
J. Appl. Phys. 112, 094911 (2012); https://doi.org/10.1063/1.4764104 112, 094911

© 2012 American Institute of Physics.

The analytical basis for the resonances and
anti-resonances of loop antennas and meta-
material ring resonators
Cite as: J. Appl. Phys. 112, 094911 (2012); https://doi.org/10.1063/1.4764104
Submitted: 27 July 2012 . Accepted: 09 October 2012 . Published Online: 12 November 2012

A. F. McKinley, T. P. White, I. S. Maksymov, and K. R. Catchpole

ARTICLES YOU MAY BE INTERESTED IN

Theory of the circular closed loop antenna in the terahertz, infrared, and optical regions
Journal of Applied Physics 114, 044317 (2013); https://doi.org/10.1063/1.4816619

Theory of the Thin Circular Loop Antenna
Journal of Mathematical Physics 3, 1301 (1962); https://doi.org/10.1063/1.1703875

Probing the transition from an uncoupled to a strong near-field coupled regime between
bright and dark mode resonators in metasurfaces
Applied Physics Letters 105, 081108 (2014); https://doi.org/10.1063/1.4893726

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L16/738797472/x01/AIP/Alluxa_Whitepaper_JAP_PDF_2019/Alluxa_Whitepaper_JAP_PDF_2019.jpg/4239516c6c4676687969774141667441?x
https://doi.org/10.1063/1.4764104
https://doi.org/10.1063/1.4764104
https://aip.scitation.org/author/McKinley%2C+A+F
https://aip.scitation.org/author/White%2C+T+P
https://aip.scitation.org/author/Maksymov%2C+I+S
https://aip.scitation.org/author/Catchpole%2C+K+R
https://doi.org/10.1063/1.4764104
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.4764104
https://aip.scitation.org/doi/10.1063/1.4816619
https://doi.org/10.1063/1.4816619
https://aip.scitation.org/doi/10.1063/1.1703875
https://doi.org/10.1063/1.1703875
https://aip.scitation.org/doi/10.1063/1.4893726
https://aip.scitation.org/doi/10.1063/1.4893726
https://doi.org/10.1063/1.4893726


The analytical basis for the resonances and anti-resonances of loop
antennas and meta-material ring resonators

A. F. McKinley,1,a) T. P. White,1 I. S. Maksymov,2 and K. R. Catchpole1

1Centre For Sustainable Energy Systems, College of Engineering and Computer Science,
The Australian National University, Engineering Bldg 32—Canberra, ACT 0200, Australia
2Nonlinear Physics Centre, Research School of Physics and Engineering, The Australian National University,
Le Couteur Bldg 59—Canberra, ACT 0200, Australia

(Received 27 July 2012; accepted 9 October 2012; published online 12 November 2012)

Interest in the electromagnetic properties of loop structures has surged with the recent appearance

of split-ring resonator meta-materials (SRRs) and nano-antennas. Understanding the resonances,

anti-resonances, and harmonics of these loops is key to understanding their response to a wide

range of excitation wavelengths. We present the classical analytical solution for the input

impedance of a loop structure with circumference on the order of the wavelength, and we show

how to identify these resonances from the function. We transform the classical solution into a new

RLC formulation and show that each natural mode of the loop can be represented as a series

resonant circuit, such that the full response function can be resolved by placing all of these circuits

in parallel. We show how this formulation applies to SRRs. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4764104]

I. INTRODUCTION

Large loops, designed for the radio frequency (RF) re-

gime, have received minimal attention over the past 50 years

compared with other types of antennas, such as dipoles and

cavities. However, the recent design of the split-ring resonator

for the microwave (MW) region,1 for example, has shown that

loops can play a vital role in new and interesting applications,

such as cloaking. Small loop antennas are now being sug-

gested for sensors, light energy directivity, and focusing.2–9

A number of recent papers have sought RLC circuit

models for general plasmonic objects10–13 and for nano-

antennas.14,15 Loops have also received some interest in this

regard, because loops are relatively easy to build at the nano-

scale and because RLC models clearly display resonan-

ces.16,17 For example, in designing his split-ring resonator

meta-materials (SRR), Pendry1 focused on a calculation of

its main resonance (x0), its permeability (that is, its induct-

ance), capacitance, and quality factor (Q). Indeed, some

authors have developed RLC circuit models that are intended

to give all of the modal resonances.18,19 Consequently, these

resonances are vital, whether one wants to design a nano-

structure for meta-materials or for high frequency radiation.

Many of these recent models work well in the particular

case for which the model was developed, but there is no gen-

eral RLC model that captures the essential physical behavior

of circular loops over the entire frequency range from RF

through the optical region. In general, these specific models

are too simple in that they rely on constant values for the ele-

ments used. In this paper, we transform a known physical

model of the circular loop, developed for use in the RF region

during the 1950s, into a form which emphasizes an RLC for-

mulation. We show that only for extremely thin loops are the

resulting R, L, and C functions constant over frequency. For

thicker loops, which are currently the only kind of loops being

fabricated in the MW, low THZ and optical frequencies, the

RLC values must be replaced by functions of frequency. The

ramifications of this are that the resonances, anti-resonances,

bandwidths, and elemental RLC values for all harmonic

modes of reasonably thick circular loops can be well predicted

from the RF through low THz region.

In Sec. II, we describe the geometry of the circular loop

used in this study, and we show how to identify its resonan-

ces and anti-resonances from its input impedance function.

We also suggest the conditions for which a loop should be

designed around a resonance or around an anti-resonance. In

Sec. III, we show the results of the classical derivation of the

input impedance function. In Sec. IV, we transform this

result into one which identifies each mode as a series reso-

nant RLC circuit, and we give functions for the R, L, and C

of each mode, including the zero order mode. In Sec. V, we

study the accuracy limits of the functions by making two

comparisons with numerical simulations and with SRRs

found in the literature. In Sec. VI, we discuss various details

of our work, with emphasis on an intuitive understanding of

the physics of circular loops.

II. RESONANCES AND ANTI-RESONANCES

Figure 1(a) shows the geometrical structure of the classi-

cal circular loop antenna, characterized by the loop radius, b,

the wire radius, a, and a unit-less thickness measure, X ¼ 2ln
ð2pb=aÞ. A delta function voltage source placed across an in-

finitesimal gap, Vdð/ ¼ 0Þ, drives the loop. The derivation of

the loop’s response to this driving function, given in Sec. III,

imposes two restrictions: (1) the material is perfectly conduct-

ing and (2) a2 � b2. The first limits the results to frequencies

below 1 THz. The second limits the results to loops of thick-

ness X > 8. The results are plotted against the independenta)Electronic mail: arni.mckinley@gmail.com.
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variable kb ¼ 2pb=k, where k is the exciting wavelength. An

increase in this value can be viewed in two ways: (1) as an

increase in the size of the circumference given a constant exci-

tation wavelength, or (2) as a decrease in the excitation wave-

length given a constant circumference.

The response of the loop to the driving voltage in the RF

region has been well known since the 1950s.20 Figure 1

shows the complex impedance function of a relatively thin

loop (X ¼ 12) for 0 < kb < 2:5. The real part of the function

is the resistance, R; the imaginary part is the reactance, X.

The impedance function is important because it specifies the

loop’s resonant behavior. Resonances are of two types: true

resonances, namely those frequencies where the current

wave traveling around the circumference of the loop, reinfor-

ces itself; and anti-resonances, where the wave cancels itself

exactly. At a true resonance, current flows freely in the loop

and builds to a large quantity. At an anti-resonance, little

current flows in the loop.

The resonated loop is interesting among resonant sys-

tems, because it wants to store energy in current flow and yet

radiate energy at the same time. Consequently, resonated

loops tend to have Qs on the order of 3 to 8,21 not very high

and not very low. In fact, all of the harmonic resonances

have Qs in this range, indicating that the loop behaves the

same at many frequencies simultaneously. This is particu-

larly true of thin loops, as we shall discuss in Sec. VI.

On the other hand, the Q of a loop at an anti-resonance is

zero, because there is no energy stored. However, if a gap

exists within the loop, then a high ~E field can appear across

the gap, and energy will be stored within that field, just like it

would be in a capacitance. As a result, an anti-resonance can

also have a high quality factor. In fact, the Q can be much

higher than the Q at a resonance, because little energy can

escape the gap. We have no estimates for anti-resonance Qs.

The proper way to find either type of resonance is to exam-

ine those points where the reactance goes to zero. These zero-

crossings are marked by circles in Figure 1(b). At true resonan-

ces, the reactance changes from negative to positive (capacitive

to inductive reactance). At anti-resonance, the reverse occurs.

All true harmonic resonances occur near integer values of kb,

since this is where the wave is reinforced. The loop loses all re-

actance and appears to the source to be purely resistive; this re-

sistance is, in fact, the radiation resistance of the loop at that

resonance. On the other hand, all anti-resonances occur about

half way between consecutive integer values of kb. Again the

loop has no reactance and appears to the source to be purely

resistive, but this resistance is quite high, typically much larger

than any radiation resistance at the resonances.

III. THE CLASSICAL IMPEDANCE FUNCTION OF THE
CIRCULAR LOOP

The complete derivation of the input impedance of the

circular loop was accomplished by Hallen,22 Storer,20 and

Wu.23 A delta function voltage, Vdð0Þ, across an infinitesi-

mal gap generates a current, which may be described by an

infinite Fourier series of natural resonant modes.

Ið/Þ ¼
X1

m¼�1
Imexpðjm/Þ ¼ Vdð/Þ

jpn0

1

a0

þ 2
X1
m¼1

cosðm/Þ
am

" #
;

(1)

n0 ¼ 377X is the impedance of free space. The input imped-

ance at / ¼ 0 follows by definition:

Z ¼ jpn0

1
a0
þ 2
X1
m¼1

1

am

: (2)

This approach has been cited in all of the major antenna

textbooks and in the literature since then; for example, Refs.

21 and 24–29. Under the assumption of a perfect electrical

conductor, which limits the applicability of the derivation to

frequencies below the low THz regime, and under the assump-

tion that the wire radius is much smaller than the radius of the

loop (a2 � b2), the coefficients are given by Storer20

am ¼ a�m ¼ kb
Nmþ1 þ Nm�1

2

� �
� m2

kb
Nm: (3)

In solving a particular problem expressed by Storer,

Wu23 was able to reduce Storer’s recursive expression for

Nm to the regular expression

Nm ¼ N�m ¼
1

p
K0

ma

b

� �
I0

ma

b

� �
þ Cm

h i

� 1

2

ð2kb

0

½X2mðxÞ þ jJ2mðxÞ�dx for m > 1 (4)

and Cm ¼ lnð4mÞ þ c� 2
Pm�1

k¼0 1=ð2k þ 1Þ; c is Euler’s

constant, 0.5772. The zero order term is

FIG. 1. (a) Geometry of the classical loop, showing the key variables. The

gap is infinitesimal and supports a “delta-function” driving voltage. (b) Plot

of the impedance for a loop of size X ¼ 12, i.e., b=a � 64.
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N0 ¼
1

p
ln

8b

a

� �
� 1

2

ð2kb

0

½X0ðxÞ þ jJ0ðxÞ�dx

� �
:

This is now considered the final solution.30 XmðxÞ and

JmðxÞ are the Lommel-Weber function and the Bessel func-

tion of the first kind, respectively. I0ðxÞ ¼ 1þ Oðx2Þ � 1

and K0ðxÞ ¼ �ðlnðx=2Þ þ cÞI0ðxÞ þ Oðx2Þ � �lnðx=2Þ � c
are modified Bessel functions of the first and second kind,

respectively.31

Storer replaced the summation terms m > 5 with an in-

tegral,20 which he evaluated as

W ¼ 2p
lnð no

4:5Þ
kb

4:5
J þ 1

3

kb

4:5

� �2
" #

;

J ¼ f0:47; 0:9; 1:25; 1:4; 1:4g for X ¼ 8; 9; 10; 11; 12;
where n0 ¼ 2b=a exp �cð Þ:

This substitution significantly speeds the calculation.

The series now appears as

Z ¼ jpn0

1
a0
þ 2

P4
m¼1

1
am
�W

: (5)

IV. THE RLC REPRESENTATION OF THE CIRCULAR
LOOP

We now cast the impedance function into an RLC form

by applying the transformations, Z0 � jpnoa0 and

Zm � jpnoam=2. The classical impedance function Eq. (2)

then becomes

Z ¼ 1

1
Z0
þ
P1
m¼1

1
Zm

: (6)

This is evidently a parallel system of impedances as

viewed from the gap. Figure 2 shows a representation of

Eq. (6). Using Eq. (3) and Eq. (4), and the definitions

Rm � mno½kbrm=m� m=ðkbgmÞ�;
Lm � lobllm;

Cm � �obl�m=m2;

(7)

the modal impedance becomes

Zm ¼ Rm þ j xLm �
1

xCm

� �

¼ mno
kbrm

m
� m

kbgm

� �
þ j

kbllm

m
� m

kbl�m

� �� �
; (8)

where rm; gm; llm, and l�m are unit-less. These definitions

lead to

rm ¼

p
8

ð2kb

0

�
J2ðmþ1ÞðxÞ þ J2ðm�1ÞðxÞ

�
dx if m > 0;

p
2

ð2kb

0

J2ðxÞdx if m ¼ 0:

8>><
>>:

(9)

gm ¼ 1=
p
4

ð2kb

0

J2mðxÞdx

� �
if m > 0;

1 if m ¼ 0:

8<
:

llm ¼

1

2
ln

8b

a

� �
� 1

2

Xm

k¼0

1

2k þ 1
� 1

2

Xm�2

k¼0

1

2k þ 1
� p

8

ð2kb

0

½X2ðmþ1ÞðxÞ þ X2ðm�1ÞðxÞ�dx if m > 0;

ln
8b

a

� �
� 2� p

2

ð2kb

0

½X2ðxÞ�dx if m ¼ 0:

8>>><
>>>:

l�m ¼ 2

�
ln

8b

a

� �
� 2

Xm�1

k¼0

1

2k þ 1
� p

2

ð2kb

0

½X2mðxÞ�dx

2
4

3
5 if m > 0

1 if m ¼ 0:

8>><
>>:

l0 and �0 are the permeability and permittivity of free

space. The transform to k-space is x ¼ kb c=b.

The individual Rm; Lm, and Cm elements are functions

of kb, rather than constants, as in standard resonant circuit

theory. As an example, we can use the standard definition for

the resonant frequency, xm ¼ 1=ðLmCmÞ1=2
, and introduce

the term “modal balanced reactance” for Xbm ¼ ðLm=CmÞ1=2
,

to find that

Zm ¼ Rm þ jXbm
x
xm
� xm

x

� �

¼ Rm þ jXbm
kb

kbm
� kbm

kb

� �
: (10)

Figure 3 show the natural resonances for mode 2 (m¼ 2)

for an extremely thin loop and for a thick loop, as given by
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1=Z2 � 1=ðjpnoam=2Þ. The modal resonances of an infinites-

imally thin loop have traveling waves that have wavelengths,

which fit the circumference exactly. This produces a very

narrow bandwidth and, therefore, a high Q, because only a

few wavelengths can participate in the resonance. In this

case alone, can constant values be found for the series R, L,

and C of each mode, as the comparison in (a) shows between

the theoretical natural resonance and one given by an RLC

model. Thick loops, on the other hand, present a wide choice

of path length due to wire thickness, thereby broadening the

resonance, and lowering the Q value. Moreover, thicker

loops have fewer harmonic resonances than do thinner loops.

Two principal discrepancies appear in Figure 3: a shift

in the resonance away from kbm ¼ m and a shift upward in

the reactance (a phase shift). These shifts must be explained

by theory and are done so by taking R, L, and C to be func-

tions of kb; that is, Rm ¼ RðkbÞ; Lm ¼ LðkbÞ and Cm ¼ CðkbÞ.
Specifying these functions by Eq. (7) is the key result of this

paper. We thus obtain an RLC model of the circular loop, in

which the modes are treated as series RLC circuits with vary-

ing values, in parallel with each other and with a zero order

mode, as illustrated in Figure 2.

As another example of the non-constancy of R, L, and

C, note that the modal resonant frequency, xm, is not a con-

stant value, but varies with frequency. The resonance func-

tion simplifies to kbm ¼ m=ðllml�mÞ1=2
. The rolling curves

shown in Figure 4 show the variation in kb for the first four

modes. When kb ¼ kbm, the loop resonates, hence the inter-

section of the line y ¼ kb with the function kb1 gives the reso-

nance of the first mode, and so forth with increasing m.

These resonances, with associated values of the unit-less

functions, are given in Table I. When referring to a value

that occurs at a modal resonance, a tilde above the symbol

will be used henceforth; for example, ~R2 refers to the resist-

ance of the loop at the modal resonance, ~kb2.

With these values, Eq. (7) can be calculated for each

mode of a given loop, with radius b. It is important to note

that the inductance and capacitance depend directly on the

loop radius, but the resistance does not. Moreover, this resist-

ance is not due to losses in the wire, since the model assumes

perfectly conducting material. The resistance must, there-

fore, refer to radiation losses.

The zero order term consists of a resistance and an in-

ductance in series,

Z0 ¼ R0 þ jxL0 ¼ nokbr0 þ jxlobll0

¼ nokb½ro þ jll0�;

where the terms are given by Eq. (9). Figure 5 shows the real

and imaginary parts plotted over the range 0 < kb < 2:5 for

X ¼ 12. Again, the elements vary with kb and indeed the

FIG. 2. The proper RLC model of a circular loop antenna in standard form.

FIG. 3. Mode 2 resonance for (a) an extremely thin loop (X ¼ 40), compar-

ing Storer/Wu’s theory, 1=Z2 � 1=ðjpnoam=2Þ, with an RLC model, Eq.

(10), using constant values, R¼ 360 ohms, Xb ¼ 14 400 ohms; and for (b) a

thicker loop (X ¼ 8) with R¼ 428 ohms, Xb ¼ 1198 ohms. FIG. 4. The resonance functions, kbm, for the first four modes, X ¼ 12.
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magnitude of the zero order mode plays a crucial role in the

full summation, as shown in the Table I.

In summary, every circular loop has an infinite number

of resonant modes. However, it is the sum of these modes

that yields the full impedance behavior, and the sum always

converges to a more limited number of resonances. Indeed,

as Figure 1 indicates, the zero crossings of the imaginary

component tend to die off as the excitation frequency

increases. For example, the resonances and anti-resonances

of the first four natural modes of a loop with X ¼ 12 are

given in Table I under the heading ~kbm. The first two

resonances and the first two anti-resonances of the full im-

pedance function itself are given in Table II. Notice that the

values in these two tables are different and that all resonan-

ces and anti-resonances (except the first), disappear for loops

of thickness X � 8.

V. COMPARISONS WITH SIMULATIONS AND
REPORTS IN THE LITERATURE

In order to show (a) the accuracy of the classically

derived impedance function and (b) the power of this analyti-

cal method in identifying the resonances and anti-resonances

of the circular loop, we perform two types of comparisons: (1)

a comparison of the impedance functions of various circular

loops as given by the RLC functions in Eq. (8), and as given

by numerical simulations; (2) a comparison of the resonances

of two SRRs as given by their impedance functions from nu-

merical simulations and as given in the literature.

A. Methodology

For the first comparison, we simulate three loops in free

space using CST’S MICROWAVE STUDIO
TM (MWS).32 MWS is a

3D, finite-element simulation tool applicable from RF

through the optical region. We approximate the

“infinitesimal gap” used in the analytical theory with a small

gap at / ¼ 0, across which we place a power port to inject

energy. In a real structure, the gap would introduce some ca-

pacitance that is not in the theory and would skew the result-

ing impedance function. Therefore, we remove the gap

capacitance analytically in post-processing calculations,

using a method suggested by Locatelli.2 The gap capacitance

is calculated using Cg ¼ �0A2=g, where �0 is the permittivity

of free space, A is the cross-sectional area of the wire, and g
is the width of the gap.

For all simulation runs, the following guides are used:

Perfect electric conductors are used at all frequencies.

The antenna sits in free space in the XY plane with the gap

at (0, – b, 0). Two symmetry planes are set: the YZ plane has

TABLE II. The first two resonances and anti-resonances for loops of thick-

nesses X ¼ 8 through 12.

Anti-Resonances Resonances

X kb R, ohms kb R, ohms

12 .460 28,620 1.087 148

1.438 912 2.151 203

10 .452 18,030 1.150 165

1.39 423 … …

8 .455 8,601 … …

… … …

FIG. 5. The zero order resistance and reactance, n0kbro and n0kbll0; X ¼ 12.

TABLE I. Key values at the modal resonances for X ¼ 12.

X ¼ 12; mode, m ~kbm ~r0
~R0

~ll0
~XL0 ~rm ~gm

~Rm
~llm

~l�m ~Xbm
~Xbm= ~Rm

1 1.069 .5075 204 4.70 1895 .5776 3.9408 143.3 2.06 .425 829 5.8

2 2.099 1.922 1521 4.19 3312 .4976 3.5865 193.4 1.93 .471 1526 7.9

3 3.123 1.876 2209 2.75 3234 .4619 3.4429 228.3 1.84 .502 2163 9.5

4 4.144 1.131 1767 2.79 4361 .4414 3.3565 256.0 1.77 .527 2759 10.8

X ¼ 10; mode, m ~kbm ~r0
~R0

~ll0
~XL0 ~rm ~gm

~Rm
~llm

~l�m ~Xbm
~Xbm= ~Rm

1 1.096 .540 223 3.712 1533 .5813 3.701 147 1.544 .539 638 4.3

2 2.147 1.967 1592 3.118 2523 .5112 3.304 201 1.417 .612 1147 5.7

3 3.190 1.815 2183 1.694 2038 .4821 3.125 240 1.327 .666 1596 6.7

4 4.230 1.128 1799 1.845 2943 .4674 3.004 271 1.258 .711 2007 7.4

X ¼ 8; mode, m ~kbm ~r0
~R0

~ll0
~XL0 ~rm ~gm

~Rm
~llm

~l�m ~Xbm
~Xbm= ~Rm

1 1.162 .625 274 2.732 1197 .5881 3.202 156 1.011 .732 443 2.8

2 2.284 2.070 1783 1.911 1646 .5455 2.661 222 .881 .870 759 3.4

3 3.420 1.591 2052 .5803 748 .5448 2.316 274 .786 .979 1013 3.7

4 4.580 1.237 2136 1.035 1788 .5630 2.027 322 .708 1.077 1223 3.8

094911-5 McKinley et al. J. Appl. Phys. 112, 094911 (2012)



the tangential component of ~E ¼ 0 (i.e., ~Et ¼ 0) and the XY

plane ~Ht ¼ 0. The gap for the circular loop is kept at 0.03 b
and its capacitance removed from the data in post-

processing. A discrete power port, placed across the gap,

provides excitation, with a source power of 1 watt and vari-

able port resistance, Rp. The design frequency is defined:

fd ¼ c=ð2pbÞ, where c is the speed of light. The frequency

range is set: <:1fd to 2:5fd. The horizontal axis measure, kb,

is calculated in post-processing by dividing this range by fd.

Post-processing calculates the real and imaginary parts of the

impedance, Z, and the reflected power, S2
11. Rp is at first arbi-

trary, but is iteratively replaced until S2
11 reaches minimum.

At this value, Rp equals Re(Z) and maximum power flows

from the port into the antenna. If the antenna resonates, the

minimum occurs very close to Im(Z)¼ 0.

B. Results

Figure 6 compares MWS simulations33 of the imped-

ance with theory for three loops. Theory matches the simula-

tion well throughout the kb range for the thin loop, shown in

(a). As the loop thickens in (b), and then in (c), the match

becomes less accurate. This is expected, given the assump-

tions of the derivation, given in Sec. II.

It was noted in Sec. II that the individual modes of thin

loops have very sharp, high Q, narrow resonances, and that

they do not overlap in the full impedance summation. The

effects of that are steep zero-crossings at the resonances very

near kb ¼ m, which can be seen in Figure 6(a). Since the

modal resonances of thick loops have lower Q and are

broader, the zero-crossings are less steep and kbm > m. If the

loop is thick enough, the resonances disappear entirely.

For a second test, we present two open-ringed structures

studied by Zhou and Chui.19 In developing their analytical

equations, they used the “quasi-static approximation (QSA)”

of Maxwell’s equations, an assumption specifically for struc-

tures that are small compared with the exciting wavelength.

The assumption makes their analysis inherently weaker than

that used by Storer and Wu when applied to large rings.

Both rings have a gap of angular width p=40, but our analy-

sis is of rings without gaps, so a comparison between our

resonances and theirs must take that into account. Figure

7(a) shows a simulation of the first ring without the gap; we

find an excellent match with our calculated impedance.

Fig. 7(b) shows a simulation with the gap. Notice that the

zero-crossings are slightly different than those in Fig. 7(a).

Zhou and Chui’s calculated resonances are compared with

the zero-crossings. They call their minima at 0.5, 1.42, and

2.48 “odd-numbered resonances;” these correspond to our

anti-resonances. Their “even-numbered resonances” near

0.96 and 2.0 correspond to our resonances of 1.05 and 2.07.

We can attribute the 6%-10% difference only to their QSA

assumption.

Zhou and Chui’s second ring has b¼ 4 mm and

a¼ 0.1 mm (our X ¼ 11:0). They present the transmittance

of a 2D planar structure, in which the xy plane is tiled with

these rings, using a lattice constant 16 mm in both directions.

In Figure 8, we show their calculated and simulated results

superimposed on the impedance resulting from our simula-

tion. Note that while our anti-resonances closely match their

odd-numbered resonances, our true resonance (1.11) falls

midway between their calculated (� :95) and simulated

(1.19) even-numbered resonance. The difference between

their calculated and simulated results is about 20%. The dif-

ference may be due to the simulation of an array of rings vs

the single ring itself. Figures in their papers show small

structures near 2.0 and 2.4, but they do not claim these as

FIG. 6. The MWS simulation of a loop, with thickness X ¼ ðaÞ 12, (b) 10,

and (c) 8. The analytical model, Eqs. (7) to (9), matches simulation results

less and less as the loop becomes thicker, due to assumptions of the deriva-

tion. Note the steep zero-crossings at the true resonances for the thin loops,

which indicate higher Qs there.
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resonances. Indeed they are not, since our theory shows no

zero-crossings in this region.

VI. DISCUSSION

Large circular loops evidently change their distributed

resistance, inductance, and capacitance with frequency in a

complicated way.

(1) At low frequencies, where the circumference is small

with respect to the imposed wavelength, the loop looks in-

ductive, with value L0 ¼ l0b
�

lnð8b=a� 2Þ
�

, a well known

result.29

(2) As the frequency rises, the wavelength approaches

the length of the circumference. Naively, one would expect

the traveling wave to reach the gap in phase with itself at

every kb ¼ m but this does not occur. This can be thought

of, perhaps, as a slowing of the wave, but the definition

kb ¼ 2pb=k has been used throughout, which implicitly

assumes no slowing. Rather, four other reasons can explain

the offsets: (a) the asymmetry between llm and l�m defined in

Eq. (9), (b) the influence of a strong zero term on all of the

resonant modes, (c) the radius of the wire (a thicker wire has

a greater variation in circular path-length for the traveling

wave than does a thinner wire), and (d) the way in which all

modes affect every other mode, as discussed in Sec. II. In

other words, at any given frequency, the loop presents itself,

only approximately, as a series resistor and inductor in paral-

lel with a series resistor, inductor, and capacitor. The result

is a loop resonance that occurs at a frequency different than

kb ¼ m; and indeed, at a slightly different place than the cor-

responding mode resonance itself.

In other words, the explanations for the kb shift are (a)

none of the three unit-less functions are constant with kb, and

(b) an asymmetry exists between the functions llm and l�m. The

differences between the summations in the latter two functions

are slight, except for the first mode, m¼ 1. Therefore, the

asymmetry is due primarily to the Bessel integrals. These are

enough to cause the shift in kb away from integer values. The

phase shift discrepancy is due to the asymmetry between the

real and imaginary parts of Eq. (8). Since it is impossible to

assign constant values to rm; gm; llm, and l�m, every mode

affects every other mode, and for thick loops no single mode

can be ascertained by looking at the total impedance.

(3) Roughly midway between the resonances, the travel-

ing wave reaches the gap out of phase with itself exactly.

Incoming power reflects back to the source strongly and the

loop looks very resistive; hence peaks appear in the real part

of the impedance. These are the anti-resonances. At these

anti-resonances, the loop switches response from looking

strongly inductive to strongly capacitive.

(4) On resonance, the imaginary portion of the imped-

ance goes to zero, leaving the loop looking purely resistive.

This is essentially the radiation resistance of the loop for that

mode. The radiation resistance is not directly dependent on

the loop radius, but rather on the ratio, kb. At this point, the

power reflected from the loop back toward the power source

across the gap, reaches its lowest point. If there is a reso-

nance, the reflected power goes to zero; if not, it reaches a

minimum above zero.

(5) In the aggregate, the spectral response of the loop

corresponds to that of a set of series resonant circuit elements

in parallel, as illustrated in Figure 2 where the elements vary

FIG. 7. Zhou and Chui’s19 first ring (X ¼ 12:886) (a) without and (b) with

the gap (size ¼ p=40). Our resonances are slightly different, depending on

whether the gap is present. (a) Compares our calculated impedance with

simulated impedances. (b) Compares the zero-crossings of the simulated im-

pedance with Zhou and Chui’s calculated resonances.

FIG. 8. Zhou and Chui’s second ring, example Ref. 19 of size X ¼ 11:0.

Superimposed are our resonances and anti-resonances, their calculations of

the resonances, and the resonances from their FDTD simulation of a 2D

array using these rings.
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with frequency according to Eq. (9). The low frequency term

is always present and has a strong influence over the behav-

ior of the loop. The other modes act like RLC series resonant

circuits. When the frequency is close to a mode resonance,

the reactance for that mode gets close to 0, and the series

looks resistive; when the frequency is far away from the

mode’s resonance, the reactance looks like an open circuit.

The other modes however affect the resonance of any other

given mode, due to spectral broadening of each mode, as

noted in Sec. II. Moreover, the zero-term impedance has a

significant role in the overall impedance. Both the resistance

and the reactance of this term have large values at each

modal resonance.

(6) Figure 6 shows that the impedance function changes

dramatically as the loop wire thickens. If a loop is extremely

thin, the current wave traveling along the circumference

finds only one path it can follow. In this case, the natural

mode is very narrow, as shown in Figure 3(a). Notice that

the tails of both the resistance and the reactance for this

mode 2 of an X ¼ 40 loop have small values at kb ¼ 1 and

kb ¼ 3; that is, the modes do not interfere with each other

and hence the full reactance function has steep zero-

crossings very near all of the kb ¼ m. The Q of this mode, as

measured by the central resonance divided by the bandwidth,

is quite high.

In a thicker loop, however, the circumferential path

length is less clearly defined; the wavelength can fit a range

of nearby paths, and hence a broadening of the resonant peak

occurs, as in Figure 3(b). The Q is lower and the slope of the

zero-crossing of the full impedance curve at this resonance is

small. Notice that the tails of the resonant curve for this

mode overlap other modes. Broadened modes carry signifi-

cant values at the other modes, and this tends to reduce the

effectiveness of the overall loop response.

Consequently, in the RF region, where the emphasis has

always been on communication and where radiating on mul-

tiple frequencies is undesirable, a trade-off exists in the

choice between higher Q, narrow band, thin loops with sev-

eral harmonics and lower Q, broadband, thick loops with no

harmonics. This tradeoff is one of the reasons that circular

loops have not been useful in the RF region. The choice is

not as critical at higher frequencies and smaller dimensions,

where the research has so far focused on single frequency,

thick loop, meta-material structures for cloaking and optical

needs, rather than for communications.

VII. CONCLUSION

We provide a set of equations describing an electrical

RLC circuit model for thin and somewhat thick circular

loops, applicable from the RF through low THz frequencies.

The model provides all of the natural harmonic modes with

their individual RLC representations. The full impedance

function generated by the model provides the first resonance,

first anti-resonance, and all of their harmonics.

In the RF, MW, THz, and soon in optical, regimes, loop

antennas are used to control the storage, radiation, and focus-

ing of energy. The key to such control is understanding the

resonances and anti-resonances. Our method of finding first

the impedance function of the loop and then identifying these

resonances from it is straightforward and fast. Since a single

function operates over a very large frequency range, the

method covers a very large number of structures.

Loops have always been difficult to understand intui-

tively. They have been perceived as impenetrable because of

the complicated Bessel formulation of the classical deriva-

tion. Our method of transforming the derivation to an RLC

formulation gives us greater insight into the modal resonan-

ces and how they work together to form the full impedance

function presented to an incoming source of energy.
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