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a b s t r a c t

Cerebrovascular diseases such as brain aneurysms are a primary cause of adult disability. The flow dynam-
ics in brain arteries, both during periods of rest and increased activity, are known to be a major factor in
the risk of aneurysm formation and rupture. The precise relation is however still an open field of investi-
gation. We present an automated ensemble simulation method for modelling cerebrovascular blood flow
under a range of flow regimes. By automatically constructing and performing an ensemble of multiscale
simulations, where we unidirectionally couple a 1D solver with a 3D lattice-Boltzmann code, we are able
to model the blood flow in a patient artery over a range of flow regimes. We apply the method to a model
of a middle cerebral artery, and find that this approach helps us to fine-tune our modelling techniques,
and opens up new ways to investigate cerebrovascular flow properties.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Stroke is a major cause of death and morbidity in the developed
world. Subarachnoid haemorrhage (SAH) is a type of stroke char-
acterised by bleeding into the fluid around the brain, for example
due to the rupture of an intracranial aneurysm. An aneurysm is a
congenital weakness in a blood vessel wall which gradually bulges
out to form a balloon which can eventually burst. SAHs represent
5% of cases of stroke, but is relatively more important, as the mor-
tality rate for these events is about 50%. Overall, approximately
5–10 people per 100,000 are affected by SAH due to bleeding in the
intracranial arterial wall. [1] The mean age of the victims is 50 years
and 10–15% fail to reach hospital. Unruptured aneurysms are much
more prevalent, estimated to affect 1–5% of the population of the
UK [2]. Indeed, unruptured/asymptomatic cerebral aneurysms are
a relatively common finding when scanning the brain for other rea-
sons [1]. Current methods of determining which aneurysms have
a significant risk of subsequent rupture are based on crude meas-
ures such as aneurysm size and shape, and there is a clear need
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for a non-invasive tool to stratify risk more effectively in this large
patient group.

Computational fluid dynamics (CFD) techniques may provide
means to help quantification of the rupture risk, if they can incorpo-
rate the key conditions affecting brain aneurysms. Particularly high
or low wall shear stress is believed to increase the risk of aneurysm
rupture [3]. Researchers increasingly apply computational fluid
dynamics to investigate these problems [4–6], and in particular
Shojima et al. concluded that both a very high and a very low wall
shear stress increases the chance of aneurysm growth and rupture
in MCA aneurysms [7]. In alignment with these research efforts,
we seek to establish computational diagnosis and prediction tech-
niques, which may lead to major health benefits and reduce the
costs of health care in the long term.

An essential driver for these CFD calculations is the flow solver,
and over the last decade several sophisticated and scalable solvers
have emerged. Within this work we rely on HemeLB (described
in Section 2.1), which is highly optimized for modelling sparse
geometries and has unique optimizations which allow it to achieve
excellent load balance in the presence of complex boundary and
in- and outflow conditions [8]. There are several other scalable flow
solvers that are worth mentioning as well. These include the Nek-
tar finite element package [9–11], the Palabos package [12–14],
the Musubi environment [15,16], MuPhy [17] and WaLBerla
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[18]. Although the aforementioned works have provided valuable
insight into the haemodynamic environment of brain aneurysms,
little is known about how the intrinsic variablity of blood flow
throughout the day affects aneurysm growth and rupture.

The purpose of this paper is to present a tool which automat-
ically creates an ensemble of multiscale blood flow simulations
based on a set of clinically measurable patient parameters, and
runs these simulations using supercomputing resources. The tool
allows us to automate the study of the blood flow in a vascular
geometry under varying patient-specific conditions. In addition,
an automated data processing component extracts velocity and
wall shear stress (WSS) values, and generates plots and animations
which allow us to visualize these properties in the vascular geome-
try. This paper builds on previous works where we simulated flow
in arterial networks using a single flow configuration [19–21].

To showcase our approach, we construct and execute a range
of multiscale simulations of a middle cerebral artery (MCA). We
present the results of these simulations, and compare our approach
to related efforts as an initial validation of our 1D-3D multiscale
scheme. This work is organised as follows. In Section 2, we present
the tools we developed to perform our multiscale ensemble sim-
ulations and how we integrate them in an automated workflow.
We describe the setup of our simulation in Section 3, our results in
Section 4 and provide a brief discussion in Section 5.

2. Automated multiscale ensemble simulations

Our automated workflow combines three existing components.
These include the HemeLB and pyNS simulation environments,
and the FabHemeLB automation environment. In this section we
describe these three components, and how they interoperate in our
automated multiscale ensemble simulation (MES) environment.

2.1. HemeLB

HemeLB is a 3 dimensional lattice-Boltzmann simulation envi-
ronment developed to simulate fluid flow in complex systems. It is
a MPI parallelised C++ code with world-class scalability for sparse
geometries. It can efficiently model flows in sparse cerebral arter-
ies using up to 32,768 cores [22,23] and utilises a weighted domain
decomposition approach to minimize the overhead introduced
by compute-intensive boundary and in-/outflow conditions [8].
HemeLB allows users to obtain key flow properties such as veloc-
ity, pressure and wall shear at predefined intervals of time, using a
property-extraction framework.

HemeLB has previously been applied to simulate blood flow
in healthy brain vasculature as well as in the presence of brain
aneurysms [20,24]. Segmented angiographic data from patients is
read in by the HemeLB Setup Tool, which allows the user to visu-
ally indicate the geometric domain to be simulated. The geometry
is then discretized into a regular unstructured grid, which is used as
the simulation domain for HemeLB. HemeLB supports predefined
velocity profiles at the inlets of the simulation domain, which we
generate using pyNS in this work.

2.2. pyNS: Python network solver

pyNS is a discontinuous Galerkin solver developed in Python,
which simulates haemodynamic behaviour in vascular networks
[25]. pyNS uses aortic blood flow input based on a set of
patient-specific parameters, and combines one-dimensional wave
propagation elements to model arterial vasculature with zero-
dimensional resistance elements to model veins. The solver
requires two XML files as input data, one with a definition of the
vasculature and one containing the simulation parameters. Simula-
tion parameters include mean blood pressure, cardiac output, blood

Table 1
List of commands commonly used in FabHemeLB.

Command name Brief description

cold Copy HemeLB source to remote resource,
compile and build everything.

run pyNS Execute instances of pyNS to generate a range
of flow output files.

generate LB Convert pyNS output to HemeLB input.
submit LB Given a set of velocity profiles, submits the

corresponding HemeLB jobs to the remote
(supercomputer) resource.

fetch results Fetch all the simulation results from the
remote resource and save them locally.

analyze Performs data-analysis that allows for easy
visualization of the results.

ensemble Do all of the above, except cold.

dynamic viscosity and heart rate. pyNS has been used in several
studies, e.g. to try to inform treatment decisions on haemodialysis
patients [26] and as a large-scale model for distributed multiscale
simulations of cerebral arteries [19].

2.3. FabHemeLB

FabHemeLB is a Python tool which helps automate the con-
struction and management of ensemble simulation workflows.
FabHemeLB is an extended version of FabSim [27] configured to
handle HemeLB operations. Both FabSim and FabHemeLB help to
automate application deployment, execution and data analysis on
remote resources. FabHemeLB can be used to compile and build
HemeLB on any remote resource, to reuse machine-specific con-
figurations, and to organize and curate simulation data. It can also
submit HemeLB jobs to a remote resource specifying the number
of cores and the wall clock time limit for completing a simula-
tion. The tool is also able to monitor the queue status on remote
resources, fetch results of completed jobs, and can conveniently
combine functionalities into single one-line commands. In general,
the FabHemeLB commands have the following structure:

fab < target machine >< command >: < parameter > = < value
>, . . .

For example:
fab archer ensemble:config=/path/to/config,

cores=1536,wall time=05:00:00
In Table 1 we present a number of commands typically executed

with FabHemeLB in the scope of this work. The commands are cus-
tomised to run on local machines, continuous integration servers,
regional, national or international supercomputing resources. The
workflow is presented in the diagram of Fig. 1. Specifically, the
analyze command processes the compressed output files to gen-
erate human readable files and visualisations. It also generates an
image file showing the whole geometry, wall shear stress within
the geometry, and velocity measurements on pre-selected planes
inside the geometry over time as an animation.

3. Setup

To apply our automated ensemble simulation tool, we employ
patient-specific parameters measured by Sugawara et al. during
a study to assess cardiac output during exercise [28]. They mea-
sured the blood pressure, cardiac output and heart rate of 16 young
patients (9 male and 7 female) at different exercise intensities,
being at rest or at 70%, 90%, 110% and 130% of the ventilatory
threshold (VT). The VT is the point during exercise training at
which pulmonary ventilation becomes disproportionately high
with respect to oxygen consumption. This is believed to reflect
onset of anaerobiosis and lactate accumulation. We add two more
sets of values at 30% and 50% VT, linearly extrapolating the other
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Fig. 1. Workflow diagram showing the processes involved in the ensemble simulation method. The simulations were distributed, with PyNS simulations using a local
workstation in London, and the HemeLB simulations using the ARCHER supercomputer.

parameters. The resulting seven sets of parameters are used in our
automated workflow, resulting in seven HemeLB simulations being
run. We present the seven sets of parameters in Table 2.

For our pyNS simulations, which we ran for 10 cardiac cycles, we
set the blood density to 1050 kg/m3, Poisson’s ratio of transverse
to axial strain to 0.5 and the time step to 5 ms. For our HemeLB
runs we use a model derived from a patient-specific angiographic
3D geometry of a middle cerebral artery, supplied by the Lysholm
Department of Neuroradiology, University College Hospital, Lon-
don and segmented using the GIMIAS tool [29]. We use a voxel
size of 18.9 �m, which results in a geometry containing 13,179,961
lattice sites. In Fig. 2 we show the setup tool interface with the
MCA geometry. Here the inlet is given by the green plane and the
outlets by the red planes. The location of interest for our WSS
analysis is highlighted. For simulations of this particular voxelized
simulation domain, we specify a time-step of 0.5014 �s and run
each simulation for 7.9 million steps, or 4 s of simulated time.

During our HemeLB runs, we store the WSS throughout the
geometry for every 50,000 time steps. In addition, we define an

Fig. 2. HemeLB Setup Tool loaded with a middle cerebral artery geometry. The inlet
is indicated by a green surface, and the three outlets with a red surface. The lattice
site which we used for in-depth wall-shear stress analysis is highlighted with a light
blue arrow. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of the article.)

Table 2
Configuration data used as input for pyNS to run the ensemble of simulations. The values are based on the average of the measurements of 16 people at different exercise
intensities measured by the percentage of the ventilatory threshold(VT) [28]. In the last column, we provide the mean flow velocity in the right MCA, as calculated using
PyNS, for each configuration.

Configuration Exercise intensity Blood pressure mean (mmHg) Cardiac output (L/min) Heart rate (bpm) Mean flow velocity (m s−1)

1 Rest 80 4.8 68 0.460
2 30% VT 87 6.2 79 0.451
3 50% VT 94 7.6 90 0.428
4 70% VT 100 9 101 0.393
5 90% VT 112 10.7 113 0.371
6 110% VT 116 11.9 120 0.351
7 130% VT 122 13.2 134 0.339
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Fig. 3. Velocity time-series for the configurations 1 (bottom lines) to 3 (top lines).
Dashed lines indicate the velocity time-series generated for the inflow boundary by
pyNS, and solid lines correspond to the maximum velocity measured at the 49 mm
plane in HemeLB.

output plane close to the outlet, at 49 mm from the ear, 2mm away
from the outflow boundary (or outlet), to record velocity and pres-
sure data every 50,000 steps. In all our runs we use interpolated
Bouzidi wall boundary conditions [30] and zero-pressure outlet
conditions (for details see [22]). Using the ensemble command, we
run an ensemble of 7 simulations on the ARCHER supercomputer.
In total, we used 10,752 (7 × 1536) cores for a duration of approx-
imately 3.5 h.

4. Results

We present the time series of the maximum velocity in the
measurement plane in Figs. 3 and 4 for the parameters listed in
Table 2. The curves demonstrate that the frequency of the 1D car-
diac cycles generated by pyNS are accurately reproduced in the
3D high-resolution HemeLB simulations. The peak velocity in the
measurement plane is higher than the input velocity because the
measurement plane has a lower area but the total flux remains
constant throughout the MCA due to the incompressible flow.

Within the ensemble, the frequency of the cardiac cycles
increases with exercise intensity as the heart rate increases. While
this seems trivial, it indicates that the time-resolution chosen to
couple pyNS and HemeLB is sufficient to reproduce this effect. The
good match between the input and the measurement gives confi-
dence that the LB simulations have converged and the cardiac cycles
are stable.

4.1. Wall shear stress

Fig. 5 shows snapshots of the WSS for four configurations of the
ensemble at the peak systole, when the flow velocity is highest.
The colour scale allows us to identify regions of high WSS which
are located predominantly at constrictions of the MCA and around
the inlet in an assymetric pattern. Based on the WSS values near
the inlet, we conclude that the standard circular-shaped Poisseuille
velocity profile used in HemeLB is ill suited for patient-specific
geometries, as they usually feature non-circular inlets. As a result,

Fig. 4. Left: Velocity time-series as in Fig. 3 but for configurations 4 (bottom line) and 5 (top line). Right: Velocity time-series as in Fig. 3 but for configurations 6 (bottom
line) and 7 (top line).

Fig. 5. A snapshot of the wall shear stress for the configurations 1, 3, 5 and 7 at the peak systole. Red regions indicate high wall shear stress while blue indicates low wall
shear stress. Exercise intensity is increasing clockwise for the configurations shown. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of the article.)
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Fig. 6. Cross-instance analysis of the WSS for the location of interest indicated in
Fig. 2. We extracted WSS values in the simulations for a range of 3 cardiac cycles
(when at rest) up to 6 cardiac cycles (at 130% VT). We present the maximum mea-
sured WSS (blue line), the average WSS (green), and the time average of the WSS
slope, calculated over intervals of 0.025 s (red). The WSS values at rest can be found
on the left side (0% VT). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of the article.)

we are now developing a method for a modified velocity profile
which takes non-circular inlet shapes into account.

At the point of interest indicated in Fig. 2, we observe much
higher wall shear stress at higher exercise intensity. We present a
cross-instance analysis of the WSS at this point in Fig. 6. Here we
provide for instance the mean WSS, which decreases linearly with
the mean velocity at the inlet (see Table 2, both values are reduced
to ∼0.75 times the magnitude at rest, when measured at 130% VT
exercise intensity). This matches the theoretically expected linear
scaling of the WSS with the velocity parallel to the wall. This parallel
velocity is expected to be proportional to the velocity at the inlet
for simple geometries and flow regimes. Our WSS results are in
line with related literature, which report maximum values in MCAs
in the range of 14–40 N m−2 for unruptured aneurysm geometries
[7,31].

We also present the maximum WSS in time, which is ∼18 N m−2

for the run at rest, with a heart rate of 68 bpm and a maximum
velocity of 0.84 m s−1. At full exercise intensity, the maximum WSS
is much higher, at ∼31 N m−2 for a heart rate of 134 bpm and a maxi-
mum velocity of 1.19 m s−1. Here, while the mean WSS and velocity
decrease with exercise intensity, the maximum WSS and velocity
increase. Between these two cases, the difference in maximum WSS
(a factor of 1.77) cannot be justified solely by the difference in maxi-
mum velocity (a factor of 1.45). Indeed, the (much larger) difference
in heart rate (a factor of 1.97) may be an important contributor to
the magnitude of the maximum WSS. Further investigations are
required to explore the exact nature of these relations. The variabil-
ity of the WSS, here measured as the averaged absolute difference
between consecutive extractions at a 0.025 s interval, increases as
expected with higher exercise intensity.

5. Discussion and conclusions

We present an automated ensemble simulation framework and
its application to model blood flow in the middle cerebral artery
under a range of patient-specific cardiac parameters, using a mul-
tiscale ensemble approach. We show good agreement of velocity
profiles at the inlet with those close to the outlet, and that our
non-lattice aligned inflow conditions require further enhancement.
FabHemeLB allows us to run the whole workflow for the relatively
complicated setup in one tool, including the execution and analysis
of the ensemble simulations. It reduces the human effort required
for doing these tasks, and by automatically scheduling the ensem-
ble instances in parallel it also allows for efficient use of large core
counts and a reduced time to solution. The systematic execution

and analysis patterns offered by FabHemeLB allow us to easily
identify shortcomings in our existing approach. Not only does this
feature in FabHemeLB boost our ongoing research, it also provides
the level of data curation required to do future, more extensive,
validation studies.

In our case study, we investigate the wall shear stress (WSS)
properties in a middle cerebral artery at a location of interest close
to the outlet. We find that the mean WSS correlates as expected
linearly with the average flow velocity at the inlet. However, in
addition we find evidence that the maximum WSS is dependent on
the heart rate as well as the average flow velocity. This implies that
these relations are non-trivial, and that a comprehensive analysis
of flow dynamics in cerebral arteries should not only include the
presence of pulsatile flow, but also the presence of these flows over
a range of heart rates.
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