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Abstract 
Natural variation within species reveals aspects of genome evolution and function. The 
fission yeast Schizosaccharomyces pombe is an important model for eukaryotic biology, but 
researchers typically use one standard laboratory strain. To extend the utility of this model, 
we surveyed the genomic and phenotypic variation in 161 natural isolates. We sequenced the 
genomes of all strains, revealing moderate genetic diversity (π = 3 x10-3) and weak global 
population structure. We estimate that dispersal of S. pombe began within human antiquity 
(~340 BCE), and ancestors of these strains reached the Americas at ~1623 CE. We quantified 
74 traits, revealing substantial heritable phenotypic diversity. We conducted 223 genome-
wide association studies, with 89 traits showing at least one association. The most significant 
variant for each trait explained 22% of variance on average, with indels having higher effects 
than SNPs. This analysis presents a rich resource to examine genotype-phenotype 
relationships in a tractable model. 

Introduction 
While the standard laboratory strain of S. pombe has been extensively studied, genetic 
variation and phenotypic diversity have been analyzed only in preliminary ways1-3. 
Remarkably little is known about the evolutionary history or ecology of this model organism. 
It was first described in East African millet beer in 1893, and the standard laboratory strain 
was isolated from French wine in 19244. Natural isolates have also been collected from 
vineyards in Sicily, Cachaça (sugarcane spirit) in Brazil, and found to contribute to the 
microbial ecology of Kombucha (fermented tea)1,5,6. The diverse origins of these natural 
isolates (Fig. 1a; Supplementary Table 1) suggest that this yeast is now widely distributed. 
 To further describe S. pombe, we analyzed the genetic and phenotypic variation in 
natural isolates. Because the natural environment is not known, we collected all isolates 
available from the major stock centres and those given to us by microbial ecologists 
(Supplementary Table 1). These 161 strains had been collected over the last 100 years, in 
over 20 countries across the globe, primarily from cultivated fruit or various fermentations. 
Notably, the strains with known origin had been associated with human activities, providing 
little information about the natural environment of the species. 
 
Results and Discussion 
 
Variation and population structure 
We sequenced the genome of all strains to at least 18-fold coverage, with a median 76-fold 
coverage. To facilitate detection of genetic variants, we mapped reads to the reference 
genome7. Mapping was comprehensive and accurate owing to the small, non-repetitive 
genome, allowing us to query 93% of the genome with high confidence (11.8 Mb of 12.6 Mb). 
We identified 172,935 high-quality single-nucleotide polymorphisms (SNPs), 14,508 small 
insertion and deletions (indels), and 1,048 long terminal repeat (LTR) insertions (Table 1). 

Initial analysis revealed 25 clusters of near-identical strains that differed by <150 SNPs 
(Supplementary Fig. 1a). As most clusters were isolated from a single location, they probably 
derive from isolated, mitotically reproducing populations or from repeat depositions of the 
same strain to stock centers. By excluding such ‘clonal’ strains, we identified a set of 57 
strains that each differ by ≥1,900 SNPs, which includes 99.6% of the SNPs present in all 
strains. The average pairwise diversity (π) within these 57 strains was 3.0 x10-3 (3 SNPs/kb), 
slightly lower than the diversity within the budding yeast Saccharomyces cerevisiae (π = 5.7 
x10-3)8,9. Flow cytometry indicated that all but one (JB1207/NBRC10570) of these strains 
were haploid. Also, 34 of 39 strains were homothallic (i.e. contained both mating types), and 
all 57 strains were prototrophic (i.e. able to grow on same minimal medium as reference 
strain). 
 To describe the relatedness among these 57 strains, we analyzed SNPs in the nuclear 
genome. Some strains carry large inversions and translocations2,10, which bias estimates of 
population structure when large regions of chromosomes are inherited without 
recombination11. Therefore, we selected a set of 752 SNPs that are close to linkage 
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equilibrium (pairwise r2 <0.5) and are distributed relatively evenly across the genome 
(Supplementary Fig. 1b), which better suits population genetic models that assume no linkage 
between variants. Principal component analysis of these SNPs showed weak clustering of 
strains by geography (Fig. 1b). Moreover, a pattern of genetic isolation by distance was 
evident, with genetic and physical distance being weakly, but significantly correlated 
(Supplementary Fig. 1c). This result suggests that there is some global population structure, 
which has been obscured by recent dispersal and intermixing of some strains. To examine 
whether this genetic isolation has resulted in any reproductive isolation, we measured spore 
viability between 43 crosses that spanned the range of genetic distances, avoiding crosses that 
involved known structural variants2. We found a significant correlation between genetic 
distance and spore viability (Pearson r = 0.52, P = 6.5 x 10-4, Supplementary Fig. 1d). This 
result suggests that these strains have accumulated sufficient genetic differences for 
reproductive barriers to emerge. Chromosomal rearrangements will also contribute to 
reproductive isolation10,12. 

The budding yeast S. cerevisiae shows strong clustering of strains, determined both by 
geography and cultural uses8,13. To assess the situation for S. pombe, we applied unsupervised 
genetic clustering methods, Admixture14 and fineSTRUCTURE15, which are oblivious to the 
geographic origin of the strains, to uncover any genetically differentiated populations. Both 
clustering methods identified between two and five populations that were consistent with the 
principal component analysis (Supplementary Figure 2a-c). These results and further 
phylogenetic analysis showed that these groups were interbreeding populations, rather than 
clonally-isolated lineages (Supplementary Figure 2d). The FST values (proportion of between 
population genetic variance) for the five-population clustering ranged between 0.22 and 0.59 
(mean 0.40) for different pairwise comparisons, indicating considerable genetic differences 
between these five connected clusters. 
 
Dating the global dispersal of S. pombe 
While S. pombe now appears globally distributed, we have no ecological or historic context to 
this dispersal, except that most strains were isolated from brewed beverages. The available 
strains were collected between 1912 and 2002, which allowed us to estimate the age of every 
node in the phylogenetic tree from the mitochondrial genomes, including the root (most 
recent common ancestor of all strains) (Fig. 2a). Modelling of the evolutionary rate showed 
that our data had predictive power (Fig. 2b), and we estimate the ancestor of all strains to 
have lived ~2,300 years ago (~340 BCE, Fig. 2c). A similar timeline could be deduced from 
the nuclear genome (Supplementary Note). This estimate points to an evolutionarily recent 
worldwide dispersal, perhaps associated with the spreading of technologies for brewing or 
other fermentations16. In comparison, it has been estimated that domesticated strains of S. 
cerevisiae dispersed 8-10,000 years ago, consistent with a Neolithic expansion17. Furthermore, 
our analysis provides a mean estimate of 1623 CE for the arrival of S. pombe in the Americas 
(95% confidence interval 1422-1752 CE), coincident with European colonialism of this 
continent, which began in 1492 CE. Notably, isolates from the Americas also showed the 
highest genetic similarity (Supplementary Note, Fig. 1b). Together, these findings suggest a 
recent European origin for S. pombe in the Americas. 
 
Genetic diversity and genome function  
Genetic variation data also contain signals of selection, which can be used to describe genome 
function. For example, both background selection and adaptive evolution reduce diversity 
most strongly in genetic elements that contribute to cell function. A consistent reduction in 
diversity is therefore a signature of functional elements, as reflected in the biased distribution 
of SNPs and indels (Table 1). Variation was significantly higher in the terminal 100 kb of all 
chromosomes and in centromeric regions (Mann-Whitney tests, P=1.5x10-21 and 3.2x10-7, 
respectively) (Fig. 3a). These regions are unusual in that they contain no essential genes, have 
an excess of pseudogenes (19% vs 0.2% in genome), an excess of LTR insertions, and show 
low gene expression during vegetative growth, stationary phase and meiotic differentiation 
(Supplementary Fig. 3). 
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To systematically explore the relationship between genetic diversity and genome 
function, we calculated Watterson’s θ (which measures nucleotide diversity) for the following 
annotation classes (Fig. 3b): protein-coding exons, introns, canonical RNAs (rRNAs, tRNAs, 
snoRNAs, snRNAs), long non-coding RNAs (lncRNAs), UTRs (untranslated regions of 
protein-coding transcripts), and the 15% of the genome not annotated as any of the above. 
Within exons, we calculated θ for one-fold degenerate sites (where all changes to DNA 
sequence lead to changes in protein sequence) and four-fold degenerate sites (4FD, where all 
changes to DNA sequence result in same protein sequence). While polymorphisms in 4FD 
sites are not truly neutral, they are subject to much weaker selection18. As expected, protein-
coding exons were the least diverse regions of the genome (Fig. 3b). Additionally, 5’- and 3’-
UTRs and introns were all significantly less diverse than 4FD sites, suggesting substantial 
evolutionary selection at post-transcriptional levels of gene regulation. Analysis of SNP and 
indel median minor allele frequencies within windows showed consistent results 
(Supplementary Fig. 4a,b). While lncRNAs appeared to be subject to little or no purifying 
selection overall, further analyses revealed that the 20% most highly expressed lncRNAs 
were subject to detectable purifying selection (Supplementary Fig. 4c-e). These findings 
indicate that purifying selection is dominated by protein-coding transcripts, including their 
UTRs. As a consequence, we would expect fewer genetic variants to remain in gene-dense 
regions. Consistently, θ was strongly negatively correlated with protein-coding exon density, 
with outliers mainly derived from telomeric regions that lack essential genes (Fig. 3c). 
 
Variation in transposon insertions and gene content 
Transposons create another source of genomic variation, which may contain signatures of 
evolutionary processes. S. pombe has only one family of mobile elements, the Tf-type LTR 
retrotransposons19. The reference genome contains only 13 full-length Tf elements, but also 
several hundred solo LTR fragments that indicate the sites of previous insertions. These 
elements are transcribed at low levels20, so may be actively propagating. To examine this 
possibility, we searched for novel insertions of Tf-elements in the non-clonal strains and 
determined which reference LTRs were present in the other 56 non-clonal strains. We located 
1048 LTR insertions, of which 78% were not present in the reference. Consistent with 
previous studies showing that Tf-element insertions are targeted to RNA polymerase II (Pol 
II) promoters21,22, we observed a sharp peak of insertions upstream of transcription start sites 
(Supplementary Fig. 5), and few insertions in exons (Table 1). The majority of the insertions 
(593 loci, 57%) were present only in a single strain, suggesting recent transposon integration 
and loss. 

Transposon integration has been proposed to occur during cellular stress23,24. To 
examine this model, we analysed Tf-element insertions within intergenic regions containing 
one promoter and one terminator, as these insertions allow us to determine which promoter 
had been targeted by the insertion. Analysis of this set of 998 insertion sites upstream of 354 
genes showed that insertions were more abundant upstream of genes with high Pol II 
occupancy, suggesting that gene expression level is a main determinant for Tf-element 
insertion. Insertions were also enriched upstream of intronless genes, which tend to be rapidly 
regulated25, and of sty1-activated stress-response genes26 (Supplementary Table 2). These 
observations corroborate the experimental finding that stress-response genes are targeted by 
Tf-insertions22, and support the model that transposon integration occurs during stress, but 
also preferentially occurs in highly expressed genes. 

To gauge how much our collection differed in gene content, we used de novo 
assemblies of the 57 non-redundant strains to identify genes that were present in at least one 
strain, but not present in the well-annotated reference strain. We created protein-coding gene 
predictions for each strain from the assembly and attempted to locate similar genes in the 
reference strain. The strains were highly similar in their gene content; for example, 95% of 
the predicted peptides from the divergent strain JB758 could be aligned to a reference protein 
with >95% identity. Curation produced only 17 putative novel proteins, including nine with 
strong supporting evidence (Supplementary Table 3). The majority of these novel proteins 
were most similar to genes from Ascomycete fungi, including 12 for which we could identify 
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orthologs in related Schizosaccharomyces species by blastp (e-value < 10-20), suggesting 
ancient ancestry and subsequent gene loss in the reference strain. A notable exception was a 
protein most similar to the OsmC family from the plant pathogenic enterobacterium 
Brenneria salicis, with highly-conserved OsmC sequences being present in 29 of the 57 
strains. This finding may reflect horizontal gene transfer, raising the possibility of an 
ecological association between S. pombe and plants. 
 
Distribution of recombination 
Meiotic recombination is a source of diversity that influences natural selection and also 
reflects population history. Recombination events are initiated via double-stranded breaks 
(DSBs) that occur preferentially at hotspots in the S. pombe genome27,28. To examine the 
distribution of recombination, we estimated the historic recombination rate by constructing 
genetic maps with distances in Linkage Disequilibrium Units (LDU)29. The rate estimate was 
zero for genomic regions spanned by 87% of the SNPs, and was log-normally distributed 
within the 13% of sites showing recombination (Supplementary Fig. 6a). Six regions with 
very high historic recombination rates were evident (rates >99.99th percentile; Fig. 3a). These 
hotspots showed a weak relationship with regions of high DSB activity (Spearman rank 
ρ=0.25, P=5.2x10-16), but only 52% of the most recombinogenic SNPs were in DSB hotspots 
(Supplementary Note). As in other species, recombination positively correlated with genetic 
diversity (Spearman ρ=0.43, P=3.2x10-57) and was primarily located away from genes 
(Supplementary Fig. 6b,c). For example, exons cover 57% of the genome, but only 26% of 
the 1000 highest recombination sites were in exons. The result of the low recombination 
regions is that on average linkage disequilibrium (r2) declines to 50% within 21 kb 
(Supplementary Fig. 6d). Hence S. pombe shows long haplotypes compared to eukaryotes of 
similar genome size and gene density; for example, linkage disequilibrium in the budding 
yeasts Saccharomyces cerevisiae and Saccharomyces paradoxus decline to 50% within 3-11 
kb and 9 kb, respectively8,9. 
 
Phenotypic variation and genome-wide association studies 
Model organisms have been utilized extensively to describe the complex genetics of 
quantitative traits30,31, a task which is far more difficult in less tractable species such as 
humans. It was clear that our collection contained quantitative trait variation, both from 
previous studies1,2 and from our observation that some strains showed differences in cell 
shape and size (Supplementary Fig. 7). To extend this data, we measured 74 quantitative traits 
using five methods selected to sample a large variety of different phenotypes: 1) manual and 
2) automated measurements of cell shape and size, 3) multiple growth parameters in minimal 
and rich liquid media, 4) colony sizes on solid media under 42 different nutrient, drug and 
environmental conditions, and 5) mass-spectrometry measurements of intracellular amino-
acid concentrations. Combined with previous data2, we analyzed 9,383 measurements for 223 
phenotypes (an average of 164 values per strain) (Fig. 4a; Supplementary Table 4). 
 To assess the feasibility of using these data for genome-wide association studies 
(GWAS), we estimated the heritability of each of these phenotypes using the LDAK 
software32, which considers additive genetic contributions without accounting for genetic 
interactions. These narrow-sense heritability estimates were significantly greater than zero for 
130 of the 223 phenotypes, including phenotypes gathered using all methods (Supplementary 
Fig. 8a; Supplementary Table 5). Amino-acid concentrations were amongst the most heritable 
phenotypes, indicating a high metabolic diversity with little contribution from genetic 
interactions (which are not measured by narrow-sense heritability). Analysis of biological and 
technical repeat trait measurements also showed that the availability of repeats substantially 
increased the power of GWAS by reducing the non-genetic component of variance 
(Supplementary Fig. 8b). 
 GWAS would also be challenging if quantitative traits were clustered along with the 
population structure of the strains, as they are in budding yeast33. To examine this possibility, 
we tested each trait for significant differences in values between the 5 populations defined by 
Admixture. Only 19 of the quantitative 223 traits were significantly differentiated after 
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Bonferroni correction, showing that traits are usually not stratified by populations 
(Supplementary Fig. 9a). 
 Since our traits were highly heritable and infrequently stratified by populations, we 
applied GWAS to search for genetic variants associated with each of 223 quantitative traits. 
We used a mixed model34, utilizing all SNP and indel variants with minor allele counts ≥5 
(108,105 SNPs and 8,543 indels). Mixed model linear regression accounts for unequal 
relatedness between individuals. Using trait-specific thresholds with a 5% family-wise error 
rate per trait, we discovered 1,419 variants that were significantly associated with at least one 
phenotype (1239 SNPs and 180 indels; Fig. 4b, Supplementary Table 6). Genomic inflation 
factors (median of observed test statistic divided by expected median) indicated that the 
mixed model was accounting for unequal strain relatedness well (Supplementary Fig. 9a,b). 
As an additional critical test of these associations, we divided the 57 non-clonal strains into 
three sub-populations (with 12, 26 and 17 members, defined by Admixture14), and examined 
each of these 1,419 variants for significant association using linear regression. Despite the 
small sample sizes, 67 of these variants were nominally associated with the trait and 
replicated in at one more sub-populations (P <0.05; Fig. 4b, Supplementary Note). 
 Overall, we found that 1% of SNPs and 2% of indels were significantly associated 
with one or more traits (χ2 test P = 3.0 x 10-15). Associated indels also explained higher 
proportions of trait variance (Supplementary Fig. 9c), consistent with indels being more 
destructive variants. Many of the indels used in the GWAS were in untranslated regions of 
coding transcripts (UTRs, Supplementary Fig. 9d), which we showed are subject to selective 
constraint, suggesting that indels contribute to phenotypic change by altering gene regulation. 
 For 89 of the 223 traits examined, at least one variant passed the significance 
threshold. We considered the most significant variants as the most likely candidates for causal 
variants. These 89 variants (72 SNPs, 18 indels) showed no bias for any genomic regions 
(Supplementary Fig. 9d) and explained 12-60% of trait variance, consistent with the 
expectation that the small sample size will have power to detect only variants of large effect. 
As for any GWAS, while estimates are globally unbiased, the largest estimates are likely to 
reflect a combination of genetic and stochastic effects and so tend to over-estimate the true 
genetic variance explained, a bias known as the winner’s curse. In this study, the stochastic 
component of traits was well controlled by repeat measurements (Supplementary Fig. 8b), 
which will mitigate such bias. 
 Because of the extensive linkage disequilibrium (LD) in this collection, many 
variants will be significant because they are in LD to a causal variant. To locate further 
variants that are independently associated with traits, we re-applied the mixed model for each 
of these 89 traits, conditioning on the most significant variant. This approach uncovered 18 
further variants (10 SNPs, 8 indels, Supplementary Table 6). These conditional hits explain 
12-50% of the remaining trait variance. 
 The distribution of passing variants included six hotspots that harboured multiple 
variants associated with several different phenotypes (Fig. 4b). The most prominent of these 
hotspots contained 89 variants associated with six traits (Supplementary Fig. 10a), including 
the most significant three variants (all SNPs, all with P = 7x10-11, all of which have pairwise 
r2 =1). These polymorphisms are associated with growth in MgCl2, and fall in the intergenic 
region between nsk1 (encoding a microtubule-binding protein) and sod2 (encoding a 
predicted manganese superoxide dismutase). 
 To experimentally validate this association, we crossed two strains that showed clear 
differences for this trait and contained the alternative haplotypes. We grew the pool of F1 
progeny in the presence and absence of MgCl2. Sequencing of this pool showed a bias to the 
expected allele, supporting a role for this variant in these two genetic backgrounds 
(Supplementary Fig. 10b,c). These results provide experimental support for a causal role for 
this variant or the tightly linked SNPs. As a first step towards identifying the gene(s) affected 
by these SNPs, we compared the growth of the standard laboratory strain to strains with either 
nsk1 or sod2 deleted. Both deletion strains were sensitive to MgCl2 (Supplementary Fig. 10d), 
consistent with the haplotype affecting a bidirectional promoter between nsk1 and sod2. 
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In conclusion, this study contributes to the understanding of S. pombe in several areas. 
Our analysis is limited by the available strains collected from human-associated samples that 
share a relatively recent common ancestor. However, we show that GWAS are feasible with 
this strain collection, and uncover a large number of potential causal variants. The 
effectiveness of GWAS, despite the low number of strains, was probably enabled by the 
relatively small genome and the quantitative phenotyping under tightly controlled conditions, 
which is obviously not possible with humans. We expect that the rich natural genetic and 
phenotypic variation presented here will provide a valuable resource to understand the 
complexities and subtleties of genetic architecture and genome function in this model species. 
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Figure Legends 
 

 
 
Figure 1. An overview of the strain collection.  
a, Geographic origins of all 161 strains analyzed. Colored circles indicate the original sources 
of strains used in this study, with circle sizes indicating the number of strains obtained from 
each site (as in scale of black circles, top left). Strains for which only an approximate source 
is known (e.g. Africa) lack the black border. b, principal components projection of ‘drift 
distance’ between strains determined using the 752 unlinked SNPs (see Methods). The color 
scheme is as in (a). Leupold’s 972 reference strain is indicated with an open black square; 
strains that are members of the non-redundant group of 57 strains have a black border; strains 
known to contain large structural inversions2 are indicated with an orange cross. 
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Figure 2. Recent dispersal of S. pombe.  
a, Calibration of tree nodes using dated tips. With a collection of sequences sampled over 
various times (blue dots) until the present day (P), we can jointly estimate the phylogenetic 
tree topology (in black), the rate of evolution and the age of any node in the tree, including 
the root, the most recent common ancestor of all strains (R, green dot). b, Root to tip 
distances (mutations/site x 10-3) correlate with collection date (P <10-16), showing the data has 
reasonable predictive power. Distances were estimated using BEAST35 from mitochondrial 
data of the 81 strains where collection dates were available, statistical details are provided in 
Methods. The grey line shows the linear model. c, Historic context of dispersal. The posterior 
probability distribution for time to most recent common ancestor (TMRCA) of the 81 
collection-dated strains estimated using BEAST. The mean estimate was 340 BCE (95% 
confidence interval: 1875 BCE-1088 CE). Approximate historical periods are shown for 
context: ECP, European Colonial Period (~1500-1940 CE), HAN, Han Dynasty in China (206 
BCE-220 CE), GRE, Classical Greece (400 BCE-500 BCE), EGY, First Dynasty of ancient 
Egypt (2890 BCE-3100 BCE), NEOLITHIC, Neolithic Era (4,500 BCE-10,000 BCE). 
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Figure 3. Relationships between genetic diversity and genome function.  
a, Main features of diversity in the genome, with chromosome scale in Mb on x-axis, and 
mitochondrial genome on right edge. Top panel, diversity (Watterson’s θ) calculated using 
SNPs (scale: θx10-2). Middle panel, recombination rate (scale: LDU/Mb x10-3 above x-axis 
and log(1+LDU/Mb) below x-axis). The six major recombination hotspots are indicated with 
red dots. Bottom panel, sites of Tf-family LTR insertions (scale: number of strains containing 
each insertion, with insertions present in all strains shown in light blue) in the group of 57 
strains. b, Diversity described by genome annotation. Distribution of Watterson’s θ values for 
each 100th of genome, using only annotated sites annotated as: exons (EXO), 5’- and 3’-UTRs 
(5UT, 3UT), introns (INT), long non-coding RNAs (RNA), un-annotated regions (NIL), 
LTRs of Tf2-family transposons (LTR), one-fold (1FD) and four-fold (4FD) degenerate sites 
of exons. Protein-coding categories have red borders. The horizontal red lines indicate the 
median and interquartile range for 4FD sites, annotation classes significantly lower than this 
neutral proxy shaded grey. One-sided paired Mann-Whitney test P-values vs the FFD site 
neutral proxy were; exons, UTRs and one-fold degenerate sites all P <2x10-16, introns P = 
1x10-6, lncRNAs, un-annotated regions and LTRs P >0.05. c, Diversity is negatively 
correlated with exon density. Diversity (θ) and proportion of each window annotated to 
protein-coding exons determined for 10 kb genomic windows. The Spearman rank correlation 
and significance are shown on top. Filled red circles: centromeric regions; filled black circles: 
telomeric regions (terminal 100 kb). 
  

a 

c b 

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

EX
O

3U
T

5U
T

IN
T

RN
A

NI
L

LT
R

1F
D

4F
D

0

2

4

6

8

10

θ

annotation

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●●

●

●

●
●

●

●

●

●

●
● ● ●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
● ●

●
●

●

●

●

●

●●
●●

●
●

●●

●

●

● ●●

●

●

●

●
●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●
●

●

●

●
●

●
●

● ●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

● ●
●

●
●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●●

● ●● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●●

●
●

●

●
●
●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●
●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

● ●

●

●
●

●

●●
●

●

●

●

●

● ●

●

●●
●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
● ●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−2.8

−2.6

−2.4

−2.2

−2.0

−1.8

●

●

●

●

●●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

lo
g1

0 
θ

exon proportion

r = −0.50   P <  10−16

diversity

θ
0.

5
1

1.
5

0 1 2 3 4 5 0 1 2 3 4 0 1 2

0
5

10
15

15
1

0.1LD
U

/M
b

recombination rate
● ●

●

●

●

●

0 1 2 3 4 5 0 1 2 3 4 0 1 2

0
25
50

transposon insertions

st
ra

in
s

chr 1 chr 2 chr 3
0 1 2 3 4 5 0 1 2 3 4 0 1 2



   13 
 

 

 
 
Figure 4. Phenotypes and genome-wide associations.  
a, Phenotypic variation of all 57 non-clonal strains, with strains in rows and phenotypes in 
columns. Phenotype values are normalized, according to the scale at right, missing data are 
colored grey. The colored panel above each row indicates the category of phenotype 
measurement. Categories are amino-acid concentrations (AA, red), growth on liquid media 
from this study (LIQ/M1, green), growth on liquid media (LIQ/M2, black)2, manual 
(SHAPE/M, blue) and automated (SHAPE/A, cyan) shape phenotypes, growth on solid media 
(SOL/M, magenta). Phenotypes are hierarchically clustered using phenotype values, and 
strains are clustered according to their genetic relatedness using tree at right inferred by 
fineSTRUCTURE. Strain names are colored according to their geographic origin, as in Fig. 
1a. All phenotypes were measured for at least two biological replicates, values shown are 
generally medians from biological and technical repeats (see Methods). b, Top panel shows 
variants that were associated with one or more traits using the mixed model GWAS. Variants 
are shown as crosses (SNPs) or triangles (indels), colored by phenotype category (as above). 
The horizontal scale shows the physical distance in Mb. The middle panel shows, for variants 
significant in our primary GWAS, the meta-P-values from linear regression within 
populations. The lower panel shows the total number of passing variants in each 10,000 nt 
window of genome. Six hotspots (≥30 variants/10 kb) are indicated with green vertical bars. 
The orange bar shows the location of a hotspot discovered in an independent eQTL study36. 
P-values thresholds for the mixed model are derived from permutations of traits (Methods). 
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Tables 
 
Annotation Bases % Genome* SNPs Indels LTRs 
Genome 12,591,251 100 172,935 14,508 1,048 
Exon 7,204,824 57.2 78,567 882 41 
   synonymous/frame 
conserving - - 46,624 882 - 

   non-synonymous/frame 
shift - - 31,441 453 - 

   pseudogenes 38,896 0.3 254 19 0 
   stop gained/lost - - 230 - - 
   start gained/lost - - 18 - - 
5' or 3' UTR 3,270,717 26 48,839 6,947 298 
No annotation 1,851,692 14.7 35,306 4,464 598 
Non-canonical ncRNA 1,722,785 13.7 27,866 2,851 223 
Intron 213,282 1.7 3,709 570 4 
Transposon LTR 76,038 0.6 806 66 - 
Canonical ncRNA 60,235 0.5 291 26 4 

Table 1. Genetic variation discovered in S. pombe strains. Variant counts that are enriched 
(above what is expected for percentage of genome) are in bold text, with the most enriched 
annotation shown in bold. The number of bases and percentage of nucleotides annotated 
refers to the reference genome. 
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Online Methods 
 
Sequencing and quality control 
All strains are described in Supplementary Table 1. Strains were sequenced with either 54 or 
100 nt paired-end Illumina reads. To verify that strain identity was correct at various stages in 
the project we genotyped 30 SNPs (that would distinguish all the 57 non-clonal strains with at 
least two allelic differences) from the 161 extracts used for sequencing, repeat extracts of the 
57 non-clonal strains, extracts from stocks obtained directly from stock centres extracts made 
from cultures picked from the ROTOR phenotyping plate. Only two of the 232 sets of 
genotypes were not as expected, and neither of these were members of the 57 non-clonal 
strains. All of the ROTOR plate extracts were as expected.  
 
Read mapping, SNP and indel calling 
Reads were mapped to the Schizosaccharomyces pombe 972 h- reference genome (May 2011 
Version)7 with Stampy (v1.0.17)18,37. After detection of possible indel sites alignments were 
realigned with GATK IndelRealigner. 
 SNPs were called with the GATK UnifiedGenotyper and filtered using custom 
parameters (available on request). Indels were identified using the Genome Analysis Toolkit 
(GATK) HaplotypeCaller38 and Cortex39 both filtered using custom parameters. Cortex and 
HaplotypeCaller call sets were by merging any two indels from each set that were positioned 
within 3 nucleotides of each other, within a 30% length range and differing by a maximum of 
1 minor allele count. 
 
SNP and indel validation 
To estimate false discovery rate and sensitivity of SNP calling, we sequenced ~20 paired end 
shotgun clones from each of four strains with increasing genetic distance from the reference 
with an ABI capillary machine. Reads were then mapped to the reference genome using 
BWA mem40. We then manually examined 85 windows of the genome using the IGV tool41. 
This included 47,619 nt of mappable regions, and 182 known SNPs. We found that all of 
these were valid, while 17 were discovered in alignments that were not called by our SNP 
calling pipeline (8.5% false negative rate). 

 To estimate the false discovery rate of indel calling, we manually inspected Illumina 
read alignments at 100 indels called in the same four strains, choosing indels that were 
dispersed across all chromosomes. Only 4 of these calls were false positives for an indel 
occurring at the site (4% false discovery rate for calling an indel). A total of 7 indels 
contained at least one strain with an incorrect allele call. 

 
Locating Tf retrotransposons 
We used RetroSeq42 to locate insertions in the 57 strains that were not present in the reference 
strain. As LTR insertions are highly targeted in S. pombe22, we used soft-clipped, unaligned 
parts of a sequence reads covering the insertions sites to distinguish between independent 
insertions at closely situated genomic sites, collating 1474 predicted insertions into 820 
insertion events (Supplementary Table 8). We assed the target site duplication (TSD) sizes 
from from the soft-clipped reads. We used PCR to verify 90 of the RetroSeq predictions. 56 
of these produced a product in both reference and alternate strain and 80% (45/56) of these 
confirmed the insertion with high confidence, while 93% (52/56) confirmed the insertion with 
at least medium confidence (Supplementary Table 9).  

To determine which reference LTR elements were present in each wild strain, we used 
delly (Version 0.0.6)43 to locate deletions in the same position as a reference LTR sequence. 
Genes targeted by LTR insertions only considered LTR insertions between genes arranged in 
tandem (i.e. neighboring genes in the same orientation). Gene features were analysed by the 
GeneListAnalyser (http://128.40.79.33/cgi-bin/GLA/GLA_input). 
 
Diversity analysis 
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Diversity estimates were calculated using Variscan44. For 10kb window analysis we excluded 
windows with less than 1000nt of reliably called sites. To compare annotations of the genome, 
we used regions that were annotated exclusively as exon/intron/ncRNA, etc. Median minor 
allele frequency was calculated from all passing SNPs or indels, in the 100 (126 kb long) 
windows of the genome for SNPs, and in 50 (252 kb) windows for indels. 
 
Recombination rate, hotspots and linkage disequilibrium maps 
We used LDMAP45 to construct LDU maps from the SNPs segregating in 46 unrelated strains 
that looked to be a homogenous population from principal components analysis, excluding 
SNPs with MAF <0.05. We calculated the DSB rate (per microarray probe) from the data of 
Cromie et al.27, as the median signal for all probes in a 7-probe window, using both repeats of 
the 5h time point (14 probes in all), divided by the median signal for probes in the 7-probe 
window for the 0h time point. For both recombination rate and the DSB rate, we then 
calculated the mean signal over non-overlapping 1 kb windows of the genome. Pairwise Dʹ′ 
and r2 were calculated between all pairs of SNPs with a minor allele frequency >0.05 up to 
250 kb distance, using LDMAP (for Dʹ′)45 and PLINK (r2)46. Mean values were calculated 
from ≥500,000 pairwise comparisons for each 1 kb window. 

 
Population structure 
For analysis tools that assume variants are independent, we used 752 SNPs that were unlinked 
(pairwise r2 <0.5) (‘unlinked SNPs’). We used vcftools47 to estimate the Weir and Cockerham 
weighted FST, using all SNPs, for all pairwise combinations of populations. Admixture 
(Version 1.22)14 was run with k=1 to k=20. ChromoPainter and fineSTRUCTURE15 were run 
using only the non-clonal 57 strains, using all SNPs, utilizing the recombination rate estimate. 
When using ChromoPainter, we first ran 10 Expectation-Maximisation (E-M) iterations to 
infer the "global mutation" and "switch rate" parameters, then averaged the inferred values for 
each across chromosomes, weighting by the number of SNPs, and performed a final 
ChromoPainter run using these weight-averaged values. Isolation by distance was calculated 
using the using geoDist from SoDA packages in R. See Supplementary Note for more details. 
 
Dating strain divergence with mitochondrial data 
This analysis used only the 84 strains with recorded sampling dates, which contained 204 
SNPs. The Schizosaccharomyces cryophilus mitochondrial genome (Genbank accession 
ACQJ00000000.2, Supercontig_3.27), was used as the outgroup, aligned to the S. pombe 
strains using Muscle48. 

We used PartitionFinder49 to choose the optimal partitioning scheme (K= 5) and 
nucleotide substitution model. Phylogenetic analyses were performed with BEAST 1.7.435 on 
both the 5 schemes obtained with PartitionFinder and the whole molecule. In the first case, 
substitution and clock models were unlinked while tree topology was assumed to be the same 
between the 5 schemes. Log-normal relaxed clocks were compared to strict clocks through 
the evaluation of Bayes factors. To do so, marginal likelihood was computed using both path 
(PS) and stepping-stone (SS) sampling method50. To minimize demographic assumptions, we 
adopted a Bayesian skyline plot approach to integrate over different coalescent histories. Rate 
variation among sites was modeled with a discrete gamma distribution with 4 rate categories. 
Posterior distributions of parameters, including divergence times and substitution rates, were 
estimated by Markov chain Monte Carlo (MCMC) sampling in BEAST. For each analysis, we 
ran four independent a posteriori combined chains in which samples were drawn every 2500 
MCMC steps from a total of 25,000,000 steps, after a discarded burn-in of 2,500,000 steps. 
Convergence to the stationary distribution was assessed by inspection of posterior samples. 
 
TMRCA estimate with nuclear DNA 
To obtain TMRCA estimates for the nuclear genome, we produced independent runs of 
ACG51 for the full mitochondrial genome and for 160 regions of the nuclear genome, each 20 
kb in size. So that background selection between the mitochondrial and nuclear genome 
fractions would be approximately similar, we selected nuclear regions to have an exon density 
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of 50-60%, similar to that of the mitochondria. To ease computational burden and aid 
convergence of the chains, we randomly chose 15 of the samples for inclusion. For each 
region an ACG run of 5x107 steps was conducted using a Metropolis-coupled MCMC scheme 
with 8 chains. The first 25% of steps were discarded as burn-in. We estimated posterior 
distributions of the parameters of the substitution matrix assuming the TN93 model52, the 
ancestral recombination graph (ARG), recombination rate, substitution rate, and locations of 
recombination breakpoints from the data. Flat (uniform) priors were assumed for all 
parameters except the recombination rate, for which we employed an exponential prior with 
mean 100.0 in units of recombinations per unit of branch length. Convergence of chains was 
assessed by visual examination of the likelihood of the data conditional on the ARG. 
 
De novo assembly 
De novo assemblies were performed using SGA version 0.9.3553. Error correction used 41-
mer frequencies to identify and correct sequencing errors. For the contig-assembly step, the 
minimum overlap length was set to 65bp for the strains with 100 nt reads. For strains with 54 
nt reads, a minimum overlap of 45 bp was required instead. Evidence from a minimum of five 
read pairs was required to build contigs into a scaffold. 
 
Locating novel genes 
To identify protein-coding genes that were present in a wild strain(s) but not in the reference, 
we produced gene predictions from each de novo assembly with Augustus54 using default 
parameters. We then compared each predicted protein to the S. pombe reference using 
BLAST+55 blastp, tblastn and blastn. Predictions ≥ 100 amino acids that scored < 80% 
identity from all of blast searches were chosen as potential novel genes (800 predicted 
peptides). We used Markov clustering56 to group these peptides into 32 clusters of similar 
peptides and 5 singletons. We then aligned each cluster with Clustal Omega57, produced a 
consensus using Emboss cons, and used this consensus as a query for blastp searches against 
the S. pombe reference protein data set, and the NCBI nr protein data set. We excluded 
potential novel genes whose best nr blast hit was from S. pombe, or from the phage Φx174 
(likely contamination). We retained the 17 potential novel genes where the ratio of (nr blastp 
bit score)/(S. pombe bit score) was >1. To examine the conservation of the 17 potential novel 
genes in other Schizosaccharomyces yeasts, we used each predicted protein (from each S. 
pombe strain) from the 17 putative most promising novel genes to query the predicted 
proteins of S. cryophilus, S. japonicus and S. octosporus using blastp, accepting blast hits 
with an e-value < 10-20 in one or more species. 
 
Phenotyping 
A summary of all phenotype measurements is provided in Supplementary Table 4, and the 
specific approaches are described below. 
 
Amino acid quantification 
Phenotypes with prefix “aaconc” in Supplementary Tables 4-5. 
Triplicate cultures (1.6 ml) of each strain were cultured for 8 hours, cells extracted with 80ºC 
boiling ethanol, extracts were cleared from insoluble material by centrifugation and the 
supernatant collected for LC-MS/MS analysis. Samples were analysed on a LC (Agilent 1290 
Infinity) -MS/MS (Agilent 6460) system. Amino acids were separated by hydrophilic 
interaction chromatography by gradient elution using an ACQUITY UPLC BEH amide 
column. 

Amino acid concentrations were determined by external calibration. Dilution was 
corrected by probabilistic quotient normalization58. Repeats: The average of the amino acid 
values from the triplicates was used for further analysis. For quality control, all values with a 
CV greater than two times the overall CV (median) were eliminated. For the 19 amino acids, 
median coefficients of variation were between 0.07 and 0.21 (mean of 0.13).  
 
Growth and stresses on solid media  
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Phenotypes with prefix “smgrowth” in Supplementary Tables 4-5. 
Strains were arrayed by a RoToR robot (Singer Instruments) onto solid YES and EMM2 
media at 1536-spot density, with each strain represented by 4 spots. Edges of plates and 
various interspersed positions were inoculated with the standard strain, as were strains with 
known sensitivity (atf1Δ and sty1Δ) or resistance (pka1Δ).  
  Plates were incubated at 32°C and high-resolution images of the plates were acquired 
using a UVP Multi-DocIt transillumination system. Two biological replicates were performed. 
Quantification of colony sizes was then performed using the custom Workspace package with 
the Spotsizer custom workflow (manuscript in prep.). Colonies with microbial contaminations 
and misidentified colonies were discarded. Median strain colony size was then calculated for 
each plate and replicate. Conditions or plates showing poor reproducibility were removed 
from further analysis. Strain colony size data per condition were normalized to the growth on 
YES, and then to the growth of the 972 h- reference strain under the given condition. Repeats: 
Two or more replicate plates were analysed for 25 of the 43 conditions, and one plate for all 
others. Plate values were the median colony size from the four colonies per strains. The 
median between-plate Pearson correlation was 0.95. 
 
Cell growth parameters/kinetics in liquid media. 
Phenotypes with prefix “lmgrowth” in Supplementary Tables 4-5. 
All 57 non-clonal strains were cultured in a Biolector micro-fermenter (m2p labs) in 1.5 ml of 
YES/EMM2 media (Formedium) using m2p labs flowerplates for 24 hours at 32°C, 
measuring light scattering every 10 minutes. Each strain was repeated in at least in duplicate. 
For each replicate of optical density data points we used the R grofit package59 to determine 
all growth parameters. Repeats: Two biological repeats Biolector cultures were grown per 
strain. Correlations between biological repeats were typically >0.9, and all above 0.884. All 
coefficients of variation (within a strain) were above 0.075 (median for all traits = 0.034). 
 
Manual cell morphology characterization 
Phenotypes with prefix “shape1” in Supplementary Tables 4-5. 
Strains were grown on YES plates at 32°C and allowed to form small colonies. Cells around 
the edge of at least 5 colonies were examined using a Zeiss Axioskop microscope using both 
a X20 LD ACROPLAN 0.4 and a X50 CF plan 0.55 objective and the cell phenotype 
described. Using X50 CF plan 0.55 objective with 2.5X Optivar, a representative colony was 
photographed using Sony NEX 5N camera. For liquid media, strains were grown mid log and 
examined using a Zeiss Axioskop 40 with a X63 Plan APOCHROMAT 1.4 oil immersion 
objective. Cell length and width was measured for a minimum of 30 septated cells using 
ImageJ. FACS analysis was carried out as described60. The percentage of cells with 1C, 2C, 
2-4C and >4C was estimated using FlowJo, http://www.flowjo.com. Repeats: Length and 
width were the median of at least 34 cells (median of 53), with the median coefficients of 
variation of 0.07 in both cases. 
 
Automated cell morphology 
Phenotypes with prefix “shape2” in Supplementary Tables 4-5. 
Cells were grown to mid log phase in YES medium and imaged using the OperaLX 
(PerkinElmer, USA) high-throughput microscope at  60x . Images were then automatically 
pre-processed, segmented and analysed to give 54 independent measurements of phenotypic 
features for all strains.  

The occurrence of stereotypical S. pombe cell shape phenotypes (wild-type, long, 
stubby, curved, branched, round, skittle and kinked;) was assessed for each strain using SVM 
classifiers. This method is described fully in Graml et al.61 where cells were imaged using 405 
nm and 488 nm exposure channels with 10 independent repeats. Here, only the 405 nm 
channel and 6 repeats were needed.  

The symmetrized Kullback–Leibler divergence between each strain and the reference 
was used as an additional quantitative trait (the ‘shape2.KL.Predicted.*’ in Supplementary 
Table 4), along with the length, width, and the ratio of width of both sides of the cell (i.e. ‘cell 
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asymmetry’). Repeats: Up to 6 populations of cells per strain. Since measurements were 
generally non-Gaussian, variation within populations was assessed using the median of 
absolute deviation (MAD) divided by the median. MAD values ranged from 0.04 (length) to 
1.42 (ks.predicted.long), average 0.87. 
 
Heritability and Genome-wide association studies 
We used LDAK32 to estimate heritability of all traits. We report values based on quantile 
normalized phenotypes (see below) but we also repeated estimates using raw values. 
Heritability estimated with raw values were strongly correlated normally transformed values 
(r = 0.69, P = < 2.2x10-16). 
  We performed mixed model association analysis using FastLMM34, version 2.07. 
The mixed model adds to the standard linear regression model a polygenic term, designed to 
“soak up” the effects attributable to relatedness and population structure62. We first 
normalized each phenotype by replacing observed values with the corresponding quantile 
from a standard normal distribution. We excluded variants with less than 5 calls for the minor 
allele (MAF < 3.1%), and variants that had >5% of missing calls. We estimated a trait-
specific P-value threshold for each trait by permuting trait values between individuals 1000 
times, recording the lowest P-value from Fast-LMM analysis and using the 5% quantile (50th 
lowest value) as the threshold. Passing variants therefore have a 5% family-wise error rate. 
We also performed conditional analysis; for each of the 89 traits with at least one variance 
significant from the primary mixed model GWA, we repeated the analysis, including as a 
covariate the genotypes from the most significant variant. 
 Genomic inflation factors (GIFs) were calculated as (GIFs) were calculated as:  
GIF = median (χ2

observed(P))/(median χ2
expected(P)), and adjusted GIFs as: GIF = median 

(χ2
observed(P))/(median χ2

permuted(P)). Where χ2
observed(P) are the chi-squared statistics 

corresponding to the observed P-values and χ2
expected(P) are those expected assuming P-values 

are distributed uniformly within [0,1]. Permuted P-values were contained by permuting trait 
values, once for each of the 223 traits used for the GWAS. The median permuted GIF from 
all traits was 0.454. 
 To validate the results from the association analyses, we split the 57 non-clonal 
strains into 3 datasets (3 populations defined by Admixture , on the 752 independent  SNPs). 
Each dataset was therefore a homogeneous group of relatively unrelated members. The three 
datasets had 12, 26 and 17 members but  2 out of the 57 strains were excluded because they 
were not members of any of the 3 populations. The association analysis was based on a linear 
regression of every trait on each of the 1,567 markers that passed the GWAS threshold from 
the initial analysis using the pooled data and the mixed model. We then meta-analysed only 
those that were replicated (showed nominal statistical evidence of association in at least 2 out 
of the 3 k datasets). The P-values from the linear regression from each dataset for the same 
trait and marker was combined using Fisher’s combined probability test: 

  
The meta P-value was obtained for 6 degrees of freedom (2k).   
 A summary of all the validated signals using linear regression together with their 
meta P-values and the P-values from the pooled data using the mixed model are presented in 
Supplementary Table 6. 
 
Statistics 
All statistics were produced with R63. 
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