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SUMMARY

Learning induces plasticity in neuronal networks.
As neuronal populations contribute to multiple re-
presentations, we reasoned plasticity in one repre-
sentation might influence others. We used human
fMRI repetition suppression to show that plasticity
induced by learning another individual’s values im-
pacts upon a value representation for oneself in
medial prefrontal cortex (mPFC), a plasticity also
evident behaviorally in a preference shift. We show
this plasticity is driven by a striatal ‘‘prediction error,’’
signaling the discrepancy between the other’s
choice and a subject’s own preferences. Thus, our
data highlight that mPFC encodes agent-indepen-
dent representations of subjective value, such that
prediction errors simultaneously update multiple
agents’ value representations. As the resulting
change in representational similarity predicts interin-
dividual differences in the malleability of subjective
preferences, our findings shed mechanistic light on
complex human processes such as the powerful in-
fluence of social interaction on beliefs and prefer-
ences.

INTRODUCTION

Information in the brain is encoded within distributed neuronal

populations such that individual neurons typically support

more than one representation or computation. Neurons inmedial

prefrontal cortex (mPFC), for example, perform self-referential as

well as social value computations (Jenkins et al., 2008; Nicolle

et al., 2012; Suzuki et al., 2012). Whereas it is traditionally sug-

gested that computations for self and other are performed within

separate populations of neurons (D’Argembeau et al., 2007;

Denny et al., 2012), recent work suggests a functional organiza-

tion within this region does not neatly conform to such a distinc-
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tion by agent. Instead, value computations on behalf of any indi-

vidual can be realized by the same circuitry (Nicolle et al., 2012),

and the neural code depends only on the subjective value of an

offer. In light of this, we conjectured that multiple value compu-

tations might be updated simultaneously if plasticity is intro-

duced into this circuitry.

The contribution of overlapping neural circuitry to distinct com-

putations has previously been demonstrated during delegated

inter-temporal choice (Nicolle et al., 2012). In inter-temporal

choice paradigms, subjects reveal their preferences for larger

reward delivered later versus smaller reward that arrive sooner.

Choice in this context is quantified by a ‘‘temporal discount

rate’’ (Myerson and Green, 1995), believed to index forms of

behavioral impulsivity (Evenden, 1999; Robbins et al., 2012)

and an ability to imagine future outcomes (Ersner-Hershfield

et al., 2009; Mitchell et al., 2011; Peters and Büchel, 2010).

When subjects are asked to make such inter-temporal choices

on behalf of another individual (‘‘delegated inter-temporal

choice’’), they rapidly learn the confederate’s discount rate (Nic-

olle et al., 2012). This adaptability depends on themedial prefron-

tal cortex, where a neural circuitry used to compute a subject’s

own values also computes those of a confederate, enabling rapid

switches between the two computations (Nicolle et al., 2012).

We reasoned that if the same circuitry in the mPFC computes

the value of a delayed offer irrespective of agents, plastic

changes necessary to learn a new partner’s preferences might

have consequences for a subject’s own value computations.

The presence of such plasticity would also be expected to induce

behavioral change in the subject’s own temporal discount rate, a

parameter usually assumed to index a stable personality trait

(Kirby, 2009; Ohmura et al., 2006). One can conjecture that

such plasticity might underlie social conformity effects, where in-

dividuals adjust their beliefs or preferences to align more with

those with whom they interact (Campbell-Meiklejohn et al.,

2010; Edelson et al., 2011; Zaki et al., 2011).

At a neuronal level, a formal test of these predictions requires a

fine-grained access to neural populations supporting distinct

value computations, as well as a robust measure of learning-

induced change in activity of these same populations. Despite

its coarse spatial resolution, fMRI can reveal relationships
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between underlying cellular representations. In particular, fMRI

adaptation paradigms can be finessed to measure plastic

changes associated with the behavioral pairing of different items

(Barron et al., 2013; Klein-Flügge et al., 2013). The principle of

fMRI adaptation builds on the idea that the repeated engage-

ment of the same neuronal population leads to a diminished

response and attenuated BOLD signal, even though the underly-

ing biophysical mechanism remains ambiguous (Grill-Spector

et al., 2006; Kohn, 2007).

Here we used an fMRI adaptation paradigm to measure the

relationship between neuronal value representations for self, a

familiar other whose preferences had been learnt prior to scan-

ning and a novel confederate as this latter agent’s preferences

were learnt. We deployed a dynamic repetition suppression pro-

cedure to provide us with a probe of plastic neural changes

associated with learning a new flexible computation. We hypoth-

esized that plasticity associated with this new learning would

impact upon the preference representation for self as a con-

sequence of a neuronal representation that maps agent and

offer onto an agent-independent measure of subjective value.

In essence, this predicts that neuronal value representations be-

tween self and a novel other should become more similar with

learning, in line with a behavioral shift in preference. An alterna-

tive hypothesis posits separate value computations for distinct

agents. In such a case, a subject might use their own separate

neural representations as a proxy for understanding another’s

traits, and an independent neuronal value representation for

this other would be constructed through learning-induced plas-

ticity (Barron et al., 2013). This alternative scenario predicts that

neural value representations for self and other should become

less similar with learning. In terms of a mechanism driving such

plasticity, we reasoned that the same prediction errors that drive

learning about a new partner’s inter-temporal preferences would

also induce shifts in the subject’s own discount rate toward that

of the partner.

RESULTS

Discount Rates Are Susceptible to Social Influence
To examine whether learning about the preferences of another

agent impacts on subjective inter-temporal preferences, we

tested 27 subjects on a standard inter-temporal choice task

both before, and after, performing the identical task on behalf

of a partner (Figures 1A and 1B). As in the standard format, sub-

jects deciding for themselves chose between an immediately

available smaller reward and a delayed larger reward. The de-

gree to which delay diminishes the value of a reward was then

quantified by a discount rate, computed from each subject’s

actual choices both before and after the experimental manipula-

tion. The latter involved a context whereby subjects performed

the very same task but now chose the option they inferred a con-

federate would prefer. After each trial they were given feedback

about the choice the confederate had actually made, such that

they could learn to simulate these choices in future trials.

Subjects learnt quickly, and accurately, to choose according

to a novel partner’s preferences (Figures S1C and S1D). Sub-

jects believed that the partner was a human participant playing

the game in a neighboring room (Figures S1G and S1H). In actual
fact, and in part motivated by a need for good experimental con-

trol, we delivered feedback of a simulated player with prefer-

ences very different from the subjects’ own (see Experimental

Procedures).

Notably, we found that, after learning a partner’s preferences,

subjects’ own discount rate shifted in the direction of the partner

(ðlog kself ;block 3 � log kself ;block 1Þ=ðlog kother;block 2� log kself;block 1Þ,
t21 = 3.06, p = 0.006, Figure 1C). Their estimate of the novel

other’s preferences remained stationary (ðlog kother;block 3�
log kother;block 2Þ=ðlog kself ;block 1� log kother;block 2Þ, t21 = 0.99, p =

0.33) and was not biased toward subjects’ own preferences

(t21 = 0.49, p = 0.63). This effect is not easily understood as a social

norm effect (Ruff et al., 2013), as we also observed discount rates

shifted similarly when subjectswere instructed theywere deciding

on behalf of a computer agent (t22 = 3.89, p < 0.001, Figure S1F).

One account of this shift in preference is that it arises out of a

simulation of the other’s preferences. In order to test whether

such simulation is crucial for this shift or whether the behavior

can be explained by simple stimulus- or action-based reinforce-

ment, we designed a category-learning control experiment

(Ashby and Maddox, 2005). This consisted of the same stimuli

and actions, but the necessity to simulate another’s discount

rate was removed. Subjects were presented with a geometric

depiction of a given choice on the screen (x axis: delay of the

latter option; y axis: ratio of magnitudes MLL/MSS; Figure S1A,

right) and instructed to choose according to the location of the

dot with respect to an imaginary isoprobability line. Rather

than using feedback to update a value simulation, subjects

now updated their belief about the orientation of this line. In

this scenario, subjects’ discount rates did not shift, indicating

that subjects were not merely repeating previous choices

they had made on behalf of the other (t24 = 0.61, p = 0.55; see

Figure S1F). This latter finding emphasizes a necessity for pref-

erence simulation for another agent in order to modulate a dis-

count rate.

Subjective Value Changes Are Induced by Learning
The above account suggests that learning to compute the pref-

erences of another agent induces plastic changes in the neural

architecture responsible for personal valuation. This in turn pre-

dicts the neural population engaged during the computation of

self valuation should change over the course of the experiment.

This population should either become closer to that evoked dur-

ing valuation for the partner if the representational structure of an

offer depends solely on its subjective value irrespective of the in-

dividual. Alternatively, it should become less close if separate

agent-specific representations exist and subjects construct an

independent representation for the novel other as a conse-

quence of learning. To test for such change in similarity between

neural representations for self and others we interleaved trials

from the delegated inter-temporal choice task with ‘‘probe’’ trials

in the fMRI scanner. These probe trials enabled us to measure

repetition suppression between individuals (Figures 1D and

1E). We reasoned that if self and partner valuation mechanisms

overlapped more after learning than before, in line with an

increase in behavioral similarity, then this predicts greater repe-

tition suppression at the end of the experiment than at the begin-

ning. If, however, subjects constructed a representation of the
Neuron 85, 418–428, January 21, 2015 ª2015 The Authors 419



Evaluation for 
    self
    familiar other
    novel other

Choice for 
    self
    familiar other
    novel other

A

Do you prefer
£8 today or £12 in 6 weeks?

Self trials

Onset

Choice

0

0.1

0.2

0.3

0.4
R

el
at

iv
e 

sh
ift

 o
f 

lo
g 

k se
lf t

ow
ar

ds
 lo

g 
k ot

he
r

Choice trials

**

...

...

... ...

Training Scan
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

log kfamiliar
log knovel

Shift towards

Shift of log kself
Shift of 

log kfamiliar etar tnuocsi d gol f o tfi hs evit al e
R

t nega r eht o eht sdr a
wot

**

**

**P<0.01

**

Does David prefer
£15 in 1 month or £11 today?

Does David prefer
£15 in 1 month or £11 today?

Other trials

Onset

Choice

Feedback
Does David prefer

£15 in 1 month or £11 today?
Your choice was correct!

Do you prefer
£8 today or £12 in 6 weeks?

1. Self

2. Choices for other

3. Choices for self/other

... ... ...

...

1. Self 2. Familiar other 3. Self

In the scanner: 3 blocks of probe and choice trials

Prior to scanning

How happy would you be?
£5 today

1     2     3     4

Probe trials

Onset

Choice

How happy would you be?
£5 today

1     2     3     4

Onset

Choice

How happy would Anna be?
£17 tomorrow
1    2    3    4How happy would Anna be?

£17 tomorrow
1    2    3    4

B

C

D

E

F

Figure 1. Experimental Design and Behavior

(A) On choice trials, subjects chose between an immediately available, smaller,

and a delayed, larger reward. On ‘‘self’’ trials, subjects considered the choice

for themselves. On ‘‘other’’ trials, they made the choice on behalf of a partner,

and feedback indicated whether their choice corresponded to the partner’s

(simulated) choice.

(B) Structure of the behavioral experiment. Block 1 consisted of self choice

trials alone, block 2 consisted of other choice trials alone, and block 3

420 Neuron 85, 418–428, January 21, 2015 ª2015 The Authors
novel other from their representation of self, then this predicts

the very opposite, namely repetition suppression at the begin-

ning of the experiment, which disappears as subjects build a

separate representation of the novel partner.

To be certain that any effects were driven by learning about the

partner, as opposed to exercising a choice per se, we introduced

a third player (a familiar partner) whose discount rate had been

learnt prior to scanning. This controlled for non-specific time-

dependent signal changes not associated with learning of new

preferences. Thus, our experiment comprised three players:

the subject (‘‘self’’), a partner whose preferences were learnt

prior to scanning (‘‘familiar other’’), and a partner whose prefer-

ences were learnt during scanning (‘‘novel other’’). The familiar

and novel others’ choices were simulated based on discount

rates placed equally far apart on opposite, and counterbalanced,

sides of the subject’s original discount rate. This meant that one

partner had a smaller, and the other partner a larger, discount

rate than the subject himself.

We scanned 27 subjects while they performed the two inter-

leaved tasks. In choice trials, as in the behavioral experiment

described above, subjects again made inter-temporal choices

for themselves and for the two partners. In ‘‘probe trials,’’ sub-

jects performed evaluations serially on behalf of different

players, allowing us to measure repetition suppression between

the value representations of different individuals (Figure 1E). Af-

ter each choice trial for the novel or the familiar partner, but not

after probe trials, subjects were given feedback about the choice

the confederate had made.

In line with our behavioral results, subjects’ discount rates

shifted toward the discount rate of the familiar partner during

preference learning prior to scanning (t23 = 3.17, p = 0.004,

Figure 1F). During scanning, both subjects’ own discount rate

(t23 = 3.05, p = 0.006) and subjects’ estimated discount rate

of the familiar partner (t24 = 2.87, p = 0.008) shifted toward

the newly learnt discount rate of the novel partner, with a stron-

ger relative shift evident for subjects’ own discount rate (t22 =

2.18, p = 0.04) but comparable absolute shifts (t22 = 0.72,

p = 0.48). These preference shifts were therefore not simply

associated with repeating the partner’s choices but instead

are most parsimoniously explained as induced by learning a

new individual’s preferences.
consisted of alternating short blocks of 10 choice trials per agent (self or

other).

(C) Shift of subjects’ own discount rate (block 3 � block 1) relative to

the distance between the estimated discount rate of the partner (block 2)

and the initial discount rate for self (block 1), shift= ðlogðkself;block 3Þ�
logðkself;block1ÞÞ=ðlogðkother;block 2Þ � logðkself;block1ÞÞ.
(D) The scanning version of the experiment also contained probe trials where

subjects indicated on a four-item scale how happy an agent would be with the

presented option.

(E) Prior to scanning, subjects’ own discount rate was assessed before and

after they were trained on the familiar other’s preferences. In the scanner,

subjects chose and evaluated for themselves, for the familiar other and for a

novel other. The experiment was divided into three experimental blocks with

probe trials the predominant type in all blocks.

(F) Relative shift of subjects’ own discount rate (blue background) and the

discount rate of the familiar other (green background) toward the familiar other

(green bars) and the novel other (orange bars) during training and scanning.

Data are represented as mean ± SEM. See also Figure S1.
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Figure 2. Learning-Induced Plasticity in

mPFC

(A) Repetition suppression as an index of

representational similarity. Displayed are brain

areas with significantly less activity for repeated

compared to changing agents on subsequent

trials.

(B) Brain areas with a significantly greater increase

in suppression from block 1 to block 3 between

self and novel other compared to the increase

in suppression between self and familiar other.

This region overlaps with an area involved in

self-referential processing and value coding

(Figure S3).

(C) Areas displaying an increase in suppression

from block 1 to block 3 between self and novel

other relative to changes in suppression between

novel and familiar other.

(D) Parameter estimates extracted by a jack-knife

procedure from the mPFC ROI in Figure 2B,

averaged across subjects. Visual areas do not

show these selective suppression effects (Fig-

ure S2), and the neural suppression is not reflected

in response times (Figure S4).

(E) Same parameter estimates as in (D) but now

separated into the distinct components.

Data are represented as mean ± SEM. Contrast

images in (A)–(C) are thresholded at p < 0.01 un-

corrected for visualization. SN: novel-preceded-

by-self; NS: self-preceded-by-novel; SF: familiar-

preceded-by-self; FS: self-preceded-by-familiar;

NF: familiar-preceded-by-novel; FN: novel-pre-

ceded-by-familiar. a.u.: arbitrary units.
Plasticity between Neural Representations
of Self and Other
To addresswhether ameasured change in subjective preference

is linked to plasticity in neural populations computing valuations

for self, we focused our analysis on the probe trials. We first

established that we could measure repetition suppression by

comparing brain activity elicited by simulating values for an

agent when preceded by the same agent compared to a situa-

tion where an agent was preceded by another agent. Different

agents were indicated to the subject by different colors on

screen (Figure 1D). Unsurprisingly, we observed fMRI adaptation

in the visual cortex (p < 0.001, peak t26 = 16.93, [30, �61, �8],

reported here and in subsequent fMRI analyses as familywise

error (FWE) corrected on cluster level, Figure 2A) (Buckner

et al., 1998; Wiggs and Martin, 1998), but also in a network

that included mPFC (p = 0.02, peak t26 = 5.76, [3, 53, �11])
Neuron 85, 418–428
and left superior temporal sulcus (STS)

(p < 0.001, peak t26 = 4.95, [�51, �13,

�8]). The latter two regions are associ-

ated with mentalizing (Gallagher and

Frith, 2003), valuation for self (Boorman

et al., 2009; Hunt et al., 2012; Kable and

Glimcher, 2007), and valuation for others

(Jenkins et al., 2008; Nicolle et al.,

2012). While this main effect of repetition

suppression does not dissociate visual
from agent-specific effects, it confirms that similarity in neural

patterns evoked in a valuation network can be indexed by repe-

tition suppression (Barron et al., 2013; Jenkins et al., 2008).

We reasoned that we could use this index of neural similarity to

investigate whether the observed shift in subjective preferences

was linked to plastic changes in the valuation network. If the neu-

ral code depends on the subjective values of a given offer alone,

then repetition suppression should emerge between self and

novel other over the course of the experiment, given that dis-

count rates for self align with discount rates for the novel other.

If, on the other hand, the mPFC encodes value differentially de-

pending on agent, where learning another’s preferences involves

the construction of an independent representation of this novel

other from a representation of self, then repetition suppression

should decrease over the course of the experiment. While a

similar change in suppression might also be predicted between
, January 21, 2015 ª2015 The Authors 421
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Figure 3. Relationship between [SN – SF]1–3
Plasticity and Shift in Discount Rate

(A) Partial correlation between the change in sup-

pression between self and novel relative to the

change in suppression between self and familiar

agents over blocks and the shift in subjects’ own

discount rate toward the novel other.

(B) Partial correlation between the change in sup-

pression between self and novel relative to the

change in suppression between self and familiar

agents over blocks and the shift in subjects’ esti-

mate of the familiar other’s discount rate toward

the novel other.

Parameter estimates in (A) and (B) were extracted

from the mPFC ROI shown in Figure 2B. To

account for the correlation between subjects’ own shift in discount rate and the shift in their estimate of the familiar other’s discount rate, we performed partial

correlations (i.e., the familiar shift was removed from behavior and neural signal in [A] and the self shift was removed from behavior and neural signal in [B]).

The relationship between [FN-SN]1-3 plasticity and the shift of the familiar other’s discount rate toward the novel other is analyzed in Figure S5. a.u.: arbitrary units.
novel and familiar others, there should be no such change in sup-

pression between self and familiar other if in fact we are indexing

changes induced by new learning.

We designed a contrast that measured the change in repeti-

tion suppression between self and novel other from block 1 to

block 3, controlled for by the change in repetition suppression

between self and familiar other over the same blocks (see Exper-

imental Procedures). The only brain region to survivewhole-brain

statistical correction was inmPFC (Figure 2B, p = 0.01, peak t26 =

3.82, [�12, 53, 1]), although sub-threshold clusters in the left and

right STS were also present (p = 0.27, peak t26 = 3.77 and p =

0.48, peak t26 = 3.38, respectively). This region overlaps with

an area involved in self-referential processing and in encoding

value on probe trials (Figures S3B and S3C). There were no sig-

nificant effects for the opposite interaction. This change cannot

be due to visual effects, as we controlled for these both by inclu-

sion of the familiar agent and separately by the comparison

between early and late blocks in the experiment. Consequently,

visual regions do not show these condition-specific changes in

suppression (Figure S2). Neither can the effect be due to novelty

or differences in processing speed, as no differences between

main effects of novel and familiar others were seen in this region

(Figure S3A) or in the response times (Figures S4A and S4B).

Furthermore, an equivalent contrast measuring the change in

suppression between self and novel other, but now controlling

for the change in suppression between familiar and novel other,

revealed a similar change in activity in an overlapping brain re-

gion (Figure 2C). Hence, in the mPFC learning the preferences

of a novel agent specifically increased repetition suppression

between representations of self and this novel partner.

To further investigate these mPFC suppression effects, we

employed a jack-knife procedure across subjects to extract

parameter estimates from the cluster of interest. Consistent

with the whole-brain analysis, we found a significant change in

novel-to-self/self-to-novel suppression (Figure 2D, t26 = 2.86,

p = 0.008), but not in self-to-familiar/familiar-to-self suppression

from block 1 to block 3 (t26 = 0.64, p = 0.52). The change in novel-

to-familiar/familiar-to-novel suppression in the same region of

interest (ROI) was in the same direction, but did not reach signif-

icance (t26 = 1.54, p = 0.14), and was smaller than the change

in novel-to-self/self-to-novel suppression (t26 = 1.65, p = 0.05).
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Since overall activity in mPFC for self trials was greater than ac-

tivity for other trials (Figure S3B), sensitivity to repetition sup-

pression may differ depending on the order of the two agents.

To explore potential differences, we decomposed the contrasts

described above. Changes in repetition suppression between

self and novel other were observed in both directions (Figure 2E)

but were only significant when self trials were the priming and not

the test trials (Figure 2E; ANOVA: left, F2,78 = 3.39, p = 0.04, right

F2,78 = 1.55, p = 0.21).

Plasticity in mPFC Predicts Discount Rate Shifts
If the observed behavioral change in preference is related to

learning-induced plasticity in value computations, then the in-

crease in representational similarity between self and novel other

should predict a subject’s shift in preference. The increase in

self-to-novel relative to self-to-familiar suppression over blocks

did indeed predict the shift in subjects’ own discount rate toward

the novel other (partial correlation, r = 0.54, p = 0.007, Figure 3A),

but not the same shift in the subjects’ estimate of the familiar

other’s discount rate (partial correlation, r = 0.15, p = 0.46, Fig-

ure 3B), although a direct comparison of these effects in a mul-

tiple regression analysis did not reach significance (t23 = 0.71,

p = 0.24). The shift in subjects’ estimate of the familiar other’s

preferences was instead loosely related to an increase in re-

presentational similarity between familiar and novel other (Fig-

ure S5). The fact that the behavioral estimate for a shift in

discount rate was derived from choice trials, whereas the neural

plasticity effect was extracted from probe trials, strongly sug-

gests that learning a partner’s choice induces a stable plasticity

in regions involved in value computation.

Plasticity in mPFC Is Predicted by Surprise
Coding in the Striatum
A plausible mechanism for inducing plastic change is surprise or

prediction error, which in this context arises when the familiar or

the novel partner’s choices diverge from the choice the subjects

themselves would have made given the same choice context.

Bayes-optimal estimates of this measure (see Experimental Pro-

cedures) were reflected in the posterior medial frontal cortex

(pMFC) (Figure 4A, p = 0.04, peak t26 = 4.09, [�9, 29, 58]), a re-

gion previously associated with surprise coding in monkeys
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Figure 4. Surprise as a Mechanism Underlying mPFC Plasticity

(A) Brain areas correlating with the surprise subjects experienced when

observing the novel and the familiar partners’ choices.

(B) Correlation between the striatal correlate of the surprise about the novel

other’s choices, extracted from ROI in (A), and the shift of subjects’ discount

rates toward the novel other.

(C) Correlation between the striatal correlate of the surprise about the novel

other’s choices and [SN � SF]1�3 plasticity in mPFC.

(A) is thresholded at p < 0.01 uncorrected for visualization. a.u.: arbitrary units.
(Hayden et al., 2011), as well as in both insula and striatum

(caudate nucleus), although these did not survive a stringentmul-

tiple comparisons correction (right insula: p = 0.16, peak t26 =

8.37, [30, 26, �8]; left insula: p = 0.19, peak t26 = 6.25, [�33,

26, �5]; left striatum (p = 0.84, peak t26 = 3.44, [3, �25, �8]).

pMFC and striatum are strongly implicated in the expression of

a prediction error type signal in reinforcement learning (Pessi-

glione et al., 2006; Voon et al., 2010), as well as in signaling
a discrepancy between an individual’s behavior and the behavior

of a group (Tomlin et al., 2013). An alternative measure of predic-

tion error, where surprise was quantified as the discrepancy be-

tween the predicted choices of the partner and the partner’s

actual choices, did not yield significant activity in any area of

the brain. A more lenient cluster-defining threshold of p = 0.05

revealed much smaller clusters in a similar network as the first

surprise measure that did not survive multiple comparisons

correction (e.g. pMFC, p = 1.0, peak t26 = 2.72, [6, 35, 40]).

A striatal prediction error type signal is known to drive learning

through an influence on cortico-striatal plasticity (Reynolds and

Wickens, 2002). In line with this notion, the BOLD correlate of

the surprise about the novel partner’s choices in the striatum

predicted the behavioral shift in subjects’ own discount rate (Fig-

ure 4B, r = 0.50, p = 0.01) as well as the change in self-to-novel

versus change in self-to-familiar neuronal suppression over

blocks in mPFC (Figure 4C, r = 0.41, p = 0.04). No such relation-

ship was evident for pMFC or insula activity and mPFC plasticity

(r = 0.04, p = 0.84 and r = 0.14, p = 0.48, respectively).

Finally, if prediction errors cause plasticity, and plasticity in

turn causes the shift in subjects’ discount rate, then plasticity

in mPFC should formally mediate the impact of the striatal sur-

prise signal on the shift in discount rate. We used single-level

mediation to test this hypothesis (Wager et al., 2008). The path

model jointly tests three effects required if indeed mPFC plas-

ticity provides the link between a surprise signal and the shift

in discount rate: namely, the relationship between striatal sur-

prise effects and mPFC plasticity (path a), the relationship be-

tween mPFC plasticity and shift in discount rate (path b), and a

formal mediation effect (path ab) that indicates that each ex-

plains a part of the discount rate shift covariance while control-

ling for effects attributable to the other mediator. All three effects

were significant in a mediation analysis (path a = 0.15, SE = 0.07,

p = 0.04; path b = 0.30, SE = 0.12, p < 0.001; path ab = 0.05, SE =

0.03, p = 0.01, Figure 5), supporting the idea that prediction er-

rors influence the discount rate by inducing mPFC plasticity,

which in turn impacts upon choice behavior. Hence, subjects

with the largest striatal surprise signal at outcome of choice trials

exhibited both the largest changes in representational similarity

on probe trials and the largest changes in preferences, suggest-

ing a role for striatal prediction error signals in inducing cortical

plasticity and associated behavioral change.

DISCUSSION

The brain’s representational architecture involves population

codes wherein individual neurons contribute to a multitude of

computations. We set out to investigate whether multiple

neuronal representations can be updated simultaneously by

learning-induced plasticity targeting one computation alone.

The approach we developed exploited repetition suppression

(Grill-Spector et al., 1999; Henson et al., 2000) to probe the sim-

ilarity between distinct neural representations (Barron et al.,

2013) by interleaving probe valuation trials with decision blocks

that induced prediction errors and learning. While the biophysi-

cal mechanisms underlying fMRI repetition suppression remain

ambiguous (Sobotka and Ringo, 1994), in a careful experimental

design this approach allows inferences about population coding
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Figure 5. Mediation Path Diagram for Discount Rate Shift as Pre-

dicted from a Striatal Surprise Signal

The striatal correlate of the surprise about the novel other’s choices predicted

[SN � SF]1�3 plasticity in the medial prefrontal cortex (path a), and the medi-

ator (mPFC plasticity) predicted the shift of subjects’ own discount rate toward

the discount rate of the novel other (path b, controlled for the striatal surprise

signal). Importantly, there was a significant mediation effect (path ab), indi-

cating that mPFC plasticity formally mediates the relationship between striatal

surprise and the shift in discount rate. The direct path between striatal surprise

and shift in discount rate, controlled for both mediators, was not significant

(path c’). The lines are labeled with path coefficients (SEs).
with respect to precise features of stimuli (Kourtzi and Kanw-

isher, 2001) or computations (Barron et al., 2013; Doeller et al.,

2010).

We were interested in changes of value representational sim-

ilarity over time. By asking subjects to evaluate presented op-

tions on behalf of themselves, a novel other whose preferences

were acquired during on-line scanning and a familiar other

whose preferences had previously been learnt, we could interro-

gate representational similarity in neuronal populations encoding

valuation for these three agents. In line with previous reports that

highlight a social influence on the valuation of objects (Campbell-

Meiklejohn et al., 2010; Klucharev et al., 2009; Zaki et al., 2011),

we found learning about the preferences of a novel agent had

clear behavioral consequences evident in a shift in subjects’

own, as well as their estimation of a familiar other’s, discount

rate. This behavioral effect coincided with an increase in neural

representational similarity in the mPFC. This supports a view

that value representations in the mPFC are not aligned to the

frame of reference of an individual. Instead, the increase in

neuronal overlap tied to a shift in behavioral preferences sug-

gests that the mPFC encodes agent-independent representa-

tions of subjective value.

The presence of a learning-induced representational plasticity

for value is likely to depend on generic learningmechanisms. The

most influential computational account posits a role for a reward

prediction error implemented via phasic activity of dopamine

neurons (Schultz et al., 1997), a putative teaching signal for cor-

tico-striatal learning (Calabresi et al., 2007; O’Doherty et al.,

2004; Reynolds and Wickens, 2002). Prediction errors align

with the dimension relevant for learning in a given situation.

They manifest as a sensory prediction error when subjects learn

to predict a sensory event (den Ouden et al., 2010), a probability
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prediction error when subjects learn about reward probability

(Behrens et al., 2008), and a social expectancy prediction error

when group preferences diverge from subjects’ own valuations

(Campbell-Meiklejohn et al., 2010; Klucharev et al., 2009). In

the current experiment, a prediction error (expressed in pMFC,

insula, and striatum) corresponds to the surprise subjects expe-

rience when a partner’s choice is incongruent with their own

preference. This accords with previous studies demonstrating

an expression of a similar signal representing a discrepancy be-

tween one’s own and a group’s opinion (Berns et al., 2010;

Campbell-Meiklejohn et al., 2010; Falk et al., 2010; Klucharev

et al., 2009). Crucially, our results extend on these reports by

showing this error coding is directly related to an expression of

plasticity in mPFC, a region widely implicated in tracking prefer-

ences for stimuli (Lebreton et al., 2009) as well as inter-temporal

preferences (Kable and Glimcher, 2007; Pine et al., 2009).

The mPFC region displaying the change in repetition suppres-

sion is a complex and heterogeneous area with strong con-

nections to regions such as the amygdala, hippocampus, hypo-

thalamus, and insula enabling access to sensory, visceral, and

emotional information. It is considered ideally placed for self-

referential processing (Kelley et al., 2002; Magno and Allan,

2007) and for attributing value to stimuli across many reward

contexts (Bartra et al., 2013; Clithero and Rangel, 2014) and

internally generated states (Bouret and Richmond, 2010). How-

ever, a mPFC value computation is also remarkably flexible,

and can occur even if direct experience is not available (Barron

et al., 2013) or if there is a requirement for an abstract model

of task structure (Hampton et al., 2006). This flexibility is vital in

social cognition, where a model of the preferences and in-

tentions of another individual needs to be decoupled from the

physical and perceptual reality of a subject’s own internal state

(Mitchell, 2009; Nicolle et al., 2012). Traditionally, it has been

suggested that such computations occur in distinct circuitries,

where a ventral sector of themPFC encoding subjective stimulus

values (Boorman et al., 2009; O’Doherty, 2004) is complemented

by a dorsal sector representing the mental states of others (Beh-

rens et al., 2008, 2009; Frith and Frith, 2010; Yoshida et al.,

2010). However, this notion is challenged by an observation

that a dorsal-ventral axis can be better understood in terms of

executed versusmodeled choices (Nicolle et al., 2012). The latter

observation supports the idea that the very same area encodes

subjective value irrespective of the frame of reference, a notion

strongly supported by our current observation that a behavioral

shift toward the value of a novel agent is mirrored by an increase

in neural overlap.

Irrespective of the exact nature of the observed plasticity, the

underlying mechanism would seem to necessitate an overlap in

neural populations encoding values for a novel other, self, and a

familiar other. How exactly might the brain calculate discounting

preferences with neural populations that are prone to the

observed shifts in preference? Theoretical studies suggest an

agent’s overall preferences might arise out of a summation

over a distributed set of discounting units (Kurth-Nelson and Re-

dish, 2009). This is consistent with recordings in rat orbitofrontal

cortex demonstrating a distributed encoding of inter-temporal

choice parameters across a neuronal population (Roesch

et al., 2006). Similar gradients of discount factors have also



been found in the human striatum (Tanaka et al., 2004) and

mPFC (Wang et al., 2014). This suggests that some neuronal as-

semblies may represent a preference for fast discounting, favor-

ing smaller-sooner returns, while others favor slow discounting.

The discounting preference of each agent would be represented

by population codes, implementing sets of weights over these

discounting assemblies. The prediction errors a subject per-

ceives when the novel other’s choices differ from what they

would have chosen for themselves could in principle change

the weights within this pool, resulting in altered populations

codes.

The fact that a common brain region is recruited when

computing preferences for self and other might suggest that

people initially draw on self-representations to make inferences

about another person and only construct a novel representation

through learning. Such a mechanism has been observed when

constructing a representation for a novel good from a simulta-

neous activation of familiar components (Barron et al., 2013).

However, this theory makes opposite neural predictions, as it

predicts repetition suppression at the beginning of the experi-

ment as subjects draw on the same representation to choose

for self and other. In this scenario a separate representation for

a novel other is built over time and would predict disappearance

of repetition suppression. Instead, we observe an increase in

repetition suppression across time, an effect reminiscent of an

increase in similarity between representations observed when

subjects repeatedly evoke independent memories (Barron

et al., 2013). Importantly, we can demonstrate this plasticity is

not solely a neuronal phenomenon but also has profound behav-

ioral consequences.

Our approach uses repetition suppression to provide insight

into a similarity in neural representations. Comparable measures

of representational content can be obtained by multivariate

pattern analysis (Davis and Poldrack, 2013; Sapountzis et al.,

2010); however, it is thought the two techniques show a differ-

ence in sensitivity to precise features of the neuronal code

(Drucker and Aguirre, 2009). Without an explicit measure of

MVPA in this study, we are therefore cautious in predicting a

comparable increase in similarity between representations for

self and a novel other in mPFC when using MVPA.

Note that subjects grow increasingly familiar with the novel

other’s preferences as the task progresses, whereas familiarity

remains constant for the familiar other in the sense that there is

no new learning in relation to this other. Since psychological con-

structs such as familiarity, but also similarity and physical prox-

imity, have previously been demonstrated to upregulate mPFC

activity (Jenkins et al., 2008; Krienen et al., 2010; Mitchell

et al., 2006; Tamir and Mitchell, 2011), this raises the question

whether an increase in familiarity might drive the plasticity effect.

Importantly, our data are not consistent with such an account.

First, activity for familiar and novel other does not differ in

mPFC, not even at the beginning of the experiment, suggesting

that the mPFC in our task does not respond to familiarity per se.

Second, amediation analysis suggests that it is a striatal surprise

signal, the very opposite of familiarity, that drives the plasticity

effect, which in turn drives the behavioral shift.

Subjects’ own discount rate shifted toward the discount rate

of their partner irrespective of whether their partner was human
or a computer. This is in line with studies demonstrating that in-

dividuals use strategies akin to those used in real social contexts

when interacting with a computer agent (Nass and Moon, 2000).

Crucially, a control condition with the same stimuli and actions,

but without the need to employ a discounting computation, did

not evoke a change in subjects’ own preferences. This indicates

that the behavioral effect is tied to subjects’ deployment of the

very same discounting mechanism to learn on behalf of another

agent, be it a human or non-human agent. Thus, it is a learning-

induced plasticity in acquiring a novel value representation that

impacted on subjects’ own subjective value computation. This

also suggests that most subjects do not actively choose to

change their preferences but instead do so as the consequence

of anmPFC plasticity they are not consciously aware of. Such an

implicit mechanism presumably contributes to involuntarily

aligning goals with others and might play an important role in

spreading values throughout a population (Boyd et al., 2011;

Frith and Frith, 2010).

In conclusion, our data detail a neuronal mechanism by which

personal traits are susceptible to social influence. Such plasticity

might be one of the key features underlying learning, because it

allows for an integration of past experience with novel informa-

tion. More broadly, our findings pave the way for further studies

of human social interactions at a more mechanistic level.

EXPERIMENTAL PROCEDURES

Subjects

27 volunteers (mean age ± SD: 23.6 ± 3.7, 14 females) participated in the

behavioral experiment, and 29 volunteers (mean age ± SD: 25.6 ± 5.6 years,

14 females) participated in the subsequent fMRI experiment. Two subjects

were excluded from fMRI analyses, because they had previously participated

in the behavioral experiment and because of technical difficulties during the

scan. All subjects were neurologically and psychiatrically healthy. The study

took place at the Wellcome Trust Centre for Neuroimaging in London, UK.

The experimental procedure was approved by the University College London

Hospitals Ethics Committee and written informed consent was obtained from

all subjects.

Task Behavioral Study

For a detailed description of the task and our analyses, see the Supplemental

Information. In brief, subjects made a series of choices between a smaller

amount paid on the same day and a larger amount paid later (Figure 1A).

The experiment was divided into three blocks (Figure 1B). In the first block,

consisting of 100 trials, subjects made decisions for themselves. In block 2,

they made decisions on behalf of their partner. They were also provided with

trial-by-trial feedback on whether their choice for the partner was correct.

Block 2 ended when subjects made 85% correct responses for their partner

in a sliding window of 20 trials or after a maximum of 60 trials. In block 3,

smaller blocks of ten trials of choosing for self alternated with blocks of ten tri-

als of choosing for the partner. Block 3 ended after a total of 200 trials. Choices

were optimized to give us a precise estimate of subjects’ discount rates.

Estimation of Discount Rates

We estimated subjects’ discount rates by fitting a hyperbolic model to their

choices (Rachlin et al., 1991) separately for each experimental block. Subjects’

shift in discount rates was defined as the change in discount rate from

block 1 to block 3 (log kself,block3 � log kself,block1) relative to the distance be-

tween their estimate of the partner’s discount rate from their own discount

rate (log kother,block2 � log kself,block1):

ð1Þ shift = log kself ;block 3 � log kself ;block1
log kother;block 2 � log kself ;block1

:
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A positive shift represents a movement toward, and a negative shift a

movement away from, the partner’s discount rate. Outliers (outside the range

mean ± 3,SD), as well as subjects who estimated their partner’s discount

rate to be less than 0.3 units away from their own discount rate, were

excluded from population analyses because of inflated shift estimates (see

Figure S1E).

Simulation of the Other’s Choices

To generate feedback for the confederate’s choices, we simulated a partner

with a discount rate that differed from the subject’s own baseline discount

rate by 1 (i.e., log kother = log kself,block1 ± 1). Choices were correct if they cor-

responded to the decision that would be preferred by a hyperbolic discounter

with this discount rate. Importantly, the simulated partner’s choices were

noisy, as the other’s subjective value was translated to a choice probability

with a softmax function (temperature parameter b = 1).

Task fMRI Study

The fMRI experiment consisted of two trial types: choice trials, as described

for the behavioral experiment above, and probe trials, in which subjects eval-

uated a single option on a scale from 1 to 4 (Figure 1D). Subjects learned the

preferences of a second partner (‘‘familiar other’’) before the scan (Figure 1E,

top).

In contrast to the behavioral experiment and the pretraining, subjects

learned about the novel other’s discount rate while we assessed their own dis-

count rate. To make sure that we captured a potential shift in discount rate in

this scenario, we excluded the first third of all choice trials subjects performed

in the scanner when estimating kself,scan, knovel,scan, and kfamiliar,scan. The rela-

tive shift effects reported in Figure 1F were then calculated as follows:

ð4Þ shiftself/fam;training =
log kself ;training block 3 � log kself ;training block1

log kfamiliar;training block2 � log kself ;training block1

ð5Þ shiftself/fam;scan =
log kself ;scan � log kself ;training block3

log kfamiliar;scan � log kself ;training block3

ð6Þ shiftself/novel;scan =
log kself ;scan � log kself ;training block3

log knovel;scan � log kself ;training block3

ð5Þ shiftfam/novel;scan =
log kfamiliar;scan � log kfamiliar;training block2

log knovel;scan � log kfamiliar;training block2

:

For the estimation of absolute shifts, the denominator z was set to sign(z).

Outliers (outside the range mean ± 3*SD) as well as subjects for whom the

denominator was smaller than 0.3 (two subjects for shiftself/fam,scan, three

subjects for shiftself/novel,scan, and two subjects for shiftfam/novel,scan) were

excluded from the analyses.

Surprise Measure

We estimated subjects’ own discount rates on a trial-by-trial basis (see

Supplemental Information) and used this measure to compute differences

in subjective value for the choices subjects observed their partner make

(Vchosen_by_partner � Vunchosen_by_partner). This difference in subjective value

was transformed to a probability using a softmax function applied to a trial-

to-trial estimation of subject’s inverse temperature parameter b. This measure

gave us an estimate of how likely the subject would have been to make the

same choice himself. We subtracted this likelihood from 1 to translate this to

a surprise measure.

Scan Procedure, fMRI Data Acquisition, and Preprocessing

We used standard procedures for acquiring fMRI data where these were de-

signed to minimize susceptibility related artifacts in the ventral prefrontal cor-

tex (Weiskopf et al., 2006). We used SPM8 for image preprocessing and data

analysis (Wellcome Trust Centre for Neuroimaging, London). We corrected for

signal bias, co-registered functional scans to the first volume in the sequence,

and corrected for distortions using the fieldmap. Data were spatially normal-

ized to a standard EPI template and smoothed using an 8 mm full-width at

half maximum Gaussian kernel.
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fMRI Data Analysis

Data were analyzed with an event-related general linear model (GLM). Probe

trials were sorted into nine different conditions (self preceded by self [SS],

novel preceded by self [SN], familiar preceded by self [SF], self preceded by

novel [NS], novel preceded by novel [NN], familiar preceded by novel [NF),

self preceded by familiar [FS), novel preceded by familiar [FN], and familiar pre-

ceded by familiar [FF]) with 20 trials per condition and block. Each regressor

was accompanied by a parametric modulator reflecting subjective value

from the respective agent’s perspective. This value was calculated based on

a trial-by-trial estimate of the subject’s current belief about their partners’ dis-

count rate k. Furthermore, we defined one choice regressor per agent and

block indexing the time at which subjects indicated their decision on choice tri-

als and received feedback. Each was accompanied by a parametric regressor

corresponding to the surprise subjects experienced as they observed the part-

ner’s choice. Button presses were included as a regressor of no interest.

Because of the sensitivity of the BOLD signal in the OFC region to subject mo-

tion and physiological noise, we included six motion regressors obtained dur-

ing realignment as well as ten regressors for cardiac phase, six for respiratory

phase, and one for respiratory volume extracted with an in-house-developed

Matlab toolbox as nuisance regressors (Hutton et al., 2011). Blocks were

modeled separately within the GLM.

To detect areas showing adaptation to repeated agents as depicted

in Figure 2A, we used the contrast ð½agent preceded by different agent��
½agent preceded by same agent�Þ (i.e., ð½SN+SF +NS+NF +FS+FN��
2½SS+FF +NN�Þ). To test for areas displaying greater increases in suppression

between self and the novel other compared to between self and familiar

other (Figure 2B), we defined the following contrast: ð½SN+NS�block1�
½SN+NS�block3Þ � ð½SF +FS�block1 � ½SF +FS�block3Þ. To test for greater in-

creases in suppression between self and novel other than between novel other

and familiar other, we defined a contrast as follows: ð½SN+NS�block1 +
½SN+NS�block3Þ � ð½NF +FN�block1 � ½NF +FN�block3Þ.
The contrast images of all subjects from the first level were analyzed as a

second-level random effects analysis. Results are reported at a cluster-

defining threshold of p < 0.01 uncorrected combined with a FWE-corrected

significance level of p < 0.05.

We performed a jack-knife procedure from the mPFC ROI (Figure 2B) to

extract parameter estimates from this region without biasing the selection.

To this end, we extracted parameter estimates for each subject from an ROI

defined according to all other subjects (threshold at p < 0.01 uncorrected).

This signal was used to perform all analyses depicted in Figures 2–4 and S3A.

We performed partial correlations to control for correlations between

shiftself/novel,scan and shiftfam/novel,scan in our analysis of the relationship of

a behavioral shift effect and neural plasticity. This removes the shift of the

familiar other toward the novel other from the subjects’ own discount rate

shifts and the neural plasticity index [SN � SF]1�3 (Figure 3A) and the shift of

self toward the novel other from the familiar other’s shift toward the novel other

and the neural plasticity index (Figure 3B). We also estimated a linear regres-

sion model on the same data with shiftself/novel,scan and shiftfam/novel,scan as

independent variables and [SN � SF]1�3 as the dependent variable. The rela-

tionship between shiftself/novel,scan and [SN � SF]1�3 was directly contrasted

with the relationship between shiftfam/novel,scan and [SN � SF]1�3.

To test for the influence of surprise onmPFCplasticity, we defined a contrast

assessing BOLD correlate of the surprise subjects experienced as they got

feedback about the novel and the familiar partners’ choices. This contrast re-

vealed activity in ACC, in bilateral insula and dorsal striatum (Figure 4A; note

that insula and striatal activity did not survive cluster-based FEW threshold-

ing). To identify the surprise experienced when learning about the novel other,

parameter estimates were then extracted from these ROIs for the novel other’s

choices only. This surprise measure in the striatum was correlated with

subjects’ shift in discount rate (Figure 4B) and the plasticity measure [SN �
SF]1�3 extracted from the mPFC ROI (Figure 4C).

We used the Mediation and Moderation Toolbox (Atlas et al., 2010; Wager

et al., 2008) to perform a mediation analysis on this surprise signal, our plas-

ticity measure, and the discount rate shift.

To test the specificity of adaptation effects, we analyzed repetition suppres-

sion effects in visual regions. We defined an ROI from a contrast identifying a

main effect to any visual event, averaged across all blocks, and performed the



same analyses as for the mPFC ROI (thresholded at p < 0.0001 uncorrected;

Figure S2).

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures and Supplemental Experi-

mental Procedures and can be found with this article online at http://dx.doi.

org/10.1016/j.neuron.2014.12.033.
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