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Supplementary Note 
 
1. Population structure. 
 
To determine whether there were discrete populations in our strain collection, we employed 
the Admixture program1,2 with the 752 unlinked SNPs, and the non-redundant 57 strains, 
using K values (the predetermined number of populations) from 2 to 20, running each k value 
in triplicate. The cross-validation error was lowest with values 2-5, suggesting at most 5 
populations (data not shown). However, these groups did not coincide well with the 
geographic groups (Supplementary Fig. 2a). The five Admixture-defined populations were 
similar to the groupings defined by principal component analysis (Supplementary Fig. 2b). 
 We next employed ChromoPainter and fineSTRUCTURE3, which model the sharing of 
haplotypes. When using ChromoPainter, we first ran 10 Expectation-Maximisation (E-M) 
iterations to infer the "global mutation" and "switch rate" parameters, then averaged the 
inferred values for each across chromosomes, weighting by the number of SNPs, and 
performed a final ChromoPainter run using these weight-averaged values. This analysis also 
indicated that genetically-defined population groups do not coincide well with geographic 
groups (Supplementary Fig. 2c). 
 To confirm this finding with a simple metric, we used all SNPs to estimate FST for all 
pairwise combinations of populations, including Europe, Asia, Africa and the Americas. In 
support of the analysis from Admixture, PCA and fineSTRUCTURE, values are relatively low, 
as below. 
 
FST Europe Asia America 
Africa 0.000 0.099 0.178 
Europe - 0.260 0.258 
Asia - - 0.175 
 
However, defining groups of strains according to their SNP variants with Admixture (using 
the optimal value of k = 5) produced much higher FST values, as below (mean pairwise FST = 
0.40). These results indicate that highly differentiated populations are present, and that some 
strains have been displaced sufficiently in recent times to allow little gene flow. For example, 
in the projection of first two principal components considering their genetic profile (Fig. 1b) 
African strains (pink) cluster with either European (green) or South American strains (red). 
 
FST Group 2 Group 3 Group 4 Group 5 
Group 1 0.43 0.22 0.40 0.52 
Group 2 - 0.23 0.27 0.59 
Group 3 - - 0.29 0.47 
Group 4 - - - 0.57 
Group 5 - - - - 
 
Finally, the principal component projection and fineSTRUCTURE analysis suggested that 
haplotypes (alleles) had been shared between all populations by recombination. This contrasts 
with budding yeast, where it is reported that some lineages (‘clean lines’) share very few 
haplotypes4. To test explicitly whether this was the case for the S. pombe collection, we 
examined whether phylogenetic trees were similar across 100 different regions of the genome 
for the non-redundant set of 57 strains. This showed that no clades of the tree were well 
supported by a large percentage of regions, so there were no ‘clean lines’ (Supplementary Fig. 
2d).  
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2. Estimates of the TMRCA 
 
There are two main caveats to our mitochondrial estimate of the time to the most recent 
common ancestor (TMRCA). First, we used only the mitochondrial genome, that could have 
been subject to a recent selective sweep, so would have a more recent coalescence time than 
the remainder of the genome. Second, only 81 of the 161 strains had a reliable collection date, 
so it is possible that some strains exist with an older TMRCA.  

The first possibility appears unlikely, because the mitochondrial genome is not 
significantly lower in diversity from the remainder of the genome (median for all 1 kb 
windows πmito = 2.7x10-3, πnuc = 2.6x10-3, Mann-Whitney test P = 0.74). To test this possibility 
more rigorously, we used the ACG software5 which can estimate the TMRCA for 
recombining genome data. Because the TMRCA in regions of the genome is determined 
using segregating sites, it is not independent from the degree of background selection. The 
major factor influencing the extent of purifying selection is the density of protein-coding 
genes (see main text). Therefore, to select regions that would experience similar background 
selection to the mitochondrial genome, we chose 160 mitochondria-sized (20 kb) regions of 
the nuclear genome that were between 50% and 60% exon density, close to the 57% exon-
density of the S. pombe mitochondria. These regions were evenly distributed throughout 
chromosomes 1-3. We estimated the TMRCA (in substitutions per site) for each of these 
regions with AGC, and produced an estimate from the mitochondrial genome using the same 
method. The mitochondrial estimate (0.0030 subs/site) was close to the mean of nuclear 
regions (0.0033). 

To investigate the second possibility (that some undated strains exist with an older 
TMRCA), we ran BEAST with the alignment of all mitochondrial genomes, using the same 
parameters and number of iterations as the initial TMRCA estimate, except that: a) we 
assume a strict clock, and b) we estimate the dates of the undated strains by sampling the age 
in a uniform distribution. The 95% Highest Posterior Density (HPD) intervals of the age of 
the TMRCA of all strains overlapped with the TMRCA of the 81 dated strains (data not 
shown). We consider this tree to be robust because the deepest three nodes (and most others) 
have a posterior probability >0.95. 
 
 
3. Analysis of diversity in long non-coding RNAs. 

 
The analysis of SNP diversity (θw) showed that exons contained the lowest diversity, followed 
by 5’- and 3’-UTRs and introns (Fig. 3b). All these groups showed significantly lower 
diversity than four-fold degenerate sites (4FD sites). Non-coding RNAs (ncRNAs), un-
annotated (‘intergenic’) regions and LTRs showed higher diversity not significantly different 
from 4FD sites. Watterson’s θ was calculated using only sites that fell exclusively within each 
annotation class for each 100th of the genome (each 126 kb window). θ could be estimated 
because our SNP-calling methods identified all callable sites, polymorphic or not. Hence we 
calculated θ per callable site. 
 A limitation of θ to detect the effects of purifying selection is that our power to detect 
segregating sites will not be the same in all regions of the genome. Low complexity regions, 
such as introns for example, contain fewer ‘callable’ sites than exons, and so we may record 
fewer segregating sites. Allele frequencies will be less subject to this issue because the 
complexity will be the same (or very similar) for all strains, so frequencies should be 
correctly determined. 
 The expectation for sites under stronger purifying selection than a neutral standard is an 
excess of rare allele frequency variants. Due to the linkage of variants, comparing raw rare 
allele frequencies could inflate P-values. Therefore, to assess relative levels of purifying 
selection in annotated regions of the genome, we used the same 100 windows of the genome 
(each 126 kb), and calculated the median allele frequency per window as a summary statistic 
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(for variants with exactly one annotation). Using SNP data, both 5’- and 3’-UTRs showed 
significantly lower median allele frequency than 4FD sites, but again lncRNAs are not lower 
than 4FD sites (Supplementary Fig. 4a). We obtained similar result with indels, using un-
annotated regions as our neutral proxy, except that 3’-UTRs are not significant 
(Supplementary Fig. 4b). 
 It is possible that a subset of the non-canonical lncRNAs is subject to purifying 
selection. To investigate this possibility, we used the expression levels of lncRNAs that have 
been quantified in copies per cell (CPC) in two physiological states  to define subsets of 
lncRNAs. Our expectation is that more highly expressed lncRNAs may be subject to stronger 
purifying selection. We divided lncRNAs into five categories based on the maximum CPC 
obtained in either state (first 5th of expression, second 5th and so on). It is also possible that a 
subset of 4FD sites would be a more appropriate neutral proxy (since some sites may be 
subject to weak selection). To test this we divided protein-coding RNAs into 10 expression-
fractions using the same data, and for each of 100 windows of the genome, calculated SNP 
diversity (θw) from these 4FD site and lncRNA fractions. 
 There was little difference between the 4FD site fractions, validating our use of all 
4FD sites as a neutral proxy ((ig. 4c). However, we observed that only the most highly-
expressed 5th of the lncRNAs are significantly less diverse than the neutral proxy 
(Supplementary Fig. 4c), suggesting that these lncRNAs are subject to purifying selection. 
 To confirm this, we calculated the median minor allele frequency using SNPs and 
indels, using for each of the 100 genomic windows the same 4FD and lncRNA fractions. 
Again, there was little difference between high and low expression 4FD sites (Supplementary 
Fig. 4d). Comparing the lncRNA statistics against a neutral proxy again showed that only the 
most highly expressed 5th of lncRNAs were subject to purifying selection (Supplementary 
Fig. 4d,e). These lncRNAs are estimated to be expressed at 0.41-1300 CPC 6. 
 In summary, analysis of SNP θw, and SNP and indel median allele frequencies 
suggests that exons, 5’- and 3’-UTRs are subject to stronger purifying selection than the 4FD 
or un-annotated region neutral proxies. There was no evidence that lncRNAs as a class were 
subject to purifying selection. However, a subset of the 20% most highly expressed lncRNAs 
showed consistent signals of purifying selection using all these three parameters. The 
majority of these conclusions are also supported by the excess of rare alleles in the raw minor 
allele frequency spectrum (below). In this figure we show a, b, Raw counts of MAF for SNPs 
show that exons contain a large proportion of the SNPs, but a much smaller proportion of the 
indels. Indels are much more frequent in UTRs, un-annotated regions and lncRNAs. c, d, 
Relative frequencies of SNP and indel MAF. After all the distribution of all SNPs (black) 
categories are sorted from according to their preference for rare alleles in SNPs. Exons and 
UTRs show a stronger bias to rare SNPs than four-fold degenerate sites, whereas un-
annotated regions, introns, and lncRNAs do not. This supports the conclusion from θ and 
median MAF that purifying selection is dominated by exons and UTRs. Indels show an even 
stronger bias to rare alleles in exons, consistent with many being strongly deleterious. The 
indel length distribution shows that the majority of indels are short (the 95th percentile is 12nt), 
that indels in exons (middle panel) are strongly biased to multiple-of-three lengths, which 
includes many more long indels than in other locations of the genome (the 95th percentile is 
30nt). No multiple-of-three bias is observable in non-exonic regions (lower panel). f,g, 
Because of this length bias, raw indel counts are mainly described by short indels UTRs, un-
annotated regions and lncRNAs. The strongest bias to rare alleles is in non-multiple-of-three 
indels in exons.  
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4. Recombination and DSB hotspots. 
 
We obtained genome-wide DSB rates (data set S1) from Cromie et al.7. We processed this 
data by calculating the median signal for all 14 probes from a 7 probe window, pooling 
experiment 1 and experiment 2 for the 5 h time point, and the median signal for all 7 probes 
for the 0 h time point. We then used the ratio median 5 h/median 0 h. The average rate (per 1 
kb window) was correlated with the average historic recombination rate (Spearman rank ρ = 
0.25, P = 7x10-17). If we define DSB and historic recombination hotspots as the 1% of 1 kb 
windows with the highest rates, then 62 of the 118 recombination hotspots are in DSB 
hotspots. There is a weak, but significant correlation between the average recombination rate 
(LDU/Mb) and the count of recombination events in 54 segregants of the cross between JB50 
and JB759 (both calculated over 100 kb) (Pearson test r = 0.20, P = 0.023) (unpublished data, 
Mathieu Clement-Ziza and Andreas Beyer). 
 
 
5. GWAS 
 
The hotspot from a previous study. 
The vertical orange bar in Fig. 4b (lower panel) indicates the position of the swc5 gene 
(SPCC576.13), which is implicated as causal for the major hotspot in a previous study that 
has pleiotropic effects on gene expression8. Our analysis does not call the frame-shifting indel 
in swc5, but we do observe 23 variants that are significantly associated with traits in the 10kb 
around this gene (see table below). This includes three traits, consistent with the swc5 variant 
being pleiotropic. 
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III 2097636 3.76E-08 shape2.KL.Predicted.Tshape snp 
III 2097898 3.76E-08 shape2.KL.Predicted.Tshape snp 
III 2098270 1.83E-06 smgrowth.MgCl2.0.1.M snp 
III 2098378 3.27E-06 smgrowth.MgCl2.0.1.M snp 
III 2098907 3.76E-08 shape2.KL.Predicted.Tshape snp 
III 2098940 1.83E-06 smgrowth.MgCl2.0.1.M snp 
III 2099316 3.76E-08 shape2.KL.Predicted.Tshape snp 
III 2099368 3.76E-08 shape2.KL.Predicted.Tshape snp 
III 2099511 3.76E-08 shape2.KL.Predicted.Tshape snp 
III 2099526 3.53E-06 shape2.KL.Predicted.Tshape snp 
III 2099714 3.53E-06 shape2.KL.Predicted.Tshape snp 
III 2100595 3.76E-08 shape2.KL.Predicted.Tshape snp 
III 2100959 3.07E-06 wb.NiCl20.75mM.Efficiency snp 
III 2101069 3.76E-08 shape2.KL.Predicted.Tshape snp 
III 2101074 3.76E-08 shape2.KL.Predicted.Tshape snp 
III 2101157 3.76E-08 shape2.KL.Predicted.Tshape snp 
III 2102584 3.76E-08 shape2.KL.Predicted.Tshape snp 
III 2103803 3.76E-08 shape2.KL.Predicted.Tshape snp 
III 2103938 2.10E-08 shape2.KL.Predicted.Tshape snp 
III 2104066 2.10E-08 shape2.KL.Predicted.Tshape snp 
III 2105767 3.76E-08 shape2.KL.Predicted.Tshape snp 
III 2106879 3.27E-06 smgrowth.MgCl2.0.1.M snp 
III 2107041 3.76E-08 shape2.KL.Predicted.Tshape snp 
 
Associated variants that were rare or not present in the set of 57 non-clonal strains. 
The variants for GWAS were filtered to have minor allele count ≥ 5 in the entire collection of 
161 strains (108,453 SNPs and 8417 indels). This selected 8740 SNPs that have a minor allele 
count of < 2 in the non-clonal 57 strains (8% of the SNPs used the GWAS). Only two of these 
produced significant associations from the mixed model GWAS. Only 17 of the 1239 
associated SNPs from the GWAS (1.3%) had a minor allele count in the non-clonal 57 set 
that was less than 5. Two of these variants private to strains other than the non-clonal 57 set 
(not segregating in the non-clonal 57 set). Since neither of these could be validated by 
regression using the 3 Admixture-defined populations, we would not regard these as very 
strong candidates. 
 
 
The mixed model accounts for unequal strain relatedness 
If the mixed model were not accounting well for population structure, then any excess of 
associated variants should be most severe traits that are stratified according to the genetic 
structure of the strains. In such traits, variants that tag populations will co-associate with 
high/low trait values. We had used the Admixture program to cluster strains using the 752 
unlinked SNPs as input (which also defined relatedness in Fast-LMM). This approach 
identified 5 ‘populations’ (Supplementary Fig. 2a), and we used these 5 populations to 
examine this possibility. For each quantitative trait, we tested for significant differences 
between the 5 populations applying a Kolmogorov-Smirnov test. Only 19 of the 220 traits 
were significantly differentiated after Bonferroni correction, showing that traits are usually 
not stratified by populations (Supplementary Figure 9a). There was no correlation between 
the number of passing variants and the KS test P-value (Supplementary Figure 9a), consistent 
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with the mixed model controlling well for population structure. Only 6 traits that were 
stratified by population contained variants that passed our P-value threshold. 
 Additionally, we would expect inflation of many P-values above the expected 
distribution. To examine this possibility, we used genomic inflation factors (GIFs, 
Supplementary Figure 9b), calculated as median(observed many P-value)/(median expected 
P-value). With a very large sample size and low LD, the median expected P-value = 0.5. 
However, with a small sample size GIF varies, as expected (Supplementary Fig. 9b). To 
examine this variation under a null model, we calculated the median P-value from permutated 
data (one permutation per trait). Adjusted GIFs calculates as median(observed P-
value)/(median permuted P-value) are centred around 1.0. We note that some inflation of 
genomic-control lambda may be due to multiple causal variants and high LD. 
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