
Int J CARS (2015) 10:301–316
DOI 10.1007/s11548-014-1124-7

ORIGINAL ARTICLE

The NifTK software platform for image-guided interventions:
platform overview and NiftyLink messaging

Matthew J. Clarkson · Gergely Zombori · Steve Thompson ·
Johannes Totz · Yi Song · Miklos Espak ·
Stian Johnsen · David Hawkes · Sébastien Ourselin

Received: 28 April 2014 / Accepted: 17 October 2014 / Published online: 20 November 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract
Purpose To perform research in image-guided interven-
tions, researchers need a wide variety of software compo-
nents, and assembling these components into a flexible and
reliable system can be a challenging task. In this paper, the
NifTK software platform is presented. A key focus has been
high-performance streaming of stereo laparoscopic video
data, ultrasound data and tracking data simultaneously.
Methods A new messaging library called NiftyLink is intro-
duced that uses the OpenIGTLink protocol and provides
the user with easy-to-use asynchronous two-way messaging,
high reliability and comprehensive error reporting. A small
suite of applications called NiftyGuide has been developed,
containing lightweight applications for grabbing data, cur-
rently from position trackers and ultrasound scanners. These
applications use NiftyLink to stream data into NiftyIGI,
which is a workstation-based application, built on top of
MITK, for visualisation and user interaction. Design deci-
sions, performance characteristics and initial applications are
described in detail. NiftyLink was tested for latency when
transmitting images, tracking data, and interleaved imaging
and tracking data.
Results NiftyLink can transmit tracking data at 1,024
frames per second (fps) with latency of 0.31 milliseconds, and
512 KB images with latency of 6.06 milliseconds at 32 fps.
NiftyIGI was tested, receiving stereo high-definition laparo-
scopic video at 30 fps, tracking data from 4 rigid bodies at
20–30 fps and ultrasound data at 20 fps with rendering refresh
rates between 2 and 20 Hz with no loss of user interaction.
Conclusion These packages form part of the NifTK plat-

M. J. Clarkson (B) · G. Zombori · S. Thompson · J. Totz · Y. Song ·
M. Espak · S. Johnsen · D. Hawkes · S. Ourselin
Centre For Medical Image Computing, University College London,
Engineering Front Building, Malet Place, London, UK
e-mail: m.clarkson@ucl.ac.uk

form and have proven to be successful in a variety of image-
guided surgery projects. Code and documentation for the
NifTK platform are available from http://www.niftk.org.
NiftyLink is provided open-source under a BSD license
and available from http://github.com/NifTK/NiftyLink. The
code for this paper is tagged IJCARS-2014.

Keywords Software platform · Image-guided interven-
tions · Augmented reality · Visualisation

Introduction

Image-guided interventions (IGI) are medical procedures
that use computers to provide virtual overlays of image data,
in order to guide the surgeon [7]. Medical image computing
has become increasingly complex over recent years, spurred
on by the advances in imaging technology itself, and the
increase in computing power readily available to perform
ever more complex tasks within a time frame that fits within
a surgeon’s workflow. Underpinning all of these advances is a
fundamental need for software platforms and software devel-
opment processes that can meet these escalating demands. In
this paper, the motivation, architecture, design and exemplar
applications of the NifTK software platform are described,
detailing how NifTK is used for IGI purposes.

Background

Cleary and Peters [7] provide a review of some of the his-
tory of image-guided surgery (IGS) along with the associated
technology and clinical applications and use the term image-
guided interventions (IGI) to highlight the drive towards
minimally invasive techniques. A rapidly progressing area

123

http://www.niftk.org
http://github.com/NifTK/NiftyLink

302 Int J CARS (2015) 10:301–316

within IGI is the crossover of computer vision techniques to
the operating room, and here, Mirota et al. [20] provide a
summary of recent research. The need for open-source soft-
ware has been recently highlighted [13], and medical image
computing platforms compared [3,32]. Of the existing open-
source software packages, Cleary [7] mentions three of the
major platforms for IGS/IGI as being 3D Slicer [25], the med-
ical imaging interaction toolkit (MITK) [23] and the image-
guided surgery toolkit (IGSTK) [6]. In addition, there is the
Public software Library for UltraSound imaging research
(PLUS) [16] which interfaces with SlicerIGT,1 which is an
extension of 3D Slicer, and also the Computer-Assisted Med-
ical Intervention Toolkit (CamiTK) [9]. Despite the preva-
lence of the term “Toolkit”, a necessary distinction must be
made between libraries such as IGSTK, the Insight Segmen-
tation and Registration Toolkit (ITK) [12] and the Visualisa-
tion Toolkit (VTK) [27] that have no end-user application and
are intended to be used by application developers, and plat-
forms such as 3D Slicer, MITK, PLUS, CamiTK and NifTK
that are provided with end-user functionality to be used as
is, and also provide the capability to be extended through a
variety of means. In this regard, MITK provides for a wide
variety of different usage patterns and can function both as
an end-user application containing out of the box IGI com-
ponents [10,19] or as a library for developers [33]. MITK has
been specifically designed for extension by third parties by
using a highly modular architecture and a range of extension
mechanisms [23].

There have also been various efforts to combine soft-
ware platforms. Lu et al. [17] demonstrated reduced devel-
opment time by using open-source software compared
with writing from scratch. They combined MITK with
IGSTK with MITK providing the image processing, and
IGSTK providing fiducial location, registration and track-
ing. The PLUS project is developed in conjunction with
the SlicerIGT project, where components are connected via
OpenIGTLink [29]. OpenIGTLink is an open-source mes-
saging protocol, designed for medical applications. PLUS
provides a variety of hardware interfaces, focussing mainly
on ultrasound-based applications, and uses 3D Slicer for
visualisation.

Each of the above mentioned IGI platforms, and also
medical imaging platforms such as GIMIAS [15] and Med-
INRIA [31], has common components such as ITK and VTK.
Increasingly, the community is collaborating and sharing
code via the Common Toolkit (CTK).2 The NifTK project
aims to complement existing projects and simply sees each
platform as a vehicle to translate new algorithms and research
further towards to the clinic. The examples in this paper illus-
trate some of our recent interests, where a particular focus

1 http://slicerigt.github.io/index.html.
2 http://www.commontk.org.

of development has been that of laparoscopic surgical proce-
dures where Nicolau et al. [22] provides a recent review.

Motivation

The Centre for Medical Image Computing (CMIC) at Uni-
versity College London (UCL) has a wide-ranging research
programme in computation imaging. The high-level, IGI-
related requirements for a software platform were:

1. Algorithm components should be lightweight and have
few library dependencies Our experience is that most
medical imaging researchers are not familiar with large-
scale software projects. We have previously devel-
oped NiftyReg [21], NiftySeg [5], NiftyRec [24] and
NiftySim [28]. By being small and easy to build, they
have received many downloads.

2. Make maximum reuse of existing projects; contribute
code back to the open-source community The code reuse
policy particularly applied to Graphical User Interface
(GUI) development, as these can take a lot of work to do
well. Our previous experience had illustrated that while
libraries such as ITK, VTK and IGSTK can be combined
to create an application, they provide no overall struc-
ture for continuously evolving platform development.
MITK was chosen as a central component as it provides a
wide range of facilities for flexible and modular design.
MITK can be used as a library [33], or as an applica-
tion framework [23] where the design is inspired by the
Open Service Gateway initiative (OSGi).3 A recent addi-
tion has been the addition of micro-services4 enabling
a service-oriented architecture, which is now used in
NifTK, MITK-IGT [10] and MITK-US [19].

3. Provide the facility to send data between machines over
an ethernet network Various hardware devices only have
drivers for one platform (e.g. Microsoft Windows), and
we did not want to restrict researchers to working on
an unfamiliar platform. OpenIGTLink was chosen as a
transmission protocol for data, such as images and track-
ing data, and would provide interoperability with plat-
forms such as 3D Slicer and PLUS.

4. Given limited hardware, it will probably be shared across
projects So, software interfaces should be lightweight.
The intention of requirement 4 is that device drivers and
data-grabbing software should be installed once, and then
the machine is ready to be used on multiple projects.
The version of this software should change infrequently.
Users should not be required to re-compile large software
packages, edit many configuration parameters or set up
copies of a large single application for each purpose.

3 http://www.osgi.org.
4 http://cppmicroservices.org.

123

http://slicerigt.github.io/index.html
http://www.commontk.org
http://www.osgi.org
http://cppmicroservices.org

Int J CARS (2015) 10:301–316 303

Requirements 1 and 2 may seem contradictory. Require-
ment 1 refers to pure algorithmic, or numerical code. We
find that this type of code is normally written by a research
scientist, understood by a relatively small number of people
and once tested and published, remains relatively unchanged.
So, it should be written in as small a library as possible, to
be easily redeployed or repackaged. But with regard to user
interfaces, middleware or infrastructure code, these require
specialised software engineering skill, must be written reli-
ably and robustly, and may need regularly adapting to new
applications and interfaces. So, requirement 2 refers to not
reinventing the wheel and reusing code where there is a com-
munity of developers that have worked hard on providing
excellent robust code. The combination of requirements 3
and 4 means that we require small stand-alone programs,
primarily to just grab data and stream it via OpenIGTLink to
a workstation on a local or remote machine. Requirements 3
and 4 directly led to NiftyGuide as a separate package.

System overview

The NifTK platform, as deployed for IGI applications, com-
prises NiftyIGI, NiftyGuide and NiftyLink.

NiftyLink is a small messaging library for sending Open-
IGTLink messages. NiftyLink provides a simple client and
server model with keep-alive pings and detection of dropped
connections. Various utility methods make it very easy for
3rd party code to construct and asynchronously send Open-
IGTLink messages.

NiftyGuide is a suite of as-small-as-possible individual appli-
cations, whose sole purpose is to grab data and send via
NiftyLink. There currently exist programs for connection
to Northern Digital Inc.5 (NDI) trackers such as Polaris
Vicra, Polaris Spectra and Optotrak Certus and also ultra-
sound interfaces using the Ultrasonix6 Porta and Ulterius
APIs (Application Programing Interface).

NiftyIGI is the main workstation application and provides a
visualisation platform, accepting data from video sources,
ultrasound sources, tracking devices and so on.

The use of separate data-grabbing applications provides
loose coupling (few inter-dependencies) of software compo-
nents. For example, this means that NiftyIGI does not care
about where tracking data are coming from, as there is no
software link. This means the tracking data can be simu-
lated for testing purposes, and different devices can be tested,
without recompiling NiftyIGI. Separate data-grabbing com-
ponents also provide flexible deployment options with dif-
ferent software components running on different machines.
In addition, NiftyIGI can integrate data sources that reside

5 http://www.ndigital.com.
6 http://www.ultrasonix.com.

locally within the same process space. For example, grabbing
stereoscopic high-definition video requires approximately
355 MB/s bandwidth, which is too high for most networks
and so was implemented directly within NiftyIGI.

In the literature, other software such as PLUS [16] sends
data to remote applications such as 3D Slicer [25] via Open-
IGTLink [29]. It is reassuring to see common software
patterns evolving independently and standards being more
widely adopted. As the NifTK platform benefits from a com-
munity of open-source developers, our aim was to ultimately
provide code that the research community can benefit from,
extend, modify and improve. This means that reuse of exist-
ing design patterns, sharing common platform ideas and aim-
ing for interoperability and compatibility are preferred over
developing a new architecture for architectures sake. In this
paper, we specifically, albeit briefly, address interoperability.

Contributions of this paper

Within this paper is the first description of the NifTK platform
for IGI purposes. This paper contributes the following:

– A new library called NiftyLink is introduced that can be
used to transmit OpenIGTLink format messages using
TCP/IP over ethernet networks. NiftyLink provides ease
of use and reliability for applications using Qt.7

– A description of a multi-threaded data source manager, to
manage access to different hardware devices, all stream-
ing data to NiftyIGI at different speeds.

– Novel visualisation screens within NiftyIGI for augment-
ing video data or ultrasound data with rendered objects.

Furthermore, while not novel in itself, the NifTK plat-
form serves as an integration point for a set of common
algorithms such as camera calibration [34], distortion correc-
tion [4], dense surface reconstruction [30], point-based regis-
tration [1] and surface-based registration [2] into an easy-to-
use package. In addition, developers can activate any of the
available open-source MITK plugins within NiftyIGI, such
as those for diffusion imaging [11], segmentation [18], or
indeed the MITK Image-Guided Therapy Toolbox [10] and
the MITK Ultrasound Toolbox [19]. As NifTK continues to
expand, further plugins will be developed and described in
future publications. For the purpose of this paper, we focus
on the topics listed above.

Methods

The NifTK architecture for IGI is now described in detail,
followed by a performance analysis and examples.

7 http://qt-project.org.

123

http://www.ndigital.com
http://www.ultrasonix.com
http://qt-project.org

304 Int J CARS (2015) 10:301–316

Introduction to NiftyLink

The purpose of NiftyLink is to enable the user to send and
receive messages based on the OpenIGTLink protocol. The
reference implementation of OpenIGTLink on GitHub8 pro-
vides C++ classes to conveniently use a BSD socket. How-
ever, there is still work to do to implement OpenIGTLink
messaging within an application. The developer has to con-
sider whether to send synchronously or asynchronously, use
multi-threading to maintain GUI performance and decide
how to handle low-level networking errors and high-level
application errors. For this reason, 3D Slicer and PLUS have
implemented their own classes to embed the OpenIGTLink
reference implementation into their applications. While these
classes are open-source, they would have to be extracted class
by class in order to embed into another application, and these
classes themselves have other library dependencies. Further-
more, various medical imaging projects such as 3D Slicer,
PLUS, MITK, NifTK and CTK9 all use Qt.10 Qt is a widely
used library with support for all major OS platforms that pro-
vides networking and threading facilities and GUI widgets.

Thus, the motivation for implementing NiftyLink was
to create an easy-to-use and lightweight messaging library
that integrates well with the rest of the NifTK platform,
works reliably across the various platforms that are sup-
ported by NifTK and that can be easily adopted by any other
C++/Qt/CMake project. The design philosophy of NiftyLink
is to provide compatibility with existing projects that use
OpenIGTLink such as 3D Slicer and PLUS, to not deviate
from the protocol and to be small and self-contained.

Features of NiftyLink

The main features of NiftyLink are currently:

– A server that binds to a single port and accepts multi-
ple client connections. Inbound messages are queued in
order. Outbound messages are sent to each client.

– A client that connects to the above server.
– Optional keep-alive status messages, and hence detection

of dropped connections.
– Client and server are multi-threaded and asynchronous.
– All messages passed are OpenIGTLink messages.
– Helper functions to aid the developer to easily send com-

mon messages such as images and tracking data.
– Centralised, thread-safe logging.
– A stand-alone application that serves as a basic message

routing client between two server applications.

8 http://github.com/openigtlink/OpenIGTLink.
9 http://www.commontk.org.
10 http://qt-project.org.

The NiftyLink TCP server and client

Reading and writing to a TCP socket from a client or a server
should be a simple and standardised task. However, the devel-
oper must decide whether to use synchronous (blocking)
functions or asynchronous (non-blocking) functions. In order
not to block the main GUI processing, blocking network calls
should be processed in a separate thread, and any socket
library offering asynchronous services will be delegating to
other threads behind the scene. So, both methods require
some knowledge of multi-threaded programing. In addition,
there are also a wide variety of error conditions that must be
coped with, as networks can be unreliable. The medical imag-
ing researcher however should not be concerned with these
details, and simply wants to send and receive messages. Qt
provides theQTcpServer and QTcpSocket and a variety
of documented examples for general-purpose networking.
Both the QTcpServer and QTcpSocket classes provide
a synchronous and asynchronous API. The Qt documenta-
tion recommends the use of the asynchronous methods as
networking is inherently asynchronous. So, NiftyLink pro-
vides a client and server that are based on these Qt classes,
and thus the implementation benefits from all the function-
ality provided by Qt.

When starting the NiftyLink server, the developer can
decide whether to bind to local, IPv4, IPv6 or Any (default
is Any) network interface. The NiftyLink server handles net-
work proxies and management of a configurable maximum
(default is 30) number of client connections and provides
robust error notification via Qt signals. The server can pause
and resume accepting client connections. The client simply
specifies a host name and port and binds to the server. Both
server and client can then send and receive messages. If mul-
tiple clients connect to the same server, the messages are
queued by the server in the order they are received from each
thread, but thread processing order is not guaranteed by the
operating system. Both server and client can be configured
to send a regular, short message to indicate that the process
is still alive. The opposite end of the connection can be con-
figured to warn if no such message is received. This is useful
when the sending process is supposed to constantly stream
data and enables quick detection of dead connections.
Implementation details NiftyLinkTcpServer is a sub-
class of QTcpServer. Each client connection is handled
by a QTcpSocket running inside a separate thread. The
main purpose of NiftyLinkTcpServer is to override
the incomingConnection()method which is called by
QTcpServer when a new connection is established. The
overriden incomingConnection() method creates a
NiftyLinkTcpWorker class for each client, connects Qt
signals and slots and hands the NiftyLinkTcpWorker to
a new thread. The remaining methods in the NiftyLink server
are concerned with tidying up threads on destruction, con-

123

http://github.com/openigtlink/OpenIGTLink
http://www.commontk.org
http://qt-project.org

Int J CARS (2015) 10:301–316 305

necting signals and slots, passing signals from clients back
to the user and forwarding requests to all connected clients.

The NiftyLinkTcpClient class contains a single
QTcpSocket to connect to the server. NiftyLinkTcp
Client contains a single NiftyLinkTcpWorker and
as with the NiftyLinkTcpServer; the remaining meth-
ods are concerned with connecting Qt signals and slots and
passing signals back to the user.

TheNiftyLinkTcpNetworkWorker class is used by
both client and server so that message processing functional-
ity is identical at both ends of the client–server connection. A
QTcpSocket signals whenever data are ready to be read and
the QTcpSocket is queried for how much data are avail-
able. Large images may be fragmented over several packets,
and Qt knows nothing about the expected size of incoming
data. So, care must be taken to read as much data as possible
at each invocation and to fully clear the read buffer. If the
amount of data available at the socket is less than a header,
NiftyLinkTcpNetworkWorker will wait for the next
signal. OpenIGTLink headers are fixed size, and the header
contains the size of the subsequent message payload. Once
enough data have arrived to at least read a header, a new mes-
sage of the correct type is then created using a message fac-
tory, and data read in piece by piece, potentially over several
calls, with the message cached between calls. This avoids the
likelihood of the socket timing out, or the need for blocking
while waiting for data. Sending out data is performed by call-
ing the QTcpSocket::write(..)method, which sends
data asynchronously. This means it is always queued behind
the scenes and QTcpSocket takes care of actually sending
the data. All errors are caught via signals and passed back to
the client or server.

NiftyLink message processing

NiftyLink also provides the facility for keep-alive messages.
The TCP protocol itself provides keep-alive options, but these
simply instruct the kernel to be more proactive in checking
the status of a connection, so that when it is next used, the
kernel can report quicker whether or not the connection is
dead. However, for IGI applications, it may be critical to
know when a device that should continuously stream data
has stopped sending data. When there are no real data to
send, NiftyLink provides a method to send a status message
every 500 ms. The other end of the connection can be con-
figured (on/off) to check every 1 s whether any data (data
messages or keep-alive messages) have been received. In
addition, following [29], it is useful to measure latency from
the time a message is created, and starts to be sent, to the
time it is fully deserialised and available at the other end.
NiftyLink provides functionality to count message statistics
during continuous operation and can be remotely triggered to
output them as a Qt signal and a message to the log. Finally,

NiftyLink provides convenience functions to create common
messages such as tracking data and image data messages
from a QImage.

Implementation details The keep-alive functionality is imple-
mented using an igtl::StatusMessage, deliberately
sending STATUS_OK to be compatible with 3D Slicer
and PLUS. It is activated by calling SetKeepAliveOn
(bool) and optionally SetCheckForNoIncoming
Data(bool). The client provides theRequestStats()
method which will send an igtl::StringMessage to
the remote server containing the string STATS, causing the
server to output statistics. Both client and server provide the
OutputStats() slot to enable the user to output statistics
at their end of a connection.

The NiftyLink application

In addition to unit tests, and several testing applications, a
small Qt-based GUI was developed that creates two client
sockets and reads incoming messages from one socket and
writes them to the other socket. This was developed because
both PLUS and NiftyIGI open server ports, and this small
application could serve as a bridge. Basic filtering was imple-
mented for test purposes to only pass messages of a certain
type.

NiftyLink logging

NiftyLink offers a centralised logging mechanism based on
the QsLog library.11 QsLog supports logging to file or con-
sole from multiple threads and is essential to track the output
from many simultaneously running threads. Log events are
automatically tagged by a timestamp and priority (Trace,
Debug,Info,Warn,Error,Fatal), and the output mes-
sages can then be filtered by priority.

NiftyLink changes to OpenIGTLink

The development of NiftyLink resulted in various fixes and
features for OpenIGTLink. They have been raised as issues
44, 45, 46, 47, 48, 49, 50 and 56 for the OpenIGTLink
project on GitHub,12 and available on branches prefixed
with the issue number on the NifTK/OpenIGTLink fork.13

These issues included minor bugfixes (44, 49, 50) and fea-
ture requests to add a message factory (56), transmit error
measures with tracking data (47) and setting and retriev-
ing the timestamp in nanoseconds (48). We also used the
GetSystemTimeAsFileTime() method instead of

11 https://bitbucket.org/razvanpetru/qt-components/wiki/QsLog.
12 https://github.com/openigtlink/OpenIGTLink.
13 https://github.com/NifTK/OpenIGTLink.

123

https://bitbucket.org/razvanpetru/qt-components/wiki/QsLog
https://github.com/openigtlink/OpenIGTLink
https://github.com/NifTK/OpenIGTLink

306 Int J CARS (2015) 10:301–316

Fig. 1 A typical NiftyGuide
application:
niftkNDIPolaris enables
tracking using the NDI Polaris
Spectra and Vicra

clock() on Windows along with NtQueryTimer
Resolution and NtSetTimerResolutionAPI to set
the timer resolution to 0.5 milliseconds on application start
(45). Finally, we also provided error handling fixes to the
socket classes (46). By community consensus, 44, 48, 49, 50
and 56 were merged back to OpenIGTLink, and 45, 46 and
47 left on the NifTK fork, as they are not fundamental to the
core API.

Overview of NiftyGuide

NiftyGuide is a suite of applications, with each individ-
ual application responsible for a single task. For example,
NiftyGuide contains a program called niftkUltrasonix
to grab images using the Ultrasonix Porta API and another
program called niftkNDIPolaris to grab tracking infor-
mation from NDI Polaris and Vicra optical trackers. The
original design philosophy was that each application should
have as few library dependencies as possible, and each
program does one simple job well. The NiftyGuide pack-
age is configured using CMake,14 and at build time tries
to minimise the number of libraries compiled. Depend-
ing on the selected CMake options, these libraries may
include IGSTK, and hence ITK and VTK, which will
give access to other tracker types via IGSTK for future
use. Figure 1 shows a typical user interface. The creation
of command line applications for specific tasks is also
straightforward.

14 http://www.cmake.org.

NiftyIGI: application level architecture

The main workstation application NiftyIGI uses the MITK
application framework. MITK provides an extensible archi-
tecture, where each item including the main application win-
dow is provided by a plugin, and each plugin is implemented
using CTK. The interested reader should refer to the literature
to understand the original library design [33], use of dynam-
ically loaded user interface components [18] and a summary
of infrastructure facilities provided by MITK [23] that are
extensively used by the NiftyIGI application.

NiftyIGI additional plugins

The NiftyIGI program provides a number of additional plu-
gins for IGI purposes. The functionality presented here can
be summarised as:

1. Data sources Provides dynamic management of input
data sources such as trackers or imaging devices, enabling
logging of data and timestamps to files, playback of
logged data and placing the incoming data into the central
MITK Data Storage.

2. Overlay display Will display the image using a VTK fore-
ground renderer with a fixed camera, and in addition ren-
der the 3D scene overlaid on top of the image, thereby
providing augmented reality displays, given a 2D image
in Data Storage. Provision is made for a calibrated camera
model [4,34] for video images. Alternatively, the camera
can be kept at a fixed position relative to the 2D image
as the image is moved in space, which is suitable for
applications such as freehand ultrasound.

123

http://www.cmake.org

Int J CARS (2015) 10:301–316 307

Fig. 2 The NiftyIGI Data Sources Plugin: each IGIDataSource manages a buffer of IGIDataType is controlled by
QmitkIGIDataSourceGui and contains its own thread to collect data, ensuring GUI responsiveness

3. Tracked pointer Takes tracking data, a calibration file and
a surface mesh representation of a pointer, and transforms
the surface mesh according to the tracking transforma-
tion to display the pointer in 3D space. The pointer tip
position is calculated and displayed. MITK Point Sets
can be saved a point at a time into Data Storage, and the
main display focus point can optionally be updated.

4. Tracked image Takes tracking data, a calibration file and
an image and transforms the geometry of the image by the
tracking transformation, so that the image can be visu-
alised in 3D space. This can be used to display for exam-
ple an ultrasound image moving in 3D space.

These plugins can be used for a wide variety of uses, see
“Image guidance using a Tracked Pointer”, “Image guid-
ance using a tracked video source” and “Image guidance
using a tracked ultrasound probe” sections for illustrative
examples. The design philosophy of NiftyIGI is that the
Data Sources plugin is responsible for inserting data into
the Data Storage. All other plugins can be added to pro-
vide additional algorithms to process the available data from
the Data Storage, ensuring loose coupling of plugins. The
visualisation is simply an observation of the current data,
using either the available MITK viewers or custom viewers
like the Overlay Display. The Tracked Pointer and Tracked
Image plugins are relatively simple, simply moving objects
in space. We now discuss the remaining plugins in more
detail.

NiftyIGI: the data sources plugin

A key use-case and system requirement for data input within
NiftyIGI is to handle data from multiple sources at different
frame rates. An ultrasound machine may send messages at
40 fps and a tracking device at 20–100 fps. This data must
all be captured and optionally logged to disk. The architec-
ture is based around a single management class containing
a list of sources, with each source having an independent
GUI if required to preview the incoming data. These preview

GUIs are only created on demand using the ITK ObjectFac-
tory mechanism and was inspired by the creation of seg-
mentation tool GUIs in [18]. In addition to images, point
sets, surfaces and meshes being loaded into Data Storage, we
also specifically store tracking transformation matrices. This
means that all incoming data from the QmitkIGIData-
SourceManager get pushed to Data Storage, so that plu-
gins only have to look in Data Storage, and are unaware of
where the data came from. The ability to visualise the posi-
tion and orientation of a coordinate system helps debugging,
and the rendered glyph can easily be made invisible if not
needed.
Implementation details In Fig. 2, the Data Source plugin
contains a QmitkIGIDataSourceManager, which can
have a dynamically constructed list of IGIDataSource’s.
Each IGIDataSource sub-type can define its own imple-
mentation for retrieving data, such as from a network socket
as in QmitkIGINiftyLinkDataSource, or from a
frame-grabber as in QmitkIGIOpenCVDataSource and
QmitkIGINVidiaDataSource. Each IGIData
Source subclass runs a separate thread to collect the data.
A separate clear-down thread, owned by QmitkIGIData
Source-Managerwill erase these buffers at a configurable
frequency. Independently, the QmitkIGIDataSource
Manager will use a timer to trigger an update of Data Stor-
age for a given timestamp. Each IGIDataSource then
retrieves the closest match from its buffer, calculating the
time difference (lag). Once all IGIDataSource’s have
been copied to Data Storage, a single event is emitted so that
other plugins can synchronise to this update rate, or choose
to ignore it, and update at a plugin-specific frequency. The
QmitkIGIData-SourceManager timer can be dynam-
ically adjusted using user-specific preferences. Finally, the
mitk::Rendering-Manager is asked to update all the
viewers. This design enables different frame rates from each
source, the calculation of lag and whether each source is
up to date. Colour coded warning icons, each colour set by
a user-defined preference, indicate when sources are out of
date.

123

308 Int J CARS (2015) 10:301–316

NiftyIGI: the overlay display plugin

The Overlay Display is a simple customised view compo-
nent to display a 3D rendered scene merged with an image.
There are two distinct modes. “tracked camera” is suitable for
display using a moving calibrated perspective camera model
(e.g. video camera), whereas “tracked image” places the vir-
tual rendering camera perpendicular to a moving image (e.g.
ultrasound image). An additional optional 3D render win-
dow can be displayed side by side within the same screen.
The image data used are selected from any 2D image in Data
Storage and so could be from a live video or ultrasound feed,
or individual frames loaded as static images, which is use-
ful while testing, debugging and working without live video
sources. NifTK additionally provides command line appli-
cations for camera calibration, hand-eye calibration and a
plugin for distortion correction.

Implementation details The tracked camera mode is achieved
through a VTK foreground renderer, where the image ren-
dered is the maximum possible size to fit the display window
and centred. If the selected image has associated camera
intrinsic parameters, the overlay view is scaled according
to the intrinsic parameters by virtue of a customised sub-
class of vtkCamera, which passes the intrinsic parameters
to OpenGL directly. Furthermore, the view automatically
adjusts to screen resize events, maintaining the calibrated
camera view at any screen size. The user can select a track-
ing transformation from Data Storage whereby the virtual
camera position and orientation is continuously updated to
provide a view of the 3D rendered scene as if from the view-
point of the tracked camera device. See Fig. 7.

The tracked image mode is achieved by creating a plane
within the 3D rendered scene that represents the position,
size and orientation of the 2D image. Using MITK mappers,
this plane samples a slice of all volume data within Data
Storage and uses texture mapping and opacity blending to
map image data to the plane. This provides the originally
selected 2D image, but also a merged sub-sampling of any
3D volumes such as Magnetic Resonance (MR) or Computed
Tomography (CT). The standard vtkCamera is fixed per-
pendicular to the image plane and made to maximally fill the
available window. This plane is a member of the 3D scene;
so, all remaining 3D geometry such as surfaces and points
are rendered around it. The plane position and orientation is
updated via the Tracked Image Plugin, and the vtkCamera
follows the movement of the image plane. See Fig. 8.

Experiments and results

NiftyLink performance analysis

A series of experiments were conducted to evaluate the per-
formance of NiftyLink and compare it with the original

OpenIGTLink implementation on GitHub.15 The objective
was to assess the frame rate and latency of data transfer for
representative examples of tracking and imaging data. Typi-
cal requirements within our lab are tracking up to 4 objects,
at 30–60 fps. Tokuda quotes tracking requirements of 40–
375 Hz, and robotics applications requiring 1 KHz, and tests
up to 1,024 fps with 16 matrices per message [29]. Imag-
ing requirements in our lab for example might be ultra-
sound images at 640 × 480 pixels in greyscale 8bit format,
at 20 fps, equivalent to 6,000 KB/s, and here, Tokuda targets
4,096 KB/s[29]. Two computers were used:

1. Apple MacBook Pro (mid 2010); CPU: Intel Core i7 dual
core @2.66 GHz; memory: 4 GB; OS: OS X v.10.8.5

2. Apple MacBook Pro (late 2013); CPU: Intel Core i7 quad
core @2.3 GHz; memory: 16 GB; OS: OS X v10.9.4

These were connected to the college network that provides
a gigabit Ethernet link. Clocks were synchronised using the
open-source implementation16 of the precision time proto-
col [8] as in [29]. Latency experiments similar to those in [29]
were performed for both Open-IGTLink and NiftyLink with
computer 2 as sender and computer 1 as receiver. All time
measurements were taken using gettimeofday() func-
tion defined in 4.3 BSD UNIX and a part of Standard POSIX
1003.1-2001.

Latency of tracking data transfer

The first experiment was to measure the performance of
transmitting tracking data messages. Latency was defined
as the time between the start of generating tracking data at
the sender host and the end of deserialisation at the receiver
host. The time of the start of serialisation was stored in the
timestamp field of the OpenIGTLink message and transferred
to the receiver host, where it was compared with the time
point to finish deserialisation. The number of channels was
16, meaning 16 tracking matrices per message. 10,000 mes-
sages, each containing randomly selected tracking matrices
were transmitted at a rate of 128, 512 and 1,024 fps. The
results are in Table 1.

Latency of imaging data transfer

The second experiment was to measure the performance of
transmitting image data messages. Images were loaded and
stored in memory. Latency was defined as the time between
the start of copying the image into the OpenIGTLink message
and the end of deserialisation of the message at the receiver

15 Revision 849b434b4b.
16 http://ptpd.sourceforge.net.

123

http://ptpd.sourceforge.net

Int J CARS (2015) 10:301–316 309

Table 1 Mean, standard deviation (SD) and maximum (Max) latency of tracking data transfer for OpenIGTLink and NiftyLink software

Frame rate (fps) OpenIGTLink NiftyLink

Mean (ms) SD (ms) Max (ms) Mean (ms) SD (ms) Max (ms)

128 0.30 0.11 0.65 0.34 0.10 1.17

512 0.34 0.11 0.62 0.35 0.10 0.66

1,024 0.31 0.13 0.69 0.31 0.14 0.75

Measurements taken over 10,000 frames of 16 channel tracking data messages

Table 2 Mean, SD and maximum latency of image data transfer for OpenIGTLink and NiftyLink software

Image size (KB) OpenIGTLink NiftyLink

Mean (ms) SD (ms) Max (ms) Mean (ms) SD (ms) Max (ms)

128 1.53 0.10 2.37 1.63 0.14 2.74

256 3.05 0.16 4.27 3.12 0.24 5.31

512 5.91 0.20 7.41 6.06 0.33 9.20

2,048 21.27 1.84 25.17 23.53 0.60 29.31

Measurements taken over 100 images, sent at 32 fps

Table 3 Latencies of tracking data transfers during simultaneous transmission of image and tracking data over the same connection

Frame rate (fps)/image size (KB) OpenIGTLink NiftyLink

Mean (ms) SD (ms) Max (ms) Mean (ms) SD (ms) Max (ms)

2/2,048 0.41 0.69 4.95 0.70 1.92 18.56

16/256 0.34 0.13 0.70 0.39 0.12 0.89

32/128 0.40 0.11 0.60 0.41 0.11 0.64

Tracking data were fixed at 16 channel, 100 fps. The image data transfer was fixed at 4,096 KB/s, and consisted of 100 image messages

Table 4 Latencies of image data transfers during simultaneous transmission of image and tracking data in the same experiment as Table 3

Frame rate (fps)/Image size (KB) OpenIGTLink NiftyLink

Mean (ms) SD (ms) Max (ms) Mean (ms) SD (ms) Max (ms)

2/2,048 23.22 0.32 25.78 23.67 0.68 27.98

16/256 2.99 0.15 4.21 3.12 0.22 5.16

32/128 1.50 0.13 2.71 1.68 0.14 2.69

host. The frame rate was fixed at 32 fps, and the image size
varied as 128, 256, 512 and 2,048 KB. 100 image messages
were transmitted. In addition, both the OpenIGTLink and
NiftyLink client and server were tested streaming 640 × 480
greyscale, B-mode ultrasound images at 100 fps, with a mean
latency of 3.5 and 3.6 ms, respectively. This requires approx
30 MB/s, which is lower than the capability of the underlying
network. The results are in Table 2.

Latency of tracking and imaging data

The third experiment was to measure the performance of
sending interleaved tracking and imaging messages. The
imaging frame rate was varied by 2n fps, with image size

of 4,096/2n KB/s respectively, with n in 1, 4, 5, and mea-
surements taken over 100 samples. Tracking data were fixed
at 100 fps and 16 channels. The results are in Tables 3 and 4.

NiftyIGI performance analysis

The architecture described in “NiftyIGI: the Data Sources
plugin” section enables a number of data sources to collect
data into independent buffers. At a regular clock tick, the
system time is taken, and each buffer in turn asked to update
the central Data Storage repository as of the current system
time. Once this is complete, all displays are re-rendered. This
fourth experiment aimed to evaluate the performance of the
fetching and re-rendering process.

123

310 Int J CARS (2015) 10:301–316

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

A
ct

ua
l f

ra
m

es
 p

er
 s

ec
on

d

Intended frames per second

Tracking Feed
+ Ultrasound Feed

+ Video Feed
+Render Texture

+ Render Triangles

Fig. 3 NiftyIGI was increasingly loaded with data feeds, and more ren-
dering tasks. NiftyIGI was set to update at a certain frequency, denoted
by “Intended frames per second”. The actual frame rate was measured
by NiftyIGI. See “NiftyIGI performance analysis” section

A Dell Precision T7600, running Windows 7 Professional,
with 2 Intel Xeon E5-2609 2.40 GHz processors, 16 GB
memory, NVidia17 Quadro K5000 graphics card, and NVidia
SDI input card, was used as the main host. A Viking 3D stereo
laparoscope18 was attached. NiftyGuide was used to capture
data from an NDI Polaris Spectra,19 an Ultrasonix MDP20

and an Ascension 3DG.21 NiftyLink was used to stream data
into NiftyIGI.

The system was progressively loaded: First, the tracking
feed was added, then the ultrasound feed and then the laparo-
scopic video feed. At this point, there was little to render,
just tracking markers/icons. Then, a typical liver surgery set
of triangle meshes was loaded containing 863,000 triangles,
and containing meshes of the liver, bones, spleen, gallblad-
der, vasculature and so on. Segmentation and meshing were
performed by visible patient.22 Then in addition, a texture-
mapped plane showing live ultrasound data was added to the
3D scene. At each increase in load, the frame rate was varied
from 5 to 30 fps and the time to fetch data from buffers into
the central Data Storage and the time to render was measured
over continuous operation of 30 s and averaged. Results can
be seen in Figs. 3 and 4.

Use-cases

The examples described below have been performed on vari-
ous combinations of Windows 7, Scientific Linux 6 and Mac

17 http://www.nvidia.com.
18 http://www.vikingsystems.com.
19 http://www.ndigital.com.
20 http://www.analogicultrasound.com.
21 http://www.ascension-tech.com.
22 http://www.visiblepatient.com.

 0

 5

 10

 15

 20

 25

 30

Tra
ck

ing
 F

ee
d

+U
ltr

as
ou

nd
 F

ee
d

+V
ide

o
Fee

d

+R
en

de
r T

ex
tu

re

+R
en

de
r T

ria
ng

les

Mean fetch time (milliseconds)
Mean render time (milliseconds)

Fig. 4 Following from Fig. 3, performance depends on fetching data
to update the central Data Storage, and then re-rendering. Fetch and
render times were recorded while running NiftyIGI at 5–30 fps for 30 s
each and averaged. See “NiftyIGI performance analysis” section

OS X 10.8/10.9 operating systems, using four trackers and
two imaging devices.

Image guidance using a tracked pointer

A basic use of image guidance technology is to display the
location of a tracked physical pointer, along with a registered
pre-operative model. NiftyIGI was set up as follows: An NDI
Optotrak Certus was used to track a single NDI 6-IRED active
pointer, calibrated via the NDI 6-Degree Architect software.
A custom made VTK surface representing the 6 IREDs, and
pointer tip was used for visualisation. A plastic pelvis phan-
tom and fiducial markers were attached to a solid acetal base.
The phantom and attached fiducial markers were CT scanned
resulting in an image that was cropped to 373 × 137 × 776
voxels with 0.914×0.9144×0.5 millimetres voxel spacing.
An iso-surface was extracted using the VTK 5.10 marching
cubes implementation. CT points for 6 fiducials were saved as
an mitk::PointSet file using the MITK PointSet Inter-
action Plugin. Corresponding points for the physical location
were saved using the NiftyIGI Tracked Pointer Plugin. The
mitk::PointSets were registered [1] and applied to the
CT surface model. The NiftyIGI Tracked Pointer Plugin was
used to update the location of the pointer model and visualise
the pointer as it moved. Hence, a basic IGS system is realised,
see Fig. 5. A further example is shown in Fig. 6, using an NDI
Polaris Vicra tracker and a porcine ribcage phantom.

Image guidance using a tracked video source

In minimally invasive surgery, laparoscopic or endoscopic
video sources provide real-time views of the surgical scene.
The NiftyIGI Data Sources Plugin provides a stereo high-
definition interface to the NVidia SDI pipeline. Given the cor-
rect position, orientation and perspective calibration, image
guidance can be achieved by augmenting the video data with

123

http://www.nvidia.com
http://www.vikingsystems.com
http://www.ndigital.com
http://www.analogicultrasound.com
http://www.ascension-tech.com
http://www.visiblepatient.com

Int J CARS (2015) 10:301–316 311

Fig. 5 An example of a basic Tracked Pointer system using NifTK.
a The NDI active pointer is placed within a plastic pelvis phantom
(physical layout). b niftkNDICertus from the NiftyGuide suite of
applications sends tracking data to c NiftyIGI which displays 2D out-

lines and 3D views via the standard MITK Display. The NifTK Tracked
Pointer plugin moves the red wireframe pointer representation as track-
ing updates, visualised in the bottom right-hand quadrant of NiftyIGI

Fig. 6 A further Tracked Pointer example, utilising passive tracking
in NifTK. A CT scan from a porcine experiment was used to 3D print
a ribcage phantom. a The physical layout, where tracking is performed

using an NDI Polaris Vicra, sampled using niftkNDIPolaris from
the NiftyGuide suite of applications. b The visualisation in NiftyIGI,
using the standard MITK Display, showing only the 3D window

virtual rendered objects. NiftyIGI was setup as follows: An
NDI Optotrak Certus was used to track the position and orien-
tation of a Viking 3DHD laparoscope.23 Both video cameras
and the hand-eye calibration were performed using NifTK
utilities based on commonly available methods [4,34]. The
NiftyIGI Overlay Display was used in tracked camera mode
to update the position of a virtual camera as the laparoscope
moved. The registration of CT to world coordinates was as in
“Image guidance using a tracked pointer” section. Figure 7
shows an example display showing the wireframe mesh of
the phantom prostate overlaid on the video, and addition-
ally a rendering of the tracked NDI active pointer. At this
magnification, even small errors can be visually apparent.

Image guidance using a tracked ultrasound probe

A third image guidance scenario is to display a virtual rep-
resentation of an image from, for example, a tracked ultra-

23 http://www.vikingsystems.com.

sound probe, mixed with data from pre-operative scans such
as MR or CT. NiftyIGI was set up as follows: An NDI Polaris
Spectra was used to track an Ultrasonix 4DC7-3/40 probe,
connected to an Ultrasonix MDP scanner. A Kyoto IOUS-
FAN24 abdominal intraoperative and laparoscopic ultrasound
phantom was imaged, and live data sent to NiftyIGI using
NiftyLink. The NiftyIGI Overlay Display was used to visu-
alise the CT and ultrasound data. Figure 8a shows the physi-
cal set-up. Figure 8b shows niftkUltrasonixRemote
running on Windows, which connects to the Ultrasonix MDP
via TCP/IP using the Ulterius API and then sends imaging
data to NiftyIGI running on a MacBook Pro. Figure 8 (c,
left) shows the NiftyIGI Overlay Display with the virtual
camera fixed perpendicular to the ultrasound image plane.
Figure 8 (c, middle) shows a 3D view showing the location
of the ultrasound image plane relative to the abdomen phan-
tom components and (c, right), an MITK 2D view showing
contours as the liver data intersects with the ultrasound plane.

24 http://www.kyotokagaku.com/products/detail03/us-3.html.

123

http://www.vikingsystems.com
http://www.kyotokagaku.com/products/detail03/us-3.html

312 Int J CARS (2015) 10:301–316

Fig. 7 An example demonstrating the tracked camera mode in the
NifTK Overlay Display. A Viking 3DHD laparoscope was tracked using
an NDI Optotrak Certus. The NiftyIGI Overlay Display Plugin enables
a calibrated video view to augment video data with rendered 3D data. a

The physical, tracked laparoscope. b The augmented display showing a
blue representation of the prostate overlaid on the red physical prostate
giving a purple appearance, and also the Tracked Pointer in red

Fig. 8 An example demonstrating the tracked image mode in
the NifTK Overlay Display. Tracking data are provided by an
NDI Polaris Spectra, sampled using niftkNDIPolaris from the
NiftyGuide suite of applications. a Shows the physical setup. In b
niftkUltrasonixRemote connects via the Ulterius API to an
UltrasonixMDP and sends imaging data to NiftyIGI. c Shows the

NiftyIGI Overlay Display Plugin positioning the virtual VTK camera
perpendicular to the Tracked Image (c, left). Additionally, we can see
the tracked ultrasound image moving in the 3D window, intersecting
the 3D geometry of the phantom (c, middle). The transformations are
updating using the NifTK Tracked Image Plugin (c, right)

Discussion

Performance testing has been performed for the new NiftyLink
library and the NifTK platform as a whole. We now discuss
each component in turn.

NiftyLink

The experiments in “NiftyLink performance analysis” sec-
tion and results in Tables 1, 2, 3 and 4 show that NiftyLink is
fractionally slower than OpenIGTLink, but not significantly
so. The only noteworthy difference occurs in Table 3, row
1. When sending data, the OpenIGTLink socket class calls

the BSD socket send()25 function which blocks until all
data are written to the kernel send buffer. The NiftyLink ver-
sion however will call QTcpSocket::write(), which
queues the data and returns immediately. Thus, in the case of
NiftyLink, several subsequent tracking messages will have
an earlier timestamp, resulting in an increased measure of
latency, even though the arrival time will be comparable. So,
while there is a measurable cost to using Qt signals and slots,
the difference in performance is negligable.

NiftyLink has proven to be successful for transmission of
tracking data and images between computers at a frame rate
that is suitable for our applications. Time synchronisation has

25 http://linux.die.net/man/2/send.

123

http://linux.die.net/man/2/send

Int J CARS (2015) 10:301–316 313

not yet proven to be a problem in practice as we normally test
on various platforms, but deploy to the operating theatre on
a single machine. The experiments described in “NiftyLink
performance analysis” section were performed on Mac OS
X in order to use the open-source ptpd daemon. No such
implementation exists for Windows. On Windows, it would
be possible to run an NTP server26 and synchronise other
machines to it.

The use of OpenIGTLink or NiftyLink, which both trans-
mit data over TCP/IP, has implications for safety and could
lead to adverse events. For commercial product development,
a detailed risk analysis is required to demonstrate compliance
with ISO-14971, and a suitable software architecture must
be designed. Software must additionally be implemented
according to ISO-62304. Very little research work on safety-
critical software has been published for IGI systems in gen-
eral, with the exception being in safety of medical robot-
ics [14]. It would make a significant difference to the timing
of a system if images arrive via one mechanism, and tracking
data via another. For a research platform, flexibility and the
ability to reconfigure the system are key, and a detailed inves-
tigation of suitable software architectures for safety critical
IGI systems is planned for future work.

NiftyGuide

Currently, NiftyGuide only contains programs for collecting
data from the NDI Polaris Vicra and Spectra, the NDI Cer-
tus, Ascension 3DG and an Ultrasonix MDP, which are the
hardware currently in use in our laboratory. However, the
lightweight design means that it is easy for additional pro-
grams to be added, without the need to understand the full
NifTK platform. Initial experience suggests that for some
developers, it has been easier to write these small programs
using the direct API calls provided by manufacturers than
using larger software packages such as IGSTK.

The NiftyGuide components simply grab data and send
via NiftyLink. Other software packages such as PLUS pro-
vide a similar approach [16]. The advantage of using Open-
IGTLink is that it provides a mechanism for interoperability.
Thus, we do not see NiftyGuide as a competitor to PLUS.
Indeed, PLUS provides additional interfaces to devices such
as video hardware that can then be used to stream data into
NiftyIGI. As time progresses, there will be new hardware,
and obsolete hardware, and either NiftyGuide or PLUS could
be added to or extended as the need arises.

NiftyIGI

In this paper, we have described our data management
(“NiftyIGI: the Data Sources plugin” section) and visuali-

26 http://www.meinbergglobal.com/english/sw/ntp.htm.

sation functionality (“NiftyIGI: the Overlay Display plugin”
section). The experiments in “NiftyIGI performance analy-
sis” section test the performance of the data management
framework with simultaneous use of trackers, video data and
ultrasound data, as is typical for an IGS application. In Fig. 3,
we can see a measure of performance. The GUI is set to
refresh at a certain rate via a QTimer object. In practice,
when processing takes too long, either in the timer thread,
or with various other threads consuming CPU resources, Qt
will opt to miss a timer tick if it can’t keep up with the timing
schedule. So,“actual frames per second” are expected to be
less than the “intended frames per second”. Note also that
in Fig. 3, tasks are incrementally added. When the system is
not rendering ultrasound data texture mapped on a plane, the
system copes well up until a requested frame rate of 20 fps, or
an actual frame rate of 15 fps. When ultrasound data are visu-
alised in the surgical scene, displayed on a texture-mapped
plane, as in Fig. 8d (middle), the system drops to about 5 fps.
This slow down is not caused by the proposed framework
and is due to expensive, repeated updates to OpenGL pixel
buffers and is a known performance bottleneck that is being
addressed. Figure 4 shows the timing, measured in millisec-
onds. It can be seen that updating Data Storage with the
most up to date data from all sources is of the order of 5–
13 milliseconds, whereas rendering could be of the order of
30–65 milliseconds.

The success of the Data Sources plugin stems from the
single purpose of just putting data into Data Storage. The
proposed architecture enables all sources to operate at dif-
ferent speeds and yet enables the GUI refresh rate to be
changed dynamically. Typically we run the refresh rate at
5–15 fps. Our design also permits the simple implementa-
tion of a logging and playback mechanism. As each frame of
data is processed, it can be saved to disk. Subsequently, the
only requirement is that each data source can read files from
disk rather than a live source and place the data back into
Data Storage. The rest of the application remains the same,
as the remaining application logic is unaware of where the
data came from.

Our original requirements in “Motivation” section men-
tioned that algorithm components should be lightweight. The
NiftyIGI GUI requires many software libraries and cannot be
considered lightweight (see “Appendix”) in the same sense
that NiftyReg [21] and NiftySeg [5] are lightweight. How-
ever, perhaps, it is more important to consider ways to man-
age the inherent complexity, and here, it is the MITK applica-
tion framework that gives us the ability to modularise, encap-
sulate and isolate pieces of functionality, thereby organising
the code well. In comparison with a previous unpublished
user interface, the use of the application framework provided
by MITK has resulted in more loosely coupled modules, each
with clearer purpose, and hence there is less of a tendency for
the code base to degenerate. The NifTK build process pro-

123

http://www.meinbergglobal.com/english/sw/ntp.htm

314 Int J CARS (2015) 10:301–316

vides the ability to build multiple user interfaces, each with
different combinations of plugins. This has proven useful as
the end-users have very different use-cases and do not want
unnecessary clutter within their user interface.

As software evolves, newer design styles come to light.
Recent work has demonstrated the use of micro-services27

within the MITK-US module [19], and a similar approach is
now implemented within the MITK-IGT framework.28 The
micro-services approach is complimentary to the proposed
architecture, and future work could investigate utilising the
micro-services approach within the NiftyIGI Data Sources
manager, and also embedding NiftyLink/OpenIGTLink func-
tionality within MITK itself.

Interoperability

In addition to the experiments described in “Experiments and
results” section, NiftyGuide applications have been tested
successfully sending imaging and tracking data into 3D Slicer
via NiftyLink. 3D Slicer provides the facility to open a server
port and listen for connections or to open a client port, and
bind to an already running server. PLUS provides a server
program that can broadcast image and tracking data, and
client applications that connect to the server. Work is under-
way to enable NiftyIGI to work more closely with PLUS. The
common medium however is OpenIGTLink, and here, NifTK
aims to provide compatibility and interoperability rather than
directly compete with platforms such as PLUS and 3D Slicer.

Conclusion

In this paper, the NifTK platform has been introduced within
the context of IGI. The motivation, design and initial use-
cases have been described and demonstrated. The aim is to
provide novel plugins for the various user interfaces and new
command line programs, and integrate new research algo-
rithms. The platform benefits from the extensive use of open-
source software and CMIC is committed to feeding back code
where feasibly possible.

CMIC has previously released smaller sub-components
of the NifTK platform such as NiftyReg [21], NiftySeg [5],
NiftySim [28] and NiftyRec [24]. These packages are light-
weight and research focussed and have been widely adapted
due to their simplicity and ease of deployment. In addition,
CMIC has contributed towards projects such as MITK and
CTK.29 This paper describes a much larger suite of end-
user applications, incorporating much more complex archi-
tectures and library dependencies. It is envisioned that com-

27 http://cppmicroservices.org.
28 http://github.com/MITK/MITK.
29 http://www.commontk.org.

ponents from this programme of work will be open-sourced
as they mature and develop, either by directly releasing the
code, or via integration with collaborative projects.

Acknowledgments We gratefully acknowledge the support of several
funders. This publication presents independent research part-funded by
the Health Innovation Challenge Fund (HICF-T4-317, HICF-T4-275),
a parallel funding partnership between the Wellcome Trust and the
Department of Health. The views expressed in this publication are those
of the author(s) and not necessarily those of the Wellcome Trust or the
Department of Health. This work was undertaken at UCLH/UCL who
received a proportion of funding from the National Institute for Health
Research University College London Hospitals Biomedical Research
Centre (NIHR BRC UCLH/UCL), where Matt Clarkson, Miklos Espak
and Gergely Zombori were funded by grant 168 and the High Impact
Initiative and Steve Thompson by grant 96. Stephen Thompson was
also supported by Prostate Cancer UK grant PG10-30. Part of the
work in this paper was also funded by EPSRC grant EP/F025750/1.
Sebastien Ourselin receives funding from the EPSRC (EP/H046410/1,
EP/J020990/1, EP/K005278), the MRC (MR/J01107X/1), the EU-
FP7 project VPH-DARE@IT (FP7-ICT-2011-9-601055), the NIHR
Biomedical Research Unit (Dementia) at UCL and the NIHR BRC
UCLH/UCL High Impact Initiative. We would like to thank Holger
Roth, Yipeng Hu and Dean Barratt for the use of the Kyoto liver phantom
and help with probe calibration. We would like to thank NVidia Cor-
poration for the donation of the Quadro K5000 and SDI capture cards
used in this research. We would like to thank the open-source commu-
nities of OpenIGTLink and PLUS and in particular Junichi Tokuda and
Andras Lasso. Finally, we would like to thank the MITK community
for their support and advice throughout this project, and in particular
the contribution of Sascha Zelzer.

Conflict of interest None.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

Appendix

Library dependencies

Table 5 lists the main libraries used within NifTK, and Table 6
shows the dependencies for each sub-project. Care has been
taken to choose unrestrictive open-source licenses, and most
of these libraries can be considered de facto standards within
their field. Table 6 also illustrates the lightweight nature of
NiftyLink and the progressively more heavyweight nature of
NiftyIGI.

Software development process

The software build processes are based on the Kitware soft-
ware process [26], utilising Git30 for source code manage-
ment, CMake31 for the cross-platform build process, CTest

30 http://git-scm.com.
31 http://www.cmake.org.

123

http://cppmicroservices.org
http://github.com/MITK/MITK
http://www.commontk.org
http://git-scm.com
http://www.cmake.org

Int J CARS (2015) 10:301–316 315

Table 5 The main open-source
libraries used in NifTK Library License Purpose Version

Boost Boost General C++ 1.56

GDCM Creatis DICOM file IO 2.4.1

DCMTK BSD DICOM networking 3.6.1

OpenCV BSD Computer vision 2.4.6

ITK Apache 2 Image processing 4.5.1

VTK BSD Visualisation 6.1.0

IGSTK BSD General IGI functionality, e.g.
tracker interfaces

8b8c6f30 (ITK 3.20, VTK 5.8)

OpenIGTLink BSD Transmission protocol 972d7b90

CTK Apache 2 DICOM, infrastructure 1dd16ae7

MITK BSD like Application framework c00657bd

Qt LGPL User interface 4.8.6

Table 6 Library dependencies for each project in NifTK

Project Libraries

NiftyLink Qt, OpenIGTLink

NiftyGuide Qt, NiftyLink, optionally IGSTK,
ITK, VTK and various device API

NiftyIGI Qt, NiftyLink, ITK, VTK, BOOST,
GDCM, DCMTK, CTK, MITK OpenCV

(see CMake) to run unit tests and subsequently publish con-
tinuous and nightly build results to a CDash32 dashboard
and finally Doxygen33 for documentation generation. For
the open-source NiftyLink project, all code is available on
GitHub,34 with issues, bug fixes and feature requests man-
aged using the GitHub issue tracker.

References

1. Arun KS, Huang TS, Blostein SD (1987) Least-squares fitting of
two 3-D point sets. Pattern Anal Mach Intell IEEE Trans 5:698–700

2. Besl PJ, McKay ND (1992) Method for registration of 3-D shapes.
In: Robotics-DL tentative. International Society for Optics and
Photonics, pp 586–606

3. Bitter I, Van Uitert R, Wolf I, Ibanez L, Kuhnigk JM (2007) Com-
parison of four freely available frameworks for image processing
and visualization that use ITK. Vis Comput Graph IEEE Trans
13(3):483–493. doi:10.1109/TVCG.2007.1001

4. Bradski G, Kaehler A (2008) Learning OpenCV: computer vision
with the OpenCV library. O’Reilly Media Inc., New York

5. Cardoso MJ, Clarkson MJ, Ridgway GR, Modat M, Fox NC,
Ourselin S, Initiative TADN (2011) LoAd: a locally adaptive corti-
cal segmentation algorithm. Neuroimage 56(3):1386–1397, http://
sourceforge.net/projects/niftyseg

32 http://www.cdash.org.
33 http://www.doxygen.org.
34 http://github.com/NifTK/NiftyLink.

6. Cleary K, Cheng P, Enquobahrie A, Yaniv Z (2009) IGSTK image-
guided surgery toolkit. Insight Software Consortium http://www.
igstk.org

7. Cleary K, Peters TM (2010) Image-guided interventions: tech-
nology review and clinical applications. Annu Rev Biomed Eng
12(1):119–142. doi:10.1146/annurev-bioeng-070909-105249

8. Correll K, Barendt N, Branicky M (2005) Design considerations for
a software only implementation of the IEEE 1588 precision time
protocol. In: Conference on IEEE 1588, http://ptpd.sourceforge.
net/doc.html

9. Fouard C, Deram A, Keraval Y, Promayon E (2012) CamiTK: a
modular framework integrating visualization, image processing
and biomechanical modeling. In: Payan Y (ed) Soft tissue bio-
mechanical modeling for computer assisted surgery, pp 323–354,
http://camitk.imag.fr

10. Franz AM, Seitel A, Servatius M, Zllner C, Gergel I, Wegner I,
Neuhaus J, Zelzer S, Nolden M, Gaa J, Mercea P, Yung K, Som-
mer CM, Radeleff BA, Schlemmer HP, Kauczor HU, Meinzer
HP, Maier-Hein L (2012) Simplified development of image-guided
therapy software with MITK-IGT, pp 83,162J–83,162J–8. doi:10.
1117/12.911421

11. Fritzsche K, Neher P, Reicht I, van Bruggen T, Goch C, Reisert M,
Nolden M, Zelzer S, Meinzer H, Stieltjes B (2012) MITK diffusion
imaging. Methods Inf Med 51(5):441

12. Ibanez L, Schroeder W (2005) The ITK software guide 2.4. Kitware
Inc., Clifton Park, NY, http://www.itk.org

13. Ince DC, Hatton L, Graham-Cumming J (2012) The case for open
computer programs. Nature 482(7386):485–488

14. Jung MY, Taylor RH, Kazanzides P (2014) Safety design view:
a conceptual framework for systematic understanding of safety
features of medical robot systems. In: Robotics and automation
(ICRA), 2014 IEEE international conference on, pp 1883–1888.
doi:10.1109/ICRA.2014.6907107

15. Larrabide I, Villa-Uriol MC, Crdenes R, Barbarito V, Carotenuto
L, Geers AJ, Morales HG, Pozo JM, Mazzeo MD, Bogunovi H,
Omedas P, Riccobene C, Macho JM, Frangi AF (2012) Angiolab—
a software tool for morphological analysis and endovascular treat-
ment planning of intracranial aneurysms. Comput Methods Pro-
grams Biomed 108(2):806–819. doi:10.1016/j.cmpb.2012.05.006,
http://www.gimias.org/

16. Lasso A, Heffter T, Rankin A, Pinter C, Ungi T, Fichtinger G
(2014) PLUS: open-source toolkit for ultrasound-guided interven-
tion systems. IEEE Trans Biomed Eng. doi:10.1109/TBME.2014.
2322864, http://www.assembla.com/spaces/plus

123

http://dx.doi.org/10.1109/TVCG.2007.1001
http://sourceforge.net/projects/niftyseg
http://sourceforge.net/projects/niftyseg
http://www.cdash.org
http://www.doxygen.org
http://github.com/NifTK/NiftyLink
http://www.igstk.org
http://www.igstk.org
http://dx.doi.org/10.1146/annurev-bioeng-070909-105249
http://ptpd.sourceforge.net/doc.html
http://ptpd.sourceforge.net/doc.html
http://camitk.imag.fr
http://dx.doi.org/10.1117/12.911421
http://dx.doi.org/10.1117/12.911421
http://www.itk.org
http://dx.doi.org/10.1109/ICRA.2014.6907107
http://dx.doi.org/10.1016/j.cmpb.2012.05.006
http://www.gimias.org/
http://dx.doi.org/10.1109/TBME.2014.2322864
http://dx.doi.org/10.1109/TBME.2014.2322864
http://www.assembla.com/spaces/plus

316 Int J CARS (2015) 10:301–316

17. Lu T, Liang P, Wu WB, Xue J, Lei CL, Li YY, Sun YN, Liu FY
(2012) Integration of the image-guided surgery toolkit (IGSTK)
into the medical imaging interaction toolkit (MITK). J Digit Imag-
ing 25:729–737. doi:10.1007/s10278-012-9477-3

18. Maleike D, Nolden M, Meinzer HP, Wolf I (2009) Interactive seg-
mentation framework of the medical imaging interaction toolkit.
Comput Methods Progr Biomed 96(1):72–83. doi:10.1016/j.cmpb.
2009.04.004

19. Marz K, Franz AM, Seitel A, Winterstein A, Bendl R, Zelzer S,
Nolden M, Meinzer HP, Maier-Hein L (2014) MITK-US: real-time
ultrasound support within MITK. Int J Comput Assist Radiol Surg
9(3):411–420. doi:10.1007/s11548-013-0962-z

20. Mirota DJ, Ishii M, Hager GD (2011) Vision-based navigation in
image-guided interventions. Annu Rev Biomed Eng 13(1):297–
319. doi:10.1146/annurev-bioeng-071910-124757

21. Modat M, Ridgway GR, Taylor ZA, Lehmann M, Barnes J,
Hawkes DJ, Fox NC, Ourselin S (2009) Fast free-form deformation
using graphics processing units. Comput Methods Progr Biomed
98:278–284. doi:10.1016/j.cmpb.2009.09.002, http://sourceforge.
net/projects/niftyreg

22. Nicolau S, Soler L, Mutter D, Marescaux J (2011) Augmented
reality in laparoscopic surgical oncology. Surg Oncol 20(3):189–
201. doi:10.1016/j.suronc.2011.07.002

23. Nolden M, Zelzer S, Seitel A, Wald D, Müller M, Franz AM,
Maleike D, Fangerau M, Baumhauer M, Maier-Hein L, et al. (2013)
The medical imaging interaction toolkit: challenges and advances.
Int J Comput Assist Radiol Surg, 1–14, http://www.mitk.org

24. Pedemonte S, Bousse A, Erlandsson K, Modat M, Arridge S, Hut-
ton B, Ourselin S (2010) GPU accelerated rotation-based emis-
sion tomography reconstruction. In: Nuclear science symposium
conference record (NSS/MIC), 2010 IEEE, pp 2657–2661. IEEE,
http://sourceforge.net/projects/niftyrec

25. Pieper S, Halle M, Kikinis R (2004) 3D slicer. In: Biomedical
imaging: nano to macro, 2004. IEEE international symposium on,
pp 632–635. IEEE, http://www.slicer.org

26. Schroeder W, Ibanez L, Martin K (2004) Software process: the key
to developing robust, reusable and maintainable open-source soft-
ware. In: Biomedical imaging: nano to macro, 2004. IEEE interna-
tional symposium on, vol 1, pp 648–651. doi:10.1109/ISBI.2004.
1398621

27. Schroeder W, Martin K, Lorensen W (2002) The visualization
toolkit: an object-oriented approach to 3D graphics. Kitware Inc.,
http://www.vtk.org

28. Taylor ZA, Cheng M, Ourselin S (2008) High-speed nonlinear finite
element analysis for surgical simulation using graphics processing
units. IEEE Trans Med Imaging 27(5):650–663, http://sourceforge.
net/projects/niftysim

29. Tokuda J, Fischer GS, Papademetris X, Yaniv Z, Ibanez L, Cheng
P, Liu H, Blevins J, Arata J, Golby AJ et al (2009) OpenIGTLink:
an open network protocol for image-guided therapy environment.
Int J Med Robot Comput Assist Surg 5(4):423–434, https://github.
com/openigtlink/OpenIGTLink

30. Totz J, Thompson S, Stoyanov D, Gurusamy K, Davidson B,
Hawkes DJ, Clarkson MJ (2014) Fast semi-dense surface recon-
struction from stereoscopic video in laparoscopic surgery. In: Stoy-
anov D, Collins D, Sakuma I, Abolmaesumi P, Jannin P (eds) Infor-
mation processing in computer-assisted interventions, lecture notes
in computer science, vol 8498. Springer International Publishing,
pp 206–215. doi:10.1007/978-3-319-07521-1_22

31. Toussaint N, Souplet JC, Fillard P (2007) MedINRIA: medical
image navigation and research tool by INRIA. In: MICCAI ’07
workshop on interaction in medical image analysis and visualiza-
tion, http://med.inria.fr

32. Wolf I (2011) Toolkits and software for developing biomedical
image processing and analysis applications. In: Biomedical image
processing. Springer, Berlin, pp 521–544

33. Wolf I, Vetter M, Wegner I, Bottger T, Nolden M, Schobinger M,
Hastenteufel M, Kunert T, Meinzer HP (2005) The medical imaging
interaction toolkit. Med Image Anal 9(6):594–604. doi:10.1016/j.
media.2005.04.005

34. Zhang Z (2000) A flexible new technique for camera calibration.
Pattern Anal Mach Intell IEEE Trans 22(11):1330–1334

123

http://dx.doi.org/10.1007/s10278-012-9477-3
http://dx.doi.org/10.1016/j.cmpb.2009.04.004
http://dx.doi.org/10.1016/j.cmpb.2009.04.004
http://dx.doi.org/10.1007/s11548-013-0962-z
http://dx.doi.org/10.1146/annurev-bioeng-071910-124757
http://dx.doi.org/10.1016/j.cmpb.2009.09.002
http://sourceforge.net/projects/niftyreg
http://sourceforge.net/projects/niftyreg
http://dx.doi.org/10.1016/j.suronc.2011.07.002
http://www.mitk.org
http://sourceforge.net/projects/niftyrec
http://www.slicer.org
http://dx.doi.org/10.1109/ISBI.2004.1398621
http://dx.doi.org/10.1109/ISBI.2004.1398621
http://www.vtk.org
http://sourceforge.net/projects/niftysim
http://sourceforge.net/projects/niftysim
https://github.com/openigtlink/OpenIGTLink
https://github.com/openigtlink/OpenIGTLink
http://dx.doi.org/10.1007/978-3-319-07521-1_22
http://med.inria.fr
http://dx.doi.org/10.1016/j.media.2005.04.005
http://dx.doi.org/10.1016/j.media.2005.04.005

	The NifTK software platform for image-guided interventions: platform overview and NiftyLink messaging
	Abstract
	Introduction
	Background
	Motivation
	System overview
	Contributions of this paper

	Methods
	Introduction to NiftyLink
	Features of NiftyLink
	The NiftyLink TCP server and client
	NiftyLink message processing
	The NiftyLink application
	NiftyLink logging
	NiftyLink changes to OpenIGTLink

	Overview of NiftyGuide
	NiftyIGI: application level architecture
	NiftyIGI additional plugins
	NiftyIGI: the data sources plugin
	NiftyIGI: the overlay display plugin

	Experiments and results
	NiftyLink performance analysis
	Latency of tracking data transfer
	Latency of imaging data transfer
	Latency of tracking and imaging data

	NiftyIGI performance analysis
	Use-cases
	Image guidance using a tracked pointer
	Image guidance using a tracked video source
	Image guidance using a tracked ultrasound probe

	Discussion
	NiftyLink
	NiftyGuide
	NiftyIGI
	Interoperability

	Conclusion
	Acknowledgments
	Appendix
	Library dependencies
	Software development process

	References

