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Abstract

For all living organisms, nacromolecular interactions facilitate most of their
natural functions. Alterations to macromolecular structures through mutations,
can affect the stability of their interactions, which may lead to unfavourable
phenotypes and disease. Presented here, are a number of computational
methods aimed at uncovering the principles behind complex shility - as
described by binding affinity and dissociation rate constants. Several factors are
known to govern the stability of protein-protein interactions, however, no one
factor dominates, and it is the synergistic effect of a number of contributions,
which amount to the affinity, and stability of a complex. The characterization of
complex stability can thus be presented as a twinld problem; modelling the
individual factors and modelling the synergistic effect of the combination of such
individual factors. Using machine learning as a central framework, empirical
functions are designed for estimating affinity, dissociation rates and the effect$ o
mutations on these properties. The performance of all models is in turn
benchmarked on experimental data aviable from the literature and carefully
curated datasets.Firstly, a wild-type binding free energy prediction model is
designed, composed of a diverse set of stability descriptors, whicatcount for
flexibility and conformational changes undergone by thecomplex in question.
Similarly, models for estimating the effects of mutations on binding affinity are
also designed and benchmarked in a communiwide blind trial. Emphasis here
is on the detection of a small subset of mutations that are able to enhantte
stability of two de novo protein drugs targeting the flu virus hemagglutinin.
Probing further the determinants of stability, a set of descriptors that link
hotspot residues with the offrate of a complex are designed, and applied to
models predicting dianges in offrate upon mutation. Finally, the relationship
between the distribution of hotspots at protein interfaces, and the rate of

dissociation of such interfaces, is investigated.
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Chapter 1

1 Introduction

These days more than ever, we live in a world of networksA its roots, a

T AOx1 OE EO AAZEET AA wkiéted®AOAD A &1 61 EDHBSEE ! A
two nodesindicates someconnection or relationship between these nodes More
interestingly, a link between two nodes may indicate a transfer of information.
Be it a transfer of information as a result of a simple conversation between two
friends on a social network, a flip of polarity at the output of a logic gate in an
electronic circuit network, or, and what concerns this thesis mostly, the binding
of two molecules in a biological network. Such binding events are at the core of
all cellular processes, and networks of molecular interactions enable each cell to
sense its external emironment, propagate the necessary information inwards,
and make decisions concerning its cellular state or even the states of its
neighbouring cells. With this, it then becomes clear that, not only do we live in a
world of networks, but our health too is the result of numerous

intercommunicating biological networks.

This thesis is concerned with the link between two nodes, that very interaction
between two molecules; in this case that between two proteins. The emphasis is

placed on uncerstanding what constitutes a stable interaction between them.
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Chapter 1: Introduction

The stability of such interactions plays an important role in both our
understanding of disease and that of designing better drugs; these aspects are
detailed below in the thesis justificationsection, 1.4. First, as an introduction to
this work, the signalling behaviour of T cells will be described. This case study is
a prime example of both the centrality of proteinprotein interactions, and how
the change in stability of one of these interdmns can affect the activity and

response of the T cell itself.

1.1 Information Processing in the Cell: A Key Example, T Cell
Receptor Signalling

The importance of understanding the factors controlling the binding affinities of
proteins within a complex celular information processing system can be well
exemplified by the T cell receptorsignalling network. T cells (T lymphocytes) are

a subset of white blood cells which form an integral part of our immune system
fighting against virus infected or malignant ells. These include, FHelper Cells,
T-Suppressor and FKiller Cells (cytotoxic T cells). Effectivelytheir function is to
elicit a distinct and specific response depending on the foreign antigen detected.
T cells work by a cascade of signalling eventsiirated from the T-cell receptor
(TCR). The TCR recognizes peptides presented by Major Histocompatibility
Complex (MHC) molecules from antigen presenting cells (APC). The peptides
themselvesare usually cleaved parts ofcellular proteins. If the cell is irfected
with a virus, then some of these peptides will be fronforeign proteins (See
Figure 1.1a). The ability for T cells to make this distinction is therefore critical
and defects in the normal T cell response lead to several autoimmuiiejaco et
al., 2006) or immunodeficiency related diseasegEdgar, 2008), some of which
may have severe health consequences. Besides the binding of the TCR and pep
MHC, (MHC with antigenic peptide) simultaneous binding of specific €o
receptors, CD4 on T helper cells, and CD#h cytotoxic T cells, with the MHC
molecule initiates a myriad of signalling events. Some of these interactions are

depicted inFigure 1.1b.
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Figure 1.1: T cell Receptor Signalling .

(A) Pictorial depiction of viral infection, viral protein expression, peptide
fragmentation and the presentationof the viral protein peptide on the Major
Histocompatibility Complex (MHC).A neighbouring T Cell detects the foreign
peptide using its T cell receptor (TCR). (B)Some of the interactions and
signalling triggered by the formation of the TCR/pepMHC complexFigure taken
from Miller et al. (2007). (C) the structure the complex between human TCR b7,
viral peptide (TAX) and MHC Class | molecular HEA 0201. (PDBIid:1BD2). This
structure includes the extracellular portions of a Fcell receptor and class | MHC
TCR chains are in red and yellow. MHC chains are in green and orange. Peptide is
shown in white. Of much debate is how the affinity and kinetic of this interdion
affects T cell activity.
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Upon TCR/pepMHC binding, LCK (an Src family kinase) is recruited and
phosphorylates the immunereceptor tyrosine-based activation motifs (ITAMS)
which form part of the intracellular subunits of the TCR itse(lLin and Weiss,
2001). After phosphorylation of ITAMS, ZARO is activated which binds to two
adapter molecules LAT and SL-?6 and their subsequent phosphorylation of LAT
and SLP76 triggers the Ras pathway(Lin and Weiss, 2001) The signal continues
further downstream until several transcription factors are activated. This in turn
elicits a number of respmses related to T cell activation which include cytokine

release, proliferation and apoptosis amongst others.

Sensitivity of T Cell response signalling to TCR/pdpHCaffinity and kinetics:

The centrality of the interaction between TCR and pefMHC (see Figure 1.1c),

has led to many different models of T cell activatiorinitial models propose the

TCR assimple on-off switch where TCR/pepMHC binding elicits a full T cell

activation (Jameson, 1998) Experiments presenting different pepMHC
moleculeshowever show that different TCR ligards trigger none or only some of

the T cell activation responsegKersh and Allen, 1996) These have been terrad

as TCR antagonists and partial agonists respectivelyhe fact that some but not

all T cell actvity responses may be activated AA OT AAOAT T Bi AT O 1 4
POl T A£OA A A Elh ©ié mdddl, thel affinity (or off-rates) of the pepMHC

molecule with the TCR is proportional to the magnitude of the T cell respongg!

INVALID CITATION !"")For low residence times (fast off-rates), early activation

events, without the presence oflate T cell activation events, are elicited. Slower

off-rates on the other hand enable a full Tcell activation response. Evidence not

supporting this model, such as the activation of latd cell signals with fast off

rates (Rosette et al., 2001)and the discoverythat a small number of peptide

MHC can serially engage and trigger up to approximately 200 TGRsstigated an

alternative Gerial triggering Chypothesis (Valitutti et al., 1995). In this case, the

completed, but high enough to allow different TCRs to bind the same p&pHC

molecule.4 EEO OOCCAOO OEAGI ORABA |E@EARE OIXBE A
activation and anything outside this optimal range results in reduced activityA

model of consensus is however still hindered by seval challenges(Stone et al.,
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2009). For example outlier observations have been made thatontradict both
hypothesis; experimental binding measurementsare generally made at lower
temperatures than those ofin vivo activity; and the effects of co-receptors CD4

and CD8should complicate the story even further(Stone et al., 2009)

The overview of TCR signallingpresented aboveis a crude one at most, and can
only be refined once ourtheoretical knowledge of just how binding affinities are
controlled at the atomic level improves. Moreover, there ar@ vast amount of
molecular interactions and interplays between multiple pathways (Huse, 2009).
Therefore, this example serves as a reminder ofthe complexity of protein
interactions in cellular networks, and how the response of such a system mdne
affected by the stability of just one of those interactions.The information
processing mechanisms of the T cell receptor network, as with many other
signalling networks, can only be truly appreciated and understood when

considering the dynamics and stability ofts molecular interactions.

1.2 Thesis Outline

In this thesis, a number of computatnal investigations are performed aimed at
understanding the stability of protein-protein complexes. The investigations
revolve around the design of a number of predictive models that correlate with
experimental measurements for stability. Thereforein the following section, 1.3,
a brief overview is given of the different terms that relate to complex stability,
and those that form part of this study; these include binding affinities,
dissociation rates and hotspots. In sectio®, justification for this thesisis further
underlined by showing that the study of the stability of protein-protein
interactions (PPIs), has a direct impact on remnt trends in drug design. This
includes the growing interest in PPIs as drugtargets (section 1.4.1), protein
engineering and protein drugs (sectionl.4.2) and the importance ofconsdering
off-rates for the enhancement ofin vivo drug activity. In section1.4.4it will also
be describedhow the functional interpretation of missense SNPs is dependaé on
our ability to characterise the changes in stability resulting from these
mutations. In section 1.5 the equations governing the kinetis and

thermodynamics of binding are presented the energetic terms used for
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modelling of binding free energiesdetailed. In section 1.6.7 an overview of the
current models for the prediction of binding affinities is given and their
limitations highlighted. A number of machine learning algorithms are employed

throughout this thesis of which an overview is given in sectiond.6.

Finally, in section 1.7, | present some of mypersonal motivations and themes
that drive the studies presented in this thesis. This chapter thenoncludeswith
an overview of each of the remaining thesis chapters. In summary oaels for the
prediction of binding affinities and their change upon mutation are presented in
Chapters 3 and 4.In Chapter 5, models for the prediction of hotspots are
presented andbenchmarked. In Chapter 6a set of descriptors that link hotspot
residues with the oftrate of a complex are desiged. Chapter 7extends on this
idea by building prediction models for offrate changes upa mutation. Finally in
Chapter 8§ the relationship between the distribution of hotspots on an interface,

and the rate of dissociation, is investigated.

1.3 Facets of Complex Stability in a Nutshell : Binding Affinities, Off-
Rates and Hotspots

The pathways shown in diagrams similar taFigure 1.1b, provide a verysparse
and static picture of the nature of the environment of protein interactions. In
reality, proteins exist in a highly denseO O i-1OBtedvilonment in the cell
(Lewitzky et al., 2012) For example, he intracellular concentration of proteins
for mammalian cellsis estimated at 200-300mg/ml (Luby-Phelps, 2000)and
macromolecules themselves occupy 40%f the total cell volume(Fulton, 1982).
For an interaction to take place, proteins must therefore rummage through this
crowded environment, i) find their partner, ii) find the binding site and iii) form
a complex for an indefinite amount of time. For those protehprotein
interactions that are sufficiently longlived, the strength of the interaction can be
determined by the binding affinity. This means that for a pair of proteins, being
able to predict their binding affinity, should in theory determine whether two
such proteins make a biologically significant interaction. In kinetic terms (as

derived in section1.5.1), the binding affinity of an interaction
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Figure 1.2: The relationship between the different facets at which complex

stability may be characterised and those which are studied in this thesis.

(A) The oftrate (kotf) represents the intrinsic disposition of a complex to
dissociate once it hasformed. The higher the time for which the complex is
bound, the lower the off-rate. (B) Adding to this, knowledge ofthe intrinsic
disposition for the complex to associate Kon), the binding affinity (nG may also
be calculated. (C)Characterisation of the effects ofmutations on both the off
rate, kott, and on the binding affnity, n & is central to the functional
interpretation of disease andfor computational drug design.Alanine scanning
experiments have shown that only a few mtations cause significant disruption
to complex stability. These are known ashotspots and are the residues
responsible for most of the binding affinity of a proteinprotein interaction.

is related to how easy it is for the two partners to reach the bound statékon),

and how easy it is for the two partners to unbind back into separate protein
conformations (kof). Prediction of thekost of a complex effectively determines the
length of time (residence time = 1/kf) for which the complex is bound. From
alanine anning experiments on proteinrprotein interfaces, only a small subset
I £ ET OAOEAAA Bbind®0 bd résponsdld forehe GiAdg affinity
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of the complex(Bogan and Thorn, 1998, Clackson et al., 1998)Jhese hotspot
residues may in turn affect binding through a cange inkott independently of kon
and vice versa(Moal and FernandezRecio, 2012) In this view, complex stability,
as in fact explored in this thesis, may be approacheat different yet related

levels (SeeFigure 1.2).

1.4 A Thesis Justified

In this section it will be described how the characterisation of protein-protein
binding affinities and of-rates has direct relevance tathe current trends and
difficulties of drug-design. In a similar vein, the functional interpretation of
mutations involved in disease necessitates that we are able to accurately preti

changes in affinities upon mutation.

1.4.1 Protein -Protein Interactions as Drug Targets

Despite their therapeutic relevance and major involvement in cellular signalling
PPIs have traditionally received less attention asdrug targets, or attempts to
target them have shown few success stories. For exampkgl-2 family proteins
are key regulators of programmed cell death and Bef. and Bcl2 are
overexpressed in many cancers. BelL expression is correlated with cheme
resistance and reduction in Bcl2 expression increases sensitivity to anticancer
drugs and in vivo survival. Several drugs targeting these proteins have been
explored but resultant affinities have not been found to be sufficiently high
(Oltersdorf et al., 2005) The main difficulty in achieving highaffinity binding is
that the structural properties of PPIs do not have common drugke site
properties. The large surface area of the PPI binding site is typically much larger
than that covered by the smalmolecule drug. In addition, PPIs have
characteristically flat interfaces and no weldefined binding pockets; this limits
the contact surfacearea the smalmolecule drug can make with the protein
(Mullard, 2012, Jin et al., 20144 EA OOT AOOCCAAI A8 OEAx OOAC
1990s after studies onprotein-protein interactions identified certain hotspot

residues responsible for most of the binding free ensy (Bogan and Thorn,
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1998, Clackson et al., 1998)This shows that, even thoughakge in surface area,
binding energy is not distributed homogenously across the interfaceand it is
therefore potentially sufficient to design drugs which target only these hotspot
residues (Hajduk et al., 2005) The recent interest in inhibiting PPIs is reflected
by several pharmaceutical firmswhich are now in the process of extending drug
discovery programs aimed at identifying PPI inhikors and expanding their
librari es to account for this class of targetéMullard, 2012). In the light of this
new interest for PPI inhibitors, a number of companies have also moved past the
preclinical stage. Lifitegrast (SAR1118), a small molecular inhibitor for treatment
of dry eye is in phase Il trials. It works by reducing T cellmediated
inflammation, blocking the PPl betweenlCAM1 and LFA1l. Two anticancer
agents blocking the PPI of p53 and MDM2 are under phase 1b tri§i¢assilev et
al., 2004, Mullard, 2012)and key PPIs inhibiting the function of the presurvival
BCL:2 family proteins are n phasell development as anticancer agentéMullard,
2012, Oltersdorf et al., 2005)

Two main challenges ardherefore present in targeting PPIs with smalHmolecule
drugs; knowing where to target on the protein interface, and doing so with high
affinity. For competitive drug binding, the affinity of the proteindrug complex on
its own gives no indication to its nhibitory effect. Rather, this proteindrug
affinity becomes rekvant only when higher than the affinity of wild-type protein-
protein interaction i.e. that which it is competing against. Therefore, knowledge
of the wild-type protein-protein binding affinities, as presented in Chapter 2, is a
critical piece of information in competitive inhibitor design. As mentioned above,
for small-molecule drugs targeting PPIs, only a small portion of the protein
protein interface can be targeted; therefore, knowing wherat the interface to do
so isimperative. Although hotspots are indeed god targets, unappreciated is the
fact that hotspots can occur at disjointed parts of an interface or within clusters
called hotregions (Keskin et al.,, 2005) Therefore, whereas the presence of
hotspots greatly reduces the druggable search space of an interface, multiple
potentially druggable sites are still present.In Chapter 8, an investigation is

reported on which hotspot sites are contributing the most towards stability. Such
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investigations should further guide the design of smalinolecule drugs targeting
PPIs.

1.4.2 Protein Engineering and Protein Drugs

In the previous sectionit was described how knowledge of the affinity and
determinants of complex stability for protein-protein interactions, is important
to the design of smaHlmolecule drugs inhibiting PPIs. Here a more direct
application of the methods developed in this thesi that of protein engineering
and protein drug design is presented. Protein engineering refers to the
reengineering of proteins to enhance the affinity of existingnteractions or
develop new ones In theory, the applications are numerous and include the
rewiring of cellular networks by redesigning specificities the design ofproteins
mimicking antigenic epitopes for potent vaccines and the design of protein
probes for dissection of cellular protein networks and protein drug inhibitors
(Mandell and Kortemme, 2009) Though applications are stillexploratory in
nature, proofs of concept have already started to surface. Recent work in the
computational design of protein interactions includes the redesign of specificity
at a protein-protein interface which was applied to model novel interacting
DNaseinhibitor protein pairs (Kortemme et al., 2004) the use of positive
(affinity increasing) and negative (affinity decreasing) design strategies to
convert a homodimer into a heterodimer(Bolon et al., 2005) the redesign of a
micromolar affinity human hyperplastic disc protein binding the kinase domain
of PAK1 (Jha et al., 2010) the design of a high affinity interaction by grafting
known key residues onto an unrelated protein scaffoldLiu et al.,, 2007) and
more recently, (Fleishman et al.,, 2011)designed two proteins that bind a
conserved surface patch on the stem of thafluenza hemagglutinin (HA) from

the 1918 H1N1 pandemic virus with low nanomolar affinity.

The methods mentioned above employ a variety of computational approaches,
including conformational sampling me&anisms, docking algorithms and scoring
functions. The latter function should be capable of identifying designs (generally
through interface mutations), which increase the affinity of the desired

interaction. In Chapter 4, the design of computational modelcapable of rank
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ordering mutations on a protein-protein interface according to their change in
affinity (n j&) is reported upon. The models are benchmarked on two protein
drugs where affinity-increasing mutations formed less than 5% of all the

mutations to be tested.

1.4.3 Off-Rates in Drug design

Traditionally, early stagedrug development is characteried by the optimization
of the binding affinity or its other forms, 1C50, or EC5Qhat calculate the drug
concentration needed to achieve halmaximal inhibition. This is based on the
assumption that binding affinity in closedin vitro systems is a good indicator of
in vivo drug efficacy (Pan et al., 2013)In vivo systems where the concentration
of a druglike ligand exposed to its target receptor is not constant, the drug
efficacy is no longer well described by thein vitro measured dissociation
constant. Rather, it depends on the associatiorkdn) and dissociation Koff) rate
constants (Copeland et al., 2006)The enhancement of the osrate is limited in
several ways, vinich highlights the reduction of the off-rate as the more favoured
route. For example, the diffusiorrate remains an upperbound restricting
further optimis ation of the onrate. Modulating receptor desolvation and
molecular orientation in a systematic way, is not trivial. Also,the rate of
association depends not only orthe kon, but also on the concentration of ligand,
which in turn is affected by multiple stepsin vivo, as absorption, distribution
and clearanceall have an effect on ligad concentration (Copeland et al., 2006)
Off-rate optimization on the other hand,is independent of such factors and
entirely dependent on the shortrange interactions between the bound
monomers in question. Swinney (2004) hypothesizes that the most effective
drugs utilize non-equilibrium transitions to enhance activity, and therefore
methodologies that measure kinetics (most notably offates), nonequilibrium
binding events and conformational diversity might have more potential than
previously thought. Similar recent opinions can be found irfHoldgate and Gill,
2011), where surrogates of the offate, i.e. residence time (1kotf) and kinetic
efficiency are proposed as additional optimization targets to improve drug
potency. A case in point is themanagement ofChronic Obstructive Pulmonary

Disease (COPD). CORimcompasses a number of pulmonary diseases including
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chronic bronchitis, emphysema and chronic obstructive airways disease.
Ipratropium bromide (Baigelman and Chodosh, 1977)the drug commonly
administered for the treatment of COPD has now been replaced Gyotropium
bromide (Kato et al., 2006)as the drug of choice. Both of the drugs have similar
drug mechanism of action; namely by binding to the Mmuscarinic receptor,
leading to a reduction in smooth muscle contractionwhich in turn opens up the
airways. Both drugs also have similar structures and pharmokinetic profiles;
however, the duration of action of Tiotropium (24hrs) is four times that of
Ipratropium, which canbe administered daily. Studies(Disse et al., 1999)show
that the difference in the duration of ation between the drugs lies intheir rates
of dissociation from the Ms muscarinic receptor. Namely Tiotropium has a

residence time of 34.7 hours compared to 0.26 hours fdpratropium.

In contrast to studies on binding affinities and orrates, work on offrates is still

very limited (Moal and Bates, 2012) Up until this work, no models for the
prediction of changes in offrate upon mutation were reported. The release of the
SKEMPI datase{Moal and FernandezRecio, 2012)which contained a set of 713
off-rate mutations, enabled for the first time the modelling of offates on a
diverse set of PPIs. In chapter-8 work is presentedon the design of descriptors

and models for characterising changes in offate upon mutation using SKEMPI.

1.4.4 Changes in Protein-Protein Stability and Disease

In the previous sections it is argued that understanding and predicting the
stability of protein-protein complexes is at the core of applications related to
drug design.Presented n this section s, the other side of the spectrum, namely
that predicting the change in stability of mutations on protein-protein
interactions, is central to the understandingof disease mutations, such as those

driving cancer.

Single Nucleotides polymorphisms (HPs) are variations in the DNA sequence
that have a direct effect on our susceptibility to disease and response to
treatment. For those SNPs that occur in the coding regions, tisNPs can either

be synonymous (not affecting protein amineacid sequence), onon-synonymous
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(affecting the protein amino-acid sequence). For the latter category, the SNPs can
either by nonsense, where the protein amineaacid sequence is truncated, or
missense where amineacid substitutions take placeNonsense norsynonymous
(nsSNR) generally result in a nonfunctional protein as a result of the truncation
(Gregersen et al., 200Q) missense nsSNPS are however more diverse and
depending on where the variation occurs, effect on protein function can be

anything from disease relatedo indiscernible (Haber and Settleman, 2007,)

A major goal is trerefore linking nsSNPsto phenotype through structure and
function. For example, nissense nsSNPwhich translate to a muation at the core
of a protein generally destabilizes the protein-fold (Yue et al., 2005)
#1171 OANOGAT 61 U All T &£ OEA resaiyddssNPOoaEl OAOA
number of protein-protein interactions show that disease causing nsSNPs not
found at the core of a protein, tend to frequent the interface more than the nen
interacting surface (David et al., 2012) Missense nsSNPs resulting in surface
mutations may affect PPIs ina number of ways; they may destabilise existing
interactions by disrupting favourable intermolecular contacts at the interface,
affect post-translational-modifications, or evenmodulate the intrinsic disorder

of the protein. In some cases it may also lead to the creation of new interactions

consequentlyre-wiring the PPI network (Yates and Sternberg, 2013)

Being able to predict the consequence of a mutation at a proteprotein
interface is therefore vital to uncovering the mechanism of action of disease
causing nsSNPs. Foexample, depending on its sign and magnitude, the
prediction of the 3- 35 may tell us whether the mutation has no effect on the given
interaction, whether it leads to its loss or wheher it helps stabilise a potential
novel interaction. Models for the prediction of 3 &sare designed and presented

in Chapter 4.
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1.5 Modelling the Binding Free Energy
1.5.1 The Kinetics of Binding

The derivation of the binding free energy of an interaction maype approached

from two perspectives; from a kineticand from a thermodynamicstandpoint.

Take a noncovalent interaction between a receptor R and a ligand L and their
complex form RL, where [R] and [L] is the concentration of the free molecide

and [RL] is the concentration of their bound form. Then

R+ L% RL 11

Two processes exist; anassociation process of the two molecules into their
bound form RL; and a dissociation procesback to free molecular R and L. The
rate at which association or dissociation take place depends on the

concentrations of each molecular species as:
rate of associationk,, [R][L 1.2

rate of dissociatior k; [RI 1.3

kon and koit represent the intrinsic disposition of R and L b associate or RL to

dissociaterespectively. The rate of change of concentration of R, L and RL is as

follows:
diR _ du 14
o =g YrlROOK[ACL
dRY _ 15

g elREE ki R

For this system to be in equilibrium (i.e constant concentrations of RL and RL),
the rate of association must equal the ratef dissociation and using equatiorl.4
and 1.5:

ki [R[L=k{ RL 16
ke _[RILU L 17
ke [RO 7
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where Ko is the dissociation constanthat is related to the binding affinity of the

interaction.

1.5.2 The Thermodynamics of Binding

A second route towardscharacterising binding affinity is that based on the
standard free energy of binding(Gilson et al., 1997)The free erergy of binding is
the change in free energy when one receptor and one ligand react to form a

complex. The free energy of binding can therefore be expressed as

3 ' RBUL-UR 18
Where LkLis the change infree energy of a solution when the complex RL is
added to the system, andUL and -Ur are the change in free energy of a solution
when one ligand L, and one receptor R, are removed from the system,
respectively (Gilson and Zhou, 2007) The chemical potential Jof a protein can

be expressed as

, = -RTIn(SCLf ﬁé(u“p) W)/ RT d) 19
where R is the gas constant and T the absolute temperaturep, @& the
concentration of the protein p, U(p) is the potential energy of the protein at the
conformation rp and W(rp) is the solvation energy at the conformation g (Gilson
and Zhou, 2007) Substituting equation 1.8 into 1.9 for each speciesthe free

energy of bindingcan be obtainedas:

= '(U(YRL) W(fRL))/ RT 110
DG = RTIn(— &% L I )
8,02 CRL FP_(U(TR) W(rm)’Rleh eﬁ%ru V¥ RTd[)
4EA OUOOATI EO ET ANOEI EAOCEOI xEAT OEA
equation 1.10 becomes
C 1 F’P (I ""V«Ru)/RTdrRL 1.11

RL =
(CRCL)equilibrium 8,02 F? Uir) W)/ RTd';? eﬁ'L) Vo) RTd{))

Multiplying both sides of equation1.11 by the standard concentration Cgives
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~ '(U(r ) Vv(r ))/RT .
c..C° % fg e M de, 112

( )e uilibrium = - )
CRCL quilib 8,02 r,.F (U(,R) W(rR))/RTdrI'? eﬁru V&L))/ RTd{)

and replacing the concentration in equation1.10 by the standard concentration

C, the standard free energy of binding is

o o~ '(U(fRL) W(rRL))/ RTdr 113
DG® = RTln(Cz - (U Vr/?)/RT T/; ) RT )
8p ﬁa o W 'R eﬁlru D dr)
Substituting equation1.12 in 1.13 gives
0 1.14
DG° = RTIn(CRLC )eq
CRCL
and from the kinetics approach and equatiori.7
K, 1.15

DG° = RTIn(. ™).,

on

K, :eDG%RT :(&) 1.16

Kon ™
n

This equation links both the kinetics and the thermodynamics of the binding

process.

Equation 1.13 can be decomposed into

DG° Uy ) (We) (W) (W) (W (W)- T Sy 117
The standard free energy of binding can be decomposed into the enthalpic

contribution to binding DH °and the entropic contribution to binding TDS’ as

DG° =B T-S 1.18
In 117, Uy )and (W, ) are Boltzmannaverage potentials for the potential

energy and solvation energy respectively. As seen in equatidnl3, in this form,
though the integal is taken over all conformations of the species in question,

only the low energy contributions contribute significantly to the potential.
TDSfOnfig represents the change in entropy when the receptor and ligand move
from the unbound to the bound form, this includes, a loss in translational, and

rotational entropy, and change in sidechain entropies. The solvation energies
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(We ) - (W) W) also include an entropic component related to the freedom

of water molecules. Equation 1.17 forms the basis of many binding affinity
predictive models (see section 1.5.7), where a number of physicsdhased
descriptors representative of the energetic terms inequation 1.17, are
calculated. The mod#ing of the three main components ofequation 1.17, the
potential energy, solvation energy and entropy are discussed below in sections
1.5.3 1.5.4, and1.5.5respectively. Further, in section1.5.6, the use of statistical
potentials and the role of miscellaneous descriptors for affinity are also

mentioned.

1.5.3 Potential Energy

The potential energy of a macromolecule can be thought of as an energy surface,
which is a function of the atomic, nuclear, and electron positions in space. The
parameter space covering the positions and motions of electrons fdiarge
macromoleculesis still too large to be dealt with using quantum mechanical
methods. A more accessiblealternative is the use ofempirical force-fields, where
the energy of a system is a function of the nuclear positions on{izeach, 2009)
In general most of the molecular modelling forcdields describe both the intra
and intermolecular forces within a system. An example of which ithe potential

energy function U(™N) shown in Figure 1.3.
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Figure 1.3: Representation of the main energetic terms involved in a
molecular mechanics force field describing the potential energy of a

molecule or system.
These are bond stretching, angle bending, torsional terms and ndionded

interactions. Figure derived from (Leach, 2009)

The intramolecular forces are described by terms which represent an energetic
penalty associated with some deviation of bond lengths, angles or rotations from
a reference stateg(Leach, 2009) The intermolecular forces may include energetic
terms such as the Lennardlones 126 Van der Waals potential and the Columbic
energy. The 12 term in the Lennard-Jones potential is based on the Pauli
exclusion principle, which states that no two particles can occupy the same
region of space. Computationally, this prevents the generation of clashes that
may arise from two interacting molecules. The 6 term is related to correlated
motions of electrons known as London dispersion forces, which give rise to

spontaneous dipoles or higher multipoles. In turn these dipoles may induce
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electrostatic complementarity, which decreases he potential energy of the
system. The Coulombic energy represents the favourable electrostatic
complementarity arising from charged particles within an electric field. Charged
particles arise when electrons concentrate around atoms with large
electronegaivities, and deplete elsewhere. This leads to partial atomic charges,
leading to polar atoms for those atomiccharges that are large enough in
magnitude. The potential describing this norbonded interaction between partial

atomic charges isrepresented bythe product of the two-point charges q and g,
separated by a distanceiy, where €, represents the permittivity of free space. All

terms in the empirical forceffield shown in Figure 1.3 are a function of Natoms
and their positions in space (r). Each term can be computed separatelyand

therefore varying levels ofsophistication can be added as required.

1.5.4 Solvation Energy

Protein interactions are surrounded by salwater, which in turn has a significant
effect on binding. The solvatiolAT AOCU OA D OA O Aintedetior@ with D OT OA
water and its effect can be summarized into the dielectric screening of water and
the hydrophobic effect. Dielectric screening results from the different
permittivities of different mediums. Water has a high dielectric constant, which
makes the interaction between charged, and polar atoms in water favourable.
Atoms in areas of low solvent accesbility , those forming part of the interface
when a complex is bound, have a lower effective dielectric constant. There may
therefore be an energetic penalty associated with moving polar atoms out of
water and into a binding site (Gilson and Zhou, 2007) In simple solvation
screening models, the dielectric constant is directly proportional to the inter
atomic distance of two particles. Methods such as the Poiss@&oltzmann (PB)
(Honig et al., 1993) apart from other considerations, account for the fact that the
solvent accessibility surrounding an atom, is also a function of he atoms
surrounding it. A second effect of water on the formation of protein interactions
is the tendency of nonpolar atoms to be brought together and away from water
(Kauzmann, 1959, Hildebrand, 1979) This is known as the hydrophobic effect,

and is a major driving force in protein folding(Lins and Brasseur, 1995, Dill,
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1990) and also an important aspect of protein bindig (Tsai et al., 1997) The
non-polar parts of the protein exposed to waterrestricts the movement of water
moleculesresulting in the formation of ordered O x A O A Q Brihding Aod @olar
atoms from a solvent exposed site, to a solvent inaccessible site such as the
binding interface, results in an increase in the system entropy that decreases the
binding free energy (equation1.18). A common method employed to model the
hydrophobic effect implicitly, is to calculate the change in the solvent accessible
area of nonpolar atoms upon going from the unbound to the bound ste (Chen
et al., 2004) The addition of surface ara terms accounting for the hydrophobic
effect in PoissonBoltzmann implicit solvation methods are known as PBSA
(Sitkoff et al., 1994) Faster approximations to the PBSA also exist suels the
Generalized Born model with Surface Area3BSA (Qiu et al., 1997)

1.5.5 Configurational and Side -Chain Entropy

The binding free energy of complex formation, as presented in equation 1.18,
shows that complex formation may be either enthalpy or entropy driven.
Therefore, the correct modelling of the potential and solvent energies involved in
the binding procedO § a( ET A Nt A& hot give 8np apcrate
estimation of the binding free energy. To do so, the change in entrofyyS) of the
system also has to be charactered. One entropic aspect important for binding is
the change in entropy experiencedby water molecules described by the
hydrophobic effect. This is generally accounted for in solvation energy models
such as those described in the previous section. The formation of a complex also
involves changes in the configurational (rotational and traslational) entropy of
the receptor and ligand In general it is widely assumed that the changes in
rotational and translational entropy have negligible contribution to the binding
free energy inaqueous solutions at 1 M standard statéYu et al., 2001)or that
they are constant across different interactionsHowever, it has been shown that
for complexes, which are not tightly bound, the change in configurational
entropy is not the sameas that of a tightly bound complex(Chen et al., 2004)
Upon binding, te sidechains of the receptor and ligand become

conformationally restricted if they form part of the binding interface. Thisresults
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in a reduction in entropy upon binding. Traditional methods of accounting for
the change in sidechain entropies make e of rotamer libraries (Dunbrack and
Cohen, 1997, Chandrasekaran and Ramachandran, 1970, Dunbrack and Karplus,
1993, Dunbrack and Karplus, 1994)or simply the number of rotatable bonds
affected upon binding(Finkelstein and Janin, 1989)

1.5.6 Knowledge -Based-Potentials and Miscellaneous Descriptors

The approaches discussedni previous sections 1.5.3 1.5.4 and 1.5.5 in
modelling the terms of the binding free energy function presented in equation
1.17, are derived from the underlying physical processes driving complex
formation. An alternative method is to use knowledgéased potentials. In this
approach, rather than enumerating all potential physical processes responsible
for complex formation and affnity, the relative positions of atoms or residues
are used as an indication of the validity (in the case of protein folding or docking)

or strength (in the case of binding affinity prediction) of the complex in question.

The central hypothesis made byknowledge-based potentials (also referred to as
statistical potentials throughout this work), is that the frequency of two specific
atoms/residues at a specific distance is an indication of how favourable the
contact between the pair of atoms/residues is. Ma¥ frequently occurring
contacts are considered to be favourable and likely the result of capturing some

underlying physical process.
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Atom Type Definition for Heavy Atoms of the Standard Amino Acids

Atom type Type definition

1 C (all amino acids, except Gly)

2 Gly-Cq

3 N (all amino acids, except Pro)

4 C (all amino acids)

5 O (all amino acids)

6 Val-Cyq, Val-Cyo, Leu-Cyq, Leu-Cga, lle-Cyo, lle-C, Thr-Cy
7 Leu-Cy, lle-Cyq, GIn-Cy, Lys-Cy, Lys-Cg, Glu-Cy, Arg-Cy

8 Cg (all amino acids, except Pro, Ser, Thr, Cys)

9 Wet-Sg

=]

Pro-N
Phe-C,, Tyr-C,
Phe-Cgq, Phe-Cgy, Phe-Cgy, Phe-Cgo, Phe-CE; Tyr-Cgq, Tyr-Cgp, Tyr-Cgq, Tyr-Cea

L

2

1-1

> s ﬁ
0 2 Rl [ 8 1 120 2 B 6 8 10 12 0 2 B L) a8 10 12

Distance(A) Distance(A) Distance(A)

Figure 1.4: Example of Atom-Types and Contact Frequency-Distance plots
of a typical knowledge -based potential .

Top of figure shows the atoms considered in the statistical potential, and bottom
of figure shows the potentials (frequencydistance plots) generated for three of
the contacts. These include a backboreackbone contact potential (1-1), a
backboneside-chain contact potential (#4) and a sidechain-side-chain contact
potential (8-6). The figures are taken from the work ofSu et al., 2009)

For example the contact frequencydistance plots of thePotential-Mean-Force
(PMP potential from Su et al. (2009) show functions very similar to the
Lennard-Jones potential (See Figure 1.4). This is characteried by strong
repulsions at very short distances, followed by a global minimum on increasing
distance, which approaches zero at larger distances. An important aspect which
affects the success of statistical potentials, is the reference state taken. Namely,
the reference state must account for frequency and volume, and many potentials
do in fact differ by their reference state(Zhang et al., 2004, Su et al., 2009, Shen
and Sali, 2006) Besides differences in the reference state, differergtatistical
potentials include; atombased and coarsegrained (Lu et al., 2008, Rykunov and
Fiser, 2010) (residue level through centroid or G, G distances) potentials; pair
potentials and multi-body potentials (Feng et al., 2010)those derived on protein

structures for protein folding and stability (Zhou and Skolnick, 2011) and those
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derived on protein-protein complexes for docking and binding affinity prediction
(Liu and Vakser, 2011) Onedrawback of knowledge-based potentials is that they
do not account for solvation or entropy terms and only recently for protein
ligand interactions has this consideration been attemptedHuang and Zou,
2010). Therefore, one way of thinking about statistical potentials in binding
affinity prediction is as an alternative or addition to terms related to the
potential energy.

' TT OEAO Al AOGO 1T £ AAOAOEDPOI OO OAOI AA AO
those that do not model a particular physical process, but their presence may
capture some underlying physical property that favours complex stability. These
include; secondary structure elements, such as the proportion of interface
resides which are in alpha helices, or beta sheets; geometrical properties such as
interface planarity, volume of empty space at the interface and interface surface
complementarity. With this in mind, the inclusion of such descriptors in binding
affinity models is primarily exploratory in nature and must be interpreted with

caution.

1.5.7 Binding Affinity Prediction (BAP) Methods

Between 1989 and 2011, 19 publications have specifically dealt with the
prediction of binding affinities for protein-protein complex formation. Most of
these Binding Affinity Prediction (BAP) models contain empirical functions
where the terms include relevant enthalpic and entropic contributions to binding
(as the terms described in sectiond.5.3 1.5.4and 1.5.5; most commonly, terms

for the contribution of electrostatics, hydrophobic burial, hydrogen bonding,
side-chain entropy etc.(Novotny et al., 1989, Horton and Lewis, 1992, Krystek et
al., 1993, Vajda et al., 1994, Nauchitel et al., 1995, Xu et al., 1997, Weng et al.,
1997, Noskov and Lim, 2001, Ma et al.,, 2002, Jiang et al., 2005, Audie and
Scarlata, 2007, Bougou#f and Warwicker, 2008, Bai et al.,, 2011)The second
category of BAP models isnodel's that consist ofstatistical potentials (Zhang et

al., 1997, Jiang et al., 2002, Liu et al., 2004, Su et al., 2008re the relative

positions of atoms or residues observed in experimental structures are used to
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infer a potential of mean force tha is then correlated to binding affinity (see
section1.5.6).

On analysis of the aforementioned BAP models, the following limitations were
identified:

l. Models restricted to complexes for which the component parts
undergo little to no conformational changes upon complex formation.

Il. Assumed that complexes and component parts exist as static
structures (assumed all proteins are rigid entities)

[l Routine use of LineaRegression.

1.5.7.1 Models Restricted to Proteins that Undergo Little to No Conformational
Changes Upon Complex Formation.

Most of the BAP models are designed under the assumption that minimal to no
conformational changes take place upon complex formation. Toatssfy this
assumption, the complexes used to test the models are specifically selected to be
rigid-body complexes. The descriptor calculations therefore generally take the

form of:

Complex- (Receptorsound+ Ligandsound) 119

where the monomers are assumed to be prerganised in their bound
conformation when in their free state. Moreover, up until the work ofLiu et al.
(2004), careful analysis of the complexes used for training and testing were
limited to protease-inhibitor pairs (Krystek et al., 1993, Nauchitel et al., 1995,
Vajda et al., 1994, Wallqvist et al., 1995, Zhang et al., 199)h the addition of a

few other high-affinity rigid complexes such as such as Barnagmarstar, the

ET 001 ET AEiIi Aoh OEA | AT A | AEAdsabnhidyl £
complexes (Ma et al.,2002, Horton and Lewis, 1992, Audie and Scarlata, 2007,

Bougouffa and Warwicker, 2008, Jiang et al., 2002, Weng et al., 1997, Xu et al.,

1997). For some of these models, the correlation with experimental binding

affinities is exceptionally high. However, as seen from the restrictions on
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conformational changes and on the diversity of structures used, the models are
highly biased, and the final correlation coefficients should be treated with
caution. This bias was confirmed in the work of (Kastritis and Bonvin, 2010;
Kastritis et al., 2011) where the top perfoming BAP energy functions were

tested on two recent benchmark datasets, with no restrictions on conformational
changes.Correlations with experimental binding affinities were only as high as

0.53 and as low as 0.17 (Kastritis and Bonvin, 2010; Kastritig al., 2011).

After the introduction of alarger (ranging from 52 to 86 complex structures) and

a more diverse set structures byLiu et al. (2004), subseqient work on BAP was
characterised by less accurate predictive models. Moreover, the bias was still

towards rigid structures and conformational changes werenever explicitly

accounted fo. It is also worth to note, that in a recent affinity benchmark dataset

with 144 protein -protein complexes (Kastritis et al., 2011), when considering

Al I pl AAO xEOE 1 EI EOAA AiI 1T &£ OiI ACETTAI AE
scheme that only uses the interface area achieves performance similar to more

elaborate empirical models.

1.5.7.2 Conformational Flexibility

Proteins, and even protein complexes, do not exist as static structures bwg an
ensemble of conformations As shown inequation 1.13, the binding free energy
of a protein complex depends on the Boltzmann weighted average of the
energies of the conformational states acasible by the complex, and those
accessible by the free monomers. With this in mind, none of the BAP models
mentioned above (with one exception(Vajda et al., 1994) explicitly account for
this. Rather all energetic calculations are calculated on a single static structure.
In the case of the work of(Vajda et al., 1994) the static restriction is not
employed. However, flexibility is still only accounted for the ligands, which in
this case are flexible peptides bindingan MHC receptor. For these cases, the
authors also show that ligand flexibility contributes 3050% of the free energy
change. A recent study (Yang et al., 2009) shows how the inclusion of an
ensemble of proteinligand conformations, obtained from MD simulations,

improves the prediction accuracy of affinity scoring functions. Though
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promising, this work is again limited to ligand flexibility, which has a
significantly lower conformational space than the two componentf a binary

protein complex.

1.5.7.3 Routine use of Linear Regression

The diversity in macromolecular interactions and their structural properties
(Nooren and Thornton, 2003)suggests that an energetic contribution dominant
in a given interaction is not necessarily the dommant contribution in another.
For example it is known that proteinprotein interfaces tend to be hydrophobic
(Young et &, 1994, Chothia and Janin, 197%nd planar (Baker and Der, 2013)
However, hydrophilic interfaces are also common(Ben-Naim, 2006) and
interfaces can also be protruding(Yura and Hayward, 2009) Moreover, Cho et
al. (2006) show that there are specific interaction types based on #&functional
category of the protein complex, and such interaction types are conserved
through the common binding mechanism, rather than through sequence or
structure conservation. Effectively, this indicates that generalizations concerning
the determinants of protein-protein binding affinity may be limited in the
context of a large and diverse dataset of protein complex families. Hence, a model
such as Linear Regression (LR), which can only exploit globally wetiunded
descriptors, might not be adept for a set of divese complexes, such as the one

used in this work.

All BAP models developed until tk work reported in this thesis (those reported

in section 1.5.7), that are not satistical potentials, use LR to combine the
energetic factors deemed responsible for complex affinity. EffectivelyR seeks a
set of descriptors which best describe the dataset as a whole, which means that
certain intricacies of a dataset, perhaps represged by a particular set of
descriptors that are each specific to differentcases, are overridden by
descriptors which achieve higher overall, but limited, correlations. For example,
electrostatics is a major driving force for small interface formationwhereas
hydrophobic burial tends to be more significant in larger interface formation
(Sheinerman and Honig, 2002). Hence, for a dataset where small interfaces are

underrepresented the effect of electrostatics may be underestimated as opposed
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to the hydrophobic burial effect. Namely, as datasets become diverse, LR is not a
sufficient model to represent such diversity. Rather, feature spaegartitioning
i AOET AOh xEEAE AAT AT Al | bAiOerfdcd i€ &mAlA |

more appropriate; these models are able to subset the feature space so that
different features can contribute in different situations. The topic of machine

learning is detailed the following sectionl.6.

1.5.8 Hotspot Prediction

The binding free energy of a complex may also be understood through alanine
scanning of residues at its interface-rom such scans, it is understood that not all
interface residues have marked effects on binding. Rather, only a subset of
OAOEAOAOG OAOI AA OEI OOPI 008 Ai 1T OOEAOOA
complex (Clackson and Wells, 1995, Bogan and Thorn, 1998Jraditionally, a
residue is a hotspot, if upon its substitution into alanine, is causes a reduction in
binding free enagy of 2kcal/mol or higher. Anaysis on protein-protein
interfaces and hotspot residues has shown that: hotspots tend to occur in regions
of low solvent accessibility(Bogan and Thorn, 1998) Tyr, Trp and Arg are the
most frequent hotspots (Ma and Nussinov, 2007, Bogan and Thorn, 1998nd
hotspot tend to cluster into densely packed regions known as hotregior(&eskin

et al.,, 2005) As mentioned in section 1.4.1, the major attraction of hotspot
residues is thatthey are crucial fortargeting of protein-protein interfaces with
small drug-like molecules (Fry, 2012, Thangudu et al., 2012, Arkin and Wells,
2004). This has led to the development ofseveral computational hotspot
prediction algorithms (Kortemme and Baker, 2002, Cho et al., 2009, Lise et al.,
2009, Lise et al., 2011, Tuncbag et al., 2010, Tuncbag et al., 2009, Xia et al., 2010,
Zhu and Mitchell, 2011, Grosdidier and FernandeRecio, 2012, Morrow and
Zhang, 2012, Wang et al., 2012 he predictors generally use a combination of
solvent accessibility and physiochemical descriptors, which are thenfed into
machine learning algorithms trained on experimental datasets such asASEdb
(Bogan and Thorn, 1998and BID (Fischer et al., 2003) For example, Robetta
(Kortemme and Baker, 2002) uses an empirical energy function using potential,

solvation and entropic energyterms. These includethe Lennard-Jaes potential,
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orientation dependant hydrogenbonding, shape complimentaity and animplicit
solvation model. KFC2(Zhu and Mitchdl, 2011) consists of two support vector
machine models KFC2aand KFC2). Besides standard energy terms suchsvan
der Waak terms and hydrogen bonding, the solventaccessibility and local
flexibility surrounding the target residue, were also included as features.
Hotpoint (Tuncbag et al., 2010)takes amore efficient approach by basingthe
hotspot prediction only on solvent accessibility and gpair potential. The authors
claim that even with such minimal features, the method still outperformfobetta
and KFQ. One major limitation of the aforementioned algorithms is that they
have been trained and tested on very limited alanine scanning databases, namely
the ASEdb(Thorn and Bogan 2001) andBID (Fischer, Arunachalam et al. 2003).
The shortcoming of these datasets as benchmarks has been highlighted in (Xia,
Zhao et al. 2010; Moal and FernandeRecio 2012).

In Chapter 5, two hotspot prediction algorithms (RFSpotand RFSpot_KFG2are
designed and their performance compared to a number of hotspot predictors.
The hotspot predictors are then used in scheme which involves alanine scanning

for the prediction of off-rate changes upon mutation, as described in Chapter 6.

1.6 Machine Learning

Machine Learning (ML) is a subfield of computer science that deals with
frameworks for identifying and exploiting patterns in data (Bishop, 2007).
Nowadays, in all its forms, ML has become an enabling technology inlamber of
fields and industries,and even if it is not immediately obvious, youffirst guess
should bethat at any moment, you are making use of something where ML has
AAAT Ei bl AT AT OAA ET 8 4EEO EiT Al OAAO | AAEEIT
facerecognition feature (Turk and Pentland, 1991) your e-mail spam filter and
virus software on your computer (Bishop, 2007), or even your muie
recommendations on Netflix(Ricci et al., 2011) The search of patterns from data
is neither a novel idea nor limited to artificial systems. Rather, throughout
history, most of what we know today about the world around usis based on
observers uncovering regularities and patterns in some physical phenomena. For

example, Johannes Kepler only developed the empirical laws of planetary motion
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by discovering consistencies in the astronomical observations of Tycho Brahe in
the 16t century. Pattern recognition (not necessarily learnt recognition) is an
inherent characteristic of even the simplest drms of living organisms (Bray,
2009). In addition, associative learning is one of the maircharacteristics of
organisms with nervous systemsand evidence also shows that organisms
without such a dedicated systemare capable of advancedelrning behaviour,
such as the anticipation of environmental stimuliMitchell et al., 2009) The first
computational learning algorithms, most commonly, Artificial Neural Networks
(ANNS), (the earliest example of which being the perceptro(Rosenblatt, 1958),
AOA ET EAAO ET OPEOAA EOI i OEANNEWd AT 60 A
number of artificial neurons connected together to learn the appropriate
response from a given input pattern ANNs and other similar superised machine
learning algorithms are concerned with the automatic discovery of regularities in
data using computer algorithms(Bishop, 2007). Their aim is to make predictions
(apply the appropriate response) on some unseen data based on the regularities
they have discovered and based on the comparison of thessgularities to those

observed in the new data.

Setting up a problem in a ML framework, for instance that afupervised learning
invariably requires three main elements; a training dataset of target output
values, a set of input features and a learning algorithm. The aim is to make
predictions on some unseen data after having learnt a model from the training
dataset. The model e#ctively learns a mapping between the input features and
the target output values. Once this mapping is learnt, the model can be invoked
to make new predictions on input features calculated on data with unknown
target output values. Apart from supervised éarning, other ML frameworks,
which are not necessarily distinct from each other, includensupervised learning
which involves the clustering of data into distinct regions without target values
to learn on; Anomaly detection(both supervised and unsupervied) which
involves the identification of irregularities which do not conform to the expected
pattern of data and Reinforcement Learningwhere an optimal sequence of

decisions are to be made in an environment which is largely unknown. All ML

44



Chapter 1: Introduction

methods implemented in this thesis are either supervised classification or

regression methods

1.6.1 Machine Learning in this Thesis

The ML framework is used consistently throughout this thesis for modelling the
stability of protein-protein complexes at various levels. Thisnicludes wild-type
AET AET ¢ AZ£ZET EOU | 3' q DPOAAEA®Kprédittiors 3
It is important to highlight that highly ML specific investigations are beyond the
scope of this thesis. For example, there is no motivation to comparednontrast
different learning algorithms for the same problem. The general belief employed
is that the largest gains in prediction accuracy are best made with better feature
design and careful analysis of the dataset. Consequently, in seeking better
predictions, an exhaustive evaluation of a number of learning algorithms or
parameters in hope of increasing accuracy, is not employed. With this in mind, a
conscious effort is made throughout, firstly to validate the choice of learning
algorithms in relation to the datasets and features available and secondiyot to
use machine learning in a blackox fashion.Figure 1.5 shows the dependencies
between different elements of a supervised machin&earning framework. These
dependencies are not an exhaustive list, but rather highlight those dependencies
that are gven careful consideration in this work. These include dependencies
considered prior to the learning phase, and those discovered subsequent to it

upon analysis of the results.

1.6.2 Dependencies in a Supervised Machine Learning Framework

The dataset is the mairsource of training and benchmarking and its biaseand
diversity have a direct effect on both the choice of learning model and features
employed. Bias in the context of this work is not limited to a class distribution
bias (commonly referred to as dataseimbalance). The datasets used in this
thesis (see Methods sectior?.1) contain PPI§ which in turn come in many forns,
different structural, physiochemical and coformational properties (Moal and
FernandezRecio, 2012, Kastritis et al., 2011) A dataset which is not a

representative sample of this diversity is therefore, also biased. For example, in
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section 1.5.7.1it is shown that previous binding affinity prediction (BAP) models
use datasets without conformational and complextamily diversity. In this case,
simple learning algorithms such as linear regression are suffient to produce
AAAOOAOA OAGBEDEAADS MENAdUSDT AOS EI

Feature

Importance ‘\

Dataset | — > | Benchmarking

Choice of Choﬁle sz[ﬁer:nlng
Features gori
\
Domain Knowledge
A B
A Affects B

Figure 1.5: Dependencies in a supervised machine learning framework.

White boxes highlight dependencies that must be considered prior to learning;
blue boxes highlight dependencies affecting the interpretation of results
subsequent tolearning. Though not an exhaustive list of dependencies, the ones
shown here are those that arediscussed in this thesis. Some of these
dependencies were consideredpre-emptively; for example when selecting
descriptors or learning algorithms, whereas othes were discovered upon
analysis of the results; for example when assessing the results of feature
importance measures for different learning algorithms.

The BAP model developed in Chapte3 made use of a larger and more diverse

set of structures. To account for this diversity, new descriptors (for example
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those accounting for unbound to bound transitions) and nodinear ML models

x AOA ET 001 A GCAoke ¢f DedrAe® £iivikedof Featdk O Figuré |
1.5). The choice of the learning algorithm should be an informed one taking into
consideration both the domain knowledge of the problenat hand and the nature

I £#/ OEA AEAAOOOAO AOAEI AATA &£ O 1 AAOGIET C j
e#EIl EAA 1 A Figuk ABI FiOidstangd, features also come in many
forms, particularly those for modelling complex stability (See sectiond.5 and
2.2). Some might be good global estimators, whereas others might only hold
predictive value within certain ranges. For the latter, a learning algorithm like
linear regression cannot exploit thesdocally predictive regions. Therefore it is
imperative that the choice of learner matches this information. Domain
knowledge refers to the prior beliefs we have about the problem at hand. This in

turn again affects the learner choice.

An informed interpretation of the results and analysis (through benchmarking
and descriptor importance) must also consider the relevant dependenciesde
Figure 1.5). For example in ChapteB it is observed that descriptors identified as
being important for modelling affinity are not only a function of the dataset at
hand, but also a function othe learning algorithm employed andother features
available to the leamning algorithm. Moreover, in in section7.3.3it is shown that
certain descriptors are highly important to the characterization of certain off
rate mutations in the dataset but not for others. Therefore global feature
importance measures are not necessarily the appropriate choice, particularly in
diverse datasets. In summary, this shows that antentative conclusions on the
importance of a particular descriptor must also be made in light of all of its

dependencies.
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1.7 Outline of Thesis

1.7.1 Motivations Behind this Work

This work deals directly with computational experiments investigating protein
protein complex stability at various levels. These include prediction models for
binding affinity, dissociation rates and hotspots.Characterisng the effect of
mutations on comdex stability forms a major part of this thesis, and emphasis is
given on thedetection of rare mutations that can further enhance the stability of
protein-protein interactions. The understanding is that being able to do so, is
central to future compuational drug design algorithms (See sectiot.4). Though
ultimately, the central motivation is to design accurate predictive model
parallel to this, an equal goal is that ofuncovering deerminants of complex

stability.

The intention is that this thesis asls the questions which have notbeen asked
before, or for those which have been, improvements are made which directly
address the deficiencies of cuent methods. In some instances, this work might
take unconventional approaches, be it the use of the uncommon Radial Basis
Function learner in Chapter 3; the position-specific models designed irChapter

4; or even, the design of descriptors deried from hotspots for characterisng
changes in dissociation rates ifChapter 6. The thesis attempts to answer most of
the questions that come to mind, but for those that remain answered, the hope is
that the questions raised are worthy of further investigation. Theaim for this
thesis was also tdbe in line with what we do know about complex stability. For
instance, building a large and diverseset of descriptors (not limited to
biophysical descriptors) and using them for characterizing the stability of
protein-protein interactions may seem as a naive or ungrounded pursuit to
some.On the other hand what best way forward than to make use of, otherwise
forgotten, descriptors that have been carefully designed by other researchers in
the field in these last yearsWith this in mind, this methodology is not to be
confused with one where a®unchof descriptors are thrown blindly, in hope of

finding something that correlateswith our target. Firstly, the works of authors
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that do soare reported for their deficiencies, and all models developed in this
work are analysed for their biophysical plausibility. Recent publications
(Kastritis and Bonvin, 2013)also put forward the argument that a simple model
of buried surface area or simple biophysical models can still achieve reasonable
correlations for binding affinity. The implication being, usually explicitly
mentioned, that more complex binding affinity modelgwhere complexity refers
to large sets of descriptors and machine learning modelsymprove very little.
These argumentsl feel, fail to make a distinction between good correlation and
high correlation. For uncovering a relationship, good correlations arecceptable
as they are for proofs of concept A predictive algorithm with reasonable
correlation is however unusable in most practical situations.Any predictive
algorithm designed in this work and othersGremain purely explorative in nature
until significantly high accuracies are achieved. Only until then may such
algorithms become standard protocol. Predictive performance is thus one of the
major motivations behind this work. It should be noted that he algorithms
designed here are part of an ogoing pipeline of algorithms that came before
and will come after. Attention is therefore given to highlighting clearly where the
algorithms fail, which structures we still cannot characteri€ well, which
mutations are harder to predict and how we might improve. In a similar vein of
reasoning, all publications resulting from these investigations contain model
prediction lists for direct comparison analysis by other researchers. Careful
benchmarking is also emplged, be it with the use of alternative crossalidation

folds, or diverse and validated datasets.

1.7.2 Chapter Summaries and Themes

Chapter 2 The datasets, stability descriptors and machine learning models used
throughout this thesis are summarized and desdbed here. Following this, the
hotspot prediction algorithm developed in this work (RFSpot), is described and
benchmarked against other hotspot predictor algorithms. In addition a number
of descriptors generated using the predicted hotspots are presentedhese are
termed as hotspot descriptors and subsequently used for the prediction of eff

rate changes upon mutation in Chapters 8.
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Chapter 3 In this chapter the prediction of wild-type binding affinities on a
diverse set of proteinprotein interactions is investigated. In contrast to previous
related work, the structures cover a wide range of complex families and
conformational changes upon complex formation thereby addressing the
limitations associated with the BAP methods up until this workMoreover,non-
linear machine learning algorithms were used for modelling and the use of
unbound structures and conformational ensembles was also introduced into the
descriptor calculations. A numler of molecular descriptors were calculated
which include, biophysical, statistical and miscellaneous descriptors. The
prediction model (a consensus of four machine learning algorithms) achieves a
crossvalidated correlation coefficient with experimental dfinities of R=0.77.
Significant reduction in accuracy is observed for complexes undergoing
conformational changes and those for which their experimental affinities have

not been corroborated.

Chapter4: In this chapter the prediction of changes in bindig affinity upon
mutation (3 3-)'is studied. The models are benchmarked in CAPRI round 26 on a
blind set of circa 1800 mutations on two different protein drugs each binding the
stem of the flu virus hemagglutinin. For the first round, @& 3 predictor based ;
similar principles as those presented in Chapter 3 are used. For the second
round, a 3 3 'model that exploits correlations between similar mutations at a
given mutation site, is designed. For both rounds, the predictions compared
favourable to other compding groups, and also ranked as the top predictor for
one of the protein drug targets. The difficulty in such scenarigss that datasets
available for training are mostly dominated with alanine mutations, which tend
to be neutral or destabilizing (affinity decreasing). On the other hand, stabilizing
mutations (affinity increasing) are rarely alanine mutations and only form ~2
5% of all the 1800 mutations consideredIn turn, the detection of these affinity

increasing mutations iscentral for high affinity drug binding.

Chapter 5: In this chapter, two hotspot prediction algorithms RFSpotand
RFSpot_KFQ2are designed and benchmarked against a number of hotspots
predictors. The results confirm the importance ofhaving solvent-accessibility

related descriptors and more comprehensiven & datasets.
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Chapter6: This chapter approaches complex stability from a more specific facet,
that of the dissociation rate. The question here shifts to that of understanding
what makes a complex remain bound once the complex hémmed. A dataset of
50 complexes with 713 mutations for which their 3 bx was measured
experimentally was extracted from the SKEMPI databag®loal and Fernande-
Recio, 2012) Computational alanine scans, using a number of hotspot prediction
algorithms, were performed on the wild-type and mutated interfaces. The
hotspots predicted from these scans are used to design a number of hotspot
related descriptors, which are correlated with 3 & When compared to
molecular descriptors, the hotspot descriptors achieve consistently higher
AT OOAI AGET 108 4EA OAOAOACEI C 100 AEEAAODS
using molecular descriptors and the synergy of hotspot residues are proposed as

the two main contributors to the success of the hotspot descriptors.

Chapter 7: In the previous dapter, hotspot descriptors are introduced and
benchmarked against molecular descriptors, as estimators af k. This chapter
goes one step further and feeds lib sets of hotspot and molecular descriptors
into ML regression and classification algorithms. Besides the numerical
prediction of 3 &, emphasis is also put on the detection of the rare, residence
time increasing (Koft increasing) mutations which amountto < 5% of the offrate
dataset. ML models with hotspot descriptors show consistently better predictive
performance both in the numerical prediction and for the detection ofkoff
increasing mutations. In order to see whether certain classes of mutans are
harder to characterise, the 713 offrate mutation dataset is subset into data
regions, and results analysed separately for each. Predictions for mutations
occurring at the rim region of protein complex interfacesfor example are less
accurate to those atthe core of region of interfaces The relationships between
different descriptors and different regions of the dataset are studied using
descriptor-data region networks. These networks uncovered highly specific
relationships between descriptors and certan classes of mutations, and
conversely, descriptors that are broadly predictive over a number of mutation
classes. The effects of conformational changes and alternative cresdidation

routines, on predictive accuracy, are also reported.
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Chapter8: In chapters 7 and 8 it is shown how counting the energies of hotspot
energies, pre and postmutation provides an accurate description of changes in
kott. Here, the focus shifts towards understanding to which extent the offaite of a
complex is affected by thedistribution of hotspots. For example, studies have
shown that hotspots are likely to occur at the core regions of an interface and
tend to cluster into hotregions. Though these two properties are observed on
protein-protein interfaces, their link to stability is only implicated. The main
motivation behind this chapter is to uncover advantages, if anyof hotspot
distributional properties, by assessing the effect they have on the dissociation
rate. As a result of the investigations, it is found that hotspstin the core region
are solely critical for the stability of large complexes. For small complexes, rim
hotspots become as important and their role is nolonger secondary. The

intention of introducing distribution into the equation of stability is to be alde to

i AEA 17T OA ET & Oi AA AAAEOEITO 1I1 OxEAOR

computational interactions.
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2 Materials & Methods

In this chapter, the datasetqsection 2.1), stability descriptors (section 2.2) and
machine learning models(section 0) used in this thesis are presented. The
performance measures applied for the assessment of model predictionsand

descriptors are also detailedin section2.4.

2.1 Datasets
2.1.1 Dataset for Binding Affinity ( nG)

The structures and experimental affinities for the recently publised binding

affinity benchmark (Kastritis et al., 2011) were used as the main source for
training and testing the BAPdescribed in Chapter 3.As listed in the appendices
Table 10.2, this dataset consists of a total of 144 complex structures for which

the crystal structures of each complex,
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along with each of its unbound components at high resolution (< 3.25A), are
available. To avoid redundancy and the potential for over training, complexes
with high sequence identity are not included; this facilitates the use of cross
validation routines such as leaveone-out for benchmarking test predictions. A
key aspect of this dataet, which improves upon previous datasets used in BAP, is

its diversity:

1 Several receptor/ligand protein-binding partners undergo significant
conformational change upon complex formation, of which some exhibit

disorder to order transitions.

1 Complexes, wihin different protein families, cover a wide range of
functions; a total of 19 Antibody/Antigen, 40 Enzyme/Inhibitor, 21
Enzymeregulatory/accessory chairs, 17 Gprotein binding proteins, 13

Receptor containing complexes and 34 Miscellaneous.

1 Wide range d affinities. A total of 20 high affinity (Kb < 1010M), 90
medium affinity (10-19M <Kp<10-6M) and 34 low affinity (Ko > 10-5M).

2.1.1.1 Validated Set

The affinities available for the protein complexes in the binding affinity
benchmark come from a number okxperimental methods including isothermal
titration calorimetry, surface plasmon resonance, stopped flow fluorimetry and
other spectroscopic techniques. For a number of complexes, more than one
group measured the K values or an additional experimental tebnique was used.

For such measures that are within 1 kcal mdl of each other, the complexes were

OAEA O1 A& 0 DPAOO 1 £ -quaiy subsbthsiuted b sBels OA OB

to which extent experimental error in affinities affects the model preditons.
One should note that in this validate set the diversity in affinity and complex
families is still present. Affinities range between 13 kcal mdl and complex
families include; 3 antibody/antigen complexes, 16 enzyme/inhibitor complexes,
5 enzyme sulstrate complexes, 5 enzyme complexes, 8-fgotein binding
complexes, 7 receptofligand complexes and a remaining 13 miscellaneous

complexes.
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2.1.2 Dataset for Off-Rate (nKofr)

The structures and experimental offrates from the SKEMPIdatabase(Moal and
FernandezRecio, 2012) were used as the main source of benchmarking
descriptors, training and testing models fors & prediction in Chapter 6, 7 and 8

Wild-type and mutant kor values were transformed intoz [ {o(Koff) using

3 1 {o(Koff) = logro(Koff)Mut - logo(Kof ) WT 21

Where the value range is,- 8 @  [io(kan)l 1<C6.5 with a mean of 0.7
(destabilizing). The 713off-rate mutations from SKEMPI are also subdivided into

the following data regions for analysis: Singloint (SP) alanine mutations, 361;

SP nonalanine mutations, 155; SP mutations, 516; MuHPoint (MP) mutations,

197; SP mutations to polar (Q, N, H, B,Y, C, M, W) residues, 39; SP mutations to
hydrophobic (A, I, L, F, V, P, G) residues, 309; SP mutations to charged (R, K, D, E)
residues, 68; mutations exclusively on core regions, 272; rim regions, 79;
support regions, 114; mutations on complexes of drge-Interface-Area (>1600

A2) | 355 and Smakinterface-Area (<1600 &), 358. The oftrate dataset is listed

in appendicesTable 10.3.

An assessment of how severely variations in experimental temperature, ionic
strength and pH can introduce noise into log(kotQ AT Awo(kar) Wag also
performed. Firstly, 635 of the 713 values come from experiments reported to be
performed in the 295z298K range, and 72 values either did not have their
OAIl PAOAOOOA OADPI OOAAh T O xAOA OADBI OOAA
AT T AEOET Tpébrilihg toA th® @93¢298K range. The remaining six
experiments were performed at 323K. Thus, only 0.8% of the data lies outside of
a 5K temperature range. Although not reported in the SKEMPI database, most of
the rate constants were determined using surfaceplasmon resonance or
stopped-flow fluorescence in a relatively narrow range of standard buffer
conditions. Further, ionic strength and pH predominantly affect the rate of
association rather than the rate of dissociation; electrostatic shielding and

changesin protonation state influence the longrange forces which drive protein
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association, rather than the shortrange forces which keep the buried surfaces of
the binding partners together. For instance, in the M3CL1 complex, in which
ionic strengths in the 0.2 to 1.5 M NaCl range were investigated, the rate of
association varied by over 76fold, while the rate of dissociation varied by less
than 3 fold (Figure 2Cand Table Il of Alexander-Brett and Fremont (2007)).
Similarly, in a study of a VEGEntibody interaction, varying pH in the 6.5%8.5
range resulted in around 30% variation in dissociation rate, while varying the
ionic strength in the 10z1000 mM range produced a twofold change

in kKot (Moore et al., 1999) Even assuming a large thredold standard error
inketh OEEO x1 O1 A OAOGOI 60 ET A kQMdod&@A AOOT
1999). Lastly and most importantly, the assumptionwas made that though
reference states may change across experimental methods and studies, within a
given experiment the reference state is constant for the experimental
determination of thewild-typeand its mutants, which tend to be generated
within the same experimental work. Given that we traimg is performed on
OA1 OA O 181D asashowr€ in equation 2.1, any systematic variations
associated with experimental conditions are eliminated, this issue is ledigely to

be prominent for mutation prediction as it is forwild-type.

2.1.3 Off-rate Classification Data Sets (CDS1 and CDS2)

The 713 offrate mutations in the previous section 0f2.1.2 are partitioned into

i 3 hok&gQlr Mpqh OADPOAOGAT OET ¢ OEA OOAAEI EUET (
i 3 l(k&)>0), representing the neutral to destabilizing portion of the dataset

(referred to as CDS1zClassification Dataset 1). The motivations behind the
thresholds of CL51 are twefold. Firstly, previous error estimates show that
experimental noise in the data can be as high as 2kcal/m{Voal et al., 2011,

Moal and FernandezRecio, 2012) Experimental noise causes miscategorization

AOOT 00 xEAT  Adkbixdrd htinugus saluds @o categorical bins,

and therefore, the exclusion of dat®1 ET OO xEOEET ¢ Mph 1Y
sufficiently the number of miscategorization errors between stabilizing and
neutral/de -stabilizing mutations. Secondly, being able to detect stabilizing
mutations from neutral ones is an important aspect of interface design (see

section 1.4.3). A total of 43% of the mutations lie within the range of [0, 1].
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Thereforeh OEA OAIT Twtké@ % ZEOBEHIT COEA OAT CA f Mph
sufficient amount of neutral mutations. This data subset, results in a dataset of

501 neutral to destabilizing mutations (referred to as nonstabilizing mutations)

and 31 stabilizing mutations. To further investigate the discrimination ability of

OEA AAOAOCEDOI OOh AT AAAEOKk) AL is @GEOAOET |
investigated. This dataset which removes most of the neutrals is referred to

CDSZ Classification Dataset 2.

2.1.4 Dataset for Hotspot ( N |GaLa)

All single-point alanine mutations, limited to the complex interfaces, were
extracted from the SKEMPI database. This totals to a set of 635 a@dundant

mutations with experimental 3 3 'in 59 different complexes and 154 hotspot
residues with 3 3 >= 2 kcal/mol. All hotspots represent the positive training
examples and anything, which is not a hotspot3( 3 < 2 kcal/mol) as negative

training examples.The hotspot dataset is listed in theappendicesTable 10.4.

2.2 Stability Related Descriptors

A number of stability related descriptors are calculated and listed iTable 2.1.
These inclde descriptors related to the potential and solvation energy, réropy
related descriptors, statistical potentials and a number of miscellaneous
descriptors. These different classe of descriptors have been described in the

introductory section of 1.5.
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Table 2.1: Stability Related Descriptors.
A list of stability related descriptors calculated in this thesis. The descriptors are
categorized under four sections;Potential / Total Energy Solvation Energy
Entropy, Statistical Potentialsand Miscellaneous Descriptorslt should be noted
that some of the descriptors are not exclusive to one type of category, but are
only included one for ease of referece. The entries in the columnyG (Chapter
3), (NG (Chapter 4), nkott (Chapter ¥ and HS- Hotspots (Chapter 5), indicate
whether the descriptor was used in the respective predictive models. Note that
this is only an indication of a descriptor being available to the learning models,
and not necessarily the casethat the descriptor formed part of the final
prediction model. Those whichdo, arereported at the respective chaptersNot
included in the table are all FoldX energy terms which are used for j&,nkott and

HS prediction models(Schymkowitz et al., 2005)

Potential / Total Energy

Descriptor Type Description Note / Package Reference 3G ok ] 3Koft HS
Directional H-Bonding (Chaudhury et al.,
ROS_HBOND Potential PyRosetta 2010) Y
12_10 Hydrogen Bnding ) (Andrusier et al.,
H_BOND Potential Firedock 2007) Y
PI_PI Orientation Independent pi-pi Firedock (zl\ggs:{l)ra etal, Y
CATION PI Orl_entat_lon Independent Firedock Misura, Morozov et v
- catian-pi al. 2004)
Orientation Independent ; Misura, Morozov et
ALIPHATIC aliphatic-aliphatic Firedock al. 2004) Y
ROS_TOTAL Total Energy PyRosetta (Z%PIgl)thury etal, Y
) (Schaefer and
ACE22_ALL Total energy CHARMM 22 Forcefield Karplus, 1996) Y
STC_H STC Enthalpy STC package (2%%‘3‘5’"" etal, Y
STC_G STCfree energy STC package (zlbez)\g?ne etal, Y
ROS_FA_ATR ’ . PyRosetta (Chaudhury et al.,
PY fa atr Lennard-jones attractive 2010) Y Y Y Y
ROS_FA_REP T . (Chaudhury et al.,
PY fa_rep Lennard-jones repulsive PyRosetta 2010) Y Y Y Y
Internal energy of sidechain
rotamers as derived from (Chaudhury et al.,
PY_fa_dun Dunbrack’s statistics based PyRosetta 2010) Y Y Y
pair term
PY_fa_pair Favors salt bridges PyRosetta (Z%tiggjdhury etal, Y Y Y
PY_hbond_Ir_bb B_ackbo‘nebackbone Hbonds PyRosetta (Chaudhury et al., v v v
distant in primary sequence 2010)
PY_hbond_sr_bb Backb_one_backbone Hbonds PyRosetta (Chaudhury et al., v v v
close in primary sequence 2010)
Lennard-jones repulsive
PY_fa_lIntra_rep between atoms in the same PyRosetta (Z(g)riggjdhury etal, Y Y Y
residue
H-bond energy sidechain (Chaudhury et al.,
PY_hbond_bb_sc backbone PyRosetta 2010) Y Y Y
H-bond energysidechain (Chaudhury et al.,
PY_hbond_sc sidechain PyRosetta 2010) Y Y Y
PY_pro_close Proline ring closure energy PyRosetta (Zggggjdhury etal, Y Y Y
ROS_CG_VDW Coarse grained VDW PyRosetta (zggg;’dh”ry etal, |y
ACE22_COUL/ . CHARMM 22/19 (Schaefer and
ACE19_COUL CoulombicEnergy Forcefield Karplus, 1996) YUY v Y
ACE22_ELEC/ Total Electrostatic (ACE_INTE | CHARMM 22/19 (Schaefer and v v v v
ACE19_ELEC + SELF) Forcefield Karplus, 1996)
ACE22_INTE/ CHARMM 22/19 (Schaefer and
ACE19_INTE COUL+SELF Forcefield Karplus, 1996) Y Y Y Y
) Schaefer and
CHARM_total Total Energy CHARMM 19 Forcefield Karplus 1996) Y Y Y
. ) Schaefer and
CHARM_elec Electrostatic Energy CHARMM 19 Forcefield Karplus 1996) Y Y Y
CHARM_vdwaals | VDW potential CHARMM 10 Forcefield | Schaefer and Y Y Y
Karplus 1996)

58



Chapter 2: Methods

Number of interfacial

(McDonald and

NUM_HB Hydrogen Bonds HBPlus Thornton, 1994) Y
Number of interfacial Salt (McDonald and
NUM_SB Bridges HBPlus Thornton, 1994) Y
Number of interfacial Water (McDonald and
NUM_WB Bridges HBPIus Thornton, 1994) Y
Solvation Energy
Descriptor Type Description Note Reference 3G 3% 3Koft HS
DELISI_SOLV Atomic DesolvationEnergies égg@?mlc Contact (zhang et al., 1997) | Y
LK_SOLV The LazaridisKarplus effective (Lazaridis and
PY_fa_sol energy function PyRosetta Karplus, 1999) Y Y Y Y
SASA SASA model Ferrara et al. 2002 Ferrara et al. 2002
ROS_CG_ENV Rossetta Cbeta Potential PyRosetta (Z(E)Iig;ldhury stal., Y
ROS_CG_BETA Rosetta Environment Potential | PyRosetta (Zcoriggjdhury etal, Y
ACE22_SCRE/ . . CHARMM 22/19 (Schaefer and
ACE19_SCRE Electrostatic Screening Forcefield Karplus, 1996) Yoy Y Y
ACE22_SELF/ . CHARMM 22/19 (Schaefer and
ACE19_SELF Electrostatic Self Energy Forcefield Karplus, 1996) Yoy Y Y
ACE22_SOLV/ CHARMM 22/19 (Schaefer and
ACE19_SOLV Sum ofSELF and SCREEN Forcefield Karplus, 1996) Y Y Y Y
ACE22_HYDR/ . . CHARMM 22/19 (Schaefer and
ACE19_HYDR Hydrophobic Burial Forcefield Karplus, 1996) Yoy Y Y
ACE19_SASL SASA Solvation Energy CHARM 19 Forcefield (Schaefer and Y Y Y
Karplus, 1996)
Generalized Born Implicit ) (Schaefer and
CHARM_gb Solvation Energy CHARM 19 Forcefield Karplus, 1996) Y Y Y
. . ) (Schaefer and
CHARM_sasa Hydrophobic Solvation Energy | CHARM 19 Forcefield Karplus, 1996) Y Y Y
Generalized Born + ) (Schaefer and
CHARM_gb+sasa Hydrophobic Solvation Energy CHARMM 19 Forcefield Karplus, 1996) Y Y Y
STC_S_SOL Hydrophobic Burial STC package (zlz)atl)\gg;ne etal., Y
Entropy
Descriptor Type Description Note Reference 3G &% 3Koff HS
Change in
s TR rotational+translational v
- entropy upon complex
formation
Change in rotational entropy
S R upon complex formation Y
rotational
Change intranslational
ST entropy upon complex Y
formation
Change in vibrational entropy )
S_VIB upon binding using normal (Carrington and Y
) Mancera, 2004)
modes via M1 scheme
Entropy changes arising from (Lavigne et al
STC_S_SC restriction of side-chain STC Package 9 v Y
. L 2000)
conformation upon binding
S_GP_ALL2 Disorder to order transitions (Zhou, 2004) Y
S_GP_INT2 Disorder to order transitions (Zhou, 2004) Y
S_WLC_ALL2 Disorder to order transitions (Zhou, 2001) Y
S_WLC_INT2 Disorder to order transitions (Zhou, 2001) Y
(Lavigne et al.,
STC_S Total Entropy Change STC package 2000) Y
Statistical Potentials
Descriptor Type Description Note Reference 3G 3& 3Koft HS
(Chaudhury et al.,
ROS_FA_PP Atomistic pair potential Protein Folding 2010, Simons etal., | Y
1999)
(Chaudhury et al.,
ROS_CG_PP Coarsegrained pair potential Protein Folding 2010, Simons etal., | Y
1999)
. Protein Docking (Chuang et al.,
AP_DARS Atomic distance dependent Inc. AP_URS/AP_MPS 2008) Y Y Y
Protein Folding (Shen and Sali
AP_DOPE Atomic distance dependent Inc. AP_DOPE_HgHigh 2006) ’ Y Y Y
Res.
) . Protein Docking .
AP_T Two-step atomic potential Inc. AP_T1/2. (Tobi, 2010) Y Y Y
CP_TSC Two-step residue level contact | o o pocking (Tobi, 2010) Y Y Y
potential
CP_TB Residue level contact potential | Protein Folding (Z'B%lg)and Bahar, Y Y Y
DFIRE Atom based orientation Protein Folding (Zhang etal., 2004) | Y | Y Y Y

dependent
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DDFIRE
DCOMPLEX
OPUS_CA

OPUS_PSP

RF_PP
EMPIRE
GEOMETRIC

CP_RMFCEN1
CP_RMFCEN2
CP_RMFCA
CP_SKOIP
FOUR_BODY

GEN_4_BODY
SHORT_RANGE
QA_PP

QM_PP

QP_PP

HLPL_PP

SKOB_PP

SKOA_PP

SKJG_PP

MJPL_PP

MJ3H_PP

MJ2H_PP

TS_PP

BT_PP

BFKV_PP

TD_PP
TEL_PP
TES_PP
RO_PP

MS_PP

MJ1_PP

MJ3_PP

GKS_PP

VD_PP

MSBM_PP

Atomic distance dependent
level potential

Atomic distance dependent
Level potential
Residue/G-Alpha distance
dependent

Atom contact potential for
Sde-chain packing

Residue levelpotential

Atomic level

Packing and distance
dependent potential function
Side-chain centroid distance
dependent potential
Side-chain centroid distance
dependent potential

Calphadistance dependent

Residue level irteraction
contact potential
Four-body coarse grain
potential

Four-body coarse grain
potential

Residue level pair potential

Residue level pair potential
Residue level pair potential

Residue level paimpotential

Residue level pair potential

Residue level pair potential

Residue level pair potential

Residue level pair potential

Residue level pair potential

Residue level pair potential

Residue level pair potential

Residue level pair potential

Residue level pair potential

Residue level pair potential

Residue level pair potential
Residue level pair potential
Residue level pair potential
Residue level pair potential

Residue level pair potential

Residue level pair potential

Residue level pair potential

Residue level pair potential

Residue level pair potential

Residue level pair potential

Protein Folding
Protein Docking

Protein Folding

Protein Folding
Inc. OPUS_PSP1/2/3.

Protein Folding

Protein Docking
Protein Folding / Protein
Interaction

Protein Folding
Protein Folding
Protein Folding
Protein Docking
Potentials'R'Us

Potentials'R'Us

Potentials'R'Us
Potentials'R'Us

Also referred to as CP_Qa
Potentials'R'Us

Also referred to as CP_Qm|
Potentials'R'Us

Also referred to as CP_Qp
Potentials'R'Us

Also referred to as
CP_HLPL

Potentials'R'Us

Also referred to as
CP_SKOb

Potentials'R'Us

Also referred to as
CP_SKOa

Potentials'R'Us

Also referred to as
CP_SKJG

Potentials'R'Us

Also referred to as
CP_MJPL

Potentials'R'Us

Also referred to as
CP_MJ3h

Potentials'R'Us

Also referred to as
CP_MJ2h

Potentials'R'Us

Also referred to as CP_Ts
Potentials'R'Us

Also referred to as CP_BT
Potentials'R'Us

Also referred to as
CP_BFKV
Potentials'R'Us

Also referred to as CP_TD
Potentials'R'Us
Alsoreferred to as CP_Tel
Potentials'R'Us

Also referred to as CP_TEg
Potentials'R'Us

Also referred to as CP_RO
Potentials'R'Us

Also referred to as CP_MS|
Potentials'R'Us
Alsoreferred to as
CP_MJ1

Potentials'R'Us

Also referred to as
CP_MJ3

Potentials'R'Us

Also referred to as
CP_GKS

Potentials'R'Us

Also referred to as CP_VD
Potentials'R'Us
Alsoreferred to as

CP_MSBM

60

(Yang and Zhou,
2008)

(Liu et al., 2004)
(Lu et al., 2008)

(Lu et al., 2008)

(Rykunov and
Fiser, 2010)
(Liang et al., 2007)

Unpublished

(Rajgaria et al.,
2008)
(Rajgaria et al.,
2008)
(Rajgaria et al.,
2006)

(Lu etal., 2003)
(Feng et al., 2010)

(Feng et al., 2010)
(Feng et al., 2010)
(Feng et al., 2010)

(Feng et al., 2010)

(Feng et al., 2010)

(Feng et al., 2010)

(Feng et al., 2010)

(Feng et al., 2010)

(Feng et al., 2010)

(Feng et al., 2010)

(Feng et al., 2010)

(Feng et al., 2010)

(Feng et al., 2010)

(Feng et al., 2010)

(Feng et al., 2010)

(Feng et al., 2010)
(Feng et al., 2010)
(Feng et al., 2010)
(Feng et al., 2010)

(Feng et al., 2010)

(Feng et al., 2010)

(Feng et al., 2010)

(Feng et al., 2010)

(Feng et al., 2010)

(Feng et al., 2010)




Chapter 2: Methods

Miscellaneous

Descriptor Type Description Note Reference 3G 33 3Kott HS
DASA Qhange in surface area upon Naccess v
binding
RES_P % interface residues: polar Naccess Y
% i i .
RES_NP lﬁ);g:erfaceresmues. non Naccess v
RES_C % interface residues: charged Naccess Y
ATOM_P # interface atoms: polar Naccess Y
ATOM_NP # interface atoms: nonpolar Naccess Y
ATOM_N # interface atoms: charged Naccess Y
PLANARITY Interface planarity SURFNET (Laskowski, 1995) Y
ECCENTRIC Numerical eccentricity SURFNET (Laskowski, 1995) Y
Proportion of interface
INT_ALPHA residues which are in alpha DSSP Y
helices
Proportion of interface
INT_BETA residues which are in beta DSSP Y
sheets
GAP_VOL Vvolume of empty space atthe | g\ )penet (Laskowski, 1995) | Y
interface
Volume of empty space at the
GAP_INDEX interface divided by interface SURFNET (Laskowski, 1995) Y
Area
. (Mitra and Pal,
NIP Interface packing score 2010) Y Y Y Y
NSC Surface complimentarity score %%a)l and Pal, Y Y Y Y
Change in specific heat upon (Lavigne et al.,
STC_CP binding STC package 2000) Y
BIOSIMZ KON Pr(_edlcte_:d qu(kon) calculated Li.2011 v
= using BioSimz
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2.3 Machine Learning Algorithms

2.3.1 Random Forest (RF)

The Random Forest (RF)Breiman, 2001a) is the most commonly employed
learning algorithm in this thesis. The RF is used both for problems of regression
and classification and a Mtlab implementation of the RF algorithm, as described
by Breiman (2001a), is used. RF is an ensemble of decisions trees, where the final

prediction is a majority vote (for classification) or an average (for regression) of

A1l OEA OOAET AA AAAEOEI 1 RbQ@dohAtnsis rdidell O2 AT 7

to the way it builds each decision tree. For a training set of N samples, sampling
with replacement is performed and two thirds of this sample is used as the
training set for a given decision tree in the forest. The other one thir(termed as
the oob (out-of-bag) data, is used to get an unbiased estimate of the test error
and for variable importance measures. The second randomization involved in
OEA 2&80 AAAEOCEIT OOAAOR EO OEAO AO
making a split. Rather a random sample ahtry features are chosen at each node
and the bestsplit is chosen amongst them. An important aspect of the RF is that
the test error is reduced with more accurate and less correlated decision trees.
Part of the randomiztion procedures employed in the tree building are irfact
aimed at introducing variability in hope of achieving low correlation between
decision trees. Themtry parameter is therefore central the RF. Given a powerful
descriptor in the set of features, forhigh mtry values, it is more likely that this
descriptor would be chosen in the random sample and subsequently used at the
node split. Therefore this descriptor would dominate most of the trees, resulting
in highly accurate trees but with low correlation.If the mtry parameter is set too
low, then the powerful descriptor might be missed out from most of the trees.
The RF would then consist of low correlation trees but with low accuracy.
Though this parameter is the one for which the RF is most sensitiie, it has a
broad range of optimal valuegBreiman, 2001a). This was also found to be true

in this work, and for most scenarios thantry parameter was setto be withitn the
NM <mtry <3 M

training set.

range where M is the number of features available in the
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RF Variable Importance Measuréfter the random forest has been built and the
oob error estimate for each tree recorded, the importance of each feature to the
prediction is measured as ftows. For each featurem, all of its values are
randomly permuted and the oob examples are fed through the trees witm
randomly permuted. The importance score of featuren is the different between
the original oob error estimates, and the new ones withm permuted. The
importance score is then normalized by the standard deviation of these
differences across all trees. Large values imply more important features. Another
feature importance measure available to the RF, and invoked in this work, is the
casewise feature importance measure. Here, during permutation, the error of
each oob example is recorded. In this way feature importance can also be

quantified in relation to specific examples.

232 -uvd 2ACOAOOETT 40AA j-0v6(Q

The M5 model tree is similar to standard regression trees with the additional
possibility of having a linear regression model at the leave@uinlan, 1992). In
this work, the M5xalgorithm, a modified version of the original M5 regression
tree described byWang and Witten (1996) was used This version is able to
achieve more interpretable trees through smaller trees which still have similar
prediciOA DAOA&LI Of AT AA8 4xi DPEAOAO AOA OOAA
phase and the pruning phase. In the growing phase, a greedy algorithm is
employed where at each node a split is made which minimizes the standard
deviation of the examples falling on edt side of the split. By the end of the
growing phase, the tree is typically large and the samples partitioned by the
latter splits are small in number. Therefore the error estimates for the latter
splits become unreliable, and it is likely the tree overfg the data. To address

this, a pruning stage is performed where a function which considers the tree size

O

AT A OEA AOOEiIi AOGAA OAOO AOOI O EO I ETEIEO

M5PrimeLab toolbox in Matlab was used to construcbne of the empirical

binding free energy functiors describedin Chapter 3.
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2.3.3 Multivariate -Adaptive -Regression-Splines (MARS)

MARS is a nofparametric regression method which uses a set of hinge functions
to model nonlinear relationships between the input variables and he target
output (Friedman, 1991) The model is formed from a sum of weighted basis
functions Bi(x),

)= W) *

P

where each basis function contains a hinge function or a product of two or more
hinge functions, if we seek to model higher order interactions between variables.
The hinge function takes two forms;max(0, mconsknot) or max(0, consthot -m),
and is defined by some featuren and a knotconsknot. Therefore in the training
phase, MARS autontcally assigns the weights for each basis functiomwi, the
variables for a given hinge function, and the values for the knot positions
consknoe8 3 EI ETI AO O OEA -uvd OACOAOOEIT OOAAN
termed as the forward pass and the baavard pass. In the forward pass, the basis
functions are added in pairs until a stopping criterion is reached. This is usually
set by the user, and can be some minimum error threshold or the maximum
number of basis functions. Given that the forward phase ynproduce models that
overfit the training data, in the backward phase, basis function are removed and
model subsets are compared using a generalized cregalidation (GCV) routine.
The GCV is a function of the residual swof-squares of the training datathe
number of observations, the number of parameters and the number of knots.
Therefore more flexible models, with the addition of more knots, are penalized in
the backward phase.One notable aspect concernindgpinge functions is that for
the range inwhich the function is zero, the featureassociated with it does not
contribute to the prediction. Effectively this can be used as a mechanism to
disregard noisy parts ofdescriptors and a higher weighting tomore informative
regions. The MARS implementation inthe ARESLab toolbox ilMatlab was used
to construct one of theempirical binding free energy functiors described in
Chapter 3.
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2.3.4 Radial-Basis-Function Interpolation (RBF)

RBFs are common in both artificial neural networks (ANNs) andupport-vector-
machine (SVM) learning algorithms. They are functions whose value depends on
some distance from the origin or some point in space. The sum of a set of radial

basis functions can in turn be used to approximate functions in the form of:

N 2.3
F(x) =2 wglllx—x )

Several distance functions may be used such as the multiquadric basis function:

#(d,) = ’d{.erl 2.4

Where d=||x-xi||. The fact that weightsw; are learnt for examples rather than
features, means that during training, uninformative examples are down
weighted and representative ones are upveighted. The RBF implementation in
Matlab was used to construcbne ofthe empirical binding free energy functiors

describedin Chapter 3.

2.3.5 Genetic Algorithm Feature Selection (GA-FS)

The GAFS Algorithm runs feature selection on subsets of the efdite mutation
dataset defined as data regions. Two separate &/ runs are performed, one for
Linear Regression models and another for Support Vector Machine (RBF)
Regression Models (usingLIBSVM package). Two separate 14#old Cross
Validation loops are used. One to assess prediction accuracy on the-rate
mutations for the given data region and the second to derive the optimal feature
set. A 10Fold inner-cross validation loop is used within tle GAFS fitness
£O01T AGETT OF AOEOA OEA ~ZEAAOOOA OAI AAOQGEIT I
Coefficient. After the GA has converged, the LR/SVM model is tested for its
accuracy on the outerloop fold. This process is repeated 10 times such that all
10 outer loop folds are used as a test set validation for the final model. Therefore
the accuracy of the final model is tested on data that is not used to derive the

feature set. As an initial feature set available for selection, 110 molecular

65



Chapter 2: Methods

descriptors (as shown in the pkott column in Table 2.1) and 16 hotspot
descriptors (as shown inTable 6.3) from the best performing offrate prediction
model RFSpot_KFCa&re available. A fixed feature set size of 5 is chosen so as to
avoid overfitting on smaller sized data regions. Therefore thgenome size for the
GSFS (LR) is 5 whereas that foGAFS (SVM) is 7 to also optimesthe cost and
gamma parameters of the RBF. Available Cost parameters values are quantized
into 111 bins ranging from 25to 26. Gamma parameter values are quantized into
1300 bins ranging from 28t0 258 4 EA ' 1 80 ET EOEAI D1 Ol AOE
individuals, and generated such that the initial population included at least one
instance of each of the 126 features. Tournament selection is employed with a
size of 8 indviduals. Uniform random crossover is used with a crossover fraction
set to 50% and a mutation rate exponentially decreasing with the number of
generations applied. Note that for each data region 50 separate && runs are

performed.

2.3.6 Hotspot Descriptor Cal culation and Dataset

As depicted in Figure 6.1, for any given complex, a computational alanine
scanning is first performed on thewild-type interface using a hotspot prediction
algorithm. This enables calculation of the set of hotspot desptors summarized
in Table 6.3 . The respective singlepoint or multi -point mutation is then applied
using FoldX(Schymkowitz et al., 2005) and another computational alanine scan
is performed on the mutated interface, again using the same hotspot prediction
algorithm invoked for the wild-type scan, from which a new set of hotspot
descriptors are calculated. Tk energetic value contributed by each hotspot

descriptor is then the difference in its energetic value preand postmutations:

_ uT 25
IJEHS_ Desc EyII-B_ Desc -EWQ_ De

The hotspot descriptors are calculated for a set of 713 mutations from SKEMPI
database(Moal and FernandezRecio, 2012)described in section2.1.2 Therefore
in total, for each hotspot prediction algorithm, 50wild-type and 713 mutant

computational alanine scansare made To ensure that offrate predictions are
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not made via hotspots models trained on the same examples, all 713
computational alaninescans made byRFSpot, RFspot_KFC2, RFHotspointl and
RFHotspoint2 are strictly 20-fold-test predictions for mutations common
between the oftrate and hotspot datasets,and test predictions for the rest.
Therefore all hotspot predictions on which the hotspot descriptors are calculated

are unbiased and not susceptible to ovefitting.

2.3.7 Hotspot Descriptor Functional Forms and Design

The aim of the hotspot descriptors desiged in this work is to capture both the
energetics and distributional properties of hotspots.These in turn may affect
complex destabilization to differing degrees. The relevance of each descriptor to
off-rate variation is then assessed with different featre importance measures

and the key determinants of the dissociation process reported.

2.3.7.1 Interface Hotspot Descriptors

Int_Energy_1is the difference in the sum of the singlgoint alanine 3 3s of all

interface residues N, preand postmutation.

é N MC)UT Né WT 2.6
Int_EnerQY_lzga DOB. . 6 % QR
n=1 - n

Int._ HS_Energis the difference in the sum of the singlgoint alanine 3 3-s of all

hotspot residues Nis, pre- and postmutation.

é NHS MOl'JT Né WT 27
Int_HS_Energy=a D B a 6 -& BD,.
ganzl - nHQi

No_HSs the change in number of hotspots predicted at the interface preand
post-mutation. This can be considered to be a coarsgained version of

Int_HS_Energy
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2.3.7.2 Solvent Accessible Region Hotspot Descriptors

To account for the different solvent accessible regions where hotspots may occur
at the interface, the following hotspot3- 3-s are summed separately for the core,
rim and support regions and termed as CoreHSEnergyRimHSEnergyand
SuppHSEnergyespectively. Therefore these hotspot descriptors are similar to
Int_ HS_Energyut limited to counting 3 3 'for hotspots that fall in the given
region. In addition, CoreHS RimHSand SuppHSdescriptors, count the hotspot
changes within each region. Again these can bensidered as coarsegrained
versions of their respective counterparts.The core, rim and support regions of
the complex interface are defined according td.evy (2010). Core residues are
generally exposed in the nbound configuration but buried in the bound state.
Rim regions are generally exposed in both the bound and unbound states
whereas support residues are generally buried in both states. The thresholds
chosen in defining these regions are such that each regi has a similar number
of residues(Levy, 2010).

2.3.7.3 Hotregion Cooperativity Descriptors

The cooperativity of a pair of residues ml and m can be calculated by
comparing the gain of adding each residue separately from a neutral reference
state of both wild-type residues mutated to alanine § 3-A1,a2>A1m2+ 3 3 Ar,A2>
m1,A2) to that of adding both residues concurrently, given the same rafence state
(3 3 Ar,a2>m1m2) (Albeck et al., 2000) Namely, let Aand A represent the alanine

mutation of m1 and e respectively, then

33 32 (3 3ALA2>ALm2+ 3 3 A1,A2>m1A2) - 3 3 ALA2>m1,m2 2.8

) A& 33fs positive, this indicates positive cooperativity as the contribution of

both residues together is more stabilizing than the sum of their parts. Conversely

EA ®EEO3T1 ACAOEOAh OEEO ET AEAAOAO #ACAOQEOA
is close to zero, then such pairs can be considered to be effectively independent

of each other hence their contributions to be additive in relation to each other.
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Expanding 3 3-A1,A2>A1,m2and 3 3 A1,A2>m1,A2We get

33 32 ([3 3 m1m2->ALm2- 3 3 m1m2->A1,A7] 2.9
+[3 3 mim2->m1A2- 3 3 mim2>A1A]) -3 3 ALA2>mlm2

33 32 (3 3 mim2->A1m2+ 3 3 mim2->m1,A2 Z 3 3mim2->AlA2 2.10

In this work, we only make single pointmutations during the alanine scan and
calculate the energetics associated withush complex states as in equatioa.10:

3 3 mimz2-> Armzand 3 3 mim2->m1.A2 The summation of these energies is then
used as an estimate of the offate. If hotspots within a cluster are additive, then

the summation of 3 3 mim2 > Atm2+ 3 3 mim2 > miazwould be a sufficient
AOOEI AGA 1T &£ OEA Al 00 9deOldo@evek if mia0EWRQE@E T 1
positively cooperative, then their contribution towards the offrate using the

summation 3 3 mim2->A1m2+ 3 Smim2-> mi,A2would be an overestimate of the

z A s e

true contribution 3 3mim2>aian EAT AA OEA DPoroEhekeddin OAT OA

this case, to account for positive cooperativity we dowsweight the summation
of 3 3 mim2->A1Lm2+ 3 3 m1m2->m1,Aa2 Conversely if m1 and m2 were negatively
cooperative, then a positive weighting would be more suitable to account for the
underestimation. Further, higher order cooperativity effects involving three or
more residues are known(Albeck et al., 2000)and it is likely that many binding
modules exhibit such complexity, where it is not possible to decouple the
contributions from each individual residues. However, if we assume that
cooperativity effects are taking place, the weighting applied should als@flect
the number of residues suspected to be cooperative. With this in mind, the
cooperativity hotspot descriptors are designed as follows; given a set of
predicted hotspots at the interface, each hotspot is categorized according to the
hotregion cluster size it is found in. AsInt HS Energyassumes hotspot
contribution is additive, the sum of the hotspot energies is independentf the
hotspot locations (equation 2.7). On the other hand,HSEner_PosCoopnd
HSEner_NegCoopre the sum of the hotspot energies downweighted /
upweighted using simple linearly decreasing / increasing functions related to the

size of the hotregion the given respective hotspot is in:

69



Chapter 2: Methods

4 MOUT 8 wr 211
HSEner_ PosCoopal W 2 DB .. 6 a W @R

Chus=1 ° - NHEE )

& N MOUT 8 | wT 2.12
HSEner_ NegCoopadl i 3> DIB. aa 6 a W% ®h

Crus=1 - G2

where wnrPec = (0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1) andrc = (1,
0.875, 0.75, 0.625, 0.5, 0.375, 0.25, 0.125) for hotspatsin a hotregion of sizes
(HR=1, 2, 3, 4, 5, 6, 7, 8+) respectively. Though more complex siorear
weightings could be investigated, such as ones fitted to the atite data itself,
this would require sacrificing parts of the data for fitting. With this in mind, all
hotspot descriptors designed in this work were independent of any offate data.
Coarsegrained versions HS_PosCoopnd HS_NegCogpwhich weight hotspot
counts instead of energis, are also implemented in the model. One should note
that since the energetic contribution of a hotregion taken as a whole is
considered to be additive and independent of other hotregiongKeskin et al.,
2005, Reichmann et al., 2005)ve only aim to investigate and account for intra
hotregion cooperativity using these descriptors as opposed to intelnotregion

cooperativity.

2.3.7.4 Hotspot Coverage Related Descriptors

Other hotspot descriptors relate to the spread of hotspots across the interface.
The intuition here is that a heterogeneous distribution of hotspots across the
interface might be more beneficial to complex stability than if hotspots where
concentrated onto a specific region of the interface onlyAVG_HS_PathLength
the average path length between all possible pairs of hotspots at the interface,
normalized to the average path length of all possible pairs of a random set of
residues at the interface. The pé length between two residues is calculated as
the least number of contacting residues linking them together. Two residues are
considered to be in contact if any of their atoms are at a distance smaller than the
sum of their van der Waals radii + 0.5 Angsoms. No_ Clustergsounts the number

of unique hot regions, where it is likely that more hotregions may span the
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interface given that separate hotregions are not in contacMaxClusterSizeounts

the change in the number of hotspots in the largest hotregm

2.3.7.5 Definition of a Hotregion

Some of the hotspot descriptors use hotregion information within them
(No_Clusters MaxClusterSizge HSEner_PosCoop/HS_PosCoop and
HSEner_NegCoop/HS NegCpof hotregion is created whenever two or more
hotspot residues are incontact. Two hotspot residues are considered to be in
contact if any of their atoms are at a distance smaller than the sum of their van
der Waals radii + 0.5A. A hotspot residue is added to an existing hotregion, if any
of its atoms makes contact with anyof the hotspot residues already in the

hotregion.

2.4 Performance Measures and Significance Tests

A number of performance measuregare employed inthis work to assess the fine
grained and coarsegrained ability of both descriptors and model predictions.
For fine-grained assessment ofhow well a descriptor or model predictions
describe experimental data, OEA 0 A ApmoQuctinbr@ent correlation
coefficient (PCC) is used. This is calculated as the covariance of the two variables
divided by the product of their standard deviation. This parametric measure of
correlation assesses the strength of linear dependence between two variables
and is awidely accepted meric. A second méhod employed is the Mann
Whitney U-test. Thischecks whether a set of two independentlaservations have
smaller or larger values than the other. The test is used to assess the coarse
grain predictive power of our descriptors or predictors in discriminating
between say stabilizing mutants from destabilizing mutations. Several other

classificaion related measures are used for this same purpose also, namely:

True-PositiveRate (TPR) / Recall:

TP
TP+ FN
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FalsePositiveRate (FPR):

FP
FP+TN

Specificity:

N
TN+ FP

Precision:

TP
TP+ FP

Accuracy:

TP+TN
TP+FP+FN+TN

- AOOEAXxB0O #1 OOAT AGET T #1 AEEEAEAT O | - ##Qq

TP3 TN -FP FN
(TP+FP) TP N (¥IN Fp (TR FI

F1-Score:

23 precision 3recall
precisiont recall

where TP=TruePositive, FP=Falsé’ositive, TN=TrueNegative, FN=False

Negative.

For comparison of two PCCs, say for the comparison of two prediction
algorithms, a sgnificance of the difference letween the two correldions is
calculated using the Fisher fto-z transformation. p-values less than 0.05are

considered to be significant.
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3 A Model for Protein -Protein
Binding Affinity Prediction

3.1 Introduction

In this chapter, the characterization and prediction of proteirprotein affinities is
studied. The computational prediction of bindingaffinities requires not only an
understanding of the driving forces behind complex formation and stability, but
also an accurate computational representation of such forces. Subsequently, a
model is then employed to optimally combine the influence of eacbf these
driving forces into one coherent prediction of affinity. Throughout this process, a
benchmark set of proteinprotein X-ray structures and their experimentally
determined binding affinities, is used to validate the accuracy of the model

predictions.

As detailed in sectionl.5.7, up until this work, several attempts at the prediction

of binding affinities were made. The limitations of these mdels are highlighted

73



Chapter 3. A Model for Protelrotein Binding Affinity Prediction

in sections 1.5.7.1 1.5.7.2and 1.5.7.3form the motivations behind the binding
affinity prediction model devised in this work. First, the dataset of protein
protein structures and their experimental affinities used to benchmark the
affinity model is described in section3.3.1 A large set of molecular descriptors
calculated on these structures is detailed sectior8.3.2 This descriptor set
significantly expands on what was used in previously published affinity models.
Namely, besides a number of physical descriptors, it adds a broad range of
statistical potentials, new solvation models and better entropic terms. The
molecular descriptors are then fed into a number of machine leaing models
(described in 3.3.3) that are combined to make the final prediction. This is
termed as the consensus model. The setup used is that of four base learning
i1 AR Od OAT AT & OAOO j2&q OAGCRADGEI T h
regressionsplines (MARS) and radiabasisfunction (RBF) interpolation, with
the mean of their prediction constituting the final affinity prediction model. The
motivations behind these learners are mostly based on the limitations
surrounding linear regression in modelling, such as accounting for nen

linearities and dealing with a large set of noisy descriptors.

The consensus model approach is successful in increasing upon the accuracy of
its best base learners and more importantly, outperforms all other published
methods tested. Two aspects that stood out dm this work include firstly, the
limitations in our ability to predict the affinities for complexes which undergo
significant conformational changes and secondly, the reduction in accuracy
observed when the errors in experimental binding affinities are nbcontrolled

for with a validated set of canplexes. Finally, in sectior3.5, the binding affinity
methods developed postpublication of this work are discussed andsuggestions

for future work outlined.

This work was done in collaboration withmy colleaguelain Moal. The selection
and calculation of the molecular descriptor set \&s performed by lain Moal. The
machine karning algorithm selection and design was performed by myself. The

analysis of the results wagerformed jointly.
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3.2 Approach and Motivations

The limitations mentioned in section 1.5.7.1z bias towards complexes for which
their component parts undergo little to no conformational change,section
1.5.7.% static-structures and section 1.5.7.% models not able to account for
diversity, form the motivations behind the BAP model developed in this work.
The following methods section3.3 detailing the dataset, descriptors and learning
models, shows how the limitations mentioned above are addressed. In section
3.3.1the dataset of proteinprotein complexes is described. This consists of a
diverse set of proteinprotein interactions with varying conformational changes.
In section 3.3.2 the affinity descriptors used in this work are presented. These
include energetic descriptors calculated on conformational ensembles of each
complex and their unbound components. Finally, in sectioB.3.3 the machine

learning models used for training and prediction are detailed.

3.3 Methods

In section 3.3.1 the dataset of proteinprotein complexes is described. This
consists of a diverse set of proteiprotein interactions with varying
conformational changes. In section3.3.2 the affinity descriptors used in this
work are presented. These include energetic descriptors calculated on
conformational ensembles of each complex and their unboundomponents.
Finally, in section 3.3.3 the machine learning models used for training and

prediction are detailed.

3.3.1 Binding Affinity Benchmark Datas et

The structures and experimental affinities for the recently published binding
affinity benchmark (Kastritis et al., 2011)were used as the main source for
training and testing the BAP model designed in this work. The dataset is
describedmore thoroughly in section2.1.1 In summary, the dataset consists of a
total of 144 complex structures for which the crystal structures of each complex,

along with each of its unbound components at high resolution (< 3.25Apre
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available. A key aspect of this dataset, which improves upon previous datasets

used in BAP (see sectiofh.5.7), is its diversity:

1 Several receptor/ligand protein-binding partners undergo significant
conformational change upon complex formation, of which some exhibit

disorder to order transitions.

1 Complexes, within different protein families, cover a wide range of

functions.
1 Wide range of affinities.

From the total set of 144 complexes, 137 were used. The complexes with protein
database codes, 1UUG, 11QD and 1NSN, were removed, as affinities available
were only denoted by upper limits; codes, 1DE4, 1M10, 1INCA and 1NB5 were

removed, as certain features were difcult to calculate for them

A high-quality validated subset of the original affinity dataset is analysed
separately. This validated set is used to assess to which extent experimental
error in affinities affects the model predictions. One should note thain this
validated set, the diversity in affinity and complex families is still present. More

details on this validated set are presented in methods sectich1.1.1

3.3.2 You are what you eat.. Affinity Descriptors

In collaboration with lain Moal, a large set o200 molecular descriptors were
calculated onthe binding affinity benchmark and fed into the machne learning
models described in sectior3.3.3 A detailed list of the descriptorsis provided in
Table 2.1 of the methods section2.2. The descriptor setcovers a wide-range of
known determinants of complex formation and affinity. The set contains
different contributors to the free energy furction described in sectionl.5, and
includes descriptors related to the potential energy, solvation energy and
entropic contributions to binding. In addition to the biophysicaldescriptors, a
number of statistical potentials are added, which vary from pair to multibody
potentials and contain both coarsegrain and atomistic potentials.Though some

specific packages are used for a number of descrgrs, most were calculated
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using the ProtorP server(Reynoldset al., 2009) CHARMM forcefieldBrooks et
al., 2009), PyRosetta(Chaudhury et al., 20100)AT A OEA o071 OAT OEAI O (
(Feng et al., 2010)For the assumption that binding is rigd-body, and structures

are static, descriptors were calculated as:

E:ERL,b '(ERb ELb) 31

The motivations behind the descriptors calculated here are several fold. Firstly,
most of the descriptors are directly related to known physical contributors of
affinity, including terms for Hydrogen Bonding, Van der Waals and Electrostatics.
Emphasis was given to entropy related terms, as this effect is harder to
characterise. Therefore entropic terms include rotational, translation and side
chain entropy terms, vibrational and disorder loop entropy terms along with
terms for the hydrophobic effect. Solvabn is another important aspect modelled
at different levels of sophistication. Here, both simple terms related to buried
surface area and more sophisticated continuum electrostatics models are
included. Different to other BAP models, in this work we do ridimit ourselves to
physic-based descriptors only. A number of statistical potentials and
miscellaneous descriptors are also added to the descriptor set. The advantage of
statistical potentials is that they implicitly capture a number of effects that are
otherwise only modelled individually using physicsbased terms. As pH can have
a significant effect on binding affinity, even over a narrow range, some
descriptors were chosen for their ability to account for variable protonation
states. PROPKA was used tietermine the pH of the titratable amino acidgBas
et al., 2M8). The most probable assignment of protonation states, at the
experimental pH, was determined using PDB2PQ®olinsky et al., 2004) These
assignments were used in all of the descriptors calculatedsing the CHARM?22

forcefield, which are prefixed with ACE22.

The two major introductions in the BAP model of this work relate to structural
ensembles and unbound structures. These are described in the following

sections 0f3.3.2.1and 3.3.2.2respectively.
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3.3.2.1 Unbound-Bound Descriptors

To account for potential conformational changes, descriptors were also
calculated on the unbound receptor and ligand. Descriptor calculations ignored
residues which were not in both the bound and unbound structures. In this way,
any energetic differences in the two conformational states, is irgpective of
additional residues in the bound.All descriptors calculated on the unbound

OOOOAOOOAO EAOA A OOEZEQD 1 £ O 5"8 AT A AOA
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3.3.2.2 Descriptor Ensembles

Proteins both in their unbound and bound forms do not exist as static structures.

Rather they exist in a number of conformations of varying energetic accessibility
(See section1.5.2. As seen in equationn 1.17, (U, )and (W, ) are Boltzmann

average potentials for the potential energy and solvation energy respectively.
Also, equation1.13 shows that only the low energy confomations contribute
significantly to the potential energy. Therefore samplingonly the low energy
conformations provides a sufficient approximation. To generate such
conformational ensembles, he use of an approximate method CONCOORdR
Groot et al.,, 1997)was preferred to complex molecular dynamics simulations,
mostly due to computtional efficiency. Unlike MD trajectories, the
conformations generated by CONCOORD have no dependencies previous
conformations; consequently, he conformational space is sampled more
broadly. Comparisons of CONCOORD simulatomagainst MD simulations on
common structures show great overlapin both the accessible motions and their

magnitude (de Groot et al., 1997)

For each example in the benahark, an ensemble of 100 structures was
generated using CONCOORD with dynamic tolerance settinthis, for each

ligand, receptor and complex Descriptors are then calculated on these
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ensemblesand given that CONCOORD generates structures of equal plausibility,

a meanvalue is taken over aliensemblesfor each descriptor.To distinguish them

from descriptors calculated on a single static structure the ensemble

cd AOI AGET 1O EAOGA A O %. 36 OOA&FEZE@® AT A AOA
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For those descriptor calculations where theensembleswere calculated on the
unbound ligand and receptor a suffix ofd0 . %" 58 add@alcOi&del As:

Eeou = (Ern) {Eru) €E.) (E.) 34

3.3.3 Machine Learning Methods

As highlighted in section1.5.7.3models for BAP have previously been limited to

a sum of terms with the weights of each optimised using linear regression. Here,
a selection of four machindearning methods was combined to form a consensus
prediction, with the consensus prediction being the mean prediction of the four
base models. It should be noted that more complex forms of ensemble learning
are indeed possible(Wolpert, 1992). For example one may have a meti@arner
learn weights for each basdearner according to the input example at hand;
however attractive, such methods would require a further validation set which is
not available in this case. The four base models are the Random Forest (RF), the
-8 2ACOAOOEI T 4 oladbtive-RedrehsionDlings ENARSE) Bkl O A
the Radial Basis Function Interpolation (RBF) each of which are describe in the
methods section0. The aim was not to use the learningnodels in a blackbox
fashion but rather the selection of models was guided by the following

considerations:

1 Addressing limitations of linear regressioi.R has been routinely applied
to protein-protein affinity prediction methods. The ML algorithms
selected here aim to address some of the limitations LR would reach in

our dataset and feature set. These include; inability to account for nen
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linear relationships; inability to partition the input space and apply sub

models; degradation in performance in higkdimensions.

1 Differing conceptual attributes.The prediction of each of the four ML
models is combined to form a final prediction which is the mean of the
four models. This is similar to a stacked learning methodology in its most
basic form. Ideally for effective stacking, the base learning modelslid
be accurate but show weak correlation between their predictions
(Wolpert, 1992). The combination of all four base models would then
work synergistically rather than redundantly. To try and achieve this, the
learners were chosen on the basis of having different conceptual
attributes in how they form their model. For instance, the RF is derived
from the consensus of tree models trained on variable subsets of data and
AAAOOOAO8 4EA -uvd 1 AOGETA 11 OEA 1T OEAO
tree model with the added flexibility of applying further regression sub
models within the tree itself. Using its hinge functions, the MARS model
works by allowing certain descriptors to contribute within certain ranges
ATA 110 1T OEAOO8 4EAOAAZEI OAh EO AAT Acg
AAOGAOEDOT O AT A AOIT Eodker, GiFothe@kthoBs@hbie B A O O (
base their final prediction on a selection of features, rather than the whole
available set. Therefore, depending on the final features selected by the
model, this is likely to add some variability in their predictions. The
variability in the features making it to each of the final models is
confirmed in the results section3.4.5. Finally, the RBF method works in a
completely opposite fshion to the other three models. Here, the
emphasis is placed on particular datgoints that are furthest from the
current data-point. Therefore, the RBF uses all descriptors but not all

examples in its final model.

1 Overfitting avoidance.Given the largeset of descriptors available to the
models and the limited size of the training set, overfitting can be an issue.
To avoid this, the methods chosen either implicitly or explicitly avoid
overfitting. RFs do not overfit as more trees are added. Rather, thest

error converges to a limiting value(Breiman, 2001a) They are able to
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achieve low bias predictions through trees built from different subsets of

the data and descriptors, and low variance through averaging the output

I £ A1l OOAAO8 4EA - unbuiltAdckivard elirgirgatioh AA OT A C
routines to reduce model complexity, by the removal of tree branches and

basis functions respectively. Consequently, both of these operations

reduce the number of features in the final model. In the RBF learner, the

feature weights are not optimised. With this in mind, an outercross

validation loop is still performed for benchmarking the predictions of

each model.

1 Parameter optimization.To avoid having to sacrifice data for parameter
optimization, all methods chosen are knownto work well under their
default parameters settings. No tweaking of learning parameters was

therefore performed.

1 Interpretability and visibility. Understanding how the features are used in
the final model was a key consideration for selecting the learners. Besides
forming an accurate predictor of binding affinity, it is also important to
ascertain the physical plausibility of the final models, by ikowing which
features are essential to the prediction and how they are employed by the
model itself. With the RF model, both global feature importance and case
wise feature importance measures are available. The cawsgse feature
importance measure is paticularly desirable. For example, one hopes
that having descriptors which calculate energetics on the unbound
structures of the complex would help the affinity prediction of complexes
which undergo significant conformational changes. Invoking the case
wise feature importance measure one could verify this specifically by
checking whether the features on unbound structures are shown as being
important for those cases which undergo significant conformational
AEAT CA8 4EA -uvd OACOAOQtkehtire ioporfakc® OOAAT
measure; however, the trees can be easily visualized and feature
importance was still evaluated. The nature of the MARS model basis
functions, not only indicates which features form part of the final model,

but also the functions appied to each of these features. Effectively the

81



Chapter 3. A Model for Protelrotein Binding Affinity Prediction

function shows us the parts where the given feature has little influence,

and where it positively contributes to the prediction.

3.3.3.1 Random Forest (RF)

A Matlab implementation of the RF algorithm, as described biBreiman, 2001a),
was used. The workings of the RF algorithm are detailed in section 2.3.1. In this
implementation, the number of decision trees was set to 750 and, when building
the decision trees, themtry parameter was limited to 20 at each node; no
maximum was set on the three depths and the final prediction is returned as the

mean of all trees.

3332 - w8 2ACOAOOEIT 40AA j-wdq

4EA -uvdé 1T AAT OOAA EO OEI EI AO OiF OOAT AAC
possibility of having a linear regression model at the leavegQuinlan, 1992). The

x| OEET CO 1T £ OEA -ud Al C23IreRathAdr thak @oblyingA OAE | /
one M540 the full feature set, an ensemble of M¥egression trees was used. In

Oil OAl pe -uvd OACOAOOEIT OOAAO xAOA AEOEA
tree set, all features are divided randomly into four feature subsets. Each

different random feature subset is then used to train each of the four trees within

this tree set. Therefore, for a given tree set, all features are available for use, but

for each tree within the tree-set, a random subset of features is available. For

prediction, the mean output ofall of the 16 trees is used.

3.3.3.3 Multivariate -Adaptive-Regression-Splines (MARS)

MARS is a nofparametric regression method which uses a set of hinge functions
to model nonlinear relationships between the input variables and lhe target

output (Friedman, 1991). Default values were used without tuning, as follows:
the maximum limit on the number of basis functions grown in the forward phase
is 21, there was no limit on the number of basis functions used in the final model
after pruning. Model complexity is alsolimited by setting the knot-cost to the

recommended value of two. Piecavise cubic modelling was used to model hinge

regions for smoother transitions. To keep the model as interpretable as possible,

82



Chapter 3. A Model for Protelrotein Binding Affinity Prediction

no selfinteractions between input variables and no inteactions between
variables in the basis functions were allowed. The ARESLab toolbox

implementation was used.

3.3.3.4 Radial-Basis-Function Interpolation (RBF)

A Matlab implementation d the RBF method, as sectior2.3.4 was used. All
descriptors values were normalized in the range [0, 1] before training. The key
parameter in the RBF is the choice of the basis function. For this, the default
multiquadric basis function was wsed. A unique characteristic for the RBF is that
the model finds weights for examples as opposed to features. Therefore in this
way, uninformative examples as opposed to uninformative features are weighted

out of the model.

3.3.4 Model Evaluation

To assess ounbility to model and predict binding affinities, leaveone-out cross

validation (LOOCV)was employed and the predicted affinities were compared

Oi OEA AgbPAOEI Al OAI A /E/EE tnioi0eatAdOrreldiéhET C 0 A
coefficient. To establish significantdifferences in correlations achieved by

different models, a Fisher r to z transformation of the correlation coefficients

was used.

3.4 Results

3.4.1 Model Performance on the Binding Affinity Benchmark  z Validated Set

yTEOGEAI T U OEA &£ 00 AAOGA 1 AAOT AOO j-'!'23h -
using leaveone-out cross-validation on the validated set. The performance of

which is shown in Figure 3.1 alongside that of the Consensus model (Cons.),

which combines the prediction of the four base learners by taking the mean of

their predictions.
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Figure 3.1: Model performance for the 57 complexes in the validated set
Correlation between the experimental and predicted binding affinities for the
learners and their consensus, using leavene-out crossvalidation. The
potentials of Liu et al. (2004) (DFIRE) andSu et al. (2009XPMF) are also shown
for comparison.

As a benchmark comparison, the performance of DFIREu et al., 2009and PMF
(Liu et al., 2004)are also shown. To assess the effect of conformational changes
on the prediction accuracy, performance is separately tested for cases which are
rigid (Rig. with Gapha RMSD < 1.5 A) and flexible (Flewith Capha RMSD > 1.5 A).
The consensus model achieves a correlation ofvR=0.77 with experimental
affinity, which is significantly higher than that achieved by the potentials PMF
(Rva=0.51 p=0.012) and DFIRE (\A.=0.44 p=0.003).

3.4.2 Model Performance on Binding Affinity Benchmark z Entire Dataset

The learners presented inFigure 3.1 were also evaluated on the remaining
complexes that are not part of he validated set. To observe the performance
over the complete dataset, the learners were trained on all 137 complexes, and
the leaveone-out cross validated predictions of thenon-validated complexes
amalgamated with those of the validated set in SectioB.4.1 The correlations of
the learners and experimental affinities, in a similar fashion td-igure 3.1, are

presented inFigure 3.2.
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Figure 3.2: Model performance for the 137 complexes in the whole
benchmark.

Correlation between the experimental and predicted binding affinities
for the learners and their consensusThe potentials ofLiu et al. (2004)
(DFIRE) andSu et al. (2009XPMF) are also shown for comparison.

Though, in comparison to the results on the validated set, the relative
performance of the four base leaners changed, the consensusodel still
performs better than the most accuratebaselearner. In addition, the consensus
model achieves significantly higher correlations (R.=0.7) to that of DFIRE
(RaLL=0.52, p=0.02) and PMF (R.=0.62,p=0.03).

Comparison of Figure 3.1 and Figure 3.2 indicates a clear drop in predictive
power across all methods as experimental affinities that are not validated are
used. One should note that, this drop is despite the fact that the validdtset still
has a proportion of nonrigid cases and interaction types similar to that of the
entire set (see section2.1.1). These results provide strong evidenceot the
importance of having affinity data that is corroborated using different
experimental techniques. To remove any possibility that this drop in accuracy is
model dependant, a number of methods are tested orhé 37 complexesfor

which predictions are avalable for all methods, andoresented inFigure 3.3.
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Figure 3.3: Performance of the consensus model on the 37 complexes in the
intersection between the dataset of (Kastritis and Bonvin, 2010) and the
benchmark (All), and the 14 in the intersection with the validated set
(Validated).

Leaveone-out crossvalidation is used for the interactions which intersect the
validated set. Carelations for a number of other energy functions are also shown
(see Section 3.4).

Comparing theperformance of each method on all 37 complexes, and the 14 of
which are validated, a consistent trend is observed were methods tend to
perform better on the validated set. Once again, here it is shown how the

consensus model is still the best performer, eveon these specific test subsets.
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Figure 3.4: Scatter plot for predicted and experimental affinities
Flexible (green circles) and rigid (red squares) proteins are shown. Leav@ne-
out crossvalidated values for the validated set are highlighted in solid.

Figure 3.4 shows the scatter plot of predicted and experimental affinities were
the validated complexes are marked in solid. There are two notable features, the
first being the lower spread of points fo the validated set. The second, that the
dense upper left corner indicates that for those cases, the affinity is
overestimated. Given that most of these datpoints are flexible complexes, the
entropy loss due to conformdional change is not characteried well enough to

balance out the enthalpic contribution towards binding affinity.

3.4.3 Consensus Model vs. a Single Learning Algorithm.

The consensus model in all three data types (All validatedvR=0.77, rigid R/ac-
riG=0.9 and flexible RaLrLex=0.59) achieves a correlation, which is higher or as
CiT A AO OEA AAOO AAOCA 1 AAOTAO ET OEA
correlation of RvaLric=0.59 on the flexible cases, but one of the poorest in
predicting the rigid cases. In the latter case, thdRBF achieves the highest
correlation (Rva-ric=0.87) of all base learners. The consensus model is able to
take the best of both worlds by achieving the highest correlations in both of

these situations. This confirms that the four base models are working
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synergistically together and taking the mean of their predictions is a valid

approach. The correlations between the predictions of each of the four base

learners, is also evaluated. As expected, the trdeA OAA 1 AAOT AOO j 2& A
highly correlated with R=0.95. The RBF méabd shows a correlation of R=0.8

AT A 2En8ye xEOE OEA 2& AT A -uvd 1 AAOT AOOs
correlation with the other methods (R=0.65, R=0.69, R=0.68, respectively).

Though this may suggest that the MARS is picking owatures that the other

learners are nd, one must also keep in mind that the MARS model was the

weakest learner of all.

3.4.4 Descriptors Derived from Unbound Structures, Improves Performance for
Flexible Cases.

A key element of the BAP method developed in thiwork, as described in section
3.3.2, is the introduction of ensembles and unbound structures. To determine the
gain in having energetics calculated on the unbound and nestatic structures as
part of the model, the consensus model is trained on speciffeature subsets.
These are: the UnBound (UB) subset; features calculated on the unbound
structures, the ENSemble subset (ENS); features calculated using the CONCOORD
ensembles of thebound components, the Ensemble Bound/Unbound EBU:
features calculated usng the ensembles of bound and unbound structures and
BASIC in which neither ensembles nor unbound structures are considered. The
LOGCVcorrelation achieved by training the consensus model on just the BASIC
descriptors is used as a reference point to assesgain or loss in predictive power
by adding the UB, ENS, EBU features to this BASIC subset.
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Table 3.1: Performance of the consensus model trained on different feature
subsets.

The UB subset: features calculated on the unbound structures, ENS: features
calculated using the CONCOORé&nsembles of thebound components EBU:
features calculated usingthe ensembles of the bound and unboundtructures
and BASIC in which neither ensembk nor unbound structures are considered.
The correlation achieved by training the consensus model on just the BASIC
descriptors is used as a reference point to assess what is gained by adding the
UB, ENS, EBU features to thBASIC subset. All correlatios shown are those
between theLOGCVpredictions with the experimental affinities.

Feature Subset  All Rigid  Flexible
BASIC 0.67 0.91 0.44
BASIC+ENS 0.69 0.85 0.45
BASIC+UB 0.74 0.91 0.47
BASIC+EBU 0.73  0.90 0.54
ALL 0.77 0.90 0.59

The results are summarized inTable 3.1. First, it is noted that the addition of the
unbound descriptors, both on the unbound static structures (UB) ah on the
unbound ensemble structures (EBU), increases the correlations over the BASIC
model. BASIC ®.=0.67, whereas BASIC+UB and BASIC+EBU models achieve
correlations of R/ai=0.74 and R/a=0.73 respectively. This increase in the overall
correlation results from the additional accuracy in predicting the flexible cases
(from RvaLrLex.44 to Ria-Fex=0.47 and RaLrex=0.54 for BASIC, BASIC+UB,
BASIC+EBU respectively). Ifact, the prediction of rigid cases remained constant
at around R/ai-ric=0.9. e should note however that the increase in correlation
with the addition of the unbound descriptors is mostly evident when ensembles
were calculated on the unbound structures. Converselyhe addition of bound
ensembles (with no consideration of the unbond structures) to the BASIC set
has, as expected, no effect on the prediction of flexible cases. An interesting
result is that addition of ensembles actually degrades the signal for rigid cases
(BASIC RaL-ric=0.91 and BASIC+ENSvVR-ric=0.85). This may beexplained by
some conformational ensembles generatedhot being representative of those
accessible by the rigid complex in question. It may be the case that, for these

rigid structures, more flexibility than is energetically accessible is being
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generatedby CONCOORD. This translates itself as noise added to the true signal

to be captured.

From these results, it can be concluded that the inclusion of descriptors derived
from the unbound structures improves the performance for the flexible
complexes, without compromising the accuracy for the rigid cases. This
improvement is enhanced when used in combination with structural ensembles,
despite the ensembles not enhancing the consensus model when information
derived from the unbound structures is omitted. These results should still be
treated with caution, as the increases/decreases in correlation are not
statistically significant with p<0.05as the number of datapoints is restricted to
the 57 complexes in the validated set. Therefore, when the data allows, th@me
analysis must be performed again on a larger dataset to confirm the claims
above. With this in mind, me complex, which for example shows clear
improvement in the prediction of its affinity upon the inclusion of unbound
descriptors, is the interaction between MK2 and p36 MAPK (PDB code, 20ZA).
MK2 undergoes a significant disordetorder transition upon binding, and the
strongest within the dataset. In this case, when training the consensus model on
the BASIC set of features (i.e. not incluty unbound-bound transitions), the
predicted affinity (17.4kcal moll) overestimates the experimental affinity of
(11.7kcal mott). Once descriptors on the unbound were calculated, the learners
are able to make use of available descriptors that calculate the entrogjpanges
due to disorder-order transitions, and the predicted affinity (10.9kcal molit)

achieved was a closer approximation to the experimental affinity.

3.4.5 Learning from the Learners z Assessment of the Physical Plausibility of the
Learning Models and the Ke y Determinants of Affinity.

One of the driving forces behind the selection of the base learners for the
consensus model is the interpretability of the models. In this section, the learnt
models from each of the base learners, is probed further for validain of their

selected features.
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RF base learnerBoth the global features importance and the caseise feature
importance measures are invoked for the RF learner which was trained on the

full set of descriptors and validated set of affinities.

Table 3.2: Top 10 most important descriptors using for the RF base learner
trained on the validated set.

Feature importance in this case is the mean decrease in normalised mean square
error generated from the RF learner.

Rank Descriptor Descriptor Importance
1 ACE19 HYDR 0.100
2 ROS_FA_ATR 0.094
3 ACE22_VDW 0.094
4 ROS_HBOND_ENS 0.078
5 DDFIRE_ENS 0.076
6 S_VIB 0.063
7 MJ2H_PP 0.049
8 ROS_FA_ATR_ENS 0.047
9 MJ1_PP 0.046
10 H_BOND_ENS 0.044

The top 10 most important features making up the RF model include a
combination of thermodynamic terms, statistical potentials and miscellaneous
descriptors. The most prominent being hydrophobic burial (ACE12_HYDR),
London dispersion forces (ROS_FA_ATR), Van der Waals (ACE22_VDW) and
hydrogen bonding (ROS_HBOND_ENS). Also ranked highly are the change in
vibrational entropy (S_VIB) and a number of statistical pentials (DDFIRE_ENS,
MJ2H_PP and MJ1_PFhis confirms the physical plausibility of the model as it
includes terms related to the potential and solvation energy and also those
related to entropic contributions (See sectiorl.5).

From the top 10 descriptors, four terms are calculated on structural ensembles,
but no descriptors using the unbound structures are listed. In sectioB.4.4it was
shown that the introduction of UB and EBU descriptors improves the prediction

of the flexible cases, the caseise feature importance measure of the RF was
invoked in order to understand whether the UB/ EBU descriptors were at least
being invoked for the flexible cases. Here, a feature calculated using the unbound

structure appeared as one of these top 5 features for 16 of the 29 flexible
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complexes (55%). This cpares to only 3 of the 28 rigid complexes (11%); this
indicates, that to some extent, the learnt model is making correct use of the UB

and EBU descriptors for the complexes that should gain from it.

- wd " AOAThe #illAdeskrifitar set was assignedandomly to the four sub-

trees within a tree set. A descriptor can therefore be in the final model of only

one of the four subtrees in a treeset. This means that at most, a given descriptor
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models was analysed, its features extracted and their occurrence summed in
Table3.3.

Table 33: 41T B pn 1100 EIi BT OOAT O AAOAOEDOI 00
learner trained on the validated set.

Descriptor importance refers to the number of times a descriptor is part of a sub

tree. The maximum of which is four.

Rank Descriptor Descriptor Importance
NSC 4
OPUS PSP ENS
ROS CG BETA
ROS FA ATR
BIOSIMZ KON
DDFIRE ENS
GEOMETRIC EBU
H BOND
INTERNAL UB
NUM HB
PLANARITY
ROS FA REP ENS
SR
SKJG PP
STC &ENS
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algorithms, only a few descriptors such as DDFIRE_ENS, ROS FA ATR and
H_BOND are common between them in the set of most important features.
Similar to the RF, the most imporlh T O AAOAOEDOT OO ET OEA AAO

a combination of thermodynamic terms and statistical potentials. Even though a
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number of entropic terms are available to the learning models, besides the
change in vibrational entropy (S_VIB) and change irmotational entropy (S_R),
entropictermsarenotasAT I i TT ET OEA O b EAAAOOOAO 1 E

MARS base learnefThe MARS model trained on the validated set terminates with
14 basis functions using a total of 10 descriptors. The descriptors are ranked

according to their global importance to the model and presented ifiable 3.4.

Table 3.4: Top 10 most important descriptors using for the MARS base
learner trained on the validated set.

Descriptor importance is ranked according to thestandard deviation (STD) As
stated by Friedman (1991), the STD gives an indication to the relative
importance of the descriptors to the overall model, and is similar to a
standardized regression coefficientin a linear model. Shown also are the
generalizedcross-validation (GCV)scores. This represents the decrease in GCV
upon removal of the descriptor. Lastly,#basis indicates the number of basis
function the descriptor is part of.

Rank Descriptor STD / GCV #basis
1 ROS FA ATR 0.618/0.690/ 2
2 S VIB 0.456/0.230/1
3 ROS HBOND UB 0.365/0.071/2
4 OPUS CA UB 0.364/0.065/2
5 IRMSD 0.259/0.097 /1
6 OPUS PSP 0.191/0.048/1
7 ROS HBOND 0.176/0.069 /1
8 SKOA PP 0.174/0.052 /2
9 ACE19 SOLV 0.172/0.062 /1
10 ROS FA PP EBU 0.169/0.060/1
3EIEI AO Ol OEA -uvdé AT A 2& 11 AAI Oh OEA |1

the most prominent descriptor followed by the vibrational entropy term S_VIB.

Other descriptors include sovation terms, hydrogen bonding and statistical
potentials. Most significant here is that the MARS model makes use of a number

of descriptors on the unbound structures (ROS_HBOND_UB, OPUS_CA _UB,
ROS_FA PP_EBU, IRMSD). A key aspect of the MARS model i ihatble to

assign a variable weight for each descriptor across its range. Effectively, it can
AET T OA O ECT T OA rdginfof addescriptlr b assiyiirg @ Gerol £ A

weight within that region. It then provides a weighting to more informative
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regions of the descriptor. Such weights are presentednd explainedin Figure
35.

Figure 3.5: Descriptor contribution profiles for the descriptors selected by

MARS

Normalised descriptor values are on the (axis) and normalised affiniies are on

the (y-axis). The normalisation is such tha® is the lowest affinityj 3 ' -5.@kcal

mol-1) in the dataset andpostively higher values indicate an increase in affinity

i AsCc A0 mnmegkcaldMblAATzsA EAO pls.@kdal ni)EEA OCH
plots show the experimenal normalised dfinities. The line graphs showthe
contribution towards affinity from the basis functions ofthe given descriptor.

For most of the data2 / 3 . & ! _con&iBufio® to the binding affinity linearly
increases with more favourable dispersion forces (the normalisation in
ROS_FA ATR is dudhat O is highly negative in energy. However, a hinge
function models theoutlier 20ZAto have a lower affinity then one would expect
with its highly favourable dispersion forces (owing to its lage interface). The
role of the hinge function is to compensate for the entropy reduction resulting
from the disorder to order transitions occurring in a loop and at the @erminal
region of 20ZA The second most significant descriptor is the vibrational enbpy
term S_VIB. At low values, its contribution is approximately zero, but becomes
linear for higher values. This is consistent with the interpretation that, because
this descriptor is approximate (Carrington and Mancera, 2004) the learner is
presumably choosing to use it when its contribution to the binding energy is

sufficient to outweigh the noise it introduces. This for example cannot be
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