Table 1. Studies of pulmonary function testing in HIV-infected individuals in the cART era | Location | Study
period | Author | Study type | Population and demographics | Key findings | |--------------------------------|-----------------|--------------------------------|---|--|---| | Los Angeles,
United States | 2003-04 | George et al.
(2009) | Cross sectional
Spirometry | 234 HIV clinic outpatients
60% current smokers | 31.5% respiratory symptoms, airflow obstruction: Increasing age, smoking pack-year history, previous bacterial pneumonia and use of cART | | Copenhagen,
Denmark | 2000-07 | Kristoffersen et
al. (2012) | Prospective cohort study median follow up 4.4 years of spirometry and TLCO | 63 patients with previous lung
function testing followed up
48% current smokers | FEV1:FVC <0.7 10% at baseline, 19% at follow up. Reduced TLCO in smoking HIV-infected patients, decline during follow-up also in non-smokers | | Pittsburgh,
United States | 2007-09 | Gingo et al.
(2010) | Cross sectional
Spirometry pre and post
bronchodilator and TLCO | 167 HIV clinic outpatients
53% current smokers | 64% respiratory symptoms (dyspnoea>cough) TLCO <80% predicted in 64% airflow obstruction: smoking pack-year history, intravenous drug use and use of cART | | Baltimore,
United States | 2007-09 | Drummond et al.
(2012) | Retrospective cross sectional review of spirometry | 1,077 people in inner city area
with history of IVDU (303 HIV)
86% current smokers | 16% FEV1:FVC<0.7, airflow obstruction:
Higher HIV viral load (>200,000 copies/ml) | | Philadelphia,
United States | 2008-09 | Hirani et al.
(2011) | Cross sectional
Spirometry | 98 HIV clinic outpatients
55% current smokers | 16% FEV1:FVC <0.7 and 14% airflow obstruction in never smokers. Association with: increasing age, intravenous drug use, smoking pack-year history and previous PCP | | Hamilton,
Canada | <2010 | Cui et al.
(2010) | Cross sectional
Spirometry | 119 HIV clinic outpatients
44% current smokers | 20% abnormal spirometry
12% airway obstruction (FEV1:FVC<70%) | | Baltimore,
United States | 2007-10 | Drummond et al.
(2013) | Longitudinal analysis of
spirometry in AIDS Linked to the
Intravenous Experience study
(Median follow up 2.75 years) | 1064 (316 HIV infected)
85% current smokers | No significant decline in HIV compared to non-HIV group. HIV-patients with CD4 >200 cells/ml had no difference to HIV uninfected. Decline in FEV1 and FVC associated with HIV viral load >75,000 copies/ml and CD4 <100ml/l | Table 2. Differential diagnosis for chronic cough and dyspnoea in HIV infected individuals | Condition | Usual CD4 count cell/mm ³ | Dyspnoea | Additional features | Chest radiograph | |---|--|---|--|---| | | | | Obstructive spirometry | | | Chronic obstructive pulmonary disease | Any | On exertion | Wheeze History of cigarette smoking Obstructive spirometry reduced TLCO | Hyperinflated lung fields
Flattening of diaphragm
Increased bronchial wall thickening
Hyperlucency (if bullous change) | | Asthma | Any | On exertion or identifiable trigger | Wheeze, history of atopy
Reversible obstructive spirometry | May be normal or show features of bronchial wall thickening and hyperinflation | | Bronchiectasis | Any | If airway obstruction | Previous respiratory infections | Increase in bronchovascular markings
Ring shadows of bronchi seen 'end-on'
Tram-track opacities or air fluid levels | | | | | Restrictive spirometry | | | Sarcoidosis | >200
May be due to IRIS* | On exertion | Fever, arthralgia, lymphadenopathy,
hepatosplenomegaly, skin nodules,
uveitis, neurological or cardiac disease | Hilar lymphadenopathy +/- reticulonodular opacities | | Nonspecific
interstitial
pneumonitis (NSIP) | <200
May be normal | Often remains stable over years | Fever (often prolonged) | Interstitial or alveolar infiltrates, normal in up to 50% | | Lymphocytic
interstitial
pneumonia (LIP) | >350 | Progressive exertional dyspnoea | Fever, weight loss, fatigue
If occurs as part of DILS+
xerophthalmia and xerostomia | Reticular or nodular shadowing | | Cryptogenic
organizing
pneumonia (COP) | Any | Exertional dyspnoea | Fevers, weight loss
Restrictive defect on spirometry with
reduced TLCO | Consolidation | | Hypersensitivity pneumonitis (HP) | Usually >350 | Acute or subacute dyspnoea depending on allergen exposure | Fever, rash, weight loss | Normal or diffuse nodules | | | | | Infectious causes | | | Pneumocystis
Jirovecii pneumonia
(PCP) | <200
Not on cART | Progressive
dyspnoea on
exertion | Fever
Oxygen desaturation with exercise | Normal or bilateral infiltrates | | Bacterial pneumonia | Any
Incidence increased
with lower CD4 | Short history of
dyspnoea | Fever
Chest pain | Focal consolidation
May be diffuse
Pleural effusion | | Tuberculosis | Any
Incidence increased
with lower CD4 | Not a prominent
feature | Weight loss, fevers
Superficial lymphadenopathy
Hepatosplenomegaly | Parenchymal infiltrates +/- cavitation
Hilar/mediastinal lymphadenopathy
Pleural effusion | | | | | Other causes | | | Lung cancer | Any | Not a prominent
feature | Weight loss, anaemia
History of cigarette smoking | Mass lesion
Hilar/mediastinal lymphadenopathy
Pleural effusion | | Gastro-oesophageal
reflux | Any | Not a feature | Dyspepsia/acid reflux | Often normal
May show features of hiatus hernia or aspiration | | Chronic allergic rhinitis | Any | Not a feature | Rhinorrhoea
Nasal congestion, sneezing | Normal | ^{*}IRIS = Immune reconstitution inflammatory syndrome +DILS = Diffuse infiltrative lymphocytosis syndrome