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Abstract

Computer simulation is finding a role in an increasing number of scientific disciplines,

concomitant with the rise in available computing power. Realizing this inevitably re-

quires access to computational power beyond the desktop, making use of clusters,

supercomputers, data repositories, networks and distributed aggregations of these re-

sources. Accessing one such resource entails a number of usability and security prob-

lems; when multiple geographically distributed resources are involved, the difficulty

is compounded. However, usability is an all too often neglected aspect of computing

on e-infrastructures, although it is one of the principal factors militating against the

widespread uptake of distributed computing.

The usability problems are twofold: the user needs to know how to execute the

applications they need to use on a particular resource, and also to gain access to suit-

able resources to run their workloads as they need them. In this thesis we present our

solutions to these two problems. Firstly we propose a new model of e-infrastructure

resource interaction, which we call the user–application interaction model, designed to

simplify executing application on high performance computing resources. We describe

the implementation of this model in the Application Hosting Environment, which pro-

vides a Software as a Service layer on top of distributed e-infrastructure resources. We

compare the usability of our system with commonly deployed middleware tools using

five usability metrics. Our middleware and security solutions are judged to be more

usable than other commonly deployed middleware tools.

We go on to describe the requirements for a resource trading platform that allows

users to purchase access to resources within a distributed e-infrastructure. We present

the implementation of this Resource Allocation Market Place as a distributed multi-

agent system, and show how it provides a highly flexible, efficient tool to schedule

workflows across high performance computing resources.
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Chapter 1

Introduction

In this chapter we define the overall scope of this thesis, introduce the work we will

present and give an overview of the remaining chapters.

1.1 Context
Today’s computational scientists face a growing number of challenges which affect

their ability to fully exploit the computational resources available to them. Firstly,

they have an unprecedented amount of computational power available to them, which

will continue to grow in the future. A new generation of high performance computing

(HPC) machines are now coming online with multi-petaflop performance, and ma-

chines operating at the exascale predicted to existing within the next 5-10 years; these

present many challenges to an increasing number of scientific disciplines that rely on

computer based modelling and simulation. While this may seem like a positive devel-

opment, it brings with it a number of problems, such as the need to gracefully manage

node failure in machines with tens to hundreds of thousands of cores.

Secondly, the architectures of these large scale HPC machines point to a growing

trend; HPC machines made up of hybrids of scalar and vector processors, or multicore

processors that include scalar and vector components on the same chip, are likely to

be commonplace in the future [14, 15]. This challenges application scientists to ensure

their code is optimized to take full advantage of the hybrid architecture of a specific

machine.

Grid computing [16, 17] seeks to simplify end user access to and use of HPC re-

sources, by establishing a software and policy infrastructure for distributed computing

conducted transparently across multiple administrative domains. However, the middle-
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ware tools developed to realize the computational grid concept have not always pro-

vided the transparency and ease of use envisaged [18]. Not withstanding the problems

of using middleware to interact with HPC resources, the challenges of using a single

petascale machine described above are compounded when one attempts to use multiple

resources, via a distributed computational e-infrastructure, as more than just a sum of

their individual parts [19].

1.2 Motivating Example
In this section we look at how HPC resources have been traditionally used as ‘single

islands’ of computational power, and how the proliferation of distributed computational

e-infrastructures is changing these usage modalities.

1.2.1 Traditional HPC Use

Running a parallel scientific application on a HPC resource requires a user to perform a

number of complex tasks. If the application is not already installed on the resource, then

the user will have to download and compile the source code, which could require him

to download and install specific required software libraries, or work with the machine’s

administrators in order to have these installed centrally on the machine. Each resource

that a user accesses will likely have its own set of compilers and libraries which the

user will have to familiarize himself with before he builds the application; these often

generate problems that an inexperienced user is not able to deal with. In addition the

user may have to take extra steps to optimize the code (usually written by someone

else) for the particular architecture of the machine being worked on.

Once the application is installed on the machine, the user then needs to generate

a job launching script for the queuing system running on the resource they are using.

The multitude of different queuing systems used to manage HPC resources, including

LSF, PBS, LoadLeveler and SGE, mean that the scientist has to create a bespoke run

script for each application that needs to run on each chosen machine. This can then be

‘cloned’ for each individual run of the application, by changing parameters such as the

input and output files.

Finally, the user must stage all the data to the resource being used and submit the

jobs to the queuing system. Depending on the load and policies of the machine, it could
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take from minutes to several days for the job to run. Once the job is complete, the user

will usually retrieve the output data to their local file system for further processing.

When submitting a job a user must ensure the libraries required by the application have

been installed and the correct scheduler options set.

1.2.2 Harnessing the Power of HPC via a Distributed Computa-

tional e-Infrastructure

The scenario described above is common to the vast majority of HPC users. While

the launching of a single application on a single resource is straightforward, where a

heterogeneous e-infrastructure of supercomputers is concerned, the complexity grows

with the number of nodes on the e-infrastructure. The power of an e-infrastructure

lies in the fact that it gives the user access to many resources, which they can use

in combination to solve challenging problems. A single petascale machine does not

make the concept of a distribute e-infrastructure obsolete. The power of a distributed

e-infrastructure arises from its inhomogeneity, which includes resources such as visual-

ization engines and storage servers, coupled by high performance networks, in addition

to HPC clusters.

The software used to tie a distributed e-infrastructure together is referred to as the

middleware; the majority of production e-infrastructures in existence today use one of

three heavyweight middleware stacks, Globus [20], Unicore [21] or gLite [22], which

are designed to provide a comprehensive set of services necessary to build a variety

of different types of distributed e-infrastructure. By ‘heavyweight’ middleware we

mean software stacks which require expert system administrator support to install and

maintain, and are therefore difficult for end users to deploy and often contain far more

functionality than the end user requires.

To be able to fully exploit the power of a distributed e-infrastructure, conventional

MPI simulation code does not suffice; however, it can be used as a building block to

create a distributed workflow, designed for example to perform a molecular dynamics

(MD) equilibration protocol by running several different MD codes on different scale

e-infrastructure resources [23], or to build a distributed or ‘grid enabled’ application

which takes some intrinsic advantage of the fact that it is based on a distributed e-

infrastructure, for example by utilizing some form of distributed MPI, or real time
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visualization and computational steering.

Such applications deviate from the normal HPC usage modality described above,

making them difficult to manage and deploy. The number of different steps needed

to deploy and run such an application can be very onerous for the user. For example

running a cross-site MPI code requires the user to build a version of the code on each

different site that she wants to use (which could also have different architectures), stage

the required data files in advance to each site, arrange with each machine’s operator that

the individual sites will all be available at the same time in order to run the application,

and then launch the different application components at each site. Troubleshooting

problems with such an application is often extremely difficult and time consuming.

The piecemeal fashion in which such applications are deployed [24] and executed

means that they are very difficult to run in a routine, production way, in order to carry

out large scale scientific studies. This difficulty denies the scientist the opportunity to

explore new computational science at the boundaries of what is possible with today’s

HPC machines, and means the full power of distributed computational e-infrastructures

is rarely exploited. What is required is appropriate middleware tools and interfaces

designed to hide as much of the drudgery and potential for error as possible from the

the user when running complex distributed applications and workflows.

1.2.3 Gaining Access to HPC Resources

The first step in running a simulation on any type of distributed e-infrastructure re-

source is simply to gain permission to access the machines required. The procedure

for doing this will depend on the type of infrastructure involved. The biggest super-

computers usually require potential users to submit a formal proposal describing the

science behind the simulation or other job to be run and estimate the amount of CPU

and storage that is needed. This process often resembles the procedure used in applying

for grants. Institutional level and other lower-level resources are often free to use and

may only require the submission of a simple web form.

In the best case scenario, an application will lead to an award of CPU time that

can be used on all resources that comprise the distributed e-infrastructure. However,

more often than not in the case of HPC e-infrastructures, an award will be made on

either a small subset or a single resource on the e-infrastructure, meaning that the user
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is constrained as to where they are able to perform their computation. Often an award

of time will be made based on a user running a single application, and with the re-

quirement it be used by a given deadline. This means that very often the user is under

pressure to use time on a particular resource by a specific deadline, and is responding to

demands imposed by the resource provider, rather than the demands of their scientific

investigation.

1.2.4 Uptake of Grid Techniques on HPC e-Infrastructures

When considering the usability problems faced by users of HPC e-infrastructures, it is

important to consider the uptake of grid middleware interfaces by users of HPC plat-

forms. As noted, grid computing was intended to reduce the barrier to uptake of com-

putational resources, by providing simplified, standardizes interfaces and tools which

allowed such resources to be accessed remotely by users, with the ultimate goal of

making computation as easy to access as electrical power.

1.3 Problem Statement
As the previous section has illustrated, in the high performance distributed e-

infrastructure space, all too often the user’s time is spent investigating the availability

of resources, marshalling data and nursing their applications. For many computational

scientists using high performance computing, the grid concept has failed to deliver its

promise of providing transparent, ubiquitous computational power on demand. This is

due to both a lack of appropriate tools, and a lack of tools that present the right level

of abstraction to the user [18], meaning that it is easier for them to carry on with their

existing usage mechanisms, as if the grid were not there. When the researcher has

access to more than one computational e-infrastructure, running different middleware

stacks, the problem is compounded, with the user having to learn how to use different

middleware client tools to interact with the resources available to them.

While the high performance computing community has been chasing ever increas-

ing machine peak performance, with many petaflop machines available to researchers

across the globe, the end user, the so called ‘application scientist’ is not generally in-

terested in the peak performance of the machine they are using, but in the total time

to solution of the scientific problem that they are working on [25]. Many strategies
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have been employed to try to mitigate the total time to solution, but they are often de-

pendent on the nature of the problem being solved. For example, Chakraborty et al.

[25] propose decomposing large simulations in to smaller jobs that can be distributed

amongst several machines to reduce the total time to completion, but this approach

doesn’t apply to all classes of scientific application. A second consideration of the user

of a distributed computational e-infrastructure is the cost of running their simulation,

and the problem of choosing a computational resource (or multiple computational re-

sources) in order to perform a simulation becomes a trade-off between the total cost of

running the simulation and the total time to achieve a result.

Essential to realizing the vision of a computational e-infrastructure as ubiquitous,

seamless to use and as transparent as the electrical power grid, as proposed by Foster et

al. [17], is the broker. The broker is a component of the e-infrastructure responsible for

efficiently distributing jobs between distributed resources, taking into account factors

such as machine load and cost models. A broker provides a point of contact between

the user and the e-infrastructure, placing application instances submitted by the user

onto appropriate resources. The broker means that the user does not have to deal di-

rectly with each machine on the e-infrastructure, avoiding the need to log in to several

resources when deciding where to run an application to find the one with the least load.

The broker also means that expensive HPC resources are used as efficiently as possible,

ensuring that one machine is not idle while another has a large queue of jobs.

The purpose of the broker is to match jobs to appropriate resources. As noted

in Section 1.2.1, the majority of HPC resources on a distributed e-infrastructure will

have their own local scheduling mechanism, responsible for allocating jobs submitted

to the resource between the available processors. Unfortunately there is no ubiquitous

meta-scheduling technology available that allows users to specify their requirements

for running a job: the ability to specify trade-offs between when their job will run and

how much it will cost. The allocation policies discussed in Section 1.2.3 also make this

difficult in many cases.

The problems are therefore twofold: Firstly, the level of abstraction used in user/e-

infrastructure interactions is not sufficiently powerful to allow distributed resources to

be trivially used by anyone but the most dedicated user. Secondly, the user does not

need to care which particular resource on the e-infrastructure they are using; they are
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only concerned with getting results. This thesis will seek to address these two problems

by i) developing a higher level of abstraction for user/e-infrastructure interaction and ii)

developing a approach to resource allocation that allows the user to specify constraints

on their workloads, such as the time to completion or the maximum cost.

We believe, with the right combination of tools and services, the initial concept of

the grid/e-infrastructure as a provider of transparent and ubiquitous computing power

can be realized, by:

1. Presenting an interface to access the e-infrastructure that provides an appropriate

level of abstraction to allow the user to concentrate on running their applications

without having to worry about the minutiae of dealing with every possible com-

bination of compiler, architecture and queuing system, and

2. Developing a flexible decentralized workload allocation system that implements

a controlled computational market place to enable the trading of time on HPC

resources, allowing the user to control the aspects of the workload that they are

interested in: the cost, and the time to solution.

We believe that this will lead to a decentralized system which is more scalable

than currently available resource brokering technologies and which is able to more ef-

ficiently allocate work between a set of resources based on cost minimization and run

time optimization. The decentralized nature will allow resources to easily join and

leave the system, potentially creating dynamic virtual organizations based on aggre-

gated resources from federated e-infrastructure resource providers.

1.3.1 Research Premise

Our research premise is that the interaction model currently prevalent in distributed

e-infrastructures composed of high performance computing resources impedes usabil-

ity, by forcing the end user to deal with too many low level considerations to run their

applications. The problem is twofold. Firstly, the level of abstraction applied to user-

resource interaction makes the middleware interfaces too difficult to use. We hypoth-

esize that by moving to a user-application interaction model, that subsumes details

of interacting with one or more resources, users will find distributed computational e-

infrastructure easier to use. Secondly, current e-infrastructure meta-scheduling systems
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do not allow the user of the system to be expressive enough in terms of setting cost and

run time requirements on the jobs that they run. Most meta-schedulers, if they use any

job wait time modelling at all, seek to minimize the time a job takes to run regardless

of cost. However there are many cases where an e-infrastructure user will have low

priority work to run which they do not mind waiting for, but want to minimize the

cost of running. We hypothesize that a resource allocation system that allows resource

providers to vary their costs based on the utilization of their system, and allows users

to put cost and wait time constraints on the jobs that they submit, will allow users to

optimally place their jobs on appropriate resources and allow providers to maximize

their resource usage. We also hypothesize that scheduling based on predicted queue

wait times will be allow jobs to be allocated more optimally than naı̈ve scheduling sys-

tems that make decisions based just on queue times, while not generating so great an

overhead to negates the performance of the scheduler.

1.4 Contributions Made by This Work
The work proposed here seeks to develop a new way of e-infrastructure wide job

scheduling, based on both resource availability predictions and resource cost, through

use of an agent based auction model through which resource providers can vary their

cost to maximize their resource usage. We believe that this will lead to a new paradigm

of resource funding and provision, where users pay at the point of use. We also

believe that this model will encourage commercial resource providers to join and form

commercial e-infrastructures on which they can trade CPU power. This work makes

the following specific contributions:

Contribution 1: The first contribution of this work is an application interaction model

which promotes the ‘application’ as a high level concept with which the user interacts,

instead of focusing on user-resource interaction. We believe this new level of ab-

straction will greatly aid user exploitation of computing on distributed e-infrastructures.

Contribution 2: The second contribution of this work is a software implementation

of the application-interaction model. the Application Host Environment (AHE). This

implementation will built on existing middleware infrastructures, allowing users to
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interact with applications rather than resources, while being as unobtrusive as possible

to resource providers. The AHE will be used as the launching mechanism which

initiates metascheduler requests, and will submit the job once an offer to run has been

accepted.

Contribution 3: The third contribution of this work is to evaluation Web Services

Resource Framework (WSRF) and Representational State Transfer (REST) approaches

to implement the AHE.

Contribution 4: The fourth contribution of this work is an evaluation of the usability

of AHE compared to other widely deployed e-infrastructure middleware tools.

Contribution 5: The fifth contribution of this work is an XML Schema for describing

job requirements. The schema will allow users to specify the constraints on their job,

such as the maximum wait time and the minimum cost.

Contribution 6: The sixth contribution of this work is a reverse auction market model

of e-infrastructure resource provision. Based on a multi-agent auction, with buyer

agents representing users and seller agents representing resources, the system will seek

to match user specified job constraints, in terms of the price and wait time. This will

employ a varying cost algorithm in the resource management agent, allowing it to vary

its cost based on its predicted future usage.

Contribution 7: The seventh contribution of this work is an analysis of the perfor-

mance of our market based resource allocation model.

1.5 Scope of this Thesis
We believe that distributed HPC e-infrastructures are a distinct class of computational

e-infrastructures, and that the problems experienced by HPC e-infrastructure users are

not necessarily applicable to users of any type of computational e-infrastructure. The

systems discussed in this thesis are designed to assist the user of HPC e-infrastructures.
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While the resulting systems and approaches may be applicable to other types of e-

infrastructure (such as high throughput computing or HTC platforms and cloud sys-

tems), it is not the focus of the work presented here.

It is important to clarify what is in the scope of this work and what is not. The

following is in the scope of this thesis:

• Development of a user-application interaction model.

• Development of the AHE job launching and management system.

• Analysis of implementation performance and usability of AHE.

• Design of an XML schema to allow users to specify a rich set of job constraints

- a request for quotations (RFQ).

• Development of a decentralized, distributed resource allocation system.

• Implementation and extension of a reverse auction trading algorithm.

• Formulation and development of a resource queue wait time prediction algorithm

based on historical usage data.

• Design and implementation of a resource seller agent cost adjustment algorithm.

• Experimental investigation of the resultant resource allocation system.

• Development of basic banking facilities to record transactions between user and

resource agents.

The following is not in the scope of this thesis:

• Development of resource information services - where required we will make use

of information sources currently made available by resource providers, such as

Globus MDS.

• Development of new server side middleware - agents acting on behalf of a user

should not require any changes to be made by resource providers in the middle-

ware stack they support.
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• The mechanism used by the scheduling agents to guarantee the availability of

their resource after they have successfully bid for a job. We would recommend

that the agents use the reservation mechanism within their resource manager, to

reserve the time slot on the machine.

• Development of new security mechanisms - current e-infrastructure security

mechanisms, such as GSI, will be used where required.

• Changes in resource provider policy - this research will seek to use production

e-infrastructures as they are currently provided, without requiring providers to

make major changes to their local scheduling policies etc.

• Development of distributed accounting services - robust accounting is essential

for deriving billing information in a computational economy, however the provi-

sion of such services is outside the scope of this work. We envisage being able

to use one of the accounting services currently being developed by the Globus

Alliance or OMII UK, when they become available.

• Development of an explicit framework for constituting service level agreements

(SLAs) - While we believe the combination of the RFQ and the offer to undertake

the work made by the resource do constitute an SLA between the user and the

resource, mechanisms to enforce the terms of the SLA are outside the scope of

this thesis.

1.6 Evaluation
This work is constituted of two distinct but related components, the Application Host-

ing Environment and the Resource Allocation Market Place. By necessity, the success

of these two different components must be evaluated separately.

1.6.1 Evaluation of Application Interaction Model

The purpose of application interaction model is to simplify experience of end user of

computing on distributed e-infrastructure. We will evaluate the relative performance

of RESTful and WSRF based implementations of the application interaction model, as

realized in the Application Hosting Environment. However, this will not tell us much

about how e-infrastructure usability has been improved. To test that the application
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interaction model provides the right level of abstraction, we will conduct a usability

study to compare AHE to existing middleware solutions such as Globus and Unicore,

asking users to evaluate the software in terms of how easy it is to launch and monitor

jobs, and install the client tools.

1.6.2 Experimental Validation of the Resource Allocation System

We will use the Dynamic Analysis method described by Zelkowitz and Wallace [26, 27]

to validate the research premises above (cf. §1.3.1). We will investigate the capabilities

and performance of our resource allocation system to ensure that it can successfully

place workloads with appropriate resources in the system; that it can minimize the

costs paid by the user; and that it can ensure good overall system utilization. Ideally we

would like to use a production e-infrastructure environment, such as the EU PRACE

system, to perform the experiments. However, due to the need to install and configure

resource allocation components on machines under the control of others, we will base

our investigations on a simulated HPC e-infrastructure. If this is the case we will set

up a lab based simulation system on which to experiment. The experiments we per-

form will use sample workloads provided by computational scientists at the Centre for

Computational Science at UCL, to ensure that comparisons are made using real world

applications.

1.7 Overview of Remaining Chapters

The remainder of this thesis sets out to examine current usage practice of HPC e-

infrastructure computing and propose mechanisms by which such practice can be im-

proved, through the introduction of services to provide an extra level of abstraction on

top of existing e=infrastructures, thus easing the users interaction with this infrastruc-

ture, and to allow jobs to be automatically allocated to appropriate resources within the

e-infrastructure in order to satisfy the users requirements. To that end, in Chapter 2

we look at the current state of play of e-infrastructure/user interaction. In Chapter 3

we go on to state the requirements of the system under consideration, look at the steps

necessary to satisfy those requirements and describe our implementation of the system,

the Application Hosting Environment. In Chapter 4 we present our analysis of the im-

plementation of the AHE as RESTful and WSRF services, and additionally present the



34 Chapter 1. Introduction

results of our usability studies into the application interaction model. In Chapter 5 we

review the elements of computational mechanism design that can assist in the devel-

opment of a decentralized e-infrastructure allocation mechanisms and consider similar

systems. In Chapter 6 we present the development of a reverse auction based sys-

tem, the Resource Allocation Market Place (RAMP), designed to satisfy our resource

allocation requirements. We discuss the experimentation validation of this system in

Chapter 7. Finally, in Chapter 8, we draw conclusions from the work presented here

and consider the future work we could undertake.



Chapter 2

High Performance Computing on

Distributed e-Infrastructures

This chapter will to give a background overview of high performance computing (HPC)

conducted across distributed e-infrastructures, and review the relevant literature in the

field. Firstly we will look at what is meant by high performance computing, and why

the idea of grids of HPC resources was conceived and realized in order to facilitate

access and optimize usage of these resources. Within this text the term ‘resource’ is

used to describe a high performance computer. In this section we will also examine

the development of cloud computing and consider the middleware tools that have been

developed to help realize the e-infrastructure concept and look at the needs of users

when interacting with distributed, heterogeneous computational resources.

2.1 The Computational Ecosystem
The computational landscape is constantly shifting, with desktop machines becom-

ing more and more powerful, incorporating multicore central processing units (CPUs)

and general purpose graphics processing units (GPGPUs), and multiple processors.

However, even the most high specification workstations available today do not provide

enough computational power for many models to be simulated in a tractable amount

of time (and this becomes even more important if the results of a simulation are time

sensitive and required to, for example, influence a clinical decision, since they need to

be calculated within a timeframe that allows them to be incorporated into the decision

making process).

This means that simulations have to run on resources beyond the desktop. Such
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resources range in scale from networks of high performance workstations (e.g. Condor

pools, cf. §2.3.6) to loosely coupled compute clusters (also called Beowulf clusters

[28]) to more tightly integrated supercomputers, which use high performance intercon-

nects to couple compute nodes together, or make use of shared memory architectures,

all of which is loosely grouped together under the term e-infrastructure.

The boundaries between these different classes of compute resource are somewhat

blurred. However, most computational resources used by computational scientists fall

into the following broad categories:

• Multicore computing: A multicore processor is a processor that includes multi-

ple execution units on the same chip. These processors differ from super-scalar

processors, which can issue multiple instructions per cycle from one instruction

stream. In contrast, a multicore processor can issue multiple instructions per cy-

cle from multiple instruction streams. A single workstation may contain one or

more multicore chips.

• Symmetric multiprocessing: A symmetric multiprocessor (SMP) is a computer

system with multiple identical processors that share memory and connect via a

bus.

• General-purpose computing on graphics processing units (GPGPU):

General-purpose computing on graphics processing units is the technique of us-

ing a GPU, which typically handles computation only for computer graphics,

to perform computation in applications traditionally handled by the CPU. Often

such machines are used to run data parallel applications.

• Heterogeneous multicore: many newer processor architectures are adopting a

heterogeneous multicore architecture, designed for parallel processing. Chips

such as the Cell or Intel MIC combine traditional compute cores with specialized

processing cores, such as GPUs or other coprocessors, to improve performance

and power efficiency while maintaining the versatility of a traditional CPU.

• Cluster computing: A Cluster is a group of loosely coupled computers that

work together closely, so that in some respects they can be regarded as a single
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computer. Clusters are composed of multiple standalone machines connected by

a network.

• Massively parallel processing: A massively parallel processor (MPP) is a single

computer with many networked processors. MPPs have many of the same char-

acteristics as clusters, but MPPs have specialized interconnect networks (whereas

clusters use commodity hardware for networking).

Resources range in cost from the desktop to the supercomputer. Hence, there are

many more desktop workstation class resources at the researchers disposal than there

are supercomputers. This fact was noted by Lewis Branscomb in a 1993 report [29],

which introduced the idea of a Branscomb Pyramid, showing the relative abundance of

different classes of computational resources. Figure 2.1 shows the Branscomb Pyramid

of HPC class grid resources considered in this thesis.

Figure 2.1: The Branscomb Pyramid, showing the relative abundance of computational re-
sources.

2.1.1 Applications of High Performance Computing

High Performance Computing has been employed by many different scientific commu-

nities to help the furtherance of their scientific investigations. Traditional communities

include physics, chemistry and engineering, which have been joined more recently by

fields such as medical research, where researchers are seeking to use high performance

computing and simulation to augment the clinical decision making process [30, 2].
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Phase Start date AUs per hour Cost per AU
1 December 2002 3241 0.38759
2 June 2004 6188 0.203

2A November 2005 7395 0.17417
3 November 2006 12290 .010480

Table 2.1: Decline in cost of CPU time on the UK HPCx machine over its lifetime

Phase Scalar cost/AU Vector cost/AU
Phase 1 (Oct 2007 - Sep 2009) 0.06354 0.50836
Phase 2 (Oct 2009 - Sep 2011) 0.01371 0.10969
Phase 3 (Oct 2011 - Sep 2013) 0.00578 0.04628

Table 2.2: Decline in cost of CPU time on the UK HECToR machine over its lifetime

Traditionally based on tightly integrated parallel computing systems such as those

made by Cray, IBM and Silicon Graphics, HPC resources increasingly consist of ‘clus-

ters’ of commodity hardware with a fast interconnect linking the compute nodes to-

gether, and running software such as Beowulf [28]. The rise of the distributed memory

supercomputer has necessitated the development of suitable programming frameworks

in order to harness their power. The de facto standard for communication between

parallel processes on a distributed memory cluster machine is Message Passing Inter-

face (MPI) [31], although other similar technologies do exist such as Parallel Virtual

Machine (PVM) [32].

The policies governing allowing users to access high performance compute re-

sources, and charging them for the access, vary amongst resource providers. Most

resource providers will however assign a notional cost related to the work done on their

resource, typically setting a price for an abstract unit of processing work, which is re-

lated to the use of an hours use of a single CPU on their resource. Table 2.1 shows

the changes in cost of an abstract unit (AU) of processing work over the period that the

UK’s HPCx machine was available for research use, while table 2.2 shows a similar de-

cline in cost for the UK’s HECToR machine. Data for the current UK flagship machine,

Archer, is unavailable at the time of writing. These machines have been expanded in

phases over their lifetime, with more and faster processors added, and as the processing

power of the machine has grown (number of AUs available per hour) the cost per AU

has fallen.
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2.1.2 Access Modalities & Resource Use

The batch processing model is still the predominant usage model in the world of HPC,

with queuing systems being used to ensure fair access to the resource for all users

while at the same time maximizing resource usage. Many such queuing systems exist

including PBS [33], SGE [34] and LSF [35]; they are typically configured by the ad-

ministrators of the resource to support local queuing policies and queue sizes. In most

systems all users a treated with equal priority, with jobs being run on a first come first

serve basis.

In order to access a machine a user will typically use protocol such as SSH to

establish an interactive login session on the machine, or could use some form of grid

middleware to launch their job, as described later in this section. In the former case

running a parallel scientific application on an HPC resource requires a user to perform

a number of complex tasks. If the application is not already installed on the resource,

then the user will have to download and build the source code, which could require them

to download and install extra required software libraries, or work with the machines

administrators in order to have them installed centrally on the machine.

Each resource that a user uses will likely have its own set of compilers and libraries

which the user will have to familiarize himself with before he builds the application,

and which could generated problems that an inexperienced user is not able to deal with.

In addition they may have to take extra steps to optimize (usually written by someone

else) the code for the particular architecture of the machine they are working on.

Once the application is installed on the machine, the user then needs to generate a

job launching script for the queuing system running on the resource they are using. The

multitude of different queuing systems used to manage HPC resources, including LSF,

PBS, LoadLeveler and SGE, mean that the scientist has to create a bespoke run script

for each application that they want to run on each machine they want to run it on. This

can then be cloned for each individual run of the application, by changing parameters

such as the input and output files.

Finally, the user needs to stage all of their data to the resource they are using and

submit their job to the queuing system. Depending on the load of the machine it could

take from minutes to days for the job to run. Once the job is complete, the user will

usually retrieve their data to their local file system for further processing.
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2.1.3 Classes of HPC Applications

The key benefit of using resource beyond the desktop is the ability to exploit large-

scale parallelism, using multiple computer processors in concert. Where workflows

of operations are being carried out applications are likely to be composed of multiple

application codes [36]. Different degrees of computational parallelism are likely to

be required by different sections of a workflow, with some sections running on single

core workstations, some requiring cluster computing and some requiring access to the

biggest supercomputers available. Other application scenarios may only involve a sin-

gle code, which might be serial, embarrassingly parallel (also called data parallel) or

inherently parallel (also called task parallel), and run on an appropriate scale resource.

No one degree of parallelism is appropriate for all application scenarios, and often

different components of a particular application workflow cover all possible types of

parallelism, and require a range of computational resources to match. The two main

parallelization schemes mentioned above involve the following:

• Data parallelism: this form of parallelism splits a dataset into small packets

distributed across multiple compute nodes, with the same algorithm run over

each data packet. Typically, there is little to no communication between the

different data processing nodes while the computation is taking place, with the

output from each of the separate computations assembled once all computations

have completed.

• Task parallelism: task parallelism is achieved when execution processes are

distributed across a set of compute nodes, and operate on a single dataset. This

usually requires a significant amount of synchronization between execution pro-

cesses, mandating a high performance communication infrastructure between

compute nodes. Task parallelism leads to more tightly coupled applications, with

varying levels of communication between computing nodes as a simulation pro-

gresses.

The form of parallelism appropriate to a particular simulation is inherently coupled

to the nature of the simulation algorithm and the data operated on. The growth in

the scale of resources available today means that often schemes that incorporate both
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data parallelism and task parallelism are appropriate, with, for example, multiple task

parallel codes being executed simultaneously on different sections of a dataset.

2.1.3.1 Achieving parallelism

Typically task parallelism relies on specific libraries and frameworks in order to imple-

ment a degree of parallelism. Message Passing Interface [31] (MPI) is an application

programming interface (API) specification that allows processes to communicate with

one another by sending and receiving messages. It is typically used for parallel pro-

grams running on computer clusters and supercomputers.

The Message Passing Interface was developed by Gropp et al. [31] as a platform

independent protocol for communication between processes on a parallel computer and

sits at level 5 of the Open Systems Interconnection (OSI) network model [37]. Typi-

cally a high performance computing (HPC) resource will have an implementation of

MPI installed that is configured to work with the particular interconnect technology

used to connect the compute nodes, to provide optimal application performance. MPI

applications use multiple tightly coupled processors to run tasks that communicate via

MPI API calls. Often the nodes of a cluster will be connected via a fast network inter-

face such as InfiniBand [38] or Myrinet [39]. A user then complies their application

against the system’s MPI libraries, and launches their application using a tool supplied

with the MPI system, which takes care of starting instances of the application on the ap-

propriate set of compute nodes, and configures the environment to allow the processes

to establish communication with each other.

The MPI interface provides virtual topology, synchronization, and communication

functionality between a set of processes (that have been mapped to nodes, servers or

computer instances) in a language-independent way, with language-specific bindings.

MPI library functions include point-to-point rendezvous-type send/receive operations,

choosing between a Cartesian or graph-like logical process topology, exchanging data

between process pairs (send/receive operations), combining partial results of computa-

tions (gather and reduce operations), synchronizing nodes (barrier operation) as well as

obtaining network-related information such as the number of processes in the comput-

ing session and current processor identity that a process is mapped to. It is the de facto

standard model for parallel software development on most HPC machines.
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Task parallelization can also be achieved using shared memory multiprocessor

programming environments such as OpenMP [40]. OpenMP implements thread-based

parallel processing, whereby a master thread initiates multiple ‘forked’ threads to exe-

cute the parallel parts of a code, which are then joined back to the main master thread

of execution when the forked, parallel sections of the code execution have completed.

Hybrid schemes that combine both OpenMP and MPI style techniques can achieve

performance improvements by optimizing inter and intra-node communications.

Data parallelism requires some scheme to split input data into chunks which can

be operated on independently, which is often application specific. Once the data is par-

titioned, the execution of the distributed computations can be managed by a workflow

engine, or some dedicated job submission manager such as Condor (cf. §2.3.6).

MapReduce [41] is a framework that has been designed to automate the process

of distributing data-parallel tasks between compute nodes. A MapReduce program is

comprised of two parts. The first is a map() function, where a master node takes a

set of inputs, divides it into smaller sub-problems, and then distributes them between

compute nodes. Each of the compute nodes then processes its sub-problem and passes

the results back to the master node.

The second part of a MapReduce program is the reduce() function, which as-

similates the results from the computation of each of the sub-problems and produces

an answer to the problems being computed. Since MapReduce applications typically

do not have any interdependence between sub-problems, limited network bandwidth is

required between compute nodes. This means that problems can be run across a single

cluster, or even a set of separate clusters.

MapReduce manages fault tolerance within a distributed system; if one or more

sub-problems fail, due to a fault on a particular cluster node for example, MapReduce

can rerun the failed tasks on another compute node. MapReduce programs can also

implement multiple levels of hierarchy, with sub-problems that consist of their own

map() and reduce() functions.

2.2 Distributed Computing
Isolated computational resources are of limited use. Deploying workflows onto high

performance computers involves choosing an appropriate resource for each section of
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the workflow. Manually executing a single simulation on an HPC resource is a labori-

ous process; executing each stage of a workflow manually in anything approaching a

routine way is extremely arduous. Automating the workflow process is therefore ex-

tremely desirable, and is made possible through middleware interfaces that allow sim-

ulations to be executed in a more automated fashion. These interfaces allows resources

to be linked together and accessed using common mechanisms, in order to constitute

distributed e-infrastructures or grids.

2.2.1 Grid Computing

The term grid computing [16, 17] originated in the early 1990s as a paradigm for ac-

cessing datasets and running jobs automatically on high-performance resources. Since

then, cloud computing has taken over this role to some extent, but grid computing

is still valuable and widespread. We define grid computing as distributed computing

conducted transparently by disparate organizations across multiple administrative do-

mains. The goal of grid computing is to give the end user transparent, uniform access

to resources owned and operated by disparate organizations, which may have different

security and access policies at an institutional level, whilst at the same time giving rea-

sonable security assurances to the institutions participating in the grid. A good place to

start when trying to understand grid computing is Foster et al. [17]. They defined the

underlying problem of grid computing as:

“co-ordinated resource sharing and problem solving in dynamic, multi-

institutional virtual organizations”

A virtual organization can be thought of as a group of institutions or companies

that have come together to share their resources, with some kind of software system

used to manage the resources and sharing policies. The above quote neatly summarizes

the key concept of grid computing, namely that resources are shared between different

institutions with varying security and access policies. Examples of resources a grid

participant may want to share are high-performance super computers, scientific instru-

ments such as radio telescopes and microscopes, visualization servers and databases.

As these resources are very often geographically dispersed, seamless access to them is

provided via high performance computer networks such as the Internet, or dedicated

high-speed point-to-point networks [42].
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The term grid is used to describe this arrangement of inter-institutional resource

sharing by analogy with the electrical power grid [43]. That is, it describes the in-

frastructure for dependable, consistent, pervasive and inexpensive access to high-end

computational resources in much the same way as the electrical power grid provides

dependable, consistent, pervasive and inexpensive access to electrical power.

The different types of scientific resource that make up grids, including scientific

instruments, data repositories, and computers that range in size from desktop machines

to large-scale parallel supercomputers, are made available at national and international

levels. The grid model is particularly appropriate for, and has been very widely im-

plemented in, the sharing of HPC resources, since the grid model is a good way to get

the most from machines that are expensive to purchase and run. The power of a grid

arises largely from its inhomogeneity, as it links visualization engines, data storage,

and instruments as well as HPC machines [44, 24, 11].

2.2.2 Web Services

Web services provide a mechanism to execute remote procedures using standard in-

terface mechanisms and technology. A Web service can be thought of as a loosely

coupled software component that communicates via a standardized interface [45, page

593]. The fact that Web services are loosely coupled means that they can be changed

independently of each other, and also that they are platform agnostic. A Web service’s

functionality is only exposed via its interface, so no details need be known about its

implementation or the environment on which it is hosted. These features of Web ser-

vices are also things that are very desirable when constructing a grid of heterogeneous

resources.

Although not the only mechanism, the de facto standard for message exchange in

Web services is SOAP [46]. SOAP defines an XML schema that can be used for the

packaging, encoding and exchange of structured data. The document consists of two

required parts; an envelope that packages the data and a body which is the data. The

message can optionally contain a header with additional descriptions about the message

and extra processing instructions. In a Web services environment the SOAP message

can be transported over a number of different transportation protocols such as FTP,

POP3 or SMTP, but most commonly HTTP is used.
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The nature of Web services means that they can be used to build highly flexible

distributed systems, such as the myGrid system [47]. For this reason Web services

have greatly interested researches in grid computing and have become a widely adopted

programming methodology in grid computing systems (see Section 2.3.1).

2.2.3 Service Oriented Architectures

The advent of Web services has led to new software architectures being proposed and

adopted that address the issues faced when integrating distributed, heterogeneous and

possibly legacy systems within an organization. One of these is the Service Oriented

Architecture (SOA) [48, 49]. SOA represents the big picture of what can be done with

Web services. It is an approach to building distributed systems that deliver functionality

to end-user clients in the form of services, or allow new services to be built by com-

bining existing ones. SOA allows Web services to be used in systems that transcend

traditional client-server models to become systems of arbitrary complexity. Indeed

there is much interest in transforming many types of vertically integrated software sys-

tems to horizontally integrated, service-oriented systems [50], to facilitate the building

of highly flexible, component based systems.

SOA and Web services provide an implementation and platform agnostic way of

describing software components. Put another way, a client application needs to know

nothing about the programming language or machine architecture of the piece of soft-

ware it wants to access. It just needs to understand the interface that the software com-

ponent provides to allow interaction, which is based on standard technologies, such as

eXtensible Markup Language (XML) and described using Web Services Description

Language (WSDL), the standard Web services interface description mechanism. Thus,

by understanding a software component’s (service’s) interface, a client application does

not need to be concerned with where or how a service is implemented.

Much of the interest in Service Oriented Architectures has come from business or-

ganizations wishing to integrate their legacy software systems with newer technologies

such as web based interfaces, and to simplify application development and deployment

[51], but interest has also been shown by the grid computing community. Indeed, as

Web services and grid computing have matured alongside each other, it has become

clear that many of their goals are similar and thus the technologies have started to con-



46 Chapter 2. High Performance Computing on Distributed e-Infrastructures

verge [52].

2.2.4 WSRF

WSRF (Web Services Resource Framework) [53] is an OASIS standard to provide

mechanisms to allow state to be associated with stateless Web services, an essential

property when using Web services to build grid middleware systems. The WSRF spec-

ification has evolved from the earlier Open Grid Services Infrastructure (OGSI) speci-

fication [54], splitting OGSI’s functionality into a family of separate specifications that

can be combined to produce the desired functionality for a given task. This has re-

sulted in four WSRF specifications (WS-ResourceProperties, WS-ResourceLifetime,

WS-ServiceGroup, WS-BaseFault) plus the WS-Notification family of specifications.

Although WSRF differs in its approach to modelling a stateful resource (a WS-

Resource as opposed to a grid service), the functionality provided is essentially the

same as OGSI. As Web services have evolved since the creation of OGSI, some of

the extensions to WSDL that OGSI promoted have been included as parts of standard

WSDL. WSRF can be thought of as the maturing of the OGSI specification.

2.2.5 Representational State Transfers

Somewhat parallel to the growth in popularity of SOAP based Web services has been

the development of Representational State Transfer (REST), or RESTful Web services

[55]. REST builds on the architecture of the web to define a set of architectural prin-

ciples with which to design Web services that focus on a system’s resources, including

how resource states are addressed and transferred using the stateless HTTP protocol,

by clients written in a wide range of different languages.

REST has been designed as a way to construct simple, high performance dis-

tributed infrastructures from the outset. According to Fielding [55, §5.3.1]:

“REST’s clientserver separation of concerns simplifies component im-

plementation, reduces the complexity of connector semantics, improves

the effectiveness of performance tuning, and increases the scalability of

pure server components. Layered system constraints allow intermediaries

(proxies, gateways, and firewalls) to be introduced at various points in the

communication without changing the interfaces between components, thus
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allowing them to assist in communication translation or improve perfor-

mance via large-scale, shared caching.”

REST makes available limited number of operations (verbs) with which to in-

teract with a resource. Each resources or service (nouns) is assigned its own unique

universal resource indicator (URIs). A subset of HTTP operations (GET, POST, PUT

and DELETE) constitute the verb that can act on the noun, each with its own specific

meaning.

2.3 Middleware
Fundamental to allowing the inter-institutional sharing of resources in a grid is the grid

middleware, that is the software that allows the institution to share their resources in a

seamless and uniform way. The most widely used grid middleware systems today in-

clude Globus [20], gLite [22] and UNICORE [21]. In this section we review the most

widely deployed middleware solutions in order to discern their strengths and weak-

nesses, and how they can be improved on by the AHE system presented later in this

thesis.

2.3.1 Open Grid Services Architecture

The effort to build grids using a service oriented paradigm has led the Open Grid Fo-

rum (formerly the Global Grid Forum) to propose the Open Grid Services Architecture

(OGSA) [56]. OGSA aims to address some of the deficiencies perceived in earlier grid

middlewares by building upon the practical experienced gained from using those sys-

tems. OGSA has been put forward as an architecture for producing interoperable grid

middlewares using open standards and industry standard technologies such as Web ser-

vices.

Using a service oriented paradigm means that emphasis is put on the services

offered by the resources being shared rather than the physical resources themselves.

Storage resources, computational resources, networks and databases are all represented

as services. All of the entities in the grid are described in terms of their interface and

behaviour.

OGSA is built on stateful WSRF Web services (see §2.2.4) that provide a set of

well-defined interfaces and follows a set of specific conventions. OGSA places grid
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services in the second tier of an architecture that is comprised of four layers:

• Physical and logical resources layer - including servers, storage and file systems.

• Web/grid services layer - All resources are modelled as Web services.

• OGSA architected grid services layer - provides facilities such as authorization

and service management.

• Grid applications layer - the applications that run on the grid.

2.3.1.1 OGSA-BES

The OGSA Basic Execution Service (BES) [57] defines a standard service oriented

interface for submitting jobs to resources on a distributed e-infrastructure. An OGSA-

BES compliant Web service can create, monitor, and control computational entities

such as UNIX or Windows processes, other Web services, or parallel applications.

These entities are called activities and they are described by the Job Submission De-

scription Language (JSDL) [58] documents. In production e-infrastructures, each re-

source provides one or more BES interface which users can use to create activities on

that resource. OGSA-BES is a ratified standard of the Open Grid Forum, meaning that

implementations that support OGSA-BES should be mutually interoperable.

2.3.1.2 HPC Basic Profile

In order to help facilitate interoperation between HPC resources running OGSA-BES

interfaces, the Open Grid Forum have created a further specification, HPC Basic Profile

(HPC-BP) [59]. The HPC Basic Profile standard describes how the OGSA-BES and

JSDL specifications are composed in order to support basic job submission to (HPC)

systems in a way that manages differences between the different queuing systems and

software environments the systems may be running.

The profile consists of references to existing specifications, along with any clarifi-

cations of the contents of those specifications, restrictions on the use of those specifica-

tions, and references to extensions to those specifications. By supporting the basic set

of capabilities outlined by HPC-BP, systems can reasonably be assumed to interoperate

at the job submission level.
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2.3.2 Globus

Globus [20] is widely deployed by many international grid projects. From Globus

Toolkit version 3 (GT3), Globus followed a service oriented approach, tracking to a

certain extent the development of the Open Grid Services Architecture (OGSA) [60],

described more fully in Section 2.3.1. The most widely deployed version (GT4) com-

prises a set of Web services (see Section 2.2.2) and a Web services container, as well

as a set of non-Web services related tools. The services are used to manage tasks such

as job launching and data transfer. Recently, Globus has moved away from Web ser-

vices architecture, with GT5 reverting to the clientserver system previously used in

GT2. The client tools supplied with all versions of Globus are command line based.

All versions of Globus feature a security infrastructure based on X.509 [61] public key

cryptography.

2.3.3 UNICORE

UNICORE (UNiform Interface to COmputing REsources) [21] is a grid middleware

system that has been adopted for use by several international e-Infrastructure initia-

tives, for example the EU funded PRACE platform [62]. It implements a three-tier

architecture in the form of client-gateway-server. Jobs are passed around the grid as

Abstract Job Objects (AJOs), which are serialized Java objects. The first tier of the ar-

chitecture consists of a client with which the user prepares and submits jobs and also to

receive output back from the job. The middle tier consists of a gateway which controls

authentication to the target resource. This tier also contains the Network Job Super-

visor (NJS), UNICORE User Database (UUDB) and the Incarnation Database (IDB)

[21]. The NJS manages jobs and performs authorization of a user on a target resource.

The UUDB maps user certificates onto logins on the resource and the IDB translates

AJOs to platform specific commands that the resource understands. The authenticated

job is then submitted to the server tier (Target System Interface or TSI) which takes care

of running the job on the target resource. With the exception of the TSI, the UNICORE

system is implemented as a Java API and set of related programs. Version 6 of the UNI-

CORE middleware presents a Web services interface based on the Open Grid Services

Architecture [60] framework. A description of OGSA is given in Section 2.3.1.Security

is maintained in the UNICORE system through the use of X.509 certificates.
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2.3.4 gLite

gLite [22] is the product of the Enabling Grids for E-SciencE (EGEE) project [63], and

uses components from a number of different sources to produce a middleware stack

with a wide range of basic grid services. gLite is the middleware underpinning the

EGEE grid, designed to process the 15 petabytes of data produced annually by the

Large Hadron Collider instrument based at CERN.

2.3.5 QoS-CoS-Grid

QoS-Cos-Grid is a full middleware stack, with the QCG-Computing service at its heart.

The QCG-Computing service (QCG BES/AR) is the domain-level component of the

QosCosGrid middleware stack, typically deployed on the head node of a compute clus-

ter. QCG-Computing is a highly efficient implementation of the Open Grid Services

Architecture Basic Execution Service (OGSA BES) Web service interface, designed to

facilitate remote, multi-user access and policy-based job control routines provided by

various queuing and batch systems [64, 65]. In contrast to many existing middleware

services, the service uses Distributed Resource Management Application API (DR-

MAA) [66] to communicate with underlying queuing systems and has been success-

fully used with many of the most widely deployed cluster queuing systems, including

Sun Grid Engine, Load Sharing Facility, Torque/Maui, PBS Professional, Condor, Ap-

ple XGrid, SLURM and LoadLeveler. QCG-Computing supports also supports basic,

built-in, file transfer mechanisms.

Additionally, QCG-Computing is compliant with the OGF HPC Basic Profile

specification. Moreover, it offers innovative remote interfaces to queuing systems for

advance reservation management. This unique advance reservation capability facili-

tates cross-site co-allocation of computing resources, in order to execute distributed

multi-scale applications. QCG-Computing has been designed to support a variety of

plugins and modules for external communication as well as to handle a large number

of concurrent requests from external clients and services.

2.3.6 Condor

Condor [67] is a software system for the management of high throughput computa-

tional environments, that is computing environments that can deliver large amounts

of processing capacity over long periods of time, made up of collections of distributed
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computing resources. It can be used to manage workload on a dedicated cluster of com-

puters, or to distribute work to pools of idle desktop computers on a cycle scavenging

basis, and is often suitable for running embarrassingly parallel type jobs.

For Condor systems made up of pools of user desktop machines, the user is given

full control over the use of their machine, for example by allowing any Condor run

processes to be killed when a user resumes work on the machine. This ensures that

Condors use of the machine doesnt interfere with its owner/users use of it, and cause

them to withdraw if from use in the pool. Originally Condor pools consisted of com-

putational resources contained within a single administrative domain.

2.3.7 SAGA

SAGA (the Simple API for Grid Applications) [68] is an Open Grid Forum effort

to produce a simple application programming interface to allow application develop-

ers to take advantage of the possibilities opened up by the advent of distributed e-

infrastructures.

The SAGA API is intended to be simple, and as close to the programming

paradigms and interfaces used by application developers to perform common opera-

tions they need to perform such as remote job submission and file transfer. The API

specifically targets scientific applications, which aim to take advantage of some of the

features that distributed e-infrastructures offer. The API targets developers of scientific

applications who wish to grid enable their applications whilst spending as little time as

possible learning new paradigms.

2.3.8 Data Transfer

A key requirement for operating on a distributed e-infrastructure is the need move data.

In the most basic case, a user needs to move input files from their local workstation to

the target resource they intend to use to run a simulation, and then move the output data

back when the simulation is finished. GridFTP [69], an extension of FTP designed to

use grid security credentials, has grown out of the Globus project and the Open Grid

Forum, to established itself as the default mechanism for high performance data transfer

between HPC resources.

GridFTP aims to provide reliable and high performance file transfer, through sup-

port for parallel and striped transfer, and fault tolerance. GridFTP’s acceptance as a
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de facto standard for file transfer means that it answers the problem of incompatibil-

ity between HPC file systems and storage devices, through the provision of a common

interface (as used by the EUDAT collaborative data infrastructure [70] for example,

where GridFTP provides a common user interface to storage resources running iRODS

and OpenStack Swift).

2.3.9 Security Mechanisms

Access to grid resources is usually secured through authentication and authorization

mechanisms based on X.509 certificates, a security credential used to authenticate the

user when accessing a grid. To access the resources on a particular distributed e-

infrastructure, the user needs a certificate recognized by that infrastructure. Certificates

are generally issued on a national basis, by a national research certificate authority

(CA). The Interoperable Grid Trust Federation [71] exists to ensure mutual trust be-

tween different national certificate issuing bodies. This means that certificates issues in

one country will be accepted by e-infrastructure resources based in a different country.

2.4 Grid Usability

One of the key purposes of developing grid computing technologies has been to provide

an infrastructure for the facilitation of large-scale scientific “experiments” [72, 44].

Conversely, one of the central problems facing users engaging with grid technologies

has been lack of ease of use of existing tool kits [18, 73, 74, 75]. One of the reasons

stated for this is that current tool kits are too cumbersome for a user to rapidly build

prototype applications. Existing tool kits may also be resource intensive and require

the user to install additional software packages that are not appropriate to the task they

want to perform.

In addition to this, some toolkits have previously required users to install cus-

tom patched libraries for the middleware to work. This leads to system administrators

having to maintain multiple copies of libraries on machines using the middleware. An-

other criticism levelled at many grid middleware systems is the difficulty in using their

security infrastructure [76], particularly with reference to user management of X.509

certificates.
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2.4.1 Lightweight Grid Middleware

The problem of monolithic software systems has been successfully addressed in other

areas of computer science by producing lightweight, component-based designs. For

example the UNIX operating system [77] is built from a small kernel with all extra

functionality provided by separate programs that run on top of the kernel. The longevity

of UNIX is testament to the power of this software development model.

WSRF::Lite [78] is one project that aims to address the problems of unwieldy and

monolithic grid middlewares by developing a lightweight component-based architec-

ture. WSRF::Lite implements the WSRF standard (discussed in Section 2.2.4) in Perl

to produce a toolkit from which lightweight grid middleware components can be built.

It is based on SOAP::Lite [79], a Perl Web service hosting environment. It aims to ad-

dress some of the shortcomings of more heavyweight middlewares, such as Globus, by

just addressing the specific problem of exposing program functionality as WSRF ser-

vices. It also uses standard Perl libraries and is built using standard technologies such as

SOAP, while still supporting a rich set of Web services standards, such as WS-Security

[80]. WSRF::Lite provides a framework with which lightweight grid middleware tools

can be quickly developed, such as the Application Hosting Environment described in

the next section.

GROWL [81] is another example of a lightweight middleware system designed to

address some of the short comings of other grid middlewares, using both a combination

of Web service components and wrapper scripts to automate tasks performed by Globus

grid middleware client tools.

2.5 Scientific Workflow Tools
Much research has been carried out into the design and implementation [82] of work-

flow management systems designed to automate common time consuming tasks that

the scientist carries out when performing in silico experiments. These can range from

the mundane (such as transferring a job’s input files to a grid resource and then exe-

cuting a job), to the more complicated (such as executing a series of interdependent

tasks represented by a directed acyclic graph). User interaction with workflow man-

agement systems ranges from command line clients using textual descriptions of the

workflow to graphical web portals [83] to rich desktop clients, or Problem Solving En-
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vironments (PSEs). The advantage of the latter examples is that they allow workflows

to be composed visually, using drag and drop interfaces.

There follows a brief summary of the key features of a selection of grid workflow

management systems.

GridSpace2 [84] provides a user interface which allows users to orchestrate the

atomic operations needed to execute distributed simulations, from moving data to ini-

tiating and managing application execution. GridSpace2 is based on the idea of ex-

ploratory programming, where each workflow application can be decomposed into a

number of so-called snippets. Each snippet may be written in a different programming

language; moreover, the Workbench enables users to execute entire experiments or just

selected snippets. In this way, time-consuming submodels do not have to be started

from scratch each time a modification is made during development. The Experiment

Workbench web portal helps its users to iteratively develop virtual experiments with the

use of scripting languages, including Ruby, Python and Perl. Underneath the Experi-

ment Workbench the Experiment Execution Environment exists to evaluate snippets.

GridANT [85] is based on the Apache Ant build tool (a Java tool similar to UNIX

make), but extended to execute grid workflows. The motivation behind using Ant is

that it is portable (written in Java) and can easily express dependency between tasks in

XML. The composition of workflows is done via an XML workflow specification and

submitted via the command line, but a graphical tool is also provided to visualize and

monitor the workflow. GridANT is currently able to orchestrate GT 2 and 3 grids, and

is being extended to support others.

GridWorm [86] is a grid workflow orchestration system that is part of the UGanDA

project. It is targeted at enterprise level workflows, rather than high performance com-

puting users. It represents workflows using a language called GWLang which is based

on Business Process Execution Language (BPEL) and Grid Service Flow Language

(GSFL), and allows the orchestration of both standalone applications and Web services.

It can submit jobs to the UGanDA MAGI system, and to Condor middleware.

Triana [87, 88] was originally designed as an analysis tool for gravitational wave

data, but in practice is independent of any particular domain. Developed in Java, it

comprises a toolkit of over 500 tools, and has been extended to orchestrate Web service

workflows via its graphical workbench. It uses the Grid Application Prototype (GAP)
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Interface to bind to arbitrary service oriented architectures, and provides a graphical

interface to allow users to develop workflows.

Taverna [89] was designed to orchestrate workflows in bioinformatics applica-

tions, and was created to meet the specific workflow requirements of the myGrid project

before any open source Web service workflow tools existed. Taverna uses the bespoke

Simple Conceptual Unified Flow (SCUFL) language, an XML based notation for de-

scribing workflows using conceptual atomic tasks. Taverna also features the SCUFL

workbench to compose workflows graphically. Taverna uses the Freefluo Web service

orchestration tool, which is based on Web Services Flow Language (WSFL), a prede-

cessor of BPEL.

BPEL [90] is an OASIS standard for Web service orchestration within industry.

Although originally designed to meet the needs of business, several scientific projects

have successfully used BPEL to orchestrate workflows [91, 92]. BPEL workflows are

described in XML files. Since BPEL is a specification rather than a single tool, there

are a number of graphical tools available to create these documents, or they can be

created by hand.

The OMII-BPEL [92] project uses the open source ActiveBPEL engine from Ac-

tiveEndpoints. In common with other BPEL engines it both interacts with other Web

services and is itself interacted with as a Web service. It is hosted in a Tomcat container,

which has the advantage over some of the systems discussed above (e.g. GridANT)

that the user does not need to keep their client running until the workflow has finished.

They simply start the engine running and can come back to monitor it at any point. The

OMII-BPEL graphical workflow composition tool, SEDNA, is based the free graphical

composition tool ActiveBPEL Designer developed by ActiveEndpoints, which runs in-

side the Eclipse integrated development environment to provide a rich client platform

interface.

2.6 Cloud Computing
Subsequent to the development of grid computing has been the rise of cloud comput-

ing. Cloud computing adopts many different forms, but a unifying idea behind cloud

computing is that a business model is used to monetize access to compute cycles in

some way, and provide access to various resources such as CPU, memory and storage
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(known as Infrastructure as a Service clouds) and applications (Software as a Service

or SaaS clouds). For example, with so called Infrastructure as a Service (IaaS) clouds,

a user can gain access to a virtualized sever, and have complete control over that server

as if it were his own machine, even though it is running in an administratively distinct

domain.

Cloud computing is a rapidly growing area due to major strategic investments from

global software players such as Microsoft, Amazon, Google and IBM. Cloud storage

today is thriving, particularly due to its shared data at low cost capabilities however

there are many security and legal issues in cloud computing that are yet to be resolved.

Typically, access to cloud resources is metered, and users must pay for the amount

of CPU time or number of megabytes of storage that they use, with cloud computing

users entrusting their data and software to third-party providers. Cloud providers may

be commercial companies selling access for profit, or academic institutions, providing

access under a research funding model.

2.6.1 Virtualization

Virtualization is a broad term used in computer science to describe the abstraction of

resources. It has found specific realization in many areas of computer science and

information technology. The key benefit of virtualization is that it abstracts the details

of an underlying hardware or software system from the user. The benefits of this are

manifold: developers can code to a single virtualized interface or system rather than for

a specific hardware implementation; multiple virtual instances of a system can often be

run side by side on a single physical system (in machine virtualization for example);

physical resources can be protected,

The growth of virtualization technologies, along with service oriented architec-

tures (SOA), has also powered the development of cloud computing. In an IaaS cloud,

the use of virtualized interfaces and systems means that the specific details of a cloud’s

architecture are hidden from consumers of the cloud resources. Several cloud comput-

ing models exist that take the form of virtualized servers running on hardware platforms

managed by a cloud hosting company, where each user is given access to one or more

virtual servers, solely under their control, which has the effect of separating users of the

system from each other (since they each have access to their own virtualized system).
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This also provides a degree of elasticity, as the number of virtual machines in a cloud

environment can be greater than the number of physical servers available to the hosting

entities.

The interfaces used to access cloud resources differ from platform to platform, and

an extensive discussion of such interfaces is beyond the scope of this thesis. Examples

of cloud software stacks include Eucalyptus [93], OpenStack [94] and OpenNebula

[95]. To employ an IaaS in a scientific workflow, a user would have to install or up-

load their scientific code onto a cloud virtual machine instance along with the input

data needed to run the application, then launch the VM instance on their target cloud

platform, and retrieve the results once the execution of the application had completed.

2.7 High Performance Computing and Distributed e-

Infrastructures

Distributed e-infrastructures can be made up from many different types of resource,

including scientific instruments, data repositories, and computers, ranging in size from

desktop machines to large scale parallel machines, made available at national and inter-

national levels. One area where grids have been widely implemented is in the sharing

of high performance compute (HPC) resources, the distributed e-infrastructure model

being a good way to get the most utility from machines which are expensive to pur-

chase and run (examples include TeraGrid [96] and XSEDE [97] in the US and DEISA

[98] and PRACE [62] in Europe).

Typical a grid of HPC resources will consist of multiple compute clusters made up

of tightly coupled nodes containing single or multiple processor cores. A cluster will

consist of mostly of worker nodes (that is, nodes that solely carry out computation),

with a lesser number of log in/submit nodes, which act as log in, data staging, job

preparation and job submission. As mentioned, the cluster will be managed by a local

resource manager (LRM) such as PBS [33] from Altair Computing, LSF [35] from

Platform Computing, or Load Leveler [99] from IBM. It is the job of the LRM to

allocate jobs submitted to the cluster amongst the worker nodes, and queue jobs as the

arrive, until appropriate resources are available. Typically users will submit jobs via a

job submission interface such as Globus GRAM [100], or, depending on the policies of
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the resource provider, by logging in to a job submission node and submitting their job

directly to the queue.

The various different processor queues on a HPC machine have associated max-

imum wall times, that is, maximum times that the jobs in the particular queue are

allowed to run for. When users submit jobs, they are able to specify the maximum

amount of time that their job will run for, or, if not specified the scheduler will assign

the job a default run time configured by the resource administrator. The LRM uses

a scheduling algorithm, or combinations of scheduling algorithms, to order jobs in a

queue. Examples of algorithms commonly used are first come first serve or back fill. In

the first cast jobs are run on resources in the order that they are submitted. In the latter,

the scheduler attempts to fill holes in the queue with jobs that will fit, even if jobs are

not run in the order that they arrive.

Typically all nodes of the cluster will be within a single administrative domain;

often the back end worker nodes will be on their own private network, with only the

log in nodes network reachable. The queuing systems of such clusters are usually

configured to run parallel applications, such as those written using the Message Passing

Interface (MPI) (cf. 2.1.3.1).

2.7.1 Distributed Application Requirements

While the MPI specification primarily concerns itself with intra-machine process com-

munication, the prevalence of grid middleware tools such as Globus on HPC resources

has facilitated the development of inter-machine versions of MPI which use grid mid-

dleware to create secure communication channels between resources that are part of

the grid. One of the most widely used implementations of MPI over grid middleware is

MPIg [101], formerly called MPICH-G2, developed at Argonne National Laboratory.

The benefits of doing this are twofold. Firstly, it allows problems that can not be

addressed by a single HPC resource (because it requires more memory or CPU power

than the resource is able to provide for example) to be run on a ’meta-computer’ made

up of multiple actual compute resources. Secondly, it allows large problems which will

potentially take a long time to run on a single machine (due to the load on the machine,

meaning that the job will have to wait in the queue for a long time) to harvest smaller

numbers of processors from multiple machines, meaning that the could in principle run
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faster, by avoiding long queue wait times [11].

2.8 On Demand Access Mechanisms
A growing number of projects seek to exploit high performance compute grids for

which the batch processing model is not sufficient to support the scientific investiga-

tions that they want to perform. Such projects frequently require interactive access to

one or more resources, or simultaneous access to a number of resources. For exam-

ple, the SPICE project [44] used steered simulations conducted on a grid to understand

DNA translocation across lipid membranes embedded in protein nanopores. In com-

pute terms this requires simultaneous, interactive access to both compute resources,

where the simulation code runs, and also to high performance visualization resources

to display the results. The fact that the simulations are steered [102] by the investigat-

ing scientist, that is, parameters of the simulation are altered while it is running, means

that interactive access to resources is required - it is not acceptable for the scientist to

have to wait until his or her job has reached the top of the batch queue, potentially

having to wait long in to the night to start their experiment. The need for the ability to

reserve resources is recognized by McGough et al. [103] in their discussion of the need

to predict when jobs in a computational workflow will run.

MPI-g/MPICH-G2 applications [101] provide another use case where simultane-

ous access to multiple resources is required. MPI-g applications are parallel codes dis-

tributed across a number of grid resources, often because no single machine has enough

CPU cores/memory to run the application on its own. Examples of MPI-g/MPICH-G2

applications include Nektar [24], a fluid dynamics application to simulate human arte-

rial blood flow, and Vortonics [24], an application used to investigate computationally-

intensive problems in fluid dynamics.

In order to support the computationally intensive projects discussed above, a com-

putational grid with appropriate advanced reservation policies is required. While it is

often technically possible to make an advanced reservation of time on a single machine

using the machine’s queuing system (for example PBSPro [33]), often this is facility

is either not offered at all, or only available to system administrators, meaning that an

end user has to jump through a number of administrative hoops in order to make a

reservation.



60 Chapter 2. High Performance Computing on Distributed e-Infrastructures

QCG-Computing (see §2.3.5) is a job submission and advanced reservation inter-

face designed to allow advanced a user to reserve a block of processing cores or nodes

on a cluster for a defined duration, starting at a time specified by the user. By making

multiple reservations at different sites, the user can co-reserve access to numerous ma-

chines, in order to run a workflow for example. Typically a user will only be able to

plan a future interactive or cross-site session - they will have to wait until all of the re-

sources that they want to access are available. The ability to make cross-site advanced

reservations does not imply that a user will be given immediate interactive access to a

resource in order to carry out his or her work.

The Highly Available Robust Co-scheduler (HARC) [104] is s similar system de-

signed not only to allow advanced reservations of time to be made on a single machine,

but to allow cross-site reservations of time to be made on a number compute resources

and the switched light path networks that connect them. HARC works by deploying

software components, called resource managers, on to the resources that it is managing

reservations for, and provides an interface which users interact with to make, query

and cancel reservations. HARC uses the Paxos Commit protocol [105, 106] to ensure

that reservation requests between a number of machines are dealt with atomistically.

Paxos Commit removes the problem of Transaction Manager failure experienced by

classic two phased commit protocols by replicating the Transaction Managers, so that

as long as a majority of Transaction Managers are running (called Acceptors in Paxos)

the system will still be able to function.

Related in aims to advanced resource reservation is the concept of job priory and

pre-emption. Based on the idea that urgent jobs (for example simulations of approach-

ing hurricanes) should take priority over regular jobs, job pre-emption requires resource

providers to put in place policies and mechanisms to allow urgent jobs to be run imme-

diately, rather than waiting in a queuing system. The US XSEDE infrastructure uses

the Special PRiority and Urgent Computing Environment (SPRUCE) [107]. SPRUCE

allows certain users, deemed to be running high priority jobs, to have a computational

resource put at their disposal whenever they need it. With SPRUCE a user can gain

immediate interactive access to a machine without having to make an advanced reser-

vation.



2.9. Summary 61

2.9 Summary
This chapter has sought to provide a brief background review of the current state of

play in the world of high performance computing and grids built from HPC machines.

As we have seen, computational e-infrastructures are typically made up of a great many

heterogeneous resources. As well as differing architectures and operating systems, the

resources will typically use a wide range of queue management and scheduling soft-

ware, each of which uses its own proprietary protocols and with no common interface

between them. Grid middleware builds a layer of abstraction on top of the management

systems of the individual resources on the e-infrastructure to provide a consistent in-

terface with which users can interact. The Open Grid Services Architecture defines a

standard set of service abstractions on which higher level tools can be built.

All middleware solutions described in Section 2.3, such as Globus and UNICORE,

present the end user with similar levels of abstraction: they are based around a model

whereby a user interacts with a single machine in order to run her job. While this

model has been extended, for example in the submission of MPI-g jobs where a user

interacts with a single service that then interacts with the individual compute resources

on the users behalf, this does not really provide a high enough level of abstraction for

easy, scalable user interaction across a grid. Workflow engines, especially ones that

use a visual programming interface, provide a higher level of abstraction for user-grid

interaction, but still require the user to perform many tasks, such as resource selection,

manually.

HPC resources shared on a grid are typically made up of multiple tightly coupled

processing units, with a local resource management system tasked with distributing

work between the processors. With the middleware solutions discussed above, the

onus is on the user to decide where to run their job. Resource providers will typically

assign a notional cost to a unit of work on their resource, but usually the end user will

be unaware of this cost, as resources are provided on a per project basis.

Advance reservation of resources is necessary in some cases, such as where access

to resource is at a specific time to run a cross site parallel application, but leads to under

utilization of the resource, as the local resource manager has to drain the job queues

prior to the reservation, to ensure that the reserved queue is available at the specified

time.
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Virtualizing Access to Scientific

Applications

In this chapter we examine several distributed e-infrastructure application case stud-

ies. From these case studies we derive the requirements users have of such systems,

and consider the levels of abstraction required to simplify the use of distributed e-

infrastructure systems. We go on to discuss the design of software systems that can

help mitigate the problems of distributed e-infrastructure use.

3.1 HPC Grid Use Cases
In order to understand the needs of distributed e-infrastructure users, it is useful to

consider the different scientific studies that HPC grids are routinely used to support.

Here we consider three different use cases: a distributed grid application designed to

allow clinicians to calculate the efficacy of a range of drugs for the treatment of HIV,

a grid based bloodflow simulation tool developed to assist in the surgical planning

of neurosurgical procedures, and the simplest case of launching a parallel application

on a supercomputer class resources. These use cases were chosen as they represent

ambitious cases where non-typical people (that is, people who are not professional

computational scientists with backgrounds in the physical sciences) are trying to make

use of HPC grids as part of their scientific endeavours.

3.1.1 Calculating Drug Binding Affinities

A major problem in the treatment of AIDS is the development of drug resistance by

the human immuno-deficiency virus (HIV). HIV-1 protease is the enzyme which is
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crucial to the role of the maturation of the virus, and is therefore an attractive target for

HIV/AIDS therapy. Although several effective treatment regimes have been devised

which involve inhibitors that target several viral proteins [108], the emergence of drug

resistant mutations in these proteins is a contributing factor to the eventual failure of

treatment.

Doctors have limited ways of matching a drug to the unique profile of the HIV

virus as it mutates in each patient. A drug treatment regimen is prescribed using

knowledge-based clinical decision support software, which attempts to determine op-

timal inhibitors using existing clinical records of treatment response to various muta-

tional strains. The patient’s immune response is used as a gauge of the drug’s effec-

tiveness and is periodically monitored so that ineffective treatment can be minimized

through an appropriate change in the regimen. The efficacy of such clinical decision

support systems can be enhanced through a unification of existing databases, as well as

integration with means of assessing drug resistance at the molecular level [109].

At the molecular level it is the biochemical binding affinity (free energy) with

which an inhibitor binds to a protein target that determines its efficacy. Experimen-

tal methods for determining biomolecular binding affinities are well established and

have been implemented to study the in-vitro resistance conferred by particular muta-

tions. These in turn add invaluable information to any decision support system, but are

limited as studies are performed usually on key characteristic mutations and not with

respect to the unique viral sequence of a patient. An exhaustive experimental deter-

mination of drug binding affinities in a patient-specific approach is far too costly and

time-consuming to perform in any clinically relevant way.

Computational methods also exist for determining biomolecular binding affinities.

A recent study has shown that, using molecular dynamics (MD) simulation techniques,

a patient specific model can by built based on the patient’s genomic structure, and

then used to test the binding of a range of drugs in silico, by implementing a protocol

that makes such simulations accurate and repeatable [110]. Ultimately, these binding

affinities allow available drugs to be ranked based on how well they will bind with

a specific patient’s mutations, and hence inform the clinical decision making process.

The study made use of a tool, the Binding Affinity Calculator (BAC) [111], for the rapid

and automated construction, deployment, implementation and post processing stages of
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the molecular simulations across multiple supercomputing grid-based resources.

The generic technique can be applied to a range of other disease cases such as

cancer [112], and also to new drug discovery. In the HIV case, BAC automates bind-

ing affinity calculations for all nine drugs currently available to inhibit HIV-1 protease

and for an arbitrary number of mutations away from a given wild-type sequence. In

order to achieve repeatable, accurate results, ensembles of simulations much be run, to

generate sufficient statistics on which to base a prediction. This means, that for each

drug that is to be tested, 50 separate simulations must be run, each requiring 64-128

CPU cores. The turn around time required to model all patient-drug interactions us-

ing BAC for such studies is 12-18 hours, with optimal computational resources (taking

advantage of the thousands of cores available on today’s petascale resources); this is

more than suitable for the time-scales required for effective clinical decision support.

Given enough computational power such that binding affinity calculations can be rou-

tinely applied, the potential to achieve patient-specific HIV decision support may then

become realistic.

The BAC constitutes a complex distributed e-infrastructure workflow that depends

on a range of computational resources at different scales and a number of computa-

tional codes. For a particular drug/mutation combination, BAC initially runs a set of

job setup scripts on a local cluster to create the necessary input files for set of simu-

lations by taking a default model and customising with the mutations and drugs under

consideration. Next this model data is staged to a petascale supercomputer class re-

source typically on the US XSEDE or EU PRACE e-infrastructures, and the NAMD

molecular dynamics code is used to run a number of equilibration steps to prepare the

model, followed by a number of nano seconds of simulation, which in reality take sev-

eral hours of wall-clock time using between 32 and 64 processors per simulation. To

increase the sampling effectiveness, often several such simulations are run in parallel.

The resource used is typically chosen by the researcher based on precursory glance at

the queue lengths on several large XSEDE [97] and PRACE [62] resources where the

NAMD application is deployed, Once the simulation chain is complete, the output data

(measured in terabytes) is staged to a smaller scale cluster for post processing, using

the Amber molecular dynamics package to calculate a drug binding affinity. Typically

this workflow might need to be run in its entirety nine times (once for each of the nine
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FDA approved HIV-1 protease inhibitors) in order to generate a ranking of the drugs

for an individual’s set of mutations.

3.1.2 Computational Investigations of Cranial Haemodynamics

Cardiovascular disease is the cause of a large number of deaths in the developed world

[113]. Cerebral blood flow behaviour plays a crucial role in the understanding, diag-

nosis and treatment of the disease; problems are often due to anomalous blood flow

behaviour in the neighbourhood of bifurcations and aneurysms within the brain, lead-

ing to strokes for example, although the details are not well understood [114]. Exper-

imental studies are often impractical owing to the difficulty of measuring behaviour

in humans; however, computer tomography (CT) and three-dimensional rotational an-

giography (3DRA) enable static and dynamical data acquisition [115].

Notwithstanding these advances in measurement methods, modelling and simu-

lation have a crucial role to play in haemodynamics. There are evident limitations

to the experimental methods which can be complemented by simulation. The GE-

NIUS project [11] is concerned with performing entire brain neurovasculature blood

flow simulations in support of clinical neurosurgery. Simulation offers the clinician

the possibility of performing non-invasive, patient specific, virtual experiments to plan

and study the effects of certain courses of surgical treatment with no danger to the pa-

tient, including support for diagnosis, therapy and planning of vascular treatment [116].

Simulation techniques also offer the prospect of modelling the poorly understood flow

patterns in the normal brain and in neurovascular pathologies such as aneurysms and

arterio-venous malformations (AVMs).

Simulation input data is provided by CT 3DRA scans, from which a patient spe-

cific models of the vascular structure of the brain is built. Conventional continuum

solvers, based on finite difference, finite volume and finite element codes, are beset with

problems in three spatial dimensions due to the computational costs of mesh genera-

tion, the need to solve the auxiliary Poisson equation for the pressure field, and various

approximations associated with the calculation of the shear stress from the flow veloc-

ity field [117]. For large systems, such as those the GENIUS project is concerned with

in addressing cerebral blood flow, it is essential to develop and utilize scalable, high

performance parallel codes, which further complicates the use of continuum models.
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To overcome these limitations the project uses a highly optimized flow model based on

the lattice-Boltzmann (LB) method, called HemeLB [118].

The HemeLB application is the basis of an efficient brain blood flow simulator

that can act in an advisory capacity to the surgeon before (and eventually also during)

surgery. HemeLB is ideally suited to studying flow in sparse complex geometries such

as the neurovasculature. The algorithm is based on a data layout that automatically han-

dles lattices with large unstructured regions covered by void (i.e. non-fluid) nodes. In

the parallel code, spatial domain decomposition is handled by a simple and fast cluster

algorithm; partial overlapping of communication between different processor domains

and on-processor computation is also exploited to enhance performance. In addition to

the lattice-Boltzmann solver, HemeLB includes an in-built ray-tracing engine, giving it

real time visualization capabilities, with frames of visualization rendered on the same

processor cores as the simulation. A simple desktop display and computational steering

client connects to the application at run time to display the visualization and allow the

user to interact with it.

3.1.2.1 GENIUS e-Infrastructure Requirements

The requirements of the medical computing scenarios that underpin the GENIUS

project are not met by the traditional ‘batch’ model supported by the majority of HPC

resource providers [10, 30]. Simulations, used to support clinical procedures, require

large numbers of processor cores, and have to be run when required by the clinician.

Surgical procedures cannot be postponed until a simulation reaches the top of a batch

queue; emergency medical simulations must either pre-empt all other jobs running on

a machine, or be able to be scheduled into the clinical workflow.

Clinicians are not concerned with where simulations are running, nor the details

of reservations; thus features such as advanced reservations and emergency computing

capabilities, managed application launching and data marshalling are all done behind

the scenes. Of key concern are the time scales involved in the clinical decision mak-

ing process in the treatment of arterio-venous malformations and aneurysms. From the

acquisition of a 3D dataset (which is typically 2 to 4 GB in size), to the surgical treat-

ment procedure, a time scale of 15 to 20 minutes is typical, and for such computational

approaches to be clinically relevant, the entire workflow has to fit into this time scale.
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These requirements lead to a demand on resource providers to implement policies and

tools that allow computational access to be gained as and when required, so that such

methodologies can be incorporated into a clinician’s day to day clinical activities, or

a researcher’s normal activities, rather than just providing such facilities on an ad hoc

basis [10]. GENIUS therefore make use of enabling technologies such as HARC [104],

which allow HPC resources to be used in a more interactive manner.

The HemeLB bloodflow simulator at the heart of the GENIUS project is capable

of running a single simulation distributed across multiple resources, using the MPIg

middleware [101]. Tying together multiple resources in this fashion can decrease the

turnaround time substantially but, to effectively run HemeLB across multiple resources,

CPU time on disparate resources needs to be (co)-reserved in advance. Since the re-

sources provided by a single e-infrastructure may not always be sufficiently powerful

or appropriate to run large-scale distributed models, resources provided by multiple

e-infrastructures may need to be federated in order for a particular investigation to be

conducted [119].

In order to deliver the sought after flexible access to computational resources, the

GENIUS project also has advanced networking needs, typically requiring resources to

be connected with dedicated lightpath links to perform inter-machine simulations and

facilitate real-time steering and visualization. In addition to these hardware require-

ments, suitable middleware tools are needed to hide the components of the grid from

researchers and clinicians.

3.1.2.2 GENIUS Workflow

The software environment deployed by the GENIUS project aims to bring to the fore-

front details and processes clinicians need to be aware of, such as (i) the process of

image segmentation to obtain a 3D neurovascular model, (ii) the specification of pres-

sure and velocity boundary conditions, and (iii) the ‘real-time’ rendered images.

GENIUS researchers use a rich client platform tool to automate the entire simu-

lation building, launching and interaction workflow. This client, run by the clinician

on a desktop workstation, automates the whole process of retrieving the imaging data

from a data repository, running a segmentation tool to create a HemeLB model, staging

the model to a GridFTP server, launching the application on the grid, and allowing the
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clinician to steer and visualize the running simulation.

Security and anonymization are of primary concern when dealing with medical

data and, as such, all data sets used by clinicians and researchers in the GENIUS project

are anonymized, adhering to a protocol specified by clinical partners in the UK National

Health Service (NHS) before they leave the confines of the NHS secure network. This

protocol ensures that the datasets used to run simulations on grid resources contain no

data that could be used to identify the individual patient concerned.

3.1.3 Single Grid Application Launching

Typically in supercomputer/HPC usage scenarios, an expert user (or system adminis-

trator) installs and tunes an application on an HPC system, and makes it available to

users within a research community. This draws a parallel with many different commu-

nities that use parallel applications on high performance compute resources, such as

the UK Collaborative Computational Projects (CCPs) [120], where a group of expert

users/developers develop a code, which they then share with the end user community.

Users of a particular application will use the resources on the e-infrastructure where

they know their application is installed.

The following simple use case illustrates the process a user goes through to launch

one such application, the NAMD [121] molecular dynamics code, on a remote grid

resource. Typically the user will go through the steps of selecting a computational

resource on which to run the application, where she know it to be pre-installed. She

may log in to a set of resources to check the load on each machine and select the one

she believes will deliver the fastest turn around time. She then uploads her NAMD

input files from her local machine to the target resource, writes an appropriate job

submission script that runs the NAMD application with her chosen input files, and then

submits it to the scheduler on the target resource, either directly, or via a middleware

interface such as Globus GRAM. Once the application is launched, the use will monitor

it until it completes, then download the NAMD output files back to her local machine

for analysis, or leave them on a remote file system to perform further computation.
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3.2 Analysing the Use Cases
The use case scenarios considered above have many features in common, even though

they differ in the level to which they seek to exploit a distributed e-infrastructure as

a whole (instead of just individual resources that constitute the e-infrastructure). The

commonalities include:

• For supercomputer class applications, the user generally has to install the applica-

tion himself; it is not possible simply to stage an executable to the target resource

as it requires too much bespoke tailoring to the particular hardware setup of the

resource (although application binary staging is commonly occurs on systems

such as Condor).

• Generally a group of researchers will want to use the same application on a given

resource. However, many users will not know where a particular application

is installed on a target system - they will also not know the best way to run

the application on a particular system. Often with supercomputer class systems,

applications have to be run in specific ways to achieve the best performance. The

communities expert user typically has to spend time educating other users on the

vagaries of different queuing systems and machines.

• Typically, the user will need to stage data to the supercomputer before she is able

to execute her application. Therefore, the supercomputer must provide accessible

interfaces over which data can be staged.

• In order to launch an application, the user has to prepare a description of the job

that they want to run to submit to the queue management system on their target

resource, in a format that the queue management system understands and which

is potentially incompatible with other instances of the same queue management

system running on other resources.

• Once the job has been submitted, the user monitors the progress of their job

through the queuing system, using interfaces provided by the resources.

• Applications can consist of multiple computational codes launched on multiple

distributed resources, as well as single codes launched on single resources. Some
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applications may requires access to resources that cannot be provided by a sin-

gle e-infrastructure, and may therefore need to be federated across multiple e-

infrastructures.

• Applications can get their data from multiple sources, such as online data repos-

itories and databases, and store their output data in similar resources.

• Typically, users will be given allocations of time on individual resources, or the

e-infrastructure as a whole, through awards made to their project’s principal in-

vestigator. These allocations will have a notional associated cost, the cost per

CPU hour, derived by the resource operator from their running costs and a pro-

jected resource utilization.

The distributed e-infrastructure user’s primary concern is running their application

in a timely fashion, in order to obtain results that further their scientific objectives. All

the services and facilities provided by an e-infrastructure are subservient to this end.

Typically, the user does not care which machine on the e-infrastructure their application

is run on, as long as results are delivered within a time frame that makes them useful,

whether that is the time to publish a scientific paper, or the time to conduct a potentially

life-saving medical simulation.

3.3 Review of Current Middleware Approaches
As we have shown above, the user of a distributed e-infrastructure is most interested in

running applications, be they single codes or multiple distributed codes linked together

in some way. However, the predominant concept in current HPC e-infrastructures is

the ‘job’ or the submission of an application to a resource queue management system.

We believe the concept of a job is too low level for the average grid user. By way of

illustration, consider the following scenario of launching the aforementioned HemeLB

application on the Stampede resource on the XSEDE e-infrastructure using the Globus

Toolkit middleware.

Firstly, the user has to generate a proxy certificate, a short lived credential gener-

ated from his own full grid certificate, which allows the middleware tools to perform

actions on his behalf. To do this, he uses the command:

grid-proxy-init
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Once the proxy is generated, the user can stage his input data (the model used to

run the simulation) to his target resource as follows:

globus-url-copy file:///home/username/hemelb/input/* \

gsiftp://stampede.tacc.xsede.org/username/*

Next, he needs to generate a job description file which specifies the number of

processors to use, the location of the executable, the type of job, redirects for the stan-

dard out and standard error, and arguments to the application. This is written using the

Globus JDD XML syntax, and saved in a file called ex.jdd, shown in listing 3.1.

Listing 3.1: JDD job description to run the HemeLB code
<? xml v e r s i o n =” 1 . 0 ” ?>

<j o b>
<f a c t o r y E n d p o i n t xmlns :gram =” h t t p : / /www. g l o b u s . o rg / namespaces / 2 0 0 4 / 1 0 / gram / j o b ”

xmlns :wsa =” h t t p : / / schemas . xmlsoap . o rg / ws / 2 0 0 4 / 0 3 / a d d r e s s i n g ”>
<wsa :Addre s s>

https: / / tg−login .ncsa .teragrid .org:8443 /wsrf /services /ManagedJobFactoryService
< / wsa :Addre s s>
<w s a : R e f e r e n c e P r o p e r t i e s>

<gram:Resource ID>PBS< / g ram:Resource ID>
< / w s a : R e f e r e n c e P r o p e r t i e s>

< / f a c t o r y E n d p o i n t>
<e x e c u t a b l e> /home /ac /smanos /pub /bin /hemelb< / e x e c u t a b l e>
<d i r e c t o r y>${GLOBUS_USER_HOME} /tmp< / d i r e c t o r y>
<argument>${GLOBUS_USER_HOME} /tmp< / a rgument>
<argument>1000< / a rgument>
<argument>100000< / a rgument>
<argument>0 . 0 1< / a rgument>
<argument>0< / a rgument>
<argument>0< / a rgument>
<argument>107112< / a rgument>
<e n v i r o n m e n t>

<name>MP_BUFFER_MEM< / name>
<v a l u e>32m< / v a l u e>

< / e n v i r o n m e n t>
<e n v i r o n m e n t>

<name>LD_LIBRARY_PATH< / name>
<v a l u e> /usr /lib: /usr /X11R6 /lib: /usr /local /lib< / v a l u e>

< / e n v i r o n m e n t>
<s t d o u t>${GLOBUS_USER_HOME} /tmp /stdout .txt< / s t d o u t>
<s t d e r r>${GLOBUS_USER_HOME} /tmp /stderr .txt< / s t d e r r>
<p r o j e c t>TG−ASC090009< / p r o j e c t>
<maxTime>20< / maxTime>
<jobType>mpi< / jobType>
<e x t e n s i o n s>

<r e s o u r c e A l l o c a t i o n G r o u p>
<hos tType>ia64−compute< / hos tType>
<h o s t C o u n t>2< / h o s t C o u n t>
<c p u s P e r H o s t>2< / c p u s P e r H o s t>

< / r e s o u r c e A l l o c a t i o n G r o u p>
< / e x t e n s i o n s>

< / j o b>

The user submits the job description file to the GRAM service running on the

NCSA machine with the following command:
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globusrun-ws -submit -batch -J -S -f ex.jdd 2>\&1 1> epr_file

This is then translated by the GRAM service into a job description understood

by the underlying queue management system on the machine (in this case PBS). The

submission command generates a handle to the job, which is saved in the file epr file.

The user can monitor the status of his job with the following command:

globusrun-ws -status -job-epr -file epr_file

Once the job is complete, the user can stage back the output data from the HemeLB

code as follows:

globus-url-copy gsiftp://stampede.tacc.xsede.org/username/* \

file:///home/username/hemelb/input/*

The above scenario assumes that the user has already decided on which resource

to use (for example, through logging in to a set of resources via GSISSH and examining

the lengths of the queues on the machine). It also assumes that the application executes

without any problems, which is often not the case when running supercomputer class

applications.

3.4 Requirements
By looking at the common distributed e-infrastructure use cases in (cf. §3.1) and the

current practice of running applications on e-infrastructure based supercomputer class

resources (cf. §3.3), we can begin to derive a set of requirements for a system designed

to make the use of distributed e-infrastructure based applications more transparent to

the end user. We enumerate these requirements in the list below:

1. Current distributed e-infrastructure systems focus on submitting jobs to batch

schedulers on computational resources, meaning the user has to interact at both

job level and resource level. Since users predominant interest is running their

application within a useful time frame, our system should promote applications as

a first class resource concept. All user interactions should be with the application,

rather than the machine, scheduler and job.

2. Distributed e-infrastructure user communities consist of individuals with a range

of different skills and experiences. Since building and launching an application
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on a supercomputer class resource is in itself a non-trivial tasks, many users look

to an ‘expert’ within their community to build and maintain their applications,

and show them how to best use the application on each individual resource. Our

system should provide a mechanism to capture the knowledge of the expert users

within a community, and facilitate the sharing of knowledge between users.

3. Current distributed e-infrastructure job submission mechanisms put the onus on

the user to manage and curate their application’s output data. Our system should

preserve the full state of each instance of an application, including all parameters

and data used to launch the application, and all simulation output. This will

assist with tracing the provenance of simulation results, and is key to simulation

reproducibility.

4. Current distributed e-infrastructure middleware tools require the user to perform

a number of steps in order to launch their code. Our system should reduce the

number of steps required to the minimum number possible in order to success-

fully run an application.

5. The process of submitting an application should be initiated by the user and done

at the user’s convenience, rather than at a time specified by the computational

resource provider.

6. With current systems the onus is on the user to choose the resource on which

they want to run, meaning that they often choose the one they think will be able

to run their job fastest, or the one they are most comfortable using. Instead of

requiring users to choose resources, our system should allow the user to specify

requirements for their application run, such as the time they need the results to

be produced by, or the maximum cost they are willing to pay in order to run the

application.

7. Current systems require users to manually stage their data to their target resource

before launching their job. Our system should take care of automatically staging

data on behalf of the user.

8. Current systems require the user to generate complicated job description docu-

ments in order to submit their job. Our system should allow the user to launch
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their application using the simplest set of requirements possible, and take care of

generating whatever underlying job descriptions the middleware on the underly-

ing resource requires.

9. In current systems, users are required to manage their security credentials, and

generate proxies from those credentials, manually. Our system should manage

credential delegation on behalf of the user.

10. Users of supercomputer class resources often have access to a number of such re-

sources via different distributed computational e-infrastructure, running different

middleware stacks, requiring them to learn how to use different middleware tools

to submit their jobs. Our system should present a uniform interface to the user to

access resources running different middleware stacks, allowing the user to trans-

parently access federated resources from multiple distributed e-infrastructure.

11. Computational e-infrastructure resource providers often invest much time and

effort in selecting and maintaining their back end middleware stacks. Our system

should be as minimally invasive as possible, requiring resource administrators to

make as few modifications to their system as possible, and interfacing with the

back end middleware provided by the resource.

12. Users may require access to multiple resources in order to run their application.

For example, for an application that consists of a simulation code and a coupled

visualization engine, the user would need access to a compute resource and a

visualization resource.

3.5 Meeting the Requirements
In order to meet the requirements outlined above, we have developed a system that

consists of two independent but linked systems. These systems can be used as stan-

dalone middleware tools, but work best when coupled together. They are designed to

satisfy the requirements outlined above by abstracting from the user much of the in-

formation that that the currently must possess in order to interact with the distributed

e-infrastructure: the names of the machines they want to run on, the location of ap-

plication binaries on those machines, and the mechanisms needed to stage data to and
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from machines.

The first system is the Application Hosting Environment (AHE), described in the

remainder of this chapter. AHE is a middleware system designed to ease user interac-

tion with the grid by promoting the application to the status of first class resource, by a

process we term grid application virtualization [9, 6, 1].

The second system is the Resource Allocation Market Place (RAMP), described in

Chapters 6 and 7. RAMP is a multi-agent distributed system that implements a multi-

attribute, combinatorial reverse auction market place, to allow users to ask resources to

provide quotes to run jobs, which satisfy a set of requirements specified by the user.

We go on to describe these systems in detail in the remainder of this chapter.

3.6 Service Oriented Computational Science
Our approach to simplifying the use of grid computing and addressing the requirements

described in Section 3.4 is a processes that we call grid application virtualization. The

key aim of virtualization [122] is to abstract away all the details of an underlying hard-

ware or software system from the concern of the user. The benefits are manifold: de-

velopers can code to a single virtualized interface or system rather than for a specific

hardware implementation; multiple virtual instances of a system can often be run side

by side on a single physical system (in machine virtualization for example); and phys-

ical resources can be protected.

While virtualization technologies certainly reduce the complexity of using a sys-

tem, and especially when working across multiple heterogeneous computing environ-

ments, they are not widely deployed in high performance computing scenarios. As

its name suggest, HPC seeks to obtain maximum performance from computing plat-

forms. Extra software layers impact detrimentally on performance, meaning that in

HPC scenarios users typically run the applications as close to the ‘bare metal’ as possi-

ble. In addition to the performance degradation introduced by virtualization technolo-

gies, choosing what details to abstract in a virtualized interface is itself very important.

Grid and cloud computing support different interaction models. In grid computing, the

user interacts with an individual resource (or sometimes a broker) in order to launch

jobs into a queuing system. In cloud computing, users interacts with a virtual server,

in effect putting them in control of their own complete operating system. Both of these
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interaction models put the onus on the user to understand very specific details of the

system that they are dealing with, making life difficult for the end user, typically a

scientist who wants to progress his or her scientific investigations without any specific

usability hurdles obstructing the pathway.

To address these problems, we have developed a software layer designed to imple-

ment the Software as a Service cloud paradigm for scientific applications that rely on

high performance computing, mediated by the Application Interaction Model which we

describe in Section 3.7, derived from the user requirements discussed in Section 3.4.

This model is based on the insight that many e-infrastructures impose a steep learn-

ing curve on the majority of end users, who do not possess the technical expertise for

the most part to compile, optimize, install, debug and finally launch their applications;

they simply want to run their applications, obtain results and focus on their scientific

endeavours. While an application may consist of a single execution of a computational

code, it could also consist of a complex set of operations involving multiple codes,

connected as a workflow; AHE enables all kinds of applications to be treated as simple

“atomic” units, helping realize the original vision of a grid as “as distributed comput-

ing conducted transparently by disparate organizations across multiple administrative

domains” [16].

3.6.1 Design Constraints

In addition to the functional requirements we discussed in Section 3.4, a number of con-

straints were placed on the AHE’s design. The problems associated with ‘heavyweight’

middleware solutions described in Section 2.4 have greatly influenced the design of the

Application Hosting Environment. Specifically, they have led to the following con-

straints on the AHE design, in an attempt to simplify the end user’s experience of a

distributed e-infrastructure:

• The user’s machine does not have to have specific client software installed for the

middleware on the target grid resource. Instead the AHE client should provide a

uniform interface to multiple grid middlewares.

• The client machine is behind a firewall that uses network address translation

(NAT) [123]. The client cannot therefore accept arbitrary inbound network con-

nections, and needs to poll the AHE server to find the status of an application
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instance.

• The client machine needs to be able to upload input files to and download output

files from a grid resource, but does not have GridFTP client software installed.

An intermediate file staging area should therefore be used to stage files between

the client and the target grid resource.

• The client has no knowledge of the location of the application it wants to run on

the target grid resource, and it maintains no information on specific environment

variables that must be set to run the application. Such information is knowl-

edge possessed by the expert user, which should be maintained on a central AHE

service.

• The client should not be affected by changes to a remote grid resource, such as

if its underlying middleware changes from GT2 to GT4. Since AHE is intended

to provide an interface to the target grid resource, a change to the underlying

middleware used on the resource is not seen be the user, as long as it is supported

by AHE.

• The client should not have to be installed on a single machine; the user should be

able to move between clients on different machines and access the applications

that she has launched. The user should even be able to use a combination of dif-

ferent clients, for example using a command line client to launch an application

and a GUI client to monitor it. The client therefore must maintain no information

about a running application’s state. All state information should be maintained

on a central service that is queried by the client.

These constraints have led to the design of a lightweight client for AHE, which is

simple to install and does not require the user to install any extra libraries or software.

It should be noted that this design does not remove the need for middleware solutions

such as Globus on the target grid resource; indeed AHE provides an interface to run

applications on several different underlying grid middlewares so it is essential that grid

resource providers maintain a supported middleware installation on their machines.

What the design does do is simplify the experience of the end user. We discuss AHE

fully in Chapter 3.8.
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3.7 The Application Interaction Model
The idea of an application is an instinctive abstraction to facilitate user interaction with

HPC resources; it is the fundamental concept that users are interested in (since it is

what they use to generate their scientific results) and can encapsulate all parameters

and activities that a scientist wishing to use an HPC machine to perform an in silico ex-

periment needs to deal with. Based on this insight, gained though the long experience

of the author working in the field, and our analysis of the use cases presented in Sec-

tion 3.2, we have derived the Application Interaction Model, designed to allow users to

easily control virtualized applications running on remote e-infrastructures. Tradition-

ally, HPC focuses on the concept of ‘jobs’ to describe distinct workloads submitted to

a batch queue. We purposefully focus on the concept of applications. An application

is a higher level concept than a job; although an application could be realized by a

single HPC job, it could equally correspond to a coupled simulation, where two codes

(launched as two HPC jobs) pass parameters between themselves, or a steered applica-

tion which requires steering Web services to be initialized before the code is launched,

or a workflow of arbitrary complexity. However the application is composed the user

should still interact with a single entity to control the execution of all components of

the application. As the application abstraction seemed to fit the case studies considered,

an extensive and systematic requirements gathering exercise was not performed.

We define the Application Interaction Model as follows:

1. The virtualized application is the central entity in the Application Interaction

Model.

2. An application does not necessarily correspond to a single computational code -

it could be composed of multiple computational codes linked together in a work-

flow, or a computational code and associated steering web services. However it

is presented to the user as a single application.

3. The application encapsulates all of the details of how to launch it, such as where

the binaries that constitute the application are located, how to interact with indi-

vidual resources and so on. These details are shielded from the user, who does

not need to know anything about the underlying details.
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4. Each instance of an application is controlled through a separate application in-

stance, through which it is controlled. The application instance encapsulates all

of the state associated with that run of the application, such as the input and

output data, the application parameters and so on.

5. All user interaction occurs through the virtualized application instance, which

causes the computational code(s) which constitute the application to be launched

on back-end computational resources.

6. Operations on the application instance allow the user to stage data associated with

the application to the resource where it is needed, launch, monitor and terminate

the application. These operations have an effect on the codes running on remote

grid resources.

A schematic representation of this interaction model is shown in figure 3.1. The

principal motivation behind this approach is to simplify the use of e-infrastructures,

by introducing an abstraction layer between the users and the high end computing re-

sources available to them which hides the complexity of the latter, providing an abstract

interface to scientific applications deployed on a grid. This abstraction layer takes care

of the process of launching the application on one or more HPC resources, and reduces

the interaction with an application to those operations most relevant to the user.

The Application Interaction Model implies that the task of deploying and configur-

ing an application is taken care of by a system administrator, or a community’s ‘expert

user’. This draws a parallel with many different communities that use applications on

high performance computing resources, such as the UK Collaborative Computational

Projects (CCPs) [120], where a group of programmers develop a code, which they then

distribute to an end user community. Once the expert user has configured AHE to

share an application, end users can use clients installed on their workstation, tablet or

mobile phone to launch and monitor the application across a variety of geographically

distributed computational resources.

3.8 The Application Hosting Environment
The Application Hosting Environment (AHE) is our implementation of the Application

Interaction Model. AHE is based on two key concepts to promote usability: application
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Figure 3.1: The Application Interaction Model underpinning AHE. The Application Instance is
the central entity representing each instance of an application that a user launches.
All user interaction is mediated via the Application Instance, which supports opera-
tions to launch, monitor and terminate the application, and to manage data sharing.

virtualization and community application sharing. Application virtualization allows de-

velopers to code against a single virtualized interface instead of the specific underlying

software or hardware system, and it also allows multiple virtualized instances to be run

side by side on a single physical system. The concept of an application in AHE does

not necessarily imply a single computational code executed on a single HPC resource.

A virtualized application in AHE can be comprised of more complex workflows, such

as coupled simulations where multiple applications are required to pass data to each

other, for example coupled quantum and molecular level simulations, made up of sep-

arate codes that exchange data via files [4].

AHE is a layer of middleware on top of existing grid technologies such as Globus

[20] and Unicore [21], abstracting the details of the particular underlying grid middle-

ware in use. AHE provides simple services that allow the scientist to easily manage

simulations. Services are used to launch applications on grid resources, manage the

location of input and output files associated with a simulation, stage files needed to run

a simulation to their required destination and retrieve simulation output to locations

easily accessible by the scientist.

AHE allows for scientific applications to be easily exposed as Web services, and

run on a variety of different resources, from high performance grid machines belonging
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to disparate members of a virtual organization and transcending security boundaries, to

local clusters and even desktop workstations hosted within a single administrative do-

main. AHE does not mandate any required features for the applications it hosts, mean-

ing that legacy community applications, often with many years of development invest-

ment, can be easily deployed on a grid without modification. It does this seamlessly,

using secured, mutually authenticated transport protocols [124], and proxy credentials

[125] where necessary. Using a single uniform interface, which can be accessed by a

multitude of client tools including command line and graphical clients, the scientist can

access a wide variety of different resources.

AHE is built around the idea of a community model. In this paradigm, an expert

user is required to setup and configure AHE with details of a scientific application, the

distributed (grid) infrastructure it is deployed on and then uses AHE’s RESTful inter-

face to share this scientific application transparently with a group of end users. The

resources that a particular application is deployed onto are chosen based on the charac-

teristics and requirements of the application. An end user can then launch and monitor

applications through the AHE desktop GUI client, web client or command line client

(described in §3.14), and any combination of these clients can be used simultaneously.

AHE manages the simulations started by the scientist, taking care of the many

data files that need to be moved around the grid. By removing the need for the user to

remember the many different incantations required to access numerous different high

performance computers and manually managing simulations, AHE allows the scientist

to concentrate on doing actual science. AHE uses very simple, lightweight, interopera-

ble clients, meaning that the scientist can run their simulations in a number of different

ways: for example the scientist can choose to launch simulations from a graphical client

on their desktop machine, or create more complex scientific ‘workflows’ by scripting

calls to command line clients. A mobile client has recently been released [126] that

will run on a PDA or mobile phone, so that scientists can continue to do research while

on the move.

3.9 Modelling Applications as Services
The requirements outlined in Section 3.4 and the design constraints discussed in Section

3.6.1 have led to the design of a software implementation of the model, the Application
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Hosting Environment (AHE), the fundamental contribution of the first half of this the-

sis. The requirements and design constraints present the need for the following basic

services:

• An application instance, a service that represents each individual application ex-

ecution

• An application factory, which can be used to generate new application instances.

• An application instance registry, which records each instance of an application

launched, so that it can be found again.

• An application registry, which allows users to discover each application hosted

by AHE.

• A file staging service, to manage the transfer of files between resources.

AHE has evolved over several years of development, which has allowed us to

evaluate different service development paradigms as a means to implement the tool.

Our initial AHE implementation of AHE used Web Services Resource Framework

(WSRF) to model the above services. In Coveney et al. [12] we reported our initial im-

plementation of this tool (AHE 1.0). Version 1 of AHE provides a first step towards the

hosting of arbitrary grid applications; we built upon this success [42, 23, 127, 128, 19]

to add new features and extend the grid application virtualization concept to more com-

plex scenarios in AHE 2.0. The design of these two WSRF based implementations is

described in Section 3.10. AHE 3.0 [1], described in Section 3.12, is a reimplementa-

tion of the AHE concept, adding many significant new features to those found in AHE

2.0, with an unremitting focus on usability and reliability. We present a discussion of

these two approach in Section 3.13.

3.10 Implementing the Application Interaction Model

as WSRF Services
AHE 1.0 and 2.0 use the Web Services Resource Framework [53] to represent legacy

scientific applications as stateful web services. A single WS-Resource represents each
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instance of an application launched, and is used to maintain all of the properties associ-

ated with the application. The interface presented by the WS-Resource allows the user

to control and monitor the application. The AHE 2.0 system consists of the following

components:

3.10.0.1 App WS-Resource

The App WS-Resource represents an instance of the running application. It is a WSRF

WS-Resource with the following ResourcePropertiess:

• The time the WS-Resource was created.

• The grid resource the application is/was run on.

• The back end middleware used to launch the application.

• The arguments to the application that were specified by the user.

• The location of input files.

• The location of out files.

• The status of the application (whether it is running, finished, failed etc.).

• The user that created the App WS-Resource.

• Details of the user’s proxy credentials stored on a MyProxy server.

The App WS-Resource supports the WS-ResourceProperties operations specified

in the WSRF specification, including Create, Destroy and GetPropertiesDocument. It

also supports a range of operations to allow the user to control the application. The Start

operation launches the application on the grid resource by submitting an appropriate job

description to the resource manager running on the grid resource. Job descriptions can

be submitted in either the JSDL [58] or JDD [129] and are created by applying an XSLT

transform [130] to the WS-Resource’s Properties document.

3.10.0.2 App Server Factory

The App Server Factory is a “factory” according to the Factory pattern [131]. It pro-

duces a new WS-Resource that acts as a representation of the instance of the executing

application. The App Server Factory is itself a WSRF WS-Resource, and supports the
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standard WS-ResourceProperties operations but not the WS-ResourceLifetime opera-

tions as it is a persistent service. Clients are not allowed to modify properties of the

”App Server Factory”, they are only allowed to retrieve them. The ResourceProperties

for the App Server Factory are:

• The name of the each application the server is configured with.

• The set of grid resources the application is available on.

• The location of the application’s job description template files.

The App Server Factory supports an extra option called Prepare which creates a

new WS-Resource to represent an instance of the Application. The Prepare operation

returns the end point reference (EPR) for the WS-Resource. Once a WS-Resource has

been created, all further interaction between the user and the application is conducted

via its operations.

3.10.0.3 App Server Registry

Each WS-Resource created by the App Server Factory is registered with the App Server

Registry, which acts as a registry of all application instances launched by AHE 2.0

users. The service supports the standard WS-ResourceProperties operations, but the

data returned by the GetResourceProperties operation is user specific, that is, the user

is only returned the list of application instances that they himself have launched. This

service allows the user to launch an application then close down their client then relo-

cate their applications WS-Resource at a later date, meaning that no state information

needs to be maintained on the client machine.

3.10.0.4 File Staging Service

In order to move data between the user’s local machine and the grid resource they want

to use, an intermediate file staging service is used. This means that a) the client does not

need to know the specific details of how to transfer data to each target grid resource, and

b) that the user’s machine does not need to allow inbound network connections to allow

files to be staged in. The file staging service can either use the WebDAV or GridFTP

protocol to stage files. All input and output data associated with an application instance

is maintained in a unique directory on the file staging service, and can be considered a

part of the application’s state.
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Figure 3.2: The architecture and message flow of the Application Hosting Environment. AHE
2.0 server builds a layer of middleware between the user and the grid to hide much
of the complexity of launching grid applications.

3.10.1 The Workflow of Launching an Application

All user interaction is via a client that communicates with the AHE using SOAP mes-

sages. The workflow of launching an application on a grid resource running the Globus

middleware, shown in figure 3.2, is as follows: the user retrieves a list of App Server

Factory URIs from AHE 2.0 (1). There is an application server for each application

configured in AHE 2.0. This step is optional as the user may have already cached the

URI of the App Server Factories he wants to use. The user issues a Prepare message

(2); this causes an App WS-Resource to be created (3) which represents this instance of

the application’s execution. AHE 2.0 returns a list of possible resources on with the ap-

plication can be run to the client. To start an application instance the user goes through

the sequence: Prepare→ Upload Input Files→ Start, where Start actually causes the

application to start executing. Next the user uploads the input files to the intermediate

file staging service using the WebDAV protocol (4).

The user generates and uploads a proxy credential to the MyProxy server (5).

The proxy credential is generated from the user’s X.509 certificate issued by their grid

certificate authority. This step is optional, as the user may have previously uploaded
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a credential that is still valid. Once the user has uploaded all of the input files he

sends the Start message to the App WS-Resource to start the application running (6).

The Start message contains the locations of the files to be staged in to and out from the

target grid resource, along with details of the user’s proxy credential and any arguments

that the user wishes to pass to the application. The App WS-Resource maintains a

registry of instantiated applications. Issuing a Prepare message causes a new entry to

be added to the registry (7). A Destroy command sent to the App WS-Resource causes

the corresponding entry to be removed from the registry.

The App WS-Resource creates a Job Submission Description Language (JSDL)

[58] document for a specific application instance, using its configuration file to deter-

mine where the application is located on the resource and listing the application’s input

and output files, as well as any parameters that need to be supplied to the application.

The JSDL is sent to the GridSAM [132] instance acting as interface to the grid resource

(8), and GridSAM handles authentication using the user’s proxy certificate. GridSAM

retrieves the user’s proxy credential from the MyProxy server (9) which it uses to trans-

fer any input files required to run the application from the intermediate File Staging

Service to the grid resource (10), and to actually submit the job to a Globus back-end.

The user can send command messages to the App WS-Resource to monitor the

application instance’s progress (11); for example the user can send a Monitor message

to check on the application’s status. The App WS-Resource queries the GridSAM

instance on behalf of the user to update state information. The user can also send

Terminate and Destroy messages to halt the application’s execution and destroy the

App WS-Resource respectively. GridSAM submits the job to the target grid resource

and the job completes. GridSAM then moves the output files back to the file staging

locations that were specified in the JSDL document (12). Once the job is complete the

user can retrieve any output files from the application from the File Staging Service to

their local machine. The user can also query the Application Registry to find the end

point references of jobs that have been previously prepared (14).

3.10.2 Implementation

AHE 2.0 is based on a number of pre-existing grid technologies, principally GridSAM

and WSRF::Lite [78]. WSRF::Lite is a Perl implementation of the OASIS Web Ser-
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Figure 3.3: The layered architecture of AHE 2.0. The AHE 2.0 client, running on a user’s
desktop machine, interacts with the AHE 2.0 services running in a Tomcat Web
services container, and also stages data via GridFTP or WebDAV. The AHE 2.0
services interact with job submission components such as OGSA-BES or Globus
GRAM in order to submit applications to distributed grid resources. AHE 2.0 also
has the ability to interact with HARC and RealityGrid steering services.

vices Resource Framework specification. It is built using the Perl SOAP::Lite [79] web

services toolkit, from which it derives its name. WSRF::Lite provides support for WS-

Addressing [133], WS-ResourceProperties [134], WS-ResourceLifetime [135], WS-

ServiceGroup [136] and WS-BaseFaults [137]. It also provides support for digitally

signing SOAP [46] messages using X.509 digital certificates in accordance with the

OASIS WS-Security [138] standard as described in [80]. Reflecting the flexible phi-

losophy and nature of Perl, WSRF::Lite allows the developer to host WS-Resources

in a variety of ways, for instance using the Apache web server or using a standalone

WSRF::Lite Container. AHE 2.0 has been designed to run in the Apache [139] con-

tainer, and has also been successfully deployed in a modified Tomcat [140] container.

Figure 3.3 shows the reuse of components in the AHE 2.0 stack, with the light coloured

components being implemented as part of the AHE 2.0 development, and dark coloured

components being reused from other projects. Not shown are the PorstgreSQL database

and the MyProxy server.

Due to the reliance on WSRF::Lite, AHE 2.0 server is developed in Perl, and is
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hosted in a container such as Apache or Tomcat. The actual AHE 2.0 services are an

ensemble of Perl scripts that are deployed as CGI scripts in the hosting container. This

can either be a standard Apache web server, or a Tomcat container with a modified ver-

sion of the standard Tomcat CGIServlet extended to provide a richer set of environment

variables to the AHE 2.0 scripts. For performance reasons the AHE 2.0 server uses a

PostgreSQL [141] database to store the state information of the App WS-Resources.

In the default implementation, GridSAM provides a web services interface for

submitting and monitoring computational jobs managed by a variety of Distributed Re-

source Managers (DRMs), including Globus [100], Condor [67] and Sun Grid Engine

[34], and runs in an OMII [142] web services container. Jobs submitted to GridSAM

are described using Job Submission Description Language (JSDL) [58]. GridSAM uses

this description to submit a job to a local resource, and has a plug-in architecture that

allows adapters to be written for different types of resource manager.

3.11 AHE 2.0 Deployment
As described above, AHE 2.0 is implemented as a client/server model. The client is

designed to be easily deployed by an end user, without having to install any supporting

software. The server is designed to be deployed and configured by an expert user, who

installs and configures applications on behalf of other users.

The initial release of AHE (version 1.0) required that the user install several addi-

tional components on their system, including a Postgres database, Apache web server

and Perl interpreter. This proved to be too complicated for many of our target user

communities, and was quickly remedied by the inclusion of AHE 1.1 in the OMII mid-

dleware toolkit [142]. The OMII installer takes care of deploying AHE 1.1 services,

Postgres database management system, WSRF::Lite [78] plus supporting Perl modules

in to a Tomcat container, making installation relatively easy. However, a number of

users reported problems with deploying AHE 1.1 using the OMII installer, due to the

relatively limited number of Linux distributions it supports.

Since the first AHE release, Virtual Box [143] became a popular open source sys-

tem for running virtual machines (VMs) on a variety of operating systems. Virtual Box

features a very simple mechanism for deploying new virtual machines. Therefore, in

addition to the installation mechanisms we have supported previously, we made AHE
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2.0 server available as a Virtual Box VM image. Based on the long term support ver-

sion of the CentOS Linux distribution [144], AHE 2.0 VM includes all of the server

side components required to run AHE 2.0 preinstalled and configured to run a sam-

ple application, with extensive documentation and examples available to allow users to

customize AHE 2.0 server for their needs.

The AHE 2.0 client package comes with all of the Jar files required to run the

client. To install the AHE 2.0 clients all an end user need do is download and extract

the client, load her X.509 certificate into a Java keystore using a provided script and

set an environment variable to point to the location of the clients. The user also has

to configure their client with the AHE 2.0 server endpoints supplied by their AHE 2,0

server administrator. The end user can then launch and monitor applications with both

the GUI and command line clients.

3.12 Implementing the Application Interaction Model

as RESTful Service

AHE 3.0 is a complete re-implementation of AHE 2.0 in Java (AHE 2.0 and earlier

versions were implemented in Perl). AHE 3.0 introduces a new workflow engine based

on JBPM [145] allowing complex workflows to be created and integrated into AHE

3.0, and accessed by users as single applications. AHE 3.0 also incorporates an object

relational mapping framework using Hibernate [146], which simplifies installation and

development of AHE 3.0 by decoupling AHE 3.0 from the database used to maintain

state. A RESTful web service interface based on the Restlet [147] library furnishes

a simple and concise HTTP based interface for clients to access AHE 3.0 services,

compared to the WSRF [53] based services used in AHE 2.0.

AHE 3.0 is a departure from AHE 2.0 and earlier releases, having undergone a

complete redesign. AHE 3.0 comprises a number of modules which implement the

core functionality. AHE Runtime controls the start-up and shut-down of the AHE 3.0

application life cycle; AHE Engine implements the core functionalities including the

workflow engine as well as facilitating interactions between the different components;

AHE Connector module implements the functionality required to connect to different

types of middleware; AHE Security module handles the security component as well as
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user management of AHE 3.0 application and grid middleware; AHE Interface mod-

ule provides a RESTful Web service interface as well as command line access to AHE

3.0; the file module provides mechanisms to transfer files between different storage

resources using GridFTP. A schematic showing the interaction of these different com-

ponents is presented in figure 3.4.

RESTful web service provides a simple abstraction of AHE 3.0’s functionalities

to the user by exposing AHE 3.0 components as resources, each of which is identified

by a global identifier (URI). This provides a clean and simple mechanism for end users

to access AHE 3.0, making client tooling less complicated; it also means that AHE 3.0

can either be deployed via a servlet container such as Tomcat, or as a standalone server.

A detailed discussion of the AHE 3.0 server components is presented below.

Figure 3.4: The architecture of the AHE 3.0 server, showing the relationship between the dif-
ferent software modules.
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3.12.0.1 AHE Runtime Module

The AHE Runtime module is responsible for starting up and shutting down the server

in the standalone mode. It also initializes all the components and user configurations as

well as the basic registry information relating to users. In standalone mode, AHE 3.0

uses an embedded Jetty Server to provide web server functionality, including HTTPS

with mutual user certificate authentication. In this mode, AHE 3.0 can be started from

an executable file. AHE 3.0 can also be deployed as a Java servlet into a servlet compli-

ant server such as Apache Tomcat [140]. AHE 3.0 can be deployed with an embedded

H2 database [146] or use an external database through the Hibernate framework. More

details about the deployment are discussed in Section 3.12.2.

3.12.0.2 AHE Engine Module

The AHE Engine module encapsulates the functionality through which AHE 3.0 vir-

tualizes access to scientific applications. It provides methods to create an Application

Instance object, used to represent an instance of a virtualized application. In addition,

methods are provided to run and maintain the execution workflow for each virtualized

application instance. The workflow describes how the data and computational code(s)

associated with this application instance are processed, including details such as the

back-end connector (cf. §3.12.0.3) and security mechanism to use.

The AHE Engine module also allows higher level workflows to be implemented.

These workflows can control multiple application instances to create parameter sweep

applications or complex chained application scenarios, in which data created by an

application is used as the input for a second one and so on.

3.12.0.3 AHE Connector Module

The connector modules provide a set of classes that invoke external Java libraries which

allow AHE 3.0 to act as a client to distributed resource managers (DRMs) such as

Globus GRAM. The connector module provides a generic Java interface (using the

adapter pattern) which adapters for different DRMs have to implement. This Java in-

terface is used by AHE 3.0 to access external computational resources, providing a

loosely-coupled relationship between AHE 3.0 and external client libraries. Connec-

tors currently exist to allow AHE 3.0 to run applications via Globus 5.0[100], Unicore

6 [21] and QCG OGSA-BES [64]. Each connector implementation translates the AHE
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3.0’s internal application state model into specific directives to the relevant DRM, such

as the number of cores to use. The extensible interface framework means that inter-

faces to other DRM systems can easily be added as necessary. Each connector module

is responsible for trapping errors from the underlying DRM and mapping it to an AHE

3.0 error state, which is presented to the user.

3.12.0.4 AHE Interface Module

This module contains library code used to interface with AHE 3.0. This includes a

bridge between the RESTful Web service interface (cf. §3.12.0.7) and the AHE Run-

time Module (cf. §3.12.0.1). The AHE 3.0 REST Web services exposes the main AHE

3.0 functionalities and components as resources which can be controlled by performing

operations on those resources.

3.12.0.5 AHE Security Module

The AHE Security Module provides a number of important functions, including user

management, authorization and authentication control, platform credential manage-

ment and integration with Audited Credential Delegation [7] (see Section 3.15.1.1).

AHE 3.0 provides a mechanism to delegate security control to ACD; these security

functions include user authentication and management as well as virtual organization

support and proxy generation for any specified virtual organization. In ACD mode,

AHE 3.0 contacts ACD using RESTful web service calls to authenticate users as well

as to request the generation of proxy credentials on a per user basis. AHE 3.0 itself is

also able to authenticate users via SSL certificates or the more standard username/pass-

word credential combination. The security module is able to perform command level

authorization, as well as platform credential management such as maintaining private

key and certificate information for a user which may be required for him/her to be

granted access to particular computational resources and data. Additionally, the secu-

rity module is able to request updated proxies from a MyProxy server when a certificate

is about to expire.

3.12.0.6 AHE Transfer Module

In AHE 3.0, input data is transferred directly from a location specified by the user to the

computational resources where an application is to be run. Once a job is completed, the

AHE 3.0 server takes care of staging any output data back to the user specified location.
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The AHE Transfer module provides a mechanism to set up the security credential used

to authenticate transfers and then initiate transfers between two different storage com-

ponents through the AHE Java file transfer interface. Different transfer mechanisms

have been implemented using this Java interface. Currently, file transfer functionali-

ties make use of the jGlobus and UCC libraries to stage data using the GridFTP [69]

and Unicore transfer protocols. The Java interface makes it easy to add new transfer

protocols in future should they become necessary.

3.12.0.7 RESTful Web service

One of the main features of AHE 3.0 is the implementation of the RESTful web services

interface, which replaces the WSRF interface used in AHE 2.0 and earlier versions.

RESTful web services expose resources addressable via HTTP and operated on using

HTTP operations such as POST and GET. This provides a secure and straightforward

universal end point for AHE 3.0 to provide services to users. AHE 3.0 uses the Java

Restlet library for its RESTful implementation [147]. The Restlet library was chosen

to underpin the AHE 3.0 server due to the many features it provides, including the

ability to develop services that run as standalone services or which can be deployed

in a servlet container such as Tomcat (using either the J2SE or the J2EE version of

the library), multiple native data representation formats such as XML and JSON, and

scalability as well as security support.

The AHE 3.0 REST command structure is grouped into a number of resources in-

cluding: User, AppInstance, AppReg (application registry), Resource, PlatformCreden-

tial and Cmd (general commands). Each of these resources can be viewed or modified

using the GET, POST or DELETE HTTP operations when applied to a suitable AHE

3.0 resource URI. A typical AHE 3.0 URI consists of several components; the domain

URI followed by the user identifier and the AHE 3.0 resource that will be operated on.

The URI is followed by the command and argument if required.

3.12.0.8 AHE Workflow Engine

A key component of AHE 3.0 is the workflow management system built on the JBPM

framework. JBPM is a lightweight Java workflow engine, with workflows described

using the Business Process Modelling Notation (BPMN) 2.0 specification which calls

specific Java classes, scripts or Drool rules to perform arbitrary functions. This allows
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Figure 3.5: The application life cycle. AHE 3.0 server manages the transition of an application
instance through a number of states, in order to stage data, execute an application,
and handle failures.

new complex workflows and scripting functionalities to be introduced quickly to ex-

tend AHE 3.0. JBPM supports workflow persistence using the Hibernate framework

meaning that, in the event of a server crash, the workflow can be recovered quickly and

seamlessly. There is also a wide range of tools available to plug in to the JBPM frame-

work, including workflow editors, which eases the integration of JBPM with AHE 3.0.

By using a workflow engine, further functionalities and workflows can be intro-

duced into AHE 3.0 applications. This allows the expert user to tailor customized work-

flows to complex tasks, such as coupled model applications. It also allows additional

features or functionalities to be added, such as fault tolerance, and to integrate AHE

3.0 with external services such as SPRUCE [107] in order to submit urgent computing

jobs, and RealityGrid Steering [148] which allows scientist to interact with running

applications.

3.12.1 AHE 3.0 Application Life Cycle

AHE 3.0 manages the whole life cycle of an application when invoking AHE 3.0, from

input data staging, through job execution, to output data staging; during this process
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the application transitions through a number of different states. This life cycle is shown

in figure 3.5.

The process starts when a prepare command is received by AHE 3.0. This puts

AHE 3.0 in a waiting mode, allowing the user to set up additional configuration details

required for the application or workflow submission. Once a start command has been

submitted, AHE 3.0 server proceeds to first stage any input data that the user has at-

tached to the application instance; once that is completed, it is then submitted to the

execution platform. Once the application has been submitted to an external execution

platform, AHE 3.0 goes into a polling state, checking regularly for the completion of

the application. When the job has completed, any output data is staged to the location

specified by the user and the job submission process comes to an end.

If errors occur during certain stages of the AHE 3.0 workflow process, AHE 3.0

captures the error and allows the user to fix this error and attempt to execute the same

step again. This workflow is modelled and executed using the JBoss jBPM workflow

library and additional components can be added to the workflow if necessary.

In practice, a user has to go through the following steps in order to run an applica-

tion:

1. AHE Runtime initializes all components, populates the internal data structures

and ensures that the data held in the state database is synchronized with the AHE

3.0 data structures.

2. The user queries the application registry to see what applications are available.

3. The Prepare command is issued which tells AHE Engine to create a persistent

App-Instance Object that keep tracks of the status and state of an executing appli-

cation, which in turn initiates the AHE 3.0 workflow process. An App-Instance

object is a representation of a virtualized application initiated by the user. This

allows AHE 3.0 to keep track of the state and progress of the virtualized applica-

tion.

4. This App-Instance object is persistent and stored in a local database using the

Hibernate Framework, which allows AHE 3.0 server to be database agnostic. In

particular:
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(a) the App-Instance object is associated with a user/group and has a unique

identifier;

(b) active App-Instance data/objects are held in a registry and checked by AHE

Engine to see which processes can be operated on each App-Instance, such

as when and how they can be run, when data can be checked or retrieved,

and so on.

5. Input data files required by the application are staged to the target resource. AHE

Server records the location and transfer protocol specified for each individual

data file and passes that information to the relevant connector module so the job

manager knows how to stage the data and retrieve the results if necessary.

6. The user next issues the submit command.

7. AHE Workflow module then schedules the execution of the application using

JBPM and quartz scheduler [149]. This allows complex workflows to include

asynchronous tasks, as well as multi-thread/concurrency support.

8. AHE Engine deals with the security interface requirements and submits tasks

to external execution platforms. AHE 3.0 polls the external execution platform

(if it is configured to do so) and retrieves any output data once the application

is completed. JBPM allows additional features to be added in order to create

more complex workflows incorporating AHE 3.0 plug-in components. JBPM is

persistent so that all events are logged. If the server crashes, the workflow state

stored in a database can be retrieved and reinitialized.

9. Once the application has completed, the data is retrieved and sent to the scratch

disk (temporary file storage) or copied to an external storage resource specified

by the user, allowing him/her to access it.

3.12.2 Deployment of AHE 3.0

AHE 3.0 can be deployed as a standalone application via the Jetty Server using an

embedded database or, in a more complex environment, AHE 3.0 can be deployed as a

Servlet hosted within a Servlet compliant server such as Apache Tomcat and configured

to use databases supported by the Hibernate framework.
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In the simplest configuration, the standalone mode allows AHE 3.0 to be executed

as an application which launches the Jetty Server with the option of invoking an em-

bedded database or any external database supported by the Hibernate Framework. In

this configuration, the user simply downloads the AHE 3.0 executable, configures the

Hibernate configuration file to set up the database connectivity and runs the program.

With server or network constraints, AHE 3.0 can be hosted inside a Servlet com-

pliant server such as Apache Tomcat and be configured to use any databases supported

by the Hibernate framework. A user should then download the AHE 3.0 servlet version,

deploy it on the Servlet server and configure the database configuration file to ensure

AHE 3.0 runs correctly. Once AHE 3.0 is running, the system administrator configures

user management, hosted applications as well as resources and credentials.

Whichever way the server is deployed, end users can access it either using a web

browser, via the web client interface, or using the GUI or command line client tools.

The client tools simply require Java to be available on the client machine; after setting

an environment variable and running a configuration script these can be easily run.

3.13 AHE 3.0: Comparison with AHE 2.0
Our efforts to refactor AHE 3 to expose a RESTful interface, as well as redesign the

AHE server in version 3.0 have not only been done to enhance user experience, but

also to improve performance. In order to evaluate the benefits of this work, we ran

performance tests comparing the performance of AHE 2.0 against AHE 3.0.

Our experimental set up consisted of a server running both AHE 2.0 and AHE

3.0, with both systems configured to launch applications via the QCG-Computing mid-

dleware onto a 96 node cluster within the Centre for Computational Science at UCL.

The tests we performed used a work station to submit batches of applications to AHE

2.0 and AHE 3.0 in turn, measuring the time taken to submit these batches. The ap-

plication launched was a simple code designed to sort a list of words into alphabetical

order, but since we are only interested in the time performance of the AHE server itself,

we only measured time taken to submit the application rather than measuring the time

the application takes to execute (which would be affected by the cluster load), and the

cluster was dedicate to the experiment while the tests were performed. The The tests

themselves were implemented as JUnit tests calling the AHE client API, while JUnit,
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Number of Jobs Average Time to Submission (Sec)
AHE 2.0 AHE 3.0

10 150.658 11.267
20 297.299 20.293
30 445.128 26.055
40 599.798 32.326
50 778.178 39.888
60 890.562 42.999
70 1044.253 48.899
80 1189.409 62.225
90 1491.252 65.443

100 1640.279 69.903
110 1989.628 80.953
120 2139.565 118.927
130 2313.931 125.504
140 2491.821 141.491
150 2661.946 169.865
160 2933.978 212.076
170 3016.636 217.476
180 3190.618 267.429
190 3397.940 287.478
200 3532.591 295.899

Table 3.1: Average time taken to submit jobs using AHE 2.0 and AHE 3.0

executed via the Eclipse development platform, was used to measure the time taken to

perform the tests. Each test was repeated three times, and the mean time taken for each

test calculated. The results are plotted in figure 3.6.

As the results presented in table 3.1 and figure 3.6 show, AHE 3.0 performs far

faster than AHE 2.0, and the time taken to submit jobs using AHE 2.0 is much more

variable, . This is due to the fact that AHE 3.0 is developed in Java whereas AHE 2.0

was developed with Perl/WSRF::Lite; AHE 3.0 exploits a simple RESTful interface,

whereas AHE 2.0 uses the far more complicated WSRF extension to Web services,

which increases the complexity of both client and server. Application submission is

also faster in AHE 3.0 because the system implements a buffered queuing system be-

tween the AHE server and the connector modules, which has the effect of allowing the

submission interface to process more simultaneous requests, compared to AHE 2.0.
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Figure 3.6: Comparison of the mean time required to submit using AHE 2.0 and AHE 3.0 for
batches of 10 to 200 jobs. Bars show the standard deviation of the result mean.

3.14 AHE Client Tools
The AHE server maintains all state information about a particular application instance.

This means that client tools, which work with all versions of AHE, need to store no

information about individual application runs, and consequently very simple clients

containing little configuration data can be created. It also means that clients can inter-

operate, with one client used to launch an application and another used to monitor for

example.

The GUI client uses a wizard to guide a user through the steps of starting their

application instance. The wizard allows users to specify constraints for the application,

such as the number of processors to use, choose a target grid resource to run their

application on, stage all required input files to the grid resource, specify any extra

arguments for the simulation, and set it running. The same functionality is provided

by a set of command line clients, which have the added benefit that they can be called

from a script to create complex, multi-application workflows.

Once an application instance has been prepared and submitted, the AHE GUI

client allows the user to monitor the state of the application by polling its associated

App WS-Resource. After the application has finished, the user can stage the applica-
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tion’s output files back to their local machine using the GUI client. The client also gives

the user the ability to terminate an application while it is running on a grid resource,

and destroy an application instance, removing it from the AHE’s application registry.

The AHE GUI client can be seen in figures 3.7 and 3.8.

The AHE client attempts to discover which files need to be staged to and from the

resource by parsing the application’s configuration file. It features a plug-in architecture

which allows new configuration file parsers to be developed for any application that is

to be hosted in AHE. The parser will also rewrite the user’s application configuration

file, removing any relative paths, so that the application can be run on the target grid

resource. If no plug-in is available for a given application, then the user can specify

input and output files manually.

The simple REST endpoints exposed by AHE 3.0 server mean that in practice any

tool which can perform HTTP POST and GET operations (such as the UNIX curl

command) can be used as clients. However, a Java client API has been developed which

not only provides methods to call AHE 3.0 server commands, but also provides auxil-

iary functions such as data staging. This API has been used to produce both graphical

and command line clients. It also allows applications hosted in AHE to be accessed

from high level tools, and integrated with workflow engines such as GridSpace and

Taverna (see Section 4.8).

In addition, an AHE web client has been developed for AHE 3.0 to provide a sim-

ple interface for the end user when interacting with the AHE server via a web browser.

The web client interface has been developed using the Google Web Toolkit (GWT)

and communicates with the AHE 3.0 server through its RESTful interface. The web

client can be deployed on Java servlet compliant servers such as Tomcat or JBoss AS.

The web client also allows the user to administer and configure an AHE 3.0 server,

providing capabilities to manage users, certificates, applications, target computational

resources and the server itself. The web client also allows end users to transfer files,

launch and monitor AHE jobs all through a web browser.

3.15 Common Core Foundations
Versions 1.0, 2.0 and 3.0 are all intended to provide community specific portals to a

distributed e-infrastructure, and can be run without the intervention of resource ad-
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ministrators. As such, AHE builds on a number of commonly deployed distributed

e-infrastructure technologies, described in this section.

3.15.1 Security

As discussed previously, AHE seeks to build on top of existing grid middleware in-

frastructures, and hence implements a security infrastructure designed to interoperate

with the security infrastructures used by these grids. In the case of all of the grids that

we interact with, these security mechanisms are based on X.509 certificates [61] and

proxy credentials [125] derived from them. Proxy credentials allow services such as

AHE to perform actions on behalf of a user without having access to a full certificate.

In common with many other Web services based applications, all communication be-

tween AHE client and server is secured with Transport Layer Security (TLS) [124] by

means of the user’s X.509 grid certificate.

Briefly, the security mechanism works as follows: AHE server is configured to use

a server certificate issued by a public certification authority that all clients trust. Each

user obtains a user certificate (usually from the same authority) and pre-loads it in to

his AHE client; the user certificate should also be trusted by all of the grid resources

that the user accesses, where it is used to identify the user. When starting the AHE

client, the user is required to enter a password to unlock his certificate before the client

can be used.

Prior to launching the application, the AHE client allows the user to generate a

short lived proxy certificate from his grid certificate and upload it to a MyProxy server.

The user then queries the AHE server and launches his application over mutually au-

thenticated HTTPS links. The AHE server associates all applications launched by a sin-

gle user with the distinguished name (DN) of their certificate. When the user launches

an application, a Start message is sent from the client to the server containing details of

the application run and also the details of the user’s proxy certificate. The AHE server

uses this proxy certificate information in one of two ways. In the case of submission

to GridSAM, the AHE server will include the proxy details in the JSDL document that

it generates, contained in extensions to the JSDL standard specific to GridSAM. In the

case of direct Unicore BES or Globus GRAM 4 submission, the AHE server will use

the proxy details to retrieve the user’s proxy certificate from the MyProxy server and
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use it to submit the application on the users behalf.

By default, AHE will allow querying and application launching by anyone with a

certificate generated by a trusted certificate authority. When a user launches an appli-

cation, AHE server will attempt to submit it to the target resource on their behalf. The

question of user authorization is left to the particular resources; if a user is not autho-

rized to access a particular grid resource then the application will fail. AHE services

delegate responsibility for establishing HTTPS connections to the Tomcat container it

is running in. It is therefore possible to limit the set of users authorized to use AHE

services by configuring a user access list in Tomcat.

3.15.1.1 Usable Security in AHE 2.0/3.0

Efforts to address the usability of e-infrastructures are hampered by existing security

mechanisms imposed on users. Typically, these require a user to obtain one or more

digital certificates from a certificate authority, as well as to maintain and renew these

certificates as necessary. The difficulty in doing this leads to widespread certificate

sharing and misuse and a substantial reduction in the number of potential users [76].

In order to remove this barrier, we have coupled AHE 3.0 to Audited Credential Del-

egation (ACD) [7]. ACD is a usable security system that accommodates the security

requirements of both end-users and resource providers, offering facilities to authenti-

cate, authorize and audit all transactions.

The main advantage of ACD is that it entirely removes the use of digital certifi-

cates from end-users’ experience, minimising the usability problems caused by such

credentials while addressing resource providers’ concerns regarding securing access to

their shared resources, tracing the users responsible for performing specific tasks on

their resources. ACD enables users to invoke security credentials they are familiar with

such as their institutional username/password combination (using Shibboleth [150] for

example); assuming that they are authenticated it issues a digital certificate to them

when necessary in the background.

When run without ACD, the AHE security model requires each individual user to

have a digital certificate, which carries with it the need to go through a lengthy creden-

tial acquisition process. To remove the need for such a certificate, we have integrated

ACD with AHE. The first step of the integration requires understanding the interac-
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tion between AHE and ACD, in other words, the functional and administrative tasks

that can be performed within the integrated system. The administrative tasks offered

by ACD include VO creation, certificate assignment, adding users, resetting user pass-

words, creating user roles, assigning tasks to roles, and assigning users to roles. The

functional tasks offered by AHE include: Prepare Job, Submit Job, Monitor Job, down-

load and Terminate Job. AHE’s functional tasks are the same as the tasks permitted for

any authorized user on a computational resource that uses the Globus or UNICORE

middleware, for example. Therefore, the permissions assignment to the VO is done by

the resource owner first, then the VO administrator re-assigns these permissions to the

roles in the VO according to the VO authorization requirements.

In the integrated ACD+AHE environment, the authorization requirements deter-

mined by the VO administrator are expressed through the introduction of two roles: VO

Administrator and Scientist. The former is permitted to perform all the administrative

operations above in addition to terminate, monitor and download any job submitted to

a resource. The latter is permitted to perform all AHE operations in such a way that a

person who submitted a specified job can only perform AHE functional operations on

this application. As a result, two users running applications invoking different data will

not be able to view the results of each other’s activities.

3.16 Building on Other Middleware Tools
Since the release of AHE 1.0, we have continued to enhance the features and usability

of the tool, and worked with several projects seeking to exploit large scale grid com-

puting to deploy AHE as a key piece of infrastructure. These include the EU funded

ImmunoGrid project [19], where AHE has been used as a backend engine of a web

portal to allow researchers to run simulations on federated, international resources, and

the ViroLab [151] project, where a grid-based workflow built on top of AHE automates

the whole process of building, running and analysing ensembles of molecular dynamics

simulations to calculate the binding affinities of drugs to HIV target enzymes [111].

We have integrated AHE with a number of other middleware tools and services

that have matured since the original release to provide a rich problem solving environ-

ment. Features include the ability to co-reserve time on resources in advance, launch

cross-site applications, and launch steered applications. Figure 3.3 shows the layered
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architecture of AHE and how it interfaces with these services. The services are de-

scribed in more detail later in this section.

3.16.1 Computational Steering

The RealityGrid steering system [148] is a WSRF-compliant middleware tool and as-

sociated libraries that allow parameters in a simulation code to be marked as steerable,

which means that they can be monitored and modified in real time as an application is

running, and hence change the course of the simulation. This is useful for a number of

reasons: a scientist can monitor the progress of a simulation as it is running, and either

stop it or alter the simulation parameters if a problem occurs, preventing valuable com-

pute time from being wasted [152]. Steering also allows the scientist to checkpoint a

simulation as it is running should an interesting state occur, and then use this checkpoint

to spawn new jobs and investigate the parameter space further from the saved starting

point. In order to do this effectively, the user needs to be able to schedule access to a

machine at a time convenient to herself (textitcf. §3.16.3), rather than waiting for the

application to progress through the machine’s queuing system.

The RealityGrid system provides Web services that establish and mediate com-

munication between users and their simulation codes. When a simulation code begins

to run on an HPC resource, it publishes its steerable parameters to these services. The

user periodically queries the steering services using lightweight client tools to check if

the application has started to run, and to monitor and modify the parameters when it

has. If parameters are modified by the user, the changes are passed back to the simu-

lation code by the steering service. Since the RealityGrid Steering services provide a

consistent interface for the exchange of simulation parameters, the RealityGrid toolkit

can also be used to couple models of different scale, using diverse simulation codes,

potentially running on various computational resources [152].

In normal usage, a user wishing to launch a steered application will complete the

following procedure: firstly, they will launch a setup command on their local machine

which will initialize a Steering Web Service (SWS) on a steering server, and regis-

ter it with a steering registry service. Each instance of an application corresponds to

one SWS. Next, the user submits the application in the preferred way (e.g. by sub-

mitting a PBS script to the local queuing system on their target grid resource). The
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application’s environment must be set up with an environment variable containing the

Uniform Resource Identifier (URI) of the SWS. Once the steered code starts to run it

uses the contents of this environment variable to establish contact with the SWS. After

submitting the application, the user launches the RealityGrid steering client on a local

machine which connects to the SWS to monitor and steer the simulation’s parameters.

In order to simplify these procedures, we have automated the manual process de-

scribed above within AHE 2.0. An extension to the application description file allows

an application to be marked as steerable; when a user launches such an application,

AHE starts up the appropriate SWS service, sets the environment variable and launches

the application. The AHE client enables a steering button on the application monitoring

panel which allows the user to launch the RealityGrid steering client and connect it to

the appropriate SWS.

3.16.2 Geographically Distributed Parallel Computing

While the MPI specification primarily concerns itself with intra-machine process com-

munication, the prevalence of grid middleware tools such as Globus on HPC resources

has facilitated the development of inter-machine versions of MPI which use grid mid-

dleware to create secure communication channels between resources that are part of

the grid [153]. One of the most widely used implementations of MPI over grid mid-

dleware is MPIg [101], formerly called MPICH-G2, developed at Argonne National

Laboratory.

The benefits of running simulations across multiple machines on a grid are

twofold. Firstly, it allows problems to be solved that cannot be practically addressed by

a single HPC resource (for example, because it requires more memory or CPU power

than one resource is able to provide) to be run on a ‘meta-computer’ made up of mul-

tiple individual compute resources. Secondly, it permits one to tackle large problems

which will potentially take a long time to run on a single machine (due to the load on

the machine, meaning that the job will have to wait in the queue for a long time) by har-

vesting smaller numbers of processor cores from multiple machines, meaning that the

application could be turned around more quickly, by avoiding long queue wait times.

Since they run concurrently at a number of sites, MPIg/MPICH-G2 applications

[101] require guaranteed access to multiple resources at a given time. One way to
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establish this is through the implementation of co-reservation systems (discussed more

fully in the next section). Examples of MPIg/MPICH-G2 applications include Nektar

[24], a fluid dynamics application to simulate human arterial blood flow, and Vortonics

[24], an application used to investigate vortex knot dynamics in fluid turbulence.

In order to launch a cross-site MPIg application, a user has to first compile a code

against the MPIg libraries on each HPC resource being used. They then have to stage

their input data to the resources that they want to use, having first established with

the machine operators that the resources will all be available at the same time. Since

MPIg is heavily dependent on Globus, making use of Globus managed communication

channels between machines amongst other things, applications must be described by

Globus JDD or RSL documents, and submitted using Globus client tools to the Globus

MultiJob service. This service takes care of launching separate components at each

target site, and setting up the communication between them.

To simplify this process, we have extended AHE’s internal state model to allow

it to manage multi-site jobs. An XSLT transform is performed to convert this internal

representation into a JDD document which is submitted directly to a Globus MultiJob

service, something that was not possible with AHE 1.0 (which used the GridSAM

job submission tool). Used in combination with the HARC software described in the

next section, cross-site MPIg jobs can be launched into pre-reserved time slots across

multiple machines.

3.16.3 Advanced Co-reservation of Resources

The on demand access mechanisms described in Section 2.8 provides ways for a dis-

tributed e-infrastructure user to access resources at a time that suits them. The Highly

Available Robust Co-scheduler (HARC) [104] is one system designed not only to al-

low advanced reservations of time to be made on a single machine, but to enable cross-

site reservations of time to be made in a consistent manner on a number of compute

resources, together with the switched light path networks that connect them. Sim-

ilarly, QCG-Computing allows for advanced reservations to be made on distributed

e-infrastructures.

Our work to integrate advanced reservation via HARC and QCG-Computing in to

AHE has been partly motivated by the need to integrate the tools described in Sections
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(a)

(b)

Figure 3.7: The AHE graphical client has been extended to support advanced reservation, for
example allowing users to (a) create new reservations, (b) launch an MPIg applica-
tion into an existing reservation.
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(a)

(b)

Figure 3.8: The AHE 2.0 graphical client gives the user the ability to (a) query the registry of
launched applications and (b) monitor and steer a running application.
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3.16.1 and 3.16.2, both of which require interactive access to resources, but is also

necessary for several of the biomedical projects which use AHE, including the case

studies discussed in Section 3.1. Many of these use cases also require access to high

QoS, high bandwidth, low latency network connections [42]. Since HARC can also co-

reserve network lightpaths along with compute time, the network between resources is

elevated to a schedulable, ‘first class’ resource [42].

We have modified the AHE graphical client to include a new panel which allows

the user to create and manage co-reservations. A modified job submission wizard al-

lows the user to either select an advanced reservation that have been previously made,

or specify the resource parameters in the same way as AHE 1.0. In the former case, the

AHE client passes the reservation ID for each reserved resource through to the AHE

server, which includes them in the Globus JDD file that it submits, leading in turn to the

job being run in the reserved time slot(s). Figures 3.7 and 3.8 show several components

of AHE being used to submit cross-site and steerable jobs that use reservations.

3.16.4 Standards Compliant Submission

As noted in Section 2.3.1, the effort to build distributed e-infrastructures using a ser-

vice oriented paradigm has led the Open Grid Forum [154] (formerly the Global Grid

Forum) to propose the Open Grid Services Architecture (OGSA) [56]. OGSA aims to

address some of the deficiencies perceived in earlier grid middleware by building upon

the practical experience gained from using those systems. OGSA has been put forward

as an architecture for producing interoperable grid middleware using open standards

and industry standard technologies such as Web services. A key component of the

OGSA architecture defined by the OGF is the Basic Execution Service (BES) [57].

This Basic Execution Service specification defines Web services interfaces for cre-

ating, monitoring, and controlling computational jobs. Clients submit jobs to the BES

described in the Job Submission Description Language (JSDL) [58]. BES provides a

standard job submission interface to grid resources, and is being implemented in several

common middleware stacks, including version 6 of the Unicore [21] grid middleware.

As mentioned previously, AHE 1.0 launches applications via the GridSAM mid-

dleware. The original GridSAM [132] interface was a forerunner of BES; current ver-

sions of GridSAM now support the BES standard as well as their legacy submission
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Figure 3.9: The use of standards compliant job submission protocols means AHE can act as a
client to many different e-infrastructures and local computational resources, giving
the user a single, consistent interface to a wide range of different resources.

interface. Our modifications to both versions 2.0 and 3.0 of the AHE server now mean

that it can act as a generic client to services that implement the BES interface, and has

been tested with the latest GridSAM release, as well as QCG-Computing and Unicore

version 6.

Although Globus 4 GRAM does not implement the BES standard, we have also

modified AHE so that it can act as a client directly to GRAM 4 (previously AHE used

GridSAM as an intermediate interface to submit to Globus 2 GRAM [20]). Both of

these developments mean that AHE can launch application on a much wider range of

grids than was previously possible. We have previously described how AHE facilitates

user level federation of resources from multiple grids [155]. With these further ex-

tensions, AHE can now be used as a single interface to a vast range of compute grids

running different middleware stacks, as well as resources local to the user such as clus-

ters and workstations, completely transparently to the user. Figure 3.9 shows how AHE

provides a centre point for user-level federated e-infrastructure access.
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3.17 Summary
By narrowing the focus of the AHE middleware to a small set of applications that

a group of scientists will typically want to use, the task of launching and managing

applications on a grid is greatly simplified. This translates to a smoother end user ex-

perience, removing many of the barriers that have previously deterred scientists from

getting involved in grid computing. We envisage that AHE instances will be deployed

following a community model, where the expert users in a particular community will

be responsible for deploying and configuring AHE, and will use it to share their appli-

cation with a group of end users.

AHE takes a slightly different approach from projects developing web portals to

facilitate user access to the grid. AHE provides a greater amount of flexibility than a

portal - for example the AHE command line tools can be called from scripts to automate

common tasks. A certain class of scientific user have previously avoided using portals

precisely because of the constraints they put on the user. However, should a portal

project want to make use of AHE, the web service interface provided by the AHE

server could easily be wrapped in a portal.

Since AHE uses interfaces such as GridSAM for job submissions, it sits in front

of existing grid middlewares such as Globus, and allows a group of users to launch

applications on the grid without needing any modification to be made to existing grid

infrastructure or policies by the grid administrators.

In a production environment we have found AHE to be a useful way of providing

a single interface to disparate grid resources. As well as a number of scientific end

users, both inside and outside UCL, using AHE servers that we have deployed to run

simulations, a number of groups worldwide are either deploying or evaluating AHE.

These groups include both scientific projects looking to deploy one or two applications

for use by project members and grid resource providers aiming to host a number of

different applications for use by a wide community. By representing the execution of an

application as a stateful web service, it is easy to build systems of arbitrary complexity

on top of the original AHE services.



Chapter 4

Usability Evaluation of the Application

Hosting Environment

In this chapter we present our comparative usability study, comparing the usability of

the Application Interaction Model as realized in the Application Hosting Environment,

with other widely adopted grid middleware systems. We go on to look at the uptake of

AHE since its initial release across a range of different projects.

4.1 Evaluating Usability
One of the key purposes of developing distributed e-infrastructure technologies has

been to provide a platform for the facilitation of large-scale scientific projects [72, 44].

Conversely, one of the central problems associated with the uptake of grid technolo-

gies by scientists has been the lack of ease of use of existing tool kits [18, 73, 74, 75],

because current tool kits are too cumbersome for a user to rapidly build prototype dis-

tributed applications. Existing tool kits are often themselves resource intensive and

require the user to install additional software packages that are not relevant to the tasks

they want to perform, but are nevertheless required for the toolkit to operate.

In addition to this, some toolkits have previously required users to install cus-

tom patched libraries for the middleware to work. This leads to system administra-

tors having to maintain multiple copies of libraries on machines using the middleware.

These heavyweight middleware requirements present a barrier to use that must be over-

come before anyone can be productive in their use of e-infrastructure resources. In

many cases, a research group might have one or two users accessing e-infrastructure

resources; these users often have to maintain their own client middleware tools, fix
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problems with digital certificates and apply firewall policies that allow the grid mid-

dleware tools to operate. Such heavyweight requirements lead to users abandoning the

grid all together, or at least not taking advantage of the power to be gained by accessing

an infrastructure of heterogeneous resources, perhaps resorting to only one or two of

the available resources to run their simulations in conventional batch mode. At a stroke,

users are prevented from being ambitious and thinking about what could be achieved

through coordinated access to a set of powerful resources.

Another criticism levelled at many grid middleware systems is the difficulty in us-

ing the associated security infrastructure [76], particularly with reference to user man-

agement of digital certificates. Many of the existing computational grid environments

use Public Key Infrastructure (PKI) and X.509 digital certificates as the cornerstone for

their security architectures to provide secure authentication and authorization. How-

ever, it is well documented that security solutions based on PKI lack user friendliness

for both administrators and end-users [156], which is essential for the uptake of any

grid security solution. The problems stem from the lengthy, multi-step procedure for

acquiring X.509 digital certificates and requesting authorization to access remote re-

sources, which involves the creation of proxy certificates as part of the authentication

process. For many users, all this rigmarole is simply too much to take. They either give

up or engage in practices which weaken the security of the environment, such as the

sharing of the private key of a single personal certificate to get on with their tasks.

In order to design usable e-infrastructure solutions, it is fundamental to understand

end-users and resource providers’ requirements. End-users, such as scientists who are

not grid technology experts, are concerned with the results of the analyses they perform

on grids rather than how to acquire and use digital certificates and to install, maintain

and use middleware tools, in order to launch applications in unconventional ways.

4.2 Usability Study Objectives
Our observations relating to the usability of widely deployed middleware solutions

outlined above have led us to ask how the user experience can be improved. To answer

these questions, we have developed application hosting environment (AHE), described

in the previous chapter, to make managing applications easier and Audited Credential

Delegation (ACD, see §3.15.1.1) to make dealing with security more simple for end
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users. To evaluate the usability of AHE and ACD, we conducted a comparative study

[6], to firstly compare the usability of AHE to two of the most widely deployed grid

middlewares, Globus and UNICORE and, secondly, to compare the process of using

AHE with a digital certificate to using AHE combined with ACD so as to invoke only

local username/password credentials to access the grid.

Specifically, our study set out to validate the following two hypotheses:

(i) The application-interaction model implemented in AHE is more usable than the

resource interaction model implemented by many other grid middleware toolkits.

(ii) The username/password authentication implemented by ACD is more usable than

the certificate-based authentication implemented by other common grid toolkits.

To test these hypotheses we compared five different aspects of usability: (a)

whether a user was able to complete a fixed task with each tool; (b) how quickly a

task could be carried out; (c) the user’s satisfaction with the way that they performed

the task that they carried out; (d) the user’s perceived difficulty in using the tool; and

(e) the user’s overall impression of the tool that he/she used. The methodology used to

assess these usability characteristics is described in the next section, and the results are

presented in Section 4.4.

4.3 Study Methodology
Our usability study comprised two sections. Globus and UNICORE are the de facto

standard middleware tools used to access contemporary production grids to which we

have access. By default, Globus is accessed via command line tools to transfer files and

submit and monitor jobs. UNICORE has both command line and graphical clients to

launch and monitor applications, as does AHE. The first part of our study compared the

usability of the Globus command line clients with the usability of the AHE command

line client, and the usability of the UNICORE Grid Programming Environment (GPE)

graphical client (which we ourselves found easier to use than the full UNICORE Rich

Client) with the usability of the AHE graphical client. The version of Globus used

was 4.0.5, submitting to pre-WS GRAM; version 6.3.1 of UNICORE was used, with

version 6 of the GPE client. AHE version 2.0 was used for the AHE based tests, with

a pre-release version of AHE+ACD used for the security tests. At the time these tests
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were performed, AHE 3.0 was not available which is why AHE 2.0 was used. The

client tools for both AHE versions are identical, so we do not expect the results to

differ if the tests were performed again using AHE 3.0.

The remaining part of our usability study set out to evaluate our second hypoth-

esis. We compared a scenario where a user was given an X.509 certificate and had to

configure it for use with AHE to a scenario where a user invoked ACD to authenticate

to AHE. Both sections of the study can be considered as representing ‘best case scenar-

ios’. Firstly, all tools were installed and preconfigured for the user. An actual user of

XSEDE [97] or PRACE [62] would most likely have to install and configure the tools

herself. In the security section of the study, the user was given an X.509 certificate to

employ with AHE. In reality, a user would have to go through the process of obtaining

a certificate from her local Certificate Authority, a time consuming task that can take

between two days and two weeks [157].

In passing we note that while other middleware tools, and other interfaces to

Globus and UNICORE, certainly do exist, these interfaces are often community spe-

cific and not available to all users. Our tests evaluate the default minimum middleware

solutions available to PRACE and XSEDE users.

4.3.1 Participants

Some usability experts (notably Nielsen [158]) maintain that five is a suitable number

of subjects with which to conduct a usability study, since this number of people will

typically find 80% of the problems in any given interface. However, our study does not

seek bugs in a single interface: it asks participants to compare the features of several

middleware tools to find which is most usable. To do this we need a sufficient num-

ber of participants to be sure that our results are statistically significant. To determine

the minimum number of participants required, we conducted a power analysis [159],

calculating the probability that a statistical test will reject the null hypothesis or alter-

natively detect an effect. In order to determine the statistical significance of our results,

we used a one-tailed paired t-test. For a reasonable statistical power of 0.8 (i.e. the

probability that the test will find a statistically significant difference between the tools),

we therefore determined we would need a minimum of 27 participants, plus a few more

to allow for those who might drop out for various reasons.
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We recruited a cohort of 39 participants consisting of UCL undergraduate and

postgraduate students, each of whom received a £10 Amazon Voucher for taking part

in the study. These participants came from a wide range of backgrounds in the hu-

manities, sciences and engineering, but none had any previous experience in the use

of computational grids. This cohort is therefore analogous to a group of new users of

computational e-infrastructures (e.g. first year PhD students) in terms of educational

background and experience.

4.3.2 Tasks

As discussed, our usability study was split into two sections. In the first section par-

ticipants were asked to compare Globus, UNICORE and AHE by performing three

separate tasks:

(i) Launch an application on a grid resource using the middleware tool being tested.

The application in question (pre-installed on the grid resource) sorted a list of

words into alphabetical order. The user had to upload the input data from their

local machine and then submit the application to the machine.

(ii) Monitor the application launched in step 1 until complete.

(iii) Download the output of the application back to the local machine once it has

completed.

The second section compared the use of X.509 certificates to ACD authentication.

In this section, users were asked to perform the following two tasks:

(i) Configure the AHE client with to use an X.509 certificate, and then submit a job

using the graphical client.

(ii) Authenticate to AHE using an ACD username and password, and then submit a

job using the graphical client.

In order to avoid the typical queue waiting problem when using HPC resources, all

of the tests ran the application on the same server, based locally in the Centre for Com-

putational Science at University College London, which was used solely for the purpose
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of running the usability test application. Participants were provided with documenta-

tion on the tools they were asked to use, copies of which can be found in Appendix

D.

4.3.3 Data Collection

Prior to beginning the tasks outlined above, each participant was asked a number of

question related to their academic background, general IT experience and previous ex-

perience of using grid middleware tools. After each task, we asked the participants

to rate the difficulty of the task and their satisfaction with their performance of the

task, using a Likert scale [160] (i.e. five options from strongly agree to strongly dis-

agree). In addition, we timed how long it took the user to complete each task. After

using each tool, we asked the participant to evaluate it using the System Usability Scale

(SUS) [161], via ten questions about his impression of the tool giving a standard mea-

sure of usability scored out of 100, which is suitable for making comparisons between

tools. After completing the two sections of the study, each participant was able to give

freeform comments on impressions of the tools used, if desired. While performing

each task, an observer watched each participant and recorded whether or not the task

was completed successfully. The specific wording of the tasks the users were asked to

perform, and the questions they were asked to respond to, can be found in Appendix C.

4.3.4 Delivery

To ease the process of data collection and tabulation (and the timings of tasks), we

developed a simple web platform from which to deliver the usability study. The study

was conducted in the Centre for Computational Science at University College London.

Each participant in the study was assigned an ID number, which they used to log on to

the delivery platform. All of the various usability metrics were then recorded against

this ID in a database. Before starting the study, the delivery platform displayed a page

explaining to the user the purpose of the study. The observer also explained to the

participant that he was not able to provide any assistance or answer questions relating

to the tasks being performed.

The delivery platform provided web forms on which participants could record the

answers to the questions outlined in the previous section. The delivery platform also

described the operations that the user had to carry out. Prior to performing the task, the
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Middleware Tests Security Tests
Globus AHE UNICORE AHE AHE AHE
Toolkit CLI GUI GUI with with

Cert ACD
Percentage of 45.45 75.76 30.30 96.97 66.67 96.97

successful users
Percentage of users 27.27 53.54 47.47 79.80 51.52 87.88
satisfied with tool

Percentage of users 45.45 25.25 26.26 5.05 27.27 0.00
who found tool
difficult to use

Table 4.1: Summary of statistics collected during usability trials for each tool under compari-
son.

user had to click a Start button, which set a timer running for the task, and a Stop button

when it was completed. When performing a task, the user was given a documentation

snapshot, taken from the tool’s documentation, that instructed them how to perform

the task (included in Appendix D). As noted, all of the tools were preconfigured on

the machine used by the participant to perform the tasks. Each of the tasks in the two

sections was assigned in a random order, to minimize the risk of bias entering the study.

4.4 Results
Our usability tests show very clear differences between the different tools tested, based

on the usability metrics defined in Section 4.2. Table 4.1 presents key measurements

from our findings. Due to problems with the delivery platform (such as web browser

crashes half way through a set of tests), the results from six participants have been

excluded from our results, meaning that the results presented have been gathered from

a cohort of 33 participants.

We applied a 1–tailed, paired t–test to our results to determine the statistical signif-

icance of any differences between the tools being compared. We compared the Globus

command line client with the AHE command line tool, and the UNICORE graphical

client with the AHE graphical client. We also compared the AHE using a digital cer-

tificate to the AHE using ACD authentication. The P–values of these t–tests are shown

in table 4.2, along with mean scores for the five different metrics. A p < 0.05 shows

that the difference between the tools is statistically significant.

Our first usability metric looked at whether or not a user could successfully com-
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plete the set of tasks with a given tool. Table 4.1 summarizes the percentage of partic-

ipants who were able to complete all tasks for each tool. Although the failure data is

measured on an ordinal scale (Success, Failed etc.), we have converted it to numerical

data in order to more easily compare results. The mean failure rate is shown in table 4.2,

with a lower score meaning there were less failures when using the tool. Also shown in

table 4.2 are the P–value scores; the AHE command line was found to be less failure

prone than the Globus command line (t(33) = 1.41, p < 0.05), the AHE GUI was

found to be less failure prone than the UNICORE GUI (t(33) = 1.07, p < 0.05) and

AHE with ACD was found to be less failure prone than AHE with X.509 certificates

(t(33) = 1.03, p < 0.05).

Our second usability metric was a measure of how long it took a user to complete

an application run. Figure 4.1(a) plots the mean times taken to complete the range of

tasks with each tool. Again, the differences are statistically significant as shown in table

4.2, with participants able to use AHE to run their applications faster than via Globus

or UNICORE, and AHE with ACD faster than AHE with X.509 certificates.

Our third usability metric measured user satisfaction with the tools used. In table

4.1 we have summarized the percentage of participants who reported being either Sat-

isfied or Very Satisfied with a tool. The Likert scale data is again ordinal, but we have

converted it to numerical data in order to compare it, according to commonly practice

[162]. The mean satisfaction level is reported in table 4.2, a higher score meaning that

a user was more satisfied with the tool. Again, users reported being more satisfied with

the AHE than with other tools, and with ACD than with X.509 certificates, as show by

the P–value scores table.

Our fourth usability metric looked at how difficult a user perceived a tool to be.

Again the percentage of users who found a tool difficult or very difficult is summarized

in table 4.1. The mean difficulty scores are shown in table 4.2, with a higher score

meaning that the tool was perceived as being more difficult to use. The AHE GUI client

was perceived as being less difficult to use than the UNICORE GUI client (t(33) =

1.73, p < 0.05), the AHE command line interface was perceived as being less difficult

to use than the Globus command line tools (t(33) = 2.55, p < 0.05), and AHE with

ACD was perceived as being less difficult than AHE with digital certificates (t(33) =

1.52, p < 0.05).
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Middleware Tests Security Tests
Globus AHE UNI- AHE AHE AHE
Toolkit CLI CORE GUI with with

GUI Cert ACD
Mean SUS score. 37.50 51.89 52.95 69.47 51.21 72.12
100=most usable

SUS score 6.14821×10−4 2.55007×10−4 1.10235×10−7
P–value

Mean task time 667.73 606.18 587.33 388.70 309.00 131.39
(seconds)

Mean task time 3.55845×10−2 3.49719×10−4 8.97553×10−5
P–value

Mean failure rate. 2.11 1.41 2.16 1.07 1.45 1.03
5=most failure prone.

Failure rate 6.23844×10−8 6.60682×10−14 8.18544×10−4
P–value

Mean perceived difficulty. 3.15 2.55 2.44 1.73 2.67 1.52
5=most difficult

Perceived difficulty 7.27699×10−7 3.23194×10−7 2.27949×10−5
P–value

Mean satisfaction. 2.68 3.29 3.34 4.05 3.12 4.27
5=most satisfied

Satisfaction 7.27699×10−7 1.28956×10−6 7.50398×10−6
P–value

Table 4.2: The mean scores and t–test P–values for our five usability metrics, comparing the
AHE and Globus command line clients, the AHE and UNICORE graphical clients,
and the AHE with and without ACD.

Our final usability metric measured a participant’s overall impression of a tool

using the SUS usability scale. The mean SUS score is shown in table 4.2, with a higher

score meaning the tool is more usable. Again, we found statistical significance, with

AHE GUI being rated as more usable than the UNICORE GUI, AHE command line

being rated higher than Globus, and AHE with ACD being rated higher than AHE with

digital certificates, as summarized in table 4.2.

4.5 Discussion of Results

The results presented in the previous section clearly confirm our hypotheses, that the

application interaction model used by the AHE is more usable than the resource inter-

action model implemented in the UNICORE and Globus toolkits, with AHE found to

be more usable for each of our defined usability metrics. We believe the reason for
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Figure 4.1: (a) Mean time taken to complete a range of tasks with each tool; (b) a comparison
of the percentage of users who were satisfied with a tool and the percentage who
could successfully use that tool.
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this is due to the fact that AHE hides much of the complexity of launching applications

from end users, meaning that (a) there are less things that can go wrong (hence the

lower failure rate) and (b) there are less things for a user to remember when launch-

ing an application (hence the higher satisfaction with and lower perceived difficulty of

AHE tools). The fact that the AHE model encapsulates input and output data as part

of an application’s instance (and stages data back and forth on the user’s behalf) means

that application launching is faster via AHE.

In the case of ACD security, the familiar username and password were clearly

found to be more usable than X.509 certificates, but it should also be stressed that the

scenario modelled here represented the ‘best case’ scenario, where a user was already

given an X.509 certificate with which to configure their client. As previously noted, in

the real world a user would have to go through the laborious process of obtaining an

X.509 certificate from their certificate authority, which renders the ACD solution far

more usable still.

The failure rate when using a tool is dependent on all of the subtasks being com-

pleted successfully; if one task failed, it meant that the following tasks could not be

successfully completed (marked ‘Failed due to previous’ by the observer). This is,

however, analogous to real world scenarios where, for example, a user will not be able

to download data from a grid resource if his job is not submitted correctly.

We noted particular problems experienced by participants using the UNICORE

middleware, related to staging files and configuring job input files. However, these

problems were not noted by the participants themselves, due to the jobs appearing to

submit properly. Figure 4.1(b) plots the percentage of users reporting satisfaction with

a tool alongside the percentage of users who successfully used that tool. Curiously,

more users reported satisfaction with the UNICORE client than were able to use it suc-

cessfully, suggesting that many participants did not realize their jobs had not completed

successfully.

The freeform comments made by users of the individual systems also provide

some illuminating insights as to their usability. Regarding the use of ACD security

with AHE, one participant reported “To deal with security issues a user is much more at

ease with a simple username/password system. The use of certificates just complicates

the process unnecessarily”. Another participant highlighted the problems involved in
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AHE Version Client Downloads Server Downloads
1.0.0 22 16
1.0.1 138 91
2.0.0 59 78
3.0.0 N/A 47

Total downloads = 404

Table 4.3: AHE downloads from RealityGrid.org and Sourceforge.org to January 2014. Note a
standalone client release for AHE 3.0 has not been provided.

learning the command line parameters required to use the Globus Toolkit, reporting

“there were difficulties in accessing the outside servers i.e. adding gsiftp:// or when to

input the whole path into the command line”.

4.6 Community Uptake of the AHE
The AHE has been distributed through a number of different channels, in order to reach

as wide an audience as possible. Initially, the AHE client and server were distributed

as installation tarballs through the RealityGrid website. This method of deployment

required the end user of the AHE server to deploy their own hosting and database

infrastructure (e.g. Tomcat and PostgreSQL). To simplify server installation, AHE

version 1 was subsequently integrated with OMII Toolkit [142]. This meant that the

AHE server components and databased were automatically installed and configured by

the OMII stack installer.

The trend towards server virtualization means that many ‘virtual’ server instances

can be run on a single physical machine, aiding hardware utilization and facilitating

software deployment. The release of AHE 2.0 took advantage of this growing trend,

with the AHE server provided as a preconfigured virtual machine image, which could

be easily downloaded and deployed by a reasonably experienced user. AHE 3.0 was

released as a set of standalone services, through the SourceForge website. In addition,

AHE has been made available from other sources, such as the NeSCForge portal, and

the VPH ToolKit. Table 4.3 summarizes the client and server downloads made through

the RealityGrid portal and SourceForge website.

4.6.1 Hosted Applications

The AHE was designed as a hosting environment for generic legacy scientific codes,

and as such it has been used by different user communities to host a wide range of
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different application. The application hosting process involves the expert user in a

community compiling the application be hosted on the set of target resources that it

is to be used on, generating JSDL template documents describing the application, and

configuring the AHE server with details of where the application in installed. Option-

ally, the expert user can also create a Java parser plugin to process the input file of the

application they are hosting, to assist with data transfer.

An overview of some of the most widely used applications run via AHE is listed

below:

• NAMD - Several members of the Centre for Computational Science (CCS) at

UCL are using the AHE to run NAMD simulations, modelling the behaviour of

HIV-1 protease, using both the GUI launching client and creating shell scripts

that implement application workflows by calling the AHE command line clients.

NAMD is has also been used via AHE in the School of Crystallography at Birk-

beck College, to run jobs on UK National Grid Service (NGS) nodes.

• LAMMPS - CCS: Within the Centre for Computational Science researchers are

using the AHE to launch LAMMPS simulations on the ARCHER, PRACE and

XSEDE. Researchers from the Centre for Applied Marine Sciences at the Univer-

sity of Wales, Bangor, have also used the AHE to launch LAMMPS simulations

on the NGS.

• DL POLY - Members of the Condensed Matter and Materials Physics group at

UCL have used the AHE to launch DL POLY jobs on the UK NGS.

• LB3D - Currently LB3D is being hosted and used on XSEDE and PRACE by

members of the CCS at UCL.

• Gromacs - The Structural Bioinformatics & Computational Biochemistry group

at Oxford use Gromacs in the AHE to run on local resources and previously on

the UK NGS.

• CHARMM - The Computer Simulations of Biomolecular Systems at the group

at the University of Southampton has instrumented the CHARMM code with the

RealityGrid steering API, and hosted the steered version of the application in the

AHE.
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• CHASTE - Researchers in the Department of Computer Science at the University

of Oxford use AHE to run CHASTE simulations on ARCHER.

4.7 Case Studies
To illustrate the diverse ways in which AHE has been used, in this section we present

several case studies describing the projects that use AHE, and how they use it. Whilst

this is not a formal usability study, it captures the subjective experience of many

projects that have used the AHE software.

4.7.1 RealityGrid and Materials Science

The RealityGrid [163] was one of the original EPSRC funded e-Science projects, and

was further supported under an EPSRC Platform Grant. The project provided an incu-

bator for the AHE, and the needs of RealityGrid scientists drove the initial design and

development of the AHE. RealityGrid scientists, based in the Centre for Computational

Science at UCL and elsewhere, have integrated the AHE into their daily scientific ac-

tivities [127, 155]. Researchers who have moved on from the RealityGrid project have

taken AHE with them, and have been responsible for introducing it to new user com-

munities.

4.7.1.1 Clay-polymer Nanocomposite Simulations

Clay-polymer nanocomposite materials have recently attracted a great deal of attention

as they offer enhanced mechanical and thermal properties compared to conventional

materials. Complete understanding of the materials properties of these composites re-

quires accurate knowledge of the elastic properties of their components. RealityGrid re-

searchers have exploited the capability of large scale resources such as the UK’s HEC-

ToR machine to model, in full atomistic detail, clay systems of up to approximately 10

million atoms whose dimensions approach those of a realistic clay platelet [128]. These

exceptionally large scale simulations show emergent behaviour: at length scales greater

than 15 nm collective thermal motion of clay sheet atoms produces low amplitude, long

wavelength collective undulations of the clay sheets themselves, implicitly inhibited by

the small system sizes commonly encountered in atomistic simulation. These “meso-

scopic” bending fluctuations allow the calculation of clay materials properties, which

are hard to obtain experimentally due to the small size of a clay platelet.
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The ten million atom model requires more than 1024 processors on a resource such

as HECToR, together with the near linear scaling performance of LAMMPS [164], a

high performance molecular dynamics code. Job submission is handled by the Appli-

cation Hosting Environment to facilitate access to grid-enabled computing resources.

AHE is used to manage the full simulation execution chain, dealing with staging in-

put and output data from the machine, and giving the user a remote monitoring tool to

assess the progress of their simulations. The high performance computing power avail-

able from HECToR, coupled with easy-to-use middleware, has enabled RealityGrid

researchers to achieve high levels of scientific productivity, even with such extremely

demanding simulations.

4.7.2 The Virtual Physiological Human Initiative

Patient-specific medicine refers to the tailoring of medical treatments based on the char-

acteristics of an individual patient [10]. Decision support systems based on patient-

specific simulation hold the potential to revolutionize the way clinicians plan courses

of treatment for various conditions, such as viral infections and lung cancer, and the

planning of surgical procedures, for example in the treatment of arterial abnormalities.

Since patient-specific data can be used as the basis of simulation, treatments can be

assessed for their effectiveness with respect to the patient in question before being ad-

ministered, saving the potential expense of ineffective treatments and reducing, if not

eliminating, lengthy lab procedures that typically involve animal testing.

The Virtual Physiological Human (VPH) is a methodological and technological

framework that enables the collaborative investigation of the human body as a single

complex system [165]. The collective framework makes it possible to share resources

and observations formed by institutions and organizations creating disparate but inte-

grated computer models of the mechanical, physical and biochemical functions of a

living human body. The VPH Initiative currently comprises over 20 large-scale EU

funded research projects working in such diverse areas as heart, musculoskeletal and

cancer modelling. In addition the VPH Network of Excellence project manages and co-

ordinates the activities of the various VPH-I endeavours, and itself funds several small

scale exemplar projects.

However, such simulations typically require access to supercomputing class re-
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sources. If large scale simulation is going to be used in anything approaching a rou-

tine way, a single computational resource is insufficient, and indeed all the resources

provided by a single computational infrastructure often cannot provide sufficient on-

demand power to support clinical use; only by federating the resources of multiple

resource providers can such power be achieved. To support VPH, DEISA set up one

of the first Virtual Communities, managed by the VPH NoE, and intended to provide

VPH researchers with access to large scale computing facilities with which to conduct

their research. The VPH Virtual Community was awarded 2 million standard DEISA

core hours for 2009, renewed again in 2010 and 2011 to provide access to the HECToR

machine (Cray, UK) and the SARA machine (IBM Power 6, Netherlands). This alloca-

tion was also used to support the smaller Virolab project, working in the VPH related

area of patient specific HIV modelling.

The Application Hosting Environment has been used to support VPH research

in a number of different ways. AHE is a key component of the ‘VPH ToolKit’ being

developed by the VPH Network of Excellent project [166], meaning that it is being used

by a wide community of researchers across Europe and beyond. As well as allowing

users to download AHE as part of the TooklKit, a centralized AHE installation managed

by the NoE project provides a single interface from which VPH researchers can access

the DEISA resources available as part of the VPH Virtual Community.

4.7.2.1 ContraCancrum

The ContraCancrum VPH-I project [167] sought to develop a multilevel platform to

simulate malignant tumour development, and the response of tumour and normal tissue

to different treatment regimes. The project aimed to aid understanding of the phe-

nomena of cancer, and optimize the treatment of the disease. ContraCancrum deploys

two important clinical studies for validating the models, one on lung cancer and one

on gliomas. The ContraCancrum ‘virtual laboratory’ consists of a number of different

simulation techniques that can be usefully employed by the clinical oncologist. All of

these simulation paradigms have one thing in common: they are all driven by the use

of clinical data sets supplied by the clinical partners in the project.

One such simulation paradigm aims to create molecular level simulators which

have an impact in personalized drug treatment of targeted therapy. The simulators
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Figure 4.2: The architecture of the Individualized MEdiciNe Simulation Environment
(IMENSE) system. Access to the different components is mediated through a web
portal interface, and includes access to high performance computing (HPC) infras-
tructures such as DEISA to execute simulation codes, mediated by the AHE.

developed in this study have the potential to select targeted drugs in the patient’s indi-

vidualized context by ranking available drugs to patient’s specific genotypes, to explain

effects of mutations on activation of key proteins and drug resistance. The epidermal

growth factor receptor (EGFR) is a major target for drugs in treating lung carcinoma

since it promotes cell growth and tumour progression. Molecular dynamics simula-

tions are used to model drug-EGFR binding, in an attempt to rank drug suitability on a

patient specific basis.

The multiple simulation paradigms used by the ContraCancrum project all make

use of patient specific datasets as the starting point for their simulations. ContraCan-

crum developers have built a centralized platform to tie together anonymized patient

data set storage and viewing with the simulation techniques developed in the project,

accessed via a web portal. The Individualized MEdiciNE Simulation Environment

[5] allows ContraCancrum clinicians and researchers to view clinical datasets, and to

launch simulation workflows on those datasets. These workflows make use of a range

of different resources, from workstations to the largest scale HPC machines available

on DEISA in the case fo the molecular dynamics simulations. Workflows are orches-

trated using the GridSpace workflow engine [168], which in turn launches applications
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using the AHE. AHE acts as an interoperability layer meaning that the workflow en-

gine is able to submit application to workstations, departmental clusters and DEISA

resources as necessitated by the workflow. The architecture of the IMENSE system is

depicted in figure 4.2.

4.7.3 ImmunoGrid

Researchers in the School of Crystallography at Birkbeck College, University of Lon-

don, have used AHE as the basis of a web portal developed to allow researchers in the

EU FP6 funded ImmunoGrid project to access both NGS resources, and local clusters

belonging to members of the ImmunoGrid project and running the GridSAM middle-

ware. The purpose of ImmunoGrid [19] is to to model the mammalian, and specifically

human, immune system using grid technologies. It aims to simulate the immune sys-

tem at different physiological levels, and as such prefigured the EU FP7 funded Virtual

Physiological Human Initiative described in the previous section.

ImmunoGrid integrates processes at molecular, cellular and organ levels, with the

web portal allowing project researchers to launch a bespoke project simulation code,

called CIMMSIM, on compute clusters provided by partners in ImmunoGrid. The por-

tal acts as a front end to the AHE, meaning the project members need only a web

browser installed on their desktop machine to be able to launch simulations on a wide

variety of distributed resources made available to project researchers, and use Grid-

SAM to provide an access mechanism to the various resources contributed by project

partners. The portal, developed in PHP, wraps around AHE commands, with AHE used

to manage simulation execution and data staging.

4.7.4 ViroLab

A major problem in the treatment of AIDS is the development of drug resistance by the

human immuno-deficiency virus (HIV). HIV-1 protease is the enzyme which is cru-

cial to the role of the maturation of the virus, and is therefore an attractive target for

HIV/AIDS therapy. Although several effective treatment regimes have been devised

which involve inhibitors that target several viral proteins [108], the emergence of drug

resistant mutations in these proteins is a contributing factor to the eventual failure of

treatment. Doctors have limited ways of matching a drug to the unique profile of the

HIV virus as it mutates in each patient. A drug treatment regimen is prescribed us-
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ing knowledge-based clinical decision support software, which attempts to determine

optimal inhibitors using existing clinical records of treatment response to various mu-

tational strains. The patient’s immune response is used as a gauge of the drug’s effec-

tiveness and is periodically monitored so that ineffective treatment can be minimized

through an appropriate change in the regimen.

Computational methods exist for determining biomolecular binding affinities. In a

recent study [127], the effectiveness of the drug saquinavir was tested against the wild-

type HIV-1 protease, along with three drug-resistant strains using free energy methods

in molecular dynamics (MD) simulations. The protocol implemented by the study

gave accurate correlations to similar experimentally determined binding affinities. Fur-

thermore, the study made use of a tool, the Binding Affinity Calculator (BAC) [111],

for the rapid and automated construction, deployment, implementation and post pro-

cessing stages of the molecular simulations across multiple supercomputing grid-based

resources. BAC automates binding affinity calculations for all nine drugs currently

available to inhibit HIV-1 protease and for an arbitrary number of mutations away from

a given wildtype sequence.

The main objective of the EU FP6 ViroLab [151] project was to develop a Vir-

tual Laboratory for HIV drug resistance that facilitates medical knowledge discovery

and decision support in the prescription of treatments. At the core of the ViroLab

Virtual Laboratory is a rule-based ranking system, used to rank the effectiveness of

drug combinations using patient derived data. Central to the Virtual Laboratory is a

JRuby workflow engine, called GridSpace [168], used to edit workflows developed in

the Ruby scripting language. Within the project, developers worked to be able to launch

applications on remote grid resources using the AHE from the GridSpace environment,

ultimately to implement the BAC workflow. This simulation based approach was then

be used to augment the rule based drug ranking system developed by the project, when

insufficient data exists to confidently make rule based predictions.

The scope of BAC is enormous as it offers an automated in-silico method for as-

sessing the drug resistance for any given viral strain, and indeed the BAC is also being

employed in the ContraCancrum project (cf. §4.7.2.1). The AHE has been instrumen-

tal in managing the large scale simulation workflow required by BAC. The number

of clinically interesting drug resistant mutational patterns is far larger than the avail-
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able crystal structures of HIV-1 protease. Mutational protocols convert one protease

sequence with available crystal structure into another that diverges by a small number

of mutations. It is important that such mutational algorithms are followed by suitable

multi-step equilibration protocols, using chained molecular dynamics simulations, to

ensure that the desired mutant structure is an accurate representation. Previously these

have been difficult to perform on computational grids due to the need to keep track of

large numbers of simulations.AHE is used to manage all of the simulations required to

construct a chained simulation, with scripting of the AHE command line clients to cre-

ate complex application workflows, linking the output of one simulation into the input

of the next. This approach has greatly simplified the scientist life, reducing the time

taken tracking and marshalling input and output files between remote grid resources.

The work of the ViroLab project is being extended through the recently funded

VPH-Share project.

4.7.5 MAPPER

Today scientists and engineers are commonly faced with the challenge of modelling,

predicting and controlling multi-scale systems which cross scientific disciplines and

where several processes acting at different scales coexist and interact [169, 170].

Such multidisciplinary multi-scale models, when simulated in three dimensions, re-

quire large scale or even extreme scale computing capabilities. The MAPPER project

[171] developed computational strategies, software and services for distributed multi-

scale simulations across disciplines, exploiting existing and evolving European e-

infrastructure.

To facilitate such an infrastructure, the MAPPER project developed and deployed

a multi-tiered software stack [4]. The MAPPER software stack sought to deploy a set

of services to facilitate the execution of multi-scale scientific applications, that is sin-

gle applications composed of multiple different single scale models, with each model

usually executed by a different application code. This set of services, building on com-

putational resources from the EGI [172] and PRACE [62] initiatives, as well as testbed

resources and services run by the MAPPER project, constituted a European wide in-

frastructure for multi-scale modelling and science. By necessity, some of these com-

ponents were run on on target compute resources (such as those operated by PRACE
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and EGI) and some components were run at a higher level, on resources operated by

the MAPPER project.

MAPPER made a distinction between loosely coupled and tightly coupled appli-

cation scenarios, the difference been that tightly coupled applications require constant

communication between components, whereas loosely coupled applications were exe-

cuted in a chain of dependant steps. To drive the development of the multi-scale mod-

elling infrastructure, the MAPPER project worked with exemplar applications from

five representative scientific domains (fusion, clinical decision making, systems biol-

ogy, nano science, engineering).

The nano science application domain involved a loosely coupled application con-

sisting of three levels of simulation. The lowest level simulates the electronic degrees

of freedom, using the Car-Parrinello Molecular Dynamics (CPMD) code. This code is a

parallelized plane wave/pseudopotential implementation of Density Functional Theory,

particularly designed for ab-initio molecular dynamics. The high level of accuracy of

this method provides a mechanism for deriving accurate atomic charges which can be

used in classical molecular dynamics, where the electronic degrees of freedom are re-

moved. The atomic charges are passed to the initial models simulated using LAMMPS

classical molecular dynamics code. To increase the size and length of simulation we

used the classical molecular dynamics simulation to create input model parameters for

Coarse-Grained Molecular Dynamics (CGMD) simulations, again using the LAMMPS

code. The CGMD simulations have reduced degrees of freedom, by combining atoms

into single larger particles. The parameters transferred between these levels are the in-

terparticle positions and interactions, calculated to reduce the structural details of the

simulation.

The three components of the loosely coupled application scenario, were deployed

on resources appropriate to their processor requirements. The architecture of the system

is shown in figure 4.3. First, the CPMD application was executed, with it’s output

processed into a form that can be used as input to the LAMMPS MD code, and the

data transferred to the resource running LAMMPS. Once the first LAMMPS model

had completed, its output is similarly processed into a form that can be used by the

second LAMMPS model, and the data was transferred to a PRACE HPC resource.

The sequential execution of the different scale models was managed by the GridSpace
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Figure 4.3: The role of AHE in the MAPPER architecture was to act as an interoperability
layer, allowing simulation components to be submitted to resources running a range
of back end middleware interfaces, in a way that was transparent to the user.

workflow engine, using the Application Hosting Environment as an interoperability

layer. The QoS Broker was used to co-reserve resources, to ensure that the different

sub-models were able to execute before their subsequent sub-models were are executed.

4.8 VPH Share

Like its predecessors, AHE 3.0 is being actively used by several large research projects.

AHE provides the principal HPC access tool in the VPH-Share project [173], a cur-

rently funded endeavour within the Virtual Physiological Human (VPH) initiative

[174], concerned with patient-specific biomedical modelling and simulation [3]. The

aim of this project is to develop a set of intelligent services and supporting network

infrastructure that will facilitate the exposure and sharing of data and knowledge. In

particular, it is developing a multi-scale framework for the composition of new biomed-

ical workflows to promote collaboration within the VPH community.

As part of this infrastructure, VPH-Share is developing a cloud platform that will

allow users to easily access computational as well as data resources. AHE and ACD

together constitute the HPC gateway service for VPH-Share, allowing simulations that
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require more computational power than the VPH-Share cloud infrastructure is able to

provide to be seamlessly run on HPC resources. AHE and ACD are deployed based on

the Software as a Service (SaaS) model. AHE is responsible for handling the execution

life cycle of virtualized applications on computational resources, while ACD bridges

the gap between different security infrastructures used by the execution platform and

those remote resources. This allows simulation workflows to be deployed which com-

bine resources from a cloud provider such as Amazon in order to execute single core

and small scale parallel simulations, but that can switch to high performance comput-

ing, accessed via AHE, to run parts of the workflow that require more computational

power. The ability of the Taverna workflow system used by VPH-Share to call AHE’s

RESTful interface allows applications hosted in AHE to be included as components in

Taverna workflows.

The system is being used in production runs by VPH-Share scientists to run the

Chaste code [175] to model personalized treatments of cardiac arrythmias in patients.

AHE allows the researchers to launch simulations using the Chaste on the ARCHER

HPC machines in the UK (part of PRACE), marshal input and output data and manage

parameter sweeps. It also allows data to be staged in and out of the EUDAT [70] data

storage infrastructure as necessary.

4.9 Conclusions
Our study confirms that AHE is more usable than both UNICORE and Globus, and

that familiar username/password authentication provided by ACD is more usable than

X.509 certificates. While it may be argued that there are other grid interfaces which

can be deployed for users (web portals for example), such interfaces are usually non-

standard, and are in practice not available for users on the TeraGrid or DEISA. The

UNICORE and Globus tools we tested embody the user–resource interaction model,

whereby users have to interact with a machine to stage files and submit jobs. AHE

implements the user–application interaction model, whereby users interact with their

applications, leaving the AHE to interact with resources on their behalf. AHE can be

seen as a hybrid Software as a Service (SaaS)/Platform as a Service (PaaS) architec-

ture, common to many cloud computing systems; we believe that the usability findings

reported in this thesis will therefore be useful to both the grid and cloud communities.
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By removing the digital certificate from the user’s experience, we have shown

that users can begin launching applications faster, and with less chance of failure. We

have shown that both AHE and ACD are important tools for the computational sci-

entist; while it is of course possible that a junior computational scientist could spend

time learning the intricacies of a particular middleware tool, the time they spend doing

so is time not engaged in scientific research. The real power of our approach is that

computational scientists can use a simple tool to launch applications, without worrying

about the particular incantations required by a machine to run a job. The interoperable

nature of AHE means that it provides a single interface to a wide range of resources,

from HPC grids to departmental clusters and workstations [8]. Indeed, AHE with ACD

is currently being used as the basis of a practical introduction to computational chem-

istry course run for undergraduate students at University College London. The study

reported in this thesis focused solely on the ‘best case’ scenario, where all middle-

ware tools and applications were pre-deployed, and the study participants were used to

evaluate and compare the tools’ interfaces. In future we plan to extend the study by

examining aspects relating to the usability of middleware deployment.

Since it’s initial release, the Application Hosting Environment has been taken up

by a wide and diverse community of users, and employed in a number of different

ways. Not only has AHE been used by individual researchers to host and launch their

scientific simulations codes, it has also been used as the basis of web portals and as

an interoperability layer in several distributed computing systems. AHE’s exposure

through the Virtual Physiological Human toolkit means that it has been taken up by

many researchers across Europe outside of the traditional e-Science community, and

by many users whose first exposure to grid computing has been through AHE.

4.10 Summary
In this chapter we have seen how a comparative usability analysis has rated our Appli-

cation Interaction Model, as realized in the Application Hosting Environment, as being

perceived to be more usable than widely deployed similar solutions. We have also seen

how this level of usability has meant that AHE has found widespread uptake though

a number of large-scale international research projects, as indicated by the number of

times the software has been downloaded (shown in table 4.3). The development of new
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AHE features has been, and will continue to be, driven by requirements gathered from

the AHE community, and as the nature of that community has expanded, so have the

features of AHE.



Chapter 5

Agents, Metascheduling and

Mechanism Design

In this chapter we look at the design of auction mechanisms as a means of efficiently

allocating resources. Many common types of auction mechanism are reviewed, as well

as the theoretical underpinnings of mechanism design. We go on to look at the con-

cept of software agents, and the relationships between software agents and mechanism

design.

5.1 Resource Allocation
Essential to realising the vision of a computational e-infrastructure as ubiquitous, seam-

less to use and transparent as the electrical power grid, as proposed by Foster et al. [17],

is the metascheduler. The metascheduler is a component of the e-infrastructure system

responsible for efficiently distributing jobs between e-infrastructure resources, taking

into account factors such as machine load and cost models. A metascheduler provides a

point of contact between the user and the e-infrastructure, placing jobs submitted by the

user onto appropriate computational resources. The metascheduler means that the user

does not have to deal directly with each machine on the e-infrastructure, for example

logging on to several resources when deciding where to run a job to find the one with

the least load. The metascheduler also means that expensive HPC resources are used as

efficiently as possible, ensuring that one machine is not idle while another has a large

queue of jobs.

Czajkowski et al. [176, page 277] give several reasons for the need to use

metaschedulers in complex e-infrastructure systems. These are the ability to virtual-
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ize resources, thus prevent users from having to learn every detail of the machines they

wish to access; Policy enforcement, that is, deciding where about jobs should be run

based on a scheduling policy; Protocol conversion, the ability to translate between dif-

ferent back end middlewares, without the end user needing to maintain different sets of

client tools.

Much effort has gone in to developing metaschedulers for e-infrastructure systems,

for example [177, 178, 179, 180, 181]. As noted in [179] metaschedulers have a number

of challenges to overcome: the heterogeneity of systems they are dealing with - systems

will have different operating system, access policies, cost models and state reporting

mechanisms; the variety of applications that they are used for - for example, single

processor task farming jobs or complicated workflows using parallel applications; the

interface provided by the broker to the user, be it a web portal or command line, which

interacts with the job submission mechanism. Many metaschedulers address this last

point by providing a metascheduler and job submission service combined [182].

The job of the metascheduler is to match jobs to available resources. As noted in

Section 2.1, the majority of HPC resources on an e-infrastructure will have their own

local scheduling mechanism, responsible for allocating jobs submitted to the resource

between the available processors. As noted by Thain et al. in [67]:

“Grid computing cannot be served by a centralized scheduling algorithm.

By definition, a Grid has multiple owners. Two supercomputers purchased

by separate organizations with distinct funds will never share a single

scheduling algorithm”.

The above quote illustrates the fact that the e-infrastructure wide metascheduler has to

work with the different scheduling policies of all of the different resources shared on

the e-infrastructure. Metaschedulers need to work with the different local scheduling

mechanisms present on the resources in the e-infrastructure, and also take in to account

the fact that very often users will be able to submit jobs to the various resources in

a number of ways, for example via the metascheduler, or by logging directly in to a

submission node on the resource. Because of this, a metascheduler cannot maintain

its own local view of resource utilization, based on the jobs that it has been used to

schedule, as a basis for making scheduling decisions. The metascheduler needs to
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periodically update its view of the utilization of the whole e-infrastructure, for example

by querying information services on each resource to discover the state of the queue.

A very naı̈ve metascheduling approach, designed to ensure jobs complete in the

fastest possible time, [183], is to start the same jobs on all resources available, then,

once the job has completed on one resource, kill it on all of the other resources. Ob-

viously this method is extremely wasteful of resources, as some resources will spend

time working on the job before it is completed. Some metascheduler approaches just

send jobs between resources in a round robin fashion, with no consideration of the

utilization of the resource. Some approaches use Service Level Agreements (SLAs),

where a provider agrees to make their resources available to some user or community

at a particular time. Again this results in poor utilization of resources, for similar rea-

sons that advanced reservation can lead to under utilization of resources discussed in

Section 2.9.

Several projects have examined the ideas of computational economies or markets

[184, 185, 186], that is the idea of developing cost models to be associated with e-

infrastructure resource usage, and its application in metascheduling [187]. The ability

to associate cost with units of processing work essential if the computational grid is

to be truly analogous to the electrical power grid, and encourage commercial resource

providers to form e-infrastructures which can be used to supply computational power

to customers in the way that the electrical power grid supplies electricity. The ability to

do this also depends on the provision of robust, distributed accounting services which

can be used to generated billing information.

There are many more sophisticated metascheduling approaches that have been

applied to computational e-infrastructures. Sections 5.1.1 to 5.1.8 review of some com-

mon metascheduling systems employed in various e-infrastructure systems, and the

scheduling policies and cost models that they support.

5.1.1 Condor

Condor [67, 188] is a software system for the management of high throughput compu-

tational environments, that is computing environments that can deliver large amounts

of processing capacity over long periods of time, made up of collections of distribu-

tively owned computing resources. It can be used to manage workload on a dedicated
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cluster of computers, or to distribute work to pools of idle desktop computers on a cycle

scavenging basis. The Condor system is motivated by the question:

“Can we satisfy the needs of users who need extra capacity without low-

ering the quality of service experienced by the owners of under utilized

workstations.” [67]

For Condor systems made up of pools of user desktop machines, the user is given

full control over the use of their machine, for example by allowing any Condor run

processes to be killed when a user resumes work on the machine. This ensures that

Condor’s use of the machine does not interfere with its owner/user’s use of it, and

cause them to withdraw if from use in the pool. Originally, Condor pools consisted of

computational resources contained within a single administrative domain. Condor-G

[188] is an extension of Condor which builds on the Globus middleware to provide

secure inter-domain communication and standardized access to remote batch systems.

Condor can be used at both the front end and back end of the middleware environment,

either as a reliable submission and job management service, or as a fabric management

system (that is a grid enabled pool of resources), with the Globus middleware providing

services in between.

The Condor system consists of Agents (which are used to manage job execution),

Resources (the computational resources on which jobs run), a Matchmaker (to which

Agents and Resources advertise themselves, which is responsible for matching job re-

quirements with resources). Once introduced, the Agent must contact the resource to

check that the offer to run the job is still valid. To execute a job both sides (Agent and

Resource) start new processes: the Agent starts a Shadow process, which is responsi-

ble for providing all the information needed to execute a job. On the resource side a

Sandbox is started which provides a safe execution environment in which the job can

run. In the case of Condor-G the resource can be a HPC cluster running the Globus

middleware.

Condor draws a distinction between scheduling and planning, which they define

as:

• Planning is the acquisition of resources by users, with users typically being in-

terested in increasing the factors which affect them, such as turn around time and
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job throughput.

• Scheduling is the management of a resource by its owner. Typically a resource

owner will want to increase utilization of their expansive machine, without losing

customers (by, for example, scheduling so many jobs that the customer has to

wait an unacceptable amount of time).

In the Condor view, both users and resource providers retain their independence,

but there is feedback from one to the other. The fact that resources in a Condor pool

are often upgraded in a haphazard way adds to the heterogeneity of the system, and re-

source owners powering their machines on and off at different times creates a dynamic

resource pool. Matchmaking is used by the Condor system to bridge the gap between

planning and scheduling. Matchmaking occurs in four steps:

(i) The Agents and Resources advertise their characteristics and requirements in

Classified Adverts (ClassAds).

(ii) The Matchmaker scans the available ClassAds and creates pairs that satisfy each

others constraints and preferences.

(iii) The Matchmaker next informs both parties of the match.

(iv) Finally the matched Agent and Resource make contact, possibly carry out further

negotiation, and co-operate to execute the job.

ClassAds are sets of uniquely named expressions, with no specific schema, so both

users and resources can advertise any attributes they wish. Two special attributes, Rank

and Requirement, are used to specify desirability and constraints respectively, with

Rank used to choose between a set of compatible matches (the one with the highest

rank is chosen). Condor-G can also plan around a schedule, if a remote resource sched-

uler publishes information about its workload, or can be used to perform more naı̈ve

planning, for example by submitting the job to several sites, and then upon completion

of the job cancelling it at the remaining sites. Condor also has the ability to schedule

within a plan; once an Agent and Resource have negotiated on access to the resource,

the Agent considers itself to be the owner of the resource until told otherwise. It can

now plan as many jobs as it want to execute on the resource. The flexible design of the
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Condor matchmaking system has been used as the basis of the resource broker in the

gLite [22] middleware.

5.1.2 Nimrod/G

Nimrod [189] is a tool for the parametrization of serial programs to create and manage

embarrassingly parallel, task farming style applications. Nimrod provides a simple

declarative parametric modelling language to describe a parametric experiment. The

original Nimrod system was designed to manage task farming style workloads within a

single administrative domain. The unsuitability of Nimrod for running applications on

resources provided by a distributed grid infrastructure, where the resources are spread

across institutional domains and each have their own usage policies, cost models and

queuing systems, led to the development of Nimrod/G, which makes use of the Globus

middleware for job launching and resource discovery. Users interact with Nimrod/G via

a client tool, which allows the user to modify parameters related to the time and cost of

their experiment, and also allows users to monitor jobs that have been dispatched.

The Nimrod/G system consists of a parametric engine responsible for persistent

experiment control management. It parameterizes the simulation (that is, splitting up

a workload to be distributed among a task farm), creates and dispatches jobs to the re-

sources on the e-infrastructure. It takes as its input the experiment plan described using

the Nimrod parametrization language. It maintains the state of the whole experiment in

persistent storage, to provide a level of crash recovery.

The parametric engine interacts with a scheduler, which is responsible for resource

discovery, resource allocation and job assignment. The resource discovery algorithm

queries e-infrastructure information services (such as Globus MDS), identifies autho-

rized machines and keeps track of resource status information. Scheduling in Nim-

rod/G follows an economic model, whereby it attempts to execute work on a user’s

behalf at a given cost and to a given deadline, and can use a variety of parameters in

order to arrive at the scheduling policy needed to optimally complete the application

execution (for example: free nodes, queue Lent, resource architecture). It implements

four scheduling algorithms to allow users to optimize different parameters of the sched-

uler: cost optimization, cost-time optimization, time optimization and conservative time

optimization.
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5.1.3 Gridbus

Gridbus [179] is a scheduler for distributed data intensive applications on heteroge-

neous global e-infrastructures. Its architecture is comprised of three layers: the In-

terface layer, the Core layer and the Execution layer. This three layer architecture is

designed to isolate the logic of the broker (the Core) from interactions with specific

client tools and e-infrastructure services. The Interface layer communicates with enti-

ties external to the broker, such as job submission portals and other client tools. The

Interface layer translates the inputs from the external entities into inputs for the Core

layer, namely a description of the application requirements, a set of services which can

potentially run the application, and the set of credentials required to access the service.

The Core layer contains functional components that can be classified into two cat-

egories: entities and workers. Entities exist as information containers, representing the

properties, functions and states of elements involved in the execution of jobs. Work-

ers represent the functionality in the broker, implementing the logic of the scheduling

framework. A number of workers are utilized to schedule job requests; individual work-

ers are used to monitor the state of services (the availability of resources), match jobs

individually to resources (based on minimum requirements specified by the job), and to

dispatch jobs to resources (via the Execution layer). In addition to compute cycles, job

requirements can also be specified in terms of the data needed to execute the job. The

broker makes use of many different services within the e-infrastructure architecture,

such as the Grid Index Information Service (GIIS), and file transfer services.

The Execution layer takes care of dispatching jobs to the various different mid-

dlewares with which the broker interacts, and monitors the execution of the job on the

target resource.

The plug-in architecture of Gridbus means that new schedulers can be plugged in

to the system that satisfy user constraints in different ways. The default scheduler has

been designed to support the computational economy paradigm, and assigns costs to

data and compute services, which is used in combination with the scheduling policy to

decide on the optimal scheduling of jobs. Market pricing information is periodically

updated by polling a market information service.
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5.1.4 EMPEROR

EMPEROR [181] is a metascheduling framework that can be used to implement dy-

namic job scheduling solutions based on performance criteria. The EMPEROR frame-

work scheduling schemes take in to account dynamic resource predictions, which are

used as the basis for scheduling workloads across the e-infrastructure. The resource

prediction algorithms used are based on time series analysis to exploit information

about past usage. The resource usage measures are based on host load and memory us-

age. Predictor models are devised based on the statistical characteristics of the resource

utilization; Auto Regressive (AR) predictors are used in cases where the load/memory

sequences are nearly stationary, while Auto Regressive Integrated Moving Average

(ARIMA) models are used where there are rapid fluctuations in usage.

The EMPEROR scheduling process is comprised of the following steps:

(i) Firstly the user submits their job to the EMPEROR system

(ii) EMPEROR queries the Globus MDS server to obtain information about available

hosts, and the predicted load and memory of each of the underlying resources,

and applies the appropriate running time estimation algorithm.

(iii) The EMPEROR Resource Prediction Systems (RPS) running on each e-

infrastructure resource periodically update the MDS database with their predic-

tion information.

(iv) EMPEROR selects the system that is likely to minimize the run time of the job,

and submits the job to this resource.

EMPEROR is designed to operate within the OGSA framework, the only non-

standard part of the e-infrastructure architecture being the EMPEROR Resource Pre-

diction System running on each resource. The Resource Prediction System is the key

to EMPEROR’s job placement strategy. It implements the forecasting models used by

the system, and can switch between different prediction models on the same host, nec-

essary due to the changing characteristics of resource usage. It can operate on any type

of resource trace (they use resource load and memory consumption), meaning that it

can be easily modified to support different types of resource as they are brought to the

e-infrastructure.
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5.1.5 XML-Based Policy Framework in EZGrid

The EZGrid project [190] aims to promote controlled resource sharing and efficient

job execution on a distributed e-infrastructure. It makes use of Globus services such

as GRAM for job submission and GSI for security. It uses Policy Engine, a policy

based framework to facilitate authorization and accounting. Policy specification and

evaluation are expressed in XML, with policies transferred around the e-infrastructure

using GridFTP. Policies can be set specifying when and how many jobs a user can run

on a system, and the number of ’credits’ in the system assigned to a user. The resource

usage rule file is evaluated when the resource requests are obtained from the user.

5.1.6 Community Scheduler Framework

The Community Scheduler Framework (CSF) [191], developed by Platform Comput-

ing, is an open source implementation of a service oriented scheduler framework, de-

signed to be integrated with the Open Grid Services Architecture. It is based around

the concept of “community schedulers”, that is a scheduler that is designed to assign

jobs between the resources of a single virtual organization (VO). In this context a VO

can be though of as a community of users and the resources that are shared for the

benefit of the community. In the community scheduler model, multiple VOs can have

schedulers that schedule to the same e-infrastructure resources, if those resources are

part of multiple VOs.

The CSF provides basic capabilities for scheduling, and provides a framework for

implementing community schedulers, which individual VOs can use to produce their

own bespoke metaschedulers, tailored to their individual needs. The CSF metasched-

uler comprises several services, namely: the Job service, the Reservation service, the

Global Information service, the Queuing service and the Resource Manager Adapter

Service. The Job service provides an interface for placing jobs on a resource manager

(for example a Globus GRAM service, or local job manager), and managing the job

once it has been dispatched, and provides basic matchmaking facilities between job

requirements and available resources. It uses the Global Information service to store

details on the state of submitted jobs. The Reservation service allows both end users

and the Job service to reserve resources, to guarantee that the resource is available to

run the job. Once a reservation is made for a particular job, the Job service sends the
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job to the resource manager responsible for making the reservation. Policies can be

associated with the Resource service to limit which users are able to make reservations,

and how many nodes on a cluster a user is allowed to reserve. The Global Informa-

tion service provides a repository of information required by the metascheduler, and

is built on the Globus Toolkit’s Index Service. It provides a consistent interface for

persistent state information required by other CSF services. The RM Adapter service

provides a consistent e-infrastructure interface for communicating with underlying re-

source managers. In order to communicate with resource managers that do not have an

RM Adapter service bridge, the CSF also supports job submission via a Globus GRAM

service.

The Queuing service is responsible for scheduling jobs based on policies defined

at the VO level. It uses the policies to map jobs to resource managers, for example, the

Fairshare policy that it implements ensures that all users in a VO have fair access to

resources, rather than allowing a single user to monopolize a queue. CSF implements a

plug-in framework, whereby new scheduling algorithms can be written as plug-ins for

the system. Scheduling happens in two phases: firstly the scheduler is passed a queue

of jobs which it orders based on its scheduling algorithm (for example first come first

served), secondly the jobs in the queue are matched to available resources. If there are

multiple scheduling policies in the Queuing service the appropriate schedulers will be

called in order. In this way multiple scheduling algorithms can be combined to affect

the order of the job queue.

The CSF comes with two default scheduling algorithms. The first of these is based

on first come first served; jobs are matched with resources in the order that they are

submitted to the queuing service. The second is a throttling scheduler, which ensures

that one RM does not receive too many jobs at the same time.

5.1.7 Kalman Filter Based Resource Scheduling

The predictive resource scheduling approach developed by Chapman et al. [192] uses

a linear Kalman filtering technique to predict future resource utilization, and hence

where a particular job is likely to run in the shortest time. The Kalman filter technique

is based on predicting future CPU utilization, and exploits the fact that users submit

jobs in repetitive patterns. The advantages of using Kalman filter prediction are that
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the predictor does not require a training phase, and that the entire history of the system

does not need to be maintained to make predictions.

The Kalman filter based predictive scheduler has been used in conjunction with

Condor to schedule jobs on a Condor managed cluster, and demonstrated that the pre-

dictive approach taken leads to reduced user waiting times, compared to scheduling

based on shortest queue length. The utilization factor chosen, on which predictions

are made, is the number of unclaimed resources in the system, that is, the number of

resources in the Condor environment that are not being used. At each site the predictor

reads the number of resources available at a regular interval to update its state space

model. This is then used to to predict the number of resources that will be available at

the next time step, or by feeding the predictions back in to the predictor, at a number

of time steps in the future. Jobs are submitted to the site with the predicted highest

number of unclaimed resources.

5.1.8 Conservative Scheduling using Predicted Variance

The conservative scheduling approach of Yang et al. [193] uses a time series prediction

technique to predict the average CPU load on a resource at a future point in time and

over a future time interval, and to predict the variance in CPU load over a future time

interval. These predictions are then used to balance data loads between processors

within a distributed processing task so that each processor finished executing its task at

roughly the same time, a form of load balancing known as time balancing.

In order to efficiently distribute data between heterogeneous processing units, the

CPU load over the time interval that the application will run is determined, which is

then used to predict the variation in CPU load. This is then used to distribute data

between processors, to minimize the runtime of the loosely synchronous distributed

application. Their conservative scheduling approach always allocates less work to the

CPUs displaying the highest variance. The experimental validation of the technique fo-

cused on running a data intensive astrophysics application distributed across worksta-

tion clusters based at several US universities. It showed that their technique performed

better, using several different scheduling algorithms, than techniques based on mean

CPU load alone.
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Scheduler Wait Application Cost Job
name time prediction model model management

Condor No Single job No Yes
Nimrod/G No Parameter Yes Yes

sweep
Gridbus No Parallel Yes Yes

EMPEROR Yes Single job No Yes
XML-Based No Parallel No N/A

Policy
Framework
Community No Parallel No Yes
Scheduler

Framework
Kalman Yes Single job No Through
Filters GridSAM

Predicted Yes Data No N/A
Variance parallization

Technique

Table 5.1: Comparison of features of different e-infrastructure metaschedulers

5.1.9 Comparisons of Metascheduling Approaches

Computational e-infrastructures are used as a mechanism to share a wide variety of

resources, and support the execution of a wide variety of scientific and engineering ap-

plications. As such, there are many different approaches to the problem of scheduling

work across the resources on a particular e-infrastructure, many of which are designed

around the type of applications that users want to run on the particular e-infrastructure

that they are targeted at. The metascheduling approaches discussed in Sections 5.1.1 to

5.1.8 take a number of different approaches to solve the problem of efficiently distribut-

ing jobs amongst the constituent resources of a e-infrastructure. Table 5.1 compares

the salient features of the different approaches, namely, the types of jobs the scheduler

supports, whether the scheduler uses any method of resource utilization prediction to

determine when a job will run, whether the scheduler supports a resource usage cost

model and whether the scheduler incorporates a job submission and management en-

gine. While some of the metascheduling techniques discussed might be applicable to

many different scenarios, the table considers those scenarios to which the techniques

were applied in the literature discussed above.

The most striking conclusion we can draw from the table is that since 5 out of
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the 8 systems considered do not support parallel applications, they are not suitable to

HPC e-infrastructure usage. However, all of the schedulers employ some techniques

which could be usefully applied to HPC e-infrastructure scheduling. As can be seen

from the table, there are several approaches which use predictive models to estimate

when a job will run, and several models which include a cost model to allow users

to price the jobs that they want to run. The matchmaking approach taken by Condor

connects jobs with the resources that match their requirements. The schema free nature

of the Condor ClassAds mean that providers and users can specify any attributes they

like, with the caveat that the attributes specified may not be able to be matched to any

resources. The ClassAds system has a drawback in that stale ClassAds registered with

the system (ones which no longer reflect the availability of a particular resource) can

lead to bad matches and thus poor utilization. The Kalman filter predictor shows how

a future resource utilization prediction model can be used within a Condor system to

reduce the wait time for running a job.

The approach taken by Nimrod/G allows for users to specify the maximum cost of

their job, and to specify the speed with which they want their job to be turned around.

Similar to Condor, the Nimrod/G approach is designed to schedule work in a task farm

and does so with embarrassingly parallel problems that can be decomposed in to pa-

rameter sweeps.

The Condor and Nimrod/G systems are aimed at their original use cases, that is

running multiple single CPU jobs on loosely coupled clusters of workstations, in a task

farming or cycle scavenging fashion.

The Community Scheduler Framework provides a simple and extensible schedul-

ing system which virtual organizations can use as basis on which to develop metasched-

ulers tailored specifically to their needs. The mappings between resources and jobs are

based on scheduler policy files; by default the scheduler does not take in to account any

prediction of future resource usage, or the cost involved in running jobs. By default

a first come first serve queue of jobs is maintained which are mapped to resources as

they become available. Although jobs can be submitted through the Globus GRAM

interface, jobs that need to make use of advanced reservation can only be submitted

to resources running the Platform Computing LSF interface, since the Globus GRAM

does not provide mechanisms to make reservations.
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The Gridbus metascheduler is built on many underlying grid services, and provides

a dynamic cost model which allows for resources to advertise and modify their prices,

introducing a computational market. However the scheduler does not take in to account

predicted resource utilization, so does not give the user to specify their scheduling

requirements based on both the cost and runtime of their job.

XML based policy framework approach provide a static mechanism for resource

administrators to limit use of their resources to certain users or subsets of users, but

does not attempt to minimize job run times by modelling predicted future resource

utilization, or provide a dynamic costing model to allow jobs to be priced.

The EMPEROR metascheduler is designed to run in the OGSA grid framework,

and therefore should be able to schedule in any e-infrastructure that implements OGSA.

The predictive model used to estimate future resource utilization uses a measure based

on CPU load memory usage, which is appropriate for the single CPU resources used to

test the system, but not an appropriate measure of utilization on HPC resources using

complex queue management systems. The scheduler also features no cost model to

allow for the price of jobs to be set.

Conservation scheduling technique using predicted load variance is slightly differ-

ent to the other schedulers discussed here, in that it is concerned with time balancing

data intensive jobs distributed around a number of loosely coupled workstation CPUs.

It demonstrates how a model of predicted utilization can be combined with schedul-

ing algorithms to reduce job run time compared to approaches that use no predictive

modelling. It does not however feature a cost model, assuming that the cost of the

workstations it is scheduling between is fixed, or irrelevant.

As discussed, several of the approaches under consideration have shown than mod-

elling the future resource utilization in a e-infrastructure allow better scheduling deci-

sion to be made [192, 193]. All of the metaschedulers described above include some

job management component, to take care of job submission and execution manage-

ment. The metaschedulers that take in to account some notion of resource cost do so in

a relatively unsophisticated way; resources do not vary their cost based on utilization

to create a true market.

The majority of metascheduling approached described above that have some pre-

dictive model of future resource utilization use CPU and memory utilization as mea-
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sures on which to predict when a resource will become free. This approach is applicable

on single CPU resources, but is not expressive enough to cover the HPC clusters man-

aged by a local scheduler which implements its own scheduling algorithms, such as

Back Fill. The model proposed by Smith et al. [194] (discussed more fully in Section

6.2) takes in to account the need to make predictions based on the utilization of local

queuing systems.

5.2 Auctions

A seller wishing to sell an item will usually desire to sell it for the highest price pos-

sible. Where an established market does not exist in order to set the price for the item

to be sold, the seller is able to devise their own set of rules governing the sale, called

the mechanism. Mechanism design is the process of constructing a mechanism which

the seller hopes will maximize the expected selling price (called the optimal mecha-

nism). A full discussion of mechanism design and auction theory is beyond the scope

of this thesis, but we refer the interested reader to Bigmore [195, pages 523-536]. The

challenge when designing a mechanism is to allow the principal (the person selling

an item) to discover the private information held by the actors in the game (called the

agents), that is the maximum they are prepared to pay for the item being sold. The

set of mechanisms that are feasible, i.e. which could be put into practice, are called

auctions.

The aim of an auction is to reveal to a seller of an object the maximum value that

a set of buyers assign to the object for sale. There are a number of commonly used

auction mechanisms devised to do this, which are applicable to different situations. In

most cases an optimal mechanism will achieve the highest price possible for the object

that the seller is selling.

In economic terms, auctions are defined as principal-agent problems, with the

seller termed the principal and the buyer the agent. Such problems are found in many

areas of economics from government redistribution of tax revenue to the insurance

industries design of insurance contracts [195, page 527]. We consider some of the

more popular ones below.
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5.2.1 Take it or Leave it Auction

The simplest type of auction, fulfilling the definition given above, is not even usually

considered an auction. The Take it or Leave it Auction is usually employed in traditional

retail situations. An item to be sold is given a fixed price by the vendor, and the buyer

either pays the price and takes the item, or leaves it.

5.2.2 Sealed Bid Auction

In a Sealed Bid Auction (also called a First Price Sealed Bid Auction), each prospective

buyer writes their maximum valuation for the item to be sold on to a piece of paper and

then seals it in an envelope, so that no bidder is aware of the valuation placed on the

object by the other bidders. The seller then sells the object to the highest bidder, using

a predetermined protocol to deal with ties, such as selecting a winner at random from

the set of highest bids.

5.2.3 English Auction

The English Auction is the type of auction most usually associated with the term auc-

tion. Traditionally an English Auction involves an auctioneer inviting ascending verbal

bids from a group of buyers, until no one is willing to go above the last bid made.

Whoever made the final bid buys the object at the price they bid.

5.2.4 Dutch Auction

In a Dutch Auction, the auctioneer starts by announcing a high price, then subsequently

lowers the price by a set amount at each call, until one of the set of buyers calls a halt.

The buyer who stops the auction wins the item for sale at the last price called when he

intervened.

5.2.5 Vickrey Auction

The Vickrey Auction [196] is similar in protocol to the First Price Sealed Bid auction,

with the winner being the bidder that makes the highest bid, but differs in that the

winning bidder pays the price of the highest losing bid. While it may at first seem non-

optimal for the seller to sell their item at a lower price than they necessarily had to, the

Vickrey Auction actually produces higher bids than the First Price Sealed Bid Auction,

as buyers have nothing to lose by bidding below their true valuation of the item being

sold. Bidding below his true valuation in fact lessens the chance a buyer has of winning
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the item without reducing the price he would pay for the item. Bidding above his true

valuation would not benefit the buyer either, as in order to win, some other potential

buyer must have submitted a bid at least equal to the first buyer’s valuation. At best the

first buyer would end up paying their true valuation, but could well pay more.

5.3 Optimum Auction Design
In order to discuss the design of optimum auction mechanisms, it is necessary first to

define some terms widely used in the mechanism design literature. As stated above,

auctions are principal-agent problems, where the principal is the seller of an item and

the agents are the buyers. Each agent is said to have a type, which is the maximum

value the agent places on the item being sold. The type of each agent is hidden from

the principal, and the purpose of a mechanism is to force the agents to reveal their type.

Auctions are characterized by the presence of asymmetric information (the type

of each agent). In a private value auction model, the value that each agent places

on the item being sold is known only to himself. In a pure common value model,

the value of the sale item is the same for everyone, but agents hold different private

information about what the value actually is, and may have access to different signals

in the environment that influence their decisions (for example, the amount of natural

gas available to the holder of a gas drilling licence that is being auctioned). A general

model that encompasses both of these auction types combines both the agent’s own

private information, and common signals from the environment [197, pages 248-251].

5.3.1 Revenue Equivalence Theorem

The Revenue Equivalence Theorem underpins much of the research in to auction theory.

Following on from the work of Vickrey [196], it has been found that the equivalence of

expected revenue in a wide range of different auction mechanisms applies very gener-

ally [197]:

“Assume each of a given number of risk-neutral potential buyers of an

object has a privately-known signal independently drawn from a common,

strictly-increasing, atomless distribution. Then any auction mechanism in

which (i) the object always goes to the buyer with the highest signal, and

(ii) any bidder with the lowest-feasible signal expects zero surplus, yields
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the same expected revenue (and results in each bidder making the same

expected payments as a function of signal).”

Revenue Equivalence applies to both private-value auctions and common-value

auctions with independent bidders signals. It means that all of the standard auction

types discussed above, plus many non-standard mechanisms, yield the same expected

revenue. For a full proof of the theorem, readers are referred to Klemperer [197].

5.4 Double Auction
The standard auction mechanisms considered above involve a single seller designing

and controlling the mechanism. By contrast Double Auction consider situations where

buyers and sellers are treated symmetrically, with buyers submitting bids and sellers

submitting asks. One of the most famous examples of a Double Auction is the k-

double auction proposed by Chatterjee and Samuelson [198], in which a single buyer

and a single seller submit respectively a bid (b) and an ask (s), and if the bid exceeds

the ask the trade proceeds at the price kb + (1 − k)s, where 0 ≤ k ≤ 1. Since both

buyer and seller have incentives to misrepresent their true values, this is not necessarily

an optimum mechanism.

5.5 Reverse Auction
Reverse Auctions [199, 200] (also called Procurement Auctions) are a relatively recent

innovation, made possible by the communications infrastructure provided by the In-

ternet. Unlike the traditional or forward auctions described above, a reverse auction

consists of a single buyer and multiple sellers. The process is initiated by the buyer

contacting multiple sellers and issuing a request for quotation (RFQ), specifying what

they would like to purchase. Within a set time frame the group of sellers then enter

(potentially multiple rounds of) quotes at which they will supply the requested goods

or service. Once the bidding has closed the buyer contracts the seller that most closely

matches their needs, be this lowest cost or some other factor, to supply the service.

The key difference between the auctions described above (single seller, multiple buy-

ers) and the reverse auction (multiple sellers, single buyer) is that the reverse auction is

initiated by the buyer rather than the seller.

Reverse Auctions are frequently used in business to business industrial procure-
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ment to solicit quotes for required goods or services. Multiagent systems have been

used to manage trading in several reverse auction situations, including e-Commerce

applications [201] and in supply chain management [202].

5.6 Multi-attribute Auctions

In the majority of the auction mechanisms considered above, the buyer has a single

objective in mind: to obtain the item on sale at or below their maximum valuation of

the item. However in some auction scenarios, especially reverse auctions, price is not

always the most important factor [203], and buyers can make decisions on other factors

that they consider important (for example, time to delivery of a contract). Adding extra

attributes other than price compounds the problem of choosing an optional auction

mechanism, although some work has been done to show how, where actors’ preferences

are known, multi-attribute auctions can be reduced to single-attribute auctions [204].

5.7 Combinatorial Auctions

All of the different auction mechanisms considered above have considered situations

where a single unit is being auctioned. Combinatorial Auctions (also called Multi-Unit

Auctions) [205] are the class of auction where multiple items are bought or sold in

the same auction. Combinatorial Auctions can be seen as extensions to the types of

auction described above, for example, an English Auction in which a single seller is

selling multiple items or a fraction of a single item to a group of buyers, or a Reverse

Auction where a single buyer is looking to buy a set of services from one or more seller.

Combinatorial Auctions can take one of two forms: Simultaneous Auctions or Se-

quential Auctions. Simultaneous Auctions, first considered by Wilson [206] involve a

group of sellers bidding for a fraction of an item. Sequential Auctions are the class

of Combinatorial Auctions where multiple units are sold sequentially (for example

through multiple rounds of single unit auctions).

Much current research on combinatorial auctions has found that it is very difficult

to achieve efficient outcomes [197], due to the multi-dimensional private signals held

by bidders, for example due to the tendency of buyers to reduce demand when bidding

on large numbers of units in order to reduce the sale price.



156 Chapter 5. Agents, Metascheduling and Mechanism Design

5.8 Software Agents
The term ‘software agent’ is use to describe systems that act on behalf of a user to

find and filter information, negotiate services, automate tasks or collaborate with other

agents. Agent technology has been applied to many diverse areas of computer science.

One such area is the field of optimal staff time-tabling [207], using agents to produce

staff timetables within business settings. Another example is in the area of process

planning, using software agents to organize tools, people and systems in distributed

industrial organizations [208].

Although there is some disagreement about exactly what a software agent is and

what constitutes a software agent, general consensus in the literature [209, 210, 211]

coalesces around the definition proposed by Wooldridge and Jennings [212], which is

a software system that satisfies the following properties:

• Autonomy: agents operate without the direct intervention of humans or others.

• Social Ability: agents are able to interact with other agents via an agent commu-

nication language.

• Reactivity: Agents perceive their environment and are able to respond to changes

in it.

• Pro-activeness: Agents do not simply respond to changes in their environment,

they exhibit goal directed behaviour.

Wooldridge and Rao [213] go on to define the concept of rational agents as soft-

ware entities that perceive their physical environment through appropriate sensors, have

a model of and can reason about the environment of which they are part, and based on

their own internal state can take actions that change the environment.

Frequently an intelligent agent will be characterized by its beliefs, desires and

intentions (BDI)[214, 215]. The BDI agent architecture defines explicit data structures

that correspond to these characteristics. Beliefs are the knowledge that the agent has

about the world when it is started up. The goals that the agent wants to achieve are

represented as desires. During the course of its execution, the goals that the agent

wants to achieve are pushed on to the intention stack. Another common approach to

building intelligent agents is the Markov Decision Process architecture [216]. MDP



5.8. Software Agents 157

assigns utilities to states and probabilities to transitions between states, and applies

an algorithm to generate a mapping between states called a policy. The policy is a

complete specification of what an agent should do in each state, based on the probable

outcomes of every action. The need to establish the outcomes of every possible action

in every possible state makes finding such policies intractable in many real world cases,

and a major drawback to the MDP approach.

In addition to the different approaches taken to building agents, agent goal types

themselves can vary [217], for example an agent may be blindly committed to a goal

(i.e. it holds on to the goal until it achieves it), or single minded (it will drop the goal if

it believes it can never be achieved).

Bradshaw [218] defines the concept of an agent as a software entity which func-

tions continuously and autonomously in a particular environment, often inhabited by

other agents. The concepts of continuity and autonomy are important, because they

mean that an agent will respond to changes in its environment in a flexible and intelli-

gent manner, without requiring constant human intervention.

As can be seen from the definitions of agenthood presented above, software agents

are characterized by their ability to operate without user intervention to achieve the

goals that they have been set, to respond to environmental changes, and potentially to

interact with other agents to achieve their goals.

Very often software agent components are developed using an agent framework,

such as the Java Agent DEvelopment framework (JADE) [219] or ARCHON [220], to

take care of communication protocols between agents and speed up software develop-

ment, or to facilitate the testing and simulation of agent interaction environments [221].

It has been recognized [210] that agents provide a powerful level of abstraction which

can be used to define a radically new way of engineering software. Agent oriented

software development methodologies such as GAIA [222] attempt to formulate a new

software engineering paradigm based on software agents.

5.8.1 Multiagent Systems

A multiagent system is a collection of software agents that co-operate with each other to

solve problems that are beyond the ability of a single agent. According to Wooldridge

[223][page 105] “There’s no such thing as a single agent system”: all but the most
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trivial systems contain numerous components which need to interact with each other.

In a multiagent system, different agents within the system have control over, or are able

to influence, different parts of the environment. The key abstractions in a multiagent

system are the agents themselves, the interaction between agents, and the organization

of the interacting agents. Weyns et al. [210] describe multiagent systems thus:

“Multiagent systems provide an approach to solve a software problem by

decomposing the system in to a number of autonomous entities embedded

in an environment in order to achieve the functional and quality require-

ments of the system.”

Multiagent systems have been applied to areas as diverse as business process man-

agement [224] and resource selection games [225] to controlling the distribution of

power in the electrical grid [226] and the modelling of a single human decision maker

[227].

5.9 Agents and Distributed e-Infrastructures
Agent technology has the potential to automate much of the mundane footwork car-

ried out by the scientist when conducting scientific studies using computational e-

infrastructure resources. Indeed, some work has already been carried out investigating

the use of agent technologies to manage scientific workflows, for example in the field

of medical decision support [228] and in generic virtual laboratories [229].

Foster et al. [230] have recognized that many of the objectives of the agent and

grid research communities intersect, but are being pursued from different perspectives.

They characterize this intersection as brain meets brawn; the brawn is the infrastructure,

tools and middleware developed by the grid community. The brain is the autonomous

problem solving capabilities of software agents. They argue that the dynamic nature

of e-infrastructures create environments where agent technology, which can cope with

the change and evolution of the environment, can fulfil a number of different roles, and

highlight five different areas where e-infrastructures and agent based systems intersect:

• Autonomous Service. Grids are built on the concept of services - entities which

provide capabilities to a client via a well defined message exchange interface.
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Based on this definition, agents can be seen as services that display autonomous

action, for example in a e-infrastructure load balancing application.

• Rich Service Models. Both agents and e-infrastructure systems consist of dy-

namic and stateful service. e-Infrastructure research has concentrated on provid-

ing robust service architectures and well defined interfaces, but the agent com-

munity have not considered this a priority.

• Negotiation and Service Contracts. In an e-infrastructure system it can often

not be assumed that a particular service will be able to provide a particular ca-

pability to a user. If the system is to have any kind of predictable behaviour it

becomes necessary to obtain commitments about the level of service provided.

Agent research has invested significant effort in developing negotiation algo-

rithms which can be used to obtain such commitments dynamically.

• Virtual Organization Management. Grid resources coming together to form a

VO can be viewed as a dynamic service composition problem. The VO require

the roles and responsibilities of each of the participant services to be defined,

another problem to which agent based negotiation strategies can be applied.

• Authentication, Trust and Policy. Identity management and mappings require

policy specification and enforcement. Agent based trust and repudiation tech-

niques can be applied here to provide a more dynamic security model to the

e-infrastructure environment.

As can be seen from the points discussed above, there are a number of areas where

e-infrastructure and agent technology intersect, and where techniques gained from one

field can be applied to the other for mutual gain.

5.10 Computational Mechanism Design
Multiagent systems have been applied to many different auction situations, from de-

riving bidding strategies in combinatorial auctions [231] (auctions where the buyer is

bidding on multiple sales) to decentralized multiproject scheduling [232]. The wide

variety of situations where multiagent systems can be applied to auctions has led to the

development of agent development frameworks specifically for producing agent based
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auction systems [233]. Dash and Jennings [234] have shown how computational mech-

anism design (CMD) can be used to address two fundamental issues when designing

multi-agent systems: the design of the protocols that govern interaction between agents,

and the definition of each agent’s strategy. The key strength of applying CMD is that it

provides an elegant mathematical framework on which to base MAS systems.

CMD agents are assumed to act in a game theoretic way, which helps facilitate the

design of systems that allow system-wide properties such as efficiency and stability to

emerge in equilibrium, and helps simplify the design of self interested agents.

5.11 Summary
In this chapter we have looked at the field of mechanism design, and seen how mech-

anism can be used to formulate auction rules that allow resources to be optimally allo-

cated. A number of common mechanisms are shown to do this with the same level of

efficiency due to the Revenue Equivalence Theorem. The growth of the Internet has led

to the development of new types of mechanism, such as the Reverse Auction, to assist

with and drive down the cost of business to business procurement.

We have also looked at the ideas behind software agency, and seen how multi-

agent systems have been applied to a wide range of different problems, and looked

at some of the possible problems in grid computing to which MAS could be applied.

Finally we have looked at the intersection of mechanism design and MAS, and how

computational mechanism design can be used to assist with the design of multi-agent

systems.



Chapter 6

Design and Implementation of a

Resource Allocation Market Place

In this chapter we review the requirements for a distributed resource allocation system

presented in Chapter 3 and look at how the technologies discussed in Chapter 5 can be

used to meet those requirements. We go on to present a design for a system that meets

these requirements, and discuss our implementation of this design.

6.1 Designing a Resource Allocation System
The requirements described in Section 3.4 that relate to the resource allocation mecha-

nism are that it must be user initiated, capable of allowing users to specify their require-

ments for an application run and allow users to request access to multiple resources

(requirements 5, 6 and 12), which to reiterate are:

(v) The process of submitting an application should be initiated by the user and done

at the user’s convenience, rather than at a time specified by the computational

resource provider.

(vi) With current systems the onus is on the user to choose the resource on which

they want to run, meaning that they often choose the one they think will be able

to run their job fastest, or the one they are most comfortable using. Instead of

requiring users to choose resources, our system should allow the user to specify

requirements for their application run, such as the time they need the results to

be produced by, or the maximum cost they are willing to pay in order to run the

application.
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(xii) Users may require access to multiple resources in order to run their application.

For example, for an application that consists of a simulation code and a coupled

visualization engine, the user would need access to a compute resource and a

visualization resource.

In Chapter 5 we reviewed a series of existing solutions and technologies which

could be applied to satisfy these requirements. None of the existing resource allocation

technologies we reviewed meet fully the requirements, and so we must address the re-

quirements by designing our own system. Firstly, we need to fully capture the terms

a user needs to be able to specify their requirements when requesting that their appli-

cation be run on a resource. Secondly, we need to design a mechanism that meets the

requirements outlined above, and specify how this can be implemented as a software

system.

As we discussed in in the previous chapter, open markets provide a means to effi-

ciently allocate resources in a decentralized manner, and auctions provide an efficient

means of valuing an item to be sold, or in the case of a reverse auction allowing a buyer

to obtain good value for the item that they are buying by forcing sellers to compete for

custom.

Section 5.2 lists several type of common auction mechanism. From the list of

mechanisms, the one that most closely fits requirement 5 is the reverse auction mech-

anism, in that it allows the buyer to initiate the bidding process. If also fits the model

of a user with access to multiple e-infrastructure resources: the user is the buyer of

services (compute time) from the resources. The sellers, in this case the compute re-

sources, posses private information based on the load on their machines, and the range

of costs they are willing to accept per core hour in order to maximize utilization of

their resources. This allows them to alter their bidding strategy based on how under- or

over-utilized their machine is at any given time.

Requirements 6 and 12 require us to extend the basic auction mechanism to make

it multi-attribute (since buyers need to make their decision on which resource to se-

lect based on the attributes important to them, such as cost or time to solution) and

combinatorial (so that buyers can bid for a range of resources from a group of sellers).

Therefore, we will base our resource allocation system on a combinatorial, multi-

attribute reverse auction, in which resource providers compete for workloads offered
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by users. We name this system the Resource Allocation Market Place (RAMP).

6.1.1 Design Constraints

In order to satisfy the requirements discussed above while maintaining a focus on us-

ability, we have placed the following constraints on our resource allocation system:

• The user should not have to configure the details of every resource that he poten-

tially want to user. The system should automatically discover potential resources

as they become available.

• The user should be able to specify what he requires from a resource in order to

run their application. Any requirements explicit ally specified must be met by the

responding resource. However, if no resource can satisfy the requirements after

N rounds of bidding, a resource can make its best offer to the user.

• The RAMP system should be accessible through the same client used to access

the AHE. The user should not be concerned with any details of where or how an

application is run.

6.1.2 Functional Specification

Following on from the requirements and design constrains discussed above, we can

derive the following functions, which our RAMP system must possess to address the

problem of flexible, distributed resource allocation:

• When the user submits a request for quotation document, a combinatorial reverse

auction is initiated between the user and a set of resources to satisfy the request.

• When a resource receives a request for quotation, it examines whether it can meet

the request, and either makes an offer or refuse to participate.

• When a user revives an offer, it is held in a list sorted by relevant factors (cost,

end time etc.). If the offer is lower than the current bid price, the request for

quotation is modified with the new offer in subsequent bidding rounds.

• When a user decides to accept an offer, it initiates a two phase commit process,

that ensures that all required resources are available, or none are bought. The

user is supplied with a reserved slot on the machine
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• When a user and resource have agreed on a deal, it is logged with the market

maker who debits the user’s credit account by the amount of the sale and credits

the resource’s account.

• When a user sends a cancellation request, the resource evaluates the request and

informs the user whether or not the reservation can be cancelled. If it can, the

market maker is informed to credit the user’s account from the resource’s ac-

count.

6.2 The Architecture of the RAMP System
The usefulness of multi-agent systems (MAS) in distributed e-infrastructure environ-

ment is discussed in Section 5.9. In addition to the agent programming paradigm, agent

development environments such as JADE [219] provide a framework in which much of

the software tooling required to develop agents, establish inter-agent communication

as so on is already provided, much simplifying the process of developing multi agent

systems.

In the context of the reverse auction based metascheduler, multi-agent systems

also bring a number of other benefits. One of the drawbacks of some of the meta-

schedulers discussed in Section 5.1 is that they rely on central information services to

aggregate data from resources and maintain their world view. The obvious limitation

of this approach is that scheduling decisions may be made on out of date data. In the

MAS approach proposed, each agent is responsible for maintaining the view over its

own sphere of the world, meaning that the data used to make scheduling decisions is

more current. This accords with the devolved nature of a distributed e-infrastructure,

and especially federated e-infrastructures.

The application of multi-agent systems to auctions discussed in Section 5.10

shows that trading systems and economies can be successfully built from interacting

software agents. This model is thus also applicable to the distributed e-infrastructure

economy that is developing as commercial providers trade compute power on an open

market (badged as ‘cloud’ HPC). Finally, MAS provides a software development

framework featuring a high level of abstraction for building autonomous, rationally

functioning software systems. The distributed nature of e-infrastructure systems coin-

cides with the distributed, multi-agent system model of programming, and leads to the



6.2. The Architecture of the RAMP System 165

development of fault tolerant peer-to-peer systems, in which the failure of one compo-

nents does not have too adverse an impact on the rest of the system.

This makes the MAS paradigm ideally suited to develop our distributed resource

allocation system. Within the system, software agents can act on behalf of the different

entities involved, principally users and resources. Two different BDI (cf. §5.8, i.e. one

characterized by its beliefs, desires and intentions) types of agents will feature in the

system:

• Resource management agents, responsible for maximising the utilization of a

resource. A resource agent is run on each constituent resource of the distributed

e-infrastructure. It maintains a predictive model of resource availability, which

it uses to decide when it is able to run a job. It can vary the cost of the offers

to run jobs that it makes to encourage jobs to run when the machine is free by

lowering its prices, or increasing the cost when the machine is overloaded with

jobs to maximize revenue, based on a set price range configured by the resource

administrators.

• User agents, responsible for gaining access to resources at a cost and availability

specified by the user. The user agent runs on the client machine, and negotiates

with the resource management agents for the most appropriate resource to run

a particular application. Users provide the agent with a description of their cost

and time requirements for the job in RFQL (cf. §6.2.2); they can either ask for

the job to be run in the fastest time possible, at the least cost, or at a specified

maximum cost and/or wait time. The agent’s goal states consist of minimising

the cost of the job, minimising the wait time of the job, or at least matching

the specified requirements. The agent then initiates multiple rounds of bidding

with the resource management agents until the requirements are achieved and the

application is launched, or if the requirements cannot be met the user is presented

with the best offer received. If no offer is received, the application fails. The user

will be able to specify both static and dynamic constrains on their job, as defined

in the RFQL schema (cf. §A).

In addition, a banking agent acts as a collation point for all successfully actioned

requests. The implementation of these agents is described fully in Section 6.3.



166 Chapter 6. Design and Implementation of a Resource Allocation Market Place

6.2.1 Developing the Negotiation Protocols

The process of participating in a reverse auction requires the agents involved to commu-

nicate in a structured way. Fortunately, a standardized way exists to achieve this. The

Foundation for Intelligent, Physical Agents (FIPA) exists to develop standards relating

to software agent technologies. The standards that FIPA develop provide a mechanism

for software agents to be mutually understood, regardless of underlying implementa-

tion technologies. The FIPA Agent Communication Language (ACL) [235, pages-10-

17] specifies the structure of inter-agent messages, and defines a set of communicative

acts (CAs), performed by the act of communicating. These CAs, along with a bespoke

content language, allow agents to participate in a reverse auction.

We define three different procedures for agents to communicate in different cir-

cumstances:

• The reverse auction negotiation - the actual negotiation process required to con-

duct a reverse auction.

• The banking update negotiation - the process of notifying the banking agent to

record a successful auction result.

• The cancellation negotiation - the process of a user cancelling a request.

These protocols are described in detail below.

6.2.1.1 The Reverse Auction Protocol

The reverse auction algorithm developed is adapted from that described by Matsuo et

al. [201]. The auction consists on N rounds of open bidding, where all sellers can see

the bids made by other sellers. As the auction must be based on multiple attributes, the

user is able to specify their requirements through a request for quotation (described in

§6.2.2).

The auction is combinatorial, meaning that multiple units can be requested. Each

sub-request should be treated as a separate auction in the system. This means that an

inconsistent state could result, where some parts of an overall request are successful

and others are not. Therefore, the auction protocol incorporates a two-phase commit

process to ensure the availability of all requested resources.

Briefly the algorithm flow is as follows, and is shown in figure 6.8:
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(i) A User agent initiates the auction by advertising their requirements with Re-

source agents via an RFQ (FIPA: Call for Proposals).

(ii) Resource agents evaluate the RFQ and decide whether they can satisfy the re-

quest (or section of a request in the case of a combinatorial request), based on

their utilization and CPU hour cost. The Resource agents which can satisfy the

request make bids, which are propagated to the User agent (FIPA: Propose).

If the Resource agent cannot accept the request, it notifies the User agent (FIPA:

Refuse)

(iii) The User agents evaluates the requests it has received, and stores them in a ranked

list if they meet its requirements, or else rejects them to the submitting Resource

agent (FIPA: Reject Proposal). When the next round of bidding com-

mences, the User agent modifies its RFQ with to correspond to the best offer it

has so far received, which is sent to resource agents as its revised request. Steps

2 and 3 are repeated N times.

(iv) After N rounds of bidding, the User agent evaluates the final set of bids received.

(v) The User agent selects the most optimal bid or bids that matches requirements

and notifies winning Resource agents(s) (FIPA: Accept Proposal), or if

no bid or bids match the requirements, the closest matching set are presented to

the user for approval. The user can also configure the system to allow them to

manually approve all bids.

(vi) The resource agent(s) holds a slot for the winning bid on the machine queue

by creating a reservation in the queuing system, and sends an acknowledge-

ment back to the User agent that they are willing to proceed (FIPA: Agree)

along with a reservation ID for the requested slot on the relevant resource. If

the Resource agent cannot now satisfy the request (because more jobs have now

been queued on the system for example), the agent withdraws from the auction

(FIPA: Refuse). This is the voting phase of the two-phase commit.

(vii) The User agent works through all offers received until all parts of the request

have been agreed to. Where a winning bid is subsequently refused, the User

agent contacts the next best bid and so on until all available bids are exhausted.
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(viii) If all sections of a request are agreed to, the User agent notifies all successful

resource agents (FIPA: Confirm) and sends a digitally signed copy of the

RFQ and the reservation ID back to the Resource agent, signed using the user’s

personal X.509 credential. This establishes that the user has agreed to the reser-

vation. The Resource agent acknowledges this message (FIPA: Confirm).

This is the commit phase of the two-phase commit.

(ix) If all sections of a request cannot be agreed to, the User agent cancels all requests

received (FIPA: Cancel).

(x) When a Resource agent receives the (FIPA: Agree) message (step 6 and cre-

ates a reservation slot in its queuing system, it begins a timer process. If the

Resource agent does not go on to receive a (FIPA: Confirm) message within

a given time period, it cancels the reservation slot in the queue.

This is the protocol employed by the user and resource agents to negotiate ac-

cess to computational resources at user specified time periods. The sequence of FIPA

operations are shown in figure 6.1.

6.2.1.2 Reservation Notification Protocol

This protocol is used to inform the banking agent that a request has been successfully

fulfilled. After a successful negotiation, the Resource agent proceeds as follows:

(i) The Resource agent takes the signed message from the user agent, containing the

RFQ and reservation ID, and digitally signs it itself, using its own certificate.

(ii) The Resource agent sends this signed document to the Banking agent (FIPA:

Request).

(iii) The Banking agent confirms the digital signatures applied to the message to es-

tablish that the veracity of the message, and then debits the user’s account in

accordance with the request and credits the resource’s account commensurately.

It then notifies the requesting Resource agent (FIPA: Agree).

(iv) If the Banking agent cannot validate either signature, it responds to the requesting

Resource agent with (FIPA: Refuse).

The sequence of operations is shown in figure 6.2.
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Call for Proposals

ResourceUser

[propose offer]
Propose

[refuse to propose]
Refuse

[doesn't satisfy]
Reject Proposal

Accept Proposal

[refuse to participate]
Refuse

[agree to participate]
Agree

[not all resources are available]
Cancel

[offer confirmed]
Confirm

Confirm

RAMP Reverse Auction Protocol

Figure 6.1: The sequence of FIPA messages between a user and a resource in an auction nego-
tiation with n=1 rounds of bidding.
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BankResource

RAMP Reservation Notification Protocol

Request

[signature verified]
Agree

[signature not verified]
Refuse

Figure 6.2: The sequence of FIPA messages between a resource and a banking agent required
to notify the bank of a successful auction.

6.2.1.3 Cancellation Protocol

If a user needs to cancel a reservation once made, they can do so through the RAMP

system. If the Resource agrees to the cancellation, the user’s account will be re-credited

with the cost of the resource slot. The following communication protocol is observed:

(i) The User agent contacts the relevant Resource agent with the request to cancel

(FIPA: Request).

(ii) The Resource agent decides whether or not to accept the cancellation request and

either agrees (FIPA: Agree) or disagrees (FIPA: Refuse). If the Resource

agent agrees, it sends the User agent a signed copy of the request along with the

agreement message.

(iii) If the User agent receives an agreement, it too signs the request message,

and sends the message with both signatures to the Banking agent (FIPA:

Request).

(iv) The Banking agent confirms the digital signatures applied to the message to es-

tablish that the veracity of the message, and then credits the user’s account in

accordance with the request and debits the resource’s account commensurately.

It then notifies the requesting User agent (FIPA: Agree).
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ResourceUser

RAMP Cancellation Protocol

Bank

Request

[resource refuses to cancel]
Refuse

[resource agrees to cancel]
Agree

Request

[signature not verified]
Refuse

[signature verified]
Agree

Inform

Figure 6.3: The sequence of FIPA messages between a user, a resource and a banking agent
when a job is cancelled.

(v) If the Banking agent cannot validate either signature, it responds to the requesting

User agent with (FIPA: Refuse).

(vi) Finally, the Banking agent informs the resource that the cancellation has taken

place (FIPA: Inform), which leads to the Resource cancelling the respective

reservation in the queuing system.

This sequence of operations is depicted in figure 6.3.

Note: The system does not provide a capability to cancel multi-unit requests. If a

whole multi-unit request must be cancelled, each sub-unit must be cancelled individu-

ally.
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6.2.2 Specifying a Quotation Request

As we discussed earlier, the overriding concern of the HPC grid user is the time to

solution for the problem that she is working on, with a secondary concern of how much

the application will cost to run. Our tasks is to identify the terms which a user needs to

specify her requirements from a machine in order to run her application, and to capture

these terms in a request for quotation language (RFQL) which provides a standard way

of requesting quotations to run applications from resources. Since the AHE takes care

of maintaining information such as which resources have which applications installed,

the RFQL need not contain terms to specific to the instance of an application the user

wants to run (such as the location of a binary); instead it needs only to contain the terms

the user needs specify their requirements from a machine.

To help derive these terms, it is useful to consider the relevant non-application

specific terms used by common grid job submission languages. In table 6.1 we list the

relevant terms from the OGF standard Job Submission Description Language (JSDL),

the Globus 4 Job Description Definition (JDD) language, and the Unicore 5 job de-

scription language.

These terms provide a useful starting point from which to build a request for quo-

tation language. Our language also needs to contain terms to allow the user to specify

cost and deadline requirements, and aspects that might affect the performance of the

application, such as operating system running on the resource, the maximum RAM

available, or the CPU architecture. The terms used in our RFQ language are described

below:

• CPUHourCost - the maximum cost per core hour that the user is prepared to pay

in order to run her application.

• EndDate - the date by which the user requires her application run to be complete.

• EndTime - the time by which the user requires her application run to be com-

plete.

• StartDate - the time after which the user needs her application run to start. This

is useful if the application run is part of a workflow and depends on a previous

application run completing before it is able to start.
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Parameter JSDL JDD Unicore
description
The operating OperatingSystemType N/A Operating system
system requested
The version of OperatingSystemVersion N/A N/A
the operating
system required
Architecture of the CPUArchitecture N/A N/A
processors required
The minimum speed IndividualCPUSpeed N/A N/A
of the processors
required
The wall clock IndividualCPUTime maxTime Runtime
time per individual
processor
The number of IndividualCPUCount N/A CPUs
processors per
node
The inter-node IndividualNetworkBandwith N/A N/A
network bandwidth
The RAM per node IndividualPhysicalMemory minMemory Memory
The total CPU TotalCPUTime maxCPUTime N/A
time requested
The total number TotalCPUCount cpuCount N/A
of processors
required
The minimum disk TotalDiskSpace N/A N/A
space required
Number of nodes TotalResourceCount hostCount Nodes
required

Table 6.1: Resource requirement attributes from several job description languages

• StartTime - the time after which the user needs her application to start.

• OperatingSystem - the operating system that the user requires the grid resource

to be running.

• OSVersion - the version of the operating system that the user requires the grid

resource to be running.

• Architecture - the CPU architecture that the user requires the grid resource to

consist of.

• CPUSpeed - the minimum CPU speed that the user requires of her target re-

source.

• WallTime - the maximum time that the application will run for.
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• TotalDiskSpace - the total disk space that the user needs to be available in or-

der to run her application (this term and the NodeDiskSpace term are mutually

exclusive).

• NodeDiskSpace - the total disk space the available on each compute node (this

term and the TotalDiskSpace term are mutually exclusive).

• InterNodeBandwidth - the minimum network bandwidth that user requires be-

tween the nodes on the target resource.

• RAMPerCore - the minimum amount of RAM that the user requires to be avail-

able per compute core.

• TotalCores - the total number of compute cores that the user needs to have access

to (this term and the NodeCount/NodeCores terms are mutually exclusive).

• NodeCount - the number of compute nodes that the user requires access to (this

term and the TotalCores term are mutually exclusive).

• NodeCores - the number of cores per node that the user requires access to (this

term and the TotalCores term are mutually exclusive).

These terms are expressed using XML syntax, formally defined by an XML

schema. This is listed in Appendix A. Several of the attributes are required in each

instance of RFQL: CPUHourCost, EndDate, EndTime and either TotalCores or both of

NodeCount and NodeCores. The other attributes are optional, and it is assumed that the

user is not interested in making a decision based on any attribute which is not specified.

If an attribute is present, a resource must be able to satisfy it before responding to the

RFQ. An example RFQL document is show in listing 6.1.

The schema allows for multiple requests to be made within a single RFQL docu-

ment, meaning that a user can request a combination of resources in order to perform

a workflow, or run a highly distributed application. No formal mechanism is provided

to specify dependencies between individual requests, but the StartTime and StartDate

terms allow the user to request resources sequentially in time.

The approach we have taken with RFQL is to define a small vocabulary that cap-

tures the computational requirements that the user is interested in. This compares with
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the Condor ClassAds approach, which allows allows users and resource providers to

define arbitrary terms in the job descriptions. We believe that our small, well defined

vocabulary is the correct approach to take here, as it aids system development and im-

proves the likelihood of request/resource matching. We do not expect users to code

RFQL by hand, but instead generate documents automatically through our interface

tooling.

Listing 6.1: Sample Request For Quotation Document

<? xml v e r s i o n =” 1 . 0 ” ?>

<R e q u e s t F o r Q u o t a t i o n xmlns=” h t t p : / /www. r e a l i t y g r i d . o rg /AHE/RFQ” x m l n s : x s i =” h t t p : / /←↩

www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e ” x s i : s c h e m a L o c a t i o n =” h t t p : / /www. r e a l i t y g r i d .←↩

org /AHE/RFQ/ r f g . xsd ”>

<Reques t>

<CPUHourCost>20< / CPUHourCost>

<EndDate>2009−07−10< / EndDate>

<EndTime>13:20:00< / EndTime>

<O p e r a t i n g S y s t e m>LINUX< / O p e r a t i n g S y s t e m>

<A r c h i t e c t u r e>x86_64< / A r c h i t e c t u r e>

<RAMPerCore>1024< / RAMPerCore>

<Cores>

<Nodes>

<NodeCount>4< / NodeCount>

<NodeCores>4< / NodeCores>

< / Nodes>

< / Cores>

< / Reques t>

< / R e q u e s t F o r Q u o t a t i o n>

6.2.2.1 Dynamic Service Level Agreements

An RFQ, plus a response from a resource that satisfies the request, constitutes a contract

between the user and the resource to allow the user access to the specified number of

processor cores on the resource, for the specified period of time. It can be considered

a dynamic service level agreement to provide a specific, one time service to a user at a

defined cost. Enforcement of the SLA is beyond the scope of this thesis however.

6.3 Implementation
We used the agent specifications and communication protocols, along with the Request

for Quotation notation, to implement a multi-agent system in Java using the JADE
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framework. JADE was chosen because it provides a distributed agents platform, sup-

ports coordination between different FIPA compliant agents and provides a standard

implementation of the FIPA-ACL communication languages. Agents can be quickly

constructed by extending the jade.core.Agent class. The capabilities of the agent

are then defined by implementing behaviour classes which extend subclasses of the

jade.core.behaviours.Behaviour.

Below we review the three agent types we have defined, and discuss the imple-

mented behaviours that provide their capabilities.

6.3.1 User Agent

As mentioned, the User agent is responsible for purchasing resources on the instruction

of its owner. Each user has a single User agent to manage their requests. Since it

initiates and manages the auction process, it is the most complicated agent, comprising

the greatest number of behaviours. The hierarchy of behaviours is shown by the class

diagram presented in figure 6.4.

• RequestAQuote: This behaviour is responsible for taking user requests in

the form of RFQ documents, translating them to the inter-agent communication

ontology used by the RAMP system and imitating and managing the rounds of

bidding in the auction. The number of rounds and interval between rounds are

user configurable parameters.

• RequestManager: The behaviour is used by the RequestAQuote

behaviour to manage the individual rounds of bidding. It extends

jade.core.behaviours.TickerBehaviour to fire an event (another

bidding round) as set time intervals.

• ProcessOffers: This behaviour processes offers received from resource

agents during the bidding process, and is responsible for sorting the offers re-

ceived. A simple sorting algorithm is used, sorting first on cost, then deadline,

then the order offers are received in.

• ResourceNotifier: This behaviour executes once the RequestAQuote

behaviour completes, and is responsible for finalising the purchase of the re-

sources requested. It implements the two phase commit required to ensure
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Figure 6.4: The hierarchy of behaviours implemented by the User agent.
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consistency when purchasing multiple units in an auction through two sub be-

haviours:

– PhaseOneBehaviour: This behaviour implements the voting phase of

the two phase commit, instructing successful resources that the user would

like to accept their offer, and processing confirmations or rejections from

those resources.

– PhaseTwoBehaviour: This behaviour implements the commit phase

of the two phase commit, confirming the offer acceptance if all required

resources are available, or cancelling the transaction if not.

• RenegotiateBehaviour: This behaviour is used by the User agent to initi-

ate the cancellation procedure (see §6.2.1.3).

The user initiates resource auctions by passing the User agent one or more RFQ

documents. To simplify this process, the User agent provides a graphical user interface,

shown in figure 6.5. This GUI allows the user to load RFQ documents, initiate and

monitor auctions, and also view and manage purchased resources.

6.3.2 Resource Agent

Each resource that participates in the resource allocation market place runs a resource

management agent, which is responsible for responding to requests for quotation and

negotiating the sale of CPU time. In order to do this, the Resource agent implements

four distinct behaviours, shown in figure 6.6 and described below:

• RFQResponseServer: This behaviour listens for requests for quotations

made by user agents, evaluates those requests and then either submits an offer

in response to the request, or else declines to participate.

• PurchaseOrdersServer: This behaviour listens for the acceptance of offers

from user agents. When an offer is accepted, this behaviour creates a tentative

reservation within the machine’s queuing system to correspond to the offer. If the

requested resource is no longer available, this behaviour declines the acceptance

of the offer. It implements the voting phase of the two phase commit protocol on

the Resource agent side.
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Figure 6.5: The User agent graphical user interface.

• FinaliseServer: This behaviour listens for messages from the user agent

confirming the finalization of an offer. When an offer is finalized, it stops the time

out set on the queue reservation, locking it in. It implements the commit phase

of the two phase commit protocol on the Resource agent side. Once an offer

is fully confirmed, this behaviour is responsible for initiating the Reservation

Notification Protocol described in Section 6.2.1.2.

• CancelServer: This behaviour provides the cancellation capabilities capabil-

ities, as described in Section 6.2.1.3.

6.3.2.1 Modelling system availability

The Resource agent maintains an internal representation of the resource that it manages

in order to be able to respond to request for quotation. Obviously, the resource must

know details of the resource in terms of the CPU types available, memory per node

and so on. The administrator of the resource therefore configures these static properties

via a configuration file, prior to running the Resource agent. These static properties

correspond to the terms of the RFQ specification (cf. §6.2.2), but exclude the two
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Figure 6.6: The hierarchy of behaviours implemented by the Resource agent.
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dynamic properties relating to price and time, which the Resource agent derives from

the queuing system.

Note, we consider a resource to be made up of homogeneous compute nodes,

although this does not always conform to reality, whereby a large HPC system could

be made up of CPUs with different speeds, nodes with different memory sizes and so

on. Systems that comprise heterogeneous architectures can be supported by running

multiple instances of the Resource agent, one for each distinct part of the machine.

The resource agent will examine each RFQ that it receives, and then decide

whether to make an offer or not. Evaluating a request involves two steps:

(i) First, the Resource agent checks the static terms of the request (such as the re-

quested CPU type) against its internal resource model. If the resource cannot

satisfy the this part of the request, then the Resource declines the offer to partici-

pate.

(ii) Next, the Resource agent examines the current load on the resource. If sufficient

free CPUs exist at the point in time that they are required, the resource agent cal-

culates an offer price (see below), checks that this offer price meets the request,

and then makes an offer.

6.3.2.2 Interfacing with the Queuing Systems

The Resource agent must interact with the resource it manages to obtain a view of

system utilization which can be used to respond to requests for quotation, and generate

offer prices for those responses. The default implementation interfaces directly with the

queuing system to obtain a measure of the load on the resource (in terms of available

CPUs) at the point in time when the requested job must be satisfied. While providing

an adequate model of system usage, the default queuing system is not without its draw-

backs, in that when examining the queuing system to evaluation future availability, it

makes calculations based on the wall time specified by the user for each running job.

Often, a user will use the system default wall-time, meaning that a job could finish long

before the queuing system expects it to. Obviously, the queuing system copes with this

by running the next job in the queue, but this can lead to situations where the Resource

agent expects the system to be unavailable when it is not.
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However, the Resource agent features a plug-in architecture that allows the re-

source administrators to substitute an alternative resource interface where available.

For example, a resource administrator could implement an interface that queries a re-

source availability modelling service, such as the QBETS batch queue prediction ser-

vice [236], deployed on XSEDE. The QBETS service can be used to predict a statistical

upper bound on how long the job is likely to spend waiting in the queue prior to execu-

tion and given the job characteristics and a start deadline, can calculate the probability

that the job begins execution by the deadline. The Resource agent can then use this

information to make offers, rather than relying on the basic queuing system interface.

6.3.2.3 Pricing model

The Resource Agent is responsible for setting the offer price made to resource requests

coming from User Agents. The price offered is varied based on the load on the machine

at the time the job must be run. If the machine is lightly loaded, the resource makes

a low offer, in order to attract more work to the machine. If the resource is heavily

loaded, the machine offers a higher price, or if it is saturated, refuses to participate in

the auction at all.

These prices depend on two resource administrator defined parameters, the start

price and the minimum price. As its name suggests, the minimum price is the

lowest price a Resource Agent will ever offer in an auction. These values are used to

calculate the decrement by which the request is reduced by the resource when making

an offer, according to the following formula

dec =
(sp−mp)

s× (1− l)

where sp is the starting price, mp is the minimum price, and l is the percentage of the

machine that will be allocated at the time the job is to be run, expressed as a decimal.

Although the number of bidding rounds is controlled by the User Agent, the Resource

Agent anticipates that there will be multiple bidding rounds using the s parameter, so

that total decrement is not applied in one go, but gradually over several bidding rounds.

This gives a value to decrease the request price by, dec, which results in a bespoke spot

price for the resource at a given point in time and in response to a user’s request.
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Figure 6.7: The hierarchy of behaviours implemented by the Bank agent.

6.3.3 Banking Agent

The banking agent is tasked with recording transactions between users and resources,

and can provide an overview of the overall system of resource trading. To do this it

implements three behaviours, shown in figure 6.7 and described below:

• TransactionUpdateBehaviour: This behaviour listens for and processes

update messages from the Resource agents on the completion of successful trans-

actions, to update the internal balances of Resource and User agent.

• CancelListenerBehaviour: This behaviour listens for and processes can-

cellation messages, and notifies both User and Resource agent when the cancel-

lation is complete.

• BalanceRequestBehaviour: This simple behaviour can provide a user or

resource with a statement of their balance on receipt of a digitally signed request.

In order to verify the digital signatures appended to transaction update messages,

the Banking agent maintains a record of the public key of participants in the market

place. This is done when accounts are credited be the Banking agent administrator.

Within the RAMP system, a standard virtual currency is used.

6.3.3.1 A Note on Banking

The Banking agent is designed and implemented as a technical way to keep track of

deals made between users and resources, but it is not intended to answer the policy
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Resource 2

Call for Proposals

Resource 1User

Accept Proposal

Propose

RAMP Inter-agent Auction

Resource 3

Call for Proposals

Call for Proposals

Propose

Refuse

Agree

Confirm

Confirm

Figure 6.8: The sequence of messages between a user agent and three resources required to
implement a single round of bidding for a single unit auction. Inter-agent com-
munication is performed using messages specified in the FIPA protocol. In this
example, resource agents 1 and 2 respond to the RFQ with offers to accept the
workload, while agent 3 refuses. The user agent accepts the offer from agent 2
using a two phase commit.

questions that address how usage of resources is reconciled with real-world cash pay-

ments, which is outside the scope of this thesis. Some of those policy questions relate

to how the currency used in the system converts to real world currencies, how deals are

enforced, and how overdrafts can be deal with, and provide a rich and interesting vein

of future work. Within a production system, we envisage that one or more Banking

agents will be run by an independent, trusted third-party.

6.3.4 Inter-agent Communication

Peer to peer (P2P) systems are recognized as a way of building large, scalable dis-

tributed systems. Like distributed e-infrastructure systems, they have evolved as a way

to share resources across administrative domains, but do so from a very different start-

ing point and with very different requirements, in terms of security and availability

[237]. A key feature of the RAMP system compared to other resource brokering/meta-

scheduling systems is that there is no central service in overall control of the system.



6.3. Implementation 185

In effect, the resource agent and the user agent are peers in a peer to peer system, and

connected together by a P2P network infrastructure. This means that RAMP can lever-

age many of the benefits of P2P systems such as dynamic participation (which may

encourage more resource owners to devote some or all of their resource to grid work

when the utilization falls below a certain level).

Resilience is a key requirement of the RAMP system. Many distributed schedul-

ing systems rely on a single broker component, which results in a single point of fail-

ure which can render the whole system unusable. The JADE development environment

allows agents to be distributed across a network of machines and incorporates P2P net-

work features to boost system stability and resilience. The key JADE feature utilized

by RAMP is the Main Replication Service. All JADE agents run within a container

which provides basic agent communication and management capabilities. JADE re-

quires a Main container to act as the control point for the distributed agent system.

The Main Replication Service allows the Main container functionality to be replicated

amongst a ring of containers, to which normal containers connect. In the RAMP sys-

tem, each Resource Agent runs in a replicated version of the system’s Main container.

User Agents run in normal containers; a User Agent’s container can connect directly to

any Resource Agent’s Main container and, via container replication, have access to all

Resource Agents in the system.

In addition, when a new Resource Agent connects to the system, in needs only

connect to one of the Main containers to join the whole market place. The JADE

Address Notification Service runs within all the containers in the system. It monitors

agents and therefore containers entering and leaving the system, and reconfigured the

network accordingly. In this way, if one of the Main containers crashes or otherwise

exits the system, all of the User Agent containers connected to that Main container are

reconfigured to automatically connect to another Main container, and the connections

in the Main container ring are suitable adjusted.

6.3.4.1 Agent communication ontology

The FIPA Agent Communication Language terms discussed in Section 6.2.1 define

the basic semantics of how agents interact in a FIPA compatible multi-agent system.

However, these basic actions do not cover the full, rich lexicon which agents need to
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possess in order to implement the negotiation protocols described earlier. Within FIPA

compliant agents, ontologies are used to represent the set of concepts and symbols that

agents need to communicate about. This standard method of inter-agent ‘language’

based on a well defined ontology allows agents implements using different software

environments to be mutually intelligible.

In the RAMP system, agents primarily need to communicate about Re-

quests for Quotations. Therefore we have developed an ontology that allows

agents to communicated based around the terms of the RFQL syntax described

above. Within JADE, this is realized as a series of Java classes that extend the

jade.content.onto.Ontology class, with each class corresponding to differ-

ent ontological terms. The key terms in this ontology are depicted in figure 6.9, and the

full specification of the ontology is listed, in OWL format, in Appendix B.

6.4 System Integration
As stated previously, AHE and RAMP are independent systems, but are designed to

closely interoperate. AHE provides a persistent job launching and execution manage-

ment service. RAMP provides a market place in which compute cycles can be traded

between users and resources. A diagram of the architecture of the system, and relation-

ship between AHE and RAMP, is shown in figure 6.11.

The AHE is pre-configured with details of the applications which the user can

run, and the static set of resources on which the applications are installed. This is in

contrast to the Condor approach, which stages application binaries to resources before

they are run. The parallel MPI applications which the AHE was designed to run are

often difficult to compile and need an expert user or system administrator to optimize

them for a particular machine architecture, which makes binary staging very difficult.

The sequence of operations required to launch an application using AHE and

RAMP is illustrated in figure 6.10. When submitting an application via the RAMP,

the user can initiate the submission via the AHE. A list of the candidate resources on

which the application that the user wishes to run is installed is retrieved from the AHE

server. This lists the subset of e-infrastructure resources with which the user agent

needs to conduct the bidding process. The AHE also maintains a list of static resource

characteristics, such as CPU architecture, which are used to match the static constraints
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Figure 6.9: A schematic representation of the relationship between concepts in the inter-agent
communication ontology.

the user places on the job.

Once a bid from a resource has been accepted by the user agent, the AHE server

submits a JSDL job description to the resource, describing the job that is to be run and

the location of any input data along with the reservation ID(s) obtained by the RAMP

system. The AHE then monitors the progress of the application as it run, and the AHE

client can be used to retrieve any output data created.

Since AHE launches applications on a range of different back end middlewares,

and can be used to federate resources from administratively distinct grids, the RAMP

system can also schedule across federated e-infrastructure resources. However, unlike

other meta-scheduling approaches, each of the resource providers does not need to
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Figure 6.10: The sequence of operations between the AHE client (containing the user agent),
the AHE server, and a single resource, required to launch an application on that
resource.

subscribe to a centralized scheduling service. They simply need to run the resource

management agent on their system.

6.5 Summary
In this section we have reviewed some common grid use cases, and from them de-

rived user requirements that, if satisfied, will greatly improve grid usability. We have

described two services, AHE and RAMP, which aim to satisfy these requirements,

through elevating the application to a first-class resource with which the user interacts,

and developing a computational marketplace, through a combinatorial, multi-attribute

reverse auction mechanism which allows users to place jobs on resources based on cost

and time to solution minimization. In the next Chapter we put the RAMP system to

the test and draw conclusions about its potential utility in a distributed e-infrastructure

environment.
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Figure 6.11: Interaction between RAMP system and AHE to schedule application execution
on distributed e-infrastructure resources.



Chapter 7

Functional and Performance Testing of

the RAMP System

In this section, we evaluate the capabilities of the RAMP platform described in the

previous chapter using a simulation environment that we developed to approximate a

large scale distributed e-infrastructure environment. We present our finding and draw

conclusions on the utility of our system.

7.1 Evaluating the System
The RAMP system is designed to manage resource allocation across a set of high per-

formance compute resources. Deploying the system across such a set of resources

in order to evaluate the performance and capabilities is impractical, since root access

could be required to install tools that interact with the queuing system, machines could

be taken down for maintenance periods and so on. Therefore, we found it practical to

develop a simulation environment which would allow us to evaluate RAMP without the

external difficulties inherent in using a production HPC e-infrastructure.

In order to perform a realistic evaluation of the RAMP system, our simulation uses

Machine Cores Log Start Log End Log Duration
Date Date (Months)

LLNL Atlas 9216 Nov 2006 Jun 2007 8
LLNL Thunder 4008 Jan 2007 Jun 2007 5
ANL Intrepid 163840 Jan 2009 Sept 2009 8

RICC 8192 May 2010 Sept 2010 5
CEA CURIE 93312 Feb 2011 Oct 2012 20

Table 7.1: Parallel Workload Archive Project log files used in the simulation environment.
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historical resource usage data obtained from a number of high performance comput-

ing systems, collected and made available by the Parallel Workload Archive Project1.

Archived logs are converted to the Standard Workload Format (SWF) [238] and in some

cases cleaned of erroneous data.

The logs chosen to base simulations on are summarized in table 7.1. As can be

seen from the table, all of the logs from the archive cover several months of continuous

operation. This means that with a relatively few logs we can create a diverse simulated

ecosystem with different Resource Agents within the simulated system starting from

different time points within the same file. The logs used were chosen to represent a

diverse heterogeneous e-infrastructure, with both large petascale machines and smaller

clusters.

The simulation environment consists of a resource plug-in for the Resource Agent

which allows it to interact with an historic usage log as if it were a live queuing system

on a production HPC resource. This in turn is done through two scripts:

• fake qstat.pl: This script mimics to some extent the behaviour of the qs-

tat command. Qstat, or a differently named variant, is a familiar tool on many

HPC systems that allows the user to investigate the status of the queuing system.

The script takes as its parameters the path to a configuration file along with the

number of CPUs required by the user and the time the job must run. The config-

uration file lists the full path to the log file to be read, the time offset where the

log should be read from, and also the system start time. This last value allows

the simulated system to evolve over time. The system start time represent the

beginning of the resource log file. Using the difference between the system start

time and the current time (plus the time offset), the script can provide a snapshot

of the system state at a given time. This snapshot considers the currently running

and queued jobs at the given time to calculate whether sufficient cores will be

available for the requested job to start at the time specified by the user. If the job

can be run, the script returns the percentage load on that machine at the time the

job is to be run.

• fake qrstat.pl: This script is almost exactly the same as the

1http://www.cs.huji.ac.il/labs/parallel/workload/
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System Base Time point Start Min
name system (seconds) Price Price
atlas1 LLNL Atlas 3370000 33 25
atlas2 LLNL Atlas 1370000 33 26

thunder1 LLNL Thunder 250000 70 40
thunder2 LLNL Thunder 1300000 75 60
thunder3 LLNL Thunder 130000 70 35
thunder4 LLNL Thunder 450000 75 50
intrepid1 ANL Intrepid 50000 55 35
intrepid2 ANL Intrepid 1500000 65 25
intrepid3 ANL Intrepid 15000000 53 25
intrepid4 ANL Intrepid 750000 55 30
intrepid5 ANL Intrepid 2500000 65 28
intrepid6 ANL Intrepid 90000 53 30

ricc1 RICC 50000 40 25
ricc2 RICC 7570000 45 25
ricc3 RICC 500000 45 25
ricc4 RICC 757000 45 30
curie1 CEA CURIE 150000 80 40
curie2 CEA CURIE 1375000 80 65
curie3 CEA CURIE 350000 80 30
curie4 CEA CURIE 2375000 70 65

Table 7.2: Simulation environment machine setup. The time point is the number of seconds
within the log at which the test system started. All systems were started at a min-
imum of 50000 seconds into the machine log file in order to allow the load on the
machine to reach a production level (some machine logs commence with the ma-
chine being turned on, meaning that initially the queue is empty).

fake qstat.pl script, but instead of returning a utilization percentage it re-

turns a fake reservation ID if the job can be satisfied, and also inserts the job’s

details into the machine log.

With these two scripts, our Resource Agent plug-in and our historic queue data, we

can investigate various aspects of the RAMP system in a way that closely approximates

a real deployment.

7.2 Simulation Environment Setup
To evaluate the pure performance of the RAMP system in these initial investigations

we deployed all the agents within our simulation environment on a single high power

Ubuntu Linux workstation, to eliminate performance problems that could be introduced

by network bandwidth limitations between machines. We took initial configurations
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based on the machine log files listed in table 7.1, and working from different time points

within those logs, configured a experimental system made up of twenty resources.

The configuration of those resources is shown in table 7.2, with a single Resource

Agent within the system representing each system. The Resource Agents within the

simulation environment logged all transactions for further analysis. The system was

left to evolve in real time as the experiments were performed.

The static resource parameters for each Resource Agent were all assigned the same

default configuration. We did this so that decisions made in the investigations we per-

formed were governed by machine load and price, rather than static constraints.

7.3 Using the RAMP System
The first tests we performed were designed to assess the RAMP system’s ability to suc-

cessfully schedule a range of heterogeneous workloads. Specifically, we investigated

the following two aspects of the RAMP system:

• Investigation 1: Initially we want to confirm that the RAMP system works, that

jobs can be place with resources at prices favourable to both the user and the

resource, and that a majority of jobs submitted will be successful.

• Investigation 2: Secondly, we wish to assess how efficiently jobs are placed

within the system.

In order to perform these investigations, we submitted a range of different jobs, in

terms of system requirements, core counts and deadlines, which are listed in table 7.3,

to our RAMP simulation environment. This range of jobs represents the typical tasks a

HPC machine will be put to, from small scale, short running jobs to large, long running

capability workloads.

Each job listed in table 7.3 was run consecutively, using a separate instance of

the User Agent. Each run of all thirteen jobs was repeated three times in order better

control for temporal anomalies within the system. In each case the User Agent was

configured to conduct three rounds of bidding.

7.3.1 Results

From the resulting logs generated by the User Agents and Resource Agents, we com-

puted mean prices for each of the bidding rounds and also the winning price. These
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Figure 7.1: Request, offer and winning prices for the requests shown in table 7.3 for three
rounds of bidding. Where bidding round values are not shown, no offers were
made in that round. Experiment run 11, which failed, is not shown.
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Experiment Cores Start time Price
exp1 16 5 min 70
exp2 16 60 min 55
exp3 16 12 hours 35
exp4 256 5 mins 50
exp5 256 60 min 30
exp6 256 12 hours 25
exp7 1024 60 min 55
exp8 1024 12 hours 35
exp9 4096 60 min 55

exp10 4096 12 hours 35
exp11 20480 5 min 80
exp12 20480 60 min 55
exp13 20480 12 hours 35

Table 7.3: Details of experimental workloads run on the RAMP simulation environment.

Experiment Request Round Round Round Winning
Price 1 Avg 2 Avg 3 Avg Price

1 70 64.78 57.29 54.60 47
2 55 52.17 43.54 39.56 39
3 35 30.61 25.00 25
4 50 47.00 39.00 34.60 34
5 30 28.11 25.00 25
6 25 25.00 25
7 55 51.44 42.94 39.17 39
8 35 30.22 25.00 25
9 55 51.50 43.00 39.25 39

10 35 31.17 26.17 25.00 25
11 80 FAIL
12 55 50.75 42.50 39.50 39
13 35 29.00 25.33 25

Table 7.4: Mean round and winning prices for the auctions of the workloads listed in table 7.3.

values are shown for each of the jobs in table 7.4, along with the request price the user

opened the bidding at. Figure 7.1 displays these results as a bar chart, showing how the

price offered by each resource fell with each round of bidding.

Where bidding rounds show no result, either the price of the job had fallen below

the minimum price threshold of a resource in the system, or the system load on has

increased on the resource, meaning that no resource is willing to continue bidding. We

found that the median offer price was 71.1% of the request price.

In order to investigate the efficiency of our system mapping jobs onto resources,
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Figure 7.2: The winning resources for the auctions of workloads listed in table 7.3. Five re-
sources were allocated all of the jobs submitted.

we also examined which of the resources in the system won each of the auctions out-

lined in table 7.3. Five of the resources won all of the jobs submitted in three experi-

mental repetitions, with the share of the jobs distributed as shown in figure 7.2.

To assess whether these resources were allocated to the most appropriate resource,

and thus the overall efficiency of the system, we need to consider just more than just

the load on each system. Allocation of workloads to resources within the competitive

RAMP market place, is based on a function combining both the load on the machine

and the price it is willing to offer to get jobs, as outlined in Section 6.3.2.3.

Therefore, to assess whether work is allocated to resources efficiently, we need to

consider the attractiveness of the resource to the users of the system. A useful measure

of the attractiveness of the resource is the price by which it is willing to reduce its offer

price while bidding, since this is based on the start and minimum price configuration

of the machine, and its load.

In figure 7.3 we plot the attractiveness of the resources in the system over the evo-

lution of the simulation environment. Resources not included in the plot were loaded

to such an extent that they did not make offers.
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Figure 7.3: Resource attractiveness plotted over time. Attractiveness is analogous to the value
by which a resource is willing to reduce its prices.

7.3.2 Discussion of Results

The results plotted in figure 7.1 and shown in table 7.4 confirm that our system is capa-

ble of successfully allocating jobs to resources at prices lower than the user is willing to

pay. Although the majority of requests were allocated during our experimental runs, it

is likely that this will not always be the case, especially where the user sets their open-

ing price below the minimum price of all resources in the system, or where resource

load across the platform is sufficient that large jobs that need to start very soon cannot

be accommodated. The failure of experiment run 13 shows us that very large requests

that need to be run soon will likely fail, even when the user is willing to pay a premium

to execute the workload.

We found that resource request prices that were very close to the minimum system

prices offered by the majority of resources resulted in fewer rounds of bidding, but

achieved better prices for the user.

In a production environment, a user would not necessarily know the minimum

prices set by the resource providers but, with experience, may well come to learn rea-

sonable estimates of the minimum price various resources were willing to offer, and
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would likely be able to price their workloads accordingly.

Our assessment of the efficiency of the system shows that the jobs are allocated to

the most attractive resources. As shown in figure 7.2, all of the test workload requests

submitted to the system were allocated to just five of the available twenty resources

(with the exception of the request that failed). Looking at figure 7.3 we see that in

general the most attractive resources won the resource requests made.

Though the curie1 and curie3 resources remained the most attractive over the sim-

ulation execution duration, they did not take all of the jobs, and were not even the

biggest winner, which was the atlas1 machine. This can be explained by the fact that

temporal changes within the attractiveness of resources mean that at different points,

one resource will be more attractive than others. Also, the User Agent accepts offers

on a first come first serve basis, so that if two resources make the same offer, the offer

received first by the Resource Agent will be favoured. This means that a single re-

source with a low load and favourable pricing structure does not completely dominate

the platform and take all requests made.

7.4 Investigating Job Pricing
The Resource Agent provides a bespoke spot price for the resource it is managing,

in response to requests from User Agents. As such, the price offered by a resource

fluctuates over time. Figure 7.4 shows how the price for various resources varies over

time, while the simulation environment is running.

The prices agreed for resource requests are governed by a combination of param-

eters under the control of both the Resource Agent and the User Agent. The Resource

Agent is configured with a minimum price and a start price, which are used, along with

the load on the machine, to generate a bid reduction price. Choosing start and minimum

prices is therefore a a task which the machine administrators need to invest some effort

in.

The key is to set start and minimum prices that will actually result in bids that, on

average, meet the cost that the resource owners want to sell their cycles for. Of course,

the minimum price provides a lower bound; when auctions fall below this minimum,

the resource will refuse to participate further in the auction.

In addition to the configuration parameters set for the Resource Agent, the price is
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Figure 7.4: The change in resource offer prices over time for four resources in the system.

also governed by how many rounds of bidding the User Agent specifies. To optimize

these parameters we performed the following investigations:

• Investigation 1: We calculated the average offer price made by a resource over a

period of system operation, and compared it to the start and minimum price used

to configure the resource.

• Investigation 2: We performed an experiment to discover the optimum number

of bidding rounds required to minimize the price paid by the user.

The resource offer price is also governed by the price that other resources offer in

the system (which is outside the control of any given resource administrator) and the

prices that users of the system are willing to pay for the workloads they need to execute.

We analysed the results for the workloads presented in Section 7.3 to discover the

mean offer price made by each resource in the system. In figure 7.5 we plot this mean

price alongside the start and minimum prices.

To determine the optimum number of bidding rounds required to minimize the

price paid by the user, we use the environment simulation described in Section 7.2 to

make a user requisition for a single auction unit. The request was run ten times, with
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Figure 7.5: Comparison of the average offer price made by each resource to its minimum price
and start price.

Number of Mean Sale Mean
Bidding Rounds Price Duration (sec)

1 66.00 18.81
2 60.00 31.91
3 51.83 46.19
4 41.83 61.15
5 37.40 76.18
6 35.40 91.18
7 37.83 106.21
8 37.83 121.24
9 34.75 136.26

10 36.50 151.26

Table 7.5: Offer price and auction duration as the number of bidding rounds increases.

each run executed with an increasing number of auction rounds, from one round to ten

rounds. We repeated each experiment run three times, and calculated mean values for

the sale price and duration of the auction, shown in table 7.5.

In figure 7.6 we plot the mean sale price and the mean auction duration the for

auctions with one to ten rounds of bidding.
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Figure 7.6: Plot showing how the increase in number of bidding rounds affects final cost price
and auction completion time.

7.4.1 Discussion of Results

Selecting optimal configuration parameters for a resource is a complex task. As figure

7.5 shows, offers made by a resource will roughly fall between the start and minimum

prices set of the resource. However, the minimum price is seemingly the most important

parameter; where the mean price is set at a level comparable to other resources in the

system, the mean offer price will usually be comparable to those other resources too,

and somewhat higher than the minimum price. However, setting a high starting price

will increase the attractiveness of the resource by increasing the amount which the

resource is willing to reduce its offers by while bidding. In summary, to avoid being

outbid and to increase the chance of auction success, a resource owner should try to

set a minimum price around the same level to other resources in the system, but a high

starting price.

As we see from figure 7.6 and table 7.5, as the number of auction rounds used by

the User Agent increases, the final offer price accepted is reduced, with a tail off at five

rounds, suggesting that users wanting to optimize the price they pay for auction units

could do so by running auctions with five bidding rounds. However, as the number of

auction rounds increases, so does the time taken to complete the auction. This scales
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linearly with the number of auction units, as is to be expected since auction rounds are

of a fixed duration. Users must take into account this trade-off when initiating multi-

round auctions.

7.5 Investigating RAMP Performance
Our multi-unit auction system is, we believe, unique, but it is also important that it is

usable. A key aspect of usability is the responsiveness of the system. It is important

that the RAMP system responds well to user requests, and scales both with the num-

ber of units an individual is requesting (in a multi-unit auction) and with the number

of simultaneous users of the system. To assess this performance, we conducted two

investigations into system scalability:

• Investigation 1: We measured the performance of the system in terms of auction

duration as the number of request units within a combinatorial reverse auction

increase.

• Investigation 2: We measured the performance of the system in terms of auc-

tion duration and average system response time as the number of User Agents

participating in the system increases.

• Investigation 3: To assess the impact of network performance on a the respon-

siveness of a real-world deployment of RAMP, we repeated investigation 2 with

our Resource Agents deployed across a network of machines.

7.5.1 Results

Using the simulation environment outlined in table 7.2 we sequentially submitted re-

quests via a single Resource Agent in order to investigate how performance increases

with the number of auction units. With each submission the number of units within

the request increased, meaning the terms within the combinatorial reverse auction in-

creased.

The simulation environment was run on a single workstation to eliminate disrup-

tions caused by network problems, with a separate Resource Agent for each simulated

resource. Runs were performed for auctions with 1 to 25 units (the deadline and price
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of each unit was randomly generated), and the whole set of runs was repeated one

hundred times, and mean response times calculated.

The user configurable auction round duration parameter was set to five minutes,

so that we could measure round duration without the auction ending. The times taken

to complete bidding rounds, negotiate the final auction agreement, and the total time

taken for the auction to complete are displayed in figure 7.7.

To assess how the system performs when multiple individual users are using it, we

performed an experiment using the simulation environment outlined above, whereby

we ran multiple User Agents simultaneously, each making a single unit request. We

ran from 1 to 30 User Agents consecutively, and repeated each run three times then

calculated mean response times. Again, the User Agents were configured with a maxi-

mum bidding round duration of five minutes, so that auction rounds would not time out

before all Resource Agents had been able to respond.

We measured the mean time taken for a Resource Agent to respond to an individ-

ual request (shown in figure 7.8) and how the number of competing agents within the

system affects the duration of an auction (shown in figure 7.9).
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standard deviation of the result mean.

In real world applications, the RAMP system is intended to be deployed across

a network of HPC class resources. Our performance tests so far have only measured

performance with RAMP deployed using our simulation environment on a single ma-

chine. To ensure that network effects will not adversely affect the performance of the

system, we repeated our tests on network deployment of RAMP.

The system was deployed across 15 networked servers. In a real world deploy-

ment we expect that RAMP would be deployed across an Internet wide set of HPC

resources. The impracticalities of securing access to such resources in order to carry

out our performance tests led to us deploying a system with 10 servers located within

the CCS research lab in University College London, with additional Resource Agents

deployed at CINECA (Italy), Cyfronet (two agents) and PSNC (both Poland), Univer-

sity of Sheffield (UK). The Resource Agents used the first 15 resource configurations

listed in table 7.2.

We repeated the previous investigation, running between 1 and 30 User Agents

simultaneously and measuring the impact of doing so on the mean time taken for a

Resource Agent to respond to an individual request (shown in figure 7.10) and how the
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Figure 7.11: Plot showing how the increase in competing agents affects mean auction round
duration with RAMP system deployed across a network of resources. Bars show
the standard deviation of the result mean.

number of competing agents affects the duration of an auction (shown in figure 7.11).

7.5.2 Discussion of Results

As we see from figure 7.7, the duration of the bidding rounds in an auction scales lin-

early with the number of units in an auction. This is to be expected, since the duration

of the auction is increased by the number of requests the user agent has to make. Sur-

prisingly, the time taken to negotiate the auction does not increase with the number of

units. Adding an additional unit only adds a couple of seconds to the overall duration

of the auction. so this is unlikely to be of too much concern to the user.

As the number of simultaneous users using the system increases, the responsive-

ness of the Resource Agents scales linearly, as we see from figure 7.8. However, as

shown in figure 7.9, the time taken to complete an auction increases steeply with the

first ten simultaneous users of the system, and then tails off as the number of users

increases. The tailing off is well below the maximum auction duration we configured

in the system, so we are not seeing the effect of this parameter. It is unclear why figure

7.9 is so shaped, and further work is required to understand the observations presented

here. On the whole, the results we have obtained show that our system shows good re-
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sponsiveness and scalability as both the number of units and number of users increase.

When repeated using Resource Agents deployed across a network of hosts (approxi-

mating a real-world deployment of RAMP) we found that the effects of the network

did not have a significant impact on performance and similar scaling characteristics

were obtained, although there was greater variance in the results obtained.

7.6 Summary
In this chapter we have presented our investigations into the performance and capa-

bilities of our RAMP resource allocation platform. We have shown that the system

is capable of successfully allocating workloads to computational resources, optimis-

ing the price that the user pays and selecting the most attractive resources from the set

of available machines. The decentralized nature of the system means that it does this

without incurring the overheads and failure points present in a centralized brokering

system where a single component is responsible for allocating jobs throughout a grid

of machines.

Our system shows good performance and scalability, even when deployed across

a wides area network of machines. The ability of users to control the number of and

duration of bidding rounds means that they can minimize the price they pay while at the

same time placing an upper bound on the time taken to achieve a result. The next step

we plan to take is to evaluate our RAMP system formally, by conducting a usability

study using real users, on a deployment of RAMP across a production e-infrastructure.
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Overall Conclusions and Future Work

In this chapter we present our overall conclusions, and discuss where we plan to take

this work in future.

8.1 Contributions
In this thesis we have presented a comprehensive overview of the field of distributed

high performance computing, in order to try to understand the usability problems that

are preventing HPC system users from being more creative and ambitious in the way

they use resources, and thus push back the boundaries of in silico science. We have

considered the activities of several ambitious projects which seek to exploit such in-

frastructures to their fullest potential, and draw conclusions as to how the success of

those projects could be more widely replicated, by designing and deploying tools and

services to simplify the use of distributed e-infrastructures. As such, we have delivered

the contributions outlined in Section 1.4, chiefly the Application Interaction Model, its

implementation in the Application Hosting Environment and a decentralized market

place for resource allocation.

8.2 Conclusions
HPC resources are a distinct class of system which present their own set of challenges

to the user. Alongside the development of distributed HPC e-infrastructures, cloud

computing has sought to commoditize access to compute cycles. However, while ideas

from the cloud world can assist in addressing distributed HPC usability problems, they

are by no means a sufficient solution, due to the inherent overheads introduced by cloud

approaches.
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Our Application Interaction Model allows complex, multi-component e-

infrastructure based applications to be represented as simple Web services, using

lightweight client tools. Our usability results have also confirmed the benefit of the

Application Interaction Model in that user interaction is reduced to the most essential

components: namely a user interacting with his/her application. Users do not need

to worry about the details of particular batch queuing systems, or how to stage data

back from particular HPC resources; the specifics of how to launch an application are

encapsulated within the Application Interaction Model. The approach virtualizes the

HPC resources from a user’s point of view. Indeed AHE virtualizes the entirety of

a grid’s HPC resources, and federates resources stemming from multiple different e-

infrastructures.

The usability study we reported here focused solely on the ‘best case’ scenario,

where all middleware tools and applications were pre-deployed, and the study partic-

ipants were used to evaluate and compare the tools’ interfaces. In future we plan to

extend the study by examining aspects relating to the usability of middleware deploy-

ment.

AHE 3.0 provides a number of capabilities not present in earlier versions, includ-

ing a workflow engine that allows complex simulations to be created, including coupled

simulations where data is automatically transferred from one application to another.

ACD provides a security suite that includes support for Shibboleth authentication, as

well as user auditing. ACD supports virtual organization management and is able to

provide access to grid proxy credentials through RESTful web services.

As our performance tests have shown, the redesign of AHE 3.0 has greatly im-

proved performance over older AHE versions. Our usability results have also confirmed

the benefit of the Application Interaction Model in that user interaction is reduced to the

most essential components: namely a user interacting with his/her application. Users

do not need to worry about the details of particular batch queuing systems, or how

to stage data back from particular HPC resources; the specifics of how to launch an

application are encapsulated within the Application Interaction Model. The approach

virtualizes the HPC resources from a user’s point of view. Indeed AHE virtualizes the

entirety of a grid’s HPC resources, and federates resources stemming from multiple

different e-infrastructures.
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Since its initial release, AHE has been taken up by various user communities.

AHE has been used to host a wide variety of computational codes from many different

scientific domains, including widely used codes. The key strength of AHE is its flexi-

bility. Since all of the system’s complexity resides on the server side, and all of AHE’s

functionality is exposed as simple services, AHE can be used as a building block for

systems of much greater complexity. As such, AHE has been deployed in the infras-

tructures deployed by a number of international research projects.

A key early aim of grid computing was to make computing power available on

demand, by promoting the idea of a resource broker or metascheduler which was able

take a global view of the system, and allocate incoming workloads to the most appro-

priate resource. However, the capacity to take a global view of the state of a distributed

e-infrastructure platform is without doubt of use to the end user, since it obviates the

need to manually log into and check the utilisation of the available resources on the

system when deciding where to run a job.

While this challenge has been largely met in the high throughput computing world,

it has not found much traction in distributed HPC e-infrastructures. This is due to

several factors including the access models currently promoted by resource providers,

and a lack of suitable infrastructure tools.

Reverse auction based mechanisms are currently finding uptake within the cloud

computing world as a means to allocate resources (cf. the online service SpotCloud

[239] or the work of Roovers et al. [240]). This is not surprising, since commercial

clouds are based around the idea of paid for access, and the reverse auction mechanism

is an elegant means of matching clients to providers in such a system. Our RAMP

system is, to the best of our knowledge, the first such system designed to meet the

needs of distributed HPC users, and as such includes several novel features including a

distributed architecture to increase resilience, the ability to conduct multi-unit auctions

in order schedule workflows and multi-site applications, and the ability for users to

control the decision making parameters, including how much they are willing to pay

for a job and when they would like it to start and end.

Current HPC allocation practice requires individuals or groups of users to apply

for allocations of time on a single HPC resource, or a group of resources made available

via a distributed e-infrastructure. Some nominal cost is associated with each CPU/hour,
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based on the operating cost of the machine (indeed, industrial users who wish to access

the resource are usually charged ‘real money’ for access to the machine based on this

core hour cost). However, academic users are not usually charged a monetary fee for

access to a machine. Instead their allocation is funded directly by a funding agency

(such as EPSRC in the case of the UK’s ARCHER machine). Although the resources

allocated to a project have a nominal value, and may be reported in cash terms in a

grant application, no money changes hand between user and resource provider.

The RAMP system outlined in this thesis requires a rethink in the way resources

are allocated. RAMP brings HPC usage much nearer to a commercial cloud model,

whereby users pay for access to resources. Actual implementation of a production

system requires buy-in from funding agencies and resource providers, and such policy

matters are beyond the scope of this thesis. However, such as system could be realized

by funding agencies crediting users or projects with a virtual currency in the RAMP

system, which users can then spend with participating resources as they wish.

The RAMP model promotes openness, allowing any resource to join the system

and make offers for workloads. As such, it heralds the potential demise of existing

distinct closed grids and presages a future where federated e-infrastructure platforms

are available to HPC users (both academic and industrial) and commercial providers

can sell HPC time following a cloud model. By doing this, it empowers the user by

giving her a mechanism by which she can obtain access to resources when convenient

to her scientific studies, and not to the resource operator.

In the HPC world this creates problems, since applications often need to be tuned

and customized for individual resources. AHE addresses this problem by allowing

users to execute shared applications on distributed e-infrastructures without having to

worry about the underlying details of code optimization and execution.

8.3 Future Work
Taken together, our AHE and RAMP systems constitute a powerful platform that align

distributed high performance computing infrastructures with emerging cloud models.

However, many topics remain to be addressed before the system could be deployed

in a widespread production environment. We have shown that the platform is techni-

cally feasible to implement, but questions remain as to the policies required to use it in
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practice. In our future work we plan to address some of these issues, especially relat-

ing to the enforcement of one time service level agreements and system wide banking

resilience and reconciliation. Our mediate priority therefore is to interest an existing

distributed e-infrastructure to deploy and test our RAMP software in a production en-

vironment.

We also plan to investigate how our approach can be extended to help solve licens-

ing issues, by allowing users to pay for the core hours their application is used for, with

this charge also encompassing compute time, rather than just paying for a licence for

the application and for compute time separately.

We will continue to develop AHE, and have ongoing funding to do so within

several EU funded projects, which by their nature are increasing the numbers of AHE

users. Responding to feature requests from these projects will guide our future AHE

development.
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Request for Quotations XML Schema

Listing A.1: Request For Quotation XML Schema

<? xml v e r s i o n =” 1 . 0 ” ?>

<xs : s chema x m l n s : x s =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema” t a r g e t N a m e s p a c e =” h t t p : / /www.←↩

r e a l i t y g r i d . o rg /AHE/RFQ” xmlns=” h t t p : / /www. r e a l i t y g r i d . o rg /AHE/RFQ” ←↩

e l e m e n t F o r m D e f a u l t =” q u a l i f i e d ”>

<x s : e l e m e n t name=” R e q u e s t F o r Q u o t a t i o n ”>

<xs :complexType>

<x s : s e q u e n c e>

<x s : e l e m e n t name=” Reques t ” minOccurs=” 1 ”>

<xs :complexType>

<x s : s e q u e n c e>

<x s : e l e m e n t name=” CPUHourCost ” t y p e =” x s : i n t e g e r ” maxOccurs=” 1 ” ←↩

minOccurs=” 1 ” />

<x s : e l e m e n t name=” EndDate ” t y p e =” x s : d a t e ” maxOccurs=” 1 ” minOccurs=” 1 ” /←↩

>

<x s : e l e m e n t name=” EndTime ” t y p e =” x s : t i m e ” maxOccurs=” 1 ” minOccurs=” 1 ” /←↩

>

<x s : e l e m e n t name=” S t a r t D a t e ” t y p e =” x s : d a t e ” maxOccurs=” 1 ” minOccurs=” 0←↩

” />

<x s : e l e m e n t name=” S t a r t T i m e ” t y p e =” x s : t i m e ” maxOccurs=” 1 ” minOccurs=” 0←↩

” />

<x s : e l e m e n t name=” O p e r a t i n g S y s t e m ” maxOccurs=” 1 ” minOccurs=” 0 ”>

<x s : s i m p l e T y p e>

<x s : r e s t r i c t i o n base =” x s : s t r i n g ”>

<x s : e n u m e r a t i o n v a l u e =”Unknown” />

<x s : e n u m e r a t i o n v a l u e =”MACOS” />

<x s : e n u m e r a t i o n v a l u e =”ATTUNIX” />

<x s : e n u m e r a t i o n v a l u e =”DGUX” />

<x s : e n u m e r a t i o n v a l u e =”DECNT” />

<x s : e n u m e r a t i o n v a l u e =” Tru64 UNIX ” />

<x s : e n u m e r a t i o n v a l u e =”OpenVMS” />

<x s : e n u m e r a t i o n v a l u e =”HPUX” />
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<x s : e n u m e r a t i o n v a l u e =”AIX” />

<x s : e n u m e r a t i o n v a l u e =”MVS” />

<x s : e n u m e r a t i o n v a l u e =”OS400” />

<x s : e n u m e r a t i o n v a l u e =” OS 2 ” />

<x s : e n u m e r a t i o n v a l u e =”JavaVM” />

<x s : e n u m e r a t i o n v a l u e =”MSDOS” />

<x s : e n u m e r a t i o n v a l u e =”WIN3x” />

<x s : e n u m e r a t i o n v a l u e =”WIN95” />

<x s : e n u m e r a t i o n v a l u e =”WIN98” />

<x s : e n u m e r a t i o n v a l u e =”WINNT” />

<x s : e n u m e r a t i o n v a l u e =”WINCE” />

<x s : e n u m e r a t i o n v a l u e =”NCR3000” />

<x s : e n u m e r a t i o n v a l u e =” NetWare ” />

<x s : e n u m e r a t i o n v a l u e =”OSF” />

<x s : e n u m e r a t i o n v a l u e =”DC OS” />

<x s : e n u m e r a t i o n v a l u e =” Rel ian t UNIX ” />

<x s : e n u m e r a t i o n v a l u e =” SCO UnixWare ” />

<x s : e n u m e r a t i o n v a l u e =” SCO OpenServer ” />

<x s : e n u m e r a t i o n v a l u e =” Sequen t ” />

<x s : e n u m e r a t i o n v a l u e =” IRIX ” />

<x s : e n u m e r a t i o n v a l u e =” S o l a r i s ” />

<x s : e n u m e r a t i o n v a l u e =”SunOS” />

<x s : e n u m e r a t i o n v a l u e =”U6000” />

<x s : e n u m e r a t i o n v a l u e =”ASERIES” />

<x s : e n u m e r a t i o n v a l u e =”TandemNSK” />

<x s : e n u m e r a t i o n v a l u e =”TandemNT” />

<x s : e n u m e r a t i o n v a l u e =” BS2000 ” />

<x s : e n u m e r a t i o n v a l u e =”LINUX” />

<x s : e n u m e r a t i o n v a l u e =” Lynx ” />

<x s : e n u m e r a t i o n v a l u e =”XENIX” />

<x s : e n u m e r a t i o n v a l u e =”VM” />

<x s : e n u m e r a t i o n v a l u e =” I n t e r a c t i v e U N I X ” />

<x s : e n u m e r a t i o n v a l u e =”BSDUNIX” />

<x s : e n u m e r a t i o n v a l u e =” FreeBSD ” />

<x s : e n u m e r a t i o n v a l u e =”NetBSD” />

<x s : e n u m e r a t i o n v a l u e =”GNU Hurd” />

<x s : e n u m e r a t i o n v a l u e =”OS9” />

<x s : e n u m e r a t i o n v a l u e =”MACH Kernel” />

<x s : e n u m e r a t i o n v a l u e =” I n f e r n o ” />

<x s : e n u m e r a t i o n v a l u e =”QNX” />

<x s : e n u m e r a t i o n v a l u e =”EPOC” />

<x s : e n u m e r a t i o n v a l u e =” IxWorks ” />

<x s : e n u m e r a t i o n v a l u e =”VxWorks” />

<x s : e n u m e r a t i o n v a l u e =”MiNT” />

<x s : e n u m e r a t i o n v a l u e =”BeOS” />

<x s : e n u m e r a t i o n v a l u e =”HP MPE” />

<x s : e n u m e r a t i o n v a l u e =” Nex tS tep ” />

<x s : e n u m e r a t i o n v a l u e =” P a l m P i l o t ” />
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<x s : e n u m e r a t i o n v a l u e =” Rhapsody ” />

<x s : e n u m e r a t i o n v a l u e =” Windows 2000 ” />

<x s : e n u m e r a t i o n v a l u e =” D e d i c a t e d ” />

<x s : e n u m e r a t i o n v a l u e =” OS 390 ” />

<x s : e n u m e r a t i o n v a l u e =”VSE” />

<x s : e n u m e r a t i o n v a l u e =”TPF” />

<x s : e n u m e r a t i o n v a l u e =” Windows R Me ” />

<x s : e n u m e r a t i o n v a l u e =” Caldera Open UNIX ” />

<x s : e n u m e r a t i o n v a l u e =”OpenBSD” />

<x s : e n u m e r a t i o n v a l u e =” N o t A p p l i c a b l e ” />

<x s : e n u m e r a t i o n v a l u e =” Windows XP ” />

<x s : e n u m e r a t i o n v a l u e =” z OS ” />

<x s : e n u m e r a t i o n v a l u e =” o t h e r ” />

< / x s : r e s t r i c t i o n>

< / x s : s i m p l e T y p e>

< / x s : e l e m e n t>

<x s : e l e m e n t name=” OSVersion ” t y p e =” x s : s t r i n g ” maxOccurs=” 1 ” minOccurs=←↩

” 0 ” />

<x s : e l e m e n t name=” A r c h i t e c t u r e ” maxOccurs=” 1 ” minOccurs=” 0 ”>

<x s : s i m p l e T y p e>

<x s : r e s t r i c t i o n base =” x s : s t r i n g ”>

<x s : e n u m e r a t i o n v a l u e =” s p a r c ” />

<x s : e n u m e r a t i o n v a l u e =” powerpc ” />

<x s : e n u m e r a t i o n v a l u e =” x86 ” />

<x s : e n u m e r a t i o n v a l u e =” x86 32 ” />

<x s : e n u m e r a t i o n v a l u e =” x86 64 ” />

<x s : e n u m e r a t i o n v a l u e =” p a r i s c ” />

<x s : e n u m e r a t i o n v a l u e =” mips ” />

<x s : e n u m e r a t i o n v a l u e =” i a 6 4 ” />

<x s : e n u m e r a t i o n v a l u e =” arm ” />

<x s : e n u m e r a t i o n v a l u e =” o t h e r ” />

< / x s : r e s t r i c t i o n>

< / x s : s i m p l e T y p e>

< / x s : e l e m e n t>

<x s : e l e m e n t name=”CPUSpeed” t y p e =” x s : i n t e g e r ” maxOccurs=” 1 ” minOccurs=←↩

” 0 ” />

<x s : e l e m e n t name=” WallTime ” t y p e =” x s : i n t e g e r ” maxOccurs=” 1 ” minOccurs=←↩

” 0 ” />

<x s : e l e m e n t name=” In t e rNodeBandwid th ” t y p e =” x s : i n t e g e r ” maxOccurs=” 1 ” ←↩

minOccurs=” 0 ” />

<x s : e l e m e n t name=”RAMPerCore” t y p e =” x s : i n t e g e r ” maxOccurs=” 1 ” ←↩

minOccurs=” 0 ” />

<x s : e l e m e n t name=” Disk ” maxOccurs=” 1 ” minOccurs=” 0 ”>

<xs :complexType>

<x s : c h o i c e>

<x s : e l e m e n t name=” T o t a l D i s k S p a c e ” t y p e =” x s : i n t e g e r ” />

<x s : e l e m e n t name=” NodeDiskSpace ” t y p e =” x s : i n t e g e r ” />

< / x s : c h o i c e>
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< / xs :complexType>

< / x s : e l e m e n t>

<x s : e l e m e n t name=” Cores ” maxOccurs=” 1 ” minOccurs=” 1 ”>

<xs :complexType>

<x s : c h o i c e>

<x s : e l e m e n t name=” T o t a l C o r e s ” t y p e =” x s : i n t e g e r ” />

<x s : e l e m e n t name=” Nodes ”>

<xs :complexType>

<x s : s e q u e n c e>

<x s : e l e m e n t name=” NodeCount ” t y p e =” x s : i n t e g e r ” />

<x s : e l e m e n t name=” NodeCores ” t y p e =” x s : i n t e g e r ” />

< / x s : s e q u e n c e>

< / xs :complexType>

< / x s : e l e m e n t>

< / x s : c h o i c e>

< / xs :complexType>

< / x s : e l e m e n t>

< / x s : s e q u e n c e>

< / xs :complexType>

< / x s : e l e m e n t>

< / x s : s e q u e n c e>

< / xs :complexType>

< / x s : e l e m e n t>

< / x s : s chema>
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Inter-agent Communication Ontology

Listing B.1: Inter-agent communication ontology in OWL format

<? xml v e r s i o n =” 1 . 0 ” ?>

<rdf :RDF

x m l n s : r d f =” h t t p : / /www. w3 . org /1999/02/22− r d f−syn t ax−ns # ”

x m l n s : p r o t e g e =” h t t p : / / p r o t e g e . s t a n f o r d . edu / p l u g i n s / owl / p r o t e g e # ”

x m l n s : x s p =” h t t p : / /www. owl−o n t o l o g i e s . com / 2 0 0 5 / 0 8 / 0 7 / xsp . owl# ”

xmlns :owl =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# ”

x m l n s : x s d =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# ”

x m l n s : s w r l =” h t t p : / /www. w3 . org / 2 0 0 3 / 1 1 / s w r l # ”

x m l n s : s w r l b =” h t t p : / /www. w3 . org / 2 0 0 3 / 1 1 / s w r l b # ”

x m l n s : r d f s =” h t t p : / /www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema # ”

xmlns=” h t t p : / /www. owl−o n t o l o g i e s . com / Ontology1402054803 . owl# ”

x m l : b a s e =” h t t p : / /www. owl−o n t o l o g i e s . com / Ontology1402054803 . owl ”>

<o w l : O n t o l o g y r d f : a b o u t =” ” />

<o w l : C l a s s r d f : I D =” JADE−SLOT”>

<r d f s : s u b C l a s s O f r d f : r e s o u r c e =” h t t p : / /www. w3 . org /1999/02/22− r d f−syn t ax−ns #←↩

P r o p e r t y ” />

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>:JADE−SLOT< / r d f s : l a b e l>

< / o w l : C l a s s>

<o w l : C l a s s r d f : I D =” PROJECT−ANNOTATION”>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>:PROJECT−ANNOTATION< / r d f s : l a b e l>

< / o w l : C l a s s>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

<o w l : C l a s s r d f : I D =” JADE−CLASS” />

< / owl :un ionOf>

< / o w l : C l a s s>

<o w l : C l a s s r d f : a b o u t =” # JADE−CLASS”>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”
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>:JADE−CLASS< / r d f s : l a b e l>

<r d f s : s u b C l a s s O f>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# C l a s s ”>

<r d f s : s u b C l a s s O f r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema # C l a s s ” />

< / r d f : D e s c r i p t i o n>

< / r d f s : s u b C l a s s O f>

< / o w l : C l a s s>

<o w l : O b j e c t P r o p e r t y r d f : I D =” JADE−INCLUDED−PROPERTIES”>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>:JADE−INCLUDED−PROPERTIES< / r d f s : l a b e l>

< / o w l : O b j e c t P r o p e r t y>

<o w l : O b j e c t P r o p e r t y r d f : I D =” r e s o l v e r s ”>

< JADE−UNNAMED−SLOT r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# b o o l e a n ”

>false< / JADE−UNNAMED−SLOT>

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

< JADE−CLASS r d f : I D =”AID”>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>AID< / r d f s : l a b e l>

<r d f s : s u b C l a s s O f>

< JADE−CLASS r d f : I D =” Concept ”>

< JADE−IGNORE r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# b o o l e a n←↩

”

>true< / JADE−IGNORE>

<r d f s : c o m m e n t r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>The common ancestor for all concepts (i .e . types of entity such as ←↩

Person , Address . . . ) in an ontology< / r d f s : c o m m e n t>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>Concept< / r d f s : l a b e l>

< / JADE−CLASS>

< / r d f s : s u b C l a s s O f>

< JADE−IGNORE r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# b o o l e a n ”

>true< / JADE−IGNORE>

< / JADE−CLASS>

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>resolvers< / r d f s : l a b e l>

< / o w l : O b j e c t P r o p e r t y>

<o w l : O b j e c t P r o p e r t y r d f : I D =”CANCELINSTANCE”>

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

< JADE−CLASS r d f : I D =” Cance l ”>
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<r d f s : s u b C l a s s O f>

< JADE−CLASS r d f : I D =” Agen tAc t ion ”>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>AgentAction< / r d f s : l a b e l>

< JADE−IGNORE r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# b o o l e a n←↩

”

>true< / JADE−IGNORE>

<r d f s : s u b C l a s s O f r d f : r e s o u r c e =” # Concept ” />

<r d f s : c o m m e n t r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>The common ancestor for all actions in an ontology (e .g . Sell , Buy←↩

. . . )< / r d f s : c o m m e n t>

< / JADE−CLASS>

< / r d f s : s u b C l a s s O f>

< JADE−IGNORE r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# b o o l e a n ”

>false< / JADE−IGNORE>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>Cancel< / r d f s : l a b e l>

< / JADE−CLASS>

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< r d f s : r a n g e>

< JADE−CLASS r d f : I D =”RFQ”>

<r d f s : s u b C l a s s O f>

< JADE−CLASS r d f : I D =” P r e d i c a t e ”>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>Predicate< / r d f s : l a b e l>

<r d f s : c o m m e n t r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>The common ancestor for all predicates in an ontology (e .g . FatherOf←↩

. . . )< / r d f s : c o m m e n t>

< JADE−IGNORE r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# b o o l e a n ”

>true< / JADE−IGNORE>

< / JADE−CLASS>

< / r d f s : s u b C l a s s O f>

< JADE−IGNORE r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# b o o l e a n ”

>false< / JADE−IGNORE>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>RFQ< / r d f s : l a b e l>

< / JADE−CLASS>

< / r d f s : r a n g e>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>CANCELINSTANCE< / r d f s : l a b e l>

< / o w l : O b j e c t P r o p e r t y>

<o w l : O b j e c t P r o p e r t y r d f : I D =”RSCHEDINSTANCE”>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>RSCHEDINSTANCE< / r d f s : l a b e l>

<r d f s : d o m a i n>

<o w l : C l a s s>
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<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

< JADE−CLASS r d f : I D =” R e s c h e d u l e ”>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>Reschedule< / r d f s : l a b e l>

<r d f s : s u b C l a s s O f r d f : r e s o u r c e =” # Agen tAc t ion ” />

< JADE−IGNORE r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# b o o l e a n ”

>false< / JADE−IGNORE>

< / JADE−CLASS>

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< r d f s : r a n g e r d f : r e s o u r c e =” #RFQ” />

< / o w l : O b j e c t P r o p e r t y>

<o w l : O b j e c t P r o p e r t y r d f : I D =”OFFERINSTANCE”>

< r d f s : r a n g e>

< JADE−CLASS r d f : I D =” O f f e r ”>

< JADE−IGNORE r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# b o o l e a n ”

>false< / JADE−IGNORE>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>Offer< / r d f s : l a b e l>

<r d f s : s u b C l a s s O f r d f : r e s o u r c e =” # P r e d i c a t e ” />

< / JADE−CLASS>

< / r d f s : r a n g e>

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

< JADE−CLASS r d f : I D =” MakeOffer ”>

<r d f s : s u b C l a s s O f r d f : r e s o u r c e =” # Agen tAc t ion ” />

< JADE−IGNORE r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# b o o l e a n ”

>false< / JADE−IGNORE>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>MakeOffer< / r d f s : l a b e l>

< / JADE−CLASS>

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>OFFERINSTANCE< / r d f s : l a b e l>

< / o w l : O b j e c t P r o p e r t y>

<o w l : O b j e c t P r o p e r t y r d f : I D =”RFQINSTANCE”>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>RFQINSTANCE< / r d f s : l a b e l>

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />
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< JADE−CLASS r d f : I D =” MakeRequest ”>

< JADE−IGNORE r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# b o o l e a n ”

>false< / JADE−IGNORE>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>MakeRequest< / r d f s : l a b e l>

<r d f s : s u b C l a s s O f r d f : r e s o u r c e =” # Agen tAc t ion ” />

< / JADE−CLASS>

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< r d f s : r a n g e r d f : r e s o u r c e =” #RFQ” />

< / o w l : O b j e c t P r o p e r t y>

<o w l : D a t a t y p e P r o p e r t y r d f : I D =” a d d r e s s e s ”>

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

< JADE−CLASS r d f : a b o u t =” #AID” />

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ” />

< JADE−UNNAMED−SLOT r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# b o o l e a n ”

>false< / JADE−UNNAMED−SLOT>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>addresses< / r d f s : l a b e l>

< / o w l : D a t a t y p e P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =” JADE−NAME”>

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

<o w l : C l a s s r d f : a b o u t =” # JADE−CLASS” />

<o w l : C l a s s r d f : a b o u t =” # JADE−SLOT” />

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>:JADE−NAME< / r d f s : l a b e l>

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ” />

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =”CPUHOURCOST”>

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>CPUHOURCOST< / r d f s : l a b e l>

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ” />

<r d f s : d o m a i n>
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<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

< JADE−CLASS r d f : I D =” Cos t ”>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>Cost< / r d f s : l a b e l>

<r d f s : s u b C l a s s O f r d f : r e s o u r c e =” # P r e d i c a t e ” />

< JADE−IGNORE r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# b o o l e a n ”

>false< / JADE−IGNORE>

< / JADE−CLASS>

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =” JADE−PROPERTIES−NAME”>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>:JADE−PROPERTIES−NAME< / r d f s : l a b e l>

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ” />

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =” JADE−IGNORE”>

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

<o w l : C l a s s r d f : a b o u t =” # JADE−CLASS” />

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>:JADE−IGNORE< / r d f s : l a b e l>

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# b o o l e a n ” />

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =”OPERATINGSYSTEM”>

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

< JADE−CLASS r d f : I D =” Resource ”>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>Resource< / r d f s : l a b e l>

<r d f s : s u b C l a s s O f r d f : r e s o u r c e =” # Concept ” />

< JADE−IGNORE r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# b o o l e a n ”

>false< / JADE−IGNORE>

< / JADE−CLASS>

< / owl :un ionOf>

< / o w l : C l a s s>
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< / r d f s : d o m a i n>

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ” />

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>OPERATINGSYSTEM< / r d f s : l a b e l>

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =” JADE−UNNAMED−SLOT”>

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# b o o l e a n ” />

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

<o w l : C l a s s r d f : a b o u t =” # JADE−SLOT” />

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>:JADE−UNNAMED−SLOT< / r d f s : l a b e l>

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =”NODECORES”>

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

< JADE−CLASS r d f : I D =” Cores ”>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>Cores< / r d f s : l a b e l>

< JADE−IGNORE r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# b o o l e a n ”

>false< / JADE−IGNORE>

<r d f s : s u b C l a s s O f r d f : r e s o u r c e =” # P r e d i c a t e ” />

< / JADE−CLASS>

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>NODECORES< / r d f s : l a b e l>

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# i n t ” />

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =” LOCATION”>

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ” />

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

<o w l : C l a s s r d f : a b o u t =” # PROJECT−ANNOTATION” />

< / owl :un ionOf>
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< / o w l : C l a s s>

< / r d f s : d o m a i n>

<r d f s : c o m m e n t r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>The location to store files into< / r d f s : c o m m e n t>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>:LOCATION< / r d f s : l a b e l>

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =”REQUESTID”>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>REQUESTID< / r d f s : l a b e l>

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

< JADE−CLASS r d f : a b o u t =” #RFQ” />

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ” />

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =”CPUSPEED”>

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>CPUSPEED< / r d f s : l a b e l>

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ” />

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

< JADE−CLASS r d f : a b o u t =” # Resource ” />

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =” JADE−PROPERTIES−COMPATIBILITY”>

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>:JADE−PROPERTIES−COMPATIBILITY< / r d f s : l a b e l>

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =” JADE−JAVA−BASE−CLASS”>

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ” />

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>:JADE−JAVA−BASE−CLASS< / r d f s : l a b e l>

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

<r d f s : d o m a i n>

<o w l : C l a s s>
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<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

<o w l : C l a s s r d f : a b o u t =” # JADE−CLASS” />

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =” JADE−PROPERTIES−PACKAGE”>

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ” />

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>:JADE−PROPERTIES−PACKAGE< / r d f s : l a b e l>

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =”CORES”>

< r d f s : r a n g e r d f : r e s o u r c e =” # Cores ” />

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

< JADE−CLASS r d f : a b o u t =” # Cos t ” />

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# O b j e c t P r o p e r t y ” />

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>CORES< / r d f s : l a b e l>

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =”DURATION”>

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ” />

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

< JADE−CLASS r d f : a b o u t =” # Cores ” />

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>DURATION< / r d f s : l a b e l>

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =”COST”>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>COST< / r d f s : l a b e l>

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# O b j e c t P r o p e r t y ” />

< r d f s : r a n g e r d f : r e s o u r c e =” # Cos t ” />

<r d f s : d o m a i n>

<o w l : C l a s s>
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<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

< JADE−CLASS r d f : a b o u t =” #RFQ” />

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =”TOTALDISKSPACE”>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>TOTALDISKSPACE< / r d f s : l a b e l>

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

< JADE−CLASS r d f : a b o u t =” # Resource ” />

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ” />

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =”RESOURCE”>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>RESOURCE< / r d f s : l a b e l>

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

< JADE−CLASS r d f : a b o u t =” # Cores ” />

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# O b j e c t P r o p e r t y ” />

< r d f s : r a n g e r d f : r e s o u r c e =” # Resource ” />

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =”TOTALCORES”>

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# i n t ” />

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>TOTALCORES< / r d f s : l a b e l>

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

< JADE−CLASS r d f : a b o u t =” # Cores ” />

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>
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< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =” ONTOLOGYNAME”>

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

<o w l : C l a s s r d f : a b o u t =” # PROJECT−ANNOTATION” />

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>:ONTOLOGYNAME< / r d f s : l a b e l>

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ” />

<r d f s : c o m m e n t r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>name of the ontology< / r d f s : c o m m e n t>

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =” PACKAGE”>

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

<o w l : C l a s s r d f : a b o u t =” # PROJECT−ANNOTATION” />

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ” />

<r d f s : c o m m e n t r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>packagename< / r d f s : c o m m e n t>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>:PACKAGE< / r d f s : l a b e l>

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =”OSVERSION”>

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ” />

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

< JADE−CLASS r d f : a b o u t =” # Resource ” />

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>OSVERSION< / r d f s : l a b e l>

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =” SUPPORT”>
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< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ” />

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>:SUPPORT< / r d f s : l a b e l>

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

<o w l : C l a s s r d f : a b o u t =” # PROJECT−ANNOTATION” />

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =”RAMPERCORE”>

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ” />

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>RAMPERCORE< / r d f s : l a b e l>

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

< JADE−CLASS r d f : a b o u t =” # Resource ” />

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =”name”>

< JADE−UNNAMED−SLOT r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# b o o l e a n ”

>false< / JADE−UNNAMED−SLOT>

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ” />

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

< JADE−CLASS r d f : a b o u t =” #AID” />

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>name< / r d f s : l a b e l>

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =”DEADLINE”>

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>
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< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

< JADE−CLASS r d f : a b o u t =” # Cos t ” />

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ” />

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>DEADLINE< / r d f s : l a b e l>

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =”NOTBEFORE”>

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>NOTBEFORE< / r d f s : l a b e l>

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ” />

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

< JADE−CLASS r d f : a b o u t =” # Cos t ” />

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =”OFFERCOST”>

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

< JADE−CLASS r d f : a b o u t =” # O f f e r ” />

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>OFFERCOST< / r d f s : l a b e l>

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# O b j e c t P r o p e r t y ” />

< r d f s : r a n g e r d f : r e s o u r c e =” # Cos t ” />

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =” JADE−PROPERTIES−GENERATE−ONTOLOGY”>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>:JADE−PROPERTIES−GENERATE−ONTOLOGY< / r d f s : l a b e l>

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# b o o l e a n ” />

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =” JADE−JAVA−CODE”>

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ” />

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>:JADE−JAVA−CODE< / r d f s : l a b e l>

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />
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<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

<o w l : C l a s s r d f : a b o u t =” # JADE−CLASS” />

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =”NODEDISKSPACE”>

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

< JADE−CLASS r d f : a b o u t =” # Resource ” />

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>NODEDISKSPACE< / r d f s : l a b e l>

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ” />

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =” RFQOntology Class7 ”>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>RFQOntology_Class7< / r d f s : l a b e l>

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# O b j e c t P r o p e r t y ” />

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =”OFFERID”>

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ” />

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>OFFERID< / r d f s : l a b e l>

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

< JADE−CLASS r d f : a b o u t =” # O f f e r ” />

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =”INTERNODEBANDWIDTH”>

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ” />

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>
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< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

< JADE−CLASS r d f : a b o u t =” # Resource ” />

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>INTERNODEBANDWIDTH< / r d f s : l a b e l>

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =” JADE−PROPERTIES−GENERATE−BEANS”>

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# b o o l e a n ” />

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>:JADE−PROPERTIES−GENERATE−BEANS< / r d f s : l a b e l>

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =” JADE−PROPERTIES−DIRECTORY”>

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ” />

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>:JADE−PROPERTIES−DIRECTORY< / r d f s : l a b e l>

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =”ARCHITECTURE”>

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ” />

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>ARCHITECTURE< / r d f s : l a b e l>

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

< JADE−CLASS r d f : a b o u t =” # Resource ” />

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< / o w l : F u n c t i o n a l P r o p e r t y>

<o w l : F u n c t i o n a l P r o p e r t y r d f : I D =”NODECOUNT”>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>NODECOUNT< / r d f s : l a b e l>

<r d f s : d o m a i n>

<o w l : C l a s s>

<owl :un ionOf r d f : p a r s e T y p e =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# Thing ” />

< JADE−CLASS r d f : a b o u t =” # Cores ” />

< / owl :un ionOf>

< / o w l : C l a s s>

< / r d f s : d o m a i n>

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# D a t a t y p e P r o p e r t y ” />

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# i n t ” />

< / o w l : F u n c t i o n a l P r o p e r t y>
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< PROJECT−ANNOTATION r d f : a b o u t =” p r o j e c t a n n o t a t i o n ”>

<ONTOLOGYNAME r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>Market< / ONTOLOGYNAME>

< PACKAGE r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>uk .ac .ucl .chem .ccs .ramp .rfq .onto< / PACKAGE>

< r d f s : l a b e l r d f : d a t a t y p e =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”

>project annotation< / r d f s : l a b e l>

< / PROJECT−ANNOTATION>

< / rdf :RDF>

<!−− C r e a t e d wi th P r o t e g e ( wi th OWL P l u g i n 3 . 4 . 6 , B u i l d 613) h t t p : / / p r o t e g e .←↩

s t a n f o r d . edu −−>



Appendix C

AHE Usability Handouts

This appendix contains the data collection screens and instructions presented to partic-

ipants in our AHE usability study.



Intro$Text!

Thank!you! for!agreeing! to! take!part! in!our!usability!study.!The! idea!behind!grid!computing! is! to!hide! the!
complexity!of!using!high!performance!computers!distributed!across!the!globe.!The!purpose!of!the!study!is!
to! assess! the! usability! of! several! different! grid! computing! client! tools,! designed! to! allow! you! to! run!
simulations! on! remote! high! performance! (super)! computers.! For! the! purposes! of! this! study! we! will! be!
running!a!test!code!that!sorts!a!list!of!words!into!alphabetical!order.!!

This! study! is! broken! into! two! different! sections.! Firstly! we! will! ask! you! to! try! out! four! different! grid!
computing!client!tools!to!launch!and!monitor!the!sorting!application!on!a!remote!system.!Secondly,!we!will!
ask!you!to!evaluate!two!different!grid!security!solutions.!!

Please!refer!to!the!documentation!provided!in!order!to!complete!each!task.!When!you!are!ready!to!begin!a!
task,! click! Start,! and!when! you! have! completed! the! task! click! Stop.! You!will! be! asked! to! answer! various!
questions!relating!to!the!tasks!you!have!completed.!!

You!will!be!observed!on!your!performance!during!each! task,!but! the!observer! is!not!allowed! to!help!you!
with! the! tasks,! or! answer! any! questions.! Please! remember,! we! are! not! assessing! your! individual!
performance,! rather!we!are! looking!at! the!usability!of!each! tool! in! the! trial.!Please!answer!each!question!
truthfully!and!to!the!best!of!your!ability.!

Your! feedback! is! very! important!because!as! it!will! be! fed!back! to! those! responsible! for!developing! these!
clients!and!thus!help!them!determine!which!client!is!easiest!to!use!and!how!the!clients!could!be!improved.!

Please$enter$your$Participant$ID$and$click$Next$to$proceed.!

!



Section$1:$Previous$Experience!

About!you.!Please!help!us!to!gain!an!insight!into!your!background!by!answering!the!following!eight!
questions.!!

Questions!

1) What!is!the!highest!level!degree!that!you!currently!hold!(Bsc,!PhD!etc)?!

2) What!subject!is!your!degree!in!(Computer!Science,!Chemistry!etc)?!

3) Have!you!ever!used!a!high!performance!computing!cluster!before?!If!Yes,!please!give!details!

4) Have!you!ever!used!Grid!computing!before?!If!Yes,!please!give!details!

5) I!am!familiar!with!the!Unix!operating!system!–!strongly!agree!–!strongly!disagree!

6) I!am!familiar!with!command!line!interfaces!–!strongly!agree!–!strongly!disagree!

7) I!am!familiar!with!graphical!user!interfaces!–!strongly!agree!–!strongly!disagree!

8) I!understand!the!concept!of!distribute!computing!–!strongly!agree!–!strongly!disagree!

!

!

!

!

!



Section$2:$Using$the$Globus$toolkit!

Tasks!!

Task!1:!Run!an!application!!

Upload!the!following!files!from!your!local!machine:!

$HOME/sortapp-input/input.txt 

$HOME/sortapp-input/config.txt 

To!the!directory!$GRIDDIR!on!the!machine!bunsen.chem.ucl.ac.uk,!then!run!the!application!
/usr/local/bin/ahe_sort.pl!on!the!machine!bunsen.chem.ucl.ac.uk!with!the!parameter!$GRIDDIR/config.txt!

Q1:!This!task!was!–!Very!Easy,!Easy,!Neutral,!Difficult,!Very!Difficult!

Q2:!How!satisfied!were!you!with!the!software!used!to!complete!this!task!–!Very!Dissatisfied,!
Dissatisfied,!Neutral,!Satisfied,!Very!Satisfied!

!

Task!2:!Monitor!the!status!of!the!application!that!you!launched!on!bunsen.chem.ucl.ac.uk!until!it!completes!

Q1:!This!task!was!–!Very!Easy,!Easy,!Neutral,!Difficult,!Very!Difficult!

Q2:!How!satisfied!were!you!with!the!software!used!to!complete!this!task!–!Very!Dissatisfied,!
Dissatisfied,!Neutral,!Satisfied,!Very!Satisfied!

!

Task!3:!Once!the!job!is!complete,!download!the!output!file!$GRIDDIR/output.txt from the machine 
bunsen.chem.ucl.ac.uk to your home directory ($HOME)!

Q1:!This!task!was!–!Very!Easy,!Easy,!Neutral,!Difficult,!Very!Difficult!

Q2:!How!satisfied!were!you!with!the!software!used!to!complete!this!task!–!Very!Dissatisfied,!
Dissatisfied,!Neutral,!Satisfied,!Very!Satisfied!

!

Questions!!

1. I!think!that!I!would!like!to!use!this!system!frequently!W!Strongly!Disagree,!disagree,!Neutral,!Agree,!
Strongly!Agree.!

2. I!found!the!system!unnecessarily!complex!W!Strongly!Disagree,!disagree,!Neutral,!Agree,!Strongly!
Agree.!



3. I!thought!the!system!was!easy!to!use!W!Strongly!Disagree,!disagree,!Neutral,!Agree,!Strongly!Agree.!!
4. I!think!that!I!would!need!the!support!of!a!technical!person!to!be!able!to!use!this!system!W!Strongly!

Disagree,!disagree,!Neutral,!Agree,!Strongly!Agree.!
5. I!found!the!various!functions!in!this!system!were!well!integrated!W!Strongly!Disagree,!disagree,!

Neutral,!Agree,!Strongly!Agree.!
6. I!thought!there!was!too!much!inconsistency!in!this!system!W!Strongly!Disagree,!disagree,!Neutral,!

Agree,!Strongly!Agree.!
7. I!would!imagine!that!most!people!would!learn!to!use!this!system!very!quickly!W!Strongly!Disagree,!

disagree,!Neutral,!Agree,!Strongly!Agree.!!
8. I!found!the!system!very!cumbersome!to!use!W!W!Strongly!Disagree,!disagree,!Neutral,!Agree,!Strongly!

Agree.!
9. I!felt!very!confident!using!the!system!W!Strongly!Disagree,!disagree,!Neutral,!Agree,!Strongly!Agree.!
10. I!needed!to!learn!a!lot!of!things!before!I!could!get!going!with!this!system!W!Strongly!Disagree,!

disagree,!Neutral,!Agree,!Strongly!Agree.!!

!

!

!

!



Section$3:$Using$the$Unicore$Graphical$User$Interface!

!

Tasks!

Task!1:!Run!an!application!

Using!the!Unicore!client,!create!a!new!Generic!grid!bean!to!run!the!Perl!5.8.8!script!
/usr/local/bin/ahe_sort.pl!installed!on!the!machine!crick.chem.ucl.ac.uk!(DEMOWSITE)!with!the!parameter!
config.txt!

Configure!the!grid!bean!to!stage!the!following!input!files!from!your!local!machine:!

/Users/ccs/study/sortapp-input/input.txt 

/Users/ccs/study/sortapp-input/config.txt!

Configure!the!grid!bean!to!stage!back!the!output!file!output.txt.!

When!the!grid!bean!is!configured,!submit!the!job.!!

Q1:!This!task!was!–!Very!Easy,!Easy,!Neutral,!Difficult,!Very!Difficult!

Q2:!How!satisfied!were!you!with!the!software!used!to!complete!this!task!–!Very!Dissatisfied,!
Dissatisfied,!Neutral,!Satisfied,!Very!Satisfied!

!

Task!2:!Monitor!the!status!of!the!application!that!you!launched!on!crick.chem.ucl.ac.uk!until!it!completes!

Q1:!This!task!was!–!Very!Easy,!Easy,!Neutral,!Difficult,!Very!Difficult!

Q2:!How!satisfied!were!you!with!the!software!used!to!complete!this!task!–!Very!Dissatisfied,!
Dissatisfied,!Neutral,!Satisfied,!Very!Satisfied!

!

Task!3:!Download!the!output!file!(output.txt)!from!the!job!you!just!ran!to!the!directory!/Users/ccs/study!

Q1:!This!task!was!–!Very!Easy,!Easy,!Neutral,!Difficult,!Very!Difficult!

Q2:!How!satisfied!were!you!with!the!software!used!to!complete!this!task!–!Very!Dissatisfied,!
Dissatisfied,!Neutral,!Satisfied,!Very!Satisfied!

!

Questions!!



1. I!think!that!I!would!like!to!use!this!system!frequently!W!Strongly!Disagree,!disagree,!Neutral,!Agree,!
Strongly!Agree.!

2. I!found!the!system!unnecessarily!complex!W!Strongly!Disagree,!disagree,!Neutral,!Agree,!Strongly!
Agree.!

3. I!thought!the!system!was!easy!to!use!W!Strongly!Disagree,!disagree,!Neutral,!Agree,!Strongly!Agree.!!

!

4. I!think!that!I!would!need!the!support!of!a!technical!person!to!be!able!to!use!this!system!W!Strongly!
Disagree,!disagree,!Neutral,!Agree,!Strongly!Agree.!

5. I!found!the!various!functions!in!this!system!were!well!integrated!W!Strongly!Disagree,!disagree,!
Neutral,!Agree,!Strongly!Agree.!

6. I!thought!there!was!too!much!inconsistency!in!this!system!W!Strongly!Disagree,!disagree,!Neutral,!
Agree,!Strongly!Agree.!

7. I!would!imagine!that!most!people!would!learn!to!use!this!system!very!quickly!W!Strongly!Disagree,!
disagree,!Neutral,!Agree,!Strongly!Agree.!!

8. I!found!the!system!very!cumbersome!to!use!W!W!Strongly!Disagree,!disagree,!Neutral,!Agree,!Strongly!
Agree.!

9. I!felt!very!confident!using!the!system!W!Strongly!Disagree,!disagree,!Neutral,!Agree,!Strongly!Agree.!
10. I!needed!to!learn!a!lot!of!things!before!I!could!get!going!with!this!system!W!Strongly!Disagree,!

disagree,!Neutral,!Agree,!Strongly!Agree.!!

!

!

!



Section$4:$Using$the$Application$Hosting$Environment$Graphical$User$Interface!

!

Tasks!

Task!1:!Run!sort!application!!

Using!the!AHE!graphical!client,!run!the!sort!application!on!the!machine!crick.chem.ucl.ac.uk!using!the!
configuration!file!in!/Users/ccs/study/sortapp-input/config.txt to automatically configure the input and 
output data that needs to be staged. Use a single CPU. !

Q1:!This!task!was!–!Very!Easy,!Easy,!Neutral,!Difficult,!Very!Difficult!

Q2:!How!satisfied!were!you!with!the!software!used!to!complete!this!task!–!Very!Dissatisfied,!
Dissatisfied,!Neutral,!Satisfied,!Very!Satisfied!

!

Task!2:!Monitor!the!status!of!the!application!that!you!launched!on!crick.chem.ucl.ac.uk!until!it!completes!

Q1:!This!task!was!–!Very!Easy,!Easy,!Neutral,!Difficult,!Very!Difficult!

Q2:!How!satisfied!were!you!with!the!software!used!to!complete!this!task!–!Very!Dissatisfied,!
Dissatisfied,!Neutral,!Satisfied,!Very!Satisfied!

!

Task!3:!Download!the!output!files!from!the!job!you!just!ran!to!the!directory!/Users/ccs/study!

Q1:!This!task!was!–!Very!Easy,!Easy,!Neutral,!Difficult,!Very!Difficult!

Q2:!How!satisfied!were!you!with!the!software!used!to!complete!this!task!–!Very!Dissatisfied,!
Dissatisfied,!Neutral,!Satisfied,!Very!Satisfied!

!

Questions!!

1. I!think!that!I!would!like!to!use!this!system!frequently!W!Strongly!Disagree,!disagree,!Neutral,!Agree,!
Strongly!Agree.!

2. I!found!the!system!unnecessarily!complex!W!Strongly!Disagree,!disagree,!Neutral,!Agree,!Strongly!
Agree.!

3. I!thought!the!system!was!easy!to!use!W!Strongly!Disagree,!disagree,!Neutral,!Agree,!Strongly!Agree.!!

!



4. I!think!that!I!would!need!the!support!of!a!technical!person!to!be!able!to!use!this!system!W!Strongly!
Disagree,!disagree,!Neutral,!Agree,!Strongly!Agree.!

5. I!found!the!various!functions!in!this!system!were!well!integrated!W!Strongly!Disagree,!disagree,!
Neutral,!Agree,!Strongly!Agree.!

6. I!thought!there!was!too!much!inconsistency!in!this!system!W!Strongly!Disagree,!disagree,!Neutral,!
Agree,!Strongly!Agree.!

7. I!would!imagine!that!most!people!would!learn!to!use!this!system!very!quickly!W!Strongly!Disagree,!
disagree,!Neutral,!Agree,!Strongly!Agree.!!

8. I!found!the!system!very!cumbersome!to!use!W!W!Strongly!Disagree,!disagree,!Neutral,!Agree,!Strongly!
Agree.!

9. I!felt!very!confident!using!the!system!W!Strongly!Disagree,!disagree,!Neutral,!Agree,!Strongly!Agree.!
10. I!needed!to!learn!a!lot!of!things!before!I!could!get!going!with!this!system!W!Strongly!Disagree,!

disagree,!Neutral,!Agree,!Strongly!Agree.!!

!

!

!



Section$5:$Using$the$Application$Hosting$Environment$Command$Line$Interface!

!

Tasks!

Task!1:!Run!an!application!!

Using!the!AHE!command!line!client,!run!the!sort!application!on!the!machine!crick.chem.ucl.ac.uk!using!the!
configuration!file!in!/Users/ccs/study/sortapp-input/config.txt to automatically configure the input and 
output data that needs to be staged. Use a single CPU. !

Q1:!This!task!was!–!Very!Easy,!Easy,!Neutral,!Difficult,!Very!Difficult!

Q2:!How!satisfied!were!you!with!the!software!used!to!complete!this!task!–!Very!Dissatisfied,!
Dissatisfied,!Neutral,!Satisfied,!Very!Satisfied!

!

Task!2:!Monitor!the!application!that!you!ran!bunsen.chem.ucl.ac.uk!until!it!completes!

Q1:!This!task!was!–!Very!Easy,!Easy,!Neutral,!Difficult,!Very!Difficult!

Q2:!How!satisfied!were!you!with!the!software!used!to!complete!this!task!–!Very!Dissatisfied,!
Dissatisfied,!Neutral,!Satisfied,!Very!Satisfied!

!

Task!3:!Download!the!output!files!from!the!job!you!just!ran!to!the!directory!/Users/ccs/study!

Q1:!This!task!was!–!Very!Easy,!Easy,!Neutral,!Difficult,!Very!Difficult!

Q2:!How!satisfied!were!you!with!the!software!used!to!complete!this!task!–!Very!Dissatisfied,!
Dissatisfied,!Neutral,!Satisfied,!Very!Satisfied!

!

Questions!

1. I!think!that!I!would!like!to!use!this!system!frequently!W!Strongly!Disagree,!disagree,!Neutral,!Agree,!
Strongly!Agree.!

2. I!found!the!system!unnecessarily!complex!W!Strongly!Disagree,!disagree,!Neutral,!Agree,!Strongly!
Agree.!

3. I!thought!the!system!was!easy!to!use!W!Strongly!Disagree,!disagree,!Neutral,!Agree,!Strongly!Agree.!!

!



4. I!think!that!I!would!need!the!support!of!a!technical!person!to!be!able!to!use!this!system!W!Strongly!
Disagree,!disagree,!Neutral,!Agree,!Strongly!Agree.!

5. I!found!the!various!functions!in!this!system!were!well!integrated!W!Strongly!Disagree,!disagree,!
Neutral,!Agree,!Strongly!Agree.!

6. I!thought!there!was!too!much!inconsistency!in!this!system!W!Strongly!Disagree,!disagree,!Neutral,!
Agree,!Strongly!Agree.!

7. I!would!imagine!that!most!people!would!learn!to!use!this!system!very!quickly!W!Strongly!Disagree,!
disagree,!Neutral,!Agree,!Strongly!Agree.!!

8. I!found!the!system!very!cumbersome!to!use!W!W!Strongly!Disagree,!disagree,!Neutral,!Agree,!Strongly!
Agree.!

9. I!felt!very!confident!using!the!system!W!Strongly!Disagree,!disagree,!Neutral,!Agree,!Strongly!Agree.!
10. I!needed!to!learn!a!lot!of!things!before!I!could!get!going!with!this!system!W!Strongly!Disagree,!

disagree,!Neutral,!Agree,!Strongly!Agree.!!

!



$

Section$6:$Any$comments$on$tasks$2R5$

Please!provide!any!comments!or!feedback!on!the!tasks!you!have!just!completed!in!sections!2W5.!

!

!

!

!

!

We!will!now!move!on!to!test!two!different!aspects!of!AHE!security,!using!a!system!based!on!certificates,!and!
also!a!system!based!on!usernames/passwords.!Click!Next!to!continue.!!



$

Section$7:$Configure$the$AHE$client$to$use$a$grid$certificate$and$submit$a$job$

Create!a!new!AHE!keystore!using!the!certificate!file!available!at:!!

/Users/ccs/study/cert.p12 

The password for the certificate is tmpstore 

Once you have created the certificate, open the AHE client, upload a new proxy certificate and run the 
sort application again on the machine crick.chem.ucl.ac.uk  

The configuration file is available at /Users/ccs/study/sortapp-input/config.txt!

Q1:!This!task!was!–!Very!Easy,!Easy,!Neutral,!Difficult,!Very!Difficult!

Q2:!How!satisfied!were!you!with!the!software!used!to!complete!this!task!–!Very!Dissatisfied,!
Dissatisfied,!Neutral,!Satisfied,!Very!Satisfied!

$

Questions!

1. I!think!that!I!would!like!to!use!this!system!frequently!W!Strongly!Disagree,!disagree,!Neutral,!Agree,!
Strongly!Agree.!

2. I!found!the!system!unnecessarily!complex!W!Strongly!Disagree,!disagree,!Neutral,!Agree,!Strongly!
Agree.!

3. I!thought!the!system!was!easy!to!use!W!Strongly!Disagree,!disagree,!Neutral,!Agree,!Strongly!Agree.!!
4. I!think!that!I!would!need!the!support!of!a!technical!person!to!be!able!to!use!this!system!W!Strongly!

Disagree,!disagree,!Neutral,!Agree,!Strongly!Agree.!
5. I!found!the!various!functions!in!this!system!were!well!integrated!W!Strongly!Disagree,!disagree,!

Neutral,!Agree,!Strongly!Agree.!
6. I!thought!there!was!too!much!inconsistency!in!this!system!W!Strongly!Disagree,!disagree,!Neutral,!

Agree,!Strongly!Agree.!
7. I!would!imagine!that!most!people!would!learn!to!use!this!system!very!quickly!W!Strongly!Disagree,!

disagree,!Neutral,!Agree,!Strongly!Agree.!!
8. I!found!the!system!very!cumbersome!to!use!W!W!Strongly!Disagree,!disagree,!Neutral,!Agree,!Strongly!

Agree.!
9. I!felt!very!confident!using!the!system!W!Strongly!Disagree,!disagree,!Neutral,!Agree,!Strongly!Agree.!
10. I!needed!to!learn!a!lot!of!things!before!I!could!get!going!with!this!system!W!Strongly!Disagree,!

disagree,!Neutral,!Agree,!Strongly!Agree.!!

$



$

Section$8:$Submit$a$job$using$the$ACD$client$

Log!in!to!the!AHE!client!using!username!and!password!and!run the sort application again on the machine 
crick.chem.ucl.ac.uk 

The username is test and the password is tmpstore!

The configuration file is available at /Users/ccs/study/sortapp-input/config.txt!

Q1:!This!task!was!–!Very!Easy,!Easy,!Neutral,!Difficult,!Very!Difficult!

Q2:!How!satisfied!were!you!with!the!software!used!to!complete!this!task!–!Very!Dissatisfied,!
Dissatisfied,!Neutral,!Satisfied,!Very!Satisfied!

!

Questions!

1. I!think!that!I!would!like!to!use!this!system!frequently!W!Strongly!Disagree,!disagree,!Neutral,!Agree,!
Strongly!Agree.!

2. I!found!the!system!unnecessarily!complex!W!Strongly!Disagree,!disagree,!Neutral,!Agree,!Strongly!
Agree.!

3. I!thought!the!system!was!easy!to!use!W!Strongly!Disagree,!disagree,!Neutral,!Agree,!Strongly!Agree.!!
4. I!think!that!I!would!need!the!support!of!a!technical!person!to!be!able!to!use!this!system!W!Strongly!

Disagree,!disagree,!Neutral,!Agree,!Strongly!Agree.!
5. I!found!the!various!functions!in!this!system!were!well!integrated!W!Strongly!Disagree,!disagree,!

Neutral,!Agree,!Strongly!Agree.!
6. I!thought!there!was!too!much!inconsistency!in!this!system!W!Strongly!Disagree,!disagree,!Neutral,!

Agree,!Strongly!Agree.!
7. I!would!imagine!that!most!people!would!learn!to!use!this!system!very!quickly!W!Strongly!Disagree,!

disagree,!Neutral,!Agree,!Strongly!Agree.!!
8. I!found!the!system!very!cumbersome!to!use!W!W!Strongly!Disagree,!disagree,!Neutral,!Agree,!Strongly!

Agree.!
9. I!felt!very!confident!using!the!system!W!Strongly!Disagree,!disagree,!Neutral,!Agree,!Strongly!Agree.!
10. I!needed!to!learn!a!lot!of!things!before!I!could!get!going!with!this!system!W!Strongly!Disagree,!

disagree,!Neutral,!Agree,!Strongly!Agree.!!

!



$

Section$9:$Any$comments$on$tasks$7R8$

Please!provide!any!comments!or!feedback!on!the!tasks!you!have!just!completed!in!sections!7W8.!

$

!



Usability$Study$Observer$Record$Sheet!

Participant$

ID:$

$

Section$2:$Using$the$Globus$toolkit$

$ Success$ Failed$ False$completion$ Failed$due$to$previous$

Task$1$ ! ! ! !
Task$2$ ! ! ! !
Task$3$ ! ! ! !
Section$3:$Using$the$Unicore$Graphical$User$Interface$

$ Success$ Failed$ False$completion$ Failed$due$to$previous$

Task$1$ ! ! ! !
Task$2$ ! ! ! !
Task$3$ ! ! ! !
Section$4:$Using$the$Application$Hosting$Environment$Graphical$User$Interface$

$ Success$ Failed$ False$completion$ Failed$due$to$previous$

Task$1$ ! ! ! !
Task$2$ ! ! ! !
Task$3$ ! ! ! !
Section$5:$Using$the$Application$Hosting$Environment$Command$Line$Interface$

$ Success$ Failed$ False$completion$ Failed$due$to$previous$

Task$1$ ! ! ! !
Task$2$ ! ! ! !
Task$3$ ! ! ! !
Section$7:$Configure$the$AHE$client$to$use$a$grid$certificate$and$submit$a$job$

$ Success$ Failed$ False$completion$ Failed$due$to$previous$

Task$1$ ! ! ! !
Task$2$ ! ! ! !
Task$3$ ! ! ! !
Section$8: Submit$a$job$using$the$ACD$client$
$ Success$ Failed$ False$completion$ Failed$due$to$previous$

Task$1$ ! ! ! !
Task$2$ ! ! ! !
Task$3$ ! ! ! !

!
• Successful:!The!participant!completed!the!task!without!difficulty.!
• Failed:!The!participant!gave!up!on!the!task!without!completing!it.!
• False$completion:!The!participant!failed!to!complete!the!task!but!erroneously!believed!that!they!

had!in!fact!been!successful.!
• Failed$due$to$previous:!The!participant!could!not!complete!the!task!because!they!had!incorrectly!

completed!the!preceding!task,!e.g.!couldn’t!download!data!due!to!problem!completing!the!job!
submission!task!



Appendix D

AHE Usability User Manuals

This appendix contains all of the client documentation guides presented to participants

in our AHE usability study. Specifically, this section includes:

• Globus Toolkit Manual

• Unicore Manual

• AHE Graphical Client Manual

• AHE Command Line Tools Manual

• ACD Manual

• Configuring AHE Security Guide



Globus Toolkit Manual 

The Globus Toolkit provides command line clients that allow you to interact with 
grid resources running the Globus middleware.  

 

Preparation 

Prior to using any of the Globus toolkit components, you need to create a proxy 
certificate. This is a short lived security credential that can be used on the grid. 
To create a proxy use the command: 

grid-proxy-init	  

You will be prompted for your certificate password. The password used in all of 
these exercises is tmpstore 	  

 

Submitting a job 

Prior to launching a job, you need to stage any input files required by the job to 
the grid machine you are going to use. Files are staged with the globus-url-copy 
command, e.g.: 

globus-url-copy file:///tmp/foo gsiftp://remote.machine.my.edu/tmp/bar 

The command takes two arguments: the path to the source file, and the path to 
the destination it is to be copied to. On some systems environment variables can 
be used in place of the full path name.  

The simplest command for job submission is globus-job-submit. The minimum 
parameters used by this command are where to send the job and what the 
program to run is. Submit your first job with the command: 
 

globus-job-submit hostname application parameters 

where hostname is the name of the machine you want to use, application is the 
full path to the application, and parameters are the parameters passed to the 
application. For example,  

globus-job-submit ngs.oerc.ox.ac.uk  /bin/hostname -f 

will run the application /bin/hostname on the UK National Grid Service machine 
at Oxford with the parameter -f.  The globus-job-submit command returns a 
reference handle to the job that allows it to be monitored: 

https://ngs.oerc.ox.ac.uk:64001/1415/1110129853/ 

 



Monitoring a job 

Jobs are monitored with the globus-job-status command followed by the 
reference handle of the job to monitor, e.g.:  

globus-job-status  https://ngs.oerc.ox.ac.uk:64001/1415/1110129853/ 

The command will report the status of the job. When the job is complete, the 
status will be reported as DONE.  

 

Retrieving output 

Once a job is complete, the output files generated can again be retrieved using 
the globus-url-copy command, with the local and remote components reversed, 
e.g.: 

globus-url-copy gsiftp://ng2.auckland.ac.nz/home/grid-
bestgrid/output.txt file:///home/yhal003/output.txt 

Will copy the file output.txt from the directory /home/grid-bestgrid/ on the 
machine ng2.auckland.ac.nz to the user’s home directory.  

 



Unicore Manual 

Preparation 

When the client first starts, select the Unicore grid registry under the Registries 
heading. A list of target systems will be shown under the Target Systems 
heading. Right-click on the target system that you want to submit your job to 
and click Connect.  

 

Submitting a job 

To submit a job, first download an appropriate gridbean. Click File > Download 
Gridbeans. The Generic gridbean can be used to run any application on a grid 
system. Select your gridbean and click OK.  

Once the gridbean has loaded, the second tab in the main window will change to 
the name of the bean. Click on this tab (e.g. Generic) to configure your job. 
Enter a name to refer to your job in the Name field, then select the type of 
application you want to run from the drop-down list (e.g. Perl 5.8.8 to run a Perl 
script). Enter any parameters to the application (such as the name of the input 
file) on the same line after the application’s name. 

Next, enter the full path to the application that you want to run on the remote 
system.  

With the application configured, you next need to specify the output files that 
will be generated. To add an output file, click Add, then add a name to refer to 
the file, and the actual name of the file that will be generated, then click OK. 
Repeat this step for each output file that will be created.  

 



Finally, you need to configure the input files that will be staged to the remote 
grid resource in order to run the job. Click on the Files tab, select InputFileSet 
then click Edit.  

For each input file that needs to be staged to the remote machine, click on the 
Add File button, then click Browse and select the file that needs to be staged, 
and click OK. Repeat for each file that needs to be staged, then click OK.  

To run your job click File > Submit Job. Enter the parameters for your job (the 
default will allow the job to run for up to one hour) then click OK.   

 

Monitoring a job 

To monitor a submitted application, click on the Target Systems tab. The job you 
have submitted will be displayed in the main panel. Right-click on the job name 
and choose Refresh to update the status. Once the status is shown as 
SUCCESSFUL the job is complete.  

 

Retrieving output 

Once a job is complete, you retrieve the output by right-clicking on the job name 
and choosing Fetch Outcome. Once the output has been downloaded, it will be 
available on the Job outcome (third) tab of the main window. In addition to any 
output files specified, the standard output and standard error will also be 
retrieved. To save an output file, click on the Managed Output tab, select the file 
then click Save As. Choose a location for the output file and click Save. Repeat 
this step for every output file you need to download.  



	  



AHE Graphical Client 

Submitting a job 

In order to submit a job using the AHE GUI client, double-click on Prepare a new job. 

From the Select an application to run drop down list, choose the application to run then 
click on the button Find Job Factories. After a short time you will see a the factory 
endpoint for your application appear in the box beneath.  

Click on the sort factory endpoint to select it (it should turn blue), then click Launch 
Wizard. 

 

The AHE job launching wizard will open. Enter a name for the job, for example job1 (this 
name is used to give the user a convenient way to refer to the job in future).  

Enter a number of processors for the job – for example enter 1 so that the application is 
run on a single processor. 

Click Next. 

 

 

You are now prompted to choose a machine to run the application on – for this example 
choose crick.chem.ucl.ac.uk (the UCL cluster), then click Next. 

 



 

 

The AHE client will parse your application’s input file to discover the data files that need 
to be moved from the local machine to the grid machine, and the data that will be created 
on the cluster that needs to be moved back to your local machine after the job has 
finished.  

Click on the Browse button, select your sort application configuration file (e.g. 
config.txt). Click Open, then click Next. 

 

 

 



The AHE client will parse the config.txt file and discover the input and output files 
associated with the job. Clicking on the Stage button will move the input files over to the 
AHE file staging area from where it will be moved over to the grid machine. 

Once the files have been staged click Next. 

 

 

Review the details of your sort job and click the Finish button to launch the job. 

 

 

 



Monitoring a job 

To check on the status of your application once launched, double-click on View current 
jobs. You will see the job that you have just launched at the top of the list. Double-click 
on the job entry to open its monitoring window. 

To check up on the status of a job, click on the Update Job button. This will poll the AHE 
server and update the status of the job. 

 

Once a job is complete, the status will be set to AHE DONE. 

Retrieving output 

When the job has finished (signalled by a status of AHE DONE) the output files will be left 
on the AHE file staging server for you to download. To do so, click on the Staged Files 
tab under job output. Here you will see all of the output that has been generated. 

 



 

 

Click on the Local Dir button. This allows you to change the directory where the output 
files will be saved (by default they will be saved to the same directory as the input files). 
Create a new output directory in your home directory and choose Open. 

Click on the Download button. The output files will be saved to the directory you created. 
Browse to this folder and check the output of the sort job. 

 

	  



AHE Command Line Tools 

Submitting a job 

Prior to launching an application you need to discover which applications are 
available. At the terminal type: 

ahe-listapps 

This will list all of the applications installed in the AHE, along with the factory 
endpoints needed to start them. From this list find the endpoint of the 
application you want to run. 

 

The first step to launch an application using the AHE command line clients it to 
issue the ahe-prepare command. The command takes the following parameters: 

ahe-prepare -e endpoint -app application -s name -RMCPUCount 
cpucount 

Where: 

• endpoint = the endpoint of the application discovered using the ahe-list 
command.  

• application = the name of the application to run, discovered using the 
ahe-list command. 

• name = a user defined name to easily refer to the application 
• cpucount = the number of CPUs to use, usually 1.  

 

For example, to run the application charmm with one CPU use the following 
command (all on one line): 



ahe-prepare –e 
https://chemd237.chem.ucl.ac.uk:9443/ahe/AppWSResource -app charmm  
-s job1 -RMCPUCount 1 

The ahe-prepare command will return a list of the machines that are able to run 
the application. 

To set application running, use the ahe-start command as follows: 

ahe-start -s name -config conf-file -RM machine -n cpucount 

Where: 

• name = the name of the application set using the ahe-prepare command.  
• conf-file = the full path to the job configuration file 
• machine = the name of the machine to use, returned by the ahe-prepare 

command.  
• cpucount = the number of CPUs to use, usually 1.  

 

For example, type: 

ahe-start -s job1 -config $HOME/charmm/config.txt -RM 
mavrino.chem.ucl.ac.uk -n 1 

Would run the charmm application using the input file $HOME/charmm/config.txt 
on the machine mavrino.chem.ucl.ac.uk with one CPU. The command will stage 
the necessary files to the AHE file staging area and start the job running. 

 

Monitoring a job 

The ahe-list command allows you to view a list of the jobs you have 
previously started. At the terminal type:  

ahe-list 

The ahe-monitor command allows you to monitor an individual job. To check 
the status of the job type:  

ahe-monitor -s name  

where name is name of the job previously configured. For example, to 
monitor the charmm example from earlier: 

ahe-monitor -s job1 

The ahe-monitor command will return the status of the job. 



 

When a job is completed, the status will be done 

 

Retrieving output 

Once the ahe-monitor command reports the status of the job as complete, you 
can retrieve the output files from the AHE file staging area using the ahe-
getoutput command. The -l parameter allows you to specify the path to the 
directory where you would like the output to be placed. For example, to create a 
new folder in your home directory and download the output data from the charm 
job example type: 

mkdir $HOME/output-dir 

ahe-getoutput -s job1 -l $HOME/output-dir 

 



Task:	  Using	  ACD-AHE	  Client	  to	  run	  an	  Application	  on	  the	  grid	  
 
A Virtual Organisation (VO) is intended to offer simplified end-user access to and use of high 
performance computing (HPC) resources shared across of number of different institutions with different 
administrative domains. A typical example of a VO is the computational grid, which aims to provide 
control over distributed resources consisting of enormous computational power (parallel processing 
machines), data storage (hard disks, memory) and visualisation on high speed networks. Examples of 
currently operating grids include: the UK National Grid Service (NGS) and US TeraGrid. 
 
The sharing of these resources is intended to support academic research and industrial development. A 
computational grid environment may consist of a mixture of several kinds of organisations including 
academic, governmental, industrial and commercial institutions. 
 
Middleware tools exist in order to smooth the connection between the administrative domains and their 
associated resources, but these have not always resulted in the envisaged simplicity and ease of use. The 
Application Hosting Environment1 (AHE) is a tool that allows scientists to run computational applications 
on grid resources in a quick, transparent manner. Version 2.5 of the AHE allows end-users to acquire 
credentials from their local site administrators to access grid resources. This means removing X509 
digital certificate from end-users’ experience. 

 

Aims	  and	  objectives	  
The principal objective of this trial is to introduce you to the state-of-the-art grid computing where you 
will have access to some of the largest supercomputers in the UK. The trial is designed as follows: 

1. The first section shows you how to install and configure light client software, ACD-AHE Client, 
which allows you to run applications on Grid resources using username-password credentials.  

2. In the second section you will use the client ACD-AHE client to run the sort application run on 
the UK National Grid service resources. 

Introduction	  
This ACD-AHE client does not require the end user to obtain a personal X.509 certificate in order to run 
applications at grid. The authentication is based on “username/password”, which most users have already 
been familiar with. The user logs in to ACD-AHE client with a username and password given to them by 
the local administrator in the VO and submits jobs to named grid resources that are provided by the VO.  

Stage	  1: Install the ACd-AHE client on your systems 

1. Download ACD-AHE certificate client file:  name – This has already been done for you and you 
can find the file under your home directory 

a. [user@servername] cd ~ 
b. [user@servername] tar xvfz aheacdclient.tgz  

 



2. Login with the username/password given to you. 

 

3. Select the Virtual organization that you want to use for running you are tasks on its resources. In 
this case it is NGS. 

 
 

4. Follow the same steps as with the normal AHE client (described below) 

5. Click on Prepare a new job  

6. From the Select an application to run drop down list, choose sort then click on the button Find Job 
Factories.  

7. After a short time you will see a Sort factory endpoint appear in the box beneath.  

8. Click on the sort factory endpoint to select it (it should turn blue), then click Launch Wizard 

9. The AHE job launching wizard will open. Enter a name for the job, for example exercise1 (this 
name is used to give the user a convenient way to refer to the job in future). 

10. Enter a number of processors for the job – in this case enter “1”, so that the sort application is run 
on a single processor. 

11. Click Next. 



 

12. You are now prompted to choose an NGS machine to run the application on – for this example 
choose Oxford-NGS2 (the Oxford NGS node), then click Next 

13. The AHE client will parse your sort job’s input file to discover the data files that need to be moved 
from the local machine to the NGS node at Oxford, and the data that will be created at Oxford that 
needs to be moved back to your local machine after the job has finished.  



 

 

 



Configuring AHE Security 
 
A certificate is a way of identifying you to remote computers. It is simply a 
way of letting a resource know you are who you say you are (i.e. authenticate 
yourself). A Certificate can best be imagined as a “Digital Passport” which 
cannot be forged. 
 
Prior to using the AHE client, you need to create a keystore for your client, 
containing your grid certificate. This will be used to authenticate you to the 
AHE server, and generate the proxy credentials required to access grid 
resources. A script is provided to allow you to import your grid certificate in 
p12 format into a Java keystore for use by the AHE client.  
 
At the command prompt type: 
 
kssetup path_to_certificate 
 
where path_to_certificate is the full path to your grid certificate (for example 
/home/ahe/ nescuser00.p12). 
 
When prompted to set up a local configuration directory, answer N 
 
You will be prompted to enter the password for your p12 format certificate. 
Enter the password (tmpstore) and press [Return].  
 
Next, you will be prompted to enter a password for the keystore that you are 
setting up. This will be the password that you enter to unlock the AHE client. 
 
You will see a message telling you that the certificate has been imported, and 
then you will be prompted for your keystore password again (the second 
password you had to enter). 
 
From here, you can use the AHE client to submit jobs as before. Launch the 
AHE GUI client by typing ahe-guiclient followed by [Enter]. You will be 
prompted to enter the password you created when you generated your 
keystore to open the client.  
 
Prior to submitting a job, you need to create a proxy credential to use on the 
grid and upload it to a MyProxy server. This is a short lived certificate which the 
AHE can use to submit the job to the grid machine on behalf of the user. There 
are many different tools that will allow you to generate and upload a proxy 
certificate to a MyProxy server (e.g. Gloubs’s myproxy-init). The AHE GUI client 
features the ability to generate and upload proxies, which we will use in this 
section. 
 
To generate and upload a proxy certificate using the AHE, double-click on 
Manage certificates, and, in the Upload Proxy box, enter and confirm a 
password for your proxy certificate, then click Create and Upload. 
  
When the proxy certificate has been successfully created and uploaded, the 
details of the proxy will be shown in the Current Proxy Credentials box. Clicking 



on the Delete Credential from Server button will delete the proxy credential.  
The proxy credential tool allows you to specify the lifetime of the proxy on the 
proxy server. After a proxy expires a new one will need to be created before you 
can submit jobs again.  
 
Once the proxy certificate has been uploaded and created, you can submit a job.  
 
 



Glossary

ACL Agent Communication Language, a proposed standard language for agent com-

munications.

Agent a computer program that acts for a user or other program in a relationship of

agency.

Beowulf a computer cluster of what are normally identical, commodity-grade com-

puters networked into a small local area network with libraries and programs

installed which allow processing to be shared among them.

BPEL an OASIS standard executable language for specifying actions within business

processes with web services.

Cluster a set of loosely or tightly connected computers that work together so that they

can be viewed as a single system.

Condor an open-source high-throughput computing software framework for coarse-

grained distributed parallelization of computationally intensive tasks.

DEISA an e-infrastructure consortium of eleven national supercomputing centres from

seven European countries that promoted pan-European research on European

high-performance computing systems.

FIPA Foundation for Intelligent Physical Agents, a body for developing and setting

computer software standards for heterogeneous and interacting agents and agent-

based systems.

gLite a middleware software toolkit for grid computing used by the CERN LHC ex-

periments and other scientific domains.
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Globus an open source grid computing middleware toolkit developed and supported

by the Globus Alliance.

GPGPU general-purpose computing on graphics processing units, the utilization of a

graphics processing unit (GPU) to perform computation in applications tradition-

ally handled by the central processing unit.

GRAM a Globus component which enable users to locate, submit, monitor and cancel

remote jobs on grid based compute resources.

Grid the aggregation of computer resources from multiple locations to reach a com-

mon goal.

GridFTP an extension of the standard File Transfer Protocol (FTP) for high-speed,

reliable, and secure data transfer.

GSI a specification for secret, tamper-proof, delegatable communication between soft-

ware in a grid computing environment.

HPC refers to the practice of aggregating computing power in a way that delivers

much higher performance than one could get out of a typical desktop computer

or workstation, in order to solve large problems.

HTTP an application protocol used to build distributed, collaborative, hypermedia in-

formation systems.

IaaS a provision model in which an organization outsources the equipment used to

support operations, including storage, hardware, servers and networking compo-

nents.

InfiniBand a computer network communications link used in high-performance com-

puting featuring very high throughput and very low latency.

iRODS a logical distributed file system based on a client-server architecture which

presents users with a single global logical namespace or file hierarchy.

JSDL an extensible XML specification used to described simple tasks to be run on

non-interactive computer execution systems.
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LoadLeveler a family of IBM Tivoli workload automation products that plan, execute

and track jobs on several platforms and environments.

LSF a workload management platform, job scheduler, for distributed HPC environ-

ments, developed by Platform Computing.

MapReduce a programming model for processing and generating large data sets using

a parallel, distributed algorithm on a cluster.

MAS multi-agent system, a computerized system composed of multiple interacting

intelligent agents within an environment.

MDS the information services component of the Globus toolkit and provides informa-

tion about the available resources on the grid and their status.

MPI a standardized and portable message-passing system designed by a group of re-

searchers from academia and industry to function on a wide variety of parallel

computers.

MPICH-G2 a distributed version of MPI that allows a single application to be dis-

tributed across multiple grid resources, the forerunner to MPIg.

MPIg a distributed version of MPI that allows a single application to be distributed

across multiple grid resources.

MyProxy open source software for managing X.509 Public Key Infrastructure (PKI)

security credentials.

Myrinet a high-speed local area networking system designed by Myricom to be used

as an interconnect between multiple machines to form computer clusters.

NAMD a freeware molecular dynamics simulation package noted for its parallel effi-

ciency and often used to simulate large systems.

NAT a method[1] of modifying network address information in Internet Protocol (IP)

datagram packet headers while they are in transit across a traffic routing device

for the purpose of remapping one IP address space into another.
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OGSA a distributed interaction and computing architecture based around services, as-

suring interoperability on heterogeneous systems so that different types of re-

sources can communicate and share information.

OGSA-BES a Web services based interface for creating, monitoring, and controlling

computational entities such as UNIX or Windows processes, Web Services, or

parallel programs.

OGSI a proposed recommendation intended to provide an infrastructure layer for the

Open Grid Services Architecture (OGSA) by extending Web services to accom-

modate grid computing resources that are both transient and stateful..

OpenMP a portable, scalable API that gives programmers a simple and flexible in-

terface for developing parallel applications for platforms ranging from a desktop

workstation to a supercomputer.

OSI open systems interconnection model, a conceptual model that characterizes and

standardizes the internal functions of a communication system by partitioning it

into abstraction layers.

PBS a job scheduling application used to allocate computational tasks, originally de-

veloped by NASA.

POP3 an application-layer protocol used by local e-mail clients to retrieve e-mail from

a remote server.

PRACE a persistent high performance computing e-infrastructure providing services

to scientists and researchers from academia and industry in Europe.

PVM parallel virtual machine, a software tool for parallel networking of computers.

QCG QosCosGrid, a middleware toolkit offering advanced job and resource manage-

ment capabilities to deliver to end-users supercomputer-like performance and

structure.

REST an architecture style used as a set of guidelines for creating web services which

allow nodes connected to a network to communicate with one another via the

HTTP communication protocol.
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RFQ request for quotation, a standard business process whose purpose is to invite

suppliers into a bidding process to bid on specific products or services.

SaaS a software licensing and delivery model in which software is licensed on a sub-

scription basis and is centrally hosted.

SAGA a family of related standards specified by the Open Grid Forum to define an

API for common distributed computing functionality.

SGE a compute cluster batch-queuing system, developed and supported by Sun Mi-

crosystems and Oracle.

SMP symmetric multiprocessing, a multiprocessor system with centralized shared

memory and a single operating system, with two or more homogeneous pro-

cessors.

SMTP an Internet standard for e-mail transmission.

SOA a set of principles and methodologies for designing and developing software in

the form of interoperable services.

SOAP a protocol specification for exchanging structured information in the implemen-

tation of web services in computer networks.

SUS system usability scale, a simple, ten-item attitude Likert scale giving a global

view of subjective assessments of usability.

Unicore an open source grid computing middleware toolkit, the development of which

is supported by UNICORE Forum e.V..

VPH Virtual Physiological Human, a methodological and technological framework,

and associated research initiative, designed to enable collaborative investigation

of the human body as a single complex system.

WebDAV an extension of the Hypertext Transfer Protocol (HTTP) that allows clients

to perform remote Web content authoring operations.
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WSDL an XML-based interface definition language that is used to describe the func-

tionality offered by a web service.

WSRF a set of operations that web services may implement to become stateful.

X.509 an ITU-T standard for a public key infrastructure (PKI) and Privilege Manage-

ment Infrastructure (PMI).

XSEDE a US based e-infrastructure that scientists can use to interactively share com-

puting resources, data and expertise.

XSLT a language for transforming XML documents into other XML documents or

other formats.
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