigated, except an unexpected 

higher transfer frequency of TP114 in the presence of rottlerin at 4 hours. In our 

earlier experiments, rottlerin was shown to actively inhibit TP114 transfer, after 24 

hour incubation. It is possible that a period of 0 - 4 hours may not be sufficient time 

to implicate an effective inhibition of the compound that would reduce the 

conjugation efficiency of the plasmid. In addition, a number of environmental,  
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cellular and host plasmid-specified conditions may have contributed to the 

diminished effect of rottlerin.  Given that conjugation is a cellular process, F-pili are 

believed to retract when the cultures are cooled below 25
o
C (Novotny and Fives-

Taylor 1974; Novotny and Fives-Taylor 1978; Firth et al., 1996). Notwithstanding 

that the frequency and mechanisms of gene transfer between micro-organisms in 

nature are still under investigation, the kinetics of plasmid transfer is a useful tool in 

studying and answering questions related to the use of recombinant bacteria.  

Overall, various methods for the estimation of plasmid transfer rates, both in surface 

and liquid medium have been reported. They are : basic use of end-point differential 

models (Simonsen et al., 1990; Dunn et al., 1995; Zhong et al., 2012), mechanistic 

models (Andrup and Andersen 1999), PCR quantification (Wan et al., ) and the most 

widely used traditional method of determining conjugation efficiency, being 

described by its transfer frequency (Andrup and Andersen 1999).  However, each of 

these methods does not guarantee accurate measurement and may be sensitive to 

physical, chemical and biological conditions. There is still no agreement on a single 

quantitative measure of the rate of plasmid transfer (Zhong et al., 2012).    

 

4.7.2  DNA binding studies of the anti-plasmid compounds 

The binding of these anti-plasmid conjugative compounds was conducted for the 

purpose of understanding the possible mechanisms of action of the compounds based 

on the proposed mechanism that these compounds bind to the bio-target, plasmid 

DNA. From literature data, multiple mechanisms of action for anti-plasmid 

compounds are closely associated with increased plasmid membrane permeability, 

inhibition of DNA gyrase and complex formation plasmid DNA that causes cessation 

of plasmid replication in the bacterial cells (Monlar et al., 1992), dislocation or 
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blocking of the coupling proteins, the pilus formation or the entire T4SS conjugative 

machinery (Lawley et al., 2003). 

In this study, the gel mobility shift assay was used to resolve the DNA-compound 

complexes formed as a result of the interaction of the compounds with the DNA of 

HpaI-digested PKM 101, and SphI-digested pAKlux3. Results showed that none of 

the compounds showed any migration shift with the DNA-compounds complexes, 

indicative of no binding effect of the compounds, except promethazine and 

dihydrocapsacin binding to some of the fragments of pAKlux3 DNA and capsaicin 

binding to HpaI-digested PKM 101. Actinomycin D-DNA complex showed a 

pronounced shift in its DNA migration along the gel. Actinomycin-D is well known 

for its high intercalation affinity to DNA, the stabilization of cleavable complexes of 

topoisomerases I and II with DNA (Koba and Konopa 2005), and that was also well 

demonstrated from our findings. Unfortunately but surprisingly, most of the anti-

plasmid compounds: rottlerin, the red compound, ferulenol, evocarpine, 6-gingerol, 

6-shogaol, rutaecarpine and nonivamide, did not show direct binding to the plasmid 

DNAs from PKM 101 and pAKlux3. Given the planar and cyclic nature of these 

compounds, presumably, they were expected to intercalate between the DNA base 

pairs or fuse into the minor groove of the DNA. These results suggested that the 

compounds might be acting via an alternative mechanism for their inhibitory 

activities, most likely the inhibition of type IV secretion system (T4SS) bio target. 

The importance of molecules that can bind to DNA cannot be overemphasised, and 

typical examples include anthracyclines which show both antineoplastic and 

antibacterial properties, and possess intercalative unit as well as a groove-binding 

side chains (Palchaudhuri and Hergenrother, 2007).  
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The low intensity fluorescence of the bands under the UV absorption, may suggest 

that promethazine, dihydrocapsaicin and capsaicin interacted with the DNA. Further 

experiments can be performed to verify the nature of binding, hence decreased the 

fluorescence of the intercalator ethidium bromide.  The interaction of promethazine 

with DNA was not in agreement with a previous study that, with exception of  

methylene blue and chlorpromazine, phenothiazine compounds (promethazine 

inclusive) did not intercalate into the E. coli DNA (Barabas and Molnar 1980). The 

authors concluded that the plasmid curing ability of phenothiazines is not necessarily 

related to their intercalation ability. However, the binding of promethazine to 

PAKlux3 require further investigation to determine if the process took place by 

intercalation or any other mode of binding.  

It has been earlier shown that plumbagin, notably for its anticancer and tubulin 

binding effect (Acharya et al., 2008), also induced plasmid loss presumably by 

inhibiting DNA gyrase (Bharathi and Polasa 1991).  

Plumbagin 

But from this study, plumbagin did not show any DNA binding effect to the 

plasmidic DNA. Similar results were observed with novobiocin showing no binding, 

but this does not agree with the existing findings of several researchers that 

novobiocin binds to type II topoisomerases, including DNA gyrase, inhibits the 

enzyme-catalysed hydrolysis, of ATP (Shen et al., 1989), and is able to induce 

changes in plasmid molecules of bacteria (Sioud et al., 1988). These findings on 

novobiocin do support the DNA binding effect but it is likely that we were unable to 
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detect this due to the limitation of the method applied, the electrophoretic mobility 

shift assay (EMSA). Most likely, the compounds may have bound to some molecules 

of the plasmidic DNA in such an unspecific manner and were minor not to cause any 

visible shift in DNA migration which was easily detectable by the method. The gel 

mobility shift assay is a popular, fast analysis that allows rapid screening of DNA-

binding agents, including highly purified proteins or crude extracts, but it is not 

without limitation. Whilst the EMSA is mostly applied to protein-DNA analysis than 

to plant compound-DNA interaction, perhaps, the most important limitation is that 

samples are not at chemical equilibrium during the electrophoresis step. Rapid 

dissociation during electrophoresis can prevent detection of complexes, while even 

slow dissociation can result in an underestimation of binding density (Sidorova et al., 

2005). Of course, further DNA binding analysis of these bioactive compounds 

exhibiting plasmid conjugation inhibitory activities can be demonstrated taking 

advantage from other DNA classical procedures, such as DNA melting point 

(Hadjivassileva et al., 2007) and DNA footprinting assays (Carey et al., 2013).   
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5.0 SUMMARY 

Undoubtedly natural products remain an invaluable source of classes of antimicrobial 

compounds waiting to be developed for clinical use. In this study, new plant-derived 

anti-staphylococcal agents (rottlerin, red compound, ferulenol, and rutaecarpine) had 

outstanding activity towards a panel of MRSA possessing multidrug efflux 

mechanisms and hence could be potential leads for the development of antibacterial 

agents. The antibacterial activity of some of the compounds may not be significant in 

vitro against some of the Gram-positive and Gram-negative strains, but considering 

that they are of natural source and possess interesting chemical templates, that could 

be harnessed to improve on their antibacterial activity. Also their resistance 

modifying action might be of great interest, which may enhance and complement 

their antiplasmid activities. Thus, investigation of resistance modifying activities of 

these natural compounds and their synthetic analogues on existing antibiotics is 

strongly recommended.   

It has also been demonstrated that plant-derived compounds are active inhibitors of 

plasmid conjugal transfer, a highly efficient antibiotic resistance mechanism common 

in Gram-negative bacteria. These plasmids have an uncommonly broad host range, 

from Inc groups PKM 101 (IncN), TP114 (IncI2), PUB307 (IncP), R7K (IncW), R6K 

(IncX) and R1-drd-19 (Inc IncF11), which confer cross-resistance to all classes of 

antibiotics currently in use. A common characteristic of these plasmids is that all code 

for the essentials of bacterial conjugative Type-IV secretion system (T4SS) 

machinery (Bhatty et al., 2013), which obviously underlies bacterial conjugation. It 

therefore follows that, the use of these compounds that affect T4SS-typed conjugative 

plasmids carrying these resistance and virulence genes directly or indirectly, present 



195 

 

one of the intriguing strategies and anti-plasmid leads that are much needed to fight 

against plasmid-mediated antibiotic resistance.  

Common features observed among these anti-plasmid agents and many other curing 

agents are their large size, planar structure, saturated or unsaturated aliphatic side 

chains and a high degree of lipophilicity. These qualities are likely to be of 

importance for their permeability into the bacterial membrane and interference with 

the plasmid DNA replication and conjugative transporters. Also, the presence of the 

functional groups is often associated with the cytotoxicity of the compounds and such 

will be crucial to their use in drug development of the next generation of anti-plasmid 

agents. 

The antiplasmid and antibacterial action of the compounds outlined through this 

study is of great contribution to the role of natural product in the on-going search for 

antimicrobial drug leads. Thus, further studies are required to unravel the mode of 

action, improve their toxicity and druggability profiles which are necessary for the 

development of novel drug.  
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FUTURE STUDIES 

 

Experiments described in this thesis provide a good preliminary foundation on the 

role of natural product in the inhibition of plasmid–mediated antibiotic transfer in 

Gram-negative bacteria, E. coli. However, due to time constraints and use of agar-

based method of conjugation, it was not possible to screen as many plant extracts 

for identification of more bioactive plasmid inhibitors. Equally, natural product 

anti-plasmid agents require more research to uncover the potentials towards 

containing antibiotic resistance spread. Therefore, future work should aim to: 

 Screen as many medicinal plants and natural and chemical libraries in 

search of anti-plasmid inhibitor leads. 

 Study the resistance modifying activities of these natural compounds and 

their synthetic analogues 

 Develop a high-through-put plasmid conjugation screening assay. 

 Study more into understanding the mechanism of action of the anti-plasmid 

agents and their cytotoxicity. 

 Determine if the compounds with plasmid inhibition activities bind to DNA 

using other DNA binding methods. 

  Examine if the anti-plasmid compounds interfere with plasmid gene 

expression by monitoring lac light production. 

  Whether the compounds interfere or induce DNA damage using RecA 

reporter. 
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Scientific meetings attended with presentations  

 British Society for Antimicrobial Chemotherapy Spring meeting, UK. 20
th

 

March, 2014. Poster: In vitro screening of natural inhibitors of plasmid 

mediated antibiotic resistance in   E. coli.  

 UCL School of Pharmacy Research Day, Friday 20 September 2013. Oral 

presentation: The effect of natural and synthetic inhibitors on conjugal 

transfer of plasmid-coded antibiotic resistance genes in E. coli.    

 International Plasmid biology Conference, Sept 12- 16, 2012, Santander, 

Spain. Oral presentation: Natural and Synthetic Cannabinoids as potential 

inhibitors of plasmid mediated antibiotic resistance. 

 International Congress on Natural Products Research, Jul 28 – Aug 1, 2012, 

New York City, USA. Poster: Rottlerin: An antibacterial agent and inhibitor 

of plasmid-mediated antibiotic resistance transfer. Planta Medica 2012; 78 - 

PI165.DOI: 10.1055/s-0032-1320853 
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7.0 APPENDIX  

Appendix 1: 
1
H NMR spectrum of Can-6 in CDCl3 (500MHz) showing mixture of 

constituents 

 

 

Appendix 2:  The ESI-MS of rottlerin showing molecular ion at m/z 515 and 516 m/z 
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Appendix 3a: 
13

C-DEPT 135 spectrum of rottlerin in CDCl3 (500MHz) 

 

 

 

Appendix 3b: 
1
H-

1
H COSY (500MHz) spectrum of rottlerin in CDCl3 
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Appendix 3c: The HMBC spectrum of rottlerin at 500MHz in CDCl3 

 

Appendix 3d: NOESY spectrum of rottlerin at 500MHz in CDCl3 
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Appendix 4a: ESI-MS spectrum of tetrahydrocannabinolic acid [negative mode) 

 

Appendix 4b: ESI-MS spectrum of cannabinolic acid [negative mode] 
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Appendix 5a: 
13

CDEPT 135 of tetrahydrocannabinolic acid in CDCl3 (500MHz) 

 

 

 

 

Appendix 5b: 
1
H-

1
H COSY (500MHz) spectrum of THCA in CDCl3 

 

 



230 

 

Appendix 5C: HMQC of THCA at 500MHz in CDCl3 

 

 

Appendix 5d: HMBC of THCA at 500MHz in CDCl3 
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Appendix 6a: 
13

CDEPT 135 of cannabinolic acid (CBNA) at 500MHz in CDCl3 

 

Appendix 6b: 
1
H-

1
H COSY (500MHz) spectrum of CBNA in CDCl3 
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Appendix 6c: HMQC of CBNA at 500MHz in CDCl3 

 

 

 

Appendix 6d: HMBC of CBNA at 500MHz in CDCl3 
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Appendix 7a: 
13

CDEPT 135 of evodiamine at 500MHz in CDCl3 

 

 

7b: 
1
H-

1
H COSY (500MHz) spectrum of evodiamine in CDCl3 
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7c: HMQC of evodiamine at 500MHz in CDCl3 

 

Appendix 7d: HMBC of evodiamine at 500MHz in CDCl3 
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Appendix 8a: 
13

 CDEPT 135 (500MHz) spectrum rutaecarpine in CDCl3 

 

 

 

 

 

 

 

 

Appendix 8b: 
1
H-

1
H COSY (500MHz) spectrum of rutaecarpine in CDCl3 
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Appendix 8c: HMQC NMR of rutaecarpine at 500MHz in CDCl3 

 

Appendix 8d: HMBC of rutaecarpine at 500MHZ in CDCl3 
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Appendix 9: 
1
H NMR spectrum of impure fraction Ca-SPE 11 from C. annuum at 

500MHz in D20 

 

Appendix 10: Typical bacterial plasmid colony forming plates (A, B, C), showing the 

pattern of reduction of the transconjugants and total donor (cfu/mL) in a dilution 

dependant manner. Example seen is the effect of rutaecarpine on PUB307. 
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Appendix 11: Anti-plasmid activities of EVB-VLC sub fractions 4-9 against TP114  

 

 

Appendix 12a: Anti-plasmid activity of SPE fractions of Capsicum annum. 

 

Control EV4 EV5 EV6 EV7/8 EV9 EVB

Series1 100 41.73 47.06 21.06 27.61 58.35 26.62
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Appendix 12b: Anti-plasmid activity of SPE fractions of Capsicum annum 

 

 

 

Appendix 12c: Anti-plasmid activity of SPE fractions of Capsicum annum 
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Appendix 13:  Compounds assayed for DNA binding and their MIC and SIC values 

 MIC 

(mg/L) 

SIC 

(mg/L) 

 

 

Rottlerin 

 

>512 

 

100 

         

Red compound >512 100 

                     

Ferulenol >512 100          

                 

Evocarpine >512 100  

Rutaecarpine >512 100 

                           

Capsaicin  >512 100 
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Dihydrocapsaicin 

 

 

>512 

 

 

100 

 

                  

 

 

 

6-gingerol 

 

 

>512 

 

 

100 

                        

                     

 

6-shogaol 

 

>512 

 

100 

                       

Nonivamide >512 100 
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Appendix 14: Weight (g) and yield (%) of solvent extracts of the plants 

 

 

 

 

 

 

 

 

Plants Weight after extraction/yield (%) 

 Hexane 

Extract (g) 

Chloroform 

extract (g) 

Methanol extract 

(g) 

M. philippinensis 

(680g) 

14.1g (2.07%) 62.3 (9.62%) 165.0 (24%) 

C. sativa (500g) Hexane not used 98.1 (19.62%) 101.0 (20.20%) 

E. rutaecarpa (500g) Hexane not used 126.2 (25.24%) 96.3 (19.26%) 

C. annuum (500g) 10.8 (2.16%) 71.1 (14.22%) 201.4 (40.28%) 


