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SUMMARY

Lagrangian formulation for surface waves with vorticity is used to create a numerical wave-current flume.
The numerical flume is then used to reproduce a physical experiment on focused wave groups in sheared
currents. The numerical results include evolution of the free surface of focused wave groups in still water and
over in-line and opposing currents and flow kinematics under such waves. Numerical results are compared
with experiment and demonstrate good agreement.

1 INTRODUCTION

The natural way of modelling strong deformations of a fluid domain is using equations of fluid motion in the
Lagrangian form which is solved in a fixed domain of Lagrangian labels. Lagrangian models are capable of
efficient modelling of very steep and overturning waves. Advantages of the Lagrangian approach for numer-
ical modelling of steep waves were demonstrated in Buldakov (2013b), Buldakov (2013a) were a simple fully
Lagrangian numerical model was developed and applied for various wave problems.

Another advantage of the Lagrangian formulation is very simple representation of vortical flows. The vorticity
in Lagrangian coordinates is constant in time and is specified by initial velocity conditions. This paper exploits
this advantage of the Lagrangian formulation. We generalise the previously developed numerical method for
free-surface flows with arbitrary sheared currents. Certain practical problems of numerical implementation of the
method, such as excessive deformation of physical computational domain, are addressed and successfully solved.
The method is then used to create a numerical wave-current flume. The numerical flume is used to reproduce
physical experiments on evolution of wave groups over currents. An iterative methodology of generating focused
wave groups on currents (Stagonas et al., 2014) is used for both physical and numerical experiments. The results
for surface elevation and wave kinematics are obtained and good comparison is achieved between numerical and
experimental results.

2 LAGRANGIAN 2D WATER-WAVE FORMULATION WITH VORTICITY

A general Lagrangian formulation for two-dimensional flow of inviscid fluid with a free surface can be found
in Buldakov et al. (2006). We consider time evolution of Cartesian coordinates of fluid particles x(a, c, t) and
z(a, c, t) as functions of Lagrangian labels (a, c). The formulation includes the Lagrangian continuity equation
and the Lagrangian form of vorticity conservation

∂(x, z)
∂(a, c)

= J(a, c) ;
∂(xt, x)
∂(a, c)

+
∂(zt, z)
∂(a, c)

= Ω(a, c) , (1)

and the dynamic free-surface condition
xttxa + zttza + g za

∣∣
c=0

= 0 . (2)

Functions J(a, c) and Ω(a, c) are given functions of Lagrangian coordinates. J(a, c) is defined by initial positions
of fluid particles associated with labels (a, c). We select (a, c) = (x0, z0), which gives J = 1. Ω(a, c) is the
vorticity distribution and is defined by the velocity field at t = 0. A sheared current can be defined by specifying
vorticity depending only on the vertical Lagrangian coordinate c. For our choice of Lagrangian labels the parallel
current can be specified as x = a + V (c)t; z = c, where V (c) = V (z0) is the current profile. Substitution to the
second equation of (1) gives

Ω(a, c) = Ω(c) = V ′(c) . (3)

Therefore, waves on a sheared current with an undisturbed profile V (z0) are described by equations (1) with the
free surface boundary condition (2) and the vorticity distribution given by (3). A particular problem within a
general formulation is defined by initial conditions and boundary conditions on the bottom and side boundaries.

3 LAGRANGIAN NUMERICAL WAVE-CURRENT FLUME

The problem formulated in the previous section is solved numerically using a finite-difference technique. Detailed
description of the numerical method can be found in Buldakov (2013a) and Buldakov (2013b). The numerical
method for the formulation with vorticity is mostly identical to the irrotational formulation. Here we only
mention differences relevant to the formulation with a sheared current used for construction of a numerical
wave-current flume. In the numerical formulation we do not use vorticity distribution directly. We differentiate
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Figure 1: Left: thick dashed – target amplitude spectrum; thin solid – linearised amplitude spectra for all
computational and experimental cases at the focus point (x = 0). Right: phase spectra at the focus point
(x = 0) and at positions x = ±0.7h = ±0.108λ. Thin – experimental, thick – computational. Solid – no current,
dotted – in-line current, dashed – opposing current (computational only). Frequency is scaled by the peak
frequency ωp and amplitude spectral density by the ratio of the linear focus amplitude A to the peak frequency
A/ωp.

the vorticity conservation equation with respect to time to exclude Ω. Vorticity is implicitly defined by the
initial condition, when we specify x and z for three initial time steps, which are required to start time marching.
The numerical wave-current flume is created by specifying boundary conditions allowing safe inlet and outlet of
the current flow into the computational domain, wave generation and absorption of waves reflected from domain
boundaries. The two latter requirements are satisfied using re-formulated free-surface boundary condition (2)
which includes time-varying pressure gradient and artificial dissipation

xttxa + zttza + g za + k(a) ((xt − V (c))xa + ztza + g za) = Px(a, t)
∣∣
c=0

.

The last term in the right-hand side represents the artificial surface dissipation with the space-varying dissipation
coefficient k, and the term on the left-hand is the surface pressure gradient. The dissipation coefficient is selected
to be zero in the working section of the flume and gradually grows to a large value near the inlet and outlet
boundaries. As the result, the free surface at the boundaries remains relatively steady and does not move from its
original position. This serves a double purpose. First, reflections from the boundaries are significantly reduced.
Second, the boundary conditions at the inlet and outlet boundaries can be specified simply as the undisturbed
velocity profile at the inlet (xt(ain, c, t) = V (c)) and as a parallel flow at the outlet (za(aout, c, t) = 0). The wave
in the flume is generated by creating an area in front of one of the wave absorbers where pressure distribution
of a prescribed shape is defined. Time-varying amplitude of this pressure disturbance is used as a control input
for wave generation. An additional difficulty with numerical realisation of the Lagrangian formulation with a
sheared current is sheared deformation of the original domain in physical coordinates which indefinitely increases
with time. The shape of the domain eventually becomes impractical as it moves out of an area of interest.
Besides, accuracy of computations for strongly deformed computational cells considerably reduces. To avoid
these difficulties we perform sheared deformation of the Lagrangian domain to compensate the deformation
of the physical domain. Such deformation takes place after several time steps and moves boundaries of the
physical domain back to the original vertical lines. After this Lagrangian labels are re-assigned to new values
to preserve the rectangular shape of the Lagrangian computational domain with vertical and horizontal lines of
the computational grid.

4 NUMERICAL AND EXPERIMENTAL SETUPS

We use the numerical wave-current flume to reproduce results obtained during experimental study of focused
wave groups over sheared currents performed in the coastal recirculating flume in the fluids laboratory of the
Department of Mechanical Engineering at UCL. The flume has the width of 1.2 m and the distance between
two piston wavemakers is about 16 m. The depth for all tests was set to h = 0.5 m. A recirculating system
with three parallel pumps and vertical inlets 13 m apart is used to create a current. A paddle on the right
end of the flume is used as a wave generator and the opposite paddle as an absorber. Blocks of wire mesh of
trapesiodal shape are installed on top of the inlet and outlet to condition the flow and create a desired current
profile. Surface elevation at selected points along the flume is measured by resistance wave probes and a PIV
system is used to measure flow kinematics. Wave groups are generated with 4 constant phase shifts within the
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Figure 2: Comparison of computational (solid) and experimental (dashed) time histories of linearised surface at
the focus position x = 0 (thick) and at position x = −6.34h = −0.98λ (thin). Left: no current. Right: in-line
current. Time is scaled by the peak period Tp and surface elevation is scaled by the linear focus amplitude A.
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Figure 3: Comparison of computational (solid) and experimental (dashed) time histories of plus (thick) and
minus (thin) second-order components at the focus position x = 0. Left: no current. Right: in-line current.
Time is scaled by the peak period Tp and surface elevation is scaled by the linear focus amplitude A.

same amplitude spectrum. The resulting signals for surface elevations are used to extract linear part of the
signal as well as non-linear components including second order subharmonics and second, third and fourth order
super-harmonics. An iterative procedure is used to focus the wave group at a prescribed location and time.
More details of the experimental setup and the methodology can be found in Stagonas et al. (2014). At this
stage only tests for waves without current and over in-line currents are completed.

To validate the numerical results we select a moderately non-linear wave group with a Gaussian linear
amplitude spectrum. The peak frequency of the spectrum is fp = 0.6 Hz for water depth h = 0.5 m. The
corresponding linear wave length is λp = 6.488 h. The linear focus amplitude of the wave is A = 0.1 h. The
normalised linear target spectrum is presented on figure 1. The numerical waves were generated in still water
and over in-line and opposing currents of maximal velocity V0 = 0.09 C, where C =

√
gh is linear shallow water

celerity. The profile for computations was created using preliminary ADV measurements of current velocity.
The working section of the numerical flume free from wave generator and absorbers is set to about 20 h. The
origin of the coordinate system is set to the focusing position at the center of the flume with a horizontal axis
pointing against the wave propagation direction. The waves in the numerical flume were generated using the
same iterative focusing procedure as in the physical flume. Calculations are performed for waves without current
as well as for in-line and opposing currents. Calculation results include time histories of surface elevation at the
same positions as in physical experiment and flow kinematics at the focus point.

5 RESULTS

Results of numerical tests and their comparison with physical experiment are demonstrated on figures 1-5.
Figure 1 demonstrates efficiency of the focusing procedure for all experimental and computational cases. The
evolution of phases near the focus point is physically relevant for different current cases and compares well
between computations and experiment. The behaviour of the linearised wave at the focus point is identical for
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Figure 4: Computational surface profiles at the focus time t = 0. Solid – no current; dashed – opposing current;
dotted – in-line current. Left: peak focused. Right: trough focused. Vertical coordinate is scaled by the linear
focus amplitude A and horizontal coordinate by the peak wave length λp.
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Figure 5: Left: Comparison of computational (lines) and experimental (dots) horizontal velocity profiles for the
incoming current (a) and under the crest of the peak focused wave at focus position x = 0 and focus time t = 0
without current (b) and over in-line current (c). Right: Computational profiles of horizontal velocity under
peak (solid) and trough (dashed) focused waves. (a) – in-line current; (b) – no current; (c) – opposing current.
Velocity is scaled by the shallow-water celerity C =

√
gh and vertical coordinate is scaled by depth h.

all cases (figure 2), which is not surprising as this was the aim of the iterative focusing procedure. However,
good comparison at the position one wave length before the focusing point demonstrates that the dispersion
relation is represented by the numerical model with good accuracy. Figure 3 shows that non-linear terms are
also well captured by the numerical model. The calculated wave profiles presented for at focus time for different
current direction for peak and trough focused waves are shown on figure 4. Finally, figure 5 demonstrate good
agreement with measured wave kinematics. The discrepancy observed for the in-line current case is explained
by the defect in the incoming current profile for this experimental run. It is hoped that further analysis of
experimental results and generating more experimental cases will allow to remove this discrepancy.

The authors thank EPSRC for supporting this work withing the Supergen Marine Technology Challenge.

References

Buldakov, E. V. 2013a Lagrangian modelling of extreme wave groups. In 28th International Workshop on
Water Waves and Floating Bodies. L’Isle sur la Sorgue, France.

Buldakov, E. V. 2013b Tsunami generation by paddle motion and its interaction with a beach: Lagrangian
modelling and experiment. Coastal Engineering 80, 83–94.

Buldakov, E. V., Eatock Taylor, R. & Taylor, P. H. 2006 New asymptotic description of nonlinear
water waves in Lagrangian coordinates. Journal of Fluid Mechanics 562, 431–444.

Stagonas, D., Buldakov, E. & Simons, R. 2014 Focusing unidirectional wave groups on finite water depth
with and without currents. In 34th International Conference on Coastal Engineering . Seoul, Korea.


