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Modulational instability of co-propagating internal wavetrains under rotation
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Weakly-nonlinear unidirectional long internal waves in a non-rotating frame are well described by

the Korteweg-de Vries equation (KdV). Within the KdV framework, all isolated monochromatic

wavetrains are stable to modulational instability. However, analysis of a coupled nonlinear

Schr€odinger equation system (CNLS) has shown that all systems of two co-propagating monochro-

matic wavetrains in the KdV are modulationally unstable. To take into account the effect of the

background rotation of the Earth on long internal waves, this analysis is extended here to derive the

CNLS for the rotation-modified KdV, or Ostrovsky, equation. Rotation stabilises wavetrain pairs

when the wavelengths of both waves comprising the wavetrains are longer than the linear wave

with maximum group velocity. The particular case when the wavetrains have different wavenum-

bers but the same linear group speed is emphasised. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4908571]

A periodic train of waves of fixed, short wavelength on

the surface of the ocean is unstable to large-scale modula-

tional, or Benjamin-Feir, instability. In contrast, long

waves, both on the surface and internal, in shallow seas

can be accurately modelled by the Korteweg-de Vries

equation (KdV) and a single wavetrain in the KdV is

modulationally stable. It has been shown, however, that

the presence of a second co-propagating wavetrain in the

shallow-water, KdV limit renders the otherwise stable

flow unstable with consequences for the growth of freak

waves on swell. One effect that has not been considered

in this context is the background rotation of the Earth.

Internal waves can persist over many inertial periods

allowing background rotation to become significant. This

paper shows that background rotation can stabilise co-

propagating wavetrains that are unstable when rotation

is neglected. The bases of the analysis are coupled nonlin-

ear Schr€odinger equations like those for the KdV, but

derived for co-propagating wavetrains in the rotation-

modified KdV, or Ostrovsky, equation. The analysis also

has implications for the initial value problem for the

Ostrovsky equation.

I. INTRODUCTION

Oceanic internal waves are often assumed to have

amplitudes small compared with the ocean depth (weak non-

linearity) and wavelengths long compared with the depth

(weak dispersion). Korteweg-de Vries (KdV) theory then

gives an accurate description of the shape and speed of

observed waves.1–4 In the highly nonlinear large-amplitude

regime, KdV-type theories have even been used with some

success to model internal waves outside their formal range

of validity5 with the addition of a higher-order cubic nonlin-

ear term. Over the past two decades, strongly nonlinear

models have also been considered.3 Rotation is often taken

to be negligible in these theories although observed waves

can persist for several days allowing rotational effects to

become important.6,7 The simplest weakly-nonlinear model

taking the effects of rotation into account within this frame-

work is the Ostrovsky (rotation-modified KdV) equation,8

and one consequence of rotational effects is the terminal

decay of the otherwise persistent KdV solitary wave.9 When

amplitudes are small and rotation is dominant, the soliton

rapidly breaks into two co-propagating near-linear inertia-

gravity wavetrains with distinct local wavenumbers10 and it

is interactions between such wavetrains that are considered

here. Interactions between modes with different vertical

structure, leading to coupled Ostrovsky equations, have been

considered recently in the context of an initial value problem

for coupled Ostrovsky equations with11 and without12 a

background shear flow, but the problem of two long trains of

waves with the same vertical structure but different horizon-

tal wavenumbers, leading to coupled nonlinear Schr€odinger

equations (CNLS), appears not to have been discussed.

Historically, the propagation of multiple wavetrains in

oceanography has received little attention compared with

the single wavetrain problem, but a report by Thompson13

revealed that approximately 65% of wavetrains near coasts

of the United states contain two or more separate peaks in

the frequency domain. Onorato et al.14 found from a nonlin-

ear Schr€odinger equation (NLS) analysis of the KdV that

the presence of a second co-propagating wavetrain drasti-

cally alters the stability characteristics of the wave modula-

tion, with the inter-wavetrain interaction through the mean

flow term making the usually modulationally stable KdV

equation unstable. This instability is commonly described

as modulational instability (MI), sideband instability, or

even Benjamin-Feir instability, after the pioneering work of

Benjamin and Feir15 on monochromatic surface water

waves. There appears to be no equivalent analysis for the

Ostrovsky equation. Since co-propagating inertia-gravity

wavetrains appear naturally in the initial value problem for
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the Ostrovsky equation,10 the question arises as to whether

the presence of a second wavetrain affects the MI character-

istics of the Ostrovsky equation. This paper thus investi-

gates the interaction of co-propagating wavetrains, with the

same vertical structure, under rotation.

Section II A derives briefly a general coupled NLS

system for two co-propagating wavetrains of different lin-

ear group speed and shows that the zero-mass constraint on

solutions of the Ostrovsky equation eliminates the mean

flow term in the coupled equations. Section II B gives the

corresponding dispersion relation for modulated waves.

Section II C verifies by direct comparison with integrations

of the full Ostrovsky equations, the predictions of Secs. II A

and II B. Finally, Sec. III considers the case where both

wavetrains have distinct wavenumbers but the same linear

group speed, a situation impossible for the KdV in the ab-

sence of rotation.

II. COUPLED NONLINEAR SCHR €ODINGER EQUATION

A. A brief derivation

The one-dimensional horizontal structure of a single

vertical internal mode is governed by the Ostrovsky equa-

tion8 which can be written, relative to a frame moving at lin-

ear long wave speed, as

ðgt þ aggx þ bgxxxÞx ¼ cg; (1)

where g is the interfacial displacement, a the strength of

weak nonlinearity, b weak non-hydrostatic dispersion and c
the strength of weak rotation, reducing to the KdV for c¼ 0.

For the case of oceanic internal waves, it can also be

assumed without loss of generality that a, b, c> 0.16 The in-

terest here, as in Onorato et al.,14 is in the stability of two

wavetrains, propagating in the same direction, centred at

wavenumbers k1 and k2, where “centred” refers to narrow-

banded spectra, i.e., dki/ki� 1 (i¼ 1, 2, for dki the character-

istic width of the spectra). CNLS for the Ostrovsky equation

describing the evolution of two co-propagating wavetrains

can be derived following the approach in Onorato et al.14 for

the KdV, and so details are kept brief here. Introduce the

slow space X ¼ �x and time T ¼ �t variables, where �� 1,

the fast phase variable h¼ kx – xt, and the expansion around

wavenumbers k1 and k2

g ¼ � ðA exp½ih1� þ B exp½ih2�Þ þ �2ðA2 exp½2ih1�
þB2 exp½2ih2� þ C2 exp½iðh1 þ h2Þ�
þD2 exp½iðh1 � h2Þ� þMÞ þ �3ðA3 exp½3ih1�
þB3 exp½3ih2� þ C3 exp½ið2h1 þ h2Þ�
þD3 exp½ið2h1 � h2Þ� þ F3 exp½iðh1 þ 2h2Þ�
þG3 exp½iðh1 � 2h2Þ�Þ þ c:c::::; (2)

where c.c. denotes the complex conjugate of the preceding

terms, and A, A2, A3, B, B2, B3, C2, C3, D2, D3, F3, G3, and M
are all functions of the slow variables. Substituting (2) into

(1)—examining each order in �, imposing periodicity of the

solution, and therefore setting the coefficients of the harmon-

ics at each order to zero—leads to a closed set of equations

for the leading order terms A and B. Equating secular

terms at order � gives the linear dispersion relation of the

Ostrovsky equation, xi ¼ c=ki � bk3
i . At order �2, the second

harmonics give

A2 ¼ 2ak2
1A2= 12bk4

1 þ 3c
� �

;

B2 ¼ 2ak2
2B2= 12bk4

2 þ 3c
� �

;

C2 ¼
a k1 þ k2ð Þ2AB

c k2=k1 þ k1=k2 þ 1ð Þ þ 3bk1k2 k1 þ k2ð Þ2
;

D2 ¼
�a k1 � k2ð Þ2AB�

c k2=k1 þ k1=k2 � 1ð Þ þ 3bk1k2 k1 � k2ð Þ2
: (3)

As in the derivation of the CNLS for the KdV,14 some higher-

order terms in the expansion introduce factors proportional to

ðk1 � k2Þ�2
and so the expansion becomes disordered for

jk1� k2j sufficiently small. It is shown through direct numeri-

cal integrations in Sec. II C below that this restriction is not

significant in practice. Using relations (3), neglecting terms

higher-order than �3 and equating terms from the first harmon-

ics gives the evolution equations for A and B

iðAT þ c1AXÞ þ �½D1AXX þ ðl1jAj2 þ r1jBj2ÞA� ¼ 0;

iðBT þ c2BXÞ þ �½D2BXX þ ðl2jBj2 þ r2jAj2ÞB� ¼ 0; (4)

where

ci ¼ @xi=@ki ¼ �3bk2
i � c=k2

i ;

Di ¼
1

2
@ci=@ki ¼

1

2
@2xi=@k2

i ¼ �3bki þ c=k3
i ;

li ¼ �2a2k3
i = 12bk4

i þ 3c
� �

;

ri ¼ �2a2cki k1 þ k2ð Þ2=fc2½ k2=k1 þ k1=k2ð Þ2 � 1�

þ9b2k2
1k2

2 k2
1 � k2

2

� �2 þ 6bc k4
1 þ k4

2

� �
g:

Here, ci is the linear group velocity of wave ki with deriva-

tive 2Di, li is the usual nonlinear frequency correction,16 and

ri is the interaction term. The group velocity ci has a maxi-

mum when ki ¼ ðc=3bÞ1=4 ¼ kc (say). Then Di< 0 for ki> kc

and Di> 0 for ki< kc. For a wavetrain i in isolation, it is well

known that if Di has the same sign as li, the wavetrain is

modulationally unstable.17 Since li< 0, an isolated wave-

train is modulationally unstable for ki> kc and stable for

ki< kc.
16 This paper extends these results to the coupled

wavetrain.

Now, r1;2 vanish for c¼ 0, and so the modes appear to

decouple in the KdV limit. This is because Eq. (1) requires

that for any c 6¼ 0, the total mass
Ð1
�1 gdx of any solution of

the Ostrovsky equation vanishes, removing the mean flow

term M that gives the coupling in the CNLS for the KdV.

The derivation of (4) implicitly requires that c is of order

unity or larger and the CNLS for c of higher order in � is of

different (non-local) form which does indeed reduce to the

CNLS for the KdV when c¼ 0. The mass constraint also

weakens greatly the coupling in the Ostrovsky equation.

Fig. 1 shows r1 as a function of k2 for k1¼ 2 when

c ¼ b ¼ 1. The interaction is strongest when the wavenum-

bers are comparable and weakens as jk1 – k2j increases.
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Equation (4) should be independent of � to be consistent,

although—as noted in Onorato et al.14—this is not always

possible for the CNLS. The factor � is removed in the deriva-

tion of the NLS for a single wavetrain by moving to a refer-

ence frame translating at the linear group velocity. This is

not possible in general for the CNLS as it requires wavenum-

bers k1 and k2 to be chosen such that c1¼ c2, although

Sec. III below gives an important example where c1 does

indeed equal c2. First, to retain generality, the approach of

Onorato et al.14 is followed by introducing a further scaling

of the space v ¼ �X and time s ¼ �T variables. Equation (4)

can then be re-written as

iðAs þ c1AvÞ þ �2D1Avv þ ðl1jAj2 þ r1jBj2ÞA ¼ 0;

iðBs þ c2BvÞ þ �2D2Bvv þ ðl2jBj2 þ r2jAj2ÞB ¼ 0: (5)

Onorato et al.14 take (5) as the basis for discussion of the

KdV problem, and so it is taken here as the basis for discus-

sing MI for a general wavetrain pair in the Ostrovsky equa-

tion. In an examination of two-wave and four-wave MI in the

context of the nonlinear Klein-Gordon equation, Griffiths,

Grimshaw, and Khusnutdinova18 discuss this approach and

note that although equations of the form (5) are not generally

asymptotically exact, in that they contain small dispersive

terms which are strictly beyond the leading order transport

terms, they can be useful for diagnosing MI as they do cap-

ture the leading order dispersive and nonlinear effects. The

validity of this approach for the Ostrovsky equation is con-

firmed in Sec. II C below by direct comparison of growth

rates obtained from (5) with those from numerical integration

of the full Ostrovsky equation.

B. Dispersion relation for modulational waves

Following Onorato et al.,14 consider the finite amplitude

plane wave solutions of (5) given by

A ¼ ~A expð�ixAsÞ; B ¼ ~B expð�ixBsÞ;

xA ¼ �ðl1j ~Aj2 þ r1j ~Bj2Þ; xB ¼ �ðl2j ~Bj2 þ r2j ~Aj2Þ;

and take these to be perturbed to

A ¼ ~Að1þ aÞ expð�ixAsþ /AÞ;
B ¼ ~Bð1þ bÞ expð�ixBsþ /BÞ;

where a, b and /A; /B are small perturbations in amplitude

and phase, respectively. Linearizing the perturbation

equations and looking for wavelike solutions where a, b,

/A; /B / exp½iðKv� XsÞ� gives the dispersion relation

X ¼ XðKÞ for the modulation frequency X in terms of the

modulation wavenumber K, as the monic quartic polynomial

~D1ðX;KÞ ~D2ðX;KÞ ¼ 4�4r1r2D1D2j ~Aj2j ~Bj2K4; (6a)

where

~D1ðX;KÞ ¼ ðX� Kc1Þ2 þ �2D1K2ð2l1j ~Aj2 � �2D1K2Þ;
(6b)

~D2ðX;KÞ ¼ ðX� Kc2Þ2 þ �2D2K2ð2l2j ~Bj2 � �2D2K2Þ;
(6c)

give the monic quadratic dispersion relations ~DiðX;KÞ ¼ 0

for each wavetrain in isolation. Since the coefficients are

real, any complex roots for X occur in conjugate pairs and so

the coupled wavetrains are modulationally unstable for any

parameters values, where (6a) has at least one complex root

for any K and stable only for parameters such that all four

roots of (6a) are real for all K. Fig. 2 shows the maximum

growth rate (the maximum over the four roots of the imagi-

nary part of X) in (K, k2) space for two values of k1 with

� ¼ 0:1 and all other parameters unity. The white regions

show where the maximum growth rate is zero and so corre-

spond to stable waves while the shaded regions give unstable

waves. When both k1,2< kc, the system is stable as given by

the white region for all K of Fig. 2(a), and when k1> kc, in

Fig. 2(b), the system is always unstable as the growth rate is

nonzero for some K.

FIG. 1. The interaction coefficient r1 in (4) as a function of k2 for k1¼ 2

when c¼b¼ 1. The interaction is strongest when the wavetrain carrier

wavenumbers are comparable and weakens as jk1 – k2j increases.

FIG. 2. The maximum growth rate ½=mðXÞ�max contoured in (K, k2) space for

a modulation of wavenumber K to two wavetrains of wavenumbers k1 and k2

calculated from the dispersion relation (6) for parameters � ¼ 0:1 and ~A; ~B,

a, b, c¼ 1. (a) k1¼ 0.1< kc (stable). The entire region k2< kc is stable to MI

as both wavetrains are stable. (b) k1¼ 1.5> kc (unstable). There is instability

for some K at each k2 as the k1 wavetrain is individually unstable to MI.
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This behaviour is general. For sufficiently long perturba-

tions, the terms of order �4K4 in (6) are negligible and (6)

reduces to

~D1ðX;KÞ ~D2ðX;KÞ ¼ 0; (7)

where ~D1ðX;KÞ¼ðX�Kc1Þ2þ2l1�
2D1K2j ~Aj2 and ~D2ðX;KÞ

¼ðX�Kc2Þ2þ2l2�
2D2K2j ~Bj2. The wavetrains effectively

decouple, and, since l1;2<0, (7) has one pair of complex

conjugate roots when just one of the Di is negative, i.e.,

ki>kc. If both D1,2 are negative, i.e., both k1,2>kc, (7) has

two pairs of complex conjugate roots and the maximum

growth rate is determined by the root with maximum imagi-

nary part. This can be seen in Fig. 2(b) where k1>kc and

there is a band of instability for all k2 for K�2. The coupled

wavetrain is unstable if at least one carrier wave is individu-

ally unstable. Now consider k2¼kc so D2¼0. Then, Eq. (6)

again decouples with the real repeated root X¼�Kc2 plus

either a complex conjugate pair and instability for all K if

k1>kc as in Fig. 2(b) or two real roots and stable waves for

all K if k1<kc as in Fig. 2(a). Since k2¼kc gives a double

root of (6), the determinant of the quartic changes sign as k2

decreases through kc the unstable complex conjugate pair

becomes two stable real roots. Similarly, when k1 decreases

through kc, the unstable complex pair becomes two stable

real roots. Thus, when both k1,2<kc, all roots are real for all

parameters and all K, and the coupled wavetrain is stable.

Similar arguments do not apply to the CNLS for the KdV

since D1,2 do not vanish for the KdV. The CNLS for

the KdV equation is unstable for all wavenumbers14 k1,2, and

so the consequence of introducing weak rotation—giving

the Ostrovsky equation here—is the suppression of this

two-wavetrain instability when both wavenumbers are

individually stable to MI: a pair of sufficiently long (ki<kc)

co-propagating waves are modulationally stable in the

Ostrovsky equation when rotation is present but unstable in

the KdV in the absence of rotation.

C. Numerical integrations

To test this CNLS theory, the full Ostrovsky equation

was integrated numerically using the method of integrating

factors19 with a pseudo-spectral Fourier discretization on a

periodic domain in x and 4th-order Runge-Kutta Cash-

Karp20 adaptive time-stepping in t. The coefficients of the

Ostrovsky equation were set to unity and the initial condition

(IC) taken to be

g ¼ 2�½cosðk1xÞ þ cosðk2xÞ�; (8)

with small parameter � set at 0.1 to remain within the range

of validity of the CNLS theory. Figs. 3(a) and 3(b) give the

initial (t¼ 0) and final (t¼ tf) spectra of integrations of the

KdV and Ostrovsky equations for tf¼ 15 000 and 20 000,

respectively, with k1,2< kc, showing that weak rotation sup-

presses the instability. Fig. 3(c) gives the initial and final

spectra for an integration of the Ostrovsky equation for

tf¼ 7000 with k1< kc and k2> kc showing that the sidebands

on both sides of k1,2 have grown through MI. The theory of

Sec. II B also predicts the growth rate of the instability seen

in the integrations of the Ostrovsky equation (Fig. 3(c)). As

the initial condition in the integration has no initial modula-

tion, the sideband with the largest growth rate should grow

first. The infinite wavetrain theory predicts sidebands

ki 6 0.036 to have the largest growth rate, whereas in the

integration, ki 6 0.033 were found to be most unstable. This

is a close agreement, and the difference is a consequence of

the periodicity of the computational domain, as the modula-

tion wavelength 2p=�2K must always be a submultiple of the

FIG. 3. Integrations of the KdV and Ostrovsky equations with the coeffi-

cients set to unity and initial condition (8) with � ¼ 0:1. Normalised Fourier

spectra showing the spectrum at t¼ 0 in black and, superposed in white, the

spectrum at the final integration time t¼ tf: (a) an integration of the KdV

equation with k1¼ 0.4, k2¼ 0.6, and tf¼ 15 000, showing sideband growth;

(b) an integration of the Ostrovsky equation for the same wavenumbers

(k1¼ 0.4, k2¼ 0.6) as in (a) and tf¼ 20 000, showing that rotation has pre-

vented sideband growth; (c) an integration of the Ostrovsky equation for

k1¼ 0.7, k2¼ 0.9, and tf¼ 7000, where one wavenumber lies in the unstable

regime and so sidebands grow. (d) A semi-log plot of the time evolution for

the k¼ 0.933 sideband in (c) (solid line) compared with the theoretical

growth rate expð�20:16tÞ (dashed line).
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domain length. The predicted growth rate for ki 6 0.033 is

0.0016. Fig. 3(d) compares the height of the spectral peak at

k¼ 0.933 measured at various times during in the integration

with this prediction. The agreement is close with the

observed growth rate falling below the predicted linear

growth rate only at times such that expð�2XtÞ� 1 when the

mode amplitude is large and the growth is nonlinearly lim-

ited. This close agreement validates the use of (5) in analy-

sing the Ostrovsky equation and differs slightly from the

comparison in Onorato et al.,14 where the analytical growth

rate is compared with integrations of the KdV version of (5)

rather than the KdV itself. It was noted in Sec. II A that

the expansion leading to (5) becomes disordered for jk1 – k2j
sufficiently small. In practice, this constraint is not strong.

Figs. 3(c) and 3(d) show that (5) closely describes the behav-

iour of the full Ostrovsky equation even when ðk1 � k2Þ2
¼ 0:04 and � ¼ 0:1.

III. WAVETRAINS WITH THE SAME SPEED

Since the linear group velocity for the the Ostrovsky

equation has a maximum at kc, it is possible for wavetrains

with different wavenumbers to have the same group velocity,

i.e., k1 6¼ k2 but c1¼ c2. This cannot happen in the KdV

equation as its linear group velocity is monotonic in k. In dis-

cussing the initial value problem for the Ostrovsky equation

in the limit of strong rotation, it has been suggested10 that an

initial KdV soliton breaks up into two co-propagating iner-

tia-gravity wavetrains that can be locally approximated as

having constant wavenumbers k6 with k� < kc < kþ and the

same group velocities c1¼ c2¼ c (say). Since k� < kc, the k–

wavetrain lies in the defocussing regime of the single NLS,

and since kþ > kc, the kþ wavetrain lies in the focussing re-

gime.16 The unstable wavetrain has been proposed as the

source of the nonlinear wavepacket that grows in the wave-

train and the carrier wavenumber of the packet estimated by

considering the modulational instability of the kþ wavetrain

in isolation.10 The analysis of Sec. II allows the accuracy of

this approximation to be assessed.

Since both wavetrains have the same group speed c,

� can be eliminated directly from (4) by introducing

f ¼ X � cT and so moving to the reference frame of the

common group speed. The extra transformation leading to

(5) is not required in this case and the coupled system is

asymptotically consistent with

iAs þ D1Aff þ ðl1jAj2 þ r1jBj2ÞA ¼ 0;

iBs þ D2Bff þ ðl2jBj2 þ r2jAj2ÞB ¼ 0:
(9)

The dispersion relation for wavelike disturbances to two con-

stant amplitude wavetrains in (9) is given by (6) with �¼ 1

and c1;2 ¼ 0. The general considerations for roots still hold,

and since kþ > kc, the coupled wavetrain is always unstable.

The quartic becomes a simple monic quadratic equation for

X2. When

ð2l1j ~Aj2 � D1K2Þð2l2j ~Bj2 � D2K2Þ > 4r1r2j ~Aj2j ~Bj2; (10)

which is always true for sufficiently large kþ, the roots for

X2 are real, of opposite signs, and so X is purely imaginary

in the unstable mode. The instability grows in situ as for a

single wavetrain, giving an absolute instability in the group

velocity frame as can be seen in Fig. 4(b) of Ref. 10, where

the Gaussian envelope grows while maintaining the same

mean in the group velocity frame. When (10) does not

hold, the four roots for X are a complex conjugate pair and

their negatives. The unstable mode is a propagating grow-

ing wave giving a convective instability, raising the possi-

bility, outside the scope of the present analysis that for

wavetrains that are not arbitrarily long as those considered

here but have finite envelopes like the Gaussian of

Fig. 4(b) of Ref. 10, the unstable mode could propagate out

of the unstable region before growing to a significant am-

plitude. Fig. 4(a) shows the maximum growth rate for the

kþ and k– wavetrains in the CNLS (dashed line) and for the

kþ wavetrain in isolation in the NLS (solid line). For large

kþ, the CNLS and NLS growth rates converge showing

that the uncoupled NLS approximation in Ref. 10 is accu-

rate for sufficiently short carrier waves. Because of the

weakening of the interaction term, as shown in Fig. 1,

this convergence of coupled to uncoupled growth rates also

occurs for arbitrary wavenumbers provided jk1 – k2j is

sufficiently large. For 0:8 � kþ� 1:5, the coupled and

uncoupled growth rates differ suggesting that the presence

of the stable k– wavetrain significantly affects the growth

rate of the kþ packet. Fig. 4(b) shows that the wavenumber

Kmax of the modulation with maximum growth rate is also

affected by the the second wavetrain. The change in behav-

iour of the CNLS growth rate at kþ � 1.15 occurs where

the fastest growing modulation moves from being an abso-

lute instability as in the uncoupled problem to the convec-

tive instability of the coupled problem.

FIG. 4. (a) The maximum growth rate ½=mðXÞ�max for the kþwavetrain

when considered in isolation in the NLS (solid line) and when considered as

co-propagating with k– in the CNLS (dashed line). In both cases, ~A; ~B, a, b,

c¼ 1. (b) The value Kmax of the modulation wavenumber K corresponding

to the maximum growth rate in (a). The CNLS and NLS theories converge

for large kþ.
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IV. DISCUSSION

This paper considers the effect of rotation on two co-

propagating internal wavetrains within the CNLS regime of

the Ostrovsky equation. The main effect of rotation com-

pared to the non-rotating KdV case is the disappearance of

the mean flow term due to the zero-mass constraint on solu-

tions of the Ostrovsky equation. As this is the dominant

interaction term, MI is suppressed in rotating flows when

both wavetrains are individually stable, i.e., for wavenum-

bers k1,2< kc. The CNLS theory is strongly supported by

numerical integrations of the full Ostrovsky equation. For

jk1 – k2j sufficiently large, the wavetrains can be considered

separately in the normal NLS, but when jk1 – k2j is smaller,

the interaction must be taken into account and the full CNLS

used. Although jk1 – k2j is formally restricted from being too

small by the requirement that the amplitude expansion

remains well-ordered, integrations of the full underlying

Ostrovsky equation show this restriction to be weak in prac-

tice. Since the linear group velocity of the Ostrovsky equa-

tion achieves its maximum value at finite, non-zero kc, two

wavetrains can have different wavenumbers, k� < kc < kþ,

but the same linear group velocity. As in the general case,

the interaction of the two wavetrains becomes important

when jk� � kþj is not large.

This paper has considered the modulational instability

of two co-propagating wavetrains; however, a stochastically

forced sea could contain more than two distinct wavetrains.

As above, background rotation removes the mean flow inter-

action term, and so it appears that once again the flow is

modulationally unstable if and only if at least one of the

component wavetrains is modulationally unstable in isola-

tion. The shape of the dispersion relation for the Ostrovsky

equation means that there is no frame in which the group

velocities of three or more distinct wavetrains coincide and

so detailed analysis would follow the more general lines of

Sec. II.
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