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Abstract Previous studies have used fMRI to address the

relationship between grip force (GF) applied to an object

and BOLD response. However, whilst the majority of these

studies showed a linear relationship between GF and neural

activity in the contralateral M1 and ipsilateral cerebellum,

animal studies have suggested the presence of non-linear

components in the GF–neural activity relationship. Here,

we present a methodology for assessing non-linearities in

the BOLD response to different GF levels, within primary

motor as well as sensory and cognitive areas and the

cerebellum. To be sensitive to complex forms, we designed

a feasible grip task with five GF targets using an event-

related visually guided paradigm and studied a cohort of 13

healthy volunteers. Polynomial functions of increasing

order were fitted to the data. Major findings: (1) activated

motor areas irrespective of GF; (2) positive higher-order

responses in and outside M1, involving premotor, sensory

and visual areas and cerebellum; (3) negative correlations

with GF, predominantly involving the visual domain.

Overall, our results suggest that there are physiologically

consistent behaviour patterns in cerebral and cerebellar

cortices; for example, we observed the presence of a sec-

ond-order effect in sensorimotor areas, consistent with an

optimum metabolic response at intermediate GF levels,

while higher-order behaviour was found in associative and

cognitive areas. At higher GF levels, sensory-related
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cortical areas showed reduced activation, interpretable as a

redistribution of the neural activity for more demanding

tasks. These results have the potential of opening new

avenues for investigating pathological mechanisms of

neurological diseases.

Keywords fMRI � Force � MVC � Power grip �
Visuomotor task

Introduction

Complex motor tasks require high-level interactions and

coordination between cortical areas—and between neo-

cortex and cerebellum—as they depend on a host of

physiological mechanisms, including sensorimotor inte-

gration, attentional processes, and performance monitoring.

Thus, the evaluation of the different effects of changes in

task performance on the pattern of brain responses in

specific areas could provide insights into the physiological

integration of different cognitive and motor functions and,

potentially, their alterations in neurological conditions.

Among the different techniques currently available to

tackle this issue, the evaluation of the relationship between

an applied hand grip force (GF), controlled by a visual cue,

and the consequent blood-oxygen-level dependent (BOLD)

signal modulation—as detected by functional magnetic

resonance imaging (fMRI)—presents some distinctive ad-

vantages, including the availability of robust analysis

techniques to assess the complex, non-linear relationship

between motor performance and neural activity.

To date, the majority of studies focus on simple linear

relationships between motor performance and neural re-

sponses, whilst the nature and meaning of high-order cor-

relations between motor performance and neural activity has

received significantly less attention possibly because of its

difficult interpretation (e.g. Ward et al. 2007; Kuhtz-

Buschbeck et al. 2008; Talelli et al. 2008). It should be noted,

however, that the existence and physiological relevance of

non-linear relationships between neural activity and motor

performance has been described in neurophysiological lit-

erature (Ashe 1997). Indeed, in single cell recording ex-

periments, the relation between force and neuronal activity

[e.g. in primary motor cortex (M1)] was initially thought to

be a simple monotonic relationship, but subsequent studies

reported the presence of complex non-linear effects taking

different forms and responses with no established pattern

(Conrad et al. 1977; Cheney and Fetz 1980; Evarts et al.

1983; Georgopoulos et al. 1992; Maier et al. 1993; Hepp-

Reymond et al. 1994; Taira et al. 1996; Ashe 1997).

Previous neuroimaging studies have mostly reported a

positive linear BOLD response, with different applied GF

levels, localised in the contralateral M1 and ipsilateral

cerebellum, using handgrip tasks (power or precision grip)

(Thickbroom et al. 1998; Dai et al. 2001; Ehrsson et al.

2001; Cramer et al. 2002; Ward et al. 2007; Kuhtz-Busch-

beck et al. 2008). These studies, however, were unable to

detect significant non-linear responses (where the BOLD

signal exhibits a possibly non-monotonic relationship with

GF), either because only two GF levels were employed or

non-linearity was not explicitly investigated. To our

knowledge, only three studies in healthy volunteers have

found non-linear contributions to the BOLD signal in motor

or non-motor areas when performing a motor task involving

different GF (Ward and Frackowiak 2003; Spraker et al.

2007; Keisker et al. 2009). Reviewing the aforementioned

literature, it is clear that there are inconsistent findings.

The aim of our study, therefore, was to design a non-

invasive fMRI experiment that could identify and quanti-

fy, in humans, regional responses to increasing GF when

performing a complex hand gripping motor task. The de-

sign was optimised to assess both linear and non-linear

responses to GF variations in healthy subjects—using an

event-related polynomial parametric paradigm and five GF

levels. The overall hypothesis of this study was that dif-

ferent brain regions would show different order responses

depending on their involvement (motor, sensory or cog-

nitive) in the motor task. In particular, we performed a

parametric analysis at whole brain level to assess the

BOLD response both in the cerebral cortex and the cere-

bellum, given the latter’s role in the execution of motor

functions. We also aimed to determine regions where the

BOLD response would follow a second-order (positive

U-shaped profile of responses, with greater activation for

high and low GF, relative to intermediate levels) form,

suggesting a metabolically optimum (i.e., more efficient,

therefore, less metabolically demanding) response at more

typical intermediate GF levels (c.f., Keisker et al. 2009).

Lastly, we were interested in assessing the involvement of

cognitive and associative areas in terms of their relation-

ships with GF levels compared to motor areas. Moreover,

as the paradigm involved a visual cue, we expected to find

BOLD response in sensory areas, although independent of

the varying GF levels.

These complex patterns once established in healthy

subjects could be investigated in neurological and neu-

rodegenerative diseases involving the motor system to

disclose the degree of damage contributing to impairment.

Materials and methods

Subjects

Fifteen healthy volunteers with no history of neuro-

logical or psychiatric diseases [6 female, 9 male; aged
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22–41 (±4.63) years] participated in this study. All

subjects were right handed according to the Edinburgh

handedness scaling questionnaire (Oldfield 1971). Two

subjects (one male) were excluded from the study. One

was excluded because their laterality index was 47 (i.e.

this subject could not be classified as either right or left

handed), and the other subject could not perform the task

adequately (i.e. the variance of the response was very

high and the subject could not maintain the performance

at the highest GF levels). The mean laterality index for

the remaining subjects (N = 13) included in the analysis

was 90 (±10). All participants gave informed consent

and the study was approved by the local research and

ethics committee.

MRI acquisition

A 3.0-T MRI scanner Philips Achieva system (Philips

Healthcare, Best, The Netherlands) and a 32-channel re-

ceive-only head coil were used in this study. The imaging

protocol comprised:

1. T1-weighted volume (3DT1): 3D inversion-recovery

prepared gradient-echo (fast field echo) sequence with

inversion time (TI) = 824 ms, echo time (TE)/repeti-

tion time (TR) = 3.1/6.9 ms, flip angle = 8� and

voxel size = 1 mm isotropic.

2. BOLD sensitive T2*-weighted echo planner imaging

(EPI): TE/TR = 35/2500 ms, voxel size = 3 9 3 9

2.7 mm3, inter-slice gap of 0.3 mm, SENSE fac-

tor = 2, number of slices = 46 acquired with de-

scending order, field of view = 192 9 192 mm2,

number of volumes = 200, number of dummy

scans = 5, flip angle = 90�.

FMRI paradigm

During BOLD acquisition, subjects performed a power

grip, repetitive grip, task with their right (dominant) hand,

using an MR-compatible sphygmomanometer inflation

bulb (‘‘squeeze ball’’), a pneumatic flexible pad, connected

to a computer suite outside the scanner room running an

fMRI paradigm control system. Compression of the ball

results in an air pressure measurement proportional to the

force exerted—sampled at a rate of 20 Hz. The force de-

vice system is an analogue measurement recorded on an

adept scientific USB-1608FS (http://directory.adeptscience.

co.uk/productmcc/USB-1608FS/1/0/USB-1608FS.html)

via a pressure transducer 0–1.0342e?05 pa allowing si-

multaneous sampling.

Each experiment comprised 75 trials divided equally

into 5 GF targets (20, 30, 40, 50, and 60 % of each sub-

ject’s MVC). An event-related fMRI paradigm was

developed and optimised, in terms of trial/rest timing and

GF required, using the OptSeq software (http://www.surfer.

nmr.mgh.harvard.edu/optseq). Each trial lasted 3 s and

trials were specified in a counter-balanced and randomised

order. The rest time between squeezing trials was also

randomised—with a minimum of 2 s and maximum of

12 s, and comprised 55 % of the whole fMRI session

(500 s).

Before the fMRI session, subjects were trained using a

2-min protocol consisting of GF levels ranging from 10 to

70 % of their MVC. The training session was divided into

three parts: (1) observing an experienced person (AA)

performing the task; (2) practicing the task whilst on the

scanner bed but still outside the scanner bore; (3) per-

forming the task whilst lying in the scanner bore, but

without scanning. Participants lay supine on the scanner

bed throughout the experiment and were instructed to ex-

tend their arms in a relaxed comfortable position. A sup-

port hand pad was provided for comfort of the arm.

The cue for the paradigm execution was implemented

(by AA and DG) using Visual basic (VB.net; Microsoft,

Redmond, Washington) installed on a PC running Win-

dows XP Professional (Microsoft) and front projected onto

an MR-compatible screen inside the scanner room—

viewed by the subject through a mirror positioned on the

head coil. MVC was first measured for each subject with

the same force device (i.e. by asking the subject to apply a

continuous contraction of the power ball) and used by the

visual basic programme to set the GF target for each trial.

The presentation consisted of two alternating images: one

with a horizontal black line and one with a black crosshair

located in the centre of the screen. Subjects were shown the

line representing the GF target level to achieve. This was

the cue to start squeezing and remained visible throughout

each trial. As soon as the subject started to squeeze the ball,

a green bar gave a real-time feedback indicating the ap-

plied force. Subjects were asked to try to match the height

of the green bar to the position of the black line by con-

trolling the force of their grip. Once the target was reached,

the subjects had to hold it until the crosshair appeared on

the screen, replacing the line and the green bar (total time

per trial 3 s). If the applied force exceeded the target level,

the green bar turned red to warn the subject that they were

overshooting the GF requested. Figure 1 shows an example

of the presentation instructions.

Image pre-processing and analyses

Data processing was performed using statistical parametric

mapping (SPM12) (http://www.fil.ion.ucl.ac.uk/spm) im-

plemented in Matlab12b (Mathworks, Sheborn, MA). The

pre-processing steps for each subject followed a standard

fMRI pipeline, which includes: (i) slice time corrections
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performed relative to the time of acquisition of the middle

slice using sinc interpolation in time (Sladky et al. 2011).

This procedure is equivalent to a phase shift in the fre-

quency domain (Sladky et al. 2011). (ii) Spatial volume

realignments for motion correction performed using a least

squares approach to estimate movement parameters and a

six parameters (rigid body) spatial transformation. The

re-slicing step was applied to the mean image only. (iii)

Estimation of co-registration parameters between the

re-sliced mean image (reference image) and the 3DT1

volume (source image). (iv) Estimation of (non-linear

spatial) normalisation parameters between the 3DT1 vol-

ume and the standard SPM12 template. (v) Application of

the normalisation parameters to the fMRI EPI volumes,

resampled with a voxel size of 3 mm3, and (vi) smoothing

of the fMRI EPI volumes with an 8 mm isotropic full-

width half maximum (FWHM) Gaussian kernel.

Statistical analysis

FMRI time series were analysed in two stages:

First (within subject) level

For each subject, a fixed effects analysis was performed. A

parametric model (Buchel et al. 1996, 1998) was chosen to

test efficiently for linear and non-linear effects. All GF

values were modelled as delta functions (Friston et al.

1998). Although our (compound) trials lasted for 3 s, this

duration is less than the time constant of the haemody-

namic response function; the trials were, therefore, mod-

elled as stick functions, modulated by appropriate trials-

specific variables. In other words, modelling-induced re-

sponses as stick or delta functions assume that neuronal

responses have a short duration in relation to the haemo-

dynamic time constant (between 4 and 4 s). This is a

standard assumption in event-related designs that has been

adopted in previous grip studies (e.g. Ward et al. 2007;

Boudrias et al. 2012). Parametric covariates were modelled

using a set of orthogonalised polynomial expansions up to

the fourth order and specified by the integral of the grip

responses. We chose polynomial expansions for three

reasons: first, this expansion can model a variety of linear

and non-linear responses in a parsimonious fashion. For

example, a simple linear effect can be estimated with a

single (regression) parameter, as opposed to five separate

force level parameters. Second, the interpretation of the

non-linear order is more informative and lends itself to

hierarchical testing. For example, the second-order effects

are only interesting when one has removed first-order ef-

fects; similarly for third-order effects relative to second-

order effects and so on (see Buchel et al. 1998, for more

discussion). Finally, neurophysiological studies have re-

ported different response shapes that had distinct non-

Fig. 1 A diagram describing

the steps that each subject

followed. a The rubber flexible

compatible MRI sqeezeball;

b instructions for measuring

each subject’s MVC prior to

scanning; c–g the anonymous

GF levels starting from 20 %

with a step of 10–60 % of

MVC. h–j Examples of a cued

trial where h is the cue starting

with an instructed sentence

‘‘Squeeze AND HOLD’’, i is an

example indicating that the

response has not reached the

required GF level while j shows

that the response exceeds the

required GF level and a red bar

warns subjects. Lastly, k shows

a cross sign indicating a rest

time
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linear forms (Evarts 1967; Smith et al. 1975; Conrad et al.

1977; Thach 1978; Cheney and Fetz 1980; Evarts et al.

1983; Riehle et al. 1994). The use of a high-order poly-

nomial expansion accommodates a large family of forms

with relatively few parameters. Polynomial expansions are

the most common form of expansion (in the absence of

boundary conditions) in estimating neurometric functions

from imaging data. In particular, they have been used

previously by Ward and Frackowiak 2003 and Kuhtz-

Buschbeck et al. 2008.

In the polynomial expansion, the zero-order term rep-

resents the main effect of hand gripping compared to the

rest condition—irrespective of the applied GF levels. The

first-order expansion models any linear change with GF

level; higher non-linear order modulations introduce

subsequent regressors, modelling U-shaped (second-

order). Also, a third-order polynomial has two points of

inflection and can approximate more complicated neuro-

metric functions—such as sigmoid functions. Modulation

of the stick functions encoding grip trials with the poly-

nomial expansion of GF produces stimulus functions that

were convolved with a canonical hemodynamic response

function for standard general linear model (GLM) ana-

lysis (Friston et al. 1995, 1998). The realignment pa-

rameters, from pre-processing, were also included in the

GLM as regressors of no interest (Friston et al. 1996b). At

this (within subject) level, t statistics were used to test for

the effects of each polynomial coefficient. The data were

high-pass filtered with a cutoff of 128 s to remove slow

signal drifts and the serial correlations were accounted for

in this model.

Second (between-subject) level

The contrast images corresponding to the five polynomial

coefficients, created in the first level, were entered into a

random effects analysis, testing for increasingly higher-

order non-linear effects with one-sample t tests. Infer-

ences were made at the between-subject level using the

standard summary effects procedure for random effects

modelling. In brief, this means summarising the response

of each subject in terms of (contrasts of) the parameter

estimates from the first (within-subject) models and using

these as response variables for a second-level (between-

subject) analysis. On average, this produces exactly the

same results as a full mixed-effects analysis (Friston et al.

2005).

Cluster-level inferences (p\ 0.05 corrected for mul-

tiple comparisons, using random field theory) were made

across the whole brain (clusters were defined using an

uncorrected threshold of p\ 0.0001; minimum spatial

extent ten voxels) for both analyses (Friston et al.

1996a). This represents a standard (conservative) crite-

rion that is sensitised to locally distributed responses

with a nontrivial spatial extent. Cluster peaks were

anatomically designated with the SPM Anatomy toolbox

(Eickhoff et al. 2005).

For the purpose of illustrating regional responses, the

average modulated BOLD responses versus GF in three

regions of interest (ROIs) [Brodmann area (BA) 4, 6 and

7], were calculated. In addition, we also classified or

categorised the non-linear responses at each voxel (show-

ing a significant effect) using the order of the polynomial

expansion that had the greatest standardised effect size or

t statistic. This was done separately for negative and

positive responses. This characterisation does not compare

different orders statistically, because differences between

polynomial coefficients of different orders have no quan-

titative meaning (e.g. they have different units of measure).

In other words, significant (non-linear) responses were

identified on the basis of one or more t tests of polynomial

coefficients being significant. The post hoc categorisation

based upon the largest t value is simply a characterisation

of standardised effect sizes that allow one to categorise

response profiles: e.g. a region showing a predominant

positive second-order effect will show a minimum at in-

termediate GF level.

Temporal signal to noise ratio (TSNR)

Moreover, the temporal signal to noise ratio (TSNR) at the

voxel level and the average TSNR map across subjects

were computed. The TSNR was defined by dividing the

mean of each voxel time series by its standard deviation

(Hutton et al. 2011).

Results

Behavioural results

Figure 2a, b show that all subjects were able to perform the

task adequately {mean grip duration [±standard deviation

(SD)] for all trails was 2.83 s (±0.3). All trials reached the

requested force within 10 % of the target}.

Within subject level example responses

Figure 3 shows examples of responses at the subject level.

This figure illustrates the relationship between the GF

levels and the modulated BOLD signals—and each plot

represents the maximum likelihood estimates of the map-

ping between GF and BOLD response based on all com-

ponents of the polynomial expansion.
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Group level main effects of forces (zero-order

effects)

The event-related design confirmed the presence of major

activated motor and non-motor area networks irrespective

of GF (supplementary material—Table 1; Fig. 4a). This

event-related power grip task activated the contralateral

M1 (BA 4 a–p), S1, bilateral cerebellum, supplementary

motor area (SMA), premotor cortex, ipsilateral putamen,

and some occipital (visual) areas.

Group level effects of force on BOLD signal

Linear effects

Positive first-order (linear) effects were in contralateral M1

and part of the premotor cortex (BA 6) (Fig. 4b). Negative

first-order (linear) effects were seen in the contralateral

lingual and calcarine gyri as well as in the ipsilateral su-

perior temporal gyrus (STG) (Fig. 4e). Supplementary

material—Table 2 shows the linear polynomial coefficients

in these regions.

Non-linear changes

Higher-order effects (2nd–4th) represent more complex

associations between the BOLD response and GF. Sig-

nificant non-linear associations were found in both motor

and non-motor areas for positive second—(Fig. 4c),

fourth—(Fig. 4d) and negative third— (Fig. 4f) order

effects. Supplementary material—Table 2 reports the high-

er-order polynomial coefficients in these regions, including

the contralateral M1/S1, cerebellum (lobule VI), cingulate

cortex, fusiform gyrus (V4), bilateral SMA, parietal and

premotor cortices.

In brief, most of the 0th order networks were seen in the

force-related order effects. In the force-related responses,

part of the left precentral gyrus (BA 4a) was detected in the

positive 1st and negative 3rd orders, while BA 4p was

specific to the higher-order non-linear responses. Bilateral

SMA, left middle cingulate cortex (BA 5), left postcentral

gyrus, left SPL (BA 1) and right inferior frontal gyrus (BA

44) exhibited predominantly second-order effect. The

positive fourth-order response predominated in areas such

as left SPL (BA 7A), fusiform gyrus, and lobule VI of the

cerebellum. Areas that showed a predominantly negative

first-order effect are left lingual and calcarine gyri as well

as right STG. Using the above threshold, the negative third-

order response was predominantly seen only in the right

superior occipital gyrus and SPL (BA 7A). Please refer to

the supplementary material for a full list of areas, coordi-

nates, extent of regions and t values.

Figure 5a, b show clusters of significant voxels that have

been colour-coded based on the highest t value over

polynomial coefficients.

TSNR

TSNR maps (along with the average values for the ex-

tracted clusters per order) are shown in Fig. 6. The TSNR

values ranged from 40 to 120, with average values of

around 70 in the extracted clusters.

Discussion

The main aim of this study was to identify brain regions that

are engaged by the grip task and to characterise their formal

dependency on GF. To do this, we investigated the rela-

tionship between complex motor tasks, motor control and

the BOLD signal in a group of right-handed healthy vol-

unteers. The task, performed with the dominant hand (right)

squeezing a rubber ball, also required visual and pro-

prioceptive processing, a high degree of attention and the

ability to track errors to perform the task correctly. Our main

findings were that different neuronal systems contribute to

task performance, with non-linear effects evident in both the

cerebral cortex and the cerebellum—involving areas such as

M1, SMA, premotor, sensory, parietal, visual, and cerebel-

lar areas. Our results show: (i) categorical activation (i.e.

zero order) of brain regions including the contralateral M1/

S1, ipsilateral cerebellum, bilateral SMA, premotor and

some parietal regions (e.g. ipsilateral SPL, contralateral IPL,

Fig. 2 Grip performances. a Means of MVC ± standard deviation.

(SD). Averaged MVC (±SD) was: for all trials: 39 (13), 20 %: 22 (2),

30 %: 30 (2), 40 %: 40 (2), 50 %: 47 (2), 60 %: 58 (2). b Means of

grip duration (s) ±SD. Averaged duration (±SD) was: for all trials:

2.83 (0.32), 20 %: 2.65 (0.59), 30 %: 2.85 (0.11), 40 %: 2.78 (0.26),

50 %: 2.9 (0.09), 60 %: 2.99 (0.08)

Brain Struct Funct

123



contralateral postcentral gyrus) that are known to be in-

volved in gripping motor tasks (e.g. Keisker et al. 2010), as

well as additional areas such as the contralateral cerebellum,

and different occipital and frontal areas; (ii) positive first-

order linear effects in the contralateral M1 and premotor

cortex, likely to be related to force generation; (iii) positive

second- and fourth-order non-linear effects in SMA, pre-

motor, sensory, parietal (SPL), and cerebellar (lobule VI)

areas. These non-linear positive effects may be explained in

terms of attention, proprioceptive movement control, visual

transformation and planning or complex sequencing where a

cerebral–cerebellar interaction may be key for the task

execution. Also, second-order responses in key motor areas

suggest that intermediate forces are metabolically optimal

as they are associated with a lower BOLD response; (iv)

negative first- and third-order effects preferentially localised

with occipital regions linked to visual functions (e.g. BA

18), with a component in M1 and in temporal regions (e.g.

STG). We believe that the reduced BOLD signal in visual

areas with higher GF level could be attributed to reduced

modulation of brain activity in non-motor areas during

complex motor control.

The possibility to detect a complex pattern of BOLD

response to a GF task has been established in this study. It

is essential, therefore, to design future investigations to

explore the neurophysiological basis of this behaviour with

purposely designed experiments. Moreover, all these find-

ings are opening new avenues to study the motor system

and the effects of damage to the mechanism of motor

function in neurological and neurodegenerative diseases

such as Parkinson disease (Rickards 2005), multiple scle-

rosis (Mehanna and Jankovic 2013), Huntington disease

(Guo et al. 2012) and spino-cerebellar ataxia (Klinke et al.

2010). Understanding the complexity of brain dynamics in

response to a complex but commonly performed task in

daily life may contribute also to the understanding of

damage including and beyond motor areas.

Specific reports for the zero-, first- and higher-order

effects and a detailed analysis of the fMRI paradigm are

discussed below. Making detailed neurophysiological

inferences based exclusively upon fMRI signals has

some limitations, especially when trying to evaluate non-

linear neurometric functions of the sort that we have

tried to characterise. In particular, it must be acknowl-

edged that non-linearities can arise at a number of levels.

For example, one could be looking at non-linear neu-

ronal responses, non-linearities in the mapping from

neuronal activity to haemodynamic responses and fi-

nally, (well documented) non-linearities associated with

the haemodynamic response function generating T2*

signals (Friston et al. 2000; Mechelli et al. 2001).

Main effect of force (zero order)

Our findings for zero-order effects confirm—and extend—

the findings of previous power grip block fMRI studies

(Cramer et al. 2002; Ward and Frackowiak 2003; Halder

et al. 2007; Kuhtz-Buschbeck et al. 2008; Keisker et al.

2009, 2010; Neely et al. 2013) by showing consistent ac-

tivations in motor (e.g. M1, SMA, premotor, cerebellar

lobule VIII) and non-motor (e.g. BA 44, 7 and cerebellar

lobule VI) areas, irrespective of GF levels. Our activated

areas included M1/S1, SMA, cerebellum (lobules V–IX),

parietal (including IPL and SPL), premotor cortex, basal

ganglia and different frontal and visual areas (outlined in

supplementary material—Table 1; Fig. 4a).

Fig. 3 Example of BOLD responses (Z axis) of the fitted polynomial

orders of GF responses (Y axis) at the defined post-stimulus time

(PST) (X axis) at the subject level (fixed effect analysis). The figure

shows different ROIs (a left BA 4a; b left BA 7; c right BA 6; d right

BA 6) created based on the group results
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Force-related effects

The presence of force-related effects in motor and non-

motor areas has been reported in several studies (Thickb-

room et al. 1998; Ehrsson et al. 2000; Dai et al. 2001;

Cramer et al. 2002; Ward and Frackowiak 2003; Kuhtz-

Buschbeck et al. 2008; Keisker et al. 2009). There are some

differences between studies, though, in the specific re-

ported areas. For example, Keisker et al. (2009) did not find

force-related changes in the SMA nor in the cingulate

Fig. 4 Brain activations

(T values) at the group level

corresponding to fitting

polynomials of different orders

to the BOLD signal response.

The estimated shape of the fitted

orthogonalized polynomial

function is shown for each order

next to the corresponding image

displaying significant clusters.

In the images, clusters are

corrected at p\ 0.05 after using

an initial height threshold of

0.001 (for display purposes);

right is right and left is left. A

T value colour bar is shown

below the images
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cortex. This was also the case with Khutz-Buschbeck et al.

(2008), whereas Ward and Frackowiak 2003 observed

force-related changes in the cingulate cortex but not in the

SMA. These studies used a dynamic power grip block

design with different ranges of forces, from very low, 1 %,

to high, 60 %. Given that we too used a range of forces up

to 60 % of MVC, it may be argued that the detection of

signal changes in relation to applied force in SMA may not

be related to the range of GFs applied but rather to the

differences in trial design, i.e., block vs. event-related. On

the other hand, the range of forces may play a more sig-

nificant role in detecting force-related changes in the cin-

gulate cortex with higher GF levels up to 60 % of MVC.

Here below we will continue the discussion by com-

menting on the linear positive effect, non-linear positive

effects and negative effects, also trying to investigate the

presentation of different behaviours in different functional

areas.

Linear positive force-related effects (first order)

We found positive linear effects in contralateral M1 and

premotor cortex (showed in supplementary material—

Table 2; Fig. 4b). Most fMRI GF studies generally report

linear effects in the contralateral M1 and ipsilateral cere-

bellum (Cramer et al. 2002; Ward and Frackowiak 2003;

Halder et al. 2007; Ward et al. 2007; Kuhtz-Buschbeck

et al. 2008; Talelli et al. 2008; Ward et al. 2008; Keisker

et al. 2009). In our group of subjects, this effect is present

(lobule VI), but at a lower statistical threshold (p\ 0.003

and corrected), this may be due to the small sample size.

The interpretation of a monotonic relation between BOLD

response and GF levels has been related to the increased

neuronal recruitment in M1 at the increase of GF (e.g.

Cramer et al. and Keisker et al.).

Non-linear positive force-related effects (second

order or more)

We found higher-order (non-linear) associations between

BOLD response and GF that have a clear and distributed

regional specificity in both motor and non-motor areas

(detailed in supplementary material—Table 2; Fig. 4c–d,

f), including associative areas and the cerebellum.

Primary motor cortex (M1)

This study has shown clearly that in M1, in healthy sub-

jects, there are additional positive non-linear BOLD re-

sponses induced by varying GF. Non-linear relationships in

M1 have been reported in macaque monkey studies, which

were interpreted as variable recruitment of neurons and/or

as saturation effects (Cheney and Fetz 1980; Evarts et al.

1983; Ashe 1997). Moreover, it has been argued that within

a similar cortical region, different populations of neurons

may act and respond differently to direct input in a force-

related task (Ashe 1997; Ward and Frackowiak

Fig. 5 a Clusters of force-related effects were thresholded (using a

voxel height of 0.001 and corrected (FWE) clusters) and the

maximum t values at each voxel among all the force related orders

are shown (hot colours are positive order responses and cold colours

are negative responses). This is done at the group level for the purpose

of illustration. In the map, right is right. b The 0th order activations,

shown in light blue, and all force related orders, shown in yellow, are

overlaid; overlapping areas are shown in dark red. The dark red areas

represent the areas that are activated as a main effect of movement as

well as modulated by GF levels. Note that it is not necessarily to

observe a force related area that is also seen at the 0th order (e.g.

yellow areas). In the map, right is right
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2003; Ward et al. 2006). Supporting this conjecture, Ward

and Frackowiak 2003 reported different non-linear activa-

tion patterns in the right insula cortex. Similarly, in our

study, within M1, different BA sub-areas (the anterior and

posterior wall of the precentral gyrus represented by BA 4a

and 4p, respectively) showed non-linear effects. Non-lin-

earity in M1 may also be due to fluctuation of attention

levels during the experiment as suggested by a previous

fMRI study—in which neural activity within BA 4p was

modulated by the degree of attention (Binkofski et al.

2002). Consistent with this finding, BA 4p responded by

showing consistent non-linear effects, whereas area 4a

mainly responded in a linear fashion. Furthermore, M1—

and in particular BA 4p—has been reported to activate

during fMRI paradigms of motor imagery (Michelon et al.

2006; Sharma et al. 2008), electroencephalography (EEG)

(Lang et al. 1996; Carrillo-de-la-Pena et al. 2006) and PET

(Boecker et al. 2002; Malouin et al. 2003). The finding that

some regions have both linear and non-linear responses

speaks to the context-sensitive nature of neuronal pro-

cessing in the sensorimotor task and should be studied

further to investigate whether it is possible to detect a local

organisation of the microvasculature in response to a

varying GF task.

Our results are consistent with the suggestion that task

performance under typical force levels would produce the

minimum (second-order) response. From the point of view

of task set, it could be argued that maintaining GF at aty-

pical levels is more demanding in an attentional sense. In

other words, force production responses are modulated by

(exogenous) attention because our task involved not only

force and proprioception, but also attention and sensori-

motor feedback transformations. In this context, we regard

attention as an implicit component of sensorimotor inte-

gration—as opposed to endogenous attentional effects.

Exogenous effects would call for a factorial design, where

force level was varied independently of attentional set, for

example, using a distractor task to manipulate attentional

load (see below).

Beyond primary motor

We also found positive non-linear relationships (second

and fourth orders) between GF and BOLD signal in areas

outside M1. Areas included motor control and spatial at-

tention (SMA, premotor cortex) (Macar et al. 2006; Van

der Lubbe and Abrahamse 2011), associative and spatial

processing visuomotor functions (SPL) (Hamzei et al.

2002; Elsinger et al. 2006), colour information processing

(V4) (Coutanche and Thompson-Schill 2014), working

memory and sensory-motor integration (cerebellar lobule

VI) (Stoodley et al. 2010), which are areas known to be

Fig. 6 The TSNR map for the

whole brain with the force-

related activation areas outlined

on top of the map (red traces).

The average TSNR values for

the whole brain and within the

responded activations per order

are shown in the bar graph. In

the map, right is right
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associated with complex cognitive and visuomotor tasks

(Rizzolatti et al. 2002; Picard and Strick 2003; Berti et al.

2005; Kuhtz-Buschbeck et al. 2008; Nachev et al. 2008;

Keisker et al. 2009; Neely et al. 2013). Keisker et al. (2009)

reported non-linear components in non-primary motor ar-

eas such as S1, parietal and premotor cortices as well as in

the posterior cerebellum. The profiles of the BOLD re-

sponses that Keisker et al. found mostly reflect greater

BOLD response at low and high GF levels with a local

minimum present with mid-force level, similar to the

findings of second-order effects in our study.

BOLD response within non-M1 motor and extra-motor

areas that have non-linear relationships with GF could

represent the anatomical underpinnings of the complex in-

teractions between visuomotor tasks to control visually

guided movement (e.g. BA 7A) (Hamzei et al. 2002), motor

performance and motor control (e.g. BA 6) (Rizzolatti et al.

2002; Berti et al. 2005), attention (e.g. BA 5), saturation,

recruitment and colour processing (e.g. V4) (Coutanche and

Thompson-Schill 2014). Disentangling each of these con-

tributions is beyond the scope of this work, which intends to

open a series of questions that should be addressed with

purposely designed future experiments.

Motor control and attention areas

Controlling movement—whilst attending to proprioceptive

and exteroceptive cues—to produce an accurate response

during the task was a key component of our task. Although

the targets were presented without an explicit indication of

the force required, the levels of the targets, especially high

and low, could be extrapolated by interpreting the visual

cues. The non-linear response of the BOLD signal showed

a dependency on the GF required in several brain regions

such as SMA, premotor and cingulate cortices as well as

the SPL with a corresponding decrease at intermediate

(typical) GF levels. Recent neuroimaging studies showed

that SMA is involved in controlling temporal processing

(Macar et al. 2006) as well as controlling movement ini-

tiation and motivation for specific actions (Scangos and

Stuphorn 2010). In addition, both monkey and human

studies showed that the premotor cortex is involved not

only in planning and execution of movements but also in

spatial attention (Simon et al. 2002; Van der Lubbe and

Abrahamse 2011). Therefore, these related areas (located

in the BA 6) and their association with attention and

movement control might explain the increased BOLD

signal at the lower and higher GF levels, as more effort

may be needed to attain the target level as accurately and

quickly as possible. In addition, the parietal regions (e.g.

SPL) are implicated in controlling movements that are

visually guided—and their activity increases with increas-

ing task complexity (Hamzei et al. 2002; Elsinger et al.

2006). A recent study showed that SPL and the visual

cortex could possibly be associated with increased visu-

ospatial processing demands in a visuomotor task such as

ours, where we used a colourful feedback given by the

green and red bars (Neely et al. 2013). Furthermore, the

SPL receives visual input from the extrastriate visual cor-

tex and then transfers this input to the premotor cortex. It,

therefore, acts as an intermediary between the frontal and

visual cortex (Marconi et al. 2001; Hamzei et al.

2002; Keisker et al. 2009). In line with this, the SPL,

premotor cortex, and areas in the visual cortex (V4 and the

superior occipital gyrus) showed consistent higher-order

responses that may reflect the increased visual attention

required in controlling low forces (Keisker et al. 2009) as

well as the complexity of reaching and controlling extreme

force levels. Moreover, an important finding in our study is

that the premotor cortex (BA 6) as well as M1 (BA 4a and

4p) were identified by both linear and non-linear responses.

As discussed in (Buch et al. 2010), a reasonable explana-

tion is that during grasping, premotor cortex influences M1

by receiving large inputs and modulating it during reaching

and grasping (Dum and Strick 2005; Prabhu et al. 2009).

Since we associated BA 4a with force generation and BA

4p with attentional modulation, it is possible that area 6

controls area 4 during force production and attention, thus

explaining their parallel behaviour in terms of their linear

and non-linear responses.

Visual pathways

Visual feedback cues could play important roles in af-

fecting cortical recruitment during motor tasks. Kuhtz-

Buschbeck et al. (2008) studied main and force-related

effects on BOLD signal with and without visual feedback,

focusing only on two GF levels and observed more

widespread-activated regions when using visual feedback.

The extra regions were not only in the posterior visual

pathway but also included motor pathways—and more

interestingly the contralateral S1 and cerebellum as well as

the ipsilateral parietal region. Since subjects saw their ac-

tual grip responses, as in this study, this could indicate the

involvement of imaginary recruitments of motor areas

(Mizuguchi et al. 2013), due to the usage of real feedback

signals, as well as gaining awareness (de Graaf et al. 2004).

Another explanation of the contribution of the visual

feedback signal in our non-linear observations could be

error tracking (Imamizu et al. 2000; Milner et al. 2007) to

try and maintain an accurate production of force whilst

watching the actual response. Our task included visual

feedback signal where subjects saw their performance in

real time and adjusted their applied force to match the

target. It has, in fact, been shown that the percentage signal

change in the precentral gyrus is not significantly different
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between low and high GF levels when using a visual cue.

On the other hand, the same region exhibited a significant

signal increase at the higher GF, in the absence of the

visual cue (Noble et al. 2013).

The cerebellum

In our study, we observed recruitment of a large area of the

ipsilateral cerebellum (lobules V-IX) as well the involve-

ment of a contralateral region (lobules VI and VIIIa)

showing zero and higher-order behaviour. Lobule VI was

previously found to be involved in a working memory task

by (Stoodley et al. 2010) and could have a role in inter-

preting the visual feedback involved in our task. One could

hypothesise that the cerebellum is key to error tracking and

forward control (D’Angelo and Casali 2013); therefore

mediates the ability of the subjects to maintain an accurate

performance even at low and high GF levels where error

detection must require greater effort.

Associative areas and mirror neurons

Some of the complex non-linear relations between the

BOLD response and GF seem to involve parietal areas (BA

5), which have been associated with the presence of mirror

neurons; i.e., visual–motor neurons activated when ob-

serving motor tasks performed by others (Molenberghs

et al. 2012) or observing an experiment (Calvo-Merino

et al. 2005). Further experiments to investigate this hy-

pothesis using action observation of the force grip task

used in this study are warranted.

Negative force-related effects (first and third order)

Negative linear responses in different brain regions have

been reported in other fMRI studies (Ehrsson et al. 2001;

Ward and Frackowiak 2003; Kuhtz-Buschbeck et al. 2008;

Talelli et al. 2008; van Duinen et al. 2008; and our study)

but there seem to be no consistent findings. Regions in-

cluded contralateral angular gyrus, bilateral premotor ar-

eas, SMA, and ipsilateral parietal regions (Kuhtz-

Buschbeck et al. 2008). One study, instead, did not detect

negative linear effects at all (Ward et al. 2007).

An interesting observation of our study is that apart from

two clusters in the primary motor cortex, all areas showing

a negative BOLD correlation with GF level are known to

be involved in visual functions. One possible explanation is

that areas engaging with visual tasks become subordinate

in terms of BOLD response compared to associative and

motor control areas as the GF required increases, sug-

gesting a redistribution of oxygen demand. It is also pos-

sible that this behaviour, in particular in M1 (BA 4) may

imply some degree of fatigue at higher GF levels, already

reported by others where motor fatigue was associated with

diminished activity in M1, S1, SMA and different frontal

visual areas (Benwell et al. 2005, 2006, 2007; van Duinen

et al. 2007). It could also indicate the ability of M1 to

address energy demand with a very fine localised mi-

crovasculature reorganisation.

The fMRI paradigm

We used a polynomial parametric event-related design to

test for the relationship between variable GF levels and

BOLD signal in healthy volunteers—with the aim of

identifying and quantifying non-linear effects. To the best

of our knowledge, this is the first study that has used such a

design to characterise the higher order non-linear effects of

complex motor tasks on the BOLD signal. The main rea-

sons for using an event-related design in this study were to

avoid performance variability, and make the task effort

consistent across subjects, thus allowing accurate mea-

surements of GF responses. We used a dynamic power grip

task as opposed to a precision or static task since it is

physiologically more relevant to every-day human life, and

has been a valuable tool in investigating different motor

impairment diseases such as stroke (Ward et al. 2003) and

multiple sclerosis (White et al. 2009) as well as investi-

gating age-related changes (Park et al. 2012). GF levels

varied between 20 and 60 % of each subject’s MVC, in

steps of 10 %. We chose this range for three reasons: first,

it is the approximated average of most previous fMRI GF

studies (Ward and Frackowiak 2003; Pope et al. 2005;

Spraker et al. 2007; van Duinen et al. 2007; Ward et al.

2007; Kuhtz-Buschbeck et al. 2008; Talelli et al. 2008;

Keisker et al. 2009; Sterr et al. 2009; Boudrias et al. 2012);

second, we aimed to introduce a large range between the

lower and higher GF levels over five steps to be sensitive to

higher-order non-linear relations with the BOLD signal;

thirdly, different daily common functional tasks require a

range of different force levels between 20 and 60 % MVC

(Marshall and Armstrong 2004). We also used fifteen trials

per force, which was chosen as the result of an optimiza-

tion process that found a compromise between the scanning

time and the design efficiency. This choice was also sup-

ported by the fact that previous studies showed that it is

possible to detect motor activations with event designs

using an even lower number of trials in healthy subjects

and in patients (Ward et al. 2006, 2007, 2008). Fixed 3-s

stimulation durations, reflecting a dynamic grip task (King

et al. 2014), were used to enforce a consistent and transient

grip pattern across trials—as it has been shown there are

specific networks controlling different movement patterns

(static or dynamic) (Keisker et al. 2010; King et al. 2014).

Fixed grip duration has been used widely in motor fMRI

studies (e.g.Ward and Frackowiak 2003; Kuhtz-Buschbeck
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et al. 2008; Keisker et al. 2009). Furthermore, the ran-

domised counterbalanced event design ensured that the

task requirements were unpredictable (see Fig. 1). Given

the brief duration of GF changes and its unpredictability,

we assume (to a first approximation) that habituation would

be minimal and would, therefore, not depend on the applied

force levels—or confound neuronal responses. Furthermore

subjects underwent a training period prior to the actual

examination, while already on the MRI table, which lim-

ited possible performance anxiety issues during the task

itself.

Moreover, the training and instruction session before the

actual fMRI run aimed to minimise errors in motor per-

formance during the task and, at the same time, limit the

influence of learning (Spraker et al. 2012). Lastly, the inter-

subject variability in task performance (shown in Fig. 2a,

b) was very small—and overall the task was performed

with a good reproducibility. Also, the calculated TSNR,

shown in Fig. 6, gives typical TSNR across the brain in

other studies that used a similar protocol and scan strength

(Murphy et al. 2007; Gonzalez-Castillo et al. 2011; Hutton

et al. 2011). Therefore, it is unlikely that regional varia-

tions in signal to noise have differentially affected a sen-

sitivity to high- or low order GF effects.

Methodological considerations

The partial agreement of our findings with Ward and

Frackowiak (2003) and Keisker et al. (2009) and the dif-

ferences with previous studies could be related to three

methodological considerations affecting the BOLD signal

and its relation with force scaling: (1) the timings of the

experimental task and design, (2) the number and range of

the targeted forces, and (3) the guided cue to perform the

task: (1) The relationship between BOLD and GF has been

mostly studied using a power GF task (repetitive pulses)

(Cramer et al. 2002; Ward and Frackowiak 2003; Halder

et al. 2007; Ward et al. 2007; Kuhtz-Buschbeck et al. 2008;

Keisker et al. 2009; Neely et al. 2013) or a static force task

(sustaining the force) (Dai et al. 2001; Keisker et al. 2010;

Neely et al. 2013). Comparing these two tasks, it is evident

that they reveal different brain network regions (Keisker

et al. 2010; Neely et al. 2013; King et al. 2014). The ex-

perimental paradigm can be basic and simple using a block

design (e.g. Sterr et al. 2009), effortless using a sparse

event-related design (e.g. Ward et al. 2006), or complex

and challenging using a rapid event-related design. As-

suming that the aim is to quantify the relationship between

GF and BOLD signal, one would need to use a design that

accurately reflects the subject’s performance and allows an

efficient estimation of force-related responses. Although

event-related designs are less efficient in statistical terms at

detecting BOLD responses, they nevertheless allow

detailed sampling of the GF levels applied during the task

and are less prone to fatigue than the theoretically more

efficient block designs. (2) Most of the previous afore-

mentioned studies (e.g. Kuhtz-Buschbeck et al. 2008;

Keisker et al. 2009) estimated the averaged forces over

several seconds (over 10 s) due to the use of block designs

and averaging GF responses over a number of epochs,

which is usually limited to be around five. The number of

GF levels in the previous experiments was mostly three,

with the highest being five (e.g. Spraker et al. 2007) and the

lowest being two (e.g. Pope et al. 2005). Two GF levels can

only reveal a linear relationship. Ideally, one would need to

expand the range of forces to accurately test for the rela-

tionship between BOLD and force. Five targets, as in our

design, was a compromise between this requirement and

the need to sample enough data for efficient statistical

analysis of the signal changes. The range of forces is also

an important factor that could affect the recruitment of

areas. For instance, low forces seem to recruit (different,

fewer or additional) areas as compared to high forces

(Ehrsson et al. 2001; Ward and Frackowiak 2003; Kuhtz-

Buschbeck et al. 2008; van Duinen et al. 2008; Keisker

et al. 2009). Lastly, (3) the guided cue, as discussed before,

plays an important factor and could also determine brain

activations. The most widely used external cues for this

type of experiment are visual (Sterr et al. 2009), which

have been shown to activate additional brain networks

(Kuhtz-Buschbeck et al. 2008; Noble et al. 2013).

In addition, this study has its own limitations. The first

limitation is related to the use of a system composed of an

elastic squeeze ball that relates the applied force to air

pressure measurements. Although a similar equipment

set-up has been used previously (e.g. Halder et al. 2005,

2007; Schmidt et al. 2009; Kurniawan et al. 2010), it is

not necessarily optimal. For example, the visco-elastic

properties of the squeeze ball material itself could have

contributed to the non-linear effects. Despite this potential

confounding effect, all volunteers who participated in this

study performed the task equally well; therefore, the

measured response was able to track the requested force

(Fig. 2a). Future studies may want to consider alternative

experimental set-ups [e.g. water filled systems (Noble

et al. 2011, 2013)]. This present study assumed that these

potentially confounding effects were small in relation to

the effect sizes of the physiologically mediated processes.

Finally, a limitation of this study is the absence of a

quantitative neurophysiological measurement to support

the interpretation of the nature of the non-linear para-

metric responses. Future similar studies should include

electrophysiology measurements and arterial spin la-

belling to isolate the precise contributions of neuronal,

haemodynamic, and BOLD biophysics to the non-linear

effects characterised in this study.
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Conclusions

This study has shown that it is possible to characterise non-

linear contributions to motor task performance using an

optimised acquisition and analysis protocol, based on

event-related design, which complements the widespread

use of block design. We have demonstrated linear and non-

linear responses in M1 using five GF levels, event-related

paradigm, and polynomial function. Interestingly, non-

linear responses in M1, especially the posterior part of M1

(BA 4p), have been associated with attention and motor

imagery, which may be involved in executing our event-

related grasping task. Associative cortical areas and cere-

bellar lobule VI are involved in higher-order effects,

indicating their recruitment during coordination between

visual cues, sensorimotor feedback and error tracking. We

have also shown that the premotor, SMA and parietal re-

gions, known to participate in movement control and at-

tention, show zero-order as well as higher-order BOLD

effects. The low BOLD response associated with interme-

diate GF levels shown with the second-order analysis is

suggestive of an optimum metabolic response in key motor

areas. Finally, the use of visual feedback in motor para-

digms is likely to have added a layer of complexity,

especially when interpreting negative non-linear responses.

The strong evidence of a complex pattern of responses

warrants further studies that will need to be designed with

the aim of explaining the specific physiological correlates

of the dissociable effects that our parametric study has

revealed.
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