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monary wave reflections are a potential hemodynamic biomarker for
pulmonary hypertension (PH) and can be analyzed using wave inten-
sity analysis (WIA). In this study we used pulmonary vessel area and
flow obtained using cardiac magnetic resonance (CMR) to implement
WIA noninvasively. We hypothesized that this method could detect
differences in reflections in PH patients compared with healthy controls
and could also differentiate certain PH subtypes. Twenty patients with PH
(35% CTEPH and 75% female) and 10 healthy controls (60% female)
were recruited. Right and left pulmonary artery (LPA and RPA) flow
and area curves were acquired using self-gated golden-angle, spiral,
phase-contrast CMR with a 10.5-ms temporal resolution. These data
were used to perform WIA on patients and controls. The presence of
a proximal clot in CTEPH patients was determined from contempo-
raneous computed tomography/angiographic data. A backwards-trav-
eling compression wave (BCW) was present in both LPA and RPA of
all PH patients but was absent in all controls (P � 6e�8). The area
under the BCW was associated with a sensitivity of 100% [95%
confidence interval (CI) 63–100%] and specificity of 91% (95% CI
75–98%) for the presence of a clot in the proximal PAs of patients
with CTEPH. In conclusion, WIA metrics were significantly different
between patients and controls; in particular, the presence of an early
BCW was specifically associated with PH. The magnitude of the area
under the BCW showed discriminatory capacity for the presence of
proximal PA clot in patients with CTEPH. We believe that these
results demonstrate that WIA could be used in the noninvasive
assessment of PH.

pulmonary hypertension; hemodynamics; wave intensity; cardiac
magnetic resonance imaging

PULMONARY HYPERTENSION (PH) is primarily characterized by
increased pulmonary vascular resistance (PVR) and reduced
pulmonary arterial (PA) compliance (15, 31). However, arterial
wave reflections, which are caused by abrupt changes in vessel
area or compliance, also contribute to right ventricular (RV)
load. As PH is characterized by widespread vascular changes,
it has been postulated that abnormal wave reflections may be
an additional source of increased afterload.

For this reason, assessment of wave reflections maybe clin-
ically useful in PH and could be achieved using wave intensity

analysis (WIA). Proposed by Parker and Jones (24), WIA
allow assessment of the type (compression or expansion),
direction (forward or backward), intensity, and timing of vas-
cular waves (37). Importantly, WIA provides information
about the vasculature that cannot be evaluated using conven-
tional measures of PVR and compliance. With the use of WIA,
it has been shown that pathological wave reflections are present
in animal models of PH and in PH patients (9, 16). Unfortu-
nately, conventional WIA requires invasive measurement of
pressure and velocity, which hinders its use in the clinical
environment (9).

Recently, it has been demonstrated that WIA can be
performed noninvasively using image-based measures of
arterial distension and blood flow (1, 6). Although the initial
implementation by Feng and Khir relied on ultrasound
imaging (6), phase contrast magnetic resonance (PCMR)
can also provide accurate measures of distension and flow
(17). However, high temporal resolution data are necessary
to accurately assess wave speed (an important step in WIA)
(27) and this conventionally requires long free breathing
acquisitions. Unfortunately, images acquired during free
breathing acquisitions provide inadequate vessel wall delin-
eation for WIA.

One solution is to highly accelerate the acquisition to
enable high temporal resolution data to be acquired in a
breath hold as proposed by Biglino et al. (1). This approach
has proven successful in relatively fit adults but may be
difficult to apply in PH patients who often find breath
holding difficult. An alternative solution is respiratory nav-
igated PCMR, which should allow acquisition of high tem-
poral resolution images without corruption of the vessel
edge by breathing artifacts.

In this study, we used a previously validated respiratory
self-navigated golden angle spiral PCMR sequence to acquire
vessel area and flow data to perform WIA in volunteers and
patients with PH. This sequence provides data with a sampling
frequency three to four times higher than conventional CMR
flow imaging and overcomes the problems of vessel wall
blurring due to breathing.

The aims of this study were 1) to demonstrate the feasibility
of noninvasive pulmonary WIA; 2) characterize patients with
PH and healthy controls; 3) assess the ability of WIA to
discriminate patients with proximal chronic thromboembolic
pulmonary hypertension (CTEPH) disease from other forms of
PH; and 4) evaluate the relationship between abnormal wave
reflections and steady-state hemodynamics.
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METHODS

Subjects

Twenty consecutive patients with PH undergoing right heart cath-
eterization and 10 healthy volunteers were recruited. PH was diag-
nosed by right heart catheterization as a mean PA pressure �25
mmHg and a pulmonary capillary wedge pressure �15 mmHg (7).
Exclusion criteria were 1) irregular heart rates; 2) contraindications to
cardiovascular magnetic resonance (CMR) such as MR-incompatible
implants; 3) known independent left-sided cardiac disease unrelated to
PA hypertension; 4) clinically significant restrictive or obstructive
lung disease identified by pulmonary function tests; or 5) pregnancy.
The study was performed with local research ethics committee ap-
proval and written informed consent was obtained.

MR Protocol

All imaging was performed on a 1.5T CMR scanner (Magnetom
Avanto; Siemens Healthcare, Erlangen, Germany), using two rows of
spine coil elements and two rows of body-matrix elements, giving a
total of 12 coil elements. A vector electrocardiographic system was
used for cardiac gating. All flow imaging for WIA was performed
using a self-navigated, cardiac gated, golden-angle spiral PCMR
sequence (34). In brief, an image-based navigator was first produced
by reconstructing low temporal resolution (315 ms) real-time images
by combining the data in consecutive groups of 30 spiral pairs. This
navigator was then used to select the spiral interleaves acquired in
expiration for final reconstruction of the retrospectively cardiac-gated
data. Sequence parameters were as follows: echo time (TE)/repetition
time (TR) 2.7/5.26 ms; field of view (FOV) 450 � 450 mm; matrix:
192 � 192; uniformly distributed spiral interleaves required to fill
k-space: 80; slice thickness: 7 mm; velocity encoding gradient
(VENC): 150 cm/s; flip angle: 25°; and pixel bandwidth: 1, 628
Hz/pixel. This achieved a temporal resolution of 10.5 ms, with a
spatial resolution 2.34 � 2.34 mm, giving �90 cardiac phases, in a
scan time of �4 min. PA flow imaging was performed at the
approximate midway point of both the left and right PAs. The right
and left PAs were used to avoid the through plane motion of the
pulmonary trunk, and to facilitate the investigation of asymmetric
lung involvement.

Image Processing

All images were processed using an in-house plug-in for the open
source DICOM software OsiriX (OsiriX Foundation, Geneva, Swit-
zerland) (29). Segmentation of the branch PAs was performed on the
modulus image using a previously validated semiautomatic registra-
tion-based algorithm (22). The branch PA region of interest (ROI)
could also be manually altered to ensure optimal vessel wall delinea-
tion. The final ROI was used to both calculate the cross-sectional area
(A) and prescribe the region in the phase image from which flow (Q)
was calculated.

Signal Processing

For wave speed analysis, A and Q curves were not interpolated or
filtered. For WIA the A and Q curves were interpolated to 1-ms
temporal resolution using a cubic spine and filtered using a zero-
phase, low-pass, 2nd order Butterworth filter with cut-off frequency of
20 Hz. All signal processing was performed in Matlab 2012a (Math-
works).

Wave speed calculation. Wave speed (c) was calculated using the
QA method (28, 36), as deduced from the water hammer equations.
Wave speed is equivalent to pulse wave velocity (PWV). This method
relies on the fact that:

c � �
dQ�

dA�

(1)

in the presumably reflection free part of early systole (with c in m/s,
dQ in m3/s, and dA in m2). In our implementation, the gradient of Q
against A was calculated by linearly regressing the first three unfil-
tered and uninterpolated points of the Q and A curves at the start of
systole (26). Only the first three points (first �30 ms of systole) were
used to ensure that there was minimal signal contamination from wave
reflections (35).

Wave intensity analysis. In WIA, waves are regarded as a summa-
tion of incremental wave fronts; it is therefore possible to separate the
Q and A curves into the respective forward (�) and backward (�)
components by expressing the relationship between c, and changes in
flow and cross-sectional area. Equation 1 combined with Eqs. 2 and 3:

dA � dA� � dA� (2)

dQ � dQ� � dQ� (3)

can be solved for the changes in the forward and backward flow and
cross-sectional area; this results in Eqs. 4 and 5:

dQ� �
1

2
�dQ � cdA� (4)

dA� �
1

2�A �
1

c
dQ� (5)

Net wave intensity dIa was defined as the product of the differentials
of cross-sectional area and flow.

dla � dA dQ (6)

Similarly, it can be shown that the net wave intensity dIa (Eq. 6) can
be divided into the forward and backward intensities, Eq. 7:

dla � dla��� � dla��� (7)

with the separated dIa expressed as:

dla��� � �
c

4�dA �
dQ

c �2

(8)

With the use of this formulation forwards and backwards dIa were
calculated and plotted. As per convention, the direction of waves was
referenced to the direction of blood flow. Waves arising from the heart
were defined as forward running and those arising from the vascula-
ture as backward running. Waves causing an increase in area were
classified as compression waves and those causing a decrease in area
as expansion waves by examination of dA	 plots. Thus a forward
running wave was held to be a compression wave if dA� was greater
than zero and an expansion wave if dA� was less than zero. Similarly,
a backward-running wave was considered as a compression wave if
dA� was greater than zero and an expansion wave if dA� was less
than zero.

Using this system we characterized three different early to midsys-
tolic (flow onset to flow peak) waves: forwards compression waves
(FCW), backwards compression waves (BCW), and backwards ex-
pansion waves (BEW).

WIA postprocessing. The type, duration, magnitude and time to
peak (time from onset of ejection to waveform peak) of waves were
determined by analysis of the net and separated WIA plots in Matlab.
The areas under the separated waveforms were calculated by numer-
ical integration.

As well as separate quantification of magnitude, timing, and wave-
form areas: the average of all WIA metrics of both branch PAs was
also calculated (FCWmean, BCWmean, BEWmean, and PWVmean).

Catheterization and Clinical Data

Right heart catheterization was performed in all patients with PH
according to standard procedures, within 30 days of MR imaging
using a Swan-Ganz catheter. Cardiac output was measured using
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thermodilution. Systolic (SPAP), diastolic (DPAP), and mean
(MPAP) PA pressures, pulmonary capillary wedge pressure, and PVR
data were obtained. All patients had serum NH2-terminal pro-brain
natriuretic peptide (NT-pro-BNP) levels, and a 6-min walk test was
measured. The clinical subtype of PH was determined by review of
patient records. For patients with CTEPH, the presence and location
of proximal clot were determined and differentiated from distal
disease by review of contemporaneous computed tomography and
selective digital subtraction angiographic clinical data. RV ejection
fraction (RVEF) was calculated as previously described (18) from a
RV transaxial stack using a radial k-t SENSE real-time sequence. The
branch PA flow ratio was used to assess any asymmetry in lung blood
flow; it was calculated by dividing branch PA flow by total pulmonary
blood flow. Acceleration times for both branch PAs and their average
were calculated as the time from the onset of ejection to peak flow.

Statistics

STATA 13 and Graphpad Prism 5f for mac were used for statistical
analysis and Figs.. Data were examined for normality using the
Shapiro-Wilk normality test. Descriptive statistics are expressed as
means 	 SE when normally distributed and median [interquartile
range (IQR)] when nonnormally distributed. Proportions are ex-
pressed as percentages.

Pearson’s correlation coefficient was used to analyze simple linear
relationships between variables. The independent samples t-test was
used to compare differences in parametric data between PH patients
and controls; Welch’s correction was employed for unequal variances.
The Mann-Whitney U-test was used for nonparametric data. Fisher’s
exact test was used to compare proportions data.

Stepwise binary logistic regression analysis was used to identify
covariates with independent association with the diagnosis of PH.

Area under the receiver operating characteristics curve was used to
assess the diagnostic accuracy of WIA metrics for the identification
of proximal clot in patients with CTEPH. For this analysis, the 40
branch PAs (left and right in 20 PH patients) were coded according
to the presence (8 lungs) or absence (32 lungs) of proximal clot on
contemporaneous computed tomography or angiographic imaging.
The optimum cut-off value was chosen to maximize the Youden index
(sensitivity � specificity �1).

Multivariable linear regression analysis was used to determine
covariates independently associated with transpulmonary gradient
(TPG) and PVR. P � 0.05 was considered statistically significant.

RESULTS

Study Population Characteristics

Mean age of PH patients was 54 	 3 yr (15 female, 5 male)
and mean age of controls was 47 	 3 yr (6 female, 4 male);
there was no significant difference in age or gender between
groups.

The diagnoses in the patient group were as follows: eight
systemic sclerosis (7 limited cutaneous, 1 diffuse cutaneous),
seven CTEPH, two systemic lupus erythematosus (SLE), two
mixed connective tissue disease, and one idiopathic PA hyper-
tension.

The median interval between right heart catheterization and
CMR was 6 days (IQR 2–11 days). Hemodynamic data were
available for all patients. Mean MPAP was 43 	 3 mmHg,
SPAP was 70 	 5 mmHg, and DPAP was 27 	 2 mmHg.
Mean pulmonary capillary wedge pressure was 11 	 1 mmHg
and mean PVR was 7.4 	 0.8 Wood units (WU).

In patients the mean 6-min walk test was 338 	 28 m and
median serum NT-pro-BNP was 145 pmol/l (IQR 225 pmol/l).
PH mean CMR RVEF was 41 	 3%.

In the CTEPH group, five out of seven patients had proximal
disease (2 right lobe and 3 bilateral). There was no significant
difference between CTEPH patients with proximal disease
(n � 5) and other PH patients (n � 15, other PH etiologies)
based on cardiac catheterization data: PVR (P � 0.4), MPAP/
TPG (P � 1.0/P � 0.7), pulse pressure (P � 0.6), or clinical
parameters: 6-min walk test (P � 0.9), serum NT-pro-BNP
(P � 0.8), and CMR RVEF (P � 0.9).

WIA in Patients and Controls

The PWV was approximately two times higher in patients
compared with controls Table 1 (PWVmean: 1.36 	 0.08 vs.
0.72 	 0.05 m/s, P � 3e�7).

Table 1. Comparison of WIA metrics between PH patients
and controls

Parameter Patient Control P

PWV,‡ m/s
Right 1.26 (0.07) 0.73 (0.07) 4e�5

Left 1.46 (0.12) 0.70 (0.06) 1e�5

Mean 1.36 (0.08) 0.72 (0.05) 3e�7

Acceleration time,‡ ms
Right 60 (4) 108 (9) 0.0004
Left 74 (5) 135 (16) 0.005
Mean 67 (4) 121 (11) 0.001

FCW peak,† cm5/s
Right 0.09 (0.11) 0.18 (0.14) 0.03
Left 0.06 (0.06) 0.06 (0.08) 0.4
Mean 0.08 (0.08) 0.15 (0.11) 0.06

FCW peak time,‡ ms
Right 29 (2) 33 (3) 0.2
Left 33 (2) 42 (4) 0.05
Mean 31 (2) 38 (3) 0.03

FCW area,† cm5

Right 0.003 (0.004) 0.005 (0.005) 0.01
Left 0.002 (0.002) 0.003 (0.003) 0.02
Mean 0.002 (0.002) 0.005 (0.003) 0.006

BCW peak,† cm5/s
Right 0.01 (0.02) 0 (0) 6e�8

Left 0.006 (0.02) 0 (0) 6e�8

Mean 0.01 (0.01) 0 (0) 6e�8

BCW peak time,*‡ ms
Right 73 (6) — —
Left 79 (8) — —
Mean 76 (6) — —

BCW area,† cm5

Right 0.0004 (0.0005) 0 (0) 6e�8

Left 0.0003 (0.0006) 0 (0) 6e�8

Mean 0.0004 (0.0006) 0 (0) 6e�8

BEW peak,† cm5/s
Right 0 (0) 0.02 (0.02) 9e�6

Left 0 (0) 0.01 (0.01) 1e�6

Mean 0 (0) 0.01 (0.01) 1e�6

BEW peak time,*‡ ms
Right — 30 (4) —
Left 40 (2) 56 (7) —
Mean 41 (2) 45 (5) —

BEW area,† cm5

Right 0 (0) 0.0005 (0.0008) 9e�6

Left 0 (0) 0.0004 (0.0002) 3e�7

Mean 0 (0) 0.0005 (0.0005) 1e�7

WIA, wave intensity analysis; PH, pulmonary hypertension; PWV, pulse
wave velocity; FCW, forward compression wave; BCW, backward compres-
sion wave; BEW, backward expansion wave. *Waveform absent in the
majority of 1 group; therefore, statistical testing of timing parameters or ratios
was not performed. †Nonnormally distributed, median (interquartile range),
Mann-Whitney-U-test. ‡Normally distributed, mean (SE), t-test 	 Welch
correction for unequal variances.
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Early- and midsystolic forward and backward waves were
often found to be coincident on net wave intensity, dIa (Fig. 1).
Following wave separation into forward and backward com-
ponents, important group differences were apparent (Fig. 1).
Peak wave intensity (cm5/s), time to peak wave intensity (ms),
and wave intensity area (cm5) for FCW, BCW, and BEW are
described in Table 1.

FCW area was significantly lower in patients than controls
as shown in Fig. 2 and Table 1 (FCWmean: 0.003 cm5 [IQR
0.002] vs. 0.006 cm5 [IQR 0.005], P � 0.002). The time to
peak FCWmean was earlier in patients with PH (mean 31 	 2
ms compared with controls 38 	 1 ms, P � 0.03).

A BCW was present in both the LPA and RPA of all PH
patients but was absent in all controls [P � 6e�8, odds ratio
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Fig. 1. Wave intensity analysis (WIA) in representative pulmonary hypertension (PH) patient (A–D) and control (E–H). Three types of waveforms were found
to arise during early and mid systole in study participants using wave separation analysis: 1) a forward compression wave: characterized by increasing area and
increasing flow representing cardiac ejection (* in C and G); 2) a backwards compression wave: increasing area [pressure] and decreasing flow († in C); and
3) backwards expansion wave: decreasing area [pressure] and/or increasing flow (‡ in G). The identification of the backwards compression and expansion waves
can be seen from examination of D and H, showing the dA 	 plots. The dotted line across A–D shows the timing of peak flow used to measure acceleration
time (AT), demonstrating it arises as a consequence of the arrival of the backwards compression wave overcoming the forward compression wave (arrow).
Time � 0 corresponds to the onset of data acquisition as triggered by the R wave on cardiac magnetic resonance (CMR) vectorcardiography.
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(OR): 861 [15-
]; Fig. 2]. Patients’ median BCWmean area was
0.0004 cm5 (IQR 0.0006 cm5), and the time to peak BCWmean

was 76 	 6 ms.
A BEW was present in the RPA of 9/10 controls but was

absent in all patients (P � 0.0001, OR: 260 [10–6988]). A
BEW was present in the LPA of all controls but only in 4/20
of PH patients (P � 0.0001, OR: 77 [4–1583]). The median
control BEWmean area was 0.0005c m5 (IQR 0.0008 cm5; Fig.
2). The mean time to peak BEWmean was 45 	 5 ms.

Acceleration time was significantly lower in patients than
controls as shown in Fig. 2 and Table 1 (ATmean: 67 	 4 vs.
121 	 11 m/s, P � 0.001). However, there was still overlap
between the two groups. The phenomenon of reduced acceler-
ation time in PH was found to arise as a consequence of the
interaction between the FCW and the timing and magnitude of
the reflected BCW (Fig. 1).

Stepwise binary logistic regression analysis of variables
listed in Table 1 identified the presence of a backward com-
pression wave as the covariate most strongly associated with
the presence of PH, discriminating groups completely (�2
log-likelihood: 0).

PH Subtype Differentiation

BCW area and AT showed statistically significant discrim-
inatory capacity for the presence of clot (Fig. 3 and Table 2);
PWV, FCW area, FCW peak time, BCW peak time, and branch
PA flow ratio were nonsignificant (Table 2).

The area under the curve (AUC) for BCW area was 0.97
[95% confidence interval (CI) 0.91–1.0]; P � 0.00006. A
BCW area threshold of �0.0006 cm5 was associated with a
sensitivity of 100% (95% CI 63–100%) and specificity of 91%

(95% CI 75–98%) for the presence of clot in the proximal PAs.
An example WIA in patients with and without proximal clot is
shown in Fig. 4.

The AUC for AT was 0.84 (95% CI 0.70–0.90). An AT
threshold of �57.6 ms was associated with a sensitivity of 88%
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(95% CI 47–99%) and specificity of 81% (95% CI 64–93%)
for the presence of proximal clot.

Steady Flow Hemodynamics and WIA

There was no observed association between steady hemo-
dynamic parameters and BCWmean area, acceleration time, or
PWV (Table 3).

There was a strong negative correlation between FCWmean

area and TPG (R � �0.56, P � 0.01) and PVR (R � �0.68,
P � 0.001). Of note, the FCWmean area also correlated signif-
icantly with RVEF (R � 0.65, P � 0.002)

The BCWmean peak time was negatively associated with
TPG (R � �0.49, P � 0.03).

DISCUSSION

In this proof of concept study, we have demonstrated for the
first time the feasibility of performing noninvasive WIA in the
PAs using phase contrast MR imaging. The main findings were
as follows: 1) there was a significant difference in WIA metrics
between patients and controls; 2) the presence of a BCW was
specifically associated with the presence of PH; and 3) the
magnitude of the BCW area showed discriminatory capacity
for the presence of proximal PA clot in patients with CTEPH.
We believe that these preliminary results demonstrate that
WIA could be used in the noninvasive assessment of patients
with PH.

Semiquantitative studies of wave reflection have been at-
tempted before in PH. However, most have been limited to
assessment of either pressure or flow. For example, in CTEPH,
a “notch index” on PA Doppler velocity profiles and shorter
acceleration time are associated with greater in-hospital mor-
tality and persistent postoperative PH (8). Unfortunately, pres-
sure-only measures such as inflection time or augmentation
index have been shown to be less reliable markers in PH (2,
19). The benefit of WIA is that it includes both flow and a

proxy measure of pressure, thereby providing a more accurate
assessment of wave reflections.

Using WIA, we demonstrated a marked difference in early
backward wave reflections (BCWs in patients and BEWs in
normal subjects). This is consistent with the experimental
animal work of Hollander et al. (9) in which BEWs were
present in normal canine PAs and BCWs in experimentally
vasoconstricted PAs. These findings can be attributed to the
different types of reflecting sites found in the two models. In
normal PAs, the increasing total vessel area at each bifurcation
results in reflection sites with predominately negative reflection
coefficients and consequent backward expansion waves. Con-
versely, the reduced vessel area and increased stiffness found
in the vasoconstricted state creates reflection sites with positive
reflection coefficients and results in compressive reflections.
Our data are also concordant with studies of the ovine fetal
pulmonary circulation, where large BCWs were observed in
the setting of high in utero PVR (33). Unfortunately, there are
a limited number of human studies in the pulmonary circula-
tion. An invasive WIA study by Lau et al. (16) did report the
presence of a BCW in PH, although small BCWs were also
observed in the controls. This is probably because hemody-
namic measurements were made in the more distal pulmonary
lobe branches to obtain a stable catheter position. The greater
proximity to the terminal branches likely explains the presence
of BCWs in normal controls.

Interestingly, in our study the reflection site of the BCW was
�2–3 cm from the site of measurement in the branch PAs
(based on wave timing and PWV). Thus quantifiable reflec-
tions in the branch PAs seem to arise from the next generation
of vessels rather than the terminal branches. This initially
appears surprising as the majority of vascular remodeling in
PH occurs in the peripheral PAs. However, recent work in the
systemic vasculature has demonstrated that wave reflections do
not arise from a single discrete reflecting site, rather they are an
amalgamation of reflections, with more proximal arising waves

Table 2. Receiver operating characteristics analysis for the detection of proximal PA clot

Variable AUC AUC (95% CI) P Threshold Sensitivity (95% CI) Specificity (95% CI)

BCW area 0.97* 0.92–1.0* 0.00005* �0.0006 cm5* 100% (63–100)* 91% (75–98)*
Acceleration time 0.84* 0.70–0.98* 0.003* �57.6 ms* 88% (47–99)* 81% (64–93)*
PWV 0.70 0.47–0.92 0.09 — — —
FCW area 0.61 0.38–0.85 0.3 — — —
BCW peak time 0.60 0.40–0.79 0.4 — — —
FCW peak time 0.50 0.27–0.74 1.0 — — —
Branch PA flow ratio 0.63 0.40–0.87 0.3 — — —

PA, pulmonary artery; AUC, area under the receiver operating characteristic curve; CI, confidence interval. *Significant parameters.
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Fig. 4. Right PA WIA in 2 patients with
chronic thromboembolic pulmonary hyper-
tension (CTEPH). Patient with proximal clot
in right lower lobe artery (A) and patient with
disease limited to distal vessels. Note larger
BCW in patient A (B). PVR, pulmonary vas-
cular resistance; WU, wood units.
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being exponentially more important (3). This so-called “hori-
zon effect” is due to re-reflection and entrapment of reflected
waves and may be even more important in the highly fractal
pulmonary circulation. This effect may also explain the lack of
correlation between steady state hemodynamics and BCW, as
they reflect different attributes of the vasculature.

Clinically, the presence of an early BCW in the branch PAs
could be used as a supplementary method of identifying pa-
tients with PH. It may be particularly useful in situations where
diagnostic indictors such as septal curvature (23) are less
reliable (i.e., patients with PH related to complex congenital
heart disease). Nevertheless, this was not a diagnostic cohort
study and further work must be performed to evaluate true
diagnostic accuracy.

Another finding that may have clinical utility was that BCW
area was able to discriminate between patients with proximal
CTEPH and those with other forms of PH. This was in spite of
the fact that there were no invasive hemodynamic differences
between the two groups. Combined with the lack of correlation
between steady-state hemodynamics and BCW, this reiterates
the fact that BCW provides “novel” hemodynamic informa-
tion. This novel information could be used as the basis for a
noninvasive and nonionizing test for patients with treatable
proximal clot. Of course, a larger comparative study would be
required to show that it has benefit over current MR perfusion
methods (21). Another intriguing possibility is that this new
information may provide additional prognostic information
over conventional hemodynamic measures. This cannot be
predicted from this small study and warrants further investiga-
tion.

Two final issues that arise from our results are related to
acceleration time and RV function. Our data confirm that
abnormal wave reflections explain the shorter acceleration time
(13, 14, 30) and notched/scalloped flow/velocity curves (8)
observed in PH. Specifically, notching of the flow curve in PH
(the point of measurement of AT) occurs when the abnormally
large BCW exceeds the incident FCW. Shortened acceleration
times can therefore be considered an epiphenomenon of dis-
ease-associated wave reflection. It is for this reason we believe
that AT performs less well than the WIA components. Regard-
ing RV function, we demonstrated that FCW was lower in
patients with PH and correlated significantly with RVEF. It has
previously been shown that peak aortic FCW is proportional to
LV (max dP/dt)2 (20) and responds to alterations in the
inotropic state of the ventricle (11, 25). Thus FCW may
provide another alternative method of assessing RV function in
PH. However, significantly more work is required to investi-
gate whether it has any benefits over RVEF.

An important aspect of this study was the use of high
temporal resolution area and flow data for the calculation of
PWV. This was achieved using a respiratory self-navigated,

cardiac gated, golden-angle spiral PCMR sequence. This se-
quence has the benefit of being able to acquire data at a
10.5-ms temporal resolution, while also maintaining edge
sharpness. However, it should be noted that PWVs reported in
this study were significantly lower than previously published
measures. This is particularly true of studies that used the
conventional pressure-velocity (PU) technique (12). For in-
stance, PA PWV in animals has been reported to be between 2
and 3 m/s (5, 9), while Lau et al. (16) reported a PWV of 3.8
m/s in controls vs. 6.9 m/s in patients with PH. This can be
partly explained by early reflections that contaminate the pe-
riod during which PWV is measured. Specifically, it has
recently been shown that in the presence of positive reflections
the QA-method underestimates PWV, while the PU method
overestimates PWV (32). Importantly, the PU method overes-
timates PWV to a greater extent than the QA method under-
estimates it (APPENDIX 1). Such overestimation with the PU
method may be further exacerbated if PWV is calculated over
a longer time period. This is pertinent as several previous
studies using the PU method relied on sampling periods of up
to 100 ms (compared with 30 ms in this study).

Interestingly, our BCW timing data suggest that reflec-
tions occur earlier in PH than in normal controls and in some
cases are present in the first 30 ms of the cardiac cycle.
When using the QA method this results in greater underes-
timation of PWV in PH compared with controls (in whom
reflections occur later in ejection). Thus with the use of our
method it may be more difficult to detect increased PWV in
patients with PH. Nevertheless, we believe this more con-
servative approach is preferable to methods that might
overestimate PWV, as it is less likely to artificially conflate
group differences. However, studies using the QA method
have also reported higher PWV. For instance, Ibrahim et al.
(10) reported values 2–3 m/s in cardiac patients without PH
and 5.2 m/s in those with PH. These differences can be
probably be explained in two ways. Firstly, previous studies
have used sequences with lower “true” temporal resolution,
which is known to result in overestimation of PWV (27).
Secondly, imaging the pulmonary trunk (rather than the
branch PAs) may result in overestimation of PWV. This is
because as the main PA moves inferiorly in systole, the
narrower distal portion moves into the imaging plane, re-
sulting in underestimation of �A and increased PWV. Un-
fortunately, the absence of a “reference standard” method of
assessing PWV in the pulmonary vasculature makes it
difficult to fully assess the validity of our technique. Nev-
ertheless, we did compare our PWVs with a novel method
developed for use in the coronary arteries (4) in the presence
of significant reflections and showed good agreement
(APPENDIX 2).

Table 3. Simple linear correlations between WIA metrics and acceleration time with hemodynamic and clinical variables

FCWmean Area, cm5
BCWmean Area,

cm5
FCWmean Peak

Time, ms
BCWmean Peak Time,

ms
Acceleration
Timemean, ms PWVmean, m/s

R P R P R P R P R P R P

PVR �0.66* 0.001* �0.13 0.59 �0.44 0.05 �0.44 0.05 �0.41 0.07 0.004 0.96
TPG �0.56* 0.01* 0.21 0.93 �0.44 0.05 �0.49* 0.03* �0.37 0.11 0.09 0.71

*Significant parameters.
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Limitations

The main limitation of this study was the fact that only three
points were used to calculate PWV. This was done to limit
contamination of the area and flow curves with reflections,
which as previously mentioned can have significant effects on
the measurement of PWV. However, it may result in increased
susceptibility to errors, as the measured PWV is very sensitive
to inaccuracies in any of the three measurements.

The purpose of this study was to demonstrate the feasibility
of noninvasive WIA and characterize differences between
patients and controls. The significant finding of a BCW only
present in PH patients suggests utility as a potential diagnostic
test. However, a diagnostic testing cohort would be necessary
to confirm this.

The role of BCW area for the detection of clot similarly
shows potential as an adjunct to noninvasive PH assessment.
However, the modest sample size necessitates further work, as
reflected in the confidence intervals for sensitivity and speci-
ficity.

In this study, cardiac catheterization data and CMR data
were not simultaneously acquired; however, the intervening
period between catheterization and CMR was short, and pa-
tients did not have any significant clinical changes between
studies. Catheter based calculations of flow were also made
from thermodilution. We cannot exclude the possibility that
given simultaneous catheter and CMR assessment there would
be stronger correlations with hemodynamics.

This technique does not presuppose a particular pressure-
area relationship, and therefore, the units of noninvasive WIA
in this study (m5/s) do not have an easily understandable
physical meaning: in contrast to the units of invasive WIA
(W/m2). However, the waveforms produced by noninvasive
WIA are qualitatively similar to invasive WIA in the literature
and given a linear pressure-area relationship would be propor-
tional. Area and flow waves can therefore be considered
analogous to pressure and velocity waves as found in the WIA
literature.

CONCLUSION

In conclusion, we have shown that noninvasive pulmonary
WIA reveals important abnormalities in patients with PH,
distinguishing the disease state from normality, and shows
potential as a biomarker to identify PH and differentiate PH
subtypes.

APPENDIX 1

In presence of a positive reflection, �, the PU loop overestimates
with a proportionality factor (1 � �)/(1 � �), while the QA-loop
method underestimates with (1 � �)/(1 � �). For a value of � � 0.3,
for instance, the PU-loop method overestimates by 86%, while the
QA-loop method underestimates by 46%.

APPENDIX 2

In the absence of a “reference standard” method for measuring
PWV in the pulmonary vasculature, we compared the PWV estimated
using the QA method with a novel method developed by Davies et al.
(4) for use in the coronary arteries in the presence of significant
reflections. This method works by minimizing net wave energies and
was designed to use simultaneously acquired pressure (P) and velocity
data (U) from a single position within a vessel. It does not require the
vessel to be long enough for two measurements nor does it rely on a

period during which there is only a single wave impulse. The method
can be modified for use with flow and area measurements:

c ��	 dA2

	 dQ2 (9)

With the use of Bland-Altman analysis, we observed good agreement
between the two methods, bias of 0.07 m/s (standard deviation of bias,
0.45 m/s) and 95% limits of agreement �0.83–0.97 m/s (Fig. A1).
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