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ABSTRACT 

 

Epidemiological studies demonstrate that in utero growth restriction and low birth weight are 

associated with impaired lung function and increased respiratory morbidity from infancy, throughout 

childhood and into adulthood.  Chronic restriction of nutrients and/or oxygen during late pregnancy 

causes abnormalities in the airways and lungs of off-spring, including fewer numbers of enlarged 

alveoli with thicker septal walls and basement membranes.  The structural abnormalities and impaired 

lung function seen soon after birth persist or even progress with age.  These changes are likely to 

cause lung symptomology through life and hasten lung aging. 
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Introduction (heading level A) 
 

Next to preterm delivery, intrauterine growth restriction (IUGR) is one of the most important causes of 

perinatal morbidity and mortality1.  In its simplest form, IUGR occurs when the growth restriction is 

pathologic (ie not constitutional), indicating that the fetus has failed to achieve its full growth potential1.  

Most commonly, IUGR results in an infant that is small for gestational age (SGA) with a birth weight 

less than the 10th centile at birth.  However, as birth weight for any given gestation is largely normally 

distributed, an infant can be SGA without also having IUGR, whilst a small number of IUGR infants 

may have birth weights above the 10th centile, and therefore not be classified as SGA.  The term low 

birth weight (LBW), which refers to any infant with a birth weight less than 2500 g, is often used 

erroneously as a proxy for IUGR as this classification does not adjust for maturation and is 

predominantly populated by infants with appropriate growth for gestation.  The confusion between 

these three terms confounds the interpretation of the literature.  The calculation of customised centile 

calculators that consider maternal height, weight, ethnicity and parity and the fetal sex (eg 

http://www.gestation.net/birth weight_centiles/birth weight_centiles.htm)2, can improve distinction of 

true IUGR from the constitutionally small infant. 

 

IUGR is often described as symmetric or asymmetric; whereas the whole body of an infant with 

symmetric IUGR is proportionately small, the infant with asymmetric IUGR preserves growth of critical 

organs, such as the brain and the heart, at the expense of liver, gut and fat.  Asymmetric IUGR 

implies impaired nutrition and affected infants have substantially lower centiles for weight, length and 

body mass index compared to the proportions of the head.  However, the distinction between 

asymmetric and symmetric IUGR may be less clear as arguments that symmetric IUGR represents 

both an early3 and late form of asymmetric IUGR are proposed.  The etiologic basis of IUGR may 

have maternal, placental, fetal or environmental origins (or a combination of any of these), as detailed 

in Figure 1.  Approximately 80-90% of all cases of IUGR amenable to preventive and therapeutic 

management involve impaired transplacental supply of oxygen and nutrients to the fetus4.  Pregnancy 

induced hypertension and its associated pathological uteroplacental circulation is the single most 

contributory factor to the development of IUGR3, whereas maternal smoking accounts for up to 40% 

of IUGR in developed countries5. 

  

http://www.gestation.net/birthweight_centiles/birthweight_centiles.htm


Interest in the long term effects of IUGR has gained momentum in recent years: signals related to 

poor placental nutrient transfer during critical periods of fetal development may promote adaptations 

to reduced nutrient transfer that are beneficial in the short term but which may lead to alterations of 

structure or function with adverse long term consequences.  This process of ‘programming’6 is 

recognised as an important means by which perinatal events and the in utero environment contribute 

to disease susceptibility in later life. 

 

Lung development occurs in several distinct stages: embryonic, pseudoglandular, canalicular, 

saccular and alveolar phases7.  Impaired fetal nutrient and oxygen availability can impact on any of 

these phases, potentially affecting long term lung function and respiratory morbidity.  Placental 

insufficiency primarily occurs in late pregnancy in parallel with acinar and alveolar development: IUGR 

will thus most likely affect the structure and function of the distal lung. 

 

This review examines the effects of nutritional and oxygen restriction on lung development in utero.  It 

considers epidemiological evidence suggesting changes in lung development not only impact on lung 

function and respiratory disease in early life, but also cause effects into late adulthood.  Data from in 

vivo animal models support and explain the observational studies. 

 

Effects of IUGR on Lung Development (heading level A) 

 

Much of our understanding of the effects of IUGR on lung development has arisen from studies using 

animal models.  Most animal models of IUGR have restricted fetal growth using a nutritional approach 

(limitation of maternal energy and/or protein intake), interference with placental function and uterine 

blood flow (embolectomy), or placental insufficiency resulting from pre-conception carunclectomy, 

arterial ligation or chronic hypoxia8.  Other models have included exposure to tobacco smoke, late-

gestation ischemia/reperfusion, partial nephrectomy, and repeat antenatal corticosteroids8.  The 

pathophysiology and phenotype of the abnormalities in lung development resulting from these insults 

may vary according to species, timing, chronicity and intensity of the relevant exposure/insult, as well 

as analytical techniques9.  Nonetheless, these studies largely confirm that normal lung development is 

critically dependent on the presence of appropriate oxygen tensions and nutrition10 and that IUGR is 



associated with persisting or developing abnormalities of structure and function in both the airways 

and parenchyma. 

 

Lung Parenchyma (heading level B) 

 

Impairment of fetal nutrition and oxygenation, as frequently occurs in association with IUGR, has 

wide-ranging effects on cellular and molecular events in the developing lung.  These effects include 

reduced surfactant content/activity11, 12, impaired Type II alveolar cell maturation13, reduced alveolar 

cell formation9, 14, diminished alveolar surface area, thickened alveolar walls and air-blood barriers15, 

16, as well as an overall reduction in lung weight, protein and DNA content17. 

 

Reduction in lung DNA content and impaired alveolarisation may arise in part from the diminished 

fetal breathing movements that are associated with IUGR given the known role of these breathing 

movements in maintaining fetal lung expansion and lung growth and development14.  The reduced 

number of alveoli associated with IUGR at birth persists into adulthood, with no evidence of catch up 

in mature sheep14, or rats18.  

 

Prepubertal and adult IUGR animals have increased alveolar size14, 19, caused by enlargement of the 

existing airspaces.  This increase in alveolar volume may be associated with the development of 

emphysema14 and early lung aging.  Although emphysema may arise from abnormal elastin 

expression and deposition, this remains uncertain:  Whereas some have found elastin expression and 

deposition of elastic fibre is reduced in the IUGR rat lung, associated with increased static lung 

compliance at maturity16, 20, Cock found no evidence of similar alterations in elastin in newborn, early 

weanling or adult sheep17.   

  

A study using umbilical-placental embolisation in late gestation, to coincide with saccular and alveolar 

stages of lung development, examined the effects of IUGR in pre-pubertal sheep at 8 weeks19: 

compared to controls, IUGR sheep had fewer alveoli, thicker intra-alveolar septa and persistent 

thickening of the basement membrane. Such changes that are likely to impair gas exchange and alter 

the mechanical properties of the lungs.  It is unknown whether antenatal glucocorticoids rescue this 



pulmonary dysmaturation in the IUGR fetus21.  The abnormal pulmonary development was more 

prominent at 8 weeks than near term, indicating that not only do the lung effects of IUGR persist, but 

they become worse with age.  In a follow-up study into adulthood14, the IUGR group had more 

pronounced abnormalities than at 8 weeks.  Comparisons of septal wall thickness at birth19, 8 weeks19 

and 2 years14, indicate that most changes occurred postnatally due to an accumulation of extracellular 

matrix.  Similar septal wall thickening has been described in mature rats whose mothers were 

nutritionally restricted in pregnancy18.  The reason for the accumulation of extracellular matrix in the 

alveolar septa, and also in the thickened basement membrane, is unknown but several hypotheses 

have been advanced:  The mild neonatal hypoxia associated with IUGR may exert a persistent 

alteration in the metabolic processes within the pulmonary cells; alternatively, increased alveolar wall 

tension during tidal breathing, due to reduced alveoli numbers, may cause an adaptive response of 

extracellular matrix deposition.  Additionally, the increased thickness and cellularity of the pulmonary 

mesenchyme commonly associated with IUGR may result from the increased presence of insulin-like 

growth factor 1 (IGF1)22.  Through binding to its specific tyrosine kinase IGF-1 receptor (IGF1R), IGF1 

initiates intracellular signalling pathways including the Akt (protein kinase B) signalling pathway which 

promotes cell growth and differentiation and inhibits programmed cell death.  Whereas in other 

tissues this process may promote accelerated growth, in the developing lung it represents a 

maladaptive response to the low placental substrate supply.  The transcription factor p53 also has a 

pivotal role in cellular responses to stress, lung mesenchymal thinning via apoptosis, regulation of cell 

cycles and angiogenesis.  The active (phosphorylated) form of p53 (serine-15P) was decreased in the 

distal air space mesenchyme of IUGR rat lungs16.  Messenger RNA of downstream targets of p53 

involved in apoptosis (Bax, Apaf), growth arrest (Gadd45) and angiogenesis (Tsp-1) were decreased 

whilst mRNA for an anti-apoptotic gene normally downregulated by p53 (Bcl-2) was increased.  

 

The effects of IUGR on pulmonary development may be partly mediated by epigenetic mechanisms.  

Epigenetic modifications affect developmental processes by altering gene expression patterns of 

target genes.  In rats, IUGR decreases the transcription factor peroxisome proliferator activated 

receptor gamma (PPARγ), with an associated decrease in a PPARγ downstream target the histone 

methyltransferase enzyme, Setd8, and PPARγ specific histone methylation23.  These changes are 

ameliorated by maternal docosahexaenoic acid (DHA) supplementation; maternal DHA is known to be 



low in pregnancies complicated by IUGR23.  Together, these data suggest a role for PPARγ in IUGR-

induced epigenetic changes in the lung during development and a novel benefit of maternal DHA 

supplementation. 

 

Airways (heading level B) 

 

There are few data concerning the long term effects of IUGR on airway development.  Systematic 

evaluation of airway samples from generation 0 (trachea) to generation 8 (smaller conducting bronchi) 

in sheep with IUGR following late (80% of gestation) umbilical-placental embolization showed no 

effect of IUGR on smooth muscle content but the IUGR group had thinner walls of the larger airways 

with reduced cartilage at birth, suggestive of more collapsible airways24.  However, by 8 weeks after 

birth the airway morphometry was no different to the control group, although the number of bronchial 

submucosal gland profiles was reduced and epithelial mucin area increased in the IUGR group25.  

Tracheas of IUGR fetuses at near term also have thinner mucosal and submucosal layers, in addition 

to decreased epithelial ciliation and decreased mucosal folding26.  

 

Vasculature (heading level B) 

 

An increase in the thickness of the air blood barrier is evident in term gestation lambs born after 

umbilico-placental embolisation27.  Although abnormal pulmonary vascular development and function 

may in part explain increased oxygen requirements and bronchopulmonary dysplasia incidence in 

IUGR preterm infants, there are few studies that have explored this aspect of cardiopulmonary 

development in IUGR fetuses.  A recent investigation showed that pulmonary artery endothelial cells 

from fetal sheep with IUGR due to chronic placental insufficiency have diminished in vitro function and 

reduced signalling through the Akt/eNOS pathway as well as decreased density of the pulmonary 

vessels28.  These data are highly relevant as impaired pulmonary vascular development impedes 

alveolarisation. 

   

Functional consequences of IUGR in the neonatal period (heading level A) 

 



The impact of IUGR on the incidence of neonatal respiratory distress syndrome varies from an 

increased29-31, decreased32 or equivocal33, 34 effect, most probably determined by the duration and 

nature of the insult causing IUGR.  Similar variation in outcome can be observed in animal models. 

 

A key feature of neonatal respiratory distress syndrome is endogenous surfactant deficiency.  Several 

studies showed abnormalities of the surfactant system.  In human infants, placental insufficiency is 

associated with increased lecithin/sphingomyelin ratios in the amniotic fluid, suggestive of accelerated 

lung maturation35, contrasting with lower saturated phosphatidylcholine content of the lungs of 

newborn rat pups11 and guinea pigs12, 36 born to undernourished dams.  Whereas surfactant protein 

synthesis was upregulated in fetal sheep after fetal/maternal hypoxia37, 38, reduced surfactant protein 

and mRNA expression is more often reported in IUGR fetal sheep of carunclectomised ewes39 and 

the hypoxic fetal mouse40.  Hypoxia induced by incubation in 15 % O2 from day 15 in fetal chickens 

increased disaturated phospholipids at day 19 compared to controls, whereas more chronic hypoxia 

extending from day 6 of hypoxia resulted in a borderline decrease in desaturated phospholipid 

content41.  Ultimately, therefore, the effect of hypoxia in IUGR on alveolar surfactant production may 

be modulated by gestation, duration and timing of exposure as well as the availability of surfactant 

substrate11. Interestingly, pulmonary vascular endothelial growth factor, which is expressed in alveolar 

type II cells and a stimulant of surfactant synthesis, is also upregulated by acute hypoxia in the fetal 

chicken41 due to upstream regulation by hypoxia-inducible factor 242. This highlights the key role of 

fetal oxygen tension in regulation of the surfactant system.  PPARγ is a further primary driver of 

adipogenic differentiation in the lung. The alterations in lung structure associated with IUGR 

consequent to maternal food restriction are linked to disturbance of PTHrP/PPARγ signaling between 

alveolar epithelium and mesenchyme18 which appears driven by epigenetic mechanisms in a sex-

dependent manner22. 

  

Long term functional and clinical consequences of IUGR in animal models (heading level A) 

 

The longer-term effects of IUGR on respiratory function and morbidity in later life are not yet fully 

understood.  A small number of studies have characterised the changes in lung function into pre-

puberty and adulthood using animal models.   



  

Growth restriction caused by late gestational umbilical-placental embolisation results in persistent 

impairment of pulmonary function43.  Repeated measurements of the sheep in the 8 weeks following 

birth showed that, in comparison to controls, IUGR resulted in increased minute ventilation, 

decreased pulmonary diffusing capacity, decreased functional residual capacity and total lung 

capacity.  Static lung compliance was reduced and chest wall compliance increased in IUGR lambs, 

but the reason for stiffer lungs was unclear and, of note, surfactant production appeared normal43. 

 

Adult rats demonstrate echocardiographic and histological evidence of pulmonary hypertension 

following in utero hypoxia-induced IUGR44.  This model mimics the hypoxic causes of IUGR such as 

smoking or living at altitude, but may not equate to nutritional causes.  Because of the differences 

between human and rat lung development, the effects of hypoxia at different stages of fetal 

development may differ between species. 

 

Long term cardiorespiratory effects of IUGR in humans (heading level A) 

 

Epidemiological evidence (heading level B) 

 

Ecological studies conducted in the 1980s found that regions of the UK with a high rate of death due 

to coronary heart disease also had high infant mortality45; subsequent investigation identified infants 

with the highest rates of death during infancy were those with the lowest birth weights and surviving 

infants born at low birth weight went on to have the highest risk of cardiovascular disease in 

adulthood46.  These findings were closely followed by the discovery that size at one year was a 

significant predictor of death in adulthood from respiratory causes suggesting that growth restriction 

early in life adversely impacts upon respiratory health47.  Numerous epidemiological studies have 

been conducted with the aims of clarifying the long term respiratory consequences of IUGR. Although 

observational studies are unable to categorically identify individuals whose growth is restricted, in 

many cases low birth weight has been used somewhat imprecisely, as a crude proxy for IUGR. 

Impaired prenatal growth is increasingly believed to be associated with impaired respiratory function 



and poor respiratory health not only immediately after birth but throughout childhood and into 

adulthood48. 

 

Consequences of IUGR for childhood and adult lung function (heading level C) 

 

Observational studies show that within a group of term babies of normal average birth weight, forced 

expiratory flow decreases with decreasing birth weight49 and that respiratory morbidity in early 

childhood is associated with lower infant lung function 50.  These findings suggest that an in utero 

environment less conducive to somatic growth also impairs lung development, with consequences for 

early respiratory health.  Impairment is more pronounced in children who gain weight rapidly after 

birth49, 51, hence rapid postnatal weight gain following low birth weight may indicate mismatch between 

pre- and postnatal nutrient supply and thus identify infants subjected to fetal growth restriction.  

 

Impairments of lung function, specifically reduced expiratory flows52, 53 and hyperreactive airways54, 

are found beyond the period of infancy in children who were of low weight at birth.  Early studies 

generally compared children selected for low absolute birth weight to controls of average birth 

weight53, although some attempted to control for maturational effects by considering term infants 

separately from preterms54 or using weight for gestation z-scores52, and others attempted to identify 

growth restricted fetuses by assessing lung function in children born at significantly lighter birth weight 

than their co-twin52.  More recent studies considered the issue of fetal growth restriction across the full 

range of birth weights. For example, a large study of more than 2000 children aged 5-11 years 

demonstrated that those born at lower weight adjusted using a regression method for gestational age 

had lower than expected values of FEV1, regardless of whether they were born at term or preterm55.  

Persistently impaired lung function following fetal growth restriction is unsurprising given prospective 

cohort studies demonstrated lung function to ‘track’ in individuals followed up from infancy through 

childhood56, 57 and into later life57. 

 

A large, early epidemiological study of British men aged 59-70 years demonstrated reduced FEV1 

standardised with respect to age and height in those born with lower birth weights compared to others 

in this cohort47. Similar results were found in a survey of men and women from southern India58.  



Although in many historical studies gestational age is uncertain, prematurity is unlikely to confound 

these results as survival following preterm birth was low at the time these individuals were born58.  

Moreover, studies in which the association between birth weight and lung function were adjusted for 

gestational age and maternal factors (including height, weight and parity) suggest that growth 

restriction is responsible for this effect59.  More recently, birth weight was positively associated with 

both FVC and FEV1 in a large prospective population-based cohort of men and women aged 31 years 

in Finland.  These findings were independent of adult height, gestation, maternal smoking and 

respiratory disease60.  Similarly, a recent meta-analysis of eight studies exploring the relationship 

between LBW and adult lung function reported an increase in FEV1 of 48 mL per kilogram increase in 

birth weight after adjustments for age, smoking, and height61.  However, although reduced lung 

function in adulthood following fetal growth restriction appears a reasonably robust finding, the extent 

to which ‘catch-up’ growth might compensate for the effects of intrauterine adversity is less clear.  

Whilst early infant lung function studies suggest poorer lung function is associated with rapid early 

growth49, 62, other studies provide evidence of compensation for the effects of fetal growth restriction 

upon lung function measured later in life60, 63, 64. 

 

Consequences of IUGR for childhood and adult respiratory morbidity (heading level C) 

 

Many investigators have sought an association between evidence of fetal growth restriction and 

childhood asthma or wheeze, given both the observed association between birth weight and forced 

expiratory flows and the prominence of airways obstruction in these respiratory disorders.  Whilst 

acknowledging that low birth weight is not synonymous with IUGR and epidemiological techniques are 

limited in their ability to determine to what extent each individual has fulfilled their growth potential, 

birth weight is used by many as a proxy for fetal growth to assess long term respiratory morbidity: an 

association between an increased risk of childhood wheeze and lower birth weight65, 66 has been 

found by some, however, others have found an association with higher birth weight67, and some no 

relationship at all54, 68-70.  Although a recent meta-analysis concluded that an increased risk of asthma 

in childhood or early adult life is associated with higher birth weight71, the conclusions of individual 

studies differed considerably on this point.  Some misclassification of outcome may have occurred in 

this analysis as wheeze outcomes measured at different ages were combined; this may not be valid 



given that the prevalence of the various wheeze phenotypes varies with age72.  Moreover, this meta-

analysis included only those studies dichotomising birth weight as above average or average and did 

not consider the full range of birth weights. 

 

The clinical symptoms recognised as asthma probably arise from a number of related syndromes 

rather than a single illness72, 73.  Although there is considerable overlap between the different 

‘wheezing syndromes’, the early life histories of those children whose symptoms are limited to early 

childhood may differ from those who suffer persistent wheeze, and in particular from those suffering 

wheeze in association with atopy.  The health outcomes of infants demonstrating disproportionate 

growth support a role for restricted fetal growth in the development of an atopic predisposition or 

symptoms of atopic disease.  For example, infants with larger head circumference at birth are at 

increased risk of elevated serum total IgE67,74 and asthma in childhood75 compared to children with 

smaller head circumferences.  Disproportionate head growth may reflect prioritisation of the growth of 

the brain over that of immune tissue such as the thymus under conditions where the nutritional needs 

of the fetus cannot be met.  These findings are not without controversy.  The proposed association 

between disproportionate growth and atopic disease is an inconsistent finding of all epidemiological 

studies; some studies found atopy is associated with higher birth weight76, 77 and length67.  Moreover, 

there is evidence to contradict the proposal that larger head size is associated with decreased thymic 

volume78. 

  

Poor lung function in adulthood is a consistent independent predictor of all-cause mortality and deaths 

due to respiratory and cardiovascular disease79, 80.  This suggests fetal growth restriction may have 

lasting clinical effects with important public health implications.  Studies of young adult conscripts81, 82 

demonstrated an inverse relationship between asthma risk and birth weight and this conclusion was 

recently confirmed by follow-up of individuals from the 1970 British national birth cohort83 and a large 

Swedish twin study84.  Lower weight at birth and in early infancy is also associated with a higher 

standardised mortality from chronic obstructive pulmonary disease47.  These findings have led to the 

proposal that impaired lung growth may lead to chronic airflow obstruction in late adult life through a 

failure to obtain maximal lung function potential as a young adult, even if the subsequent rate of 

decline with age is normal85, 86.  



 

There is also evidence that IUGR is associated with abnormal pulmonary vasculature.  Pulmonary 

arterial branch stenosis is generally considered a transient phenomenon in neonates and young 

infants.  It does however persist beyond a year in a minority of cases, and this persistence is related 

to IUGR but not prematurity87.  IUGR, as measured by ponderal index for gestational age, is also 

associated with an increased incidence and severity of persistent pulmonary hypertension of the 

newborn88. 

  

In summary, in vivo models of IUGR support the epidemiological findings that fetuses subjected to 

impaired nutrition and oxygen have impaired morphological and functional features of lung and 

pulmonary vascular development.  Importantly these changes persist or even develop with increasing 

age. 

 

Conclusions (heading level A) 

 

Epidemiological studies using low birth weight as a proxy for IUGR, demonstrate associations with 

reduced infant lung function and early respiratory morbidity, and also reveal that impaired lung 

function and respiratory disease persist into adulthood.  IUGR can be caused by maternal, placental 

or fetal causes, and it is difficult in epidemiological studies to tease out the relative factors (such as 

tobacco exposure, infections or maternal vascular disease) and whether these are having a direct or 

indirect (affecting the nutrient supply) effect on lung development.  Additionally, uncertainties about 

gestational age at birth confound many, but not all epidemiological studies and future studies should 

aim to separate maturation from IUGR by analysing gestational age and birth weight z-score rather 

than birth weight.  

 

In vivo models of maternal nutrient restriction in later pregnancy have provided important insights into 

the structural and functional implications of IUGR.  These studies show that impaired nutrient and 

oxygen availability to the fetus causes microscopic structural changes which are apparent not only 

soon after birth, but persist in mature lungs.  Fetal nutrition was restricted during the alveolar phase of 

lung development in many studies.  This coincides with the timing when placental insufficiency and 



other causes of IUGR are most likely to occur.  The impact of variations in the timing and severity of 

restriction still need further elucidation.  



PRACTICE POINTS 

 

 Compromise during pregnancy has life-long implications for respiratory health, morbidity and 

mortality in the off-spring.  

 Prevention of fetal compromise through careful monitoring and intervention during pregnancy. 

 Avoidance of preventable causes of IUGR, in particular education and assistance to avoid tobacco 

smoking in pregnancy. 

 Future epidemiological analyses need to carefully separate contribution of gestation and intrauterine 

growth restriction by using birth weight Z score rather than birth weight as the indicator of 

intrauterine nutrition. 

 

RESEARCH DIRECTIONS  

 

 Development of effective methods to prevent mothers smoking in pregnancy. 

 A greater understanding of the changes in lung development that are caused by IUGR may lead to 

further research to investigate ways of blocking the abnormal development or enhancing normal 

lung development. 

 Evaluation of the long term effects of IUGR on surfactant production, innate immunity of the lung, 

mucins, and ciliary function, and function of the respiratory musculature.  

 A better understanding of how different causes, timing and duration of IUGR impact on lung 

development. 

 Improved detection of fetal compromise during pregnancy, and methods to intervene. 

 Assessment of the effect of fetal lung maturational treatments (such as glucocorticoids) on the 

viability and long term cardiorespiratory outcomes of the IUGR infant. 
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Figure 1 -  Causes of Intrauterine Growth Restriction: Maternal, fetal, placental and environmental 

(outside circle) factors that contribute to development of intrauterine growth restriction  


