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Abstract

Thewidely appliedgenetic differentiation statisti¢standGsthaverecentlybeencriticised
for underestimang differentiation when applied to highly polymorphic markers such as
microsatellitesNew statistics claimed to be unaffected by marker polymorphiswvs been
proposed and advocated to replace the traditiegedndGst. This study showthatGst
gives accurate estimates and urelimate®f differentiation wherdemographic factorare
more andess important thamutatiors, respectivelyln the former casell markers,
regardles®f diversity Hs), havethe samésstvalue in expectatioandthus givereplicated
estimates of differentiatiorn the latter case, markers of hagids have loweiGstvalues,
resulting ina negativeroughlylinearcorrelation betweestandHs across locil propose
thatthe correlation coefficient betwe&srandHs across locireH, can be used tdistinguish
the two cases artd detect mutational effects @st. A highly negative and significamt,
when coupled with highly variabl&stvalues among locivould revealthatmarkerGst
values are affected substantially butationsand marker diversityunderestimate population
differentiation, andarenot comparable among studies, species and ma@ismslated and
empirical datasets are used to check the power andistdtizhaviou, and to demonstrate

the usefulness of the correlation analysis.

Introduction

A speciesrarely breed at randomhroughoutts whole range to form a homogenous unit.
Frequentlya speciess geneticallystructuredn space subdivided intsubunitscalleddemes,
races, s ub pelipaatingthapatial genetigdructure bydividing a species into
stbunitsandquantifying the genetic differentiation among the subunits is imponamiany
biologicalfields such as evolution, conservatiduman medicine and forensidhe

subdivision can be made based on natural (e.gsJiweartificial (e.g. dams or highways
boundarieson geographical locationst on genetic datée.g. Pritchareet al 2000), and the
differentiation can be measuraddé m mar ker dat a BGsgi MNE9ABYsi ght 6s
Gstand related statistiichas Weik Coc k er h ad)d@sdS A ©Bi nRssThd 1 995)
development andiide application of highly polymorphimarkers such as microsatellites

made these statistics ever more popular, but also caused some confusioncand The

most populadifferentiationstatistics FstandGst, arebelieved taunderestimatpopulation
differentiationwhen calculated frormarkers of high diversitfe.g. Nagylaki 1998; Hedrick
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2005; Jost 2008rndfor this reasomlternative statistics wepgoposed anddvocatedo
replace them (Hedrick 2005; Jost 200&irmans& Hedrick2011). The new differentiation
statistics, however, are criticizéar their lack of biological meaning and applicatiotmsgir
marker dependendyut drift independency, and so on (see Ryrabeimar 2009 Whitlock
2011; Wang 201

The claimthatFstandGstunderestimate population differentiatiomisidefrom
both theoretical and empirical grounds. The mathematical definiti@swef (HrT1 Hs) / Hr
suggests that it cannot take values larger than the average within subpopulation homozygosity,
1 Hs(@Jin& Chakraborty 1995; Nagylaki 1998; Hedrick 1999, 200%)s constraints true
both mathematically and biologically. BofisrandGsrare inherently constrained Ibig, as
they signify the amount of genetic variation between populaths)saé a proportionf the
total variationVt, which is composed of within/y) and betweenVg) population variation.
A high Hs means a higWw, and necessarily a loMs as a proportion o¥r (i.e. low Fstand
Gs1). However, the constraint imposed BgrandGstby Hs does not necessarily mean they
are alwaysnarkerHs dependent andnderestimateifferentiationfrom markers of highs,
as claimed by some authors (eNggylaki 1998; Hedrick 1999, 20030st2008. On the
empirical groundssome studies showed tt@érbased ornighly polymorphic
microsatellites isisually lower tharGstbased orweaky polymorphicallozyme loci (e.g.
Sanetra& Crozier 2003)and is obviously too low for highly differentiated subspecies (e.qg.
Balloux et al. 200Q CarrerasCarbonelletal. 2006) These empirical evidences are tfae
these particular systemsut do not suggest thBsrandGsrcalculated from highly
polymorphic markers mustiwaysunderestimate population differentiation in all

circumstances.

Are FstandGstdependent on marker diversity? Do they always underestimate
population differentiation from markers of high diversity (e.g. microsatellites)? Under which
set of conditions do they provide marker depen¢eamd thusiased)and marker independent
(and thusaccuratestimates of population differentiatiot?it possible to detect whether
FstandGsrvaluescalculated from a set of markers underestimate differentiation otmot?
this paper, | will us@ combination of analyticahodeling, simulated datand empirical data
to answer these questiorishowGsris independent ofls when mutation rateuf is small
relative to migration ratarf) or drift (1/2N). Otherwise Gstdecreases nearly linearly with an
increase irHs. The results suggest a test for finesence or absencerotitational effects on

Gst. If singlelocusGsrvalues are highly variable atige correlation betweesinglelocus
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GstandHsvalues is significantly negative, théme observedsstvalues aresubstantially
affected by mutations, atecus specificandseriouslyunderestimatéhe differentiationdue

to population demographif the correlations insignificant, then thebserved singléocus
Gstvalues areinaffected by mtations and armarkerindependentThey carthenbe

averaged to give apverallestimate othe genetic differentiation caused by demography only.
Simulations and empirical data are analysed to chechdlwver and statistical propertiels

the correlation and regression arsaby/
Method

The relationship betweeBstandHsis investigated by analyses of standard population
genetics models of migratipdrift and mutation. The results are then verified by analyses of

simulated and empirical datasets.
Theory

Following most previous studies B§r, | assume population undehefinite island model

of migration(Wright 1931)and the inihite allele model of mutation (Kimui&@ Crow 1964)

for mathematicatractability. The results and conclusions are, however, applicable
gualitatively topopulations undesther migration modejJsucha®r i ght 6 s (1943)
by distance or neighbourhooabdeland Kimura& Weis$ §1964) stepping stone model
andunderother mutation modelsuch as stepwise mutation mottal microsatelliter
allozymeg(Ohta& Kimura 1973.

Underthefinite island modelvith migration ratem amongs subpopulations of
effective sizeN, andunderthe infinite allele modeflor a neutral locusvith mutation rate,
the recurreoe equations for thexpected homozygosityithin a subpopulation]o, and
between two subpopulation, is (Nei 1975 Li 1976)

o y ~

0 Qodw p wo p ®wL h (1)
0 Quw p QL p w0 h (2)

where® & ¢ & Tihd p @ Qo pfc¢d andQ p 6 .Equivalently,
Jo and J; are the probabilities that two gentken at random from within a subpopulation
and from different subpopulationgspectivelyare identical in statdhe complementdis

=1- Jo andH1=1- J1, give theexpected (i.e. assuming random union of gametes)
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heterozygosity or gene diversitfei 1973) within and between subpopulatiofi$e total
expected heterozygosity or gene diversity in the entire population is 'O i

P OXi p 0O O O T (Neil975).GivenHtandHs, Gsris calculated byO

p OTO (Neil973). Using (1) and (2), we can calculate recurrently the valuds bfr
andGsrat each generation, given parametars\, u, &and initialgene identies Joo) and

J1(0)-

Under the joint action of mutation, migration and drift at rates and 1/2N)
respectivelythe gene diversityHs, Hr) and its distributionGs1) will reach equilibrium
values.Gsrattains its equilibrium value much faster thdgiandHr, becase it is determined
by the strongst(in terms of rateyvhile Hs andHr are determined by the wesdtamong the
forces of mutation, migration and drift. The equilibriugene identig valuesare(Nei 1975;

Li 1976)

0 - O O QT (3)
0 - o Ofh (4)

whereO p QOp @ p ® Q & & p ©.The equilibriumgene diversity
and differentiation value§) - ,"O - and"O - , canbe calculated using (3) and (Zhe
expression fofO - is complicated, butan be simplifiecapproximatelyto (Takahats& Nei

1984)

o - pfp ¢4 — —— p . (5)
Whenm, u« 1, (5) isfurthersimplified to (Takahat& Nei 1984)

0O - pfp 0 — a O . (6)

Whens- “ , (6) again reduces tihe equilibrium Fstof the infinite island modedf Wright
(1969, page 29]1)ndicaing thatFstandGsrare equivalent (Bi 1977; Takahat& Nei
1984).

Although several studies have used similar models to investigate the impact of
mutations orFstandGst(e.g. Rymar& Leimar 2008 Whitlock 2011), nonéas examined
the direct relationship betwe&srandHs. Herein | will use quations (16) toexplore this

relationship inpopulations in bdt equilibrium and nomequilibrium conditions under



146 different parametem, u, N, S) combinations. This is important as b@krandHsare
147 estimable from marker data, and examgthe observed patterns @standHsat a set of

148 marker loci sheds light on the possible impact of mutatiornSsan
149  Simulations

150 Simulated dat&ypical of thoseencounteredh practicewere generated to test whetliee

151 correlation analysisf singlelocus estimates dbstandHs couldbe used taletect the effect
152  of mutations orGstwhen it is presenand whether the analysis does falsely detecthe
153 effect of mutations when it is absemhe behaviour and power of the correlation analysis
154  were investigated by analysing simulated data with varying sampling intensities (of
155 individuals from a subpopulationf subpopulationsandof markers)different population

156 propertiesly, s, m, u) anddifferentmutation and migration models.

157 The simulations consideréie finite island modeds described above, and a-one

158 dimensional circular stepping stone model (Kim&rsVeiss 1964). In the latter model, a

159 number ofs subpopulations are arranged in a circle and each subpopulation receives a

160 proportionnV2 df its individuals fromeach of its twaeighbouring subpopulations. In both

161 models, each subpopulation is composeMN diploid monoecious individuals. At each

162 discretegeneration, the events aramitations, migrations and reproductmtcurring in that

163 order. Mutations are assumed to follow eittier infinite allele modedbr the stepwise

164 mutation modelFor the former, a mutation always generates a novel allele the population has
165 never seen before. For the latter, the mutated allele increases or decreases in size by 1 repeat
166  with an equal probability of 0.5-0or both models, the number of new mutatiana locusin

167 each subpopulation at each generatias sampled frora Poisson distribution with

168 parameter valueNu. For each newnutation a genevas drawn at random frorthe 2N genes

169 andwas changed according to the mutation model. Reproduction is agsarbe random

170 union of gametes, such that selfing and outbreeding occur at ddtasdLA1/N respectively

171 and the effective size is equal to the census size for each subpopulation

172 An ancestral population was assumetieéadhe same as the subdivided population
173 described above except for populatgre and structurdt was unsubdividednd had size
174  Na=rsN, wherer=0.5, 1 and Zuch thait had equilibriumgenetic diversitysmallerthan

175 closeto, and largethan thesubdivided populationespectivelyThe ancestral population was
176 maintained for d&argenumber of generations for it to reach mutattiit equilibrium at a

177 neutral locus with mutation rate(which was variable amorggnumber ofL loci). It was then
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subdivided intcs subpopulationsf sizeN, which weremaintained as described above dor
(=100, 200, 400) generations for a sufficienty largenumber of generations the order of
Max(1/u, 1/m, 2N), to reach mutatiowrift-migration equilibrium. A sample dfl individuals
wasthen taken at random from eachRf € randomly selected subpopulatioasd each

sampledndividual was genotyped at a numbeiLdbci.

The genotype data were then useddlzulateNei& Chesser 6s (1983)

unbiased estimators bfs, Hr, and thuGs,

0 o 07O,

wherey; is the frequency of allelein the sample from subpopulatiprk is the number of
alleles observed in theet ofsamples from th& subpopulations, and is the harmonic mean

s amp | e Msnithe simulatfohs).

The estimate’O and"O were then used to calculate their correlation coeffigient
across lociThe significance ofsn was tested by aermutation analysis in whic® and"O
were both randomized across lbeifore calculatingen in 10° replicates The proportion of
replicates in whichicn was smaller than thegH value calculated from the original data was
taken as the value. The correlationoefficientwas taken as statistically significant when
p<0.001.A significant negative correlatiorsn indicates thatO has been affected by
mutationsand thus underestimatehe differentiatiorcausedurelyby demography (drift and
migration). Otherwise, markers withfidirent levels ofliversity’O are equally differentiated,
they all give the sam@stexpected from the impact of drift and migration grigdthe
single locuLGsTestimatesan be averaged to give a better (in precision) overall estimate of

differentiation

Too many paramet@ombinationsdue to thenumerougparameterand thenumerous
plausible valuesf eachparameterare involved in determinin@ and™O that a realistic
simulation study can only consider a small fraction of thestuded the effect of each
parametrin isolation of others each time by varying tleues of the focal parameter only

(see Table 1)-or each parameter combination, a number of 100 replicate datasets were

n

€



207 generated and analysed. The analysis results were reported as the mean caweféitant
208 betweenO andO,i[ , and the proportion of replicates with a statistical significant (at

209 p<0.001) rcH among the 100 replicates.

210 The simulation program was checkegcomparing the simulated against the

211 predicted values cfeveral quantitie®d make sure it worked properly. First, the effective size
212  of the entire populatiom the finite island modéak Ne = SN(1-Fs7) (Wright 1943; Wangk

213 Caballero 1999WwhereFstcan be replaced bgst. This theoreticapredictionwascompared

214  with thatestimated from the simulated pedigregesingtheformula— ——— wheret the

215 generation is large and-is the average coancestry at generdtin all individuals inthe

216 entire populationSecond, the predicted valuesH Hr andGstby (3-4) were compared

217  with the corresponding observed values for an equilibrium population unfithiie allele

218 andfinite islandmodes. In all situations investigated, the predicted and estimated (@u§erv

219 valuesfittedvery well.
220 Empirical data

221 The simulation model may be too simple to reflect the reatitg real population, botim
222 andN may vary over space and time, and migratiand mutatios may not follow the ideal
223 modelsassumed in the simulationSupplementing simulation$erefore, | also anadgd
224  several recently published empirical datasets to demonstraisdtad theproposed

225 correlation analysis.

226  Atlantic Salmon To investigate the genetic structure of Atlantic salmon populations in the
227 entire North American range of the species, Maral (2014) sampled 9142 individuals

228 from 153 populations and genotyped each individual at 15 microsatellitd hegi also

229 sampled1080 individuals from 50 populations and genotyped each individual at 3192 SNP
230 loci. The two datasetwere analysed separateily the present study of the relationship

231 betweerGsrandHs.

232  Blacknosesharks Using 23 microsatellites anchtDNA sequencesortnoyet al (2014)

233 investigate the genetic structure and barriers to gene flow of 10 blacknose shark populations
234 sampled 651 individualsn total) from the western North Atlantic Ocedhwas found that

235 theFstvalues at the 23microsatellitdoci between the Bahamas and any of the other

236 populations weranore than an ordeaf magnitudegreater than the values between any two

237 of the other populations. Therefof&standHs values were calculated for each locush@2
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alternative populatiostructures, the X@&nd 2population (Bahamaand the restinodelsin

the present study.

Mediterranean shore cratschiavinaet al (2014) investigated the genetic structur¢hef
Mediterranean shore craBdrcinus aestuar)iin the Adriatic Sea (centrdlediterranean),
using11 polymorphic microsatellisan 431individuals collectedrom eight sitesOne locus,
Cae30, has only 5 alleles and a gene diversitysef0.1, much lower than the locus with the
2nd lowest diversity, which has 13 alleles andisa0.77. So Cae3@as excluded as an

obvious outlieffrom the GsrandHs correlation analysis.

Blacktip reef sharksTo understand the genetic structure of blacktip reef sharks
(Carcharhinus melanopterjsvignaudet al (2014) sample@58 individuals from 15 sites (4
widely separated locationsinthelnBoaci yc and 11 i sl ands in
distributed in the Indianarda c i y ¢ E@ah samplesl individual was genotyped at 17
microsatellite loci Three loci (cil169, cliQ7 and clil2)wvere found to deviate significantly
from HardyWeinberg equilibrium and were suspected to contain null alleles (Vigetaald
2014). The three loavereexcluded fronther original geneticanalyss. Herein | investigaig
the impact of mutations ahe estimated differentiation among these shark populations by
analysng the relationship betweebstandHs, using both the entire set of 17 loci and the

selected subset of 14 loci

Copper rockfishUsing17 microsatellite DNA loci, Diclet al (2014)assessethegenetic
diversity of andhedifferentiationamong ten populations of copper rockfiSebastes
caurinug representing paired samples of outer coast and the heads oiifile¢sreplicate
sounds on the west coast of Vaneer Island, British Columbia. The sample size per
population varies between 30 and 1D&alculatel the GstandHsvalues at each ahe17
loci among the 10 populations, and ¢éestthether thenarkerdifferentiation isaffected by

mutations or not.
Results
Analytical results

Equation (6) suggests th@grat neutral locis determined by the joint action of migration,
mutation and drift occurring at rateg y and 1/(2) respectively The relative impact of
eachevolutionaryforce onGsris determined by its rate as a proportion of the total rate,

m+u+1/(2N). When subpopulations are smsiichthatdrift is the dominating force (i.e.

Fre
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1/(2N) » u+m), thenHs- T(i.e. fixation)andO - - pin equilibrium conditionsWhen

mutation is weak relative to drift and migration (uel/(2N) + m), then"O

pf p 10 — & ,which suggestthat"O - reflectsdemography only and all lowiith

varyingbut smallu have the same expectédr. In contrast, for loci witlahighuin a

population withalargeN andasmallm (i.e.u» 1/(2N) + m), 'O - becomes locur

mutation)dependenandcovaries with locus specifiels (below). In such a casmarker

basedO - has little bearing on population demograpttngO - value calculated from

one set of loci can hardlye congruentvith that from another seif loci, andit is

incompaableamong studiespeciesandloci.

Figure 1 plots the equilibriuBsras a function oHs, calculated by (5) and (3)
respectivelyfor different parameter combinationsigfmandN, assuming=10.When
differentiation is expected to be small due to either strong migratid0(. 0 1) or we ak
(NO 2 5 03grkeefs constant and does not vary whis in its entire range of [0, Maused by
widely varyingu values inrange of .08, 10?]. The observatiodisproveshe belief thaGsrt
underestimates differentiation and becordeslependent wheHsis high (e.g. Nagylak
1998; Hedrick 1999, 2005; Jost 2008)gh Hs values(say 0.95) daonstrainGstto small
values with amaximum of 1- Hs, but donot necessarillead tounderestimated and locus
varyingGst. What is relevant is themain mechanism (determined by tiedativestrengtts of
mutation drift and migration leading to the observed higits, not theobserved higlids per
se A highHsis usually due to a highor/and a higiN. However, as long asis much

higher tharu, Gsris virtually independent ofis.

Whendrift is strong (i.eN small) and migration is weak relative to mutatio@sy
decreases almost linearly with an increasiizglue to an increasing(Figure 1). Only in this
situation is the belief th&stcovaries withHs (e.g. Nagylakil998; Hedrick 1999, 2005; Jost
2008) certified. For the parameter combinatsr250,m=0.001, and=10 in Figure 1, for
example Gstkeeps almost a constant value of 0.45 whearies between 10and 3x1¢
that leads to &lsvarying between 0 and 0.5. With3x10° and thusHs>0.5 Gstbegins to
decrease linearly withn increasingds (or u). Similar results are obtained with other values

of the number of subpopulatiors).(

Many generations, in the order ohd/Lu or 2N whichever is thesmallestare
required for a subdivided population to reslcdequilibrium differentiation. Natural
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300 populations may never reach such equilibriunmandN are constantly changing. It is thus
301 important to check whethéne aboveobservations (Figure 1) also apply taweguilibrium
302 populationsFigure 2plotsGsras a function oHs at generations 50, 200 and 1G90ce the
303 subdivision Mutation rate () is assumed to vary fro0® to 102, and the initial gene

304 diversity is assumed to lJep) = Ji0) and to take valuasly ), wherer=1,0.5and 0.25The
305 relationship betwee@standHsin a nonrequilibrium population is similar to that in an

306 equilibrium population (Figure 1). Wheneuex 1/(2N) + m, Gstdoes not vary withs (or
307 u). Depending o as well adN andm, Hs canfreelyvary in almost the entire range of [0,1]
308 without affectingthe value ofGst. OtherwiseGstdecreases nearly linearly with an

309 increasingHs (or u). The further away a populatiaepartdrom the equilibriumthe less

310 affected it is by mutations because the latter require time to accumulate NA2&0, for

311 example, mutations start to have a substantial impaGseat generations 50, 200 and 1000
312 whenHsO 0udmB001G)HsO 0udO® .0@PandHsO O0ulmBO0OO3 respectively.

313 Initial gene identies(or diversities)seento have little effect on the relationship betwés

314 andHsat any generation.
315 Simulation results

316 Confirming the analyticalesults presented above, simulations show tHag¢nmutationsare
317  strongrelative tomigrations (n=0.001) Gsrestimates vary among loitiat have different
318 and thudifferentHs, and are negatively correlated wits (Figure 3). This is true fahe

319 finite islandandstepping stonenigrationmodels,andfor the infinite allele, finite allele and
320 stepwise mutatiomodels This is alsdrueno matteithe population is anutatiorrdrift-

321 migrationequilibrium (Figure 3) or not (data not shown). Tegative orrelationin stepping
322 stonemigration modebndinfinite allele mutatiormodelis strongethanthat inother

323 migration and mutation modelk cortrast, when mutations are weaHativeto migrations
324 (m=0.01),Gsrtestimates arsmall and ar@almost constant among loci with differanand
325 thus differenHs. This is show for an equilibrium population undeirfferentmigrationand

326 mutation models (Figure) 3but isalsotrue for norequilibrium populations (data not shown).

327 Whenmigrations araveak relative to mutations such tl@&ris substantially affected
328 byuand becomes negatively correlated wild) a modest sampling effort is needed to detect
329 the correlatiorfor different migration and mutation models (Figure®)is is also true for

330 populations that have not reachadtationdrift-migrationequilibrium (data not shown).

331 Settingthe statistical significancat a conservativéevel of p<0.001, thdalse detection rate
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of mutational effects is low (generally belao), while the power is generally above 60%
except when less than 10 loci and less than 4 subpopulations are used in the Bmalysis.
agreement with the results in Figure 3, the correlation analysis is less powerful for the island
migrationmodel coupled wh thestepwiseor 2-allele mutation modehan other models.

While the power increases with the nungagrsampled loci and sampled subpopulations
(Figure 4), it is little affected by the number of sampled individpatssubpopulatiarM, as

long asM > 10. This is not surprising because the population is highly differentiated for the
parameter combinatigrand just a few individualger subpopulatiomwould allow for a good

estimate ofGst.
Empirical analysis

The Atlantic salmon data clearly show extemelystrongnegative correlatiofr =+.953)
betweerGstandHs estimatesamongthe 15 microsatellite@-igure 5A), with ap value of
0.0x108. These markerarehighly polymorpht, with Hs varying between 0.66 and 0.94 and
with the number obbservedilleles varying between 15 and 91. Compatible with
substantial impact of mutatiorthese markers havew but highly variableGsrvalues

varying between 0.02 and 0.@%th a mean of 0.045 and a coefficient of variation of 0.629
These single locuSstvaluesare all highlysignificant, as determined by permutation

(permuting individuals among subpopulations) tests.

In contrast, the correlation betwe@grandHs estimates of the 3192 SNPs (Figure
5B) is positive and small£0.044), with g value 0f0.993 which is insignificantHs values
distribute nearly uniformly in the range [0, Q.B]hile most SNPs hav@stvalues of about
0.1, quite a few outliers shostvalues well above 0.4. The me@sris 0.9 for the 3192
SNPsand is 0.09Iwvhen theoutlier SNPs witlGst> 0.3 are removedoth values arenuch
larger tharthemeanGsracross the 15 microsatellites which is 0.0B%e comparison
between SNPs and microsatellites further vesthat the differentiation at microsatellites is
greatly impacted by mutations and thus underestimates the undgrbpntation

differentiation due to demography.

Theblacknose shaskhavehighly variablesinglelocusGstvalues, with the highest
being 0.35 and 0.18 and the lowest beiram@ Ofor the 2 and 10population models
respectivelyFigure5C). Amongthe 23 microsatellitesGstandHs estimates are moderately
negatively correlated, with a correlation coefficieht0.41 =0.017) and-0.43 (=0.007)

for the 2 and 10population models respectively. None of the correlations are signiaitant
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p=0.001, but there is a clear trend of less differentiaabmore polymorphic marker loci

which indicates that mutations might have reducedzheralues at these laci

The differentiatiorcalculated froneach of the 10 microsatellites is lo@«<0.04)
among the 8 Mediterranean shore crab populatiigeire5D). NeverthelesssstandHs
estimates are highly negatively correlated, with a correlation coefficie@t8fanda small
p value 0.010). It is likely that mutations have substaryiampacedon theGsrestimates
from these microsatelliteand thus the underlying populatiorifdrentiation due to

demographynay well be underestimated by these microsatellites

The 17 microsatellitem blacktip reef sharkare highly variable in diversityyith the
number of observed alleles varying frdnto 48 and théls varying from 0.15 to 0.89. The
Gstvalues among the 15 populations estimated from the 17 loci are also highly variable,
from 0.04 to 0.41 (FigurBE). The 3 loci showing deviation from Hardlyeinberg
equilibriumare apparently not outliers in terms ofbdiversity and differentiation. The
single locusGstandHs estimates are highly negatively correlated, with a correlation
coefficient of-0.890 p=0.000x10°) and-0.913 p=0.000x10°) for the entire set of 17 loci
and the subset of 14 loci respectivetythis system, mutations are highly likely to have
reduced the differentiationf themicrosatellitesthe underlying population differentiation
due to drift and migration should be higher than the aveBagealue calculated from tise

microsatellites.

The differentiatiormeasured bfstat each of the Zmicrosatellites is low among the
10 copper rockfistpopulations (Figur&F). Except for locusSralt103which has &st=
0.09,singlelocusGstvalues are below 0.05. The overall m&yacross loci is 0.027, very
close to thd-stvalue 0.03 obtained by Diclet al (2014).Single bcusGstandHs estimates
arenotcorrelated, with a correlation coefficierft@011 andap valueof 0.649. It can be
concluded confidently thahutations havao impact on theeGsrestimatesand all markers,
regardless of polymorphismshouldhave the same expected differentiation which is
equivalent to the population differentiatiorhe averagésracross loci, 0.027, should be an
unbiased dsnate of the population differentiati@ue to demography

Discussion

The claim thaFstandGsrare dependent on markds and underestimate population
differentiationwhencalculated from highly polymorphig.e. highHs) markers(e.g.
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Nagylaki1998; Hedrick 2005; Jost 2008an bemisleading It hasled to the conclusion that

these traditional stati Hs(e.g dedrekh200b)odreplaced ei t he
by new statistics such &s(Jost 2008)The claim creates lots of confusions, aSgfandGst

should be independent bis to be correctneasures of differentiatios Wright (1978, p.82)

explicitly statedhoweverFst(thesame foilGsy measur es @At he amount of
amongs ubpopul ations, relative to t hGmgletemi ti ng
fixation means each subpopulation is fixed with an allele (i.e. all individuals in

subpopulation have the same homozygous genotyb&h is not necessato be unique

among subpopulations. Fixation resut$ds=0, and thenaximaldifferentiationof Fst=1is

achievednly atHs =0. For this reason, Wright (1951) also calledFhiga fixation index,

among other fixation indices &is andFr. The quantityHs measures thabsolutedistance

from complete fixation (i.eHs=0), and naturally constraifisst, which measures thelative

(to total diversityHr) or standardizedistance from complete fixatiofihe definition of

‘O p "OFO (Neil1973) maesthe functional relationship betweabsolute (i.eHs)

and relative (i.eGsy) differentiatiors explicit. Therefore, botRkstandGsrlegitimately

depend onor more precisely, areonstrained byds. This relationship is true both

mathematically and biologically, and does mbterentlycause~standGstto underestimate

differentiation for markers with higHs.

More preciselyFstandGstbecome marker dependent and underestipapelation
differentiationonly when migration rate iwer than mutation rat®©therwise, they provide
accurate estimates of population differentiation regardlessmdferHs. In a population with
low migration rates (i.an < u), amarker with a highruis expected to havehagherHs (or
absolute differentiationrand a correspondinglpwer Gst (or relative differentiationin both
equilibrium and many neequilibrium conditions\(Vhitlock 2011; this study). It should be
emphasizedhat a highu does not necessarily lead to a hidgy andvice versaThis is
because it is the quantitN rather tharu that determinebls. A marker with a smallin a
population with a larg®& can still harbour a highls, and a marker with a largein a
population with a small can still have a lowls. The statement that microsatellites, because
of their high allelic polymorphisms and higls, mustalwaysunderestimate differentiation is
imprecise. Such markers show less differentiation tharptagasorphic markers (e.g. SNPs)
only when migration is weakr(<u), as illustrated by Figures 1 and 2.

This studyreveas that whenevem<u andthusmutations have a substantial impact,

singlelocusGstVvalues decrease almost linearly wiinglelocusHs. This is true in both
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428 equilibrium (Figure 1) and neequilibriumpopulations, as verified by simulations under
429 different migration and mutation models (FigurelBjs not surprising that the pattern

430 observed under the idaaland migratiormodelandthe infinite allele mutatiomodel

431 applies to other migration and mutation models, bec&sandFsraredefined as

432  descriptive statistewithout any predefinedemographic and mutationodels.Mutations
433 act to increase genetic diversityandHr) andthus to decreaddifferentiation among

434  subpopulationsno matter they occum thefinite or infinite allele modebr in the stepwise
435 mutationmodel (Wright 1943)Migrations,in contrasttend to redistribute genetic diversity
436 evenly among subpopuians Thereby they tend teeducethe difference betwedds andHr
437 andthusto reduceGst, no matterthey occuiin the island model, stepping stone modeher

438 isolationby-distance model.

439 The simulationgonfirm that a correlation analysis betwesmglelocusGstandHs

440 estimatesan be used to detect thrutational effects on differentiatiobnder typical

441 sampling intensities, the analysis has sufficient power to identify the mutational effect when
442 itis present, and it does not falsely deteetrttutational effect when it is absent (Figurge 4)

443  when the significance level is choserpa®.001 A higher significance value (say, 0.5 or

444  0.01) leads to higher powers, but also higfadse detectates.Underthefinite islandand

445 infinite allelemodels(first row in Figure 4)for example, the power (when=0.001) and

446 false detection rate (when=0.01)increase to 86.7% and 11.8% respectively wireh01,

447 and to 90.7% and 30.0% respectively wpef.05 A good balance between type | and I

448  errorsis achieved gv=0.001,which leads to $alse detection rateeingalways below 7%

449 irrespective of the widely varying sampling intensities of the number of subpopulations, the
450 number of individuals per subpopulation, and the number of loci and polymmplisgure

451  4).

452 Two out of thefive empiricalmicrosatellitedatasetgFigures B\, 5E) show strong

453 eviderce @high negativecx valueandasmallp value) that mutations haveducedGst

454  estimaedfrom microsatellitestwo dataset (Figures 5C, 5D) indicate a similar trend with

455 higher uncertaintiesand the remaining dataset (Figbi§ shows no detectable effect of

456  mutations orGsr. It is noticeable that the copper rockfish populations (Figure 5F) have high
457 and widely variabléds valuesacross the 17 microsatellites, the hightsbeing 0.86. These

458 Hsvalues are similar to those of the microsatellites in Atlantic salmon populations (Figure 5A)
459 and the blacktip reef shark populatioRrgg(re5E). Yet, contrasting patterns GgrandHs

460 were observed among the three species. This again verifies the theory and simulation based
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461 conclusion that a higHs does not necessarily leadrt@arker dependei@st, and does not

462 necessarily result in underestimation of population differentialiosituations where the

463 correlation betweefsstandHs has a high uncertainty (e.g. Figus€), collection of more

464  data by sampling more subpopulations, loci, and individuals) may confirm or reject the
465 hypothesis thabstin astudy system is affected Ibys or mutationsin contrast, the analysis
466 of a big SNP dataset (Figur8pbdoes not detee@ny mutational effect. Theorrelation

467 betweersinglelocusGstandHsvalues, 0.044, is small and positive, ateaty indicates no
468 mutational effects ofsst. Theresults are understandable becabhsel for SNPs can be

469 several orders smaller th#mat formicrosatellitesand as a result is more likely to be smaller

470 than migration raten.

471 The fiveempiricalmicrosatellite datasets were taken fromniastrecent literature at
472 random with regard tthe relationship betweeastandHs, which was revealed only after the
473  correlation analyses. If this small sample of datasets represents the reality, then we may
474  conclude that underestimation of differentiationnigrosatellites could be a common

475 problem(Hedrick 1999, 2005; Jost 2008y metaanalysis of many more microsatellite

476 datasets as exemplified in this study is required for a solid conclitevever,while

477 microsatellites do underestimate differentiatio some (or many) situationthey can also

478 yield unbiased estimat@s situations wherenigration is high as shown for tleepper

479  rockfishpopulations (FiguréF). The assertion that all microsatellites of hidgé

480 underestimate differentiation and there all Gstestimates should be standardized (Hedrick
481 2005) or abandoned and replaced by new differentiation statistics (Jost 2008) is unjustified.
482 In addition to the problems shown befoRyan& Leimar 2009 Whitlock 2011; Wang

483 2012, these new statistics are also marker diversity dependent as shown below.

484 It is notable that severaluthorshavecondut¢eda metaanalysis of the relationship

485 betweenGstandHsacross speciesgpulations Heller & Siegismund@009; Meirmans

486 Hedrick 2011)They found that the estimat&@#ris always smaller than the maximum value

487 of 1- Hs, as expected, argthows a weak negative correlatianth Hs. It should bepointed

488 outthat the correlation analysis proposednnstudy isfundamentallydifferent fromthat in

489 these metanalyses. In the latter, the correlation is at the species level, GeegiadHs are

490 averagevaluesacross loci for each species. Because different species may have experienced
491 different evolutionary forces and demography such that @wivaluesdiffer, it is unclear

492  what the hypothesis these metaalyses are trying to prove or disapprove, excegphéor

493 functional relationshifisst<1- Hs which should however always be true from the definition
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494  of Gst. The presence of a negatis@relationbetweernGstandHs does not prove thasris

495 underestimated arid marker dependent because of mutational effects. The absence of the
496 correlationdoes not prove that mutations have negligible effectsGane unbiased and

497 marker independent. In my study, the correlation is betwegtelocus values ostand

498 Hswithin a species (population). The hypothesis, clearly defined and supported byaheory
499 simulations isthatGstvalues should bsimilar across markers of differeids if mutations

500 are unimportant (whea<m), resulting in ancn notdifferent from 0.Otherwise i(e. u>m),

501 Gsrvaluesshoulddecrease with markers showing an increaglggesulting in a highly

502 negative correlation betwe&standHs.

503 Gstcalculatedrom a locus measures the genetic differentiation among

504 subpopulations at the locus due to the combined effect of all evolutionary forcd97Se
505 Selection directlynfluencesFstandGst, as Wright (1943) illustrated with several different
506 types of glection. In principle, a negative correlation betwklg@mndGstcan also be

507 generatedor markers closely linked with a locus und&mongselection for spatially different
508 alleles (which causes a decreasklgand an increase iBst) or/and for spatially different
509 allele combinations (which causes an increadésiand a decrease (&s7). Although my

510 correlation analysis assumes the absence of selection, it should bemahast applications.
511 First, frequently only a few microsdltees (<30) are used in calculatifgror Gst, and the
512 chance of any of them being under selectipbeing linked to locunder selectiostrong

513 enough (compared with other evolutionary forces) for detection is slim. Second, with
514 genomic dense markergch as SNPst is highly likely that a small fraction of the loci are
515 understrongselection. The correlation analysis should howevertsitbbust because the
516 vast majority of loci are neutral and a few selected loci should not affect the overall

517 relationship betweeHsandGsr.

518 This study focusses on the widely applifferentiationstatisticGst(Nei 1973)

519 Otherdifferentiationstatistics or estimators such@@/Neir & Cockerhanil984), D (Jost

520 2008)andG ér(Hedrick 20®) couldalsobeaffected by mutations and yield markels(

521 dependent estimate&ll these statistics measure differentiation at marker loci due to the
522  collective actions of all evolutionary forces, including mutatid®ben mutationgre

523 important(i.e. u>m), therefore, differentiation estimates are expected to be different among
524  loci. Some statisti¢dike D which is claimed t@utperformGsrfor highly polymorphic

525 markers (Jost 2008), are even more problematic and produce marker dependent

526 differentiation estimates even whemtation rate is small relative toigration rateFor the
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datasimulatedn finite islandandinfinite allelemodels finite islandandstepwise mutation
models andstepping stonandstepwise mutatiomodels shown in Figure 3, for example,
the correlatiorcoefficientbetweerD andHs, ropn, is 0.43, 0.30, and 0.22 respectively when
m=0.001, and is 0.71, 0.24 and 0.26 respectively wiwem 01. The correlation is always
positive and substantially high, evienthe situatiorwhere mutation isvery weak relative to
migrationandGsris uncorrelaéd withHs. Similarly highly positiverpn values are obtained
for all of the empirical datasets. For the Atlantic salmon SNP datase$,0.73 whilergh is
only 0.04. This meanB always increases witHs, even for markers with low mutation rate

(e.g.SNPs) and low diversifyand for a population with a high migration rate.

Sl at ki nRsproidésuBbmged estimates of population differentiation
regardless of the mutation rates or diversity of markers. A mutation does not erase the
evolutionary Istory of a gene when it occurs in some models sutheastepwise model
Mutations occurring in these models are accommodatéd-bwhich thereforemeasures
differentiationpurely due tgopulation demographyr(andN). Unfortunately, howeveRst
is sensitive to violations of the assumed mutation models and have a higher sampling
variance thaiGst (Balloux & Lugordvioulin 2002). Unless many (say in the hundreds)

markers are use®stmay have a lower accuracy th@sr.

What are the uses of a correlation analysi&erandHs? What we are usually
interested are population level forces such as migration (or isolation) and drift, which have
roughly the same effect on all loci in the genome, and population differentiation, which
depends opopulation level forceandis estimated bwll loci mainly controlled by
population level forcessstalways faithfully reflecs the differentiation at the marker loci, no
matter the loci are governed primarily by population demograptan¢iN) or locus specific
forces such as selection and mutation. Ma@@rprovidesan unbiased and good estimate of
population differentiation only when these markers are not significantly affected by locus
specific forces. The correlation analysis essentialystwhether different markers give
replicated o different estimates dbst, or whether or not population level forces are much
more important thatocus specific forces shaping the marker diversity and distributién
highly negativecorrelation betwen GstandHs values indicates that 1) the migraticte
must be low, lower than the mutation rate; 2) the maBsemay well underestimate
population differentiation; 3) another set of markers vather (higher)polymorphisms may
well yield ahigher(lower) estimate of5st, 4) the markefGstshould be usedautiouslyin

comparisons across specisstudiesand sets of locif the correlation betwee@GstandHs
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values among loci is small and nsignificant, then theesingle locusGstestimateshould
be marke(diversity)independent andan be averaged fivovide a good estimate of

population differentiation.

A computer progranCoDIiDi (Correlation betweemiversity andDiferentiatior), is
written to calculatsinglelocusGstandHs values, to test whethersinglelocusGsrvalue is
significantly diferent from O or not by permutations, and to calculate and test the
significance of the correlation betwe@&grandHs. The correlation analyses of all of the
simulated and empirical dapsesented in this study were conducted by this program, freely
available from the website: http://www.zsl.org/science/softuzBIiDi.
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Migration | Mutation t m u M R L
model Model
FIM, 1AM, 200,° |0.01,0.001 10°~10% | 10,20, 40,| 2,3,4,6,| 5,10,
SSM SWM, 80,160 | 8,10,12| 15,20,
FAM 30

The size N) andnumber §) of subpopulations are fixed at 28 1000)and 20 respectively.

The finite island model (FIM) and circular stepping stone model (S8Mpigrationsare

considered for neutral loci under infinite allele model (IABtgpwise model (SWM)r

finite allele model (FAMYor mutationsFor FAM, 2 alleles are considered to mimic SNPs.
Symbolst, m, y M, R, Lrepresent number of generations when sampling occurs, migration

rate, mutation rate, number of individuals sampled from a subpopulation, number of sampled

sulpopulations, and numbef sampledoci, wheret="indicates gopulation amutatiorn

drift-migrationequilibrium.
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0.7F
0.6
0.5

0.4

m=0.001.N=500

0.2 F m=0.001N=100¢

0.1 F m=0.001N=2500
m=0.01,N=100¢
1

0 0.2 0.4 0.6 0.8 1.
Hs

Fig. 1 Gstas a function oHsin equilibriumpopulations. Thé&st(y axis) andHs (x axis)

values fora population ira finite island model witls=10 subpopulations at mutatkainift-
migration equilibrium were calculated for various parameter values of subpopulatioN)size (
migration rate ifi), andmutation ratew), whereu rangesfrom 10° (left side ofx axis) to 167
(right side ofx axis).
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0.5F
0.08} =T
r=1,t=
0.4} — —r=0.5,t=1C
0.06F = = =r=0.25,t=1C°
03k ———r=1,t=200
' — —r=0.5,t=200
Gst 0.04kl = = =r=0.25,t=200
0.2+ r=1,t=50
—————— r=0.5,t=50
| - r=0.25,t=50
o1l 0.02
0 1 1 1 1 0 . . . .
Hs Hs
Fig. 2 Gstas a function oHsin nonrequilibrium populations. Th&st (y axis) values are
plotted againsts (x axis) values at different generatiots50, 200, 1000) foa population
in a finite island model witls=10 subpopulations, assuming parameter valud&sab0 (left
panel) or 1000 (right panel)=0.001, and a variable ranging from 16 (left side ofx axis)
to 102 (right side ofx axis). The initial probability of gene identity is assumed toJoe),
wherer=1, 0.5 and 0.25 anti¢ ) is the equilibrium value al given parameter, m, u, s
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0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

fcH= - fcH= 003

Fig. 3 Scatter graphs dbst(y axis) andHs (x axis) estimates in mutatierift-migration

equilibrium populations. The population parameterd\ar250,s=20, u is taken at random
from a uniform distribution in the range [}010%], and migration rate is eithex=0.001 (eft
column orm=0.01 ¢ight column) The population is assumed to follow fivéte islandand
infinite allele modelgfirst row), finite islandandstepwise mutation mode{second roy; or
stepping stonandstepwise mutation mode{third row). For each graph, 5000 replicate
simulated datasets (loci) were generated to esti@atandHs, usingR=4 (out ofs=20)
randomly sampled subpopulat®andVi=50 (out ofN=250 or 1000) randomly sampled
individuals per subpopulation. The correlation betweerdi@ndHs estimatedor each

graph is shown at the right corner of the graph.
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= |\s N7 === SSM, SWM

o 0.4 / FIM, 1AM
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SSM, SWNM

0.2
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Number of loci Number ofsubpopulations

Fig. 4 Power of correlation analysis GrandHs estimates in mutatiedrift-migration
equilibrium populations. The population parameterd\ar250,s=20, andu is taken at

random from a uniform distribution in the range P1@0%]. The numbers of sampled
subpopulations and loci are 4 and variablelierleft panel, or variable and 15 for the right
panel. Migration rate is either=0.001 plackcontinuous, black broken and black dotted
lines) orm=0.01 @rey continuous lingsThe population is assed to follow the finite

island model (FIM) and infite allele model (IAM) finite island mode&ndstepwise

mutation model (SWM)or stepping stone modebSEM) andstepwise mutation moddror

each parameter combination, the proportion of 1000 replicate datasets in which the
correlation coefficient betwedbstandHs, estimated using 40 individuals per sampled
subpopulation, is statistically significant@t0.001 is plotted (og axis) asa function of the
number of sampled loci (left panel) or the number of sampled subpopulations (right panel)
(onx axis). Theblacklines show the power in detecting mutational effect&erwhen such
effects exist (i.e. when migrations are weak relativenutationsym=0.001), and thgrey

lines show the false detection mtehen mutational effects are absent (i.e. when migrations

are strong relative to mutations=0.01).
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Fig. 5The relationship betweesingle locusGsrandHs estimats in empirical dataset3.he

correlation coefficient betwedastandHs and thep value for each dataset are shown at the

top right corner okach graph, andhé grey dotted lines show the fitted regressioGfon
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Hs Graphs A and B show the results for #temicrosatellites and 3129 SNispectivelyn
North American Atlantic salmon populatioridtaph C shows the results for 2@
microsatellites in the blacknose shark populatiovisereeach triangleand each saqure
shows the pair dbstandHs values estimated from a single marker in tharii 10
population model, respectivelyGraph D shows the results for th@ microsatellites in eight
Mediterranean shore crab populatioBsaph E shows the results for the microsatellites in
15 blacktip reef shark populatignshere ach triangleand eaclsquareepresents aingle
markerwithout and withdeviation from HardyWeinberg equilibrium. Graph F shows the

results for thel7 microsatellites in@.copper rockfistpopulations



