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Abstract 26 

Sexual selection drives fundamental evolutionary processes such as trait elaboration and 27 

speciation. Despite this importance, there are surprisingly few examples of genes unequivocally 28 

responsible for variation in sexually selected phenotypes. This lack of information inhibits our 29 

ability to predict phenotypic change due to universal behaviors, such as fighting over mates and 30 

mate choice. Here, we discuss reasons for this apparent gap and provide recommendations for 31 

how it can be overcome by adopting contemporary genomic methods, exploiting underutilized 32 

taxa that may be ideal for detecting the effects of sexual selection, and adopting appropriate 33 

experimental paradigms.  Identifying genes that determine variation in sexually selected traits 34 

has the potential to improve theoretical models and reveal whether the genetic changes 35 

underlying phenotypic novelty utilize common or unique molecular mechanisms. Such a 36 

genomic approach to sexual selection will help answer questions in the evolution of sexually 37 

selected phenotypes that were first asked by Darwin and can furthermore serve as a model for 38 

the application of genomics in all areas of evolutionary biology.  39 

 40 

Keywords: Transcriptome, candidate gene, resequencing, forward genetics, reverse genetics, 41 

cis-regulation, GWAS 42 
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Introduction 44 

Sexual selection is a powerful evolutionary force that can drive trait diversification within and 45 

among species (Andersson, 1994, Darwin, 1871), accelerate rates of molecular evolution 46 

(Aguade, 1999, Swanson & Vacquier, 1995, Swanson & Vacquier, 2002), and promote 47 

speciation (Kraaijeveld et al., 2011, Panhuis et al., 2001, Ritchie, 2007, but see Servedio & 48 

Bürger, 2014). Sexual selection arises from competition for mates or their gametes when 49 

individuals with some trait variants outcompete members of the same sex, either directly or by 50 

virtue of being more attractive to the opposite sex (Darwin, 1871, Parker, 1970). These 51 

processes may lead to the evolution of sexually selected traits, usually in the male, leading to 52 

increased attractiveness, such as vivid coloration, vigorous courtship behaviors, or extravagant 53 

body modifications, or increased competitiveness through enlarged body size, weapons or 54 

armor (Andersson, 1994). These structures and behaviors often differ conspicuously among 55 

males within populations and between closely related species, and female preferences for these 56 

male characters sometimes vary in parallel with them (Brooks, 2002, Grace & Shaw, 2011, Gray 57 

& Cade, 2000, Oh et al., 2012), suggesting that evolution of both trait and preference can occur 58 

rapidly.  59 

 60 

Darwin (1871) was the first to conceptualize sexual selection as a force distinct from natural 61 

selection.  Because of the distinction between natural and sexual selection - the former 62 

generated by the direct action of the environment on survival and reproduction and the latter by 63 

variation in mating success - theoretical models have been crucial for separating their individual 64 

effects. For example, verbal and mathematical models have been particularly critical for 65 

explaining how traits and female preferences can evolve (Bernhard & Hamelin, 2013, Fisher, 66 

1930, Grafen, 1990, Kirkpatrick, 1982, Kirkpatrick & Hall, 2004b, Lande, 1981, Pomiankowski et 67 

al., 1991), and how the evolution of these traits might aid or impede diversification and 68 
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speciation (Gavrilets, 2000, Lande, 1981, Pomiankowski & Iwasa, 1998, Servedio & Bürger, 69 

2014). In general, most models of sexual selection that present possible scenarios for the 70 

evolution and maintenance of sexually selected traits, including mating preferences, are based 71 

on simple assumptions (e.g. two autosomal loci or simple quantitative genetic models of two or 72 

three traits). In many areas of evolutionary ecology incorporation of mechanistic details into 73 

theoretical models is needed (Mcnamara & Houston, 2009) to overcome a mismatch between 74 

the assumptions of theory and the complexities of natural systems. Sexual selection theory is a 75 

leading case where mechanisms, namely the genetic details of specific systems, impose 76 

limitations to adaptation (Kirkpatrick & Hall, 2004a). In order to determine appropriate 77 

assumptions for sexual selection models, we require a better understanding of the genetic 78 

variants that give rise to sexually selected traits and enable their evolution.  Recent advances in 79 

genomic approaches, coupled with the availability of genome sequences for a rapidly increasing 80 

number of species (Bernardi et al., 2012, Brawand et al., 2014, Evans et al., 2013, Haussler et 81 

al., 2009, Zhang et al., 2014), provide opportunities for gaining insight into the genetic 82 

mechanisms underlying sexually selected traits. A major purpose of this review is to explore 83 

how new genomes and genomic approaches could be used to uncover the loci encoding 84 

sexually selected phenotypes so as to increase our understanding of the patterns of 85 

convergence and diversification of these traits in diverse species. 86 

 87 

A long-standing goal of evolutionary biology has been to understand the genetic basis of 88 

evolutionary change (Dobzhansky, 1970, Lewontin, 1974). The recent explosion of genomic 89 

data and approaches has enabled progress toward this goal in several areas of evolutionary 90 

biology.  For example, comparing the genomes of recently diverged species has made it 91 

possible to test alternative models of speciation (reviewed in Seehausen et al., 2014) and to 92 

identify the genetic mechanisms underlying phenotypic adaptations (reviewed in Barrett & 93 

Hoekstra, 2011, Savolainen et al., 2013), in some cases pinpointing the exact genomic locations 94 
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under selection (Jones et al., 2012). However, the genomic revolution has yet to infiltrate 95 

empirical studies of sexual selection to the same degree as other areas of evolutionary biology. 96 

While key genes have been identified that influence the development of some sexually selected 97 

traits (Emlen et al., 2012, Khila et al., 2012, Kijimoto et al., 2012, Moczek & Rose, 2009, Santos 98 

et al., 2014, Williams & Carroll, 2009), the underlying sequence variants that cause differences 99 

in sexually selected traits within or between the sexes (which we will refer to as the “locus of 100 

sexual selection”) remain largely unidentified, with a few notable exceptions (Johnston et al., 101 

2011).  As a result, most studies of sexual selection lack a precise genetic foundation, which 102 

hampers progress in the evaluation of the role of sexual selection in trait elaboration and 103 

diversification, molecular evolution and speciation.  104 

 105 

Below we discuss several reasons why it is likely to be more difficult to identify genes involved 106 

in sexual selection than in ecological adaptation.  We then describe possible genomic 107 

approaches for revealing the sequence differences that underlie the morphological, 108 

physiological and behavioral diversity found within and between the sexes of many animals. We 109 

suggest alternative hypothesis-testing frameworks and organisms that have particular potential 110 

for accelerating our understanding of how sexual selection produces evolutionary change. 111 

Finally, we explain how identifying the genetic differences that determine sexual dimorphism, 112 

intrasexual variation in attractiveness, or underlie variation in trait exaggeration within and 113 

between species can help us understand the process of sexual selection.   114 

  115 

Challenges of a genomic approach to sexual selection 116 

While understanding the genetic basis of adaptive traits can be difficult (Rockman, 2012, 117 

Travisano & Shaw, 2013), notable progress has been made by studying model genetic 118 

organisms (e.g. Keane et al., 2011), or closely-related species for which existing genomic tools 119 
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can be applied (Barrett & Hoekstra, 2011, Savolainen et al., 2013). As difficult as this task may 120 

be for adaptive characters, genomic analyses of sexually selected traits pose at least three 121 

additional challenges. First, if Williams and Carroll (2009) are correct, then the majority of 122 

sexually dimorphic traits can be expected to develop as a consequence of differences in gene 123 

regulation rather than differences in coding sequences of genes. This is because gene 124 

regulation enables phenotypic differences to develop between the sexes, despite the fact that 125 

the two sexes largely share identical genomes. The exceptions to the shared genome are the 126 

sex-specific regions of the Y or W sex chromosomes. However, in animals with chromosomal 127 

sex determination, these regions appear to contain only a minority of the loci underlying sexually 128 

selected traits or female preferences (reviewed in Dean & Mank, 2014). Furthermore, many 129 

animals with sexually selected traits lack sex chromosomes altogether (reviewed in Beukeboom 130 

& Perrin, 2014). Gene regulation systems inherently depend on both DNA (or RNA) binding site 131 

motifs and trans-acting binding factors whose motif affinities we are only beginning to 132 

understand (e.g. Payne & Wagner, 2014). Because such systems may involve multiple short 133 

genomic regions that respond to sex-specific signals, such as alternatively spliced transcripts, 134 

detecting the underlying genetic cause of regulatory differences is challenging (although not 135 

impossible, e.g. Glaser-Schmitt et al., 2013) using population genomic comparisons. These 136 

difficulties are multiplied many-fold if regulation involves post-transcriptional or post-translational 137 

changes in protein abundance, which is currently much more difficult to study (Breker & 138 

Schuldiner, 2014).  Once regulatory sequences are identified, they may be scrutinized as 139 

candidates for causing trait differences between the sexes or variation in elaboration within a 140 

sex (e.g. Loehlin et al., 2010, Loehlin & Werren, 2012). 141 

 142 

The second additional challenge is that sexually selected traits, by definition, experience 143 

different forms of selection in the two sexes (see Fig.1).  For example, strong directional 144 

selection on a male phenotype, such as tail length, could be accompanied by stabilizing 145 
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selection in females, resulting in the possibility of substantial sexual conflict.  Depending on how 146 

(or if) such conflicts are resolved, molecular signatures of selection could be less obvious than 147 

in cases where selection acts congruently in both sexes, or difficult to distinguish from other 148 

forms of balancing selection.  Moreover, this difficulty can be compounded by pleiotropic gene 149 

expression in which selection varies additionally by tissue type (Mank et al., 2008).  Further, 150 

frequency dependent selection, which may often be an important component of sexual 151 

selection, is likely to generate different signatures of selection than accounted for in classic 152 

sweep models (Olendorf et al., 2006, Takahata & Nei, 1990). 153 

 154 

(Figure 1 here) 155 

 156 

The third additional challenge is that signal-receiver systems involved in sexual selection often 157 

comprise one or more behavioral traits. Finding the genetic basis of any behavioral trait is 158 

notoriously difficult due to high levels of within-individual phenotypic variation. Nevertheless, 159 

genetic polymorphisms for behavior have been successfully identified (Boake et al., 2002) and 160 

genomic approaches can be used to identify alternative strategies (Aubin-Horth & Renn, 2009, 161 

Rittschof & Robinson, 2014). Quantifying sexually selected behavioral traits is, however, doubly 162 

challenging because receiver responses may depend on a variety of conditions, including 163 

motivational state, receptivity, and the type of conspecifics used to elicit a response. For 164 

example, the number and range of male phenotypes offered can influence the type of mate 165 

choice exhibited by a female. As a consequence, female preference functions should be 166 

quantified using a variety of male phenotypes even though considerable effort may be required 167 

(e.g. Mcguigan et al., 2008, Murphy & Gerhardt, 2000, Ritchie, 2000, Shaw & Herlihy, 2000). As 168 

in all whole-genome approaches, phenotypic heterogeneity is a major barrier to identifying the 169 

genetic basis of traits (Evangelou & Ioannidis, 2013). 170 

 171 
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Thus, finding the genetic factors associated with sexually selected phenotypes in males or 172 

females may require more integrative or novel approaches than are typically used to locate 173 

genes involved in speciation or adaptation, and these approaches have generally been lacking 174 

from many sexual selection studies.  Below we describe several different genomic approaches 175 

that have been or could be used to discover genetic variants underlying variation in sexually 176 

selected phenotypes, and identify methods and experimental designs that may be best suited 177 

for making progress in sexual selection research in the future. 178 

 179 

Genomic methods for studying sexual selection 180 

Studying the genetic basis of a sexually selected phenotype, either within or between species, 181 

can be carried out using two types of analyses (Fig. 2). One type of analysis, which we refer to 182 

below as differential gene expression, involves identifying genes that differ in expression either 183 

between males and females or between ornamented and non-ornamented males, and therefore 184 

might give rise to a sexually selected phenotype. These loci can be identified either by 185 

quantifying genome-wide patterns of inter- or intra-sexual gene expression to identify genes with 186 

differential transcription or by testing specific candidate genes that may be critically involved in 187 

trait development due to their presence in a particular gene regulatory network. The second 188 

type of analysis, which we refer to below as either trait-based or anonymous forward genetics, 189 

involves finding the underlying sequence variant that putatively controls variation in the sexually 190 

selected trait, i.e. the locus of sexual selection. Confirmation that sequence change has the 191 

inferred phenotypic effects requires sequence or expression manipulation, i.e. reverse genetics. 192 

For both types of analyses genomic approaches on either model or non-model species can 193 

provide important information regarding the genetics underlying sexually selected phenotypes. 194 

 195 

(Figure 2 here) 196 
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Differential gene expression  197 

Transcriptional dimorphism, often termed sex-biased gene expression, where a gene is 198 

expressed more in one sex than the other sex, is pervasive across a broad array of taxa, and 199 

sex often explains most of the variation in gene expression in adult tissues (Baker et al., 2011, 200 

Böhne et al., 2014, Viguerie et al., 2012, Yang et al., 2006). The extent of sex-biased 201 

expression across taxa, combined with recent evidence of widespread change in sex-biased 202 

expression as a consequence of experimental manipulation of sexual selection in Drosophila 203 

(Hollis et al., 2014, Immonen et al., 2014) and comparative analyses of sex-biased expression 204 

among related species across a gradient of sexual selection (Harrison et al., 2015), suggests 205 

that patterns of transcription across the genome are strongly influenced by sexual selection. 206 

Numerous studies on a broad array of organisms using first microarrays and more recently 207 

RNAseq, some of which we review below, are congruent with expectations from sexual 208 

selection. 209 

 210 

In many cases male-biased genes exhibit higher variance in expression and are more likely 211 

than nonbiased genes to have a duplicate (Gallach et al., 2010, Wyman et al., 2012). Moreover, 212 

species-restricted (often referred to as young) genes are more likely to exhibit male-biased than 213 

female-biased expression (Zhang et al., 2007). Although these patterns are broadly congruent 214 

with a history of strong sexual selection acting on male-specific traits, they may also be the 215 

product of high transcription rates in the male germline or greater functional pleiotropy of genes 216 

expressed in females, the latter of which would be expected to constrain their expression and 217 

rates of evolution (Zhang et al., 2007). 218 

 219 

Interestingly, with some exceptions (Mank et al., 2010, Whittle & Johannesson, 2013), genes 220 

with male-biased expression tend to have elevated rates of evolution compared to genes with 221 

female-biased expression (reviewed in Parsch & Ellegren, 2013). Although this has been 222 
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suggested to be the product of positive selection for male traits due to sexual selection (Ellegren 223 

& Parsch, 2007), sexual selection does not seem to underlie the evolutionary patterns of coding 224 

sequence evolution for male-biased genes. Rather, relaxed evolutionary constraint seems to 225 

result in elevated levels of genetic drift for these loci (Harrison et al., 2015, Moran & 226 

Poetrokovski, 2014), possibly due to their tissue- and sex-specific expression patterns (Zhang et 227 

al., 2007).  The incongruence between sexually selected traits and coding sequence evolution 228 

of male-biased genes illustrates the need to remain cautious in drawing direct connections 229 

between the transcriptome and the phenotype. 230 

 231 

While sexual selection is clearly an important source of sex-specific selection, without additional 232 

functional genetic analysis it is not possible to determine if the genes that show significant sex-233 

biased expression also encode or influence identifiable sexually selected phenotypes. 234 

Functional genetic analysis can be complicated because gene expression differences between 235 

females and males vary substantially throughout development (Mank et al., 2010, Perry et al., 236 

2014, Wilkinson et al., 2013) as well as across tissues (Baker et al., 2011, Yang et al., 2006), 237 

therefore ontogenetic trajectories of sexually selected phenotypes must be determined to 238 

identify when and where differential gene expression triggers development of sexually selected 239 

traits. Nevertheless, studies of gene expression in species with intra-sexual variation in male 240 

phenotypes indicate that sexual selection does contribute substantially to sex-biased gene 241 

expression patterns. For example, in turkeys (Pointer et al., 2013), horned beetles (Snell-Rood 242 

et al., 2011), and bulb mites (Stuglik et al., 2014) more dimorphic, sexually-selected morphs are 243 

characterized by widespread elevated male-biased expression compared to less sexually 244 

dimorphic morphs. Furthermore, related avian species with elevated levels of sexual 245 

dimorphism resulting from sexual selection show increased levels of male-biased expression 246 

compared to monomorphic species (Harrison et al., 2015). These results indicate that patterns 247 

of sex-biased gene expression are congruent with phenotypic differences. Although the large 248 
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numbers of differentially expressed genes in these species suggest that candidate gene 249 

approaches may fail in some cases to identify many of the genes involved in these phenotypes, 250 

these approaches do indicate that detailed tissue-specific expression studies might be useful in 251 

reconstructing sexually dimorphic gene networks in other species with male dimorphisms, such 252 

as found in sheep (Johnston et al., 2011), ruff (Lank et al., 2013, Lank et al., 1995), blue-headed 253 

wrasse (Alonzo & Warner, 2000), side-blotched lizards (Sinervo & Lively, 1996), or sponge 254 

isopods (Shuster & Sassaman, 1997, Shuster & Wade, 1991), to give a few possible examples.  255 

  256 

When traits are controlled by relatively few loci, candidate gene approaches may be useful.  257 

Such candidates may be chosen either through knowledge of existing gene regulatory networks 258 

or by detection of differential expression in a transcriptome experiment as described above. This 259 

approach has revealed, for example, that doublesex (Kijimoto et al., 2012) and insulin growth 260 

factors are associated with sexually dimorphic horn development in beetles (Emlen et al., 2012), 261 

distalless is associated with sexually dimorphic antennae in water striders (Khila et al., 2012), 262 

and the transcription factor fruitless is involved in determining the gender of the central nervous 263 

system of Drosophila and together with doublesex influences many elements of the behavioral 264 

courtship repertoire (Demir & Dickson, 2005, Rideout et al., 2007). This type of candidate gene 265 

or candidate pathway approach is ideal for finding genes that are conserved across taxa, such 266 

as doublesex, which is associated with sexual differentiation in a variety of insect species 267 

(Gempe & Beye, 2010), but may fail to recover rapidly evolving genetic regions (Wilkins, 2014).  268 

Finding the genetic differences that underlie inter- or intra-specific variation in sexually selected 269 

traits requires an approach that can detect DNA sequence changes that have morph-specific or 270 

sex-specific effects. 271 

  272 
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Trait-based forward genetics 273 

The classical approach to identifying the genetic basis of a particular trait is to associate 274 

phenotypic variation with genetic markers in a mapping population of individuals in which both 275 

phenotype and genotype are segregating in predictable patterns, usually as a consequence of a 276 

line cross or pedigree relationship (Liu, 1998, Lynch & Walsh, 1998). In organisms with an 277 

annotated genome and with sufficient mapping resolution, quantitative trait loci (QTL) can then 278 

be examined for candidate gene regions to determine potential genetic mechanisms. Large 279 

numbers of markers can now be obtained relatively quickly and easily using restriction site 280 

associated DNA (RAD) markers and related methods (Baird et al., 2008, Hohenlohe et al., 281 

2010, Miller et al., 2007).  As long as the phenotype is heritable, genetic differences can be 282 

directly linked to phenotypic variation both within and between sexes.  Several examples of this 283 

approach exist for sexually selected traits (e.g. Chenoweth & Mcguigan, 2010, Johns et al., 284 

2005, Schielzeth et al., 2012, Shaw et al., 2007), but relatively few have been able to connect 285 

phenotypic variation to genotypic variation at the sequence level. Exceptions include cases in 286 

which the genome is well characterized and large-scale mapping studies are possible, such as 287 

in Drosophila (e.g. Kopp et al., 2000, Kopp et al., 2003). However, some studies of QTLs for 288 

behaviors in Drosophila, including male courtship song, suggest that these traits are highly 289 

polygenic with few genes of large effect (Turner & Miller, 2012), which makes identifying QTL 290 

difficult without very large sample sizes. 291 

 292 

The availability of low cost, high-throughput genotyping and sequencing methods has made 293 

genome-wide association studies (GWAS) a practical, and in many cases preferable, alternative 294 

to QTL mapping.  GWAS involve identifying causal regions from whole genome typing or 295 

resequencing of multiple individuals or pools of individuals that differ by phenotype and contain 296 

informative single nucleotide polymorphisms (SNPs). A clear advantage of this approach over 297 

other mapping techniques based on experimental crossing is that it can utilize most of the 298 
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natural genetic diversity in a population, rather than some subset, such as found in a set of 299 

inbred lines, to locate genetic differences that underlie natural phenotypic variation. 300 

Furthermore, GWAS make use of all recombination events that occurred in the past to separate 301 

causal and physically linked variants, while the amount of recombination possible can otherwise 302 

limit resolution with other mapping techniques. For animals with small family sizes or long 303 

generation times, GWAS approaches permit study of the quantitative genetics of sexually 304 

selected traits in vertebrates and other systems where QTL approaches that require inbreeding 305 

or controlled pedigrees are intractable. On the other hand, the added precision provided by 306 

GWAS typically comes at the cost of genotyping more individuals at more markers than in a 307 

QTL study because the probability of linkage between an anonymous marker and a causal 308 

locus is much lower. Recent results from human GWAS raise a particularly strong cautionary 309 

tale, as it appears that for many diseases the full genomes of many tens of thousands of 310 

individuals might be necessary for a reasonable chance of success (Visscher et al., 2012).  311 

However, there is reason to be more optimistic for the study for sexually selected traits. Rather, 312 

than being maintained by mutation-selection balance, as is probably the case for most human 313 

disease traits, selection on secondary sexual traits is likely to be strong and, importantly, recent.  314 

This history of selection provides an opportunity for alleles of large effect to sort from alleles of 315 

smaller effect, especially in comparisons between populations that display divergence in 316 

sexually selected traits and particularly if these populations are linked by periodic migration. 317 

Similarly, if sexual selection generates frequency dependent selection at the level of individual 318 

alleles, then segregating effect sizes could potentially be larger and allele frequencies higher 319 

than expected under mutation-selection balance. 320 

 321 

Furthermore, in contrast to studies in humans, it is possible in some animals to generate 322 

multiple measurements on the same genotype, which greatly reduces the contribution of 323 

sampling variance to estimation errors. Nevertheless, successful application of GWAS requires 324 
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appropriate experimental design, explicit consideration of genetic background, and, when 325 

possible, modeling of underlying pathways (Korte & Farlow, 2013, Marjoram et al., 2014).   326 

 327 

Although resequencing large numbers of individuals remains prohibitively expensive for many 328 

researchers, resequencing pooled samples that contain multiple individuals matched for 329 

divergent phenotypes is much more affordable. This pool-seq approach (Sham et al., 2002) 330 

relies on past recombination in large populations to find variants that associate with extreme 331 

phenotypes and has been referred to as fast forward genetics (Leshchiner et al., 2012, 332 

Schneeberger & Weigel, 2011). By analyzing multiple independent sample pools, sampling 333 

variance effects can also be reduced.  For example, Bastide and colleagues (2013) selected 334 

1000 each of the darkest and lightest individuals from 8000 female offspring produced by large 335 

samples of Drosophila melanogaster collected in Italy and Austria. Site-specific comparisons of 336 

single nucleotide polymorphisms (SNPs) between five replicate dark and light pooled samples 337 

identified two small cis-regulatory regions near pigment genes, tan and bric-a-brac 1, known to 338 

be involved in sexually dimorphic abdominal pigmentation. Similarly, a meta-analysis of multiple 339 

GWAS based on 2.8 million SNPs for nine sexually dimorphic traits related to body size in 340 

270,000 humans identified seven loci that exhibited sexually dimorphic associations with one of 341 

the traits (Randall et al., 2013).  A similar approach can be used in experimental populations, 342 

such as those that manipulate the strength and pattern of sexual selection using experimental 343 

evolution (see below), in which ancestral and selected populations can be compared using 344 

pooled sequencing approaches (Schlötterer et al., 2014). 345 

 346 

Thus, in principle, genomic approaches can use a virtually-unlimited number of SNPs for 347 

mapping traits in any organism, such that the search for anonymous marker-based QTLs can 348 

now be theoretically replaced with genomic scans for quantitative trait nucleotides (QTNs), i.e. 349 

the nucleotide substitutions associated with variation in quantitative traits. However, QTN 350 
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approaches applied to non-sexual traits have so far yielded surprisingly few cases in which a 351 

sequence variant can be associated with phenotypic variation, even though the traits 352 

investigated were known to be heritable (reviewed in, Rockman, 2012, Travisano & Shaw, 353 

2013). This ‘missing heritability problem’ most likely results from the highly polygenic character 354 

of the traits investigated, such that effects of single nucleotide substitutions can be detected 355 

only with large sample sizes (Rockman, 2012) and if detected, may overestimate the effect size 356 

of weak associations (Slate, 2013).  The extent to which these issues apply to sexually selected 357 

traits depends on the number of genes involved and their relative effect sizes. The existence of 358 

at least some cases of major gene effects on male sexually selected traits (e.g. Johnston et al., 359 

2011) suggests that this problem is not universal, but it may be substantial in some systems. 360 

 361 

Anonymous forward genetics 362 

A disadvantage of trait-based approaches is that phenotypic measurements are typically 363 

conducted independent of the mechanism of sexual selection, i.e. the degree to which a 364 

particular phenotype influences reproductive success is not taken into account. In many 365 

species, phenotypic differences between successful and unsuccessful mating individuals are 366 

not immediately obvious. In these cases, a trait-based approach cannot be easily applied. Two 367 

alternative approaches, scanning the genome to find regions that exhibit signatures of recent 368 

selection or using variation in mating success to identify different categories of individuals for 369 

GWAS analyses, may provide solutions in some circumstances, although the limitations of 370 

these approaches also need to be recognized. 371 

 372 

Signatures of selection in genome sequences manifest in several ways that can be detected by 373 

comparing sequences between species or between populations within species (Akey et al., 374 

2004, Hurst, 2009).  For example, one can detect possible positive selection on a gene by 375 
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calculating the ratio of normalized nonsynonymous to synonymous substitution rates, between 376 

two or more species. Alternatively, one can calculate measures of genetic diversity across the 377 

genome within a population and compare them to neutral expectations (e.g. Tajima’s D, Tajima, 378 

1989) or between different populations (e.g. FST, Wright, 1951). Strong directional selection is 379 

then revealed by evidence of a recent selective sweep that locally reduces variation within, or 380 

increases divergence between, populations. In contrast, balancing selection should increase 381 

diversity within populations, and might also decrease divergence between them (Nielsen et al., 382 

2005). Genes involved in sexual competition that have sex-limited expression, such as male 383 

accessory gland proteins, can be expected to have characteristic molecular signatures of strong 384 

positive selection. However, genes that are expressed in both sexes might not produce the 385 

same type of signature of genomic change as that produced solely by natural selection, 386 

because sexual selection acts differently on males than females in the same population or a trait 387 

is conditionally expressed (Van Dyken & Wade, 2010). In some cases, this may produce 388 

signatures of positive selection but in other cases of conflicting selection between the sexes, 389 

signatures of weak balancing selection may result (Connallon & Clark, 2012, Connallon & Clark, 390 

2013, Mullon et al., 2012).  391 

 392 

However, regions of the genome display signatures of positive or balancing selection unrelated 393 

to sexual selection. It is therefore quite important to note that genomic scans in themselves 394 

cannot differentiate natural from sexual selection, as they simply reveal the molecular signature, 395 

rather than the cause, of selection. Consequently, detecting evidence of sexual selection 396 

requires demonstrating that genetic differences among individuals associate with sex-specific 397 

phenotypic effects. In the absence of sex-specific allelic associations, it can be difficult to tell if 398 

the molecular signal of selection is due to natural selection, sexual selection, a genomic conflict 399 

such as segregation distortion, or some combination (e.g. Patton, 2014). Thus, signatures of 400 

selection by themselves are unlikely to provide unequivocal evidence of sexual selection.  One 401 
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potential exception is when sex-specific alternatively spliced gene transcripts show differing 402 

signatures of selection. Such a case has recently been described for fruitless in Drosophila and 403 

suggests that male functions have been under stronger divergent selection, most likely due to 404 

sexually dimorphic selection pressures (Parker et al., 2014). 405 

 406 

Also, rather than focusing on the specific traits thought to be under sexual selection, if the 407 

mating success of large numbers of individuals can be determined, then a GWAS could be 408 

conducted on mating success itself. Any genomic regions identified in this way should be 409 

functionally coupled to traits that are by definition the targets of sexual selection. In this way, the 410 

GWAS approach would be anonymous to the specific traits and could, in fact, be used to help 411 

identify the meaningful set of intermediate traits (sensu “reverse ecology”, Levy & Borenstein, 412 

2012).  If such a GWAS analysis were coupled with measurements of gene expression in males 413 

and females, assuming the appropriate tissues were examined, then it should also be possible 414 

to determine the underlying cause of sex-biased gene expression and relate this to sexually 415 

selected phenotypic variation.  For example, an explosive breeding frog (Wells, 1977) or lekking 416 

fly (Wilkinson & Johns, 2005) would be ideal for such a GWAS of mating success.  417 

  418 

Reverse genetics 419 

Once candidate genes or regulatory regions are identified, direct genetic manipulation and 420 

functional confirmation is typically required before concluding that a sequence variant is truly 421 

causal. Historically, such gene manipulation involved constructing and testing transgenic 422 

organisms, which in many cases is difficult and time-consuming although in some cases 423 

manipulation of a related model organism can be informative. For example, transformed 424 

zebrafish have been used to confirm that a novel sexually selected phenotype of haplochromine 425 

cichlid fish, anal fin egg spots, is due to a rapidly evolving paralog of a pigmentation gene 426 
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whose expression has been modified by insertion of a transposable element (Santos et al., 427 

2014). In cases where model organisms cannot be used, several techniques are now available 428 

that permit gene sequence or expression modification (see Fig. 3). RNA interference and 429 

morpholinos (e.g. Khila et al., 2012, Marshall et al., 2009) can be used to decrease gene 430 

expression.  In some systems, the effect can be modulated or activated to occur at a specific 431 

time or place during development (Mohr, 2014). Viral-mediated gene transfer (e.g. Bennett et 432 

al., 1999, Young & Wang, 2004) can be used to introduce novel gene sequences into brain 433 

tissues of adult vertebrates to modify behavior (Harris & Hofmann, 2014). Direct sequence 434 

editing using clustered regularly interspaced short palindromic repeats (CRISPR) can be used 435 

to selectively modify DNA (Xue et al., 2014) or RNA (O’connell et al., 2014). These techniques 436 

now make it possible to do reverse genetics on a wide range of species. 437 

  438 

(Figure 3 here) 439 

 440 

Experimental paradigms for inferring sexual selection 441 

While the methods described above will identify genetic variants that influence phenotypes, the 442 

degree to which those phenotypes are caused by sexual selection are likely to remain in doubt, 443 

as any kind of association study of natural variation is necessarily correlational in nature. In 444 

particular, effects due to sexual selection could often be conflated with effects due to viability 445 

selection. Thus, separating sexual selection from viability selection requires either taking 446 

advantage of a natural experiment in which sexual selection varies across populations and/or 447 

morphs or using experimental evolution in which sexual selection is manipulated directly. 448 

 449 

Several types of natural experiments can be informative. Species in which individuals change 450 

sex over their lifetime, such as in many teleost fishes, or are simultaneously hermaphroditic, 451 
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such as some nematode worms, provide situations where male and female traits could be 452 

measured in the same individual.  Similarly, clonal organisms, such as Daphnia, where both 453 

sexes occur in the same genotype, allow for simultaneous testing of SNP variants with traits 454 

from either sex, as well as comparison of gene expression changes between the sexes. 455 

Alternatively, closely related species that can still interbreed or isolated populations that differ in 456 

mating systems and/or in sexually dimorphic traits (Houde, 1993) provide opportunities to detect 457 

the underlying genetic causes using a GWAS approach between populations.  458 

 459 

For organisms that can be reared in captivity, experimental evolution provides a powerful 460 

technique for studying the dynamics of beneficial alleles, as populations evolving in the 461 

laboratory experience natural and sexual selection in a replicated, controlled manner. Thus, 462 

manipulating the mating system in replicate lines is one way to measure the effect of sexual 463 

selection on the phenotype. Possible mating regimes include choice (mating in a group) versus 464 

no choice (random pair mating), which permits assessment of the effect of premating sexual 465 

selection, or single mating versus multiple mating, which can reveal effects of postmating sexual 466 

selection (caused by either sperm competition or cryptic female choice). Whole-genome 467 

resequencing, obtained over the course of sustained laboratory selection, could potentially 468 

provide insights into the mutational dynamics that most likely occur in natural populations under 469 

similar circumstances for organisms with short generation times. To date, whole-genome data 470 

are available for only a few evolution experiments (Burke, 2012, Burke et al., 2010, Pespeni et 471 

al., 2013).  Recent RNA-sequencing of evolved lines of Drosophila has demonstrated that 472 

sexual dimorphism of the transcriptome may rapidly respond to sexual selection, with female D. 473 

melanogaster showing a more “feminized” transcriptome when they have been reared under 474 

monogamy for several generations (Hollis et al., 2014). Furthermore, genes that are sexually 475 

dimorphic in expression are more likely to respond to artificial manipulation of the intensity of 476 

sexual selection in female D. pseudoobscura (Immonen et al., 2014).  477 
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 478 

With sequencing costs continuing to fall, such approaches will become increasingly feasible and 479 

the number and nature of genes showing species-specific responses to sexual selection will 480 

become clearer. Limitations may shift from obtaining sufficient genomic sequence information to 481 

obtaining reliable phenotypic information. Methods for automating phenotype measurements, 482 

such as running, fighting, and flying in Drosophila (Babcock & Ganetzky, 2014, Bath et al., 483 

2014, Dankert et al., 2009, Pérez-Escudero et al., 2014) enable collection of phenotypes from 484 

large numbers of individuals in short periods of time and, as a consequence, could be used to 485 

increase statistical power in GWAS analyses. 486 

 487 

What we can learn from a genomic approach to sexual selection 488 

As our ability to apply genomic approaches to questions in sexual selection rapidly advances, it 489 

is important to consider the overarching goals, and how these should help prioritize questions to 490 

which genomics are applied. As noted above, theoretical models have been critical for 491 

understanding how female preference evolution could occur, and finding the genetic basis of 492 

both female preferences and sexually selected male traits can be key to evaluating the relative 493 

importance of alternative models for female preference evolution. For example, mapping the 494 

genetic differences responsible for trait variation onto phylogenies could be used to test whether 495 

the genetic differences responsible for male trait exaggeration evolve before or after those for 496 

female preference. The latter supports a pre-existing sensory bias mechanism for female 497 

preference evolution (Endler, 1992, Ryan & Keddy-Hector, 1992). In contrast, co-evolutionary 498 

models of sexual selection assume that female preferences evolve in response to selection on 499 

male traits. In addition, these female-male coevolutionary processes depend on various additive 500 

genetic covariances arising between female preference, male trait, and offspring viability (Kokko 501 

et al., 2006, Mead & Arnold, 2004). Traditionally, quantitative genetic approaches have been 502 
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used to measure these covariances in breeding designs or selection experiments (Blows, 1999, 503 

Qvarnström et al., 2006) but have not identified loci underlying these traits. Finding the actual 504 

genes involved would help reveal how pleiotropy and linkage promote or constrain each of 505 

these covariances. For example, an important pheromonal polymorphism in Drosophila is 506 

influenced by the gene desat-1 which influences both signaling and receiving. This gene shows 507 

tissue-specific alternative splicing, with one isoform in the pheromone producing tissues 508 

responsible for the pheromone change, and another isoform expressed in antennal neurons 509 

important for pheromone recognition (Bousquet et al., 2012). 510 

 511 

Determining the molecular mechanisms underlying variation in sexually selected traits can also 512 

reveal whether recurrent cases of trait elaboration stem from a common genetic or 513 

developmental mechanism or involve derived but convergent causes. For example, the insulin-514 

signaling pathway has been proposed as a mechanism that links organism condition to 515 

development of sexually selected ornaments and weapons in a variety of species, from insects 516 

to mammals (Emlen et al., 2012, Warren et al., 2013).  Identifying causal genetic variants 517 

influencing ornament expression in additional organisms would provide a test of this hypothesis 518 

and perhaps reveal other important developmental pathways that have been utilized by different 519 

taxa. 520 

 521 

Another conundrum in sexual selection arises because strong selection is expected to rapidly 522 

deplete genetic variation for mating preferences, attractive male traits, and offspring viability 523 

indicated by a male ornament. Given that sexual selection has rapidly shaped morphological 524 

and behavioral diversity in many species, genetic variation in these characters must have been, 525 

and apparently still is (Prokop et al., 2012, Prokuda & Roff, 2014), present. This seeming 526 

contradiction is often referred to as the paradox of the lek (Kirkpatrick & Ryan, 1991, Taylor & 527 

Williams, 1982). While a number of theoretical solutions to the lek paradox have been offered 528 
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(Higginson & Reader, 2009, Kokko & Heubel, 2008, Kotiaho et al., 2001, Pomiankowski & 529 

Møller, 1995, Rowe & Houle, 1996), understanding the genetic basis for a sexually selected trait 530 

and how it interacts with environmental variation can help determine what maintains genetic 531 

variation and, in conjunction with estimates of selection, enable predictions of evolutionary 532 

dynamics (Radwan, 2008). For example, identifying the genetic polymorphism responsible for 533 

variation in horn morphology in wild Soay sheep revealed that sexual selection favoring large 534 

horn size is countered by viability selection favoring smaller horns (Johnston et al., 2013). The 535 

resulting heterozygote advantage at a single locus leads to a balanced polymorphism, which is 536 

inconsistent with genic capture or other good genes models of sexual selection.  537 

 538 

Furthermore, the amount of genetic variation expected for any trait depends on the underlying 539 

mutational mechanism, as well as the number of genes contributing to trait expression.  The 540 

magnitude and directionality of mutational effects on phenotypic variance and covariance could 541 

differ dramatically depending on whether new variation in the trait is caused, for example, by 542 

gene duplication (Izsvak et al., 2009, Kuhn et al., 2014), changes in transcription factor binding 543 

sites (Fondon & Garner, 2004, Pearson et al., 2005), or changes in intronic regulatory regions 544 

due to transposable element insertions (Faulkner et al., 2009, Wang et al., 2013). Incorporating 545 

explicit assumptions about these processes can alter evolutionary predictions.  For example, 546 

both mutation bias (Pomiankowski et al., 1991) and sex linkage (Kirkpatrick & Hall, 2004b) can 547 

influence the outcome of alternative coevolutionary models for the evolution of female 548 

preference. Thus, incorporating explicit genetic mechanisms for sexually selected phenotypes 549 

will enable development of models with the potential to provide greater insight into the degree of 550 

evolutionary constraint in different systems. 551 

 552 

The identification of allelic variants that underlie variation in sexually selected traits could also 553 

be used to measure fitness in natural habitats, as has been done for putative adaptations 554 
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(Gompert et al., 2014, Le Rouzic et al., 2011, Soria-Carrasco et al., 2014). At present, the 555 

strength of sexual selection is measured as the relationship between phenotype and 556 

reproductive success within generations.  By measuring change in the frequency of alleles 557 

known to control a sexually selected phenotypic variant, it would be possible to measure long-558 

term fitness consequences of these phenotypes. The lack of examples of this type of approach 559 

for sexually selected phenotypes presumably is explained by our lack of knowledge of 560 

connections between genetic differences and variation in sexually selected phenotypes.  Such 561 

studies would provide a way to circumvent a limitation hampering the testing of models of 562 

sexual selection: the difficulty of measuring fitness consequences of the expression of sexual 563 

traits (Kokko et al., 2003) as well as provide a more integrative measure that can span 564 

generations. 565 

 566 

Finally, identifying the loci underlying sexually selected traits can help us understand how 567 

sexual conflicts can be resolved in the genome. For example, one potential mechanism to 568 

resolve sexual conflict is for a gene to undergo duplication and then have the paralogs acquire 569 

sex and tissue-specific expression (Gallach & Betran, 2011). Sex-specific expression can also 570 

arise via the acquisition of sex-specific cis-regulatory elements, or, in insects, alternative 571 

splicing of transcripts.  The degree to which sexual conflict is resolved can have significant 572 

biomedical implications, in that understanding the genetic bases underlying the striking 573 

differences between females and males in behavior, physiology, and form can have important 574 

implications for sex-specific rates of aging and mortality (Berg & Maklakov, 2012, Maklakov & 575 

Lummaa, 2013), and sex differences in response to therapies and treatments have recently 576 

become an area of major biomedical concern (Clayton & Colling, 2014). The causes of these 577 

differences are largely a product of gene expression differences between males and females, 578 

yet there is a strong inter-sexual correlation between males and females for transcription levels 579 

(Griffin et al., 2013). Identifying the genetic basis of sexually selected traits will help reveal the 580 
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regulatory complexity required to break down intersexual correlations in order to encode sexual 581 

dimorphisms. 582 

 583 

Conclusions 584 

Sexual selection research has a strong history of building mathematical models that explore the 585 

possible paths to diversity and speciation due to exaggerated male traits and female 586 

preferences in a variety of species. In an attempt to test these models, many research programs 587 

have focused on using quantitative or functional genetics to find the genetic variants that cause 588 

variation in sexually selected traits. However, despite this effort, few sexually selected 589 

characters have been mapped to specific loci in the genome. This could be because many of 590 

these differences involve changes in gene regulation mechanisms, given that trait differences 591 

between the sexes often are encoded by a genome they share. Additionally, our ability to 592 

identify regulatory regions and link sequence variants in them to transcriptional and phenotypic 593 

variation remain quite limited. Nevertheless, some genomic approaches have been applied to 594 

species exhibiting strong sexual dimorphism or intra-sexual variation in sexually selected 595 

phenotypes. A number of studies have successfully measured sex-specific differences in gene 596 

expression, and quantified effects of sex chromosomes, where the initiating polymorphisms for 597 

sexual dimorphism may lie. Very few, however, have succeeded in identifying the underlying 598 

sequence differences that are responsible for phenotypic evolution due to sexual selection. 599 

 600 

We believe this gap can be closed using genomic approaches, such as fast-forward genomic 601 

scans, and contrasting either recently diverged species or populations, replicate lines in an 602 

experimental evolution paradigm that manipulates sexual selection intensity, or sexually 603 

dimorphic phenotypes from a clonal species.  New techniques for manipulating gene sequence 604 
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or expression in non-model organisms provide opportunities for confirming causation through 605 

direct genetic manipulation that were not previously possible. 606 

 607 

Progress in many aspects of evolutionary and behavioral ecology will require greater integration 608 

of mechanistic (e.g. genomics) and functional (e.g. co-evolutionary models) approaches 609 

(Mcnamara & Houston, 2009). This is especially the case for sexual selection because shared 610 

genomes, sexual conflict, and signal-receiver interactions all introduce complexities in how 611 

sexually selected traits develop over ontogeny and evolve among species, meaning that simple 612 

co-evolutionary models will often fail to predict real-world observations. Identification of causal 613 

variants will enable a new generation of theoretical models that allow for the constraints and 614 

contingencies of the genomic systems in which sexual selection operates. The post-genomic 615 

era provides exciting opportunities to overcome these long-standing obstacles. 616 

 617 
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Table 1   Glossary of terms 1044 

 1045 

Term Definition 

Alternative 

splicing 

production of multiple messenger RNA variants from a single gene 

through different combinations of exons 

Binding site motif a short sequence (typically 4-30 bp) of DNA that is bound by molecules 

such as transcription factors 

Candidate gene a gene already known, or suspected (e.g. through homology), to be 

involved in the development of a phenotypic trait 

Cis-acting 

element 

a region of DNA that influences the expression of nearby genes 

Differential gene 

expression 

comparison of the expression level for a given gene between samples 

Here this is either between males and females or between individuals of 

the same sex that differ in a sexually selected phenotype 

Forward genetics identifies genes that influence phenotypes by associating phenotypic 

variation with genetic sequence variation either by mapping or cloning 

GWAS genome-wide association studies, involve testing for an association 

between variable markers, such as a single nucleotide polymorphisms, 

and the expression of a phenotypic trait, across the entire genome 

Locus of sexual 

selection 

the underlying sequence variants that cause differences in sexually 

selected traits within or between the sexes 

QTL(N) quantitative trait locus (nucleotide), a region of the genome that 

significantly associates with phenotypic variation present among lines or 

strains 

Nonsynonymous 

substitution 

a single nucleotide change that alters the amino-acid sequence of a 

protein 
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Regulatory 

network 

a set of genes that interact via RNA, proteins or other molecules to 

control the expression of RNA or protein 

RADseq Restriction-site associated DNA sequencing, a reduced representational 

library (RRL) method for locating a large number of genetic markers 

(e.g. SNPs) throughout the genome that utilizes only those sequences 

flanking restriction sites where a particular restriction enzyme cuts DNA 

Reverse genetics disrupts or modifies a target gene to determine its phenotypic effect 

Sex-specific non-

recombining 

region 

Region of the  Y or W sex chromosome that never recombines during 

meiosis and is either only present in males (Y chromosome) or females 

(W chromosome) 

SNP single nucleotide polymorphism, a population characteristic in which 

more than one nucleotide (C,A,T or G) is present within or between 

individuals at a single genomic site. 

Synonymous 

substitutions 

a nucleotide substitution in a codon that does not alter the amino-acid 

sequence of the translated protein 

Selective sweep reduction of polymorphism in a genomic region caused by recent 

positive selection on an allele, resulting in rapid increase in frequency 

Transcription 

factor 

protein that controls the expression pattern of a gene by binding to 

regulatory elements 

Transcriptome all of the expressed genes within an individual’s genome at a given time 

or condition 

Transposable 

element 

a genomic sequence that can change its location within the genome 

either by an RNA intermediate or by excision and insertion of DNA 

Trans-acting 

element 

a protein or RNA molecule that influences gene regulation elsewhere in 

the genome 
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Figure Legends 1046 

Figure 1. Comparison of the effects of natural (A) and sexual (B) selection on the evolution of 1047 

male and female phenotypes. The arrows denote the change in average phenotype after 1048 

several generations for males (blue) and females (red). 1049 

 1050 

Figure 2. Overview of forward genetic approaches for identifying genes that control expression 1051 

of traits involved in sexual selection. The trait used to group individuals may be, for example, a 1052 

male secondary sexual character, any measure of male attractiveness (e.g. mating success), or 1053 

female preferences (panel A). Comparisons can be limited to a set of candidate genes (e.g. left 1054 

panel in B, where expression levels of one candidate and one control gene are assessed) or 1055 

performed at the scale of the whole genome (the three other panels in B), taking advantage of 1056 

high throughput sequencing methods (available for RNA and DNA). Comparative 1057 

transcriptomics can be used to identify genes that are expressed at different levels between 1058 

individuals with contrasted phenotypes, while QTL (quantitative trait locus) mapping and GWAS 1059 

(genome-wide association studies) pinpoint allelic variants at a locus associated with phenotypic 1060 

variation. 1061 

 1062 

Figure 3. Overview of reverse genetic approaches for functional validation of a candidate gene. 1063 

In the species considered the candidate gene controls variation in a male secondary sexual 1064 

character with the variation among males resulting either from a genetic polymorphism (e.g. 1065 

different alleles at a locus encode different male phenotypes) or from the amount of gene 1066 

product (e.g. the amount of protein determines alternative male phenotypes). Knocking-out such 1067 

a gene using CRISPR technology (Panel A) leads to a non-functional protein because of 1068 

frameshifts or premature stop codons and confirms that males homozygous for the disrupted 1069 
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allele have an altered phenotype.  CRISPR approaches can also be used to edit allelic variants 1070 

in order to evaluate the phenotypic effect of different alleles in the same genetic background. 1071 

For genes with pleiotropic effects, knocking-down candidate gene expression with RNA 1072 

interference (Panel B) can be used to test causation at a specific developmental stage without 1073 

genome editing.  Alternatively, viral-mediated transfer (Panel C) provides a way to express a 1074 

candidate gene (or its different alleles) in another genetic background or species to evaluate its 1075 

phenotypic effect in adults.  1076 

 1077 
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Comparison of the effects of natural (A) and sexual (B) selection on the evolution of male and female 
phenotypes. The arrows denote the change in average phenotype after several generations for males (blue) 

and females (red).  
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Overview of forward genetic approaches for identifying genes that control expression of traits involved in 
sexual selection. The trait used to group individuals may be, for example, a male secondary sexual 

character, any measure of male attractiveness (e.g. mating success), or female preferences (panel A). 

Comparisons can be limited to a set of candidate genes (e.g. left panel in B, where expression levels of one 
candidate and one control gene are assessed) or performed at the scale of the whole genome (the three 
other panels in B), taking advantage of high throughput sequencing methods (available for RNA and DNA). 
Comparative transcriptomics can be used to identify genes that are expressed at different levels between 
individuals with contrasted phenotypes, while QTL (quantitative trait locus) mapping and GWAS (genome-

wide association studies) pinpoint allelic variants at a locus associated with phenotypic variation.  
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Overview of reverse genetic approaches for functional validation of a candidate gene. In the species 
considered the candidate gene controls variation in a male secondary sexual character with the variation 

among males resulting either from a genetic polymorphism (e.g. different alleles at a locus encode different 

male phenotypes) or from the amount of gene product (e.g. the amount of protein determines alternative 
male phenotypes). Knocking-out such a gene using CRISPR technology (Panel A) leads to a non-functional 
protein because of frameshifts or premature stop codons and confirms that males homozygous for the 

disrupted allele have an altered phenotype.  CRISPR approaches can also be used to edit allelic variants in 
order to evaluate the phenotypic effect of different alleles in the same genetic background. For genes with 
pleiotropic effects, knocking-down candidate gene expression with RNA interference (Panel B) can be used 
to test causation at a specific developmental stage without genome editing.  Alternatively, viral-mediated 
transfer (Panel C) provides a way to express a candidate gene (or its different alleles) in another genetic 

background or species to evaluate its phenotypic effect in adults.  
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