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Abstract
Purpose Gain-of-function (GOF) mutations in the signal
transducer and activator of transcription 1 (STAT1) result

in unbalanced STAT signaling and cause immune dysreg-
ulation and immunodeficiency. The latter is often charac-
terized by the susceptibility to recurrent Candida
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infections, resulting in the clinical picture of chronic mu-
cocutaneous candidiasis (CMC). This study aims to assess
the frequency of GOF STAT1 mutations in a large interna-
tional cohort of CMC patients.
Methods STAT1 was sequenced in genomic DNA from 57
CMC patients and 35 healthy family members. The functional
relevance of nine different STAT1 variants was shown by flow
cytometric analysis of STAT1 phosphorylation in patients’
peripheral blood cells (PBMC) after stimulation with interfer-
on (IFN)-α, IFN-γ or interleukin-27 respectively. Extended
clinical data sets were collected and summarized for 26
patients.
Results Heterozygous mutations within STAT1 were identi-
fied in 35 of 57 CMC patients (61 %). Out of 39 familial cases
from 11 families, 26 patients (67%) from 9 families and out of
18 sporadic cases, 9 patients (50 %) were shown to have
heterozygous mutations within STAT1. Thirteen distinct
STAT1 mutations are reported in this paper. Eight of these
mutations are known to cause CMC (p.M202V, p.A267V,
p.R274W, p.R274Q, p.T385M, p.K388E, p.N397D, and
p.F404Y). However, five STAT1 variants (p.F172L,
p.Y287D, p.P293S, p.T385K and p.S466R) have not been
reported before in CMC patients.
Conclusion STAT1 mutations are frequently observed in pa-
tients suffering from CMC. Thus, sequence analysis of STAT1
in CMC patients is advised. Measurement of IFN- or IL-
induced STAT1 phosphorylation in PBMC provides a fast
and reliable diagnostic tool and should be carried out in addi-
tion to genetic testing.

Keywords Chronic mucocutaneous candidiasis . CMC .

primary immunodeficiency . PID . signal transducer and
activator of transcription 1 . STAT1 . gain-of-function . GOF .

phosphorylation

Introduction

Chronic mucocutaneous candidiasis (CMC) constitutes a col-
lective term for a heterogeneous group of syndromes with the
common feature of chronic non-invasive Candida infections
of the skin, nails and mucousmembranes, primarily withCan-
dida albicans. Reasons behind the susceptibility to Candida
infections are manifold. Infection with the human immunode-
ficiency virus as well as the prolonged use of glucocorticoids
or antibiotics predispose to fungal infections, but the disease
may also manifest as part of rare primary immunodeficiencies
caused by monogenic Mendelian traits affecting the cell-
mediated immunity necessary for fighting Candida infections
[1–4]. CMC presents heterogeneously both in clinical mani-
festations and genetic background, however, studies conduct-
ed so far emphasize the key role of T helper 17 (Th17) cells
and the impaired effector function of their cytokines

interleukin 17 (IL-17) and interleukin 22 (IL-22). These cyto-
kines have been shown to be essential for mucocutaneous
anti-fungal host defense [5–7]. Indeed, patients with the auto-
somal dominant form of hyper IgE syndrome (HIES) have
severely reduced numbers of IL-17 producing circulating T
cells due to dominant-negative mutations of the signal trans-
ducer and activator of transcription 3 (STAT3), and often suffer
from CMC [8–11]. CMC has also been reported in a large
multiplex kindred segregating an autosomal recessive muta-
tion in the caspase recruitment domain-containing protein 9
(CARD9). Other important infectious phenotypes reported in
this family were dermatophytosis and Candida meningitis
[12]. Patients with autoimmune polyendocrinopathy candidi-
asis and ectodermal dystrophy (APECED)-syndrome bearing
biallelic mutations in the autoimmune regulator (AIRE) gene
are as well susceptible to Candida infections but no other
pathogens. These patients have high titers of neutralizing au-
toantibodies against IL-17A, IL-17F and IL-22 [13–15]. Pa-
tients with heterozygous IL17F mutations and homozygous
IL17RA or IL17RC mutations have impaired IL-17 signaling
and suffer from CMC [16, 17]. Furthermore, a biallelic ACT1
deficiency has been shown to underlie one consanguineous
CMC family [18]. Finally, gain-of-function (GOF) missense
mutations in the signal transducer and activator of transcrip-
tion 1 (STAT1) were shown to cause autosomal dominant fa-
milial CMC, often associated with thyroid disease, and repre-
sent the most common genetic etiology of CMC [19, 20]. The
majority of GOF-STAT1 mutations are confined to the coiled-
coil domain (CCD) of STAT1, however, several other GOF
mutations have been found in the DNA-binding domain
(DBD) [19–33]. Besides increasing the susceptibility to can-
didiasis, several STAT1 GOF mutations are also associated
with other fungal infections such as coccidioidomycosis or
histoplasmosis [34]. Analysis of mutated STAT1 proteins re-
vealed a prolonged phosphorylation leading to prolonged
transcription factor activity. Increased STAT1 responses to
the interferons α/β and γ as well as IL-27 were shown to
repress the differentiation of IL-17 producing T cells through
mechanisms that are not yet completely understood [20, 24,
26]. The identification of genetic defects in patients with CMC
offers the opportunity to confirm the diagnosis in both familial
and sporadic CMC patients, to provide genetic counseling,
and to enable a more precise classification of CMC. In this
study, we have explored the frequency of STAT1mutations in
a large cohort of 92 individuals consisting of 57 patients with
CMC (39 familial cases and 18 sporadic cases) and 35 healthy
relatives from 11 unrelated families. We analyzed patients and
healthy family members in order to elucidate the underlying
genetic defect and tested interferon (IFN)- and IL-stimulated
STAT1 phosphorylation in patients’ peripheral blood cells by
flow cytometric analysis. We compiled an in depth description
of the STAT1 clinical CMC phenotype in order to provide a
clear clinical picture for this condition.
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Methods

Patients and Controls

Inclusion criteria for this study were i) the clinical diagno-
sis of CMC according to the referring immunologist, ii) the
availability of genomic DNA, and iii) a signed consent
form for genetic research. Candidiasis was proven by
swab, biopsy, or the combination of both in at least one
affected family member and in every sporadic patient. The
study was approved by the local ethics review boards of
the University College London and the University Medical
Center Freiburg. Three of the 11 families originated from
Germany and three other families from Norway. One fam-
ily each came from Brazil, Canada, Colombia, Slovakia
and the USA. Additionally, we included six sporadic pa-
tients from the UK, three from Germany, two respectively
from Colombia and Belgium and one patient each from
Brazil, Canada, Denmark, India and the USA (Table 1).
Due to unavailability of previous clinical data and loss-
to-follow up of several patients, the clinical analysis was
limited to 26 of 35 patients carrying heterozygous STAT1
mutations.

PCR and Sequencing Analysis

Genomic DNA of patients and family members was isolated
from whole blood (Gentra Puregene purification kit, Qiagen,
Crawley, United Kingdom). To assess the presence of STAT1
mutations, all coding exons of STAT1 were amplified by PCR
according to standard protocols with Taq polymerase
(PeqLab, Fareham, United Kingdom). PCR products were
purified using shrimp alkaline phosphatase (Promega, Madi-
son, Mich) and Exonuclease I (Thermo Scientific, Waltham,
Mass). Primer sequences and PCR amplification conditions
are available on request. The amplified DNA fragments were
subsequently sequenced with the ABI PRISM BigDye Termi-
nator kit v3.1 (Applied Biosystems, Foster City, Calif). Se-
quencing was performed using the 3130xl Applied
Biosystems Genetic Analyzer, DNA Sequencing Analysis
software, version 5.2 (Applied Biosystems), and Sequencher,
version 4.8 (Gene Codes Corp, Ann Arbor, Mich).

STAT1 Phosphorylation

Peripheral blood mononuclear cells (PBMC) were isolated
from EDTA-blood by Ficoll centrifugation. Intracellular
monocyte staining: 1×106 PBMC were stimulated for
15 min at 37 °C with IFN-α (500 U/ml; Miltenyi Biotec) or
IFN-γ (100 ng/ml; Miltenyi Biotec). Intracellular CD4 stain-
ing: PBMC were first stained with anti-CD4 (Ancell; clone
QS4120) and then stimulated at 37 °C with either IL-27
(200 ng/ml) or IFN-α (10,000 U/ml) for 7.5 min, 15 min

and 30 min. Stimulation was stopped by adding lysis and
fixation buffer (Phosflow lyse/fix; BD) followed by incuba-
tion for 10 min at 37 °C. Cells were permeabilized for 30 min
on ice with pre-cooled Phosflow PermIII buffer (BD) prior to
staining with anti-phospho-STAT1 (pY701) (BD; clone 4a)
and anti-CD14, when monocytes were studied (Beckman
Coulter; clone RMO52). Data acquisition was done using ei-
ther Navios flow cytometer (Beckman Coulter) or BD LSR II
(BD Biosciences). FlowJo v7.2.5/v10.0.7 (Treestar) was used
for data analysis.

Results

Identification of STAT1 Mutations in 61 % of all CMC
Patients

Of the 57 patients with a clinical diagnosis of CMC, a total
of 35 (61 %) had heterozygous mutations in STAT1 (Fig. 1,
Table 1); 26 of these cases were familial, affecting 9 of 11
families (82 %), whereas 9 of 18 sporadic cases (50 %) had
STAT1 mutations. In one sporadic patient, we identified the
variation p.V266I, which has a minor allele frequency of
0.1 % and is listed on dbSNP as Brs41473544^. We classi-
fied this variant as not associated with CMC, as its func-
tional testing did not show STAT1 hyper-phosphorylation
(see below). In contrast, 22 patients (13 familial and 9
sporadic) as well as 34 of 35 healthy family members did
not show any mutation in the coding regions of STAT1 or
their flanking intronic sequences. Interestingly, one so far
healthy 77-year-old female family member was identified
as a carrier of the mutation p.R274Q, passing the mutation
on to at least three offspring, all affected by CMC. Ten
CMC patients from families Fam10 and Fam11 did not
harbor a mutation in STAT1. Moreover, three patients from
Fam02 in which the mutation p.A267V segregated in four
other family members (a father and his three children) did
not have a STAT1 mutation. These three patients were sub-
sequently classified as phenocopies. Patients without
STAT1 mutation were analyzed by next generation se-
quencing for CARD9, IL17F, IL17RA, IL17RB, AIRE and
ACT1, but no mutation was found in these genes. Overall,
we found thirteen distinct heterozygous STAT1 mutations
(Table 1, Fig. 2). Eight of these have been described pre-
viously: p.M202V, p.A267V, p.R274W, p.R274Q,
p.T385M, p.K388E, p.N397D and p.F404Y [19–26, 28,
30, 31]; six patients had five distinct, novel mutations:
p.F172L, p.Y287D, p.T385K, p.P293S and p.S466R, that
have not been reported in CMC patients before. While we
reported the mutation p.F404Y recently [25], we demon-
strate the functional proof of the GOF activity of this mu-
tation below. None of the newly identified mutations is
present in the population-variation data sets 1000 Genomes

J Clin Immunol (2016) 36:73–84 75
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(www.1000genomes.org/data) and dbSNP (www.ncbi.nlm.
nih.gov/projects/SNP). Seven of these thirteen mutations
were located in the coiled-coil domain of STAT1 affect-
ing 21 familial patients (from seven different families)
and two sporadic cases. Six mutations were located in
the DNA binding domain affecting five patients from
two families and seven sporadic patients (Table 1,
Fig. 2).

STAT1 Hyper-Phosphorylation in PBMC of CMC
Patients upon IFN-α, IFN-γ and IL-27 Stimulation

The pathogenetic outcome of CMC associated with STAT1
mutations is assumed to be caused by hyper-phosphorylation
of STAT1 [20]. In nine patients, we could assess STAT1 phos-
phorylation in monocytes following stimulation of PBMC
with IFN-α or IFN-γ by intracellular staining with an anti-

2 familiesCCD: 7 
families

DBD: 2 
families

CCD: 2 
patients

DBD: 7 
patients

CMC patients
57

Sporadic cases
18

STAT1 mutation 
carrier

9

STAT1 wildtype
9

Family members 
with CMC

39

STAT1 mutation 
carrier

26

STAT1 wildtype
13

Healthy family 
members

35

STAT1 mutation 
carrier

1

STAT1 wildtype
34

Fig. 1 Flow chart of STAT1 mutation detection results. The cohort consists of 92 individuals, including 18 sporadic and 39 familial patients, and 35
healthy family members
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Fig. 2 GOF STAT1 mutations. Linear representation of the human
STAT1 alpha isoform with GOF mutations associated with mycoses.
Coding exons are numbered with roman numerals. Regions
corresponding to the N-terminal segment (NTS), coiled-coil domain
(CCD), DNA binding domain (DBD), linker domain (L), SH2 domain
(SH2), tail segment domain (TS) and transactivator domain (TA) are

indicated by rectangles. Mutations colored in blue affect the coiled-coil
domain and colored in red affect the DNA-binding domain. GOF
mutations in the upper part of the Figure have been published
previously [19–34, 42–45]. GOF mutations listed in the lower part were
found in the cohort under study. Each dot represents one patient
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phospho-STAT1 (pY701) specific antibody and subsequent
flow cytometric analysis. For the mutations p.F172L,
p.Y287D, and p.N397D, STAT1 phosphorylation was clearly
increased in patients’monocytes compared to healthy controls
(Fig. 3a). An increase in STAT1 phosphorylation was seen
after both IFN-α and IFN-γ stimulation. However, the effect
was more pronounced following IFN-γ stimulation. Mono-
cytes from the second patient carrying the mutation
p.N397D did show a moderately increased IFN-α induced
STAT1 phosphorylation compared to the healthy control,
whereas the mutation p.T385M in STAT1 only showed
hyper-phosphorylation upon IFN-γ stimulation. These obser-
vations may point to a differential impact of certain mutations

on IFN-α and IFN-γ mediated STAT1 activation. A marginal
increase in STAT1 phosphorylation could be observed in
monocytes with the mutations p.P293S and p.S466R, indicat-
ing that additional functional testing should be performed to
prove that these mutations have an effect on STAT1 phosphor-
ylation. No change in phosphorylation was detectable when
analyzing monocytes carrying the variation p.V266I that was
found to show a minor allele frequency of 0.1 %. Thus, the
STAT1 variation p.V266I is indeed unlikely to be the genetic
cause for CMC in this patient, resulting in her exclusion from
the 26 patients of which the clinical features are described
below. In addition, we studied STAT1 phosphorylation in
CD4+ T cells from four patients carrying either p.T385K or
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P293S

IFN-γIFN-α
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Fig. 3 a Increased STAT1
phosphorylation in patients’
monocytes after IFN-α and IFN-
γ treatment. PBMC from patients
(solid line) and healthy controls
(dashed lines) were stimulated for
15 min with IFN-α (500 U/ml) or
IFN-γ (100 ng/ml). Cells were
fixed and permeabilized prior to
staining with anti-CD14 and anti-
phospho-STAT1 (pY701)
antibodies. The gate was set on
CD14+ monocytes. b Increased
STAT1 phosphorylation in
patients’ CD4+ T cells following
IFN-α and IL-27 stimulation.
PBMC were stimulated with
either IFN-α (10,000 U/ml) or IL-
27 (200 ng/ml) for 7.5, 15 and
30 min. Cells were then treated as
described in (a) and phospho-
STAT1 levels were evaluated
gating on CD4+ T cells (Red –
unstimulated patient cells; blue –
stimulated healthy control cells;
orange – stimulated patient cells)
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p.F404Y mutations. For this purpose PBMC were stimulated
with either IL-27 or IFN-α and phospho-STAT1 levels were
evaluated at different time points gating on the CD4+ popula-
tion (Fig. 3b). Compared to healthy controls, patient’s CD4+
cells showed significant increase in both intensity and dura-
tion of phospho-STAT1 staining, reflected by persistent cyto-
kine induced hyperphosphorylation at every time point tested.
While this was the case for p.F404Y after IFN-α stimulation
and for p.T385K after IL-27 stimulation, a relevant IL-27
induced hyper-phosphorylation of STAT1 was only apparent
at later time points for the mutation p.F404Y, especially after
30 min.

Clinical Phenotype of CMC Patients with STAT1 GOF
Mutations

To determine the detailed clinical phenotype of CMC caused
by STAT1 GOF mutations, we carefully reviewed data of
patients previously published, and added data from our pa-
tients. For this extended clinical analysis, we were able to
collect data from 26 patients (20 familial and 6 sporadic
cases). The clinical phenotype for kindreds Fam02, Fam03,
Fam04, Fam09 and Spor03 (Table 1) have been published
previously [25, 31, 35, 36].

The main clinical feature of CMC is fungal infection of
the oral mucosa. In the cohort of patients with heterozy-
gous STAT1 mutations, we observed episodes of oral can-
didiasis in 73 % (19/26) of patients, with a tendency to
become chronic if untreated in 42 % (8/19) of these pa-
tients (Table 2). Antifungal treatment with e.g., azoles led
to a partial remission in 62 % (10/16) of patients, 38 %
(6/16) had a complete response. Moreover, 58 % (11/19) of
patients needed prophylactic treatment to prevent recurrence
of oral candidiasis. Aphthous stomatitis was frequent in
CMC patients. A severe form was observed in 38 % (10/
26) of patients, while 31 % (8/26) had moderate aphthae.
Aphthous stomatitis had a lower tendency for chronicity
(18 %, 3/17) compared to oral candidiasis (42 %, 8/19)
and appeared with a relapsing course in the majority of
affected patients (82 %, 14/17). Esophageal candidiasis
was observed in two-thirds of patients (65 %, 15/23) and
often showed acceptable response to treatment, with com-
plete remission in 67 % (8/12), but relapses were frequent
after treatment was stopped (87 %, 13/15). Candidiasis
rarely appeared in other parts of the gastrointestinal tract.
Infection of the pharynx was found in one patient (4 %,
1/23) and candidiasis of the small and large bowel was not
observed.

We documented a mixed picture of skin infections in the
CMC cohort under study. Altogether, 50 % (13/26) of patients
reported intertrigo, 46 % (12/26) pustules and 44 % (11/25)
infections of the scalp; and 50 % (9/18) of affected patients
reported chronic skin infections. More chronic than recurrent

Table 2 Characteristics of candidiasis

No. of patients % of patients

Infection of oral mucosa

Oral candidiasis 19/26 73 %

Duration

• Recurrent 11/19 58 %

• Chronic 8/19 42 %

Response to treatment

• Complete 6/16 38 %

• Partial 10/16 62 %

• No 0/16 0 %

Aphthous stomatitis 18/26 69 %

• Severe 10/26 38 %

• Moderate 8/26 31 %

Duration

• Recurrent 14/17 82 %

• Chronic 3/17 18 %

Response to treatment

• Complete 6/13 46 %

• Partial 6/13 46 %

• No 1/13 8 %

Infection of intestinal tract

Esophageal candidiasis 15/23 65 %

Other 1/23 4 %

Duration

• Recurrent 13/15 87 %

• Chronic 2/15 13 %

Response to treatment

• Complete 8/12 67 %

• Partial 4/12 33 %

• No 0/12 0 %

Skin infections

Intertrigo 13/26 50 %

Pustules 12/26 46 %

Intertrigo and/or Pustules 20/26 77 %

Duration

• Recurrent 9/18 50 %

• Chronic 9/18 50 %

Response to treatment

• Complete 4/16 25 %

• Partial 12/16 75 %

• No 0/16 0 %

Infection of scalp 11/25 44 %

Duration

• Recurrent 3/9 33 %

• Chronic 6/9 67 %

Response to treatment

• Complete 4/8 50 %

• Partial 4/8 50 %

• No 0/8 0 %
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cases were reported, regarding infections of the scalp (chronic
infections: 67 %, 6/9; recurrent infections: 33 %, 3/9).
Onychomycosis appeared in 64 % (16/25) and paronychia in
39 % (7/23) of patients. Onychomycosis and paronychia were
both chronic in three quarters of cases (76 %, 13/17). Treat-
ment response varied from complete remission (20%, 3/15) to
partial remission (80 %, 12/15), rendering resistance a possi-
ble complication in patients with nail candidiasis.

Nine female patients of reproductive age provided infor-
mation about vulvovaginal candidiasis. In 67 % (6/9) of these
female patientsCandida infection of the vulva was document-
ed and candidiasis affected both vagina and perineal region in
the two-thirds of cases (67 %, 4/6). Complete response after
antifungal therapy was likely (80 %, 4/5), but infections of the
vulvovaginal area often reoccurred (83 %, 5/6) when antifun-
gal treatment was stopped.

The majority of patients received both topical and systemic
antifungal treatment. Oral therapy with fluconazole and other
triazoles was often used to provide a long-lasting prophylaxis.
Oral preparations of amphotericin B were administered in se-
vere cases. In case of topical treatment, nystatin proved to be a
good alternative to triazoles. Duration of topical antifungal
treatment ranged from 2 weeks to several months while med-
ical prescription was reported to continue for about 4 weeks
per episode in most cases.

Although candidiasis presented in many patients as the
main or only type of infection, other infections were also ob-
served: Dermatophytosis was reported in 14 % (3/22) of

patients (Table 3). In the respective cases, Trichophyton spe-
cies were isolated from affected skin lesions. If prevalent,
bacterial infections primarily affected the respiratory tract.
One or more episodes of bronchitis were observed in 41 %
(9/22). Two-fifths of patients reported a history of pneumonia
(41 %, 9/22). Sinusitis was also common, with 48 % (12/25)
of patients giving a positive history. Furthermore, bacteria
caused skin infections, mainly presenting as folliculitis
(32 %, 7/22). Recurrent viral infections were rarely observed.
Herpes simplex virus infections (18 %, 4/22) and papilloma-
virus infections (14 %, 3/22) were the most prevalent.

Table 2 (continued)

No. of patients % of patients

Infection of nails

Onychomycosis 16/25 64 %

Paronychia 9/23 39 %

Duration

• Recurrent 4/17 24 %

• Chronic 13/17 76 %

Response to treatment

• Complete 3/15 20 %

• Partial 12/15 80 %

• No 0/15 0 %

Infection of vulva and vagina 6/9 67 %

Limited to vulva 2/6 33 %

Extended to surrounding areas 4/6 67 %

Duration

• Recurrent 5/6 83 %

• Chronic 1/6 17 %

Response to treatment

• Complete 4/5 80 %

• Partial 1/5 20 %

• No 0/5 0 %

Table 3 Associated diseases

No. of patients % of patients

Other Infections

Ears, nose and throat

• Sinusitis 12/25 48 %

• Otitis 4/25 16 %

• Conjunctivitis 1/21 5 %

• Tonsillitis 3/25 12 %

Respiratory tract

• Bronchitis 9/22 41 %

• Pneumonia 9/22 41 %

• Bronchiectasis 3/22 14 %

Cutaneous infections

• Furunculosis 2/22 9 %

• Folliculitis 7/22 32 %

• Abscess 1/22 5 %

Urinary infections 1/22 5 %

Dermatophyte 3/22 14 %

Other fungi / parasites 0/22 0 %

Viral infections

• Herpes 4/22 18 %

• Papillomavirus 3/22 14 %

• Zoster 2/22 9 %

• Severe varicella 1/22 5 %

• Epstein Barr 1/19 5 %

Sepsis 2/22 9 %

Non-infectious diseases

Auto-immunity

• Thyroid 11/25 44 %

• Alopecia 1/21 5 %

• Vitiligo 1/21 5 %

• Systemic Lupus Erythematosus 0/25 0 %

• Multiple Sclerosis 0/25 0 %

Neurological complications

• Cerebral aneurysm 2/25 8 %

• Cerebral vasculitis 1/25 4 %

Malignancies 0/21 0 %
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CMC was also associated with auto-immune conditions in
our cohort. With 44 % (11/25) of patients being affected, hy-
pothyroidism was by far the most common autoimmune con-
dition reported. Alopecia and vitiligo were observed in one
patient each (5 %, 1/21) (Table 3).

With regard to serious complications, no patient reported
systemic fungal infection, and no patient had Candida men-
ingitis. Other severe complications, such as cerebral aneu-
rysm, cerebral vasculitis, and squamous cell cancer of the
esophagus, have been described in other CMC cohorts [20,
37, 38]. Two unrelated patients from our cohort were reported
with cerebral aneurysms. One of them developed cerebral
vasculitis. Aneurysms were detected in both patients through
MRI at the age of 8 and 10 years, respectively.

We further analyzed lymphocyte subpopulations, serum
immunoglobulin (Ig) levels, autoantibodies, and thyroid
markers in all patients from our cohort (Table 4). White blood
cell counts were normal in the majority of patients (82 %, 18/
22), while some patients demonstrated leukocytosis (14 %,
3/22) and one patient had slightly decreased counts (5 %,
1/22). Lymphocytes were decreased in 13% (3/23) of patients
and monocytes were elevated in 17 % (4/23). Lymphocyte
subpopulations were within the normal range in the majority
of patients. Counts of CD3+ T cells, CD4+ T cells, and
CD19+ B cells were decreased in 10 % (2/21), 14 % (3/21)
and 10 % (2/21) of patients respectively. CD3-/CD16+/
CD56+ natural killer cells were decreased in 53 % (10/19)
of patients. IgA was decreased in 26 % (6/23) of patients,
but IgG levels, including IgG subclasses IgG1-3, were nor-
mal. Thyroid-stimulating hormone was increased in 41 %
(9/22) of patients, while thyroxine and triiodothyronine were
decreased in fewer patients (20 %, 4/20 and 23 %, 3/13
respectively), indicating subclinical hypothyroidism. Thyro-
globulin autoantibodies were reported in 3 patients (19 %,
3/16). No thyroid carcinoma was detected in the cohort un-
der study. Detection of other autoantibodies such as anti-
microsomal, anti-insulin or anti-GAD65 antibodies occurred
rarely (Table 4).

Discussion

In the present study we found that in a group of 57 CMC
patients, 35 cases (61 %) had a heterozygous GOF mutation
in STAT1. Twenty-three patients had a STAT1 mutation in the
CCD, underlining the importance of this domain as a mutation
locus, while 12 had a DBD mutation in STAT1. The majority
of families (82 %, 9/11) as well as half of the sporadic cases
(50 %, 9/18) harbored a heterozygous STAT1 mutation. Sev-
eral mutations we identified in the cohort under study have
been described previously (Fig. 2). Van de Veerdonk et al.
published that patients of a Dutch family carrying the muta-
tion p.R274W in the CCD had severe dermatophytosis and

autoimmune phenomena (autoimmune hemolysis, pernicious
anemia, autoimmune hepatitis), in addition to severe, chronic
oropharyngeal candidiasis [19]. These severe autoimmune
phenomena were not observed in our patients. However, the
association between the STAT1 mutation p.A267V and hypo-
thyroidism, which has been reported [19], was also seen in
two of our families.

During this study, we were able to clarify the genetic back-
ground of a large family (Fam02) with an autosomal dominant
CMC type associated with hypothyroidism previously pub-
lished by Atkinson et al. in 2001 [35]. The family mapped
to a candidate linkage region on chromosome 2p; however,
no mutation could be identified at that time. In this kindred,
we detected the heterozygous STAT1 mutation p.A267V in
four of the affected family members. However, STAT1 is lo-
cated on chromosome 2q and not 2p. Only the most severely
affected members with both CMC and thyroid disease har-
bored this STAT1mutation, while other family members, sole-
ly suffering from hypothyroidism, did not carry it. A likely
explanation for the incorrect linkage analysis may be the mis-
classification of these patients due to the misleading influence
of the thyroid disease, since thyroid autoimmunity is among
the most common autoimmune conditions.

The high prevalence of thyroiditis which we observed in
the STAT1mutated CMCpatients in this study is an interesting
aspect. One possibility for STAT1mutations causing hypothy-
roidism might be the formation of thyroid autoantibodies [20,
22]. Thyroglobulin autoantibodies (TgAb) were detected in
13 % (2/16) of patients in our cohort. TgAb are often found
in patients with Hashimoto’s thyroiditis, which constitutes a
common cause for hypothyroidism [39]. Furthermore, we
speculate that a second mechanism may be causally related
to hypothyroidism in this cohort of patients. Staab et al.
assessed expression of cytokine-regulated STAT proteins in
patients diagnosed as having Hashimoto’s disease or focal
lymphocytic thyroiditis. In these patients, activated STAT1
dimers were detected in numerous infiltrating lymphocytes,
macrophages as well as in oncocytes, while STAT3 expression
was restricted to epithelial cells and showed a clear association
with low levels of stromal fibrosis, suggesting that STAT3
serves as a protective factor in the remodeling of the inflamed
thyroid gland [40]. The imbalance between STAT1-dependent
signaling and STAT3-dependent signaling might further am-
plify degenerative processes in the thyroid gland. Moreover,
mutated STAT1may contribute to hypothyroidism by interfer-
ing with thyrotropin signaling pathway. The production of
suppressor of cytokine signaling 1 (SOCS1) is induced by
thyrotropin, which then alters STAT1 phosphorylation [41].
Thyrotropin may act as a cytokine inhibitor in thyroid tissue
in order to rescue thyroid cells. This process might be impeded
by GOF STAT1 mutations [19, 41].

We were not able to identify STAT1 mutations in all of the
CMC patients under study. Other candidate genes tested
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(CARD9, IL17F, IL17RA, IL17RB, AIRE and ACT1) did not
reveal a molecular cause for CMC in our cohort. The cause(s)
for CMC in the remainder of the cohort described here (39 %,
22/57) still needs to be identified. However, due to the high
frequency of mutations, we propose that sequencing of STAT1
should be performed in every patient suspected of having a
genetic form of autosomal dominant CMC. Identification of a
mutation in the CCD or the DBD in the context of clinical
diagnosed CMC makes STAT1 a likely candidate for the un-
derlying genetic defect. Functional immunological analysis
should be performed, especially when mutations are found,

which have not been formally proven to result in GOF. We
suggest that the analysis of the frequency of Th17 cells in
peripheral blood may be performed as well as testing for
IFN- and/or IL-stimulated STAT1 phosphorylation by flow
cytometry. While we were able to show an increased phos-
phorylation of STAT1 for several mutations, however, not all
STAT1 variants seem to be disease causing, even when amino
acid changes occur next to known disease causing mutations.
Our functional assay indicated that e.g., p.V266I does not
cause a GOF in STAT1. The variant V266I was previously
published by Uzel et al., after being observed in an infant with

Table 4 Absolute lymphocyte subpopulations, serum immunoglobulins, thyroid markers and autoantibodies

Increased Normal Decreased Unknown

No. of patients % No. of patients % No. of patients % No. of patients %

White blood cell count

WBC 3/22 14 % 18/22 82 % 1/22 5 % 4/26 15 %

Granulocytes 4/23 17 % 18/23 78 % 1/23 4 % 3/26 12 %

Lymphocytes 0/23 0 % 20/23 87 % 3/23 13 % 3/26 12 %

Monocytes 4/23 17 % 19/23 83 % 0/23 0 % 3/26 12 %

Eosinophils 1/20 5 % 14/20 70 % 5/20 25 % 6/26 23 %

Percentage of lymphocytes

CD3+ 3/21 14 % 16/21 76 % 2/21 10 % 5/26 19 %

CD4+ 0/21 0 % 18/21 86 % 3/21 14 % 5/26 19 %

CD8+ 0/21 0 % 20/21 95 % 1/21 5 % 5/26 19 %

CD19+ 2/21 10 % 17/21 81 % 2/21 10 % 5/26 19 %

CD16+/CD65+/CD3- 1/19 5 % 8/19 42 % 10/19 53 % 6/26 24 %

Immunoglobulins serum levels

IgG 7/22 32 % 14/22 64 % 1/22 5 % 4/26 15 %

• IgG1 4/12 33 % 8/12 67 % 0/12 0 % 14/26 54 %

• IgG2 1/12 8 % 7/12 58 % 4/12 33 % 14/26 54 %

• IgG3 2/11 18 % 9/11 82 % 0/11 0 % 15/26 58 %

• IgG4 0/10 0 % 3/10 30 % 7/10 70 % 16/26 62 %

IgM 2/23 9 % 19/23 83 % 2/23 9 % 3/26 12 %

IgA 1/23 4 % 16/23 70 % 6/23 26 % 3/26 12 %

IgE 0/21 0 % 13/21 62 % 8/21 38 % 5/26 19 %

Thyroid markers

TSH 9/22 41 % 12/22 55 % 1/22 5 % 4/26 15 %

T3 2/13 15 % 8/13 62 % 3/13 23 % 13/26 50 %

T4 0/20 0 % 16/20 80 % 4/20 20 % 6/26 23 %

Autoantibodies

Anti-thyroglobulin antibody 3/16 19 % 13/16 81 % n.a. 10/26 38 %

Anti-thyroid peroxidase antibody 0/21 0 % 21/21 100 % n.a. 5/26 19 %

Anti-microsomal antibody 1/8 13 % 7/8 88 % n.a. 18/26 69 %

Anti-adrenal antibody 0/11 0 % 11/11 100 % n.a. 15/26 58 %

Anti-insulin antibody 1/9 11 % 8/9 89 % n.a. 17/26 65 %

Anti-GAD65 antibody 1/9 11 % 8/9 89 % n.a. 17/26 65 %

Anti-pancreatic islet cell antibody 0/9 0 % 9/9 100 % n.a. 17/26 65 %

n.a. not applicable, TSH thyroid-stimulating hormone, T3 triiodothyronine, T4 thyroxine, GAD65 glutamate decarboxylase 65
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an IPEX-like phenotype [28]. Uzel et al. described an en-
hanced DNA binding and transactivation of STAT1 for the
mutation. However, this variant is also listed on dbSNP as
rs41473544, the minor allele frequency is recorded to be
0.0006 in the 1000 Genomes database. When performing
functional testing, we failed to observe a GOF for this variant.
In summary, the relevance of this variant remains unclear.
These findings emphasize the importance of complementing
genetic analysis through functional investigation.

Taken together, STAT1 is the most probable candidate gene
in CMC patients but not the only gene for autosomal dominant
inherited CMC. Finding the missing genetic defects still re-
mains an interesting challenge for future research.
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