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Purpose: The aims of this work were to evaluate the performance of several deformable image
registration (DIR) algorithms implemented in our in-house software (NiftyReg) and the uncertainties
inherent to using different algorithms for dose warping.
Methods: The authors describe a DIR based adaptive radiotherapy workflow, using CT and cone-
beam CT (CBCT) imaging. The transformations that mapped the anatomy between the two time
points were obtained using four different DIR approaches available in NiftyReg. These included
a standard unidirectional algorithm and more sophisticated bidirectional ones that encourage or
ensure inverse consistency. The forward (CT-to-CBCT) deformation vector fields (DVFs) were used
to propagate the CT Hounsfield units and structures to the daily geometry for “dose of the day”
calculations, while the backward (CBCT-to-CT) DVFs were used to remap the dose of the day
onto the planning CT (pCT). Data from five head and neck patients were used to evaluate the
performance of each implementation based on geometrical matching, physical properties of the
DVFs, and similarity between warped dose distributions. Geometrical matching was verified in terms
of dice similarity coefficient (DSC), distance transform, false positives, and false negatives. The
physical properties of the DVFs were assessed calculating the harmonic energy, determinant of the
Jacobian, and inverse consistency error of the transformations. Dose distributions were displayed on
the pCT dose space and compared using dose difference (DD), distance to dose difference, and dose
volume histograms.
Results: All the DIR algorithms gave similar results in terms of geometrical matching, with an
average DSC of 0.85 ± 0.08, but the underlying properties of the DVFs varied in terms of smoothness
and inverse consistency. When comparing the doses warped by different algorithms, we found a root
mean square DD of 1.9% ± 0.8% of the prescribed dose (pD) and that an average of 9% ± 4% of
voxels within the treated volume failed a 2%pD DD-test (DD2%-pp). Larger DD2%-pp was found within
the high dose gradient (21% ± 6%) and regions where the CBCT quality was poorer (28% ± 9%).
The differences when estimating the mean and maximum dose delivered to organs-at-risk were up to
2.0%pD and 2.8%pD, respectively.
Conclusions: The authors evaluated several DIR algorithms for CT-to-CBCT registrations. In spite of
all methods resulting in comparable geometrical matching, the choice of DIR implementation leads
to uncertainties in dose warped, particularly in regions of high gradient and/or poor imaging quality.
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1. INTRODUCTION

Deformable image registration (DIR) is an active and im-
portant area of research with multiple applications in adap-
tive radiotherapy (ART), particularly for head and neck
(HN) patients.1,2 The planning CT (pCT) can be deformed
to match the daily anatomy to calculate the dose delivered
per fraction,3,4 the deformations can be applied to propagate
contours,5,6 and the fraction by fraction dose maps can be
warped back to a common reference frame for summation.7,8

In image registration at least two input images are
necessary, the source and the target images, and the result
is a transformation (Ts→ t) that can be used to deform the
source image (s) onto the target image (t). The majority
of the research and commercial registration algorithms are
unidirectional, which means they only optimize the forward
transformation (Ts→ t) and do not consider the transformation
in the opposite direction (Tt→ s), which can be used to deform
the target image onto the source image. For applications where
Tt→ s is also required, one can simply use a unidirectional
algorithm twice, by switching the roles of the source
and the target images, numerically estimate the inverse of
Ts→ t, or use bidirectional algorithms that optimize Ts→ t

and Tt→ s simultaneously. In clinical applications, DIR is
used to model the spatial anatomical mapping between
time points; therefore, physically plausible transformations
are desirable. Two concepts are associated with physically
plausible deformations: inverse consistency and symmetry.
Inverse-consistent registrations try to ensure that Tt→ s is the
mathematical inverse of Ts→ t

�
i.e., Tt→ s =T−1

s→ t

�
. Symmetric

registration means that identical transformations are obtained
when the roles of source and target images are switched: if
the source image becomes the target (t ′, such that t ′= s) and
the target is now the source (s′, such that s′= t), a symmetric
algorithm will ensure that Tt′→ s′= Ts→ t and Ts′→ t′= Tt→ s.
The two concepts are usually intertwined in the literature,
but are not equal as a symmetric algorithm is not necessarily
inverse-consistent (i.e., Ts′→ t′ is not guaranteed to be T−1

t′→ s′),
and vice-versa. The differences between symmetry and inverse
consistency are more clear when considering unidirectional
algorithms, since most bidirectional algorithms that aim
to guarantee inverse consistency are also symmetric. For
example, when performing two unidirectional registrations,
one in each direction, the resulting transformations are
symmetric but not inverse-consistent (switching the source
and target results in the same transformations on opposite
directions). If Tt→ s is obtained by numerically estimating the
inverse of the unidirectional registration result (Ts→ t), the
transformations are inverse consistent but are not symmetric
(estimating the inverse of the opposite transformation does

not produce the same result as running the unidirectional
registration in that direction).

In recent years, advanced and complex registration
algorithms have been developed to be symmetric and inverse-
consistent. One approach consists in using the inverse
consistency error (ICE) directly as a penalty term.9 While
this encourages inverse consistency, it can reduce the ability
to recover large and complex deformations, and the forward
and backward transformations are only approximate inverses
of each other.10 A better, but less ad-hoc, approach is to use a
stationary velocity field to parametrize the transformation.11

This can be used to generate the deformation field in either
the forward or backward direction, and these are guaranteed
to be exact inverses of each other (subject to methodological
approximation and numerical precision).

Dose warping and summation are important topics in
ART research, since knowledge of the total dose delivered
at each time point is fundamental in the ART decision-
making and replanning process. Validation of DIR is a
key aspect, therefore some authors have been evaluating
the accuracy of DIR and dose warping using manually
annotated points and structures,5,6,12,13 physical plausibility
of the transformations,14,15 and by developing deformable
and virtual phantoms with known deformations.16–19 Others
focused on estimating the accuracy requirements for dose
warping20,21 or estimating its precision.22–25 Monte Carlo
methods have also been proposed to recalculate doses using
a deformed grid (with deformed and irregular voxels), which
still uses DIR but minimizes the errors associated with dose
interpolation.26–28 Finally, some groups have been using dose
warping to evaluate the benefits of replanning.7,8,29 Most of
the work done on these topics uses CT-to-CT registration on
different anatomical sites, and/or registration algorithms that
do not ensure symmetry and inverse consistency.

We investigated an ART framework for HN patients using
the CT and cone-beam CT (CBCT) imaging. The Hounsfield
unit (HU) information is mapped to the daily geometry for
“dose of the day” calculations,4 and the dose is remapped
to the planning geometry for dose summation. Therefore,
estimates of both forward and inverse transformations are
required. Other groups suggest using CT and CBCT for
dose remapping without requiring both transformations by
calculating the dose of the day directly in the CBCT.7,13

However, in our opinion, CBCT imaging is still unreliable
for direct dose calculations, and until the image quality of
CBCT is improved, a deformed CT is a good interim solution.
We used four approaches to obtain those transformations,
using three different DIR algorithms implemented in our
in-house software (NiftyReg), all of which use a B-
spline parametrization of the transformation with different
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theoretically desirable properties. The aims of this work were
to compare different DIR algorithms available in NiftyReg in
terms of their geometrical accuracy, physical properties, and
computation time and to evaluate the uncertainties inherent
to using different algorithms for dose warping. Since we
compare algorithms from the same software package (i.e,
similar implementation), the differences found are due to the
physical properties of the underlying algorithm and not due
to other differences in implementation.

2. MATERIALS AND METHODS
2.A. Patient data

Retrospective data from five HN patients treated in our
clinic were used in this study. The patients followed an
intensity modulated radiotherapy (IMRT) treatment with a
planned dose of 65 Gy delivered in 30 daily fractions.
Positioning reproducibility was ensured using a personalized
HN and shoulder mask with an appropriate head-rest support.
The patients included in this study were selected from the few
patients that were historically replanned at our institution, and
therefore a challenging test cohort for image registration. They
were referred for replan midtreatment when an offline review
of their CBCT scans found the spinal canal or brainstem had
moved out of their planning volumes, the external contour
had decreased by more than 5 mm, and/or the immobilization
mask no longer fitted satisfactorily.

A planning CT (GE Widebore 16 slice system) with
contrast injection was acquired approximately 2 weeks be-
fore treatment and used for treatment planning. Weekly
CBCTs (On-board imaging v1.4, Varian Medical Systems,
Palo Alto, CA) were acquired before treatment delivery with
the patient in treatment position. The CBCTs were acquired
in half-fan mode, full rotation, 110 kVp, 20 mA, 20 ms,
with a maximum FoV of 45 cm in diameter and 16 cm
in length. Imaging resolution was 0.977×0.977×2.5 mm
and 0.879× 0.879× 2 mm for the CT and CBCT scans,
respectively.

2.B. NiftyReg

NiftyReg is an open-source registration package im-
plemented by our institution’s Centre of Medical Image
Computing (http://cmic.cs.ucl.ac.uk/home/software/). It in-
cludes a block matching-based affine registration30 and
several B-spline free form deformation based algorithms.31

NiftyReg’s default algorithm is a standard unidirectional
implementation on the GPU32 and was previously used by
our group for CT-to-CBCT registrations.4 Recently more so-
phisticated (bidirectional, symmetric, and inverse-consistent)
implementations have been incorporated in the software.
An inverse-consistent symmetric33 and a stationary velocity
field transformation model implementations34 are now freely
available. NiftyReg also features a numerical estimation of the
inverse of a deformation field, which uses an iterative method
to estimate each vector of the inverse deformation vector field
(DVF) independently using the simplex algorithm. It is similar

to other published implementations24,35 but independently
developed. This algorithm is also implemented in the GPU.

NiftyReg includes several similarity measures and
regularization terms. Normalized mutual information was
used for all registrations as it could successfully deal with the
nonlinear relationship between CT and CBCT intensities and
the spatially varying CBCT intensities. Bending energy was
used as a regularization term for all of the registrations.31 In
addition, a penalty term based on the logarithm of the Jacobian
determinant36 was used for the unidirectional registrations
and the inverse consistency error penalty term33 was used
for the inverse-consistent registrations. The penalty term
weights were optimized for each algorithm independently.
Detailed explanation of the parameters used and how they
were optimized can be found in our earlier publications.4,37,38

2.C. DIR in an ART workflow

The method we propose to compute, map, and accumulate
dose distributions while accounting for anatomic variations
requires the pCT and CBCTs images acquired throughout the
treatment. The process consists of each of the following steps
(Fig. 1).

(i) Mapping the HU information from the CT to the
CBCT geometry using DIR. The process is repeated
for each CBCT available for the patient.

(ii) Dose calculations are performed on each deformed
pCT (dose of the day).

(iii) Mapping the dose of the day back to the space of the
pCT.

(iv) Dose distributions are accumulated and displayed
on the pCT space. When a CBCT is not available
for every fraction of the treatment, the weighting
used when summing the doses will depend on the
fractionation scheme and scans available.

The accumulated dose can potentially be used clinically to
feed the ART decision-making process. At each imaging time

F. 1. Use of deformable image registration for an adaptive radiotherapy
workflow. The registration maps the Hounsfield units from the CT to the
daily CBCT scans, and the deformed CT is used for “dose of the day”
calculations. The dose delivered is mapped back to the planning stage, where
it is accumulated and the need to replan assessed.
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point, the dose delivered is mapped to the same reference
space, chosen to be the pCT, where it is summed to the dose
from previous time points. Choosing the pCT as reference
allows to iteratively compare the planned objectives with the
delivered values as the treatment progresses, such that the
need to replan can be regularly assessed.7,8 The total dose
delivered can also be warped to the daily geometry to assess
the need to replan (using the CBCT as reference) and to
feed the replanning process (using a rescan CT). In the first
case, additional registrations would be required between the
fractions since the reference space would change at each
fraction. The latter process should be performed with utmost
care as uncertainties in registration will not only affect the
decision to replan but also the newly planned treatment.

In this study, we compared four different approaches
to dose warping available with the NiftyReg software
(we use “forward direction” to stand for the CT-to-CBCT
transformations and “backward direction” to stand for the
CBCT-to-CT transformations):

1. Standard asymmetric registration in both forward and
backward directions (DIRsas+sas);

2. Standard asymmetric registration in the forward
direction followed by the numerical estimation of the
inverse of this transformation (DIRsas+inv);

3. Inverse-consistent symmetric registration which pro-
vides both the forward and backward transformations
(DIRics);

4. Symmetric registration parameterized by a stationary
velocity field which inherently provides both the
forward and backward transformations (DIRsvf).

All the algorithms use a B-spline parametrization of the
transformation with different theoretically desirable proper-
ties; while DIRsas+sas is symmetric but not inverse-consistent,
DIRsas+inv is inverse-consistent but not symmetric. DIRics and
DIRsvf are both symmetric, but while the first encourages
inverse consistency using a penalty term, the second guar-
antees it by using a velocity field parametrization.34

2.D. Evaluation scheme

The different DIR algorithms were evaluated and compared
in terms of geometrical matching, properties of the underlying
deformations, and computation time. All the statistical
tests performed on this paper were done using the 
statistics toolbox and the Wilcoxon signed ranked test (95%
confidence).

2.D.1. Geometric matching

The purpose of this part of the study was to assess the
ability of the different approaches to align the same anatomical
features in CT and CBCT images.

A clinical expert contoured a set of identifiable features
on both the pCT and CBCT scans. The CBCT used for each
patient was the last acquired before replan referral (i.e., with
a relatively large deformation). The DVFs were used to
propagate the features in both directions (from the pCT to

the CBCT and from the CBCT to the pCT). The propagated
contours were then compared with the original manually
drawn contours (i.e., the features propagated from the pCT
were compared with the ones manually drawn on the CBCT,
and vice-versa). The features included vertebrae C1, C4, and
C7 (which are subject to rigid motion only and cover the length
of the cervical spinal canal), external body contour (which
reflects the extent of the weight loss), and the right and left
sternocleidomastoid muscles (whose deformation correlates
with changes in nodal dose39). Common HN organs-at-risk
(OARs), such as parotids and brainstem, were not considered
in this evaluation because they cannot be unequivocally
identified in CBCT images.

We calculated three complementary metrics that provide
information about the similarity between volumes: dice
similarity coefficient (DSC), false positives (FP), and false
negatives (FN). DSC measures the fraction of the overlap
between volumes, FP stands for the fraction of deformed
volume that is not part of the manual volume, and FN stands
for the fraction of manual volume that is not part of the
deformed volume. Using FP and FN as well as DSC provides
additional insight into the cause of geometric errors and will
indicate if one structure is consistently larger/smaller than
the other. To infer about the closeness between contours,
the distribution of the signed Euclidean distances between
the manual and deformed surfaces, also known as the
distance transform (DT),5 was calculated bidirectionally. We
computed the fraction of the DT distribution larger than 2 mm
(DT2mm), mean and standard deviation of the signed DT
distribution (DTmean and DTstd), and the 95% percentile of
the DT distribution (DT95%). In the forward direction, DT is
negative if the deformed contour is inside the manual contour,
otherwise it is positive (and vice-versa for in the backward
direction).

2.D.2. Characteristics and similarity of the
deformation fields

By optimizing properly the parameters used in the different
algorithms, it should be possible to obtain similar geometric
matching. However, different algorithms can result in very
different DVFs, particularly inside anatomy that lacks internal
features or regions of increased noise and reduced contrast in
the CBCT scans. Therefore, characteristics of the underlying
deformations were evaluated in this section.

The smoothness of the transformations was analyzed
using the harmonic energy (HE) and the properties of
the determinant of the Jacobian of the transformation
[det(Jac)]. The HE refers to the mean Frobenius norm of
the displacement field and is inversely proportional to the
smoothness of the deformation.15 det(Jac) indicates the level
of expansion/contraction at each voxel, and negative values
are indicative of noninvertible and unrealistic deformations.
Additionally, the ICE was calculated to investigate if
the transformations were true inverses. Considering that
the forward and backward transformations are inverse-
consistent if their composition is equal to the identity
transform, we calculated the ICE as the voxelwise difference
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T I. Mean values ± standard deviation of DSC, FN, FP, and DT. The results were averaged over all structures,
patients, and both registration directions.

DIRsas+sas DIRsas+inv DIRics DIRsvf

DSC 0.851 ± 0.080 0.847 ± 0.082 0.848 ± 0.075 0.851 ± 0.073
FP 0.17 ± 0.11 0.15 ± 0.11 0.18 ± 0.12 0.15 ± 0.10
FN 0.14 ± 0.09 0.15 ± 0.10 0.14 ± 0.08 0.15 ± 0.09
DT2mm (%) 9 ± 6 10 ± 6 10 ± 6 9 ± 6
DTmean (mm) 0.3 ± 0.4 0.4 ± 0.4 0.2 ± 0.4 0.3 ± 0.4
DTstd (mm) 1.3 ± 0.4 1.3 ± 0.3 1.3 ± 0.4 1.3 ± 0.4
DT95% (mm) 2.7 ± 0.9 2.7 ± 0.9 2.8 ± 0.9 2.7 ± 1.0

between the composed transformations and the identity
transform.

2.D.3. Computation times

The time taken to complete the registrations is important for
clinical translation; therefore, the computation times for each
approach were measured three times per dataset. Non-GPU
implementations were done on an Intel® Core™ i7-2600S
CPU (2.80 GHz, 8 GB RAM), and the GPU registrations used
a NVIDIA Tesla C2070 GPU card (14 multiprocessors, 6 GB
dedicated memory).

2.D.4. Dose warping comparison

The purpose of this part of the study was to investigate
the uncertainties in dose warping when using different DIR
algorithms.

Dose calculations were performed on a deformed pCT and
mapped back to the original pCTs using the results from the
four different methods (in all cases cubic spline interpolation
was used). Varian Eclipse external beam planning system
analytical anisotropic algorithm was used to calculate the dose
distributions using the highest available resolution (1 mm).
For each patient, the same IMRT plan was applied, including
beam arrangement, monitor units, and fluence maps. The
dose distributions were compared within different volumes
of interest using dose differences (DDs), by calculating the
percentage of pixels whose DD was inferior to 2% of the
prescribed dose (pD) (DD2%-pp), the root mean square value
(DDRMS), and the 99th percentile of the DD distribution
(DD99%), the differences predicting the mean (∆Dmean)
and maximum doses (∆Dmax) to OARs, and dose volume
histograms (DVHs). 2%pD was defined as tolerance criteria
for DD in accordance with our internal clinical standards for
the comparison of dose distributions.

The distance to dose difference (DTD) was also calculated
for all the planned dose distributions (using an accuracy of
2%pD).20 DTD is a method to estimate the required spatial
accuracy of a DVF for dose warping based on the distance
that one has to travel within the dose map to find a DD above
a tolerance value. The DTD in different regions of interest
was compared to the variability in mapping between different
algorithms, by measuring voxel-by-voxel the root mean square
of the DTD (DTDRMS) and the Euclidean distance between the
backward deformation vector fields (computed as a L2-norm).

3. RESULTS
3.A. Geometric matching

In Table I, we present the values of DSC, FP, FN,
and DT obtained averaged over both the directions of the
registrations and for all patients and all structures (the ones
described in Sec. 2.D.1). All the implementations provided
similar results in terms of an overall geometric matching. The
differences in DSC per structure were in general statistically
insignificant (p ∈ [0.1, 1]) and of little clinical relevance.
The two exceptions were an underperformance of DIRics in
the external contours (p = 0.02) and slightly better results
for DIRsvf in the muscles (p < 0.01). This is in agreement
with our findings by visually inspecting the registrations.
We found that DIRics had difficulty in recovering larger and
complex deformations, while DIRsvf performed particularly
well in the alignment of soft tissues. The effect of inverse
consistency became evident when analyzing the FN and FP
results: FP≈ FN for DIRsas+inv and DIRsvf, as the FP in one
direction coincided with the FN in the other direction, and
vice-versa, and so they averaged to similar values. FP, FN
for DIRics because even though this algorithm encourages
inverse consistency, the resulting forward and backward
transformations are only approximate inverses to each other.

3.B. Deformation field analysis

Table II shows the values of HE, det(Jac), and ICE found
for each of the approaches. The voxels outside the patient were
ignored when calculating the results. All the DVFs obtained
had no negative det(Jac), thus were effectively invertible. In
terms of physical plausibility of the DVFs, DIRsvf provided
deformations with more desirable physical properties. Lower
values of HE indicate smoother transformations; therefore,
the level of smoothness of the DVFs was higher in symmetric
approaches (DIRics and DIRsvf), which resulted in tighter
intervals of the det(Jac) values. Transformations constrained
with an inverse-consistent penalty (DIRics) considerably
improved the ICE in comparison with DIRsas+sas, but the
two resulting DVFs fields were clearly not real inverses as
with DIRsas+inv and DIRsvf, for which the mean and standard
deviation of the ICE were submillimeter. Figure 2 shows the
ICE map on a slice of one of the patient’s anatomy. DIRsas+sas
and DIRics largest ICE values were found close to airways and
in the shoulders region, where the CBCTs showed reduced
contrast and higher noise. DIRsas+inv and DIRsvf maximum
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T II. Mean values ± standard deviation for properties of the deformation vector fields: average values of HE,
1% and 99% percentiles of det(Jac), and mean, standard deviation, and 99% percentile of the ICE. The results
were averaged over all patients and both registration directions.

DIRsas+sas DIRsas+inv DIRics DIRsvf

HE 0.14 ± 0.05 0.16 ± 0.05 0.11 ± 0.05 0.11 ± 0.04
det(Jac)1% 0.53 ± 0.12 0.57 ± 0.12 0.69 ± 0.11 0.67 ± 0.08
det(Jac)99% 1.49 ± 0.16 1.57 ± 0.18 1.33 ± 0.13 1.40 ± 0.13
ICEmean (mm) 1.6 ± 0.7 0.012 ± 0.005 0.5 ± 0.2 0.008 ± 0.003
ICEstd (mm) 2.4 ± 1.1 0.04 ± 0.03 0.8 ± 0.4 0.02 ± 0.02
ICE99% (mm) 13 ± 6 0.12 ± 0.07 4 ± 2 0.06 ± 0.03

values of ICE resulted from numerical errors when composing
the DVFs in regions of high contrast boundaries.

3.C. Computation times

Table III shows the registration computation times
measured for the different algorithms. When comparing the
computation time taken to complete the registration in both
directions and in the same processor, we found that DIRsas+sas
and DIRsas+inv resulted in similar times, while DIRics and
DIRsvf took on average 2–3 times longer. In comparison, the
standard forward asymmetric registrations ran in 0.9 ± 0.2
min (range: 0.7–1.2 min) in the GPU. There are plans to
implement all of the DIR algorithms available in NiftyReg
so they can run on a GPU, but until then the use of DIRics
and DIRsvf is limited to offline studies as current non-GPU
computation times are too slow for online applications.

3.D. Dose warping comparison

Differences between the DVFs generated by different DIR
algorithms will affect the final warped dose distribution. Each
of the two DVF generated per patient (forward and backward)
contributed to the differences in the final warped dose. First,
differences in forward DVFs resulted in different deformed
CTs and therefore different “doses of the day.” Second, the
backward DVFs remapped differently the doses of the day to
the pCT space. The contribution of the first was small as we
found the doses of the day to differ by less than 2% of the
prescribed dose on over 95% of the body voxels.

Dosimetric differences between the results obtained with
DIRsvf and every other approach were assessed. DIRsvf was
arbitrarily chosen as the basis of this comparison since it
generated the DVFs with more desirable physical properties.

Table IV presents the DD found between different methods
and DIRsvf in different regions of interest. We found no statis-
tical evidence of any method being more similar to DIRsvf (p
∈ [0.6–1.0]). The differences were smaller in the treated vol-
ume (TV) and larger in the 50%–95% of the prescribed dose
volume (i.e., the irradiated volume that was not within the
treated volume, IV-TV), where higher gradients were more
likely to occur. Regions of poorer CBCT quality (low contrast
and high noise within larger imaging volumes,3 i.e., near
the shoulders) within the IV (PIV) showed higher variability
between warped doses. The differences between DD2%-pp
between all the different identified regions were statistically
significant (p < 0.01). Therefore, regions of higher dose gradi-
ent and poorer CBCT image quality were more prone to having
larger variability in warped doses, but for different reasons.
DTDRMS was 1.6 ± 0.4 mm and 2.7 ± 0.8 mm within IV-TV
and TV, respectively. The root mean square L2-norm value
within IV-TV, TV, and PIV was 2.7 ± 1.1, 3.4 ± 1.5, and
4.2 ± 2.1 mm. L2-norm values found for PIV were statistically
different from other regions (p < 0.01), while between TV and
IV-TV were not (p= 0.1). Voxels within IV-TV had larger DD
than voxels within TV due to the local characteristics of the
dose distribution (shown by DTD), while inside PIV, the larger
spatial mapping variability between DIR algorithms explained
the larger DD (shown by L2-norm).

The effect of the DVF in the dose mapping is complex and
is theoretically expected to depend on the location of the dose
gradients.20,25 We computed the dose gradient of the planned
dose distribution and related it with the values of DD within
IV-TV. The correlation between gradient and DD was weak
(Pearson correlation coefficient, ρ= 0.281), but it was clear
that as the dose gradient increased the distribution of DD
values became more spread and the average DD increased
(Fig. 3).

F. 2. ICE maps for a patient included in this study: (a) DIRsas+sas, (b) DIRsas+inv, (c) DIRics, and (d) DIRsvf.
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T III. Mean values ± standard deviation registration computation times
(in minutes).

Forward Backward Total

DIRsas+sas 15 ± 3 8 ± 5 23 ± 6
DIRsas+inv 15 ± 3 5 ± 1 20 ± 3
DIRics 37 ± 12 37 ± 12
DIRsvf 61 ± 15 61 ± 15

We computed the DD, ∆Dmean, and ∆Dmax to the spinal
canal, brainstem, and parotids (Table V). The wide range
of values found for ∆Dmean and ∆Dmax was indicative that
larger dose differences occur depending on the particular dose
distribution and relative positioning of the OARs. Analyzing
the DVHs’ curves obtained for each patient, we could see that,
in general, all algorithms lead to similar clinical outcomes,
i.e., that a replan was needed since OARs were receiving
more dose than tolerated and targets less dose than planned.
However, for one of the patients included in this study, while
DIRsas+sas and DIRics estimated a dose above the spinal canal
tolerance, DIRsas+inv and DIRsvf did not (Fig. 4). This is an
example where the decision to replan could be affected by the
choice of algorithm.

4. DISCUSSION

Regarding the geometric evaluation, all the methods
resulted in good alignment between anatomical contours.
In some cases, DIRics had worse results than the other
approaches, indicating a reduced ability to capture more
complex deformations due to the introduction of additional
constraint terms. The differences in geometrical alignment
from DIRsas+sas and DIRsvf were statistically and clinically
insignificant, but the underlying properties of the deformations

T IV. Mean values ± standard deviation for the dose difference test
pass-percentage (DD2%-pp), root mean square value (DDRMS), and the 99th
percentile of the DD distribution (DD99%) between different approaches and
DIRsvf within different regions of interest (as a percentage of the pD). The
TV corresponds to the volume encompassed by the planning 95% isodose
surface, while the IV corresponds to the volume encompassed by the planning
50% isodose surface. Therefore, IV-TV is the volume where 50%–95% of the
dose was planned to be delivered. PIV was defined as the body slices close
to the shoulders (a larger imaging volume) intersected with the IV, where the
CBCT Hounsfield units were not reliable.

Method TV IV-TV PIV

DD2%-pp (%) DIRsas+sas 91 ± 3 79 ± 5 72 ± 7
DIRsas+inv 92 ± 4 79 ± 6 70 ± 11
DIRics 91 ± 5 80 ± 7 73 ± 10

DDRMS DIRsas+sas 1.7 ± 0.5 3.9 ± 1.1 4.2 ± 1.3
(%pD) DIRsas+inv 1.6 ± 0.7 3.1 ± 0.8 4.2 ± 1.6

DIRics 1.9 ± 0.8 3.3 ± 0.9 3.8 ± 1.6

DD99% DIRsas+sas 7 ± 3 14 ± 3 16 ± 4
(%pD) DIRsas+inv 7 ± 3 14 ± 4 19 ± 7

DIRics 9 ± 5 13 ± 4 15 ± 6

F. 3. Percentage of dose difference values per bin of dose gradient. For
larger values of gradient, the DD distribution became more spread and the
average DD increased.

were different. DIRsvf resulted in deformations with more
desirable physical properties, where both symmetry and
inverse consistency were satisfied.

Different DIR algorithms generated different DVFs which
resulted in differences when warping the dose to the planning
geometry. The mean and maximum values found for DD
between different DIR implementations were comparable to
the values found by Salguero et al. when estimating the
dose uncertainties of a DIR algorithm due to lack of inverse
consistency.23 In this small feasibility study, we identified
situations where the choice of algorithm leads to higher
uncertainties in dose warping. The first important point was
the effect of the dose gradient. Where there was a high
dose gradient, there was more likely a larger variability in
dose between the different DIR algorithms. OARs within the
high gradient region can be of concern, as we found that
different methods could predict maximum doses to the spinal
canal and brainstem with a difference of up to 2.8%pD. The
correlation between gradient and DD was weak and similar
to the values reported in the same study by Salguero et al.
The weak correlation can be explained due to the fact that if a
registration error occurs in uniform dose region the resulting
dose error will be small, but when a registration error occurs in
high dose gradient the resulting dose difference may be large
but does not mean it will be, since there are other factors to
consider besides the gradient (i.e., how large the uncertainty in
spatial mapping is, whether the registration error is in the same
direction as the gradient). Our findings are also in agreement
with the findings of Saleh-Sayah et al., as the required
spatial accuracy depended on the local dose distribution.20

A second important point is the effect of the lower quality
of the CBCT in the registration uncertainty. Regions of
reduced contrast and increased noise (particularly evident
in larger imaging volumes like the shoulders) were more
susceptible to variability in mapping between registration
algorithms and therefore in larger differences between warped

Medical Physics, Vol. 42, No. 2, February 2015



767 Veiga et al.: Dose warping uncertainties due to registration algorithm 767

T V. Mean values ± standard deviation (range) for the dose difference test pass-percentage (DD2%-pp), root mean square value of the DD (DDRMS), and
differences predicting the mean (∆Dmean) and maximum doses (∆Dmax) to the OARs.

OAR Method DD2%-pp (%) DDRMS (%pD) ∆Dmean (%pD) ∆Dmax (%pD)

Spinal canal DIRsas+sas 90 ± 12 (69–100) 1.1 ± 0.6 (0.3–1.9) 0.4 ± 0.6 (0.1–1.5) 1.0 ± 0.9 (0.4–2.6)
DIRsas+inv 94 ± 5 (86–100) 1.7 ± 1.9 (0.3–5.0) 0.4 ± 0.6 (0.0–1.4) 0.7 ± 0.8 (0.0–2.0)
DIRics 90 ± 8 (77–96) 1.7 ± 1.4 (0.8–4.2) 0.5 ± 0.4 (0.2–1.1) 0.3 ± 0.2 (0.0–0.5)

Brainstem DIRsas+sas 92 ± 14 (67–100) 1.4 ± 1.9 (0.1–4.7) 0.6 ± 0.8 (0.0–2.0) 0.6 ± 0.4 (0.2–1.1)
DIRsas+inv 92 ± 11 (72–100) 1.3 ± 1.6 (0.1–4.2) 0.6 ± 0.8 (0.0–2.0) 0.7 ± 1.0 (0.0–2.5)
DIRics 91 ± 10 (79–100) 1.0 ± 0.8 (0.2–2.0) 0.5 ± 0.4 (0.1–1.1) 1.1 ± 1.1 (0.2–2.8)

Parotids DIRsas+sas 86 ± 4 (79–93) 1.5 ± 0.3 (1.1–2.0) 0.6 ± 0.3 (0.2–1.0) 0.2 ± 0.2 (0.0–0.5)
DIRsas+inv 86 ± 7 (74–95) 1.5 ± 0.4 (1.0–2.0) 0.3 ± 0.4 (0.0–1.4) 0.3 ± 0.3 (0.0–1.0)
DIRics 83 ± 9 (70–98) 1.9 ± 0.8 (0.7–3.0) 0.9 ± 0.5 (0.1–1.6) 0.2 ± 0.2 (0.0–0.7)

doses. The impact of the choice of DVF will depend
on the dose distribution and relative positioning of OAR,
and generic validation frameworks (based exclusively on
geometric analysis of the deformations) are not sufficient for
dose warping applications. The patients included in this study
were a challenging cohort to test DIR, and it is likely that
the issues reported may have less impact for less demanding
patients (but then these patients will benefit less from ART).
A larger study could potentially identify patterns of when
different algorithms provide significant differences between
doses, and flag the regions where the dose warping algorithm
may be unreliable.

For an application that is sensitive to the underlying de-
formations such as dose warping, we believe a more complex
algorithm like DIRsvf is preferable over other approaches.
This opinion is based on the similar ability to recover defor-
mations while generating deformations with more desirable
physical properties. Other studies support the theoretical
advantages of ensuring symmetry and inverse consistency
to improve the precision of dose warping using DIR. Bender
et al. studied the effect of inverse consistency and transitivity
in DIR for a single HN patient.24 Lack of transitivity means
that different dose distributions will be obtained depending
on the order in which the registrations are used and the time

point chosen for summation. They found dose differences
at OAR when different image time points were used as
a reference for summation—however, when increasing the
inverse consistency and transitivity those differences were
considerably reduced. Inverse-consistent algorithms do not
enforce transitivity making this an interesting area of research
for registration developers. Yan et al. showed that the dose
mapping inverse consistency error observed when mapping
doses back-and-forth was reduced 1.5–3 times when the
spatial inverse consistency was improved.35

The reliability of using dose warping in clinical settings
is a current and open debate.40 Our work contributes to this
discussion by evaluating theoretically better DIR algorithms
and investigating the uncertainties in dose warping due to the
choice of algorithm in ART frameworks that use CT-to-CBCT
registration. One of the main difficulties with validating dose
warping is that the true point-to-point mapping is difficult or
impossible to establish, especially in regions of homogeneous
image intensities as is often found inside individual struc-
tures.41,42 When new plans are based on accumulated dose,
registration inaccuracies will also affect the newly planned
treatment. We do not think that the difficulties inherent to
validate DIR for dose warping necessarily discourage its use
for clinical research, but we advise users to carefully consider

F. 4. Dose volume histogram obtained for a patient included in this study, using doses warped by different DIR algorithms: (a) all organs-at-risk and target
volumes and (b) zoom of the maximum dose to the spinal canal. DIRsas+sas and DIRics estimated a dose above the tolerance, while DIRsas+inv and DIRsvf did not.

Medical Physics, Vol. 42, No. 2, February 2015



768 Veiga et al.: Dose warping uncertainties due to registration algorithm 768

their choice of DIR algorithm and the conclusions that should
be drawn from the results.

It should be noted that the real changes occurring in the
tissue are complex and variate: sometimes tissue appears
or disappears (e.g., weight loss and tumor shrinkage) and
sometimes it expands/contracts or deforms in other ways. The
vast majority of current DIR algorithms use a transformation
model that represents expansion/contraction, but map constant
image intensities, which in CT represents a constant density
and so is more representative of appearing/disappearing tis-
sue. To accurately model and recover the real physical changes
that occur during a course of radiotherapy is extremely chal-
lenging but it is what an ideal DIR algorithm should be able to
do and what should be an aim of the next generation of DIR
algorithms. Several groups are actively working on making
DIR algorithms more realistic. Examples include incorporat-
ing missing tissue in image registration by modifying existent
DIR algorithms43 and further regularizing the transformation
to avoid deformation of bony anatomy.44 However, there is
still a very long way to go to achieve truly realistic DIR, and
indeed, this will not just involve developing new algorithms
and computational techniques but will also require a better
understanding of the actual physical and biological processes
that occur during a course of radiotherapy.

5. CONCLUSIONS

We have evaluated several DIR algorithms for CT-to-CBCT
registrations and investigated the uncertainties inherent to
using different DIR algorithms to warp doses to a reference
geometry. Standard asymmetric and stationary vector field
implementations resulted in similar geometric matching, but
the properties of the DVFs were very different, with the
second providing deformations with more desirable physical
properties. The choice of DIR implementation had a larger
impact on the dose warped in regions where the dose gradient
is high and/or the CBCT image quality is poorer.
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