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Summary 32 

   The demonstration of Mycobacterium tuberculosis DNA in ancient skeletons gives researchers 33 

an insight into its evolution. Findings of the last two decades sketched the biological relationships 34 

between the various species of tubercle bacilli, the time scale involved, their possible origin and 35 

dispersal. This paper includes the available evidence and on-going research. In the submerged 36 

Eastern Mediterranean Neolithic village of Atlit Yam (9000 BP), a human lineage of M. 37 

tuberculosis, defined by the TbD1 deletion in its genome, was demonstrated. An infected infant at 38 

the site provides an example of active tuberculosis in a human with a naïve immune system. Over 39 

4000 years later tuberculosis was found in Jericho. Urbanization increases population density 40 

encouraging M. tuberculosis/human co-evolution. As susceptible humans die of tuberculosis, 41 

survivors develop genetic resistance to disease. Thus in 18th century Hungarian mummies from 42 

Vác, 65% were positive for tuberculosis yet a 95-year-old woman had clearly survived a childhood 43 

Ghon lesion. 44 

   Whole genome studies are in progress, to detect changes over the millennia both in bacterial 45 

virulence and also host susceptibility/resistance genes that determine the NRAMP protein and 46 

Killer Cell Immunoglobulin-like Receptors (KIRs). This paper surveys present evidence and 47 

includes initial findings. 48 

 49 

Key words: Ancient DNA; evolution; KIR historical specimens; Mycobacterium tuberculosis; 50 

SLC11A1 gene; Solute Carrier family genes  51 

52 
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1. Introduction 53 

   Microbial infections played a key role in shaping life on earth and have been a major selector for 54 

the evolution of all present species. Evidence exists that demonstrate infectious diseases were 55 

already present in our remote ancestors.1,2 Considering the impact of Mycobacterium tuberculosis 56 

(MTB), in all probability it has had a greater influence on the genetic selection of the Homo sapiens 57 

population than any other infectious agent.   58 

   The molecular identification of human pathogens in ancient human remains has recently opened 59 

new scientific fields that provide considerable insight into the history and evolution of host, 60 

pathogen and their interaction. This allows us to track changes in the ancestral tubercle bacillus as 61 

it became more and more exposed to the internal environment and immune system of its human 62 

host. Conversely, it is possible to track changes in the genes of the human population that confer 63 

resistance or susceptibility to disease over time.  64 

   TB is related to population density,3 transmitted from human to human living in close contact. 65 

However, the origin of the disease, the earliest hosts of MTB and its evolution remain unclear. The 66 

evolution of the bacteria cannot be considered in isolation. It is important to realise how TB has 67 

influenced the human development over the millennia, particularly our resistance/susceptibility 68 

genes. MTB experienced an evolutionary bottleneck when it became an obligate pathogen and has 69 

a clonal relationship with different human lineages.4 Subsequent co-evolution has resulted in the 70 

majority of TB infections being latent. In past eras of low human population density, MTB adapted 71 

over time in response to host-adaptive changes and vice versa. This process, which can be 72 

defined as mutualism, is a biological interaction between individuals of two different species where 73 

both individuals derive a fitness benefit. As the host becomes more resistant, strains better able to 74 

colonise the resistant host will predominate, thus starting off another cycle. More virulent MTB 75 

strains will attack their human host, killing the most susceptible and leaving the more resistant as 76 

survivors. However, when human populations were sparse, this could break the chain of 77 

transmission of the pathogen. The development of antibiotics has shortened the mutualistic cycle 78 

significantly, but the combination of HIV co-infection, antimicrobial therapy and increased global 79 

human population density is leading to the emergence of some MTB strains that are both more 80 

transmissible but also more virulent.5 81 

  82 

2. The impact of palaeomicrobiological investigations of archaeological human material 83 

2.1 Questions to be addressed 84 

    Archaeologists should seek to correlate research questions with historical events. For example, 85 

did past invasions introduce new pathogens, or more virulent strains of pathogens into susceptible 86 

populations? Thousands of indigenous peoples in the Americas died from exposure to European 87 

strains of MTB, measles and smallpox.6 Another possible scenario is that invaders may have 88 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 4

brought new pathogens with them on return to their place of origin. A good example of this is the 89 

introduction by European colonialists of venereal syphilis from South America.  90 

    A further question one has to ask is what was the genetic status of Homo erectus or 91 

predecessor species regarding the underlying genetic basis of host resistance and susceptibility to 92 

tuberculosis. Did ancestral hominids have the precursors of modern host susceptibility/resistance 93 

genes or were these acquired late? Is the ‘Out of Africa’ theory of the origin of human TB proposed 94 

by Gutierrez et al7 capable of being verified by a study of human remains, or will these show that 95 

TB developed in several areas and that this is the explanation for the variability of the organism in 96 

different geographical areas?  97 

   The majority of TB patients in the world today never progress to active disease. The World 98 

Health Organisation estimates that approximately one-third of the global population is infected but 99 

only 10% of immunocompetent progress to active disease during their lifetime.8 Our current 100 

immunity may be the result of Darwinian selection only, or may depend upon whether particular 101 

genes are switched on or off – a mechanism that can result in rapid adaptation. It must be 102 

remembered that other non-genetic factors influence human susceptibility to infection such as 103 

dietary deficiencies, stress and trauma.9 Long-term climatic changes have an impact on vegetation 104 

and agriculture10 whereas local variations in climate may influence transmission of MTB by 105 

infectious aerosols. Temperature changes will determine whether humans spend more time in the 106 

open air or enclosed spaces, for example. 107 

2.2 Significant findings  108 

   With the first reported finding of MTB DNA in ancient skeletons based on amplification of a small 109 

(123 bp) DNA target that was specific for the MTB-complex11 a new era of research into microbial 110 

pathogen evolution became possible. In addition to skeletal remains, calcified and mummified 111 

tissues also proved to be good sources of MTB ancient DNA (aDNA)Mic 12. Our knowledge was 112 

enhanced with the finding of MTB in a 17000-year-old Pleistocene bison from Natural Trap Cave, 113 

Wyoming.13 Spoligotyping revealed that the Pleistocene bison lesions contained aDNA from the  114 

M. tuberculosis complex, possibly MTB or Mycobacterium africanum, but distinct from 115 

Mycobacterium bovis. The consensus bison spoligotyping pattern was compared with the 116 

combined database collated by the National Institute of Public Health and Environment (RIVM), 117 

Utrecht, The Netherlands and the Veterinary Science Division, Department of Agriculture and 118 

Rural Development, Belfast, N. Ireland. No exact matches were found on the database. However, 119 

in a computer analysis comparing a library of defined species, the highest similarity was from M. 120 

africanum (82.3%), then M. tuberculosis - MTB (76.6%), with M. bovis having only 72.7% similarity.  121 

    The original aDNA findings in the Pleistocene bison were confirmed ten years later by finding 122 

species-specific MTB cell wall lipid biomarkers.14 We have used this method of independent 123 

confirmation of our MTB aDNA findings since 199815 because lipid analysis uses methods based 124 

on the direct detection of femtogram quantities of target molecules, with no need for any 125 
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amplification. This is a more rigorous method of independent confirmation than sending part of the 126 

specimen to another laboratory for analysis.  127 

 128 

   The Pleistocene bison contained MTB-complex aDNA but the particular lineage has not yet been 129 

identified. The earliest known human MTB was detected and characterised in samples from the 130 

submerged Neolithic site of Atlit Yam, a 9000-year-old settlement submerged in the sea off the 131 

coast of Haifa in Israel.16 The findings were confirmed by lipid analysis and the preservation was 132 

sufficiently good that it was possible to confirm that the MTB had experienced the TbD1 deletion, 133 

found only in human lineages. This is of particular significance as this was a Pre-Pottery site with 134 

the earliest evidence of animal domestication in the Levant.  135 

   We were fortunate as a group to secure samples from two large collections of natural mummies 136 

– one from the 18th to early 19th century from Vác, Hungary and the second from early Christian 137 

Nubia dated to 500-1400 CE at Kulubnarti in Northern Sudan. The importance of these collections 138 

was that the DNA preservation is well above average as in both locations the bodies were naturally 139 

mummified with no chemicals used. Indeed, the Kulubnarti material demonstrated co-infections of 140 

MTB with Leishmania spp, and using the Hungarian material, it was possible to determine the main 141 

MTB genetic lineages and perform molecular typing.17 Our work on the Pleistocene bison together 142 

with the Hungarian Vác mummies was cited and assisted in developing the hypothesis proposed in 143 

an excellent early paper on MTB evolution by Brosch et al.18 144 

   To fill the time gap between the Nubian Kulubnarti mummies and the Attlit Yam skeletal remains, 145 

specimens from the Bronze Age township of Jericho have been examined. Initially bones from 146 

early excavations from the 1950’s were studied, in a collaboration involving colleagues from 147 

Munich, Al Quds University and Jerusalem. Unfortunately, although these specimens yielded 148 

possible MTB aDNA, this could not be confirmed independently. Material from the excavation of 149 

Ain es-Sultan refugee camp area, where ancient Jericho (Tel es-sultan) ~4000 BC has yielded 150 

MTB aDNA, which has been confirmed by lipid analysis. The infecting pathogen was from a TbD1-151 

deleted MTB lineage.  At present a metagenomic study on this specimen is in progress at 152 

McMasters University. 153 

   The Hungarian mummy project based on 265 bodies, most wholly or partially mummified, from a 154 

sealed crypt, is unique as there is contemporaneous archival information about many of the 155 

individuals. This enabled the identification of some family groups and also made it possible to 156 

study TB in a large population from a fixed period and single location.12 It was possible to type the 157 

MTB aDNA within a family and to show that each member was infected with a slightly different 158 

strain.17 Recently, lung tissue from the older daughter in this family group has been shown by non-159 

enriched whole genome sequencing, to contain two different strains of MTB, with apparent 160 

sequential deletions, that appear to be ancestral to a modern outbreak strain in Germany.19 In 161 

contrast, MTB aDNA was found in a calcified lymph node from the mediastinum of a 95-year-old 162 

mummy, where initially all tissues were negative but an X-ray showed the calcified node. This 163 
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demonstrates that in this well-preserved group of mummies it is possible to identify cases of active 164 

and of latent infection.20 It was these finding that led to our interest in host susceptibility and 165 

resistance genes. 166 

 3. Host susceptibility and resistance 167 

   In addition to the retrieval of the pathogen DNA, a pilot study is investigating the genes believed 168 

to be responsible for susceptibility or resistance to the disease to determine if these genes differ in 169 

any way between those who were infected and those who appear immune. The study of the host 170 

susceptibility/resistance factors in the mummies and their descendants will give information on the 171 

role of host genetics in the pathogenesis of infectious disease, and contribute to the design of new 172 

therapeutic strategies. The study involves two host targets, the SLC11A1 gene (previously named 173 

NRAMP) and Killer Cell Immunoglobulin-like Receptor genes (KIRs). The plan is to seek any 174 

correlation between presence and absence of tuberculosis, with the presence of certain alleles in 175 

these resistance genes. Already, our initial research on material from Hungarian and Sudanese 176 

mummies has revealed some interesting genetic patterns.  177 

   KIRs are members of a group of regulatory molecules found on subsets of lymphoid cells, first 178 

identified by their ability to impart some specificity on natural killer (NK) cytolysis. The KIR locus, 179 

which maps to chromosome 19q(13.4) within the 1 Mb Leukocyte Receptor Complex (LRC), 180 

contains a family of polymorphic and highly homologous genes. KIR genes are tandemly arrayed 181 

over a physical distance of about 150 Kb, displaying the remarkable feature of gene content 182 

variation among haplotypes. The KIR molecules recognize the Human Leukocyte Antigen (HLA) 183 

class I molecules, which are encoded by genes within the Major Histocompatibility Complex (MHC) 184 

chromosome 6.21 Interactions between KIR isotypes that inhibit natural killer (NK) cell activity and 185 

specific HLA class I allotypes protect healthy cells from spontaneous destruction by NK cell 186 

mediated cytolysis. Other KIR isotypes stimulate the activity of NK cells demonstrating that KIR 187 

play a significant role in the control of the innate immune response. Recent studies report a greater 188 

repertoire of inhibitory KIR genes among TB patients than controls22 and a direct association of 189 

certain KIR and HLA-C genes23 with resistance to pulmonary TB. Different KIR genes have a role 190 

in inhibiting or increasing susceptibility towards TB and the complimentary MHC ligands need to be 191 

tested for the functional relevance of the associated genes.24 192 

    A contemporaneous study of the SLC11A1 gene is in progress at Lake Head University. The 193 

promoter region has been studied in modern populations and been linked to a number of infections 194 

and autoimmune diseases, caused by M. tuberculosis, M. bovis, Mycobacterium leprae, 195 

Mycobacterium lepraemurium, Salmonella typhimurium and Leishmania donovani. The 196 

identification of sequence variants has prompted research into the evolution of nuclear genes, 197 

inheritance patterns, selective pressures, and changes in both allele frequencies and disease 198 

linkages over time. Linkage studies can help ascertain the resistance and susceptibility factors of 199 

diseases and can assist modern medicine by providing a better understanding of the infectious 200 
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processes themselves.25,26 The Allele 2 variation of the promoter region was found to be present in 201 

every patient infected with tuberculosis, indicating that this level of allelic expression may well be 202 

related to the resistance or susceptibility of an individual to infectious diseases. Allele 3 seems to 203 

produce the highest level of SLC11A1 expression, which confers a resistance to microbial infection 204 

to the individual, but increases susceptibility to autoimmune diseases. Conversely, Allele 2 205 

produces the lowest level of SLC11A1 expression, conferring individual resistance to autoimmune 206 

diseases, but also a greater susceptibility to microbial infections. It is possible that this 207 

contradiction in allelic expressions may have resulted from inverse selective pressures, serving to 208 

maintain both alleles within the human population. Allelic variants of SLC11A1 have been identified 209 

as risk factors for paediatric TB.27 Other studies of host susceptibility and resistance genes have 210 

indicated that different human lineages may exhibit differing susceptibilities to TB infection.28 There 211 

is also limited evidence that genetic expression may vary according to sex and age.29 An intriguing 212 

finding is that human genetic susceptibility varies according to the differing clinical forms of TB.30 213 

    Limited data are now available on amplified aDNA (Tables 1 and 2) from 18 individuals from 18th 214 

century Vác, Hungary and early Christian Nubia (Table 2). 25 The promoter microsatellite 215 

polymorphisms of the SLC11A1 gene look encouraging as patterns are emerging (Table 2). Both 216 

the KIR and SLC11A1 studies are on-going and results will be disclosed on completion. 217 

 218 

4. Conclusions  219 

   This study seeks to show the progress that has been achieved in paleomicrobiological research 220 

over the last two decades and indicates its contribution to the study of human pathogen co-221 

evolution. Understanding the adaptations that the host and the pathogen have undergone through 222 

history, together with the resistance/susceptibility adaptations, may shed light on future interactions 223 

of humans with MTB. It is highly important to understand the process of mutualism – the biological 224 

interaction between individuals of two different species, where each derives a fitness benefit  – in 225 

the present era of personalized medicine. 226 
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 343 
 344 

  Table 1. The SLC11A1 gene promoter microsatellite primer set  345 

Primer Sequence 

C1        ACT CGC ATT AGG CCA ACG AG     

C2(FAM)* (6FAM) TTC TGT GCC TCC CAA GTT AGC 

• The antisense primer marked with florescence dye  346 
• The primer was published by Bellamy et al., 199825 347 

   348 

Table 2. Genotypes of the SLC11A1 gene found in Hungarian and Nubian Mammies 349 

Sample Allele Genotype M. tuberculosis infection 

1 2/3 Heterozygote Positive chest  

2 2/3 Heterozygote Positive chest  

3 2 Homozygote Positive chest and abdomen 

4 2 Homozygote Positive chest and abdomen 

5 2 Homozygote Positive chest and abdomen 

6 2/3 

Heterozygote Positive right lung and 

abdomen 

7 2 Homozygote Positive chest  

8 2/3 

Heterozygote Positive chest, abdomen and 

pluera 

9 3 

Homozygote Positive left chest, left lung, 

left pelvis and abdominal wall 

10 #  Positive soft tissue, pleura, rib 

11 3 Homozygote Not Infected 

12 3 Homozygote Not Infected 

13 3 Homozygote Not Infected 

14 2/4 Heterozygote Unknown 

15 3/4 Heterozygote Unknown 

# Mutation present – to be confirmed 350 

Allele 1(201bp) = A(CA)5TG(CA)5TG(CA)11C; Allele 2(199bp) = A(CA)5TG(CA)5TG(CA)10C; 351 

Allele 3 (197bp) = A(CA)5TG(CA)5TG(CA)9C; Allele 4(199bp) =  A(CA)5TG(CA)9C 352 

 353 
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Figure 1: Co-evolution between human and 
pathogens  

Evolution of one species in response to 
characteristics of another 

Human Pathogen 

 

 


