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This paper reports a dynamic causal modeling study of electrocorticographic (ECoG) data that addresses func-
tional asymmetries between forward and backward connections in the visual cortical hierarchy. Specifically,
we ask whether forward connections employ gamma-band frequencies, while backward connections preferen-
tially use lower (beta-band) frequencies.We addressed this question bymodeling empirical cross spectra using a
neural massmodel equippedwith superficial and deep pyramidal cell populations—that model the source of for-
ward and backward connections, respectively. This enabled us to reconstruct the transfer functions and associat-
ed spectra of specific subpopulations within cortical sources. We first established that Bayesian model
comparison was able to discriminate between forward and backward connections, defined in terms of their
cells of origin.We then confirmed that model selection was able to identify extrastriate (V4) sources as being hi-
erarchically higher than early visual (V1) sources. Finally, an examination of the auto spectra and transfer func-
tions associated with superficial and deep pyramidal cells confirmed that forward connections employed
predominantly higher (gamma) frequencies, while backward connections were mediated by lower (alpha/
beta) frequencies. We discuss these findings in relation to current views about alpha, beta, and gamma oscilla-
tions and predictive coding in the brain.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

This paper is about the asymmetries in effective connectivity among
different levels of the visual cortical hierarchy. These asymmetries were
quantified in terms of the spectral characteristics of sources, as mea-
sured with electrocorticographic (ECoG) local field potential (LFP)
data from an awake-behavingmonkey performing a visuospatial atten-
tion task. We used dynamic causal modeling to assign underlying neu-
ronal activity to specific cell populations elaborating forward and
backward connections among cortical areas. This enabled us to estimate
the frequencies conveying forward and backward influences between
sources at different hierarchical levels. In brief, we confirmed that for-
ward connections aremediated by gamma frequencies, while backward
connections appear to be conveyed by alpha/beta frequencies. These re-
sults rest upon two recent developments in themodeling of electrophys-
iological data: the first is the introduction of dynamic causal modeling
for complex data, such as the complex cross spectra summarizing
g andMemory,MIT, Cambridge,

s).

. This is an open access article under
dependencies among recordings from different sites (Friston et al.,
2012). The second development is the introduction of a neural mass
model (based on a canonical microcircuit) that distinguishes between
cell populations that give rise to forward and backward extrinsic connec-
tions. This model has been motivated from a theoretical perspective of
predictive coding in Bastos et al. (2012). In addition, empirical evidence
for a dissociation between gamma andbeta in feedforward and feedback
transmission in the visual system was recently demonstrated by Bastos
et al. (2011, 2015). Given this theoretical and empirical motivation, we
use dynamic causal modeling of empirical cross spectra to address, spe-
cifically, spectral differences between forward and backward connec-
tions and their underlying generative mechanisms.

This paper comprises four sections. The first section briefly reviews
the empirical evidence for dissociations in the neuroanatomy, physiolo-
gy, function, and frequency content of forward and backward message
passing, and how these dissociations may be understood in terms of
neuronal computations and distributed processing during perceptual
inference. The second section then considers the more pragmatic issue
of how to quantify asymmetries using mesoscopic and macroscopic
electrophysiological measurements. This section constitutes a brief re-
view of the empirical and theoretical motivation for the canonical
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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microcircuit model used in the subsequent section for dynamic causal
modeling.We then briefly review dynamic causal modeling, with a spe-
cial focus on models of cross-spectral densities acquired under steady-
state assumptions. The final section presents an analysis of empirical
data that first establishes the face validity and the predictive validity
of the model and then presents our results in terms of population-
specific spectral behavior and directed connectivity in terms of transfer
functions. We conclude with a discussion of these results in the light of
current theories about inter-areal communication, oscillations, and
message passing in the brain.

Functional asymmetries in hierarchical connections

The importance of asymmetries between forward and backward con-
nections has been established for several decades and yet the in vivo elec-
trophysiological evidence for systematic differences has until recently
remained somewhat indirect. Perhaps the most well-known asymmetry
between feedforward and feedback connectionswas established by a se-
ries of seminal tract tracing studies (e.g., Rockland et al., 1979) reviewed
by Felleman and Van Essen (1991). In this review, the authors examined
patterns of anterograde and retrograde anatomical tracing studies made
in several different areas of the macaque visual cortex and concluded
that three canonical patterns of anatomical connectivity emerged across
the many areas studied, which they termed feedforward, feedback, and
lateral connections (Felleman and Van Essen, 1991). Feedforward con-
nections canonically derived from the superficial pyramidal cells of the
source area and targeted the granular layer of the recipient area, while
feedback connections derived from the infragranular layers of the source
area and terminated outside the granular layer of the recipient area. This
observation led these authors to propose a hierarchical model of cortical
processing organized into approximately ten levels, starting with area
V1 at the bottom of the visual (cortical) hierarchy. This pattern of con-
nectivity has recently been extended, with the observation that not all
feedforward connections derive strictly from the supragranular layers.
Instead, it appears that the ratio of projection neurons located in
supragranular layer to projection neurons located in infragranular layers
can be used as a rough marker for how stereotypically feedforward or
feedback a given connection is—areas that are nearby to one another in
the hierarchy will have a weaker supra—to infragranular asymmetry
compared to areas that are separated by multiple hierarchical levels
(Barone et al., 2000; Markov et al., 2013; Vezoli, 2004).

Physiologically, there is a variety of evidence for asymmetries in the
functional characteristics of feedforward versus feedback projections.
These asymmetries are clearest in the first-order thalamic nuclei such as
the lateral geniculate nucleus (LGN), whose afferents can be separated
into two classes—feedforward input from the retina and feedback from
layer 6 of the first visual cortical area. These connections differ from
each other in severalways: feedforward connections display strong initial
EPSPs (excitatory postsynaptic potentials), use exclusively ionotropic
glutamate receptors, and have depressing synapses to paired-pulse
stimulation (Sherman and Guillery, 1998). Feedback connections termi-
nate on the distal part of the dendritic arbor, evoke weaker EPSPs, are
more modulatory in the sense that they employ both ionotropic and
metabotropic synaptic components, and show paired-pulse facilitation
(Sherman and Guillery, 2011). In addition, geniculocortical feedforward
and corticogeniculate feedback functional connectivities have recently
been shown to be asymmetric in the frequency domain: beta-band
frequencies signaled in the feedforward (geniculocortical) direction and
alpha-band frequencies signaled in the feedback (corticogeniculate)
direction (Bastos et al., 2014a). One possible explanation for this dissoci-
ation of the faster frequency for feedforward communication and the
slower frequency for feedback communication is that it may be due to
the differences in synaptic physiology of the two directions.

In contrast to the LGN afferents, the evidence about the synaptic
physiology of corticocortical connections is much more mixed. Two re-
cent studies that examined the synaptic characteristics between mouse
V1–V2 and A1–A2 found essentially no evidence for asymmetries in any
of the properties that were previously discovered to discriminate
feedforward and feedback connections at the level of the LGN (Covic
and Sherman, 2011; De Pasquale and Sherman, 2011). At the level of sin-
gle neurons, it is known that forward connections between V1 and higher
cortical areas establish the basic receptive field characteristics of those
higher areas because when V1 is experimentally cooled or lesioned to si-
lence its activity, areas V2, V3, V3A, V4, and MT are either strongly re-
duced in their activity or activity is completely abolished (Girard et al.,
1991, 1992; Girard and Bullier, 1989). This is consistent with a strong,
driving role for the feedforward connections. In contrast, when the feed-
back connections are silenced, activity in earlier cortical areas appears to
be only weakly affected, and the sign of the effect appears to depend on
whether the extraclassical receptive field is stimulated or not (Bullier
et al., 1996; Hupé et al., 1998). This indicates that feedback connections
aremoremodulatory or nonlinear andmay interact with activity in earli-
er areas in a complexway. A nonlinear,modulatory role for corticocortical
feedback is also consistent with an early neuroimaging study that
modeled fMRI responses to visual stimulation, and found that feedback
connections between V2 and V1 were more modulatory in relation to
the feedforward connection from V1 to V2 (Friston et al., 1995).

Another dissociation between feedforward and feedback connections
is their valence (functionally excitatory or inhibitory). Feedforward con-
nections are thought to produce the main excitatory drive to neurons in
the visual system,while feedback connections have been associatedwith
contextual processing that can often inhibit neuronal activity of earlier
areas (for example, extraclassical receptive field effects). Although
extrinsic, i.e., inter-areal, connections in the cortex are often to be
exclusively excitatory (but seeMelzer et al., 2012), an effective (polysyn-
aptic) inhibitory effect could be mediated through several distinct
corticocortical pathways, such as synaptic feedback termination in
layer 1 and layer 6 (reviewed in Bastos et al., 2012). Corticocortical feed-
back connections terminate heavily in these layers (Shipp, 2007), and
both layers appear to have an inhibitory influence on pyramidal cells in
layers 2 to 5, presumably mediated by intrinsic, i.e., local, inhibitory in-
terneurons (Meyer et al., 2011; Olsen et al., 2012; Shlosberg et al.,
2006). This hypothesized inhibitory role for corticocortical feedback is
consistent with a large literature in the neuroimaging field that has
established that when neuronal responses are more predictable, neural
activity in earlier areas tends to decrease, consistent with a predictive
role for feedback connections (Alink et al., 2010; Garrido et al., 2009;
Summerfield et al., 2008, 2011). Furthermore, a study using dynamic
causal modeling (DCM) for induced responses measured with MEG
documented a greater suppressive effect of feedback compared to
feedforward connections, and this suppressive effect was specific to
higher frequencies in higher cortical areas suppressing lower frequencies
of lower cortical areas (Chen et al., 2009). The authors interpreted this
(somewhat unexpected) result along the following lines: “Heuristically,
this means that gamma activity in low-level areas induces slower
dynamics at higher cortical levels as prediction error is accumulated for
perceptual synthesis. The concomitant high-level gamma activity (due
to intrinsic nonlinear coupling) then accelerates the decay of evoked
responses in the lower level that are manifest at, the population level, as
damped alpha oscillations” (Chen et al., 2009, p461). Importantly, (Chen
et al., 2009) modeled induced responses phenomenologically. In the
current paper, we build on these findings by modeling the neuronal
dynamics that give rise to feedforward and feedback effects such as
those reported by Chen et al., 2009. In other words, we try to account
for the basic phenomena (asymmetric spectral coupling) in terms of
biophysically plausible neuronal processes. Note that the current applica-
tion ofDCMdoesnot requirefluctuations in spectral responses; it operates
directly on the relative expression of different frequencies in the cross
spectra. In contrast, DCM for induced responses (e.g., Chen et al., 2009)
models time-dependent changes in cross spectra induced by a stimulus.

This points to another emerging dissociation between forward and
backward connections: their frequency content (Wang, 2010). Several
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lines of evidence now suggest that forward connections prefer gamma,
or generally higher, frequencies while backward connections prefer
alpha/beta, or generally lower, frequencies (Bastos et al., 2014a, 2015;
Bollimunta et al., 2011; Bosman et al., 2012; Buschman and Miller,
2007; Fontolan et al., 2014; Maier et al., 2010; Roopun et al., 2006;
Van Kerkoerle et al., 2014; Von Stein et al., 2000). Buffalo et al. (2011)
recorded in the superficial and deep layers of monkey visual areas V1,
V2, and V4. They found that single units in the superficial layers (the
layers sending feedforward projections) showed clear, oscillatory
spike-field coherence in the gamma range, while units in the deep
layers (the layers sending feedback connections) lacked this
gamma coherence and instead were coherent with the LFP in the
alpha/beta range. Consistent with this asymmetry, Bosman et al.
(2012) showed that between visual areas V1 and V4, gamma oscilla-
tions were much stronger in the feedforward as compared to the
feedback direction. Furthermore, Bastos et al. (2015) found a dissoci-
ation between forward and backward connections across 28 pairs of
areas in the visual system: Granger-causal influences in the gamma-
band were consistently stronger in the feedforward direction,
whereas in themajority of the connections, Granger-causal influence
in the beta-band were stronger in the feedback direction (Bastos
et al., 2011, 2015). For a review of these findings in relation to cur-
rent models of the function of oscillations in inter-areal neuronal
communication, see (Bastos et al., 2014b).

These dissociations in forward and backward connections are partic-
ularly important from the theoretical view of predictive coding: in these
models of hierarchical inference, the role of forward connections is to
transmit prediction error from earlier levels to later levels, whereas
the role of backward connections is to transmit predictions from later
levels to earlier levels (Friston, 2008; Rao and Ballard, 1999). In predic-
tive coding, backward predictions serve to constrain or explain away ac-
tivity of earlier levels that is consistent with the internal generative
model. In other words, top-down predictions reduce prediction errors
that reflect mismatch between those predictions and bottom-up senso-
ry input. Because of this, their polysynaptic effective connectivity is as-
sumed to be suppressive or inhibitory. This proposed inhibitory effect
of feedback is supported by many studies of feedback connections
(reviewed in Bastos et al., 2012). The predictive coding model also pro-
poses an asymmetry in terms of fast and slow frequencies: backward
connections transmitting high-level model predictions must—by their
nature—use slower frequencies than the forward connections transmit-
ting prediction errors (Friston, 2008). Heuristically, this spectral asym-
metry is inherited from a fundamental property of predictive coding:
in predictive coding, predictions (from deep pyramidal cells) accumu-
late prediction errors (from superficial pyramidal cells). This accumula-
tion effectively performs a gradient descent, such that the rate of change
of deep pyramidal cells is driven by ascending prediction error. This
means that the frequencies of prediction errors are attenuated in pro-
portion to their frequency in terms of the neuronal responses they elicit
(Bastos et al., 2012). Conversely, descending predictions suppress pre-
diction errors directly, thereby preserving their frequency content.
Thismeans that high frequencies in ascendingprediction errors are sup-
pressed at successive levels of hierarchical processing, in contrast to de-
scending predictions.

This dissociation, with fast frequencies relaying prediction errors
and slower frequencies relaying predictions, is consistent with studies
that have examined oscillatory responses during repetition suppression,
auditory processing of expected and unexpected stimulus sequences,
and auditory/visual speech processing (Arnal et al., 2011; Bauer et al.,
2014; Kaliukhovich and Vogels, 2012; Todorovic et al., 2011). Recently,
Bauer et al. (2014) characterized attention-dependent changes in alpha
activity and gamma activity in human subjects using MEG. They found
that whereas increases in alpha attentional lateralization tracked stimu-
lus predictability, gamma attentional lateralization was suppressed by
stimulus predictability. These results suggest that slower frequencies
(alpha) may be used to convey predictions, while faster frequencies
(gamma) could reflect prediction errors. For a review of these findings
in relation to predictive coding, see Friston et al., 2014b.

To test these predicted asymmetries in message passing between
cortical levels, it is useful to consider how neural microcircuits generate
oscillations, and how intrinsically coupled microcircuits interact
through extrinsic connections. In the next section, we will introduce a
dynamic causal model of canonical microcircuits that was designed to
address the above issues by specifying how intrinsic and extrinsic con-
nections shape oscillatory coupling. Our hope was that this would
allow us to model in greater detail the asymmetries (in terms of ana-
tomical connections, functional valence, frequency content, and puta-
tive function) that distinguish forward and backward connections.

Dynamic causal modeling with canonical microcircuits

In this section, we briefly review the theoretical and empirical evi-
dence that computations throughout the cortex can be understood as
canonical. We introduce a DCM that captures many functional and ana-
tomical properties of canonical microcircuits that constitute the cortex
and that importantly contains the requisite connections to perform hi-
erarchical Bayesian filtering (predictive coding). Dynamic causal
models of this sort allow real data from invasive (e.g., LFP/ECoG) or
non-invasive (e.g., EEG/MEG) recordings to be used to characterize
the canonical microcircuits that generated them. We will see an exam-
ple of this in subsequent sections.

It is useful to consider the massive computational problem that any
cortical column faces in transforming synaptic inputs, performing com-
putations on those inputs, and relaying the results of these computa-
tions as spiking outputs to other cortical or subcortical areas. First, the
number of afferent synaptic inputs is typically small compared to the
number of intrinsic (local) synaptic input. For example, in cortical area
V1, only 4% of all the synapses in the granular (main input) layer are
from the LGN—most of the remaining synapses are intrinsic connections
from the local column (Binzegger et al., 2004). In addition, when a ret-
rograde tracer is injected into a given cortical area, 70–90% of labeled
neurons are contained within the immediately adjacent (within
2 mm) cortical patch, meaning that the bulk of neuronal interactions
occur intrinsically, and extrinsic inputs are vastly outnumbered by in-
trinsic inputs (Markov et al., 2012). The cortex needsmechanisms to ef-
fectively select and sustain these sparse inputs in order to have a chance
at performing any useful computation on them. Second, as the cortex
amplifies these inputs, strict homeostatic circuit properties must be in
place to constrain excitation relative to inhibition—to prevent runaway
excitation (as observed experimentally by Haider et al., 2006). Third, a
given cell in the cortical column must be able to effectively select rele-
vant synaptic inputs from a massive number of potential presynaptic
signals, since a given pyramidal cell in the cortex receives about
10,000 synapses (Larkman, 1991). Lastly, in order to functionally segre-
gate top-down from bottom-up processing, a given column must be
able to separate higher-order inputs from lower-order inputs—which
appears to be accomplished at least in part by the laminar termination
pattern of synaptic inputs (Felleman and Van Essen, 1991), and in part
by functional segregation as discussed in more detail below. Inputs to
a cortical column from cortical areas above it in the hierarchy could,
through their larger sampling of the perceptual field and their more
elaborated response properties, convey signals that contextualize sig-
nals from earlier areas. These computational challenges are faced by
nearly all cortical areas—if a solution to these issues arose during evolu-
tion, it seems likely that it would be conserved over many species and
present, to some extent, in all cortical circuits.

Rodney Douglas and Kevan Martin proposed a “canonical microcir-
cuit for the neocortex” based on their recordings from cat primary visual
cortex that contains the necessary properties to meet these computa-
tional demands (Douglas et al., 1989; Douglas and Martin, 1991,
2004). Furthermore, they hypothesized that elements of this circuit
could be replicated, with minor variations, throughout the cortical
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sheet. In their model, weak thalamic inputs project onto a cortical col-
umn containing three cell populations: excitatory cells in the superficial
and deep cortical layers, and a common pool of inhibitory interneurons.
Through intrinsic interconnections among these populations, weak tha-
lamic inputs are amplified. Reciprocal connections between the popula-
tions maintain a balance of inhibition and excitation. Relatively strong
connections between the inhibitory cells and deep pyramidal cells seg-
regate the superficial and deep cell responses. Lastly, in their revised
model, dense (lateral) interconnections in the superficial pyramidal
cells allow these cells to sample their diverse inputs on the dendritic
tree and implement a version of a winner-take-all algorithm (Douglas
and Martin, 2004). The results of this computation are transferred to
lower cortical areas via the deep pyramidal cells or to higher cortical
areas via the superficial cells.

From the theoretical point of view of hierarchical inference in the
brain, a canonical microcircuit for predictive coding has also been
proposed recently (Bastos et al., 2012). This computational treatment
appeals to the free energy principle, which provides a set of mathemat-
ical constraints for how homeostatic, biological systems like the brain
must operate. In brief, the argument goes as follows (see Friston, 2008
for an in-depth treatment): biological systems must exist within a
bounded (physiological) set of states to ensure their survival. To accom-
plish this, biological systems must minimize the entropy of the proba-
bility distribution of their states, over time, which corresponds to
minimizing surprise at each point in time. Minimizing surprise is the
same as maximizing Bayesian model evidence. Under some simplifying
assumptions, this corresponds to minimizing prediction error under a
(generative) model of sensory inputs—in other words, the brain tries
to predict its sensations using amodel with the greatest evidence (min-
imum complexity). Clearly, in order to accomplish this, the brain must
contain a generative model of its environment. Self-evidently, the
causes and contexts of the sensory states that our brains sample interact
in a hierarchical and nonlinear fashion—a simple example of this is visu-
al occlusion, in which the cause of one percept (the occluded object) in-
teracts with its context (the occluder). In a typical visual scene, multiple
causes and contexts at different levels interact with one another and
change dynamically to produce sensory input, which poses a complex
inference (inverse) problem for the brain. In order to cope with such
conditional dependencies at multiple levels and time scales, the brain
must possess a hierarchical generative model whose structure is able
to represent the contents, causes, and contexts of the world in which
it finds itself.

Predictive coding is a scheme that embodies these features of gener-
ative models. In short, it proposes that the brain minimizes surprise
(prediction errors) by inverting a hierarchical generative model to re-
cover Bayesian or conditional estimates of the hidden causes of its sen-
sations (describing the relevant states of its biological eco-niche). These
estimates correspond to predictions about hidden states and causes at
multiple hierarchical levels. In addition to conditional estimates, predic-
tive coding schemes maintain that the brain also represents prediction
errors, which correspond to the difference between the conditional es-
timates at one level of the hierarchy and those predicted by the level
above. At the lowest level, this corresponds to sensory prediction
error, namely, the difference between predicted and actual sensations.
Fig. 1 provides a schematic describing this sort of predictive coding in
terms of differential equations. These equations (Fig. 1A) find the best
possible explanation (in a Bayesian sense) for sensory inputs. Bastos
et al. (2012) exploits the remarkable correspondence between the com-
putational dependencies implied by this scheme and the intrinsic and
extrinsic canonical circuitry (Fig. 1B) to associate specific cell types
with specific computational roles. The end point of this exercise is a ca-
nonical microcircuit for predictive coding (Fig. 1C).

The arrangement in Fig. 1C can be regarded as a proposal for a ca-
nonical microcircuit for predictive coding. However, in this form, the
model is slightly over-parameterized for dynamic causal modeling of
electromagnetic responses (EEG/MEG/LFP). Usually, dynamic causal
models only entertain three subpopulations or neuronal masses
(David et al., 2006; Garrido et al., 2007; Moran et al., 2008, 2011). In
the current paper, we describe a dynamic causal model with four sub-
populations and show that this additional complexity can still be iden-
tified using simulations and neurophysiological data. Therefore, we
conclude this section by describing a reduced canonical microcircuit
with four cell types that will be used to model LFP data in subsequent
sections. This canonical microcircuit model has already been used to
model EEG and MEG evoked potentials (Brown and Friston, 2012,
2013; Fogelson et al., 2014; Moran et al., 2013) and ECoG within-area
cross-spectral densities (Pinotsis et al., 2014). Here, we provide the the-
oretical and computational motivation for the canonical microcircuit
DCM used in these and the current study:

In brief, we set ourselves the constraint that the model should only
use four sets of second-order ordinary differential equations (as in the
Jansen and Rit model).We therefore chose tomodel the conditional ex-
pectations and prediction error units for hidden causes and states, re-
spectively. This reduction involved collapsing two pairs of cell types in
the full model (see Fig. 2A) to arrive at a reduced model (Fig. 2B): the

conditional expectation of hidden causes eμ ið Þ
v and the prediction error

on hidden causes eξ ið Þ
v are represented by the conditional expectation of

hidden causeseμ ið Þ
v . Similarly, the conditional expectation of hidden states

eμ ið Þ
x and the prediction error on hidden states eξ ið Þ

x are represented by the

prediction error of hidden states eξ ið Þ
x . Note that the reduction has not

eliminated any representations, but has simply removed populations
that were represented in two locations in the full model. This choice
was somewhat arbitrary but parsimoniously collapses excitatory cells
in the granular and supragranular layers into a single population and,
similarly, inhibitory cells in the granular and supragranular layers. This
preserves the topology of the extrinsic connectivity (superficial cells
giving rise to forward connections and deep cells giving rise to back-
ward connections), while producing a simplified model that we know
can be identified with reasonable efficiency given typical data.

Note that in the DCM (Fig. 3B), we have changed the excitatory in-
trinsic connections of the superficial pyramidal cells onto the layer 4
input cells to be inhibitory, and additionally, the backward connections
fromdeep pyramidal cells to the superficial pyramidal and inhibitory in-
terneurons of the previous cortical column are also inhibitory. These
flips in the signs of the connections ensure that each pair of intercon-
nected subpopulations has one inhibitory connection and one excitato-
ry connection. This ensures that inhibition and excitation are balanced.
Technically, imposing this anti-symmetry on the intrinsic connections
ensures that the microcircuit has a fixed-point attractor. This enables
us to use a local linear stability analysis at the fixed point to predict
spectral responses. A fixed point is important when it comes to
predicting spectral responses because these predictions rest upon an
expansion around the system's fixed point (see Moran et al., 2008).
Clearly, this limits the class of models that can be entertained in
explaining data; however, simulations under different parameters sug-
gest that the dynamic repertoire of this class is more than sufficient to
reproduce spectra typically seen empirically.

Furthermore, an overall (polysynaptic) inhibitory role for backward
connections (see Fig. 3B, extrinsic feedback connections) is also consis-
tentwith anatomy and physiology (as reviewed in the previous section)
and is prescribed by the equations in Fig. 1 (prediction error units on

hidden causes eξ ið Þ
v are the weighted difference of current causes eμ i−1ð Þ

v

and higher-order predictions g(i)). In DCM, inhibitory connections that
originate from excitatory cells are imagined to be mediated indirectly
via inhibitory interneurons. This applies to the self-inhibition (not
shown) of excitatory cells—such as self-inhibition of superficial pyrami-
dal cells. The ensuing reduced model is shown in Fig. 3A in terms of its
computational representations and in terms of its constituent cell
types in Fig. 3B. This model will be used to model the cross spectra
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Fig. 1. Panel A: The equations in the upper panels define the dependencies between prediction error and conditional estimates (μ) of hidden states (x) and hidden causes (v). These equa-
tions have a general form and correspond to generalized predictive coding or Bayesian filtering. The precise form of these equations has been described inmany previous communications
(see Friston, 2008, for details). In brief, prediction errors are formed at each level of the hierarchy on the basis of conditional estimates at the current level and top-down or lateral pre-
dictions based on conditional estimates at the same level or a higher level. These prediction errors are weighted by their estimated precision (inverse variance) and are combined to
drive conditional estimates in the same level and the level above. The top-down predictions are formed through nonlinear functions f and g) of conditional estimates that constitute
the hierarchical generativemodel that is implicit in the connectivity. The relevant point for the present study is the form of these equations and the implicit dependencies among the var-
ious terms, which require physical (intrinsic and extrinsic) connections in the brain. Panel B: An overview of intrinsic circuitry based on neuroanatomical and functional data based on a
review of quantitative studies by Haeusler andMaass (2007). Panel C: Our interpretation of this canonical connectivity establishing the relationship between the quantities in the predic-
tive coding scheme (top panel) and specific cell populations in canonical microcircuits (Bastos et al., 2012 for details).
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from LFP signals recorded in V1 and V4 in the last section (see Fig. 4).
First, we consider how a DCM—of the sort shown in Fig. 4—is identified
(inverted) using empirical data.

Dynamic causal modeling of cross-spectral densities

The goal of DCM is to account for observed neurophysiological data
features in terms of the underlying circuits that caused them. In more
traditional approaches to data analysis in neuroscience, data features
such as event-related potentials (ERPs), induced or evoked power spec-
tra, or coherence spectra between signals are examined and compared
in the context of a particular task. In DCM, those same data features
are taken as a starting point: one performs Bayesian model inversion
using a biophysically plausible generative model, in order to select an
optimal model that explains the observed data features. An optimal
model is a model that has the greatest Bayesian model evidence; in
otherwords, amodel thatfits the data accurately butwith theminimum
of complexity.Minimizing complexitymeans that the parameters of the
model should deviate from prior beliefs as little as possible. Model in-
version or fitting provides approximate posterior estimates of model
parameters and a free energy approximation to the model evidence.
This is generally used to compare competing explanations or models
of the same data.

The generative model used by DCM usually comprises two parts:
(i) the neuronal model, which comprises equations describing the dy-
namics of hidden neuronal states and their responses to exogenous or
endogenous input, and (ii) an observation model mapping hidden neu-
ronal states (source-level activity) onto observed electrophysiological
responses (at the sensor level). For EEG and MEG data, the observation
model would specify how source activity is volume conducted to the
scalp level (for example, assuming a current-source dipole model),
whereas for LFP recordings, the observation model includes the param-
eterized channel-specific gain and assumptions about the spectral form
of (channel-specific and nonspecific) noise associated with the record-
ings. For the neuronal model, in this paper, we have chosen differential
equations based on synaptic convolution, as in the Jansen and Rit model
(Jansen and Rit, 1995). In these models, the dynamics of each neuronal
mass or subpopulations are modeled with two transformations: the
transformation of presynaptic input to postsynaptic depolarization
and the transformation of depolarization to spiking output. The latter
(postsynaptic potentials to spiking) transformation is approximated
using a sigmoid activation function, which approximates a nonlinear



A B

Fig. 2. Twopairs of cell populationswere combined inmoving from the fullmodel (panel A) to the reducedmodel (panel B). Effectively, we simply absorbed excitatory interneurons in the
superficial layers into the excitatory cells of the granular layer, and similarly for inhibitory interneurons.
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transformation of voltage to spike rate, averaged over an ensemble of
neurons. The first transformation (spiking to postsynaptic potentials)
is approximated by convolving a synaptic alpha kernel (either inhibito-
ry or excitatory) with incoming spikes. Separate neuronal masses are
used tomodel the activity of separate neuronal subpopulations of a cor-
tical column or source. In our previous papers using generative models
based on neural masses, we have assumed three subpopulations: these
comprise input cells (spiny stellate cells), inhibitory cells, and pyramidal
cells, which give rise to extrinsic connections to other cortical areas
(e.g., Moran et al., 2008). In the biophysical model used in this paper,
A

Fig. 3. Panel A: The reduced canonical microcircuit of the previous figure, shown in terms of it
model, where triangles represent pyramidal cells giving rise to extrinsic connections to other
The red circle represents the inhibitory interneuron population,while red lines represent inhibi
pyramidal or interneuron) populations, and black lines excitatory connections between popula
nections—we imagine that these are implemented via (unmodeled) inhibitory populations (see
which are inhibitory.
we have four cell populations (see Fig. 4), with intrinsic and extrinsic
connections that conform to the canonical microcircuit, reviewed in
the previous section.

This resulting neuronal model—specified by differential equations—
describes the neuronal dynamics. When these equations are linearized
around their fixed point, they specify the transfer functions from endog-
enous input (to the spiny stellate populations) to depolarization in each
population. When supplemented with the observation model, the
transfer functions map from endogenous fluctuations at each source
to observed responses in each channel. Given the form of the spectral
B

s constituent computational representations. Panel B: The corresponding dynamic causal
cortical columns and circles represent local interneurons that project only intrinsically.

tory connections between populations. Black circles and triangles denote excitatory (either
tions. Note that a few excitatory (in black) populations give rise to inhibitory (in red) con-
text formore details). Not shown in the figure are the self-connections of each population,



Fig. 4.Thisfigure shows the full (intrinsic and extrinsic) circuitry between twoareas; here, V1 (ahierarchically earlier area) andV4 (a later area). Thismodelwill beused later tomodel real
data. Red connections are inhibitory and black connections are excitatory. Each area receives endogenous drives or fluctuations (arrows) that enter the layer 4 input cells (spiny stellate
cells).
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density of the endogenous fluctuations, these transfer functions deter-
mine the complex cross-spectral density matrix over measured sites.
Recently, we have extended the model inversion procedure used by
DCM to make use of both the absolute value and argument of the
cross-spectral density matrix (Friston et al., 2012). This is important
because it allows us to estimate the underlying coherence spectrum
(the absolute value of the cross-power spectrum divided by the square
root product of the two auto-power spectra), the phase-delay spectrum
(argument of the cross-spectral density), and the cross-correlation
function (the inverse Fourier transform of the cross-spectral density
matrix). Crucially, because these estimates are based on biophysical
parameters, they are not contaminated by noise. In other words, these
Bayesian estimators of coherence and phase delay are essentially what
one might have observed—at the sensor or source level—in the absence
of measurement noise. Furthermore, these conditional estimates have a
form that can be produced by realistic neuronal circuits. In addition, a
large number of different connectivity metrics (beyond coherence)
such as phase-locking value, phase-slope index, imaginary coherency,
and nonparametric Granger causality can be derived directly from the
cross-spectral density matrix (Dhamala et al., 2008; Friston et al.,
2014a; Lachaux et al., 1999; Nolte et al., 2004, 2008). In short, DCM for
cross-spectral densities enables us to make inferences about the
biophysical microcircuits that generate different patterns of observed
functional connectivity measured on LFP/MEG/EEG data and then
reconstitute the underlying transfer functions (and related measures)
using Bayesian estimates of intrinsic and extrinsic connection strengths.

In addition to the intrinsic and extrinsic connectivity structure among
the four neuronal masses (per source) that we propose in this paper, an
important component of this model rests on the prior distributions over
themodel parameters, which constrain their dynamics. We have chosen
prior values on the intrinsic connections (see Tables 1a–1c) that generate
more gamma-band activity in the superficial pyramidal cells relative to
the deep pyramidal cells while simultaneously generating more low-
frequency (alpha/beta) power in the deep pyramidal cells relative to
the superficial cells (Fig. 5). This was motivated by multiple neurophys-
iological studies that have observed this spectral dissociation between
superficial and deep layers of the cortical column (Bollimunta et al.,
2011; Buffalo et al., 2011; Maier et al., 2010; Roopun et al., 2006; Smith
et al., 2013; Van Kerkoerle et al., 2014; Xing et al., 2012) as well as a dis-
sociation in the auto-correlograms of cells in superficial and deep cortical
laminae (Livingstone, 1996). In the final section, we use the described
dynamic causal model to characterize forward and backward message
passing in spectral terms.

Empirical analysis

In this section, we use the dynamic causal model of the previous sec-
tion to analyze data recorded from 15 pairs of sources located in primary
visual (V1) and extrastriate (V4) cortical areas of an awake, behavingma-
caque monkey. Before presenting the results, we first establish that the
model had face validity; this means that it can properly identify the cor-
rect hierarchical order of two cortical sources using just their observed
cross spectra. We then use Bayesian model comparison to confirm that
the DCM has predictive validity, in relation to known anatomy: to do
this, we compared models of cross spectra between V1 and V4, in
which the forward and backward connections were anatomically veridi-
cal or reversed. Finally,we use the veridicalmodel parameters to quantify
the spectral behavior and transfer functions associated with the forward
projecting superficial pyramidal cells and the backward projecting deep
pyramidal cells. Our particular interest here was to test whether the
frequency content of these populations and their associated transfer
functions supports the hypothesis that gamma frequencies transfer infor-
mation forward and beta frequencies transfer information back.

Data and experimental setup

All procedures were approved by the ethics committee of the
Radboud University, Nijmegen, Netherlands.



Table 1a
Priors on intrinsic connectivity values (arbitrary units).

Name of parameter G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

Corresponding connection SS➔SS SPC➔SS II➔SS II➔II SS➔II DPC➔II SPC➔SPC SS➔SPC II➔DPC DPC➔DPC
Value 4 4 4 4 4 2 4 4 2 1

Abbreviations: SS: spiny stellate; SPC: superficial pyramidal cell; DPC: deep pyramidal cell; II: inhibitory interneuron.
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Experimental paradigm
A macaque monkey was trained to perform a visual spatial atten-

tion task. After touching a bar, the acquisition of fixation, and a pre-
stimulus baseline interval of 0.8 s, two isoluminant and isoeccentric
stimuli (drifting sinusoidal gratings, diameter: 3°, spatial frequency:
~1 cycles/degree; drift velocity: ~1°/s; resulting temporal frequency:
~1 cycle/s; contrast: 100%) were presented on a CRT monitor
(120 Hz refresh rate non-interlaced). One of the stimuliwas presented
in the lower right visual hemifield, contralateral to the recorded hemi-
sphere, and the other stimuluswas in the upper left hemifield, ipsilater-
al to the recorded hemisphere. In each trial, the light stripes of one
grating were tinted yellow, the light stripes of the other grating tinted
blue—assigned randomly and counterbalanced over the spatial loca-
tions (right or left). After a variable amount of time (0.8–1.3 s), the
color of the fixation point changed to blue or yellow, indicating the grat-
ing with the corresponding color to be the behaviorally relevant stimu-
lus. A trial was considered successful (and themonkey rewarded)when
it released the barwithin 0.15–0.5 s of a change in the cued stimulus, ig-
noring the non-cued stimulus. The stimulus change comprised a gentle
bend in its stripes, lasting 0.15 s. Either one of the two stimuli could
change at a random time between stimulus onset, and 4.5 s after cue
onset. Trials were terminated without reward, when the monkey re-
leased the bar outside the response window, or when it broke fixation
(eye position within 1–1.5° radius of the fixation point). For the analy-
ses presented here, data from all correct trials of both attention condi-
tions were pooled. See Fig. 6 for a graphical depiction of the task.

Neurophysiological recordings
Neuronal signals were recorded from the left hemisphere in one

monkey using subdural ECoG grids consisting of 252 electrodes
(1 mm diameter), which were spaced 2–3 mm apart (Rubehn et al.,
2009). The grids were implanted under aseptic conditions with
isoflurane anesthesia. Intra-operative photographs were acquired for
coregistration with the anatomy. Signals were amplified, low-pass fil-
tered at 8 kHz, and digitized at 32 kHz. Local field potentials were ob-
tained by low-pass filtering at 250 Hz and down sampling to 1 kHz.

Data analysis general
We computed bipolar differences from neighboring electrodes, to

enhance the spatial specificity of the signals, and to remove the com-
mon recording reference. We refer to the bipolar differences as “sites.”
For the current analyses, we use the time period from 0.3 s after the
cue onset (the change in the fixation point color) until the first change
in one of the stimuli, from trials with a correct behavioral report. This
period constitutes the relatively stationary period ofwell-defined atten-
tional set. For each trial, this period was cut into non-overlapping 0.5 s
data epochs. For each site and recording session, the data epochs were
z-scored (mean subtracted and divided by their standard deviation),
and subsequently, the data epochs were pooled across the recording
sessions. This resulted in 1746 data epochs per attention condition.
Table 1b
Priors on time constants (in milliseconds).

Name of parameter T1 T2

Corresponding cell population Spiny stellates Superficial pyra
Value 2 2
We averaged across both attention conditions in this study. The effects
of attention will be reported in a separate communication. Power-line
artifacts at 50, 100, and 150 Hz were estimated and subtracted from
the data, and epochs containing artifacts were removed with a semi-
automatic artifact rejection protocol, based on a variance threshold.

Region of interest (ROI) definition
Sites were assigned to different areas based on their positions as

seen in the surgical pictures. We used the areal boundaries according
to Saleem and Logothetis (2007). This yielded 63 sites in V1, 16 in V4.
For the analyses of this paper, we use 15 V1–V4 site pairs that showed
strong gamma-band coherence. This selection step ensured that the
site pairs we studied received strong bottom-up drive, given the recep-
tive field locations of the neurons underlying the site pairs and the po-
sition of the visual grating stimulus (Bosman et al., 2012). Note that
the selection of particular channels of invasive data is not an inherent
aspect of applying DCM. Although we are using carefully selected inva-
sive data to demonstrate this particular DCM, it can also be used to
model non-invasive (human) data, where the electrode gains are re-
placed by a conventional electromagnetic forward model.

Face validation using simulated data

Face validation just means that model optimization and selection
does what it is supposed to. In this context, we need to establish that
the correct direction of forward and backward connections can be in-
ferred from empirical cross spectra. Clearly, this can only be established
when one knows the true direction of the connections; in other words,
by using simulated data produced by known forward and backward
connectivity. However, these simulated data should be generated
using realistic connectivity parameters that are representative of real
neuronal circuits. We ensured this by simulating cross spectra using
the parameter estimates obtained by fitting the model to real data
(these are the parameters reported in the empirical results section
later). These spectral data were then mixed with (complex) noise
with a log precision of seven: in other words, the ratio of simulated sig-
nal variance to noise variance was exp(7). Log precision is therefore
equivalent to measuring signal-to-noise in decibels (to within a scaling
factor). The simulated data used parameter estimates fromanatomically
veridical models, giving 15 simulated data sets. We then fitted a model
with veridical connections and reverse connections to these simulated
data, to see if model comparison could identify the correct model.

Our provisional model comparison used the free energy approxima-
tion to the log evidence as described in the previous section. The results
of this model comparison are shown in Fig. 7A by plotting the free ener-
gy of the reversemodel against the veridical model. If model selection is
working properly, the resulting points should lie to the right of the iden-
tity line. Displaying the results in this form allows one to see whether
there is any systematic difference in model comparison between inver-
sions that have a high and low free energy (log evidence). It can be seen
from Fig. 7A that the performance of free energy was qualitatively
T3 T4

midal cells Inhibitory interneurons Deep pyramidal cells
16 28



Table 1c
Priors on observationmodel (contribution of each population to the observed LFP signal). These priors on the observationmodel essentially assume that excitatory cells in all cells contribute
to the observed LFP signal recorded by the ECoG channel, but that excitatory cells in the superficial layers contribute with a largerweight, as recently demonstrated (Watanabe et al., 2012).

Name of parameter J1 J3 J5 J7

Corresponding cell population Spiny stellates Superficial pyramidal cells Inhibitory interneurons Deep pyramidal cells
Value 0.2 0.8 0 0.2
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reasonable (12 out of 15 correct), but quantitatively disappointing, in
that the difference in free energy exceeded several thousand for a data
set that was incorrectly identified (a free energy difference of three
would normally be taken as strong evidence in favor of the winning
model). This large free energy difference may be attributable to precise
priors on the precision (signal-to-noise ratio) that can cause the com-
plexity part of the log evidence to dominate over the accuracy part (ex-
pected log likelihood). One can finesse this problem by examining the
accuracy, under the assumption that the complexities of the twomodels
are equivalent. The resulting approximation is motivated easily, given
that both models used exactly the same number of parameters (and
priors on those parameters). Furthermore,we can partition the accuracy
into auto-spectral and cross-spectral components (i.e., the log likeli-
hood of the auto-spectral and cross-spectral data features) and focus
on the cross spectra, which contain the information that informs the es-
timates of extrinsic connections between sources. In summary, this
leads to the following approximation for the log evidence

Fi j ¼ EQ lnp yi jjϑ;m
� �h i

¼ −1
2
εi j

TΠ μð Þεi j þ 1
2
ln
���Π μð Þj

εi j ¼ yi j−gi j μð Þ
� �

where g(μ)ij is the predicted cross-spectral data yij between sites i and j,
given the posterior density over model parameters Q(ϑ) = N(μ, Σ)
and Π(μ) is the noise precision. This approximate log evidence can
be pooled and compared in the usual way, where a difference in log
evidence of three is considered strong evidence for one model over
another; this corresponds to a log odds or likelihood ratio of about
Fig. 5. Priors on themodel endow superficial pyramidal cells with greater gamma power than t
ficial pyramidal cells. The auto spectra on the right were evaluated for a single source, using th
Tables 1a–1c).
20 to 1 (cf. the p = 0.05 criterion in classical inference). Fig. 7B
shows this approximation and suggests it is better behaved. Crucial-
ly, the three failures of the (15)model comparisons were observed in
the models with the lowest log evidence. Although a failure rate of
20% may not seem very impressive, in practice, a model is selected
after pooling (adding) the log evidence over all (15) data sets. In
this instance, onewould have overwhelming evidence for the correct
model. The reduced free energy above was used in subsequentmodel
comparisons.

Predictive validity in relation to anatomy

We then repeated themodel comparison above using the 15 pairs of
empirical recordings. Fig. 7C shows the results ofmodel comparison, as-
suming that the correct pattern of connectivity is forward connections
from V1 to V4 and backward connections from V4 to V1. Pleasingly,
with only one exception, the model comparison identified the anatom-
ically veridical pattern of connections. It can be seen that in the one data
set that led to the wrongmodel being selected, the evidence for this in-
valid model is trivial, in relation to the valid model. Furthermore, this
particular data set was an outlier in the sense that it had the smallest
log evidence. Having established the face and predictive validity of the
model, we now turn to the quantitative analysis of the parameters of
the best (veridical) model:

Empirical results

We first examined the modeled cross spectra for the two sources.
Fig. 8 shows the V1 and V4 auto- and cross-spectral densities of the
model response (in red), overlaid on the cross spectra of the observed
he deep pyramidal cells and deep pyramidal cells with more alpha/beta power than super-
e prior values for coupling parameters and various synaptic rate and time constants (see



Fig. 6. Task design. After touching a bar, the acquisition of fixation, and a pre-stimulus baseline interval of 0.8 s, two isoluminant and isoeccentric stimuli were presented. In each trial, the
light grating stripes of one stimulus were slightly tinted yellow, and the stripes of the other stimulus were slightly tinted blue, assigned randomly. After a variable amount of time (0.8–
1.3 s), the color of the fixation point changed to blue or yellow, indicating the stimulus with the corresponding color to be the behaviorally relevant (attended) one. We analyzed data
averaged across both attention conditions starting 0.3 s after cue onset until the first shape change in one of the stimuli. See Methods for details.
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Fig. 7. Panels A and B: Results of face validity test. The dots correspond to 15 different V1–V4 channel pairs. Cross spectra were simulated using realistic parameters, and inverted using
either the correct hierarchical connections or the reversed connections. Resulting free energies (panel A) and accuracies (panel B) are shown for the twomodels by plotting them against
each other. Ideally, wewould expect all the dots to fall beneath the diagonal line.We present the differences in free energy in this slightly unusual way to illustrate how they depend upon
the absolute values. Usually, when presenting the results of Bayesian model comparison, one would simply show bar charts of relative free energy. These free energy differences are the
vertical distance of any point from the identity line. In the current format, one can see that incorrect differences are limited to data sets with a smaller free energy or log evidence. One
should not over interpret this because the evidence for different models should always pertain to the same data. However, given that the data sets, we used were of the same cardinality,
the variation in log evidence may reflect something about data quality. Finally, note that the log likelihood is a measure of accuracy (panel B). This means that the differences between
panels A and B can be attributed to complexity. Panel C: Results of predictive validity test, using the same format as the previous panels except the results use real data and test whether
themodel has more evidence for the correct compared to incorrect pattern of connectivity. The dots correspond to 15 different V1–V4 channel pairs. Cross spectra were fittedwith either
the correct connectivity (forward projections fromV1 to V4, backward projections fromV4 to V1) or reversed connectivity (forward projections fromV4 to V1, backward projections from
V1 to V4), and the resulting model accuracies are shown.
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data (in blue). On the diagonal, we have plotted the power estimates
(auto spectra), where it is evident that both in V1 and in V4, there is a
prominent gamma-band peak between 50 and 70 Hz, a frequency
range that is fully consistent with previous studies in visual cortex
using similar visual stimuli (Bosman et al., 2012; Fries et al., 2001;
Gregoriou et al., 2012). Power also peaks slightly in a subset of V1
sites in the alpha/beta range, and there is also additional energy in this
band in V4. Finally, in the off-diagonal terms, the real and imaginary
parts of the complex cross spectra—reflecting the inter-areal synchroni-
zation between the V1 and V4 sources—also show prominent features
around the gamma and alpha/beta frequency ranges. Evidently, the
model fits are quite good, and crucially, capture dynamics at both the
gamma and alpha/beta frequency ranges.

These modeled auto and cross spectra reflect the full model output,
which is a mixture of both the underlying neuronal dynamics as well
as contributions from channel-specific noise (noise that is particular to
each recording site and independent across recording sites) and
channel-unspecific noise (noise that is common to all recording sites).
After fitting the model to the data, we have posterior estimates of how
the observed auto and cross spectra are generated and therefore the
exact underlying mixture of neuronal dynamics and noise that contrib-
ute to the observed LFP. This enables one to remove the estimated noise
component from themodel's output and seewhat would have been ob-
served in the absence of noise. In Fig. 9, we show the V1 andV4 auto and
cross spectra after removing the effects of channel (specific and unspe-
cific) noise and setting the gain of both (virtual) electrodes to unity. The
auto- and cross-spectral densities for all 15 pairs are plotted as dotted
lines and the average over pairs are plotted as full lines. It is immediately
evident that V1, the source of forward connections to V4, has a pro-
nounced peak in the gamma range (60 Hz). In contrast, the source of
backward connections (V4) has a relatively larger peak in the beta
range (16 Hz). The (absolute) cross spectra reflect this, with both beta
V4
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Fig. 8. Auto and cross spectra derived frommodel fits (in red) and neurophysiological data (in
whereas the off-diagonal plots represent the cross terms of the cross spectral densitymatrix—th
right corner.
and gamma peaks. See Fig. 8 for the real and imaginary contributions
to the absolute values.

These source-specific reconstructions of spectral activity speak to an
asymmetry but they do not tell us precisely which frequencies are com-
municated from one source to another. This is because the V1 and V4
auto and cross spectra from Figs. 8 and 9 reflect the neuronal dynamics
of four interconnected subpopulations. To investigate directed frequen-
cy coupling, we need to examine the spectral behavior of the neuronal
populations giving rise to forward and backward connections. These
populations are the superficial pyramidal cells (SPC) of the V1 source
and the deep pyramidal cells (DPC) of the V4 source. We can selectively
interrogate the cross spectra between specific subpopulations because
DCM fully parameterizes the observation model, which specifies how
much each subpopulation contributes to the observed LFP. A priori,
we have assumed that the superficial pyramidal cells contribute most
of the observed signal (see Table 1c, Watanabe et al., 2012). However,
because the observation model is parameterized, it is also optimized
during model inversion. Therefore, we can recover the auto and cross
spectra that are generated by individual subpopulations by evaluating
the cross spectra using an observation model that samples selectively
from subpopulations of interest. These features of DCM allow us to in-
vestigate the auto- and cross spectra of specific neuronal subpopula-
tions within the modeled V1 and V4 sources. Fig. 10 shows the
autospectra of the V1 superficial pyramidal cells and the autospectra
of the V4 deep pyramidal cells. Here, we see a pronounced distinction
between the population-specific activities, relative to the source-
specific activity in the previous figure. The activity in the source of back-
ward connections (DPC in V4, Fig. 10A) is dominated by low-frequency
components, while the source of forward connections (SPC in V1,
Fig. 10D) has a distribution of frequencies that retains a gamma peak.

However, the spectral profiles above conflate power in frequencies
that are specific to each cortical source and power that is circulated
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Fig. 9. Using conditional parameter estimates from the correct models, here we plot the source-specific power spectra of V1 (panel A), V4 (panel C), and the absolute value of their cross
spectra (panel B) after removing the (modeled) effects of channel-specific and -unspecific noise.
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between sources by reciprocal connections. For example, the spectral
power of the deep V4 cells represents both power that is transferred
back to V1 as well as power that is transferred to other subpopulations
in V4 through intrinsic connections (namely, the deep cells themselves
through self-connections and the inhibitory interneurons). To get a
clearer picture of the frequencies that are passed forward and backward,
one can examine the transfer function mapping between (source-spe-
cific) neuronal fluctuations and the origin of forward and backward
connections. These transfer functions characterize the frequencies in
the endogenous input (that are unique to each source) that are trans-
ferred to the superficial (resp. deep) pyramidal cells and subsequently
forward (resp. backward).

These transfer functions are shown in Fig. 10 and reveal that gamma
frequencies in V1 are passed to V4, and that lower (alpha/beta) frequen-
cies in the V4 cortical source are sent backwards. Interestingly, some
transfer functions from deep V4 pyramidal cells to V1 show peaks in
the alpha-band; however, when these peaks are pronounced, they are
generally in the beta-band. This decomposition, using transfer func-
tions, suggests that the low frequencies in the superficial pyramidal
cells of V1 (lower right panel) are due to reciprocal (low-pass) message
passing because they are not present in the transfer functions quantify-
ing the frequencies that originate in V1 (upper right panel). In short,
these quantitative results confirm the hypothesis that forward projec-
tions utilize gamma frequencies, while backward projections employ
alpha/beta frequencies.
Conclusion

In summary, we have used the new canonical microcircuit dynamic
causal model to isolate the frequency-specific contributions to asym-
metric and directed coupling between hierarchically deployed sources
in the cortex.We first established the significance of these biophysically
informedmodels using Bayesianmodel comparison andwere then able
to quantify distributed interactions using transfer functions of the opti-
mized model parameters. The results are consistent with the emerging
notion that forward connections send signals in higher frequencies,
while backward connections use lower frequencies.

The DCM described in this paper is for time-invariant cross spectral
densities. Indeed, DCM for cross-spectral responses is generally
portrayed as a model under local stationarity assumptions. However,
strictly speaking, these models do not assume stationarity. Although
the model generates predictions that would be seen under stationarity
assumptions, exactly the same predictions would be obtained with en-
dogenous fluctuations whose spectral density averaged over time
corresponded to the spectral density estimated following model
inversion. In other words, one can treat the estimated spectral density
of endogenous fluctuations—and the cross spectra of the data—as aver-
ages over time, under the assumption that the effective connectivity
remains constant. In future work, we will relax this assumption and
use the current DCM as the basis of a model for induced (and evoked)
responses with time varying (state-dependent) connectivity, e.g. due
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Fig. 10.Using conditional parameter estimates from the correctmodels, this figure shows the source-specific power spectra of the superficial cells of V1 (Panel D) and the deep pyramidal
cells of V4 (Panel A). The corresponding transfer functions are shown in the panel C and panel B. These correspond to the transfer functions between local input and superficial pyramidal
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orating forward and backward connections are shown as solid lines (and other connections as dotted lines).
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to short-term plasticity and NMDA-dependent changes in synaptic
efficacy.

One may ask whether our results are biased by our selection of
priors, in which we have a priori specified intrinsic connectivity param-
eters that generate stronger gamma power in superficial cells compared
to deep pyramidal cells, and the opposite for lower frequencies. This
choice of priors reflects a well-documented dissociation in the frequen-
cy content of superficial and deep cortical laminae. Therefore, including
this dissociation in our model exploits the Bayesian aspect of DCM,
whereby accumulated evidence can be incorporated as priors in a new
model. Nevertheless, one might ask whether this choice of prior
values (Tables 1a–1c) has predisposed the spectral asymmetry we
have observed a posteriori. The answer is no because if the frequency
dissociation were not present in the data, our test of predictive validity
in relation to anatomical hierarchical relationships would have failed.
The fact that overall, we have more evidence for themodel with correct
arrangement of forward and backward connections (forward fromV1 to
V4 and backward from V4 to V1) in relation to the reversed model
means that this asymmetry was present in our data. In other words, in
the absence of a true functional asymmetry (or opposite asymmetry),
model selection would not discriminate between the correct and
inverted arrangement (or select the wrong model).
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In our previous analyses of these data (Bastos et al., 2015), we have
used Granger causality to dissociate the frequency-specific correlates of
directed coupling. One might ask: What is the advantage of using dy-
namic causal modeling over Granger causality? The advantages are
both technical and conceptual. The technical advantage of DCM is that
it does not assume that neuronalfluctuations or innovations are spectral-
ly white. This assumption is made in current formulations of Granger
causality and places implausible constraints on the frequency profile of
neuronal fluctuations that drive observed activity (Ding et al., 2006).
This assumption is inaccurate because innovations or inputs to sources
are the outputs of other (unmodeled) sources, whose spectral profile
(or autocorrelation structure) has to be self-consistent with the outputs
of themodeled sources. DCM resolves this problem by allowing for inno-
vations with colored (parameterized) components that are optimized
during model inversion. Additionally, Granger causality is susceptible
to signal-to-noise ratio differences between recording channels
(Friston et al., 2014a; Nalatore et al., 2007). This is because in the pres-
ence of either volume conduction or common drive from a third unob-
served area to two sensors, a sufficient difference in signal-to-noise
ratio (SNR) in one channel, compared to another, can change the predic-
tive power of one signal in relation to another, resulting in a greater (spu-
rious) Granger-causal influence from the time series with better SNR. In
most formulations of Granger causality (but see Nalatore et al., 2007),
neuronal innovations and channel-specific or -unspecific noise are not
modeled separately. Recently, a method has been proposed, termed the
instantaneous feedback strength (IFS), to quantify situations in which a
significant amount of shared zero-lag noise (e.g., volume-conducted
noise) is present in any two given recording channels (Vinck et al.,
2015). In situations where the IFS is strong, it was shown that Granger
causality analysis generates an unacceptable level of false positives, and
under these conditions, Granger causality should not be applied to data
(Vinck et al., 2015). DCM finesses this problem by separately parameter-
izing and estimating noise contributions that arise from correlated and
uncorrelated sources duringmodel inversion. By estimating the observa-
tionmodel and the neuronal model separately, this then allows us to ex-
tract features related to between-source connectivity that are unaffected
by noise. In principle, thismakes it possible tomeasure Granger causality
(and other spectral factors; see, for example, Fig. 10 in the current man-
uscript) between sources after removing the effects of (modeled) mea-
surement noise (Friston et al., 2014a).

Beyond these technical considerations, the conceptual advantage
rests on the fact that Granger causality provides a surface description
of (lagged) statistical dependencies among observed time series. In
contrast, DCMmodels the hidden states that cause these dependencies,
lending the parameters a biophysical meaning. This means one can
isolate specific populations or sources of observed variance and specifi-
cally examine their properties in terms of intrinsic power and trans-
ferred power. In this paper, we have used this to look at superficial
and deep pyramidal cells that send forward and backward projections.
In contrast, Granger causality cannot access the hidden sources that
generated observed time series because it describes dependencies
among sensors and not neural sources. However, one advantage of
Granger causality is that it is a data-driven method and therefore
requires no prior assumptions or knowledge of the observed system.
Therefore, a Granger-causal analysis can be used to inform and guide
model-based approaches like DCM, especially in systems where less is
known about the underlying circuitry or where data may not be suffi-
cient to constrain a physiologically-based DCM (cf. Litvak et al., 2012).
These distinctions mean that functional (Granger) and effective
(DCM) connectivitymeasureswill play a complementary role in analyz-
ing dynamic brain networks (Friston et al., 2013). In future studies, we
will explore the construct validity (that is, whether similar conclusions
can be made with different methods) between Granger causality and
DCM and examine to what extent the methods converge as different
model assumptions are violated (such as the spectral composition of in-
novations or differences in SNR) (Friston et al., 2014a).
In this paper, we have proposed amapping between the anatomical-
ly and the physiologically characterized intrinsic and extrinsic connec-
tivity of canonical microcircuits and the connectivity predicted by the
free energy principle. This involved mapping computational units
thought to encode conditional estimates of hidden states, hidden
causes, and their prediction errors onto neurobiological populations in
specific cortical layers. The resulting microcircuit contains four subpop-
ulations per cortical column, with the key feature that it includes dis-
tinct populations for superficial and deep pyramidal cells, which give
rise to forward and backward connections, respectively. Clearly, differ-
ent mappings between predictive coding and the physiological/ana-
tomical data on canonical microcircuits are conceivable and, in
principle, DCM could be used to evaluate these alternative proposals
through Bayesian model comparison. As more data on intrinsic and ex-
trinsic circuitry is gathered, and as the physiological characteristics of
canonical microcircuits become increasingly elucidated, this knowledge
could be incorporated into future DCMs.

The canonicalmicrocircuit DCMwe have introduced in this paper en-
ables one to test specific predictions made by the free energy principle
and predictive coding about cortical processing in normal and diseased
states. This is because we have specified the neuronal infrastructure (ca-
nonical microcircuit) that prosecutes the necessary computations, and
thereby we can estimate these microcircuit properties by inverting real
data recorded under relevant experimental conditions. For example,
Brown and Friston recently applied this model to study ERP responses
to stimuli of varying contrast and found that—across different contrast
levels—the gain of the superficial pyramidal cells (defined as the strength
of the parameter controlling self-inhibition of the superficial pyramidal
cells) showed predicted contrast-dependent changes (Brown and
Friston, 2012). Also, Pinotsis et al. (2014) have extended the canonical
mass model to a neural field model and study receptive field properties
during a visual attention task and visual stimulation with varying con-
trasts. In predictive coding models, the gain on the pyramidal cells is as-
sociated with the precision of prediction errors, in other words, a
representation of uncertainty. Therefore, DCMprovides away for testing
hypotheses based on predictive coding during normal and impaired in-
ference (in different patient groups), particularly when any supposed
pathophysiology involves the neuromodulatory (or synchronous) post-
synaptic gain of superficial pyramidal cells (Moran et al., 2013).

We also hope that themodel described in this papermay allowmore
mechanistic questions about the role of oscillations in cortical process-
ing to be addressed. For example, a prominent hypothesis about alpha
oscillations suggests that alpha oscillations suppress task-irrelevant
representations (Haegens et al., 2011; Jensen and Mazaheri, 2010).
One prediction that naturally flows from this hypothesis is that large-
amplitude alpha oscillations might be correlated with enhanced inhibi-
tory processing—one can now test whether alpha amplitude positively
correlateswith extrinsic or intrinsic effective connectivity or the activity
of inhibitory populationswithin a DCMand examine if the sign of corre-
lation is consistent with an inhibitory role. In contrast, gamma frequen-
cy oscillations are thought to facilitate cortical communication, and
therebymight be positively correlatedwith effective connectivity with-
in or between areas (Fries, 2005). Indeed, recently it has been shown
that selective attention enhances gamma-band coherence between V1
and V4 (Bosman et al., 2012; Grothe et al., 2012). In principle, DCM
could provide a more mechanistic understanding of this phenomenon,
by asking which specific circuit properties can explain this increase in
coherence, and how this might be related to the enhanced neuronal
communication that is thought to be reflected in inter-areal gamma-
band coherence.
Software note

The analyses presented in this paper use algorithms that are avail-
able as part of the SPM academic freeware.
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